WO2008065727A1 - Process for producing electrode with platinum film - Google Patents

Process for producing electrode with platinum film Download PDF

Info

Publication number
WO2008065727A1
WO2008065727A1 PCT/JP2006/325980 JP2006325980W WO2008065727A1 WO 2008065727 A1 WO2008065727 A1 WO 2008065727A1 JP 2006325980 W JP2006325980 W JP 2006325980W WO 2008065727 A1 WO2008065727 A1 WO 2008065727A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
platinum
film
cathode
platinum film
Prior art date
Application number
PCT/JP2006/325980
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhide Nagano
Original Assignee
Shimane Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefectural Government filed Critical Shimane Prefectural Government
Priority to JP2008546865A priority Critical patent/JP5071741B2/en
Publication of WO2008065727A1 publication Critical patent/WO2008065727A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an electrode having a platinum film, and more particularly to a method for producing an electrode having a platinum film useful as a counter electrode of a dye-sensitized solar cell.
  • an oxidation-reduction pair for example, I-, ⁇ , etc.
  • a counter electrode with a catalytic function As this counter electrode, a material in which a highly catalytic white metal is supported on a conductive substrate provided with a conductive film [for example, indium stannate] or SnO] is often used.
  • a sputtering method see Patent Document 1
  • a vapor deposition method see Patent Document 2
  • these methods require equipment with a large vacuum chamber when considering mass production and large area, and the productivity is low and the equipment costs are high, so the manufacturing cost is not reduced.
  • counter electrodes produced by these methods are not durable because platinum dissolves in iodine electrolyte.
  • Patent Document 3 discloses a method in which platinum particles are supported on the surface of a conductive layer by electric plating.
  • this method is considered to have a problem in durability because of low adhesion strength because platinum particles are supported by the particles.
  • this method uses a strong acid called nitric acid as the electrolytic solution, and in the electroplating under such strong acidity, a substrate using a conductive film weak in acid (for example, ITO, SnO, etc.) or a metal substrate, There are problems such as dissolution and substrate dissolution.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-173680
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-36330
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-36897
  • the present invention has been made to solve the above-described problems in the prior art, and a method for producing an electrode having a more excellent platinum film, particularly a platinum film useful as a counter electrode of a dye-sensitized solar cell. It is an object of the present invention to provide a method for manufacturing an electrode having the following.
  • the present inventors have performed electroplating using a platinum aqueous solution having a pH of 2 or more as an electrolytic solution, thereby providing sufficient adhesion strength on the conductive film.
  • the present invention was completed by finding that uniform and uniform platinum was formed into a film.
  • the method for producing an electrode having a platinum film of the present invention includes:
  • the present invention is characterized in that an electrode produced by the method is used as a counter electrode of a dye-sensitized solar cell.
  • an electrode by an electroplating method in an aqueous platinum solution can be used with an acid-sensitive material such as indium tin oxide (ITO), and can be selectively deposited on a conductive film in a short time.
  • ITO indium tin oxide
  • a white metal film can be formed.
  • the electroplating method is a cheaper manufacturing method compared to the conventional sputtering method and can contribute to the reduction of the manufacturing cost of the dye-sensitized solar cell.
  • the formed platinum film is superior in durability to the sputtering method, and can contribute to the production of a durable dye-sensitized solar cell.
  • FIG. 1 is a schematic cross-sectional view showing a form of an electric plating.
  • FIG. 2 is a schematic cross-sectional view showing a basic configuration when the electrode of the present invention is used as a counter electrode of a dye-sensitized solar cell.
  • FIG. 3 is a schematic cross-sectional view of an electrode used as a counter electrode of the dye-sensitized solar cell shown in FIG.
  • FIG. 4 is an electron micrograph (magnified 80,000 times) of the ITO glass conductive film surface before electroplating in Example 1.
  • FIG. 5 is an electron micrograph (100,000 times) of the ITO glass conductive film surface after electroplating in Example 1.
  • This step is a step of preparing a cathode, an anode, an electrolytic solution and a power source necessary for the production method of the present invention.
  • Electrolyte As the electrolytic solution used in the method of the present invention, a platinum aqueous solution having a pH of 2 or more is used.
  • a power suitable for electroplating can be arbitrarily used.
  • Platinum (IV) methanesulfonate [Pt (NH) (CH 2 SO 4)] and other water-soluble divalent or tetravalent
  • a valent platinum compound is particularly preferably used.
  • concentration of each platinum compound as the weight of platinum, a concentration of 0.1 to: LOgZL can be suitably used, and a concentration range of 1.5 to 2.5 gZL can be more preferably used. .
  • an additive such as hydrazine as a reducing agent or hydroxylamine salt as a stabilizer may be added.
  • the pH of the solution is 2 or more. If the pH of this solution is less than 2, even if the plating is continued until the platinum film is formed, the obtained platinum film may be peeled off immediately and good battery performance cannot be expected (patent) Reference 1, paragraph number 0031).
  • the optimum pH can be adjusted in consideration of the properties of the substrate, the deposition rate of platinum, etc., but from the viewpoint of protecting the conductive film on the substrate, the pH range of 4 to 13 is preferred. Particularly preferred is ⁇ 11 (excluding 7).
  • the pH adjusting agent nitric acid, aqueous ammonia, potassium hydroxide or the like can be preferably used.
  • the cathode used in the present invention is a substrate on which conductive films are laminated.
  • the substrate a glass substrate, a plastic substrate, a metal substrate or the like can be used, and the material of the substrate is not particularly selected. As will be described later, in particular, according to the method of the present invention, even when a metal substrate is used, it is not necessary to remove the oxide film on the surface, and electrical plating can be performed easily.
  • the metal material used for the metal substrate titanium, stainless steel, etc. are preferred from the viewpoint of corrosion resistance against iodine.
  • the conductive layer is preferably an oxide tin or indium stannate oxide (ITO) film that may contain an additive (tin oxide is preferably contained in indium oxide. Is 5 Fluorine or antimony-doped tin oxide may be used, which is preferably about 15% by weight.
  • ITO indium stannate oxide
  • These conductive layers can be laminated on the substrate by known methods such as sputtering, vapor deposition, and spin coating.
  • anode and the power source those normally used for electric plating can be used.
  • anode for example, a carbon electrode, a platinum electrode or the like can be suitably used.
  • This step is a step of performing electrical plating.
  • the bath temperature can be suitably used from room temperature to 80 ° C, more preferably from room temperature to 60 ° C.
