WO2008065798A1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
WO2008065798A1
WO2008065798A1 PCT/JP2007/068070 JP2007068070W WO2008065798A1 WO 2008065798 A1 WO2008065798 A1 WO 2008065798A1 JP 2007068070 W JP2007068070 W JP 2007068070W WO 2008065798 A1 WO2008065798 A1 WO 2008065798A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotating
particles
vacuum pump
gas
Prior art date
Application number
PCT/JP2007/068070
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kabasawa
Yoshiyuki Sakaguchi
Original Assignee
Edwards Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Japan Limited filed Critical Edwards Japan Limited
Priority to JP2008546901A priority Critical patent/JP5463037B2/en
Publication of WO2008065798A1 publication Critical patent/WO2008065798A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/524Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps shiftable members for obturating part of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the present invention relates to, for example, a vacuum pump that performs evacuation processing of a vacuum vessel, and more particularly, to a vacuum pump having a structure that prevents backflow of particles to a vacuum container.
  • Vacuum pumps such as turbo molecular pumps and thread groove pumps are widely used in, for example, vacuum vessels that require high vacuum, such as exhaust of semiconductor manufacturing equipment and electron microscopes.
  • a vacuum pump that realizes this high vacuum environment includes a casing that forms an exterior body having an intake port and an exhaust port. And inside the casing, there is housed a structure that allows the vacuum pump to exert its exhaust function!
  • a structure that exhibits this exhaust function is roughly composed of a rotating part (rotor part) rotatably supported by a shaft and a fixed part (stator part) fixed to the casing.
  • a rotating part is composed of a rotating shaft and a rotating body fixed to the rotating shaft, and rotor blades provided with radial blades are arranged in multiple stages on the rotating body. Yes.
  • stator blades are arranged in multiple stages in the fixed portion alternately with respect to the rotor blades.
  • a motor for rotating the rotating shaft at high speed is provided.
  • gas is sucked from the intake port by the action of the rotor blade and the stator blade, and the exhaust port Power is being discharged.
  • particles generated in the vacuum container such as fine particles made of reaction products generated in the process chamber of the semiconductor manufacturing apparatus are also taken into the vacuum pump only from the gas in the vacuum container.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2006-307823
  • FIG. 5 is a developed view schematically showing the rotor blades in the turbo molecular pump proposed in Patent Document 1. As shown in FIG.
  • Patent Document 1 discloses a rotor blade formed such that a surface 108a of a blade 108 is parallel to the direction of the rotation axis, as shown in FIG.
  • FIG. 6 (a) shows an example of the movement path of gas molecules entering the rotor blades from the inlet side when the blade 108 is not processed
  • Fig. 6 (b) shows the blade 10 8 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from the inlet side when processing is performed on FIG.
  • FIG. 7 (a) is a diagram showing an example of the movement path of gas molecules incident on the rotor blades from the exhaust port side when the blade 108 is not processed.
  • FIG. 4 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from an exhaust port side when a blade is processed. 6 and 7 show the state when gas molecules are incident from one power point in order to avoid complicated explanation.
  • FIG. 6 (a) When FIG. 6 (a) is compared with FIG. 6 (b), the processing of the blade 108 reduces the probability (Ml 2) that gas molecules pass from the intake port side to the exhaust port side. I understand.
  • Exhaust velocity C X (M12— ⁇ 21) ⁇ 1 where C is the number of incident gas molecules.
  • the present invention provides a vacuum pump that can appropriately prevent the backflow of particles (particles) to the upstream region of the intake port without significantly reducing the exhaust performance. To do.
  • an exterior body having an intake port and an exhaust port, a rotating body included in the exterior body and rotating at high speed, and a moving blade row having a blade angle provided in the rotating body are provided.
  • the rotating blade is, for example, protruded from at least one part of the side surface of the rotating body so as to be inclined with respect to the rotation axis direction, and faces the inlet side. It is preferable that the corner portion formed by the surface and the surface facing the rotation direction has a chamfered surface that is parallel to the axial direction of the rotating body or a surface facing the exhaust direction.
  • the rotating blade includes, for example, a surface facing an upstream direction of a gas transferred from the intake port to the exhaust port and a surface facing a downstream direction of the gas.
  • a chamfered surface having a surface parallel to the axial direction of the rotating body or a surface facing the downstream direction of the gas is formed at the corner formed on the inlet side. It is preferable.
  • the vacuum pump is a device that performs an evacuation process of a vacuum vessel, and the rotating blade is at least the interval between the adjacent rotating blades and the rotation.
  • the chamfered surface is formed in a colliding area of particles flying from the vacuum vessel, which is specified based on the moving speed of the blade and the moving speed of the particles.
  • the chamfered surface is formed only in a collision possible region, for example!
  • the vacuum pump according to the first or second aspect of the fixed portions forming the flow path of the gas transferred from the intake port to the exhaust port, the parallel to the axial direction.
  • a backflow prevention surface facing the downstream direction of the gas is formed in a region having a side surface.
  • a stationary blade row fixed to the exterior body, and a positioning function of the stationary blade row, provided inside the exterior body.
  • the backflow prevention surface is provided on at least one of the inner wall surface of the spacer and the exterior body.
  • the invention according to claim 5 is characterized in that, in the vacuum pump according to claim 3 or claim 4, the backflow prevention surface forms a V-shaped groove with a surface orthogonal to the rotation axis. To do.
  • the invention's effect is characterized in that, in the vacuum pump according to claim 3 or claim 4, the backflow prevention surface forms a V-shaped groove with a surface orthogonal to the rotation axis. To do. The invention's effect
  • the present invention by forming a chamfered surface facing the direction in which particles do not flow backward at the corner portion on the inlet side of the rotating blade, the backflow of particles is prevented at a portion where the incidence of particles is concentrated. Therefore, the backflow of particles can be efficiently prevented without significantly reducing the exhaust performance.
  • FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump according to the present embodiment.
  • FIG. 2 is a development view schematically showing a part of a moving blade row in the turbo molecular pump according to the present embodiment.
  • FIG. 3 is an explanatory diagram for explaining a method of calculating a collision possible region L.
  • FIG. 4 is an enlarged view of the rupture part A in FIG.
  • FIG. 5 is a development view schematically showing rotor blades in a turbo molecular pump proposed in Patent Document 1.
  • FIG. 6 (a) is a diagram showing an example of the movement path of gas molecules incident on the rotor blades from the air inlet side when the blade is not processed, and (b) is a diagram showing the blade being processed.
  • FIG. 5 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from the inlet side in the case of
  • FIG. 7 (a) is a diagram showing an example of a movement path of gas molecules incident on the rotor blades from the exhaust port side when the blade is not processed, and (b) is a diagram showing the processing of the blade.
  • FIG. 5 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from the exhaust port side in the case of
  • FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump 1 according to the present embodiment.
  • FIG. 1 shows a cross-sectional view of the turbo molecular pump 1 in the axial direction.
  • turbo molecular pump As an example of a turbo molecular pump, a so-called composite wing type molecular pump including a turbo molecular pump part T and a thread groove type pump part S will be described as an example. Note that the present embodiment may be applied to a pump having only the turbo-molecular pump portion T or a pump having a thread groove provided on the rotating body side.
  • the casing 2 forming the exterior body of the turbo molecular pump 1 has a cylindrical shape, and constitutes the exterior body of the turbo molecular pump 1 together with the base 3 provided at the bottom of the casing 2.
  • a structure that allows the turbo molecular pump 1 to perform an exhaust function, that is, a gas transfer mechanism, is housed inside the exterior of the turbo molecular pump 1.
  • These structures that exhibit the exhaust function are roughly composed of a rotor portion 4 that is rotatably supported and a stator portion that is fixed to the casing 2.
  • the intake port 5 side is composed of a turbo-molecular pump part T
  • the exhaust port 6 side is composed of a thread groove type pump part S! /.
  • the rotor section 4 includes a moving blade row 8 composed of a plurality of rotating blades 28 inclined at a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extending radially from the shaft 7, on the intake port 5 side ( It is installed in the turbo molecular pump section T).
  • the rotor portion 4 is made of a metal such as stainless steel or aluminum alloy.
  • the rotor part 4 is provided with a cylindrical member 9 made of a member having a cylindrical outer peripheral surface on the exhaust port 6 side (screw groove type pump part S).