  • current as the density in terms of deposition rate control, generally at 0. 1: more preferably preferably instrument performed by controlling the a current density LOAZdm 2 2. the 5 ⁇ 6AZdm 2 Control and do.
  • the plating time is affected by temperature, current density, etc., but from the viewpoint of catalyst performance and cost, 0.1-5 minutes, more preferably 0.25-1.0 minutes is used! I can do it.
  • a platinum film can be selectively formed on the cathode conductive film.
  • the mechanical strength is good due to adhesion and denseness, and the reflected light contributes to power generation by reflecting light from the platinum film, improving efficiency. Has the advantage of being connected.
  • This step is a step of taking out the cathode formed with the platinum film manufactured by the above steps (a) and (b).
  • the taken-out cathode can be suitably used as a counter electrode of a dye-sensitized solar cell after washing and drying.
  • FIG. 1 shows a schematic diagram of the electrical plating.
  • a substrate 6 having a conductive layer 7 laminated on one side and a counter electrode 3 were immersed in an aqueous platinum solution 2 in a container 1.
  • Example 4 As the platinum aqueous solution, except for Example 4, an aqueous solution of hexammineplatinum (IV) methanesulfonate adjusted to ⁇ .8 with aqueous ammonia (content 25% by weight) was used.
  • the concentration of hexammineplatinum (IV) methanesulfonate in the platinum aqueous solution was 6.9 g / L (2 gZL as platinum), and the liquid temperature of the platinum aqueous solution was 19 ° C.
  • a carbon electrode was used as the counter electrode.
  • the substrate 6 on which the conductive layer 7 is laminated is connected to the negative pole of the DC power source 5, and the counterpart electrode 3 is connected to the positive pole of the DC electrode 5.
  • a voltage is applied so that the current becomes 0.lAZdm 2 to l OAZdm 2
  • a platinum film 8 is selectively formed on the surface of the conductive layer 7 laminated on the substrate 6, and the counter electrode as shown in FIG. 4 can be done.
  • the counter electrode 4 was produced in each of Examples 1 to 3 and Comparative Examples 1 and 2 as follows.
  • Example 1 when electroplating is performed in a platinum aqueous solution having a pH of 2 or more, more preferably 7 or more, platinum plating can be performed without damaging the ITO even in an acid-sensitive conductive layer such as ITO. it can.
  • Example 3 a metal material having an acid film on the surface, such as titanium metal, cannot be etched unless the acid film is removed with a normal electric plating.
  • a metal material having an acid film on the surface such as titanium metal
  • electric plating can be easily performed without performing a complicated pretreatment step of removing the acid film. Since the electrical plating is selectively coated on the surface on which the conductive layer is laminated and not on the surface without the conductive layer, it is very advantageous for manufacturing the counter electrode.
  • a glass substrate in which indium tin oxide (ITO, containing approximately 10% by weight of tin oxide in indium oxide) was deposited as a conductive film was used ( Film thickness 200nm).
  • Fig. 4 shows an electron micrograph of the surface of the conductive film deposited with ITO before electroplating. [0041] The current density of the electrical plating was 5 A / dm 2 and the time was 0.5 minutes. After electroplating, the substrate on which the white metal film was formed was washed with water and dried at 110 ° C. (platinum film thickness 5 nm).
  • Fig. 5 shows an electron micrograph of the surface of the conductive film on which ITO was deposited after electroplating. Since platinum particles with no difference in the surface state before and after the plating are not observed, it is considered that platinum is uniformly deposited in the form of a film.
  • Example 1 As in Example 1, a glass substrate on which ITO was deposited as a conductive film was prepared, and an organic solvent solution (organic solvent: isopropyl alcohol) having an ITO particle concentration of 10% by mass was further spin-coated on this substrate. Then, it was dried at 110 ° C. for 5 minutes, and electroplating was performed using this as a cathode (spin coat film thickness 400 nm).
  • organic solvent organic solvent: isopropyl alcohol
  • the current density of the electrical plating was 5 A / dm 2 and the time was 0.5 minutes.
  • the substrate on which the white metal film was formed was washed with water and dried at 110 ° C. (platinum film thickness 5 nm).
  • Example 2 The same substrate as in Example 1 was prepared by depositing ITO as a conductive layer on a glass substrate, and platinum was deposited on the surface of this conductive layer using a sputtering device (Hitachi E-1030 ion sputtering). It was supported to a thickness of 20 nm.
  • a sputtering device Hagachi E-1030 ion sputtering
  • organic solvent solution organic solvent: isopropyl alcohol
  • ITO particle concentration 10% by mass with an average particle diameter of 12 nm
  • titanium metal plate As a substrate, an organic solvent solution (organic solvent: isopropyl alcohol) having an ITO particle concentration of 10% by mass with an average particle diameter of 12 nm was spin-coated on a titanium metal plate and dried at 110 ° C. for 5 minutes. (Film thickness 400nm).
  • the current density of the electrical plating was 5 A / dm 2 and the time was 0.5 minutes. After electric plating, it was washed with water and dried at 110 ° C (platinum film thickness 5 nm).
  • Example 2 As in Example 2, a titanium metal plate was used as the substrate, and platinum was supported on this surface to a thickness of 20 nm by a sputtering apparatus.
  • a hexaammineplatinum (IV) methanesulfonate aqueous solution adjusted to pH 2.1 with ammonia water (12.5 wt% contained) was used as the platinum aqueous solution. Hexa at this time The concentration of ammineplatinum (IV) methanesulfonate was 6.9 gZL (2 gZL as platinum), and the solution temperature was 19 ° C.
  • substrate use the same as in Example 1 in which ITO is deposited as a conductive film on a glass substrate, a current density of the electric plated is a 5AZdm 2, time was 5 minutes 0.5.
  • the electric plating method showed good battery performance similar to the sputtering method. Further, by adding additional ITO particles to the surface as in Example 2, the surface area can be increased and the conversion efficiency can be further improved.
  • Example 4 As a result of making the pH of the electrolytic solution acidic (2.1), the platinum film thickness was slightly thinner than that of Example 1. For this reason, the catalyst performance was slightly lower than that of Example 1.
  • iodine and lithium iodide were dissolved in 3-methoxypropio-tolyl at concentrations of 0.03M and 0.3M, respectively, to prepare an electrolyte solution.
  • the electrode of Example 2 was immersed in and held at 80 ° C. for 48 hours. Then take this A dye-sensitized solar cell as shown in Fig. 3 was prepared using the electrode as a counter electrode, and the performance was evaluated in the same manner as described above. The results are shown in Table 2.
  • the electrode produced by the method of the present invention forms a uniform film of platinum on the surface of the conductive film and has sufficient adhesion strength, and is useful as a counter electrode of a dye-sensitized solar cell. is there.
  • the platinum film can be selectively formed only in the necessary portion, so that the cost can be reduced.
  • treatment such as removal of the oxide film on the surface is not necessary, and if a conductive film is formed on the surface, electric plating can be easily performed.