  • turbo molecular pump 1 has a plurality of moving blade rows 8 formed in the axial direction.
  • the shaft 7 is a rotating shaft (rotor shaft) of the cylindrical member.
  • a rotor portion 4 is attached to the upper end of the shaft 7 by a plurality of bolts 10.
  • a motor part 11 for rotating the shaft 7 is arranged! /
  • the shaft 7 is arranged in the radial direction on the intake port 5 side and the exhaust port 6 side of the motor unit 11.
  • a magnetic bearing portion 12 and a magnetic bearing portion 13 for supporting the shaft are provided.
  • a magnetic bearing portion 14 for supporting the shaft 7 in the axial direction (thrust direction) is provided at the lower end of the shaft 7.
  • the shaft 7 is supported in a non-contact manner by a 5-axis control type magnetic bearing composed of magnetic bearing portions 12, 13, and 14.
  • Displacement sensors 15 and 16 are formed in the vicinity of the magnetic bearing portions 12 and 13, respectively, so that the radial displacement of the shaft 7 can be detected.
  • a displacement sensor 17 is formed at the lower end of the shaft 7 so that the axial displacement of the shaft 7 can be detected. I'm getting ready.
  • a stator portion is formed on the inner peripheral side of the casing 2.
  • This stator part includes a stationary blade row 18 provided on the intake port 5 side (turbomolecular pump part T), and a thread groove spacer 19 provided on the exhaust port 6 side (thread groove type pump part S). It is composed of
  • the stationary blade row 18 is composed of blades that are inclined at a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extend from the inner peripheral surface of the casing 2 toward the shaft 7.
  • the stationary blade rows 18 are formed in a plurality of stages alternately in the axial direction with the moving blade rows 8.
  • the stationary blade rows 18 of each stage are separated from each other by a cylindrical spacer 20.
  • the thread groove spacer 19 is a cylindrical member in which a spiral groove is formed on the inner peripheral surface.
  • the inner peripheral surface of the thread groove spacer 19 faces the outer peripheral surface of the cylindrical member 9 with a predetermined clearance (gap) therebetween.
  • the direction of the spiral groove formed in the thread groove spacer 19 is the direction toward the exhaust port 6 when the gas is transported through the spiral groove in the rotational direction of the rotor portion 4.
  • the depth of the spiral groove becomes shallower as it approaches the exhaust port 6.
  • the gas transported through the spiral groove is compressed as it approaches the exhaust port 6.
  • stator portions are made of metal such as stainless steel or aluminum alloy.
  • the base 3 and the casing 2 constitute an exterior body of the turbo molecular pump 1.
  • a stator column 21 having a cylindrical shape is attached concentrically with the rotation axis of the rotor.
  • a back cover 22 is attached to the bottom of the base 3 (the opening of the stator column 21).
  • the turbo molecular pump 1 according to the present embodiment is provided with a control device for controlling the turbo molecular pump 1 as shown in FIG.
  • the rotor section 4 rotates at a high speed, and the blades of the moving blade row 8 and the stationary blade row 18 receive a process gas that has been heated to high temperature by compression heat or the like. In response to the heat of compression, the blade temperature of the moving blade row 8 and the stationary blade row 18 rises.
  • turbo molecular pump 1 is heated by heat generated from the motor unit 11 and becomes a high temperature state.
  • the turbo molecular pump 1 is operated by the collision heat (compression heat) of gas molecules and the motor unit 11. It is in a high temperature state due to heat generation.
  • a cooling pipe 26 is embedded in the base 3 in order to cool the turbo molecular pump 1 in a high temperature state.
  • the cooling pipe 26 is made of a tubular (tubular) member.
  • the cooling pipe 26 is a member that cools the periphery of the cooling pipe 26 by flowing a cooling medium, which is a heat medium, into the cooling pipe 26 so that the cooling medium absorbs heat.
  • the cooling pipe 26 described above is composed of a member having a low thermal resistance, a member, that is, a member having a high thermal conductivity, and a member such as copper or stainless steel.
  • the coolant flowing through the cooling pipe 26, that is, the fluid for cooling the object may be a liquid or a gas.
  • the liquid coolant for example, water, a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or the like can be used.
  • ammonia, methane, ethane, halogen, helium gas, carbon dioxide gas, air, etc. can be used as the gas coolant.
  • the position of the force cooling pipe 26 in which the cooling pipe 26 is disposed on the base 3 is not limited to this.
  • it may be provided so as to be directly embedded in the stator column 21 and the back cover 22.
  • the turbo molecular pump 1 having such a configuration is a vacuum pump for performing an exhaust process on a vacuum vessel, for example, a process chamber provided in a semiconductor manufacturing apparatus in which the inside is kept in a high vacuum state. It is used as
  • particles (fine particles) made of reaction products are generated during reaction of a process gas.
  • particles generated in the process chamber that includes only the gas in the process chamber are also taken in from the intake port 5.
  • particles taken in from the intake port 5 collide with the rotating blade 28 rotating at high speed inside the turbo molecular pump 1, they are bounced back to the process chamber side, that is, flow back from the intake port 5 to the process chamber side. End up.
  • Such particles flowing back from the turbo molecular pump 1 may cause contamination inside the process chamber.
  • the rotary blade 28 is processed so as to suppress the backflow of the particles taken in from the intake port 5 to the upstream region.
  • FIG. 2 is a developed view schematically showing a part of the moving blade row 8 in the turbo molecular pump 1 according to the present embodiment.
  • the rotating blade 28 has a corner formed by a surface 28b facing the upstream direction of the gas transferred from the intake port 5 to the exhaust port 6 and a surface 28c facing the downstream direction of the gas. Then, the chamfered surface 28a is formed by chamfering!
  • the chamfered surface 28a is formed in parallel with the axial direction of the shaft 7, that is, in parallel with the rotation axis.
  • the chamfering process is, for example, a knife edge portion such as a corner formed by the surfaces 28b and 28c of the rotating blade 28 in order to prevent injury and reduce burrs when the turbo molecular pump 1 is assembled.
  • the process which cuts a ridge angle a little is shown.
  • the turbo molecular pump 1 it is specified by the interval between the adjacent rotating blades 28, the moving speed of the rotating blades 28 (rotating speed of the moving blade row 8), the moving speed of particles, and the like.
  • the formation region of the chamfered surface 28a of the rotary blade 28 is set based on the particle collision possible region L (hereinafter referred to as the collision possible region).
  • the amount of bracing in the chamfering process of the corner portion formed by the surfaces 28b and 28c of the rotary blade 28 is set.
  • FIG. 3 is an explanatory diagram for explaining a method of calculating the collision possible region L.
  • the angular velocity of the moving blade row 8 is 2830 rad / s (450 rotations per second)
  • the radius of the rotating blade 28 is 0.15 m.
  • the interval between the blades 28 shall be 0 ⁇ 03m.
  • the moving speed of the particle P that is, the falling speed VI is calculated as follows based on the law of conservation of energy. However, the gravitational acceleration is assumed to be 9.8 [m / s2].
  • the collision possible area L is calculated as follows.
  • Collision possible region L Spacing blade interval X (falling speed VI / rotating speed V2)
  • the chamfered surface 28a of the rotary blade is formed in the range of the collision possible region L and is not formed beyond the range of the collision possible region L! / As you can see, the amount of chamfering is set!
  • the chamfered surface 28a is provided in the particle collision-possible region L in the rotating blade 28 in consideration of the path of incidence (entrance) of particles to the rotating blade 28.
  • the chamfered surface 28a of the rotary blade 28 is formed in parallel with the rotation axis.
  • the direction of the chamfered surface 28a is not limited to this, and the colliding particle is moved upstream. It suffices to face in a direction that does not bounce back.
  • the chamfered surface 28a of the rotary blade 28 may be formed so as to face the downstream direction of the gas.
  • a casing for forming a gas flow path from the intake port 5 to the exhaust port 6 is formed.
  • a backflow preventing surface facing the downstream direction of the gas, that is, a trap for sending the colliding particles to the exhaust port 6 side is formed.
  • Fig. 4 is an enlarged view of the rupture part A in Fig. 1.
  • a cross section V is formed on the inner peripheral wall surface of the casing 2 in the vicinity of the intake port 5 and the inner peripheral wall surface (inner side surface) of the spacer 20 disposed in the vicinity of the intake port 5.
  • a letter-shaped groove 30 extends along the circumferential direction.
  • the groove 30 has a side surface (backflow prevention surface) provided on the intake port 5 side among the V-shaped side surfaces, and is provided on the exhaust port 6 side, that is, on the downstream side. It is formed to face the direction.
  • the side surface provided on the exhaust port 6 side is formed so as to face the intake port 5 side, that is, the upstream direction.
  • the groove 30 is provided only on the inner peripheral wall surface of the casing 2 in the vicinity of the intake port 5 and on the inner peripheral wall surface of the spacer 20 disposed in the vicinity of the intake port 5. , The force forming part of the groove 30 is not limited to this! /.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

To properly prevent backflow of particles into an upstream region of an inlet opening without involving significant fall in gas discharge performance. A chamfered face (28a) is formed on a rotary blade (28) of a turbo molecular pump by chamfering a corner portion formed by a surface (28b) facing the upstream direction of gas transferred from the inlet opening (5) to a discharge opening (6) and a surface (28c) facing the downstream direction of the gas. The chamfered face (28a) is formed in parallel with the axial direction of a shaft (7). In the turbo molecular pump (1), the region where the chamfered face (28a) of the rotary blade (28) isformed is determined based on the interval of adjacent rotary blades (28), moving speed of the rotary blade (28), and a region L with which particles are possible to collide and that is specified by moving speed etc. of the particles. In other words, the amount of cutting in the chamfering work of the corner portion formed by the face (28b) and the face (28c) of the rotary blade (28) is determined based on the region L with which the particles are possible to collide.

Description

明 細 書  Specification
真空ポンプ 技術分野  Technical field of vacuum pump
[0001] 本発明は、例えば、真空容器の排気処理を行う真空ポンプに関し、特に、真空容 器へのパーティクルの逆流を防止する構造を有する真空ポンプに関する。 背景技術  The present invention relates to, for example, a vacuum pump that performs evacuation processing of a vacuum vessel, and more particularly, to a vacuum pump having a structure that prevents backflow of particles to a vacuum container. Background art
[0002] ターボ分子ポンプやねじ溝式ポンプなどの真空ポンプは、例えば、半導体製造装 置の排気や、電子顕微鏡などの高真空を要する真空容器に多用されている。  [0002] Vacuum pumps such as turbo molecular pumps and thread groove pumps are widely used in, for example, vacuum vessels that require high vacuum, such as exhaust of semiconductor manufacturing equipment and electron microscopes.
この高真空の環境を実現する真空ポンプは、吸気口及び排気口を備えた外装体を 形成するケーシングを備えている。そして、このケーシングの内部には、当該真空ポ ンプに排気機能を発揮させる構造物が収納されて!/、る。この排気機能を発揮させる 構造物は、大きく分けて回転自在に軸支された回転部(ロータ部)とケーシングに対 して固定された固定部(ステータ部)から構成されて!/、る。  A vacuum pump that realizes this high vacuum environment includes a casing that forms an exterior body having an intake port and an exhaust port. And inside the casing, there is housed a structure that allows the vacuum pump to exert its exhaust function! A structure that exhibits this exhaust function is roughly composed of a rotating part (rotor part) rotatably supported by a shaft and a fixed part (stator part) fixed to the casing.
[0003] ターボ分子ポンプの場合、回転部は、回転軸及びこの回転軸に固定されている回 転体からなり、回転体には、放射状ブレードが設けられたロータ翼が多段に配設され ている。また、固定部には、ロータ翼に対して互い違いにステータ翼が多段に配設さ れている。  [0003] In the case of a turbo molecular pump, a rotating part is composed of a rotating shaft and a rotating body fixed to the rotating shaft, and rotor blades provided with radial blades are arranged in multiple stages on the rotating body. Yes. In addition, stator blades are arranged in multiple stages in the fixed portion alternately with respect to the rotor blades.
また、回転軸を高速回転させるためのモータが設けられており、このモータの働きに より回転軸が高速回転すると、ロータ翼とステータ翼との作用により気体が吸気口か ら吸引され、排気口力 排出されるようになっている。  Also, a motor for rotating the rotating shaft at high speed is provided. When the rotating shaft rotates at a high speed by the function of this motor, gas is sucked from the intake port by the action of the rotor blade and the stator blade, and the exhaust port Power is being discharged.
[0004] ところで真空ポンプには、真空容器内の気体だけでなぐ例えば、半導体製造装置 のプロセスチャンバにおいて生じた反応生成物からなる微粒子など、真空容器内で 生じたパーティクルも吸気口から取り込まれる。 [0004] By the way, particles generated in the vacuum container such as fine particles made of reaction products generated in the process chamber of the semiconductor manufacturing apparatus are also taken into the vacuum pump only from the gas in the vacuum container.
パーティクルは、真空ポンプの内部において、高速回転しているロータ翼に衝突し た場合、真空容器側へ跳ね返され、即ち吸気口から真空容器側へ逆流してしまう。 真空ポンプから逆流したパーティクルは、真空容器の内部の汚染原因となるおそれ 力 sある。 そこで従来、このような真空容器側へのパーティクルの逆流を抑制する技術が下記 の特許文献に提案されて!/、る。 When the particles collide with the rotor blade rotating at high speed inside the vacuum pump, the particles are bounced back to the vacuum vessel, that is, flow back from the suction port to the vacuum vessel. Particles flowing back from the vacuum pump is a fear force s the internal contamination cause of the vacuum vessel. Therefore, conventionally, a technique for suppressing the backflow of particles to the vacuum vessel side has been proposed in the following patent documents!
特許文献 1 :特開 2006— 307823公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2006-307823
[0005] 特許文献 1には、ロータ翼に衝突したパーティクルが吸気口側へ跳ね返されること を防止するために、ロータ翼のブレードの先端面力 回転軸方向と平行になるように 、または、排気口側を向くように形成されたターボ分子ポンプが提案されている。 図 5は、特許文献 1で提案されているターボ分子ポンプにおけるロータ翼を模式的 に示した展開図である。 [0005] In Patent Document 1, in order to prevent particles colliding with the rotor blades from being bounced back to the intake port side, the tip surface force of the blades of the rotor blades is parallel to the rotational axis direction or the exhaust gas is exhausted. A turbo-molecular pump formed to face the mouth side has been proposed. FIG. 5 is a developed view schematically showing the rotor blades in the turbo molecular pump proposed in Patent Document 1. As shown in FIG.
具体的に特許文献 1には、図 5に示すように、ブレード 108の面 108aが、回転軸方 向と平行になるように形成されたロータ翼が開示されている。  Specifically, Patent Document 1 discloses a rotor blade formed such that a surface 108a of a blade 108 is parallel to the direction of the rotation axis, as shown in FIG.
このようにブレード 108の面 108aを形成することにより、パーティクルがブレード 10 8の従来の面 108bに衝突して吸気口側へ跳ね返されることを防止することができる。 発明の開示  By forming the surface 108a of the blade 108 in this way, it is possible to prevent particles from colliding with the conventional surface 108b of the blade 108 and being bounced back to the inlet side. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、パーティクルの逆流防止を目的として、特許文献 1で提案されている ようにロータ翼のブレード 108を加工した場合、気体分子(ガス分子)の排気処理に おいて有効となるロータ翼の領域が減少してしまうため、真空ポンプの排気性能が低 下してしまう。 [0006] However, when the blade 108 of the rotor blade is processed as proposed in Patent Document 1 for the purpose of preventing the backflow of particles, the rotor blade is effective in the exhaust treatment of gas molecules (gas molecules). This will reduce the area of the vacuum pump, which will reduce the exhaust performance of the vacuum pump.
[0007] ここで、特許文献 1で提案されているようにロータ翼のブレード 108を加工した場合 において、真空ポンプの排気性能の低下が生じるメカニズムについて説明する。 図 6 (a)は、ブレード 108に加工を施していない場合における、吸気口側からロータ 翼に入射するガス分子の移動経路の一例を示した図であり、図 6 (b)は、ブレード 10 8に加工を施した場合における、吸気口側からロータ翼に入射するガス分子の移動 経路の一例を示した図である。  [0007] Here, a mechanism that causes a reduction in the exhaust performance of the vacuum pump when the blade 108 of the rotor blade is machined as proposed in Patent Document 1 will be described. Fig. 6 (a) shows an example of the movement path of gas molecules entering the rotor blades from the inlet side when the blade 108 is not processed, and Fig. 6 (b) shows the blade 10 8 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from the inlet side when processing is performed on FIG.
また、図 7 (a)は、ブレード 108に加工を施していない場合における、排気口側から ロータ翼に入射するガス分子の移動経路の一例を示した図であり、図 7 (b)は、ブレ ード 108に加工を施した場合における、排気口側からロータ翼に入射するガス分子 の移動経路の一例を示した図である。 なお、図 6及び図 7では、説明の煩雑化を避けるために、ガス分子が 1力所から入射 した場合の状態を示す。 Fig. 7 (a) is a diagram showing an example of the movement path of gas molecules incident on the rotor blades from the exhaust port side when the blade 108 is not processed. Fig. 7 (b) FIG. 4 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from an exhaust port side when a blade is processed. 6 and 7 show the state when gas molecules are incident from one power point in order to avoid complicated explanation.
[0008] 図 6 (b)に示すように、吸気口側から入射したガス分子がブレード 108の面 108aに 衝突した場合、ガス分子は、排気口側へ送られずに、隣接するブレード 108における 吸気口側に傾レ、た側面 108cと衝突して吸気口側へ跳ね返される。 [0008] As shown in FIG. 6 (b), when the gas molecules incident from the intake port collide with the surface 108a of the blade 108, the gas molecules are not sent to the exhaust port side, but are sent to the adjacent blade 108. It leans toward the intake side and collides with the side surface 108c and bounces back to the intake side.