Abstract

This invention provides a process for producing an electrode with a platinum film, which is useful as a counter electrode of a dye-sensitized solar cell. The process for producing an electrode with a platinum film is characterized by comprising successively carrying out (a) the step of providing a cathode, an anode, an electrolysis solution, and a power supply, wherein a substrate with an electroconductive film stacked thereon is provided as the cathode and an aqueous platinum solution having a pH value of 2 or more is provided as an electrolysis solution, (b) the step of connecting the cathode to a negative electrode in the power supply, connecting the anode to a positive electrode in the power supply, immersing both the electrodes in the electrolysis solution, applying voltage across the electrodes for electroplating to form a platinum film on the electroconductive film in the cathode, and (c) the step of taking out the cathode with the platinum film formed thereon.

Description

白金膜を有する電極の製造方法  Method for producing electrode having platinum film
技術分野  Technical field
[0001] 本発明は、白金膜を有する電極の製造方法、特に色素増感太陽電池の対極として 有用な白金膜を有する電極の製造方法に関する。  The present invention relates to a method for producing an electrode having a platinum film, and more particularly to a method for producing an electrode having a platinum film useful as a counter electrode of a dye-sensitized solar cell.
背景技術  Background art
[0002] 1991年にスイス、ローザンヌ工科大学のグレッツエルらによって、発表された新しい タイプの色素増感太陽電池は、従来のシリコン型太陽電池と比較して、使用する材 料が安価であること、製造工程が比較的単純であることから、製造コストを大幅に削 減できる可能性があり、実用化が期待されている。  [0002] A new type of dye-sensitized solar cell announced by Gretzell et al. Of Lausanne University of Technology in 1991 in Switzerland is less expensive than conventional silicon solar cells. Since the manufacturing process is relatively simple, there is a possibility that manufacturing costs can be greatly reduced, and practical application is expected.
[0003] このような色素増感太陽電池において、電解液中に存在する酸化還元対 (例えば、 I―、 Γ等)を電極表面で酸ィ匕体力も還元体へ速やかに反応 (例えば、 I +2e— =3Γの反 [0003] In such a dye-sensitized solar cell, an oxidation-reduction pair (for example, I-, Γ, etc.) present in the electrolytic solution rapidly reacts on the surface of the electrode with the acid strength (for example, I + 2e— = 3Γ
3 3 3 3
応)させる触媒機能を持った対極が求められている。この対極には、触媒能の高い白 金を導電膜 [例えば ΙΤΟ (インジウム'スズ酸ィ匕物)、 SnO等]を付した導電性基板上 に担持したものがよく用いられる。白金の担持方法としては、一般にスパッタ法 (特許 文献 1参照)、蒸着法 (特許文献 2参照)が用いられている。しかし、これらの方法は量 産化、大面積化を考えた場合、大きな真空チャンバ一を備えた装置が必要となり、生 産性も低ぐ設備費も高くなるため、製造コストの削減にはならない。また、これらの方 法により作製された対極は、白金がヨウ素電解質に溶解し、耐久性がないことも報告 されている。  There is a need for a counter electrode with a catalytic function. As this counter electrode, a material in which a highly catalytic white metal is supported on a conductive substrate provided with a conductive film [for example, indium stannate] or SnO] is often used. As a method for supporting platinum, a sputtering method (see Patent Document 1) and a vapor deposition method (see Patent Document 2) are generally used. However, these methods require equipment with a large vacuum chamber when considering mass production and large area, and the productivity is low and the equipment costs are high, so the manufacturing cost is not reduced. . In addition, it has been reported that counter electrodes produced by these methods are not durable because platinum dissolves in iodine electrolyte.
[0004] その他の方法として、特許文献 3には、電気メツキにより導電層の表面に白金粒子 を担持させる方法が開示されている。しかし、この方法は白金粒子が粒子で担持され ているため、密着強度が低く耐久性にも問題があると考えられる。また、この方法は 電解液として硝酸という強酸を用いており、かかる強酸性下での電気メツキでは、酸 に弱い導電膜 (例えば ITO、 SnO等)を使用した基板あるいは金属基板は、導電膜 の溶解、基板の溶解などの問題がある。  [0004] As another method, Patent Document 3 discloses a method in which platinum particles are supported on the surface of a conductive layer by electric plating. However, this method is considered to have a problem in durability because of low adhesion strength because platinum particles are supported by the particles. In addition, this method uses a strong acid called nitric acid as the electrolytic solution, and in the electroplating under such strong acidity, a substrate using a conductive film weak in acid (for example, ITO, SnO, etc.) or a metal substrate, There are problems such as dissolution and substrate dissolution.
[0005] また、金属材料上に電気メツキ、無電界メツキを行う場合、金属材料の表面の酸ィ匕 膜を酸処理等により除去しなければならず、前処理工程も複雑で、有害物が発生し、 環境上も問題がある。 [0005] In addition, in the case of performing electrical plating or electroless plating on a metal material, the surface of the metal material is oxidized. The membrane must be removed by acid treatment, etc., the pretreatment process is complicated, harmful substances are generated, and there are environmental problems.
[0006] 特許文献 1:特開 2000— 173680号公報  [0006] Patent Document 1: Japanese Unexamined Patent Publication No. 2000-173680
特許文献 2:特開 2000— 36330号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2000-36330
特許文献 3:特開 2003 - 36897号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-36897
発明の開示  Disclosure of the invention
[0007] 本発明は上記の従来技術に存在する問題を解決すべくなされたものであり、より優 れた白金膜を有する電極の製造方法、特に色素増感太陽電池の対極として有用な 白金膜を有する電極を製造する方法を提供することを課題とする。  [0007] The present invention has been made to solve the above-described problems in the prior art, and a method for producing an electrode having a more excellent platinum film, particularly a platinum film useful as a counter electrode of a dye-sensitized solar cell. It is an object of the present invention to provide a method for manufacturing an electrode having the following.
[0008] 本発明者らは、上記課題を解決すべく研究を重ねた結果、 pH2以上の白金水溶 液を電解液として用いて電気メツキを行うことにより、導電膜上に、密着強度が十分に あり、かつ均一な白金が膜状に形成されることを見出し、本発明を完成した。  [0008] As a result of repeated studies to solve the above problems, the present inventors have performed electroplating using a platinum aqueous solution having a pH of 2 or more as an electrolytic solution, thereby providing sufficient adhesion strength on the conductive film. The present invention was completed by finding that uniform and uniform platinum was formed into a film.
[0009] すなわち、本発明の白金膜を有する電極の製造方法は、  That is, the method for producing an electrode having a platinum film of the present invention includes:
(a)陰極、陽極、電解液及び電源を準備する工程であって、陰極として導電膜の積 層された基板を、電解液として pH2以上の白金水溶液を準備する工程、  (a) a step of preparing a cathode, an anode, an electrolytic solution and a power source, a step of preparing a substrate on which a conductive film is stacked as a cathode and a platinum aqueous solution having a pH of 2 or more as an electrolytic solution;
(b)該陰極を該電源の—極に接続し、該陽極を電源の +極に接続すると共に、両 電極を該電解液に浸漬し両電極間に電圧を印加して電気メツキすることにより、該陰 極の該導電膜上に白金膜を形成する工程、および  (b) by connecting the cathode to the negative electrode of the power source, connecting the anode to the positive electrode of the power source, and immersing both electrodes in the electrolyte and applying a voltage between the two electrodes to perform electrical measurement. Forming a platinum film on the conductive film of the negative electrode; and
(c)該白金膜を形成した陰極を取り出す工程、  (c) removing the cathode on which the platinum film is formed,
を順に行うことを特徴とする。  Are performed in order.
[0010] また、本発明は、該方法により製造された電極を、色素増感太陽電池の対極として 用いることを特徴とする。  [0010] Further, the present invention is characterized in that an electrode produced by the method is used as a counter electrode of a dye-sensitized solar cell.
[0011] 本発明による白金水溶液中での電気メツキ法による電極の作製は、インジウム'スズ 酸ィ匕物 (ITO)など、酸に弱い材料でも使用でき、短時間で選択的に導電膜上に白 金膜を形成することができる。電気メツキ法は、従来のスパッタ法などと比較して安価 な製造方法であり、色素増感太陽電池の製造コストの削減に貢献できる。また、形成 された白金膜は、スパッタ法よりも耐久力に優れており、耐久性のある色素増感太陽 電池の製造にも貢献できる。 図面の簡単な説明 [0011] According to the present invention, an electrode by an electroplating method in an aqueous platinum solution can be used with an acid-sensitive material such as indium tin oxide (ITO), and can be selectively deposited on a conductive film in a short time. A white metal film can be formed. The electroplating method is a cheaper manufacturing method compared to the conventional sputtering method and can contribute to the reduction of the manufacturing cost of the dye-sensitized solar cell. In addition, the formed platinum film is superior in durability to the sputtering method, and can contribute to the production of a durable dye-sensitized solar cell. Brief Description of Drawings
[0012] [図 1]電気メツキの形態を示す模式断面図である。  FIG. 1 is a schematic cross-sectional view showing a form of an electric plating.
[図 2]本発明の電極を色素増感太陽電池の対極として用いたときの基本構成を示す 模式断面図である。  FIG. 2 is a schematic cross-sectional view showing a basic configuration when the electrode of the present invention is used as a counter electrode of a dye-sensitized solar cell.
[図 3]図 2に示す色素増感太陽電池の対極として用いた電極の模式断面図である。  3 is a schematic cross-sectional view of an electrode used as a counter electrode of the dye-sensitized solar cell shown in FIG.
[図 4]実施例 1における電気メツキ前の ITOガラス導電膜表面の電子顕微鏡写真 (8 万倍)である。  FIG. 4 is an electron micrograph (magnified 80,000 times) of the ITO glass conductive film surface before electroplating in Example 1.
[図 5]実施例 1における電気メツキ後の ITOガラス導電膜表面の電子顕微鏡写真(10 万倍)である。  FIG. 5 is an electron micrograph (100,000 times) of the ITO glass conductive film surface after electroplating in Example 1.
符号の説明  Explanation of symbols
1 容器  1 container
2 白金水溶液  2 Platinum aqueous solution
3 灰素電極  3 Ash electrode
4 対極  4 Counter electrode
5 直流電源  5 DC power supply
6 基板  6 Board
7 導電層  7 Conductive layer
8 白金膜  8 Platinum membrane
9 半導体電極  9 Semiconductor electrode
10 透明導電層  10 Transparent conductive layer
11 透明基板  11 Transparent substrate
12 光電極  12 Photoelectrode
13 電解液  13 Electrolyte
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] (1)工程(a)について  [0014] (1) About step (a)
本工程は、本発明の製造方法に必要な陰極、陽極、電解液及び電源を準備する 工程である。  This step is a step of preparing a cathode, an anode, an electrolytic solution and a power source necessary for the production method of the present invention.
[0015] (i)電解液 本発明の方法で使用される電解液としては、 pH2以上の白金水溶液が用いられる [0015] (i) Electrolyte As the electrolytic solution used in the method of the present invention, a platinum aqueous solution having a pH of 2 or more is used.
[0016] 本発明に使用される白金水溶液で用いられる白金化合物としては、電気メツキに適 するものを任意に用いることができる力 テトラクロ口白金 (II)酸カリウム [K PtCl ]、ジ [0016] As a platinum compound used in the platinum aqueous solution used in the present invention, a power suitable for electroplating can be arbitrarily used. Potassium tetrachromate platinum (II) potassium [K PtCl], di-
2 4 クロロテトラアンミン白金(II) [Pt (NH ) C1 ·Η O]、ジニトロジアンミン白金(II)[Pt (N  2 4 Chlorotetraammineplatinum (II) [Pt (NH) C1 ·] O], dinitrodiammineplatinum (II) [Pt (N
3 4 2 2  3 4 2 2
O ) (NH ) ]、へキサクロ口白金(IV)酸 6水和物 [H PtCl · 6Η 0]、へキサアンミン O) (NH)], hexacloplatinum (IV) hexahydrate [H PtCl · 6Η 0], hexammine
2 2 3 2 2 6 2 2 2 3 2 2 6 2
白金(IV)メタンスルホン酸塩 [Pt (NH ) (CH SO ) ]等の水溶性の二価または四  Platinum (IV) methanesulfonate [Pt (NH) (CH 2 SO 4)] and other water-soluble divalent or tetravalent
3 6 3 3 4  3 6 3 3 4
価の白金化合物が特に好適に用いられる。  A valent platinum compound is particularly preferably used.
[0017] 各白金化合物の濃度としては、白金の重量として、 0. 1〜: LOgZLの濃度を好適に 用いることができ、より好ましくは 1. 5〜2. 5gZLの濃度範囲を用いることができる。 [0017] As the concentration of each platinum compound, as the weight of platinum, a concentration of 0.1 to: LOgZL can be suitably used, and a concentration range of 1.5 to 2.5 gZL can be more preferably used. .
[0018] また、必要に応じて、還元剤としてのヒドラジン等や、安定剤としてヒドロキシルァミン 塩等の添加物を加えてもょ 、。 [0018] If necessary, an additive such as hydrazine as a reducing agent or hydroxylamine salt as a stabilizer may be added.