図 7 (b)に示すように、排気口側から入射したガス分子がブレード 108の面 108aに 衝突した場合、ガス分子は、排気口側へ送られずに、隣接するブレード 108における 吸気口側に傾レ、た側面 108cと衝突して吸気口側へ跳ね返される。  As shown in Fig. 7 (b), when gas molecules incident from the exhaust port collide with the surface 108a of the blade 108, the gas molecules are not sent to the exhaust port side, and are not sent to the exhaust port side. It collides with the side surface 108c and bounces back to the inlet side.
また、図 7 (b)に示すように、排気口側から入射したガス分子がブレード 108と衝突 しない場合、ガス分子は、そのまま吸気口側へ送られる。  In addition, as shown in FIG. 7B, when the gas molecules incident from the exhaust port side do not collide with the blade 108, the gas molecules are sent to the intake port side as they are.
[0009] 図 6 (a)と図 6 (b)とを比較すると、ブレード 108に加工を施すことにより、ガス分子が 吸気口側から排気口側に通過する確率 (Ml 2)が低下することが分かる。 [0009] When FIG. 6 (a) is compared with FIG. 6 (b), the processing of the blade 108 reduces the probability (Ml 2) that gas molecules pass from the intake port side to the exhaust port side. I understand.
また、図 7 (a)と図 7 (b)とを比較すると、ブレード 108に加工を施すことにより、ガス 分子が排気口側から吸気口側へ通過する確率 (M21)が増加することが分かる。 真空ポンプにおける気体の排気速度は、次式で示される。  In addition, comparing Fig. 7 (a) and Fig. 7 (b), it can be seen that processing the blade 108 increases the probability (M21) that gas molecules pass from the exhaust port side to the intake port side. . The gas exhaust speed in the vacuum pump is expressed by the following equation.
排気速度 =C X (M12— Μ21) ···式 1 但し、 Cは、ガス分子の入射数を示す。 ブレード 108に面 108aを設ける加工を施すことにより、式 1における M12の値が減 少し、 M21の値が増加するため、排気速度が低下する。このような排気速度の低下 によって、真空ポンプの排気性能の低下が生じてしまう。  Exhaust velocity = C X (M12— Μ21) ············· 1 where C is the number of incident gas molecules. By processing the blade 108 to provide the surface 108a, the value of M12 in Equation 1 is decreased and the value of M21 is increased, so that the exhaust speed is decreased. Such a decrease in the exhaust speed causes a decrease in the exhaust performance of the vacuum pump.
[0010] そこで本発明は、排気性能の著しい低下を伴うことなぐ吸気口の上流領域へのパ 一ティクル (粒子)の逆流を適切に防止することができる真空ポンプを提供することを 目白勺とする。 [0010] Therefore, the present invention provides a vacuum pump that can appropriately prevent the backflow of particles (particles) to the upstream region of the intake port without significantly reducing the exhaust performance. To do.
課題を解決するための手段  Means for solving the problem
[0011] 請求項 1記載の発明では、吸気口と排気口を有する外装体と、前記外装体に内包 され高速回転する回転体と、前記回転体に設けられた翼角度を有する動翼列を構成 し、翼の進行面と、前記吸気口から前記排気口まで移送される気体の上流方向を向 いた面とのなす隅角部に、前記回転体の軸方向と平行する面、または、前記気体の 下流方向を向く面を有する面取り面が形成された回転ブレードと、を備えることにより 前記目的を達成する。 [0011] In the invention according to claim 1, an exterior body having an intake port and an exhaust port, a rotating body included in the exterior body and rotating at high speed, and a moving blade row having a blade angle provided in the rotating body are provided. A plane parallel to the axial direction of the rotating body, or a corner formed by a surface of the blade that faces the upstream direction of the gas transferred from the intake port to the exhaust port, or A rotating blade formed with a chamfered surface having a surface facing the downstream direction of the gas, The object is achieved.
なお、請求項 1記載の発明において、前記回転ブレードは、例えば、前記回転体の 側面の少なくとも 1部に、前記回転軸方向に対して傾斜させて突設されており、吸気 口側を向いた面と、回転方向を向いた面とのなす隅角部に、前記回転体の軸方向と 平行する面、又は、排気方向を向く面の面取り面を有することが好ましい。  In the invention according to claim 1, the rotating blade is, for example, protruded from at least one part of the side surface of the rotating body so as to be inclined with respect to the rotation axis direction, and faces the inlet side. It is preferable that the corner portion formed by the surface and the surface facing the rotation direction has a chamfered surface that is parallel to the axial direction of the rotating body or a surface facing the exhaust direction.
また、請求項 1記載の発明において、前記回転ブレードは、例えば、前記吸気口か ら前記排気口まで移送される気体の上流方向を向いた面と、前記気体の下流方向を 向いた面とのなす隅角部のうち、吸気口側に形成される隅角部に、前記回転体の軸 方向と平行する面、または、前記気体の下流方向を向く面を有する面取り面が形成さ れていることが好ましい。  Further, in the invention according to claim 1, the rotating blade includes, for example, a surface facing an upstream direction of a gas transferred from the intake port to the exhaust port and a surface facing a downstream direction of the gas. Among the corners formed, a chamfered surface having a surface parallel to the axial direction of the rotating body or a surface facing the downstream direction of the gas is formed at the corner formed on the inlet side. It is preferable.
請求項 2記載の発明では、請求項 1記載の真空ポンプにおいて、該真空ポンプは、 真空容器の排気処理を行う装置であり、前記回転ブレードは、少なくとも、隣接する 前記回転ブレードの間隔、前記回転ブレードの移動速度、及び、粒子の移動速度に 基づいて特定される、前記真空容器から飛来する粒子の衝突可能領域に、前記面 取り面が形成されていることを特徴とする。  According to a second aspect of the present invention, in the vacuum pump according to the first aspect, the vacuum pump is a device that performs an evacuation process of a vacuum vessel, and the rotating blade is at least the interval between the adjacent rotating blades and the rotation. The chamfered surface is formed in a colliding area of particles flying from the vacuum vessel, which is specified based on the moving speed of the blade and the moving speed of the particles.
なお、請求項 2記載の発明において、前記面取り面は、例えば、衝突可能領域に のみ形成されてレ、ることが好まし!/、。  In the invention according to claim 2, it is preferable that the chamfered surface is formed only in a collision possible region, for example!
請求項 3記載の発明では、請求項 1または請求項 2記載の真空ポンプにおいて、前 記吸気口から前記排気口まで移送される気体の流路を形成する固定部のうち、軸線 方向に平行な側面を有する領域に、前記気体の下流方向を向いた逆流防止面が形 成されてレ、ることを特徴とする。  According to a third aspect of the present invention, in the vacuum pump according to the first or second aspect, of the fixed portions forming the flow path of the gas transferred from the intake port to the exhaust port, the parallel to the axial direction. A backflow prevention surface facing the downstream direction of the gas is formed in a region having a side surface.
請求項 4記載の発明では、請求項 3記載の真空ポンプにおいて、前記外装体に対 して固定された静翼列と、前記静翼列の位置決め機能を有し、前記外装体の内部に 設けられた環状のスぺーサと、を備え、前記逆流防止面は、前記スぺーサの内壁面 及び前記外装体のうちの少なくとも一方に設けられていることを特徴とする。  According to a fourth aspect of the present invention, in the vacuum pump according to the third aspect, there is provided a stationary blade row fixed to the exterior body, and a positioning function of the stationary blade row, provided inside the exterior body. The backflow prevention surface is provided on at least one of the inner wall surface of the spacer and the exterior body.
請求項 5記載の発明では、請求項 3または請求項 4記載の真空ポンプにおいて、前 記逆流防止面は、回転軸と直交する面と共に、断面 V字型の溝を構成することを特 徴とする。 発明の効果 The invention according to claim 5 is characterized in that, in the vacuum pump according to claim 3 or claim 4, the backflow prevention surface forms a V-shaped groove with a surface orthogonal to the rotation axis. To do. The invention's effect
[0012] 本発明によれば、回転ブレードにおける吸気口側の隅角部に、粒子が逆流しない 方向を向いた面取り面を形成することによって、粒子の入射が集中する部位に粒子 の逆流を防止する小さな面が設けられるため、排気性能の著しい低下を伴うことなく 、効率良く粒子の逆流を防止することができる。  [0012] According to the present invention, by forming a chamfered surface facing the direction in which particles do not flow backward at the corner portion on the inlet side of the rotating blade, the backflow of particles is prevented at a portion where the incidence of particles is concentrated. Therefore, the backflow of particles can be efficiently prevented without significantly reducing the exhaust performance.
なお、粒子の入射が回転ブレードの吸気口側の隅角部に集中するのは、回転体が 高速回転し、回転ブレードに入射する粒子の入射角度が極めて小さくなるためであ 図面の簡単な説明  Note that the incidence of particles is concentrated on the corner of the rotating blade on the inlet side because the rotating body rotates at a high speed and the incident angle of the particles incident on the rotating blade is extremely small.
[0013] [図 1]本実施形態に係るターボ分子ポンプの概略構成を示した図である。  FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump according to the present embodiment.
[図 2]本実施の形態に係るターボ分子ポンプにおける動翼列の一部を模式的に示し た展開図である。  FIG. 2 is a development view schematically showing a part of a moving blade row in the turbo molecular pump according to the present embodiment.
[図 3]衝突可能領域 Lの算出方法を説明するための説明図である。  FIG. 3 is an explanatory diagram for explaining a method of calculating a collision possible region L.