[0019] 本溶液の pHは 2以上であることが重要である。本溶液の pHが 2未満の強酸性の場 合、白金の膜を形成するまでメツキを続けても、得られた白金膜はすぐに剥離してし まい、良好な電池性能を期待できない (特許文献 1、段落番号 0031参照)。基材の 性質、白金の析出速度等を考慮して、最適の pHを調整することができるが、基板上 の導電膜保護の観点から、 pHの範囲は 4〜13が好ましぐさらには 7〜11 (7を除く) であることが特に好ましい。 pHを調整する剤としては、硝酸、アンモニア水、水酸ィ匕 カリウムなどを好適に用いることができる。  [0019] It is important that the pH of the solution is 2 or more. If the pH of this solution is less than 2, even if the plating is continued until the platinum film is formed, the obtained platinum film may be peeled off immediately and good battery performance cannot be expected (patent) Reference 1, paragraph number 0031). The optimum pH can be adjusted in consideration of the properties of the substrate, the deposition rate of platinum, etc., but from the viewpoint of protecting the conductive film on the substrate, the pH range of 4 to 13 is preferred. Particularly preferred is ~ 11 (excluding 7). As the pH adjusting agent, nitric acid, aqueous ammonia, potassium hydroxide or the like can be preferably used.
[0020] (ii)陰極  [0020] (ii) Cathode
本発明で用いられる陰極は、導電膜の積層された基板である。  The cathode used in the present invention is a substrate on which conductive films are laminated.
[0021] 基板としては、ガラス基板、プラスチック基板、金属基板等を使用でき、特に基板の 材質は選ばない。後述するように、特に本発明の方法によれば、金属基板を使用す る場合においても、表面の酸化皮膜の除去等が不要で、簡単に電気メツキを行うこと ができる。金属基板に用いられる金属材料としては、チタン、ステンレス等が、ヨウ素 に対する耐腐食性の観点力 好まし 、。  [0021] As the substrate, a glass substrate, a plastic substrate, a metal substrate or the like can be used, and the material of the substrate is not particularly selected. As will be described later, in particular, according to the method of the present invention, even when a metal substrate is used, it is not necessary to remove the oxide film on the surface, and electrical plating can be performed easily. As the metal material used for the metal substrate, titanium, stainless steel, etc. are preferred from the viewpoint of corrosion resistance against iodine.
[0022] 導電層としては、低い抵抗率の観点から、好ましくは添加物を含んでいてもよい酸 ィ匕スズ、インジウム'スズ酸ィ匕物 (ITO)膜 (酸化インジウム中に酸化スズが好ましくは 5 〜15重量%含有)が好ましぐ酸化スズにフッ素またはアンチモンをドープしたもので もよい。これらの導電層は、スパッタ法、蒸着法、スピンコート法等の既知の方法によ り、前記基板に積層できる。スパッタ法、蒸着法等により、表面の導電膜 (第一の導電 層)が平滑に積層されている場合には、さらに有機溶媒等に分散した ITOのナノ粒 子 (粒径 5〜: LOOnm、より好ましくは 10〜50nm)等の粒子を、前記第一の導電層の 上に塗布して第二の導電層を形成し、表面積を大きくした方が、触媒性能が向上す るので好ましい。 [0022] From the viewpoint of low resistivity, the conductive layer is preferably an oxide tin or indium stannate oxide (ITO) film that may contain an additive (tin oxide is preferably contained in indium oxide. Is 5 Fluorine or antimony-doped tin oxide may be used, which is preferably about 15% by weight. These conductive layers can be laminated on the substrate by known methods such as sputtering, vapor deposition, and spin coating. When the conductive film (first conductive layer) on the surface is laminated smoothly by sputtering, vapor deposition, etc., ITO nanoparticles dispersed in an organic solvent or the like (particle size 5 ~: LOOnm, It is more preferable to apply particles such as 10 to 50 nm on the first conductive layer to form a second conductive layer and increase the surface area because the catalyst performance is improved.
[0023] (iii)その他 [0023] (iii) Other
その他、陽極、電源については、電気メツキに通常用いられるものを用いることがで きる。  In addition, as the anode and the power source, those normally used for electric plating can be used.
[0024] 陽極としては、たとえば炭素電極、白金電極等を好適に用いることができる。  [0024] As the anode, for example, a carbon electrode, a platinum electrode or the like can be suitably used.
[0025] (2)工程(b)について [0025] (2) Regarding step (b)
本工程は、電気メツキを行う工程である。  This step is a step of performing electrical plating.
[0026] メツキ浴温度は、室温〜 80°Cを好適に用いることができ、より好ましくは室温〜 60[0026] The bath temperature can be suitably used from room temperature to 80 ° C, more preferably from room temperature to 60 ° C.
°Cを用いることができる。 ° C can be used.
[0027] 電流密度としては、析出速度制御の観点から、一般的には 0. 1〜: LOAZdm2の電 流密度に制御して行うのが好ましぐより好ましくは 2. 5〜6AZdm2に制御して行う。 [0027] current as the density, in terms of deposition rate control, generally at 0. 1: more preferably preferably instrument performed by controlling the a current density LOAZdm 2 2. the 5~6AZdm 2 Control and do.
[0028] メツキ時間は、温度、電流密度等により影響を受けるが、触媒性能及びコストの観点 力ら、 0. 1〜5分、より好ましくは 0. 25-1. 0分を用!ヽること力できる。 [0028] The plating time is affected by temperature, current density, etc., but from the viewpoint of catalyst performance and cost, 0.1-5 minutes, more preferably 0.25-1.0 minutes is used! I can do it.
[0029] 本電気メツキ工程により、陰極の導電膜上に選択的に白金膜を形成させることがで きる。白金を導電膜上に膜として形成させることにより、密着性'緻密性から機械的強 度が良好であるし、白金膜が光を反射することで反射光が発電に寄与し、効率向上 にもつながるという利点を有する。 [0029] Through this electroplating step, a platinum film can be selectively formed on the cathode conductive film. By forming platinum as a film on the conductive film, the mechanical strength is good due to adhesion and denseness, and the reflected light contributes to power generation by reflecting light from the platinum film, improving efficiency. Has the advantage of being connected.
[0030] (3)工程( について [0030] (3) About process (
本工程は、上記工程 (a)、(b)によって製造された白金膜を形成した陰極を取り出 す工程である。  This step is a step of taking out the cathode formed with the platinum film manufactured by the above steps (a) and (b).
[0031] 取り出した陰極は水洗、乾燥後、色素増感太陽電池の対極として好適に使用する ことができる。 [0032] 以下に、実施例を挙げて本発明につき更に詳しく説明する。 [0031] The taken-out cathode can be suitably used as a counter electrode of a dye-sensitized solar cell after washing and drying. [0032] Hereinafter, the present invention will be described in more detail with reference to examples.
実施例  Example
[0033] 図 1に電気メツキの模式図を示す。  [0033] FIG. 1 shows a schematic diagram of the electrical plating.
[0034] 容器 1内の白金水溶液 2に、導電層 7が片側に積層された基板 6、及び相手電極 3 を浸漬させた。  [0034] A substrate 6 having a conductive layer 7 laminated on one side and a counter electrode 3 were immersed in an aqueous platinum solution 2 in a container 1.
[0035] 白金水溶液としては、実施例 4を除き、へキサアンミン白金 (IV)メタンスルホン酸塩 水溶液をアンモニア水(含量 25重量%)により、 ρΗΙΟ. 8に調整したものを用いた。 該白金水溶液中の、へキサアンミン白金 (IV)メタンスルホン酸塩濃度は 6. 9g/L ( 白金として 2gZL)であり、該白金水溶液の液温は 19°Cであった。  As the platinum aqueous solution, except for Example 4, an aqueous solution of hexammineplatinum (IV) methanesulfonate adjusted to ρΗΙΟ.8 with aqueous ammonia (content 25% by weight) was used. The concentration of hexammineplatinum (IV) methanesulfonate in the platinum aqueous solution was 6.9 g / L (2 gZL as platinum), and the liquid temperature of the platinum aqueous solution was 19 ° C.
[0036] 相手電極としては炭素電極を用いた。  [0036] A carbon electrode was used as the counter electrode.
[0037] 電気メツキは、導電層 7が積層された基板 6を直流電源 5の—極に接続し、相手電 極 3を直流電極 5の +極に接続し、この状態で、両電極間に電流を 0. lAZdm2〜l OAZdm2となるように電圧を印加すると、基板 6に積層された導電層 7の表面に、選 択的に白金膜 8が形成され、図 2に示すような対極 4ができる。 [0037] In the electrical plating, the substrate 6 on which the conductive layer 7 is laminated is connected to the negative pole of the DC power source 5, and the counterpart electrode 3 is connected to the positive pole of the DC electrode 5. When a voltage is applied so that the current becomes 0.lAZdm 2 to l OAZdm 2 , a platinum film 8 is selectively formed on the surface of the conductive layer 7 laminated on the substrate 6, and the counter electrode as shown in FIG. 4 can be done.
[0038] より詳細には、以下のようにして実施例 1〜3及び比較例 1、 2において、それぞれ 対極 4を作製した。実施例 1のように、電気メツキ力 pH2以上、より好ましくは 7以上 の白金水溶液中で行うと、 ITOのような酸に弱い導電層でも、 ITOを損傷することなく 、白金メッキを行うことができる。  In more detail, the counter electrode 4 was produced in each of Examples 1 to 3 and Comparative Examples 1 and 2 as follows. As in Example 1, when electroplating is performed in a platinum aqueous solution having a pH of 2 or more, more preferably 7 or more, platinum plating can be performed without damaging the ITO even in an acid-sensitive conductive layer such as ITO. it can.
[0039] また、実施例 3のように、チタン金属など、表面に酸ィ匕皮膜を持つ金属材料は、通 常の電気メツキでは、酸ィ匕皮膜を除去しなければメツキが行えないが、表面に導電層 を積層することにより、酸ィ匕皮膜の除去という複雑な前処理工程を行わなくても簡単 に電気メツキが行える。電気メツキは、導電層を積層した面に選択的にメツキされ、導 電層がない面にはメツキされないので、対極の作製には非常に有利である。  [0039] Further, as in Example 3, a metal material having an acid film on the surface, such as titanium metal, cannot be etched unless the acid film is removed with a normal electric plating. By laminating a conductive layer on the surface, electric plating can be easily performed without performing a complicated pretreatment step of removing the acid film. Since the electrical plating is selectively coated on the surface on which the conductive layer is laminated and not on the surface without the conductive layer, it is very advantageous for manufacturing the counter electrode.
[0040] (実施例 1)  [0040] (Example 1)
導電層 7が片側に積層された基板 6として、ガラス基板上に導電膜としてインジウム •スズ酸化物 (ITO、酸化インジウム中に酸化スズがおよそ 10重量%含有)を蒸着し たものを用いた (膜厚 200nm)。電気メツキ前の ITOを蒸着した導電膜表面の電子 顕微鏡写真を図 4に示す。 [0041] 電気メツキの電流密度は 5A/dm2とし、時間は 0. 5分とした。電気メツキの後、白 金膜を形成させた基板を水洗し、 110°Cで乾燥した(白金膜の厚み 5nm)。電気メッ キ後の ITOを蒸着した導電膜表面の電子顕微鏡写真を図 5に示す。メツキ前後の表 面状態に差がなぐ白金の粒子も認められないことから、白金は膜状に均一に析出し ていると考えられる。 As the substrate 6 having the conductive layer 7 laminated on one side, a glass substrate in which indium tin oxide (ITO, containing approximately 10% by weight of tin oxide in indium oxide) was deposited as a conductive film was used ( Film thickness 200nm). Fig. 4 shows an electron micrograph of the surface of the conductive film deposited with ITO before electroplating. [0041] The current density of the electrical plating was 5 A / dm 2 and the time was 0.5 minutes. After electroplating, the substrate on which the white metal film was formed was washed with water and dried at 110 ° C. (platinum film thickness 5 nm). Fig. 5 shows an electron micrograph of the surface of the conductive film on which ITO was deposited after electroplating. Since platinum particles with no difference in the surface state before and after the plating are not observed, it is considered that platinum is uniformly deposited in the form of a film.
[0042] (実施例 2) [Example 2]
実施例 1と同様の、導電膜として ITOを蒸着させたガラス基板を用意し、この基板の 上に更に、 ITO粒子濃度 10質量%の有機溶媒溶液 (有機溶媒:イソプロピルアルコ ール)をスピンコートし、 110°Cで 5分乾燥し、これを陰極として電気メツキを行った (ス ピンコートの膜厚 400nm)。  As in Example 1, a glass substrate on which ITO was deposited as a conductive film was prepared, and an organic solvent solution (organic solvent: isopropyl alcohol) having an ITO particle concentration of 10% by mass was further spin-coated on this substrate. Then, it was dried at 110 ° C. for 5 minutes, and electroplating was performed using this as a cathode (spin coat film thickness 400 nm).
[0043] 電気メツキの電流密度は 5A/dm2とし、時間は 0. 5分とした。電気メツキの後、白 金膜を形成させた基板を水洗し、 110°Cで乾燥した(白金膜の厚み 5nm)。 [0043] The current density of the electrical plating was 5 A / dm 2 and the time was 0.5 minutes. After electroplating, the substrate on which the white metal film was formed was washed with water and dried at 110 ° C. (platinum film thickness 5 nm).
[0044] (比較例 1) [0044] (Comparative Example 1)
実施例 1と同じぐ基板として、ガラス基板の上に導電層として ITOを蒸着したものを 使用し、この導電層の表面にスパッタ装置(日立製作所製 E— 1030形イオンスパッ ター)により、白金を 20nmの厚さに担持させた。  The same substrate as in Example 1 was prepared by depositing ITO as a conductive layer on a glass substrate, and platinum was deposited on the surface of this conductive layer using a sputtering device (Hitachi E-1030 ion sputtering). It was supported to a thickness of 20 nm.
[0045] (実施例 3) [0045] (Example 3)
基板として、チタン金属板の上に平均粒径 12nmの ITO粒子濃度 10質量%の有 機溶媒溶液 (有機溶媒:イソプロピルアルコール)をスピンコートし、 110°Cで 5分乾燥 したものを使用した。(膜厚 400nm)。  As a substrate, an organic solvent solution (organic solvent: isopropyl alcohol) having an ITO particle concentration of 10% by mass with an average particle diameter of 12 nm was spin-coated on a titanium metal plate and dried at 110 ° C. for 5 minutes. (Film thickness 400nm).
[0046] 電気メツキの電流密度は 5A/dm2とし、時間は 0. 5分とした。電気メツキの後、水 洗し、 110°Cで乾燥した(白金膜の厚み 5nm)。 [0046] The current density of the electrical plating was 5 A / dm 2 and the time was 0.5 minutes. After electric plating, it was washed with water and dried at 110 ° C (platinum film thickness 5 nm).