[図 4]図 1における破泉 A部の拡大図である。  FIG. 4 is an enlarged view of the rupture part A in FIG.
[図 5]特許文献 1で提案されているターボ分子ポンプにおけるロータ翼を模式的に示 した展開図である。  FIG. 5 is a development view schematically showing rotor blades in a turbo molecular pump proposed in Patent Document 1.
[図 6] (a)はブレードに加工を施していない場合における、吸気口側からロータ翼に 入射するガス分子の移動経路の一例を示した図であり、 (b)はブレードに加工を施し た場合における、吸気口側からロータ翼に入射するガス分子の移動経路の一例を示 した図である。  [Fig. 6] (a) is a diagram showing an example of the movement path of gas molecules incident on the rotor blades from the air inlet side when the blade is not processed, and (b) is a diagram showing the blade being processed. FIG. 5 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from the inlet side in the case of
[図 7] (a)はブレードに加工を施していない場合における、排気口側からロータ翼に 入射するガス分子の移動経路の一例を示した図であり、 (b)はブレードに加工を施し た場合における、排気口側からロータ翼に入射するガス分子の移動経路の一例を示 した図である。  [Fig. 7] (a) is a diagram showing an example of a movement path of gas molecules incident on the rotor blades from the exhaust port side when the blade is not processed, and (b) is a diagram showing the processing of the blade. FIG. 5 is a diagram showing an example of a movement path of gas molecules incident on a rotor blade from the exhaust port side in the case of
符号の説明  Explanation of symbols
[0014] 1 ターボ分子ポンプ [0014] 1 turbo molecular pump
2 ケーシング  2 Casing
3 ベース 4 ロータ部 3 base 4 Rotor part
5 吸気口  5 Inlet
6 排気口  6 Exhaust vent
7 シャフト  7 Shaft
8 動翼列  8 Rotor blade row
9 円筒部材  9 Cylindrical member
10 ボルト  10 volts
11 モータ部  11 Motor section
12〜; 14 磁気軸受部  12 ~; 14 Magnetic bearing
15〜; 17 変位センサ  15 ~ 17 Displacement sensor
18 静翼列  18 Stator blade row
19 ねじ溝スぺーサ  19 Thread groove spacer
20 スぺーサ  20 Spacer
21 ステータコラム  21 Stator column
22 m  22 m
26 冷却管  26 Cooling pipe
28 回転ブレード  28 Rotating blade
30  30
108 ブレード  108 blades
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の好適な実施の形態について、図 1〜4を参照して詳細に説明する。 本実施の形態では、真空ポンプの一例としてターボ分子ポンプを用いて説明する。 図 1は、本実施形態に係るターボ分子ポンプ 1の概略構成を示した図である。なお 、図 1は、ターボ分子ポンプ 1の軸線方向の断面図を示している。  Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. In this embodiment, a turbo molecular pump is used as an example of a vacuum pump. FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump 1 according to the present embodiment. FIG. 1 shows a cross-sectional view of the turbo molecular pump 1 in the axial direction.
本実施形態では、ターボ分子ポンプの一例としてターボ分子ポンプ部 Tとねじ溝式 ポンプ部 Sを備えた、いわゆる複合翼タイプの分子ポンプを例にとり説明する。なお、 本実施の形態は、ターボ分子ポンプ部 Tのみを有するポンプやねじ溝が回転体側に 設けられたポンプに適用してもよい。 [0016] ターボ分子ポンプ 1の外装体を形成するケーシング 2は、円筒状の形状をしており、 ケーシング 2の底部に設けられたベース 3と共にターボ分子ポンプ 1の外装体を構成 している。そして、ターボ分子ポンプ 1の外装体の内部には、ターボ分子ポンプ 1に排 気機能を発揮させる構造物つまり気体移送機構が収納されている。 In the present embodiment, as an example of a turbo molecular pump, a so-called composite wing type molecular pump including a turbo molecular pump part T and a thread groove type pump part S will be described as an example. Note that the present embodiment may be applied to a pump having only the turbo-molecular pump portion T or a pump having a thread groove provided on the rotating body side. The casing 2 forming the exterior body of the turbo molecular pump 1 has a cylindrical shape, and constitutes the exterior body of the turbo molecular pump 1 together with the base 3 provided at the bottom of the casing 2. A structure that allows the turbo molecular pump 1 to perform an exhaust function, that is, a gas transfer mechanism, is housed inside the exterior of the turbo molecular pump 1.
これら排気機能を発揮する構造物は、大きく分けて回転自在に軸支されたロータ部 4とケーシング 2に対して固定されたステータ部から構成されている。  These structures that exhibit the exhaust function are roughly composed of a rotor portion 4 that is rotatably supported and a stator portion that is fixed to the casing 2.
また、吸気口 5側がターボ分子ポンプ部 Tにより構成され、排気口 6側がねじ溝式ポ ンプ部 Sから構成されて!/、る。  In addition, the intake port 5 side is composed of a turbo-molecular pump part T, and the exhaust port 6 side is composed of a thread groove type pump part S! /.
[0017] ロータ部 4には、シャフト 7の軸線に垂直な平面から所定の角度だけ傾斜してシャフ ト 7から放射状に伸びた複数の回転ブレード 28からなる動翼列 8が吸気口 5側(ター ボ分子ポンプ部 T)に設けられている。なお、ロータ部 4は、ステンレスやアルミニウム 合金などの金属により構成されている。 [0017] The rotor section 4 includes a moving blade row 8 composed of a plurality of rotating blades 28 inclined at a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extending radially from the shaft 7, on the intake port 5 side ( It is installed in the turbo molecular pump section T). The rotor portion 4 is made of a metal such as stainless steel or aluminum alloy.
さらに、ロータ部 4には、外周面が円筒形状をした部材からなる円筒部材 9が排気 口 6側(ねじ溝式ポンプ部 S)に設けられて!/、る。  Further, the rotor part 4 is provided with a cylindrical member 9 made of a member having a cylindrical outer peripheral surface on the exhaust port 6 side (screw groove type pump part S).
また、ターボ分子ポンプ 1には、動翼列 8が軸線方向に複数段形成されている。  Further, the turbo molecular pump 1 has a plurality of moving blade rows 8 formed in the axial direction.
[0018] シャフト 7は、円柱部材の回転軸(ロータ軸)である。シャフト 7の上端にはロータ部 4 が複数のボルト 10により取り付けられている。 [0018] The shaft 7 is a rotating shaft (rotor shaft) of the cylindrical member. A rotor portion 4 is attached to the upper end of the shaft 7 by a plurality of bolts 10.
シャフト 7の軸線方向中程には、シャフト 7を回転させるモータ部 11が配設されて!/、 また、モータ部 11の吸気口 5側及び排気口 6側には、シャフト 7をラジアル方向に軸 支するための磁気軸受部 12及び磁気軸受部 13が設けられている。  In the middle of the axial direction of the shaft 7, a motor part 11 for rotating the shaft 7 is arranged! / In addition, the shaft 7 is arranged in the radial direction on the intake port 5 side and the exhaust port 6 side of the motor unit 11. A magnetic bearing portion 12 and a magnetic bearing portion 13 for supporting the shaft are provided.
さらに、シャフト 7の下端には、シャフト 7を軸線方向(スラスト方向)に軸支するため の磁気軸受部 14が設けられている。  Furthermore, a magnetic bearing portion 14 for supporting the shaft 7 in the axial direction (thrust direction) is provided at the lower end of the shaft 7.
なお、シャフト 7は、磁気軸受部 12、 13、 14から構成される 5軸制御型の磁気軸受 によって非接触で支持されて!/、る。  The shaft 7 is supported in a non-contact manner by a 5-axis control type magnetic bearing composed of magnetic bearing portions 12, 13, and 14.
また、磁気軸受部 12、 13の近傍には、それぞれ変位センサ 15、 16が形成されて おり、シャフト 7のラジアル方向の変位が検出できるようになつている。さらに、シャフト 7の下端には変位センサ 17が形成されており、シャフト 7の軸線方向の変位が検出で きるようになつている。 Displacement sensors 15 and 16 are formed in the vicinity of the magnetic bearing portions 12 and 13, respectively, so that the radial displacement of the shaft 7 can be detected. In addition, a displacement sensor 17 is formed at the lower end of the shaft 7 so that the axial displacement of the shaft 7 can be detected. I'm getting ready.
[0019] ケーシング 2の内周側には、ステータ部が形成されている。このステータ部は、吸気 口 5側(ターボ分子ポンプ部 T)に設けられた静翼列 18と、排気口 6側(ねじ溝式ボン プ部 S)に設けられたねじ溝スぺーサ 19などから構成されている。  A stator portion is formed on the inner peripheral side of the casing 2. This stator part includes a stationary blade row 18 provided on the intake port 5 side (turbomolecular pump part T), and a thread groove spacer 19 provided on the exhaust port 6 side (thread groove type pump part S). It is composed of
静翼列 18は、シャフト 7の軸線に垂直な平面から所定の角度だけ傾斜してケーシン グ 2の内周面からシャフト 7に向かって伸びたブレードから構成されている。ターボ分 子ポンプ部 Tでは、これら静翼列 18が軸線方向に、動翼列 8と互い違いに複数段形 成されている。各段の静翼列 18は、円筒形状をしたスぺーサ 20により互いに隔てら れている。  The stationary blade row 18 is composed of blades that are inclined at a predetermined angle from a plane perpendicular to the axis of the shaft 7 and extend from the inner peripheral surface of the casing 2 toward the shaft 7. In the turbo-molecular pump section T, the stationary blade rows 18 are formed in a plurality of stages alternately in the axial direction with the moving blade rows 8. The stationary blade rows 18 of each stage are separated from each other by a cylindrical spacer 20.