[0047] (比較例 2) [0047] (Comparative Example 2)
実施例 2と同様、基板はチタン金属板を使用し、この表面にスパッタ装置により白金 を 20nmの厚さに担持した。  As in Example 2, a titanium metal plate was used as the substrate, and platinum was supported on this surface to a thickness of 20 nm by a sputtering apparatus.
[0048] (実施例 4) [0048] (Example 4)
白金水溶液としては、へキサアンミン白金 (IV)メタンスルホン酸塩水溶液をアンモ ユア水(12. 5重量%含有)により、 pH2. 1に調整したものを用いた。この時のへキサ アンミン白金 (IV)メタンスルホン酸塩濃度は 6. 9gZL (白金として 2gZL)、溶液温 度は 19°Cであった。 As the platinum aqueous solution, a hexaammineplatinum (IV) methanesulfonate aqueous solution adjusted to pH 2.1 with ammonia water (12.5 wt% contained) was used. Hexa at this time The concentration of ammineplatinum (IV) methanesulfonate was 6.9 gZL (2 gZL as platinum), and the solution temperature was 19 ° C.
[0049] 基板は、ガラス基板の上に導電膜として ITOを蒸着した実施例 1と同様のものを使 用し、電気メツキの電流密度は 5AZdm2とし、時間は 0. 5分とした。 [0049] substrate, use the same as in Example 1 in which ITO is deposited as a conductive film on a glass substrate, a current density of the electric plated is a 5AZdm 2, time was 5 minutes 0.5.
[0050] 電気メツキの後、水洗し、 110°Cで乾燥した(白金の膜厚は 4nm)。  [0050] After electroplating, it was washed with water and dried at 110 ° C (platinum film thickness was 4 nm).
[0051] (性能評価)  [0051] (Performance evaluation)
実施例 1、 2、 3、 4及び比較例 1、 2において製造されたそれぞれの電極を対極とし て用いて、図 3の色素増感太陽電池をそれぞれ作製した。  Using the respective electrodes produced in Examples 1, 2, 3, 4 and Comparative Examples 1 and 2 as counter electrodes, dye-sensitized solar cells in FIG. 3 were produced.
[0052] これらにっ 、て、 I-Vテスターを用いて、変換効率 7? [%]、開放電圧 Voc [V]、短 絡電 sc[mAZcm2]、曲線因子 FFを求め、上記の実施例及び比較例の各電極 を対極として組み込んだ色素増感太陽電池の性能を評価した。その結果を表 1に示 す。 [0052] Thus, using an IV tester, conversion efficiency 7% [%], open-circuit voltage Voc [V], short-circuit current sc [mAZcm 2 ], and fill factor FF were determined. The performance of the dye-sensitized solar cell in which each electrode of the comparative example was incorporated as a counter electrode was evaluated. The results are shown in Table 1.
[0053] 表 1に示した結果から、電気メツキによる方法は、スパッタ法による方法と同様の良 好な電池性能を示した。また、実施例 2のように、更に追加の ITO粒子を表面に付け ることにより、表面積が増加し、変換効率を更に良くすることができる。  [0053] From the results shown in Table 1, the electric plating method showed good battery performance similar to the sputtering method. Further, by adding additional ITO particles to the surface as in Example 2, the surface area can be increased and the conversion efficiency can be further improved.
[0054] また、実施例 4では、電解液の pHを酸性 (2. 1)とした結果、実施例 1に比べ、白金 膜厚が少し薄くなつた。このため、触媒性能は実施例 1に比べてやや低下した。  [0054] In Example 4, as a result of making the pH of the electrolytic solution acidic (2.1), the platinum film thickness was slightly thinner than that of Example 1. For this reason, the catalyst performance was slightly lower than that of Example 1.
[0055] [表 1]  [0055] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0056] (発明品耐久性評価) [0056] (Invention durability evaluation)
電極の耐久性を調べるため、ヨウ素とヨウ化リチウムをそれぞれ 0. 03M、 0. 3Mの 濃度になるように 3—メトキシプロピオ-トリルに溶解して電解液を作製し、この電解溶 液中に上記実施例 2の電極を浸漬し、 80°Cで 48時間保持した。その後、これを取り 出し、その電極を対極として用いて図 3のような色素増感太陽電池を作製し、上記と 同様に性能を評価した。その結果を表 2に示す。 In order to investigate the durability of the electrode, iodine and lithium iodide were dissolved in 3-methoxypropio-tolyl at concentrations of 0.03M and 0.3M, respectively, to prepare an electrolyte solution. The electrode of Example 2 was immersed in and held at 80 ° C. for 48 hours. Then take this A dye-sensitized solar cell as shown in Fig. 3 was prepared using the electrode as a counter electrode, and the performance was evaluated in the same manner as described above. The results are shown in Table 2.
[0057] (比較品耐久性評価)  [0057] (Comparison product durability evaluation)
本発明の電極の耐久性と比較するため、上記発明品耐久性評価と同様の電解液 を作製し、この電解溶液中に上記比較例 1の電極を浸漬し、 80°Cで 48時間保持した 。その後、これを取り出し、その電極を対極として用いて図 3のような色素増感太陽電 池を作製し、上記と同様に性能を評価した。その結果を表 2に示す。  In order to compare with the durability of the electrode of the present invention, an electrolyte solution similar to the above-mentioned invention product durability evaluation was prepared, and the electrode of Comparative Example 1 was immersed in this electrolytic solution and held at 80 ° C. for 48 hours. . Thereafter, this was taken out, a dye-sensitized solar cell as shown in Fig. 3 was produced using the electrode as a counter electrode, and the performance was evaluated in the same manner as described above. The results are shown in Table 2.
[0058] [表 2]  [0058] [Table 2]
Figure imgf000011_0001
Figure imgf000011_0001
[0059] 表 2に示した結果から、電気メツキによる方法は、スパッタ法による方法と比較して、 耐久性にぉ 、て優れて!/、ることが確認された。 [0059] From the results shown in Table 2, it was confirmed that the electrical plating method was superior in durability and / or superior to the sputtering method.
産業上の利用可能性  Industrial applicability
[0060] 本発明の方法により製造された電極は、その導電膜の表面に白金が均一な膜を形 成しているとともに、密着強度が十分にあり、色素増感太陽電池の対極として有用で ある。 [0060] The electrode produced by the method of the present invention forms a uniform film of platinum on the surface of the conductive film and has sufficient adhesion strength, and is useful as a counter electrode of a dye-sensitized solar cell. is there.
[0061] また、本発明によれば、必要な部分のみに導電膜を形成しておくことによって、選 択的に必要な部分のみに白金膜を形成させることができるので、コストの削減ができ る。さらに、金属板等に本発明の方法を用いる場合にも、表面の酸化皮膜の除去等 の処理は不要であり、導電膜を表面に形成しておけば簡単に電気メツキができる。  [0061] Further, according to the present invention, by forming the conductive film only in the necessary portion, the platinum film can be selectively formed only in the necessary portion, so that the cost can be reduced. The Further, even when the method of the present invention is used for a metal plate or the like, treatment such as removal of the oxide film on the surface is not necessary, and if a conductive film is formed on the surface, electric plating can be easily performed.

Claims

請求の範囲 The scope of the claims
[1] (a)陰極、陽極、電解液及び電源を準備する工程であって、陰極として導電膜の積 層された基板を、電解液として pH2以上の白金水溶液を準備する工程、  [1] (a) A step of preparing a cathode, an anode, an electrolytic solution and a power source, a step of preparing a substrate on which a conductive film is stacked as a cathode and a platinum aqueous solution having a pH of 2 or more as an electrolytic solution,
(b)該陰極を該電源の—極に接続し、該陽極を電源の +極に接続すると共に、両 電極を該電解液に浸漬し両電極間に電圧を印加して電気メツキすることにより、該陰 極の該導電膜上に白金膜を形成する工程、および  (b) by connecting the cathode to the negative electrode of the power source, connecting the anode to the positive electrode of the power source, and immersing both electrodes in the electrolyte and applying a voltage between the two electrodes to perform electrical measurement. Forming a platinum film on the conductive film of the negative electrode; and
(c)該白金膜を形成した陰極を取り出す工程、  (c) removing the cathode on which the platinum film is formed,
を順に行うことを特徴とする白金膜を有する電極の製造方法。  The method of manufacturing the electrode which has a platinum film | membrane characterized by performing sequentially.
[2] 前記白金水溶液の pH力 〜13であることを特徴とする請求項 1に記載の白金膜を 有する電極の製造方法。 [2] The method for producing an electrode having a platinum film according to [1], wherein the platinum aqueous solution has a pH force of ˜13.
[3] 前記工程 (b)において、 0. 1〜: LOAZdm2の電流密度に制御して電気メツキを行う ことを特徴とする請求項 1に記載の白金膜を有する電極の製造方法。 In [3] the step (b), 0. 1~: method for manufacturing an electrode having a platinum film of claim 1 which controls the current density of LOAZdm 2 and performs the electric plated with.
[4] 前記導電膜が、添加物を含んでいてもよい酸化スズ又はインジウム'スズ酸ィ匕物か ら形成されていることを特徴とする請求項 1に記載の白金膜を有する電極の製造方 法。 [4] The production of the electrode having a platinum film according to [1], wherein the conductive film is formed from tin oxide or indium stannate that may contain an additive. Method.
[5] 前記導電膜が、第一の導電層とその上に塗布された、粒径 5〜: LOOnmの粒子から なる第二の導電層を有することを特徴とする請求項 1に記載の白金膜を有する電極 の製造方法。  [5] The platinum according to claim 1, wherein the conductive film has a first conductive layer and a second conductive layer made of particles having a particle size of 5 to LOONm applied thereon. The manufacturing method of the electrode which has a film | membrane.
[6] 前記基板が、金属材料であることを特徴とする請求項 1に記載の白金膜を有する電 極の製造方法。  6. The method for producing an electrode having a platinum film according to claim 1, wherein the substrate is a metal material.
[7] 請求項 1〜6のいずれかに記載の方法により製造することのできる白金膜を有する 電極。  [7] An electrode having a platinum film that can be produced by the method according to any one of claims 1 to 6.
[8] 請求項 7の電極を、対極として組み込んだ色素増感太陽電池。  [8] A dye-sensitized solar cell in which the electrode according to claim 7 is incorporated as a counter electrode.
PCT/JP2006/325980 2006-11-28 2006-12-26 Process for producing electrode with platinum film WO2008065727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008546865A JP5071741B2 (en) 2006-11-28 2006-12-26 Method for producing electrode having platinum film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-320722 2006-11-28
JP2006320722 2006-11-28

Publications (1)

Publication Number Publication Date
WO2008065727A1 true WO2008065727A1 (en) 2008-06-05

Family

ID=39467531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325980 WO2008065727A1 (en) 2006-11-28 2006-12-26 Process for producing electrode with platinum film

Country Status (3)

Country Link
JP (1) JP5071741B2 (en)
TW (1) TWI383529B (en)
WO (1) WO2008065727A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182315A (en) * 2022-02-14 2022-03-15 深圳市顺信精细化工有限公司 Corrosion-resistant combined electroplated layer and electroplating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038293A (en) * 2000-07-25 2002-02-06 Tanaka Kikinzoku Kogyo Kk Platinum plating solution and plating method therewith
JP2002298936A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Photoelectric conversion element and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243995A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell
JP2005310722A (en) * 2004-04-26 2005-11-04 Mitsubishi Electric Corp Dye-sensitized solar cell
JP4773086B2 (en) * 2004-12-28 2011-09-14 住友大阪セメント株式会社 Dye-sensitized photoelectric conversion element, method for producing dye-sensitized photoelectric conversion element, and paint for dye-sensitized photoelectric conversion element
JP4963165B2 (en) * 2005-03-28 2012-06-27 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038293A (en) * 2000-07-25 2002-02-06 Tanaka Kikinzoku Kogyo Kk Platinum plating solution and plating method therewith
JP2002298936A (en) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd Photoelectric conversion element and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182315A (en) * 2022-02-14 2022-03-15 深圳市顺信精细化工有限公司 Corrosion-resistant combined electroplated layer and electroplating method
CN114182315B (en) * 2022-02-14 2022-05-17 深圳市顺信精细化工有限公司 Corrosion-resistant combined electroplated layer and electroplating method

Also Published As

Publication number Publication date
JPWO2008065727A1 (en) 2010-03-04
JP5071741B2 (en) 2012-11-14
TW200824170A (en) 2008-06-01
TWI383529B (en) 2013-01-21

Similar Documents

Publication Publication Date Title
Jiang et al. In-situ electrodeposition of conductive polypyrrole-graphene oxide composite coating for corrosion protection of 304SS bipolar plates
EP2644721B1 (en) Method for producing highly corrosion-resistant porous Ni-Sn body
TWI330409B (en) Method for forming an electrode comprising an electrocatalyst layer thereon and electrochemical device comprising the same
KR101297885B1 (en) Counter electrode with graphene and metal hybrid film for dye sensitized solar cell and dye sensitized solar cell comprising the same
Wu et al. Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells
JP2010508636A5 (en)
JP2009266798A (en) Method of manufacturing electrochemical device
Kakroo et al. Electrodeposited MnO 2-NiO composites as a Pt free counter electrode for dye-sensitized solar cells
CN1694282A (en) Cathode for whole vanadium oxide reduction flow battery and preparation method thereof
JP3961434B2 (en) Manufacturing method of fuel cell separator
Kim et al. Novel application of platinum ink for counter electrode preparation in dye sensitized solar cells
US8298434B2 (en) Method of forming an electrode including an electrochemical catalyst layer
US20080236659A1 (en) Photoelectric conversion electrode, manufacturing method of the same, and dye-sensitized solar cell
JP2008243754A (en) Photoelectric conversion electrode, manufacturing method of the same, and dye-sensitized solar cell
KR20190031576A (en) METHOD FOR MANUFACTURING ALUMINUM MEMBER FOR ELECTRODES
JP2009102676A (en) Corrosion-resistant conductive-coated material and its use
JP2006073487A (en) Counterelectrode for dye-sensitized solar cell, manufacturing method thereof, and dye-sensitized solar cell
JP2008266744A (en) Corrosion resistant conductive coating material, and its use
JP5071741B2 (en) Method for producing electrode having platinum film
CN101740226A (en) Method for forming electrode containing catalyst layer
WO2005050721A1 (en) Method for preparing ruthenium oxide-thin film using electrodeposition
Yavuz Copper-and nickel-based flexible polyester electrodes for energy storage devices
JP4894101B2 (en) Method for manufacturing counter electrode of dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell
JP2003123782A (en) Separator for fuel cell, its manufacturing method, and fuel cell
KR20110015216A (en) The preparation of v2o5 thin films using e-beam irradiation and the v2o5 thin films improved energy storage capacity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06843364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546865

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843364

Country of ref document: EP

Kind code of ref document: A1