[0020] ねじ溝スぺーサ 19は、内周面にらせん溝が形成された円柱部材である。ねじ溝ス ぺーサ 19の内周面は、所定のクリアランス(間隙)を隔てて円筒部材 9の外周面に対 面するようになつている。ねじ溝スぺーサ 19に形成されたらせん溝の方向は、らせん 溝内をロータ部 4の回転方向にガスが輸送された場合、排気口 6に向力、う方向である 。らせん溝の深さは排気口 6に近づくにつれ浅くなるようになつている。そして、らせん 溝を輸送されるガスは排気口 6に近づくにつれて圧縮されるようになっている。  [0020] The thread groove spacer 19 is a cylindrical member in which a spiral groove is formed on the inner peripheral surface. The inner peripheral surface of the thread groove spacer 19 faces the outer peripheral surface of the cylindrical member 9 with a predetermined clearance (gap) therebetween. The direction of the spiral groove formed in the thread groove spacer 19 is the direction toward the exhaust port 6 when the gas is transported through the spiral groove in the rotational direction of the rotor portion 4. The depth of the spiral groove becomes shallower as it approaches the exhaust port 6. The gas transported through the spiral groove is compressed as it approaches the exhaust port 6.
これらステータ部はステンレスやアルミニウム合金などの金属で構成されている。 ベース 3は、ケーシング 2と共にターボ分子ポンプ 1の外装体を構成している。ベー ス 3のラジアル方向の中央には、ロータの回転軸線と同心に円筒形状を有するステ ータコラム 21が取り付けられている。  These stator portions are made of metal such as stainless steel or aluminum alloy. The base 3 and the casing 2 constitute an exterior body of the turbo molecular pump 1. At the center of the base 3 in the radial direction, a stator column 21 having a cylindrical shape is attached concentrically with the rotation axis of the rotor.
[0021] ベース 3の底部(ステータコラム 21の開口部)に裏蓋 22が取り付けられて!/、る。 [0021] A back cover 22 is attached to the bottom of the base 3 (the opening of the stator column 21).
本実施の形態に係るターボ分子ポンプ 1には、図示されてレ、な!/、がターボ分子ボン プ 1を制御するための制御装置が設けられている。  The turbo molecular pump 1 according to the present embodiment is provided with a control device for controlling the turbo molecular pump 1 as shown in FIG.
また、ターボ分子ポンプ 1の稼働中は、ロータ部 4が高速回転し、動翼列 8や静翼列 18のブレードが、圧縮熱等によって高温になったプロセスガスを受ける。そして、これ らの圧縮熱等を受けて、動翼列 8や静翼列 18のブレードの温度が上昇する。  While the turbo molecular pump 1 is in operation, the rotor section 4 rotates at a high speed, and the blades of the moving blade row 8 and the stationary blade row 18 receive a process gas that has been heated to high temperature by compression heat or the like. In response to the heat of compression, the blade temperature of the moving blade row 8 and the stationary blade row 18 rises.
また、ターボ分子ポンプ 1は、モータ部 11から発生する熱などにより加熱されて高 温状態となる。  Further, the turbo molecular pump 1 is heated by heat generated from the motor unit 11 and becomes a high temperature state.
このようにターボ分子ポンプ 1は、気体分子の衝突熱 (圧縮熱)やモータ部 11から の発熱などにより高温状態となっている。 In this way, the turbo molecular pump 1 is operated by the collision heat (compression heat) of gas molecules and the motor unit 11. It is in a high temperature state due to heat generation.
そこで、高温状態になったターボ分子ポンプ 1を冷却するために、ベース 3には、冷 却管 26が埋設されている。  Therefore, a cooling pipe 26 is embedded in the base 3 in order to cool the turbo molecular pump 1 in a high temperature state.
冷却管 26は、チューブ状(管状)の部材からなる。冷却管 26は、内部に熱媒体であ る冷却材を流し、この冷却材に熱を吸収させるようにして冷却管 26周辺の冷却を行う ための部材である。  The cooling pipe 26 is made of a tubular (tubular) member. The cooling pipe 26 is a member that cools the periphery of the cooling pipe 26 by flowing a cooling medium, which is a heat medium, into the cooling pipe 26 so that the cooling medium absorbs heat.
[0022] 上述した冷却管 26は、熱抵抗の低!/、部材つまり熱伝導率の高!/、部材、例えば、銅 やステンレス鋼などによって構成されている。  [0022] The cooling pipe 26 described above is composed of a member having a low thermal resistance, a member, that is, a member having a high thermal conductivity, and a member such as copper or stainless steel.
また、冷却管 26に流す冷却材、つまり物体を冷却するための流体は、液体であつ ても気体であってもよい。液体の冷却材としては、例えば、水、塩化カルシウム水溶 液やエチレングリコール水溶液などを用いることができる。気体の冷却材としては、例 えば、アンモニア、メタン、ェタン、ハロゲン、ヘリウムガスや炭酸ガス、空気などを用 いること力 Sでさる。  Further, the coolant flowing through the cooling pipe 26, that is, the fluid for cooling the object may be a liquid or a gas. As the liquid coolant, for example, water, a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or the like can be used. For example, ammonia, methane, ethane, halogen, helium gas, carbon dioxide gas, air, etc. can be used as the gas coolant.
なお、本実施形態では、冷却管 26がベース 3に配設されている力 冷却管 26の配 設位置はこれに限られるものではない。例えば、ステータコラム 21、裏蓋 22の内部に 直接埋め込むように設けてもよい。  In the present embodiment, the position of the force cooling pipe 26 in which the cooling pipe 26 is disposed on the base 3 is not limited to this. For example, it may be provided so as to be directly embedded in the stator column 21 and the back cover 22.
[0023] このような構成を有するターボ分子ポンプ 1は、真空容器、例えば、半導体製造装 置に設けられた内部が高真空状態に保たれたプロセスチャンバなどの排気処理を行 う際の真空ポンプとして用いられてレ、る。 [0023] The turbo molecular pump 1 having such a configuration is a vacuum pump for performing an exhaust process on a vacuum vessel, for example, a process chamber provided in a semiconductor manufacturing apparatus in which the inside is kept in a high vacuum state. It is used as
半導体製造装置のプロセスチャンバの内部では、例えば、プロセスガスの反応時の 反応生成物からなるパーティクル (微粒子)が生じる。  Inside a process chamber of a semiconductor manufacturing apparatus, for example, particles (fine particles) made of reaction products are generated during reaction of a process gas.
そのため、ターボ分子ポンプ 1では、プロセスチャンバ(真空容器)内の気体だけで なぐプロセスチャンバにおいて生じたパーティクルも吸気口 5から取り込まれる。 吸気口 5から取り込まれたパーティクルは、ターボ分子ポンプ 1の内部において、高 速回転している回転ブレード 28に衝突した場合、プロセスチャンバ側へ跳ね返され、 即ち吸気口 5からプロセスチャンバ側へ逆流してしまう。  Therefore, in the turbo molecular pump 1, particles generated in the process chamber that includes only the gas in the process chamber (vacuum vessel) are also taken in from the intake port 5. When particles taken in from the intake port 5 collide with the rotating blade 28 rotating at high speed inside the turbo molecular pump 1, they are bounced back to the process chamber side, that is, flow back from the intake port 5 to the process chamber side. End up.
このようなターボ分子ポンプ 1から逆流したパーティクルは、プロセスチャンバの内 部の汚染原因となるおそれがある。 [0024] そこで本実施の形態に係るターボ分子ポンプ 1では、吸気口 5から取り込まれたパ 一ティクルの上流側の領域への逆流を抑制する加工が回転ブレード 28に施されて いる。 Such particles flowing back from the turbo molecular pump 1 may cause contamination inside the process chamber. In view of this, in the turbo molecular pump 1 according to the present embodiment, the rotary blade 28 is processed so as to suppress the backflow of the particles taken in from the intake port 5 to the upstream region.
図 2は、本実施の形態に係るターボ分子ポンプ 1における動翼列 8の一部を模式的 に示した展開図である。  FIG. 2 is a developed view schematically showing a part of the moving blade row 8 in the turbo molecular pump 1 according to the present embodiment.
図 2に示すように、回転ブレード 28には、吸気口 5から排気口 6まで移送される気体 の上流方向を向いた面 28bと、気体の下流方向を向いた面 28cとのなす隅角部に、 面取り加工を施すことによって、面取り面 28aが形成されて!/、る。  As shown in FIG. 2, the rotating blade 28 has a corner formed by a surface 28b facing the upstream direction of the gas transferred from the intake port 5 to the exhaust port 6 and a surface 28c facing the downstream direction of the gas. Then, the chamfered surface 28a is formed by chamfering!
面取り面 28aは、シャフト 7の軸線方向に平行に、即ち回転軸に平行に形成されて いる。  The chamfered surface 28a is formed in parallel with the axial direction of the shaft 7, that is, in parallel with the rotation axis.
なお、面取り加工とは、ターボ分子ポンプ 1を組み立てる際のけがの防止やバリを 少なくするために、例えば、回転ブレード 28の面 28bと面 28cとのなす隅角部のよう なナイフエッジ部分の稜角を少し削る処理を示す。  The chamfering process is, for example, a knife edge portion such as a corner formed by the surfaces 28b and 28c of the rotating blade 28 in order to prevent injury and reduce burrs when the turbo molecular pump 1 is assembled. The process which cuts a ridge angle a little is shown.
[0025] また、本実施の形態に係るターボ分子ポンプ 1では、隣接する回転ブレード 28の間 隔、回転ブレード 28の移動速度(動翼列 8の回転速度)、パーティクルの移動速度な どによって特定されるパーティクルの衝突可能領域 L (以下、衝突可能領域しとする) に基づいて、回転ブレード 28の面取り面 28aの形成領域が設定されている。  [0025] Further, in the turbo molecular pump 1 according to the present embodiment, it is specified by the interval between the adjacent rotating blades 28, the moving speed of the rotating blades 28 (rotating speed of the moving blade row 8), the moving speed of particles, and the like. The formation region of the chamfered surface 28a of the rotary blade 28 is set based on the particle collision possible region L (hereinafter referred to as the collision possible region).
即ち、衝突可能領域 Lに基づいて、回転ブレード 28の面 28bと面 28cとのなす隅角 部の面取り加工における肖り量が設定されている。  That is, on the basis of the collision possible region L, the amount of bracing in the chamfering process of the corner portion formed by the surfaces 28b and 28c of the rotary blade 28 is set.
[0026] 次に、衝突可能領域 Lの算出方法について説明する。 Next, a method for calculating the collision possible area L will be described.
図 3は、衝突可能領域 Lの算出方法を説明するための説明図である。  FIG. 3 is an explanatory diagram for explaining a method of calculating the collision possible region L.
ここでは、算出方法の一例として、ターボ分子ポンプ 1がプロセスチャンバの排気口 の下部に、鉛直線と回転軸方向とがー致する向きに配設された場合について説明す 衝突可能領域 Lの算出条件として、プロセスチャンバの天井を想定し、ターボ分子 ポンプ 1の lm上方からパーティクル が自由落下するものとする。  Here, as an example of the calculation method, the case where the turbo molecular pump 1 is arranged at the lower part of the exhaust port of the process chamber in a direction where the vertical line and the rotation axis direction coincide with each other will be described. Calculation of the collision possible region L Assuming that the ceiling of the process chamber is assumed as a condition, particles will fall freely from above the lm of the turbo molecular pump 1.
また、動翼列 8 (回転ブレード 28)の角速度は、 2830rad/s (毎秒 450回転)、回 転ブレード 28の半径(回転ブレード 28の間隔が最も広い先端部)は、 0. 15m、回転 ブレード 28の間隔は、 0· 03mであるものとする。 In addition, the angular velocity of the moving blade row 8 (rotating blade 28) is 2830 rad / s (450 rotations per second), and the radius of the rotating blade 28 (the tip having the widest interval between the rotating blades 28) is 0.15 m. The interval between the blades 28 shall be 0 · 03m.
[0027] パーティクル Pの移動速度、即ち、落下速度 VIは、エネルギー保存の法則に基づ いて算出すると、次のようになる。但し、重力加速度を 9. 8 [m/s2]とする。 [0027] The moving speed of the particle P, that is, the falling speed VI is calculated as follows based on the law of conservation of energy. However, the gravitational acceleration is assumed to be 9.8 [m / s2].
落下速度 VI = ^ (2 X重力加速度 X高さ) =^ (2 X 9· 8 [m/s2] X l Fall velocity VI = ^ (2 X gravity acceleration X height) = ^ (2 X 9 · 8 [m / s2] X l
[m] ) =4. 4 [m/s] また、回転ブレード 28の回転速度 V2は、次のよう になる。 [m]) = 4.4 [m / s] The rotational speed V2 of the rotary blade 28 is as follows.
回転速度 V2 =回転ブレード 28の半径 X回転ブレード 28の角速度 =0 . 15 [m] X 2830 [rad/s] =423 [m/s] パーティクルの落下速度 VI 及び回転ブレード 28の回転速度 V2から、図 3に示す回転ブレード 28から見たパー ティクルの相対速度 V3が求められる。そして、衝突可能領域 Lは、次のように算出さ れる。  Rotational speed V2 = Radius of rotating blade 28 X Angular speed of rotating blade 28 = 0.15 [m] X 2830 [rad / s] = 423 [m / s] Particle fall speed VI and Rotating blade 28 rotational speed V2 Then, the relative velocity V3 of the particle viewed from the rotary blade 28 shown in FIG. 3 is obtained. The collision possible area L is calculated as follows.
衝突可能領域 L=回転ブレード 28の間隔 X (落下速度 VI/回転速度 V2)  Collision possible region L = Spacing blade interval X (falling speed VI / rotating speed V2)
=0. 03 [m] X (4. 4 [m/s]/423 [m/s] ) =0. 0003 [m] = 0. 03 [m] X (4.4 [m / s] / 423 [m / s]) = 0. 0003 [m]
=0. 3 (mm) このように、プロセスチャンバから落下したパーティクルは、 回転ブレード 28の吸気口 5側の端面からわずか 0. 3mmのまでの範囲で回転ブレー ド 28と衝突する。 = 0. 3 (mm) In this way, particles falling from the process chamber collide with the rotating blade 28 within a range of only 0.3 mm from the end face of the rotating blade 28 on the inlet 5 side.
なお、例えば、ターボ分子ポンプ 1の吸気口 5に設けられた保護網や、ターボ分子 ポンプ 1と真空容器との間に設けられたコンダクタンスバルブなどから、パーティクル が落下するような場合には、パーティクルの落下距離が短くなる。そのためパーテイク ルの落下速度が低下することによって、衝突可能領域 Lはさらに小さくなる。  For example, if particles fall from a protective net provided at the intake port 5 of the turbo molecular pump 1 or a conductance valve provided between the turbo molecular pump 1 and the vacuum vessel, the particles The fall distance of is shortened. For this reason, the collision possible region L is further reduced as the drop speed of the particles decreases.
[0028] 衝突可能領域 Lの範囲を超えて面取り面 28aを回転ブレード 28に形成しても、衝 突可能領域 Lの範囲外ではパーティクルは衝突しないため、排気性能を低下させる だけになつてしまう。 [0028] Even if the chamfered surface 28a is formed on the rotary blade 28 beyond the range of the collision possible region L, particles do not collide outside the range of the collision possible region L, so that the exhaust performance is only lowered. .
そのため、本実施の形態に係るターボ分子ポンプ 1では、回転ブレードの面取り面 28aが衝突可能領域 Lの範囲に形成されるように、また、衝突可能領域 Lの範囲を超 えて形成されな!/、ように面取り加工時の削り量が設定されて!/、る。  Therefore, in the turbo molecular pump 1 according to the present embodiment, the chamfered surface 28a of the rotary blade is formed in the range of the collision possible region L and is not formed beyond the range of the collision possible region L! / As you can see, the amount of chamfering is set!
このように本実施の形態では、パーティクルの回転ブレード 28へ入射(進入)経路 を考慮し、回転ブレード 28におけるパーティクルの衝突可能領域 Lに面取り面 28aを 形成することにより、排気性能の著しい低下を伴うことなぐ効率良くパーティクルの 逆流を防止することができる。 As described above, in the present embodiment, the chamfered surface 28a is provided in the particle collision-possible region L in the rotating blade 28 in consideration of the path of incidence (entrance) of particles to the rotating blade 28. By forming the particles, it is possible to prevent the backflow of the particles efficiently without significantly reducing the exhaust performance.
また、本実施の形態では、回転ブレード 28の面取り面 28aを回転軸と平行に形成さ れているが、面取り面 28aの向きはこれに限定されるものではなぐ衝突したパーティ クルが上流側へ跳ね返されない方向を向いていればよい。例えば、回転ブレード 28 の面取り面 28aは、気体の下流方向を向くように形成されていてもよい。  In the present embodiment, the chamfered surface 28a of the rotary blade 28 is formed in parallel with the rotation axis. However, the direction of the chamfered surface 28a is not limited to this, and the colliding particle is moved upstream. It suffices to face in a direction that does not bounce back. For example, the chamfered surface 28a of the rotary blade 28 may be formed so as to face the downstream direction of the gas.
[0029] 本実施の形態に係るターボ分子ポンプ 1には、さらにパーティクルの逆流の防止効 果を向上させるために、吸気口 5から排気口 6まで移送される気体の流路を形成する ケーシング 2ゃスぺーサ 20の内側面に、気体の下流方向を向いた逆流防止面、即ち 、衝突したパーティクルを排気口 6側へ送るためのトラップが形成されている。 [0029] In the turbo molecular pump 1 according to the present embodiment, in order to further improve the effect of preventing the backflow of particles, a casing for forming a gas flow path from the intake port 5 to the exhaust port 6 is formed. On the inner surface of the spacer 20, a backflow preventing surface facing the downstream direction of the gas, that is, a trap for sending the colliding particles to the exhaust port 6 side is formed.
図 4は、図 1における破泉 A部の拡大図である。  Fig. 4 is an enlarged view of the rupture part A in Fig. 1.
詳しくは、図 4に示すように、ケーシング 2における内周壁面の吸気口 5近傍の領域 、及び、吸気口 5近傍に配置されたスぺーサ 20の内周壁面(内側面)に、断面 V字型 の溝 30が周方向に沿って延設されている。  Specifically, as shown in FIG. 4, a cross section V is formed on the inner peripheral wall surface of the casing 2 in the vicinity of the intake port 5 and the inner peripheral wall surface (inner side surface) of the spacer 20 disposed in the vicinity of the intake port 5. A letter-shaped groove 30 extends along the circumferential direction.
[0030] この溝 30は、図 4に示すように、 V字型に設けられた側面のうち、吸気口 5側に設け られた側面(逆流防止面)は、排気口 6側、即ち、下流方向を向くように形成されてい る。また、 V字型に設けられた側面のうち、排気口 6側に設けられた側面は、吸気口 5 側、即ち、上流方向を向くように形成されている。 [0030] As shown in Fig. 4, the groove 30 has a side surface (backflow prevention surface) provided on the intake port 5 side among the V-shaped side surfaces, and is provided on the exhaust port 6 side, that is, on the downstream side. It is formed to face the direction. Of the side surfaces provided in the V shape, the side surface provided on the exhaust port 6 side is formed so as to face the intake port 5 side, that is, the upstream direction.
このように逆流防止面を有する溝 30を設けることにより、回転ブレード 28の面取り 面 28aに衝突したパーティクルを、すみやかに排気口 6側へ送ることができるため、パ 一ティクルの逆流の防止効果を向上させることができる。  By providing the groove 30 having the backflow prevention surface in this way, particles that collide with the chamfered surface 28a of the rotary blade 28 can be immediately sent to the exhaust port 6 side, so that the effect of preventing the backflow of the particles can be achieved. Can be improved.
なお、本実施の形態では、溝 30を、ケーシング 2における内周壁面の吸気口 5近傍 の領域、及び、吸気口 5近傍に配置されたスぺーサ 20の内周壁面にのみ設けられて V、る力 溝 30の形成部位はこれに限定されるものではな!/、。  In the present embodiment, the groove 30 is provided only on the inner peripheral wall surface of the casing 2 in the vicinity of the intake port 5 and on the inner peripheral wall surface of the spacer 20 disposed in the vicinity of the intake port 5. , The force forming part of the groove 30 is not limited to this! /.
例えば、全てのスぺーサ 20の内周壁面に設けるようにしてもよい。  For example, it may be provided on the inner peripheral wall surface of all the spacers 20.

Claims

請求の範囲 The scope of the claims
[1] 吸気口と排気口を有する外装体と、 [1] an exterior body having an intake port and an exhaust port;
前記外装体に内包され高速回転する回転体と、  A rotating body enclosed in the exterior body and rotating at a high speed;
前記回転体に設けられた翼角度を有する動翼列を構成し、翼の進行面と、前記吸 気口から前記排気口まで移送される気体の上流方向を向いた面とのなす隅角部に、 前記回転体の軸方向と平行する面、または、前記気体の下流方向を向く面を有する 面取り面が形成された回転ブレードと、  A rotor blade row having a blade angle provided in the rotating body, and a corner portion formed by a traveling surface of the blade and a surface facing the upstream direction of the gas transferred from the intake port to the exhaust port A rotating blade formed with a chamfered surface having a surface parallel to the axial direction of the rotating body or a surface facing the downstream direction of the gas;
を備えたことを特徴とする真空ポンプ。  A vacuum pump comprising:
[2] 該真空ポンプは、真空容器の排気処理を行う装置であり、  [2] The vacuum pump is a device for exhausting the vacuum vessel,
前記回転ブレードは、少なくとも、隣接する前記回転ブレードの間隔、前記回転ブ レードの移動速度、及び、粒子の移動速度に基づいて特定される、前記真空容器か ら飛来する粒子の衝突可能領域に、前記面取り面が形成されていることを特徴とする 請求項 1記載の真空ポンプ。  The rotating blade is at least in a collision possible region of particles flying from the vacuum vessel, which is specified based on an interval between adjacent rotating blades, a moving speed of the rotating blade, and a moving speed of particles. The vacuum pump according to claim 1, wherein the chamfered surface is formed.
[3] 前記吸気口から前記排気口まで移送される気体の流路を形成する固定部のうち、 軸線方向に平行な側面を有する領域に、前記気体の下流方向を向!/、た逆流防止面 が形成されていることを特徴とする請求項 1または請求項 2記載の真空ポンプ。 [3] Out of the fixed part forming the flow path of the gas transferred from the intake port to the exhaust port, the gas flows in the downstream direction in a region having a side surface parallel to the axial direction. The vacuum pump according to claim 1 or 2, wherein a surface is formed.
[4] 前記外装体に対して固定された静翼列と、 [4] A stationary blade row fixed to the exterior body;
前記静翼列の位置決め機能を有し、前記外装体の内部に設けられた環状のスぺ ーサと、  An annular spacer having a positioning function of the stationary blade row and provided in the exterior body;
を備え、  With
前記逆流防止面は、前記スぺーサの内壁面及び前記外装体のうちの少なくとも一 方に設けられていることを特徴とする請求項 3記載の真空ポンプ。  4. The vacuum pump according to claim 3, wherein the backflow prevention surface is provided on at least one of an inner wall surface of the spacer and the exterior body.
[5] 前記逆流防止面は、回転軸と直交する面と共に、断面 V字型の溝を構成することを 特徴とする請求項 3または請求項 4記載の真空ポンプ。 [5] The vacuum pump according to claim 3 or 4, wherein the backflow prevention surface forms a groove having a V-shaped cross section together with a surface orthogonal to the rotation axis.
PCT/JP2007/068070 2006-11-30 2007-09-18 Vacuum pump WO2008065798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008546901A JP5463037B2 (en) 2006-11-30 2007-09-18 Vacuum pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006322766 2006-11-30
JP2006-322766 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008065798A1 true WO2008065798A1 (en) 2008-06-05

Family

ID=39467596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068070 WO2008065798A1 (en) 2006-11-30 2007-09-18 Vacuum pump

Country Status (2)

Country Link
JP (1) JP5463037B2 (en)
WO (1) WO2008065798A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104541A1 (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, and rotating blade and reflection mechanism mounted on vacuum pump
JP2017110627A (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, rotary vane installed on vacuum pump, and repelling mechanism
WO2019082706A1 (en) * 2017-10-27 2019-05-02 エドワーズ株式会社 Vacuum pump, rotor, rotor fin, and casing
EP3604820A4 (en) * 2017-03-23 2020-12-23 Edwards Japan Limited Vacuum pump, blade component and rotor for use in vacuum pump, and fixed blade
GB2612781A (en) * 2021-11-10 2023-05-17 Edwards Ltd Turbomolecular pump bladed disc

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174013A1 (en) 2017-03-23 2018-09-27 エドワーズ株式会社 Vacuum pump, blade component and rotor for use in vacuum pump, and fixed blade

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191492A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Molecular turbo-pump
JPS6125993A (en) * 1984-07-13 1986-02-05 Ulvac Corp Turbo-molecular pump
JP2000161285A (en) * 1998-11-24 2000-06-13 Seiko Seiki Co Ltd Turbo-molecular pump and vacuum device
JP2004019493A (en) * 2002-06-13 2004-01-22 Fujitsu Ltd Exhaust system
JP2006307823A (en) * 2005-03-31 2006-11-09 Shimadzu Corp Turbo-molecular pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191492A (en) * 1981-05-22 1982-11-25 Hitachi Ltd Molecular turbo-pump
JPS6125993A (en) * 1984-07-13 1986-02-05 Ulvac Corp Turbo-molecular pump
JP2000161285A (en) * 1998-11-24 2000-06-13 Seiko Seiki Co Ltd Turbo-molecular pump and vacuum device
JP2004019493A (en) * 2002-06-13 2004-01-22 Fujitsu Ltd Exhaust system
JP2006307823A (en) * 2005-03-31 2006-11-09 Shimadzu Corp Turbo-molecular pump

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110627A (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, rotary vane installed on vacuum pump, and repelling mechanism
CN108291552A (en) * 2015-12-15 2018-07-17 埃地沃兹日本有限公司 Vacuum pump and it is equipped on the rotary wings of the vacuum pump, reflecting mechanism
US20180363662A1 (en) * 2015-12-15 2018-12-20 Edwards Japan Limited Vacuum pump, and rotor blade and reflection mechanism mounted in vacuum pump
WO2017104541A1 (en) * 2015-12-15 2017-06-22 エドワーズ株式会社 Vacuum pump, and rotating blade and reflection mechanism mounted on vacuum pump
EP3392508A4 (en) * 2015-12-15 2019-08-07 Edwards Japan Limited Vacuum pump, and rotating blade and reflection mechanism mounted on vacuum pump
US11009029B2 (en) 2015-12-15 2021-05-18 Edwards Japan Limited Vacuum pump, and rotor blade and reflection mechanism mounted in vacuum pump
EP3604820A4 (en) * 2017-03-23 2020-12-23 Edwards Japan Limited Vacuum pump, blade component and rotor for use in vacuum pump, and fixed blade
US11655830B2 (en) 2017-03-23 2023-05-23 Edwards Japan Limited Vacuum pump, and blade component, rotor, and stationary blade used therein
WO2019082706A1 (en) * 2017-10-27 2019-05-02 エドワーズ株式会社 Vacuum pump, rotor, rotor fin, and casing
CN111183291A (en) * 2017-10-27 2020-05-19 埃地沃兹日本有限公司 Vacuum pump, rotor fin and casing
CN111183291B (en) * 2017-10-27 2022-01-14 埃地沃兹日本有限公司 Vacuum pump, rotor fin and casing
US11408437B2 (en) 2017-10-27 2022-08-09 Edwards Japan Limited Vacuum pump, rotor, rotor fin, and casing
JP2019082120A (en) * 2017-10-27 2019-05-30 エドワーズ株式会社 Vacuum pump, rotor, rotor fin and casing
GB2612781A (en) * 2021-11-10 2023-05-17 Edwards Ltd Turbomolecular pump bladed disc
WO2023084200A1 (en) * 2021-11-10 2023-05-19 Edwards Limited Turbomolecular pump bladed disc
GB2612781B (en) * 2021-11-10 2024-04-10 Edwards Ltd Turbomolecular pump bladed disc

Also Published As

Publication number Publication date
JPWO2008065798A1 (en) 2010-03-04
JP5463037B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP2000337290A (en) Vacuum pump
WO2008065798A1 (en) Vacuum pump
CN102597527A (en) Turbo-molecular pump and method of manufacturing rotor
JP3047292B1 (en) Turbo molecular pump and vacuum device
JP2005320905A (en) Vacuum pump
JP2008121589A (en) Electric blower and vacuum cleaner using the electric blower
JP4104098B2 (en) Vacuum pump
CN108291552B (en) Vacuum pump, rotary vane mounted on vacuum pump, and reflection mechanism
JP5250201B2 (en) Vacuum pump
JP5796948B2 (en) Vacuum pump
JP2006307823A (en) Turbo-molecular pump
KR102504554B1 (en) Vacuum pump, rotating part provided in the vacuum pump, and unbalance correction method
KR101979043B1 (en) Stationary member and vacuum pump
CN114364880A (en) Vacuum pump
JP6390098B2 (en) Vacuum pump
JP2007198205A (en) Turbomolecular pump
KR100725813B1 (en) Centrifugal fan
JP4760424B2 (en) Turbo molecular pump
TWI605199B (en) Electric blower and vacuum cleaner
JP2006299968A (en) Foreign matter intrusion-preventing plate, rotary vacuum pump and vacuum system
JP5915147B2 (en) Centrifugal compressor impeller
JP2000161284A (en) Turbo-vacuum pump
JP2009036049A (en) Centrifugal fan motor
JP4671624B2 (en) Vacuum pump
JP4716109B2 (en) Turbo molecular pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546901

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807471

Country of ref document: EP

Kind code of ref document: A1