JP2008266744A - Corrosion resistant conductive coating material, and its use - Google Patents

Corrosion resistant conductive coating material, and its use Download PDF

Info

Publication number
JP2008266744A
JP2008266744A JP2007113482A JP2007113482A JP2008266744A JP 2008266744 A JP2008266744 A JP 2008266744A JP 2007113482 A JP2007113482 A JP 2007113482A JP 2007113482 A JP2007113482 A JP 2007113482A JP 2008266744 A JP2008266744 A JP 2008266744A
Authority
JP
Japan
Prior art keywords
layer
substrate
corrosion
coating material
resistant conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007113482A
Other languages
Japanese (ja)
Inventor
Shinichiro Mukohata
眞一郎 向畠
Kazato Yanada
風人 梁田
Hideki Nukui
秀樹 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2007113482A priority Critical patent/JP2008266744A/en
Publication of JP2008266744A publication Critical patent/JP2008266744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Fuel Cell (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion resistant conductive coating material which is free from consumption caused by organic matter even when used for organic electrolysis, can produce an object at the surface of an electrode with high efficiency, and can stably maintain high electrical conductivity over a long period, and to provide an inexpensive and excellently reliable corrosion resistant conductive coating material capable of withstanding for a long time even in an existing atmosphere of corrosive substances represented by iodine or the like and oxidative substances. <P>SOLUTION: The corrosion resistant conductive material is characterized in that a platinum group metal layer and/or its oxide layer thereof as an intermediate layer is formed on an electrode substrate, and a π-conjugated conductive polymer layer as an electrode catalyst substance is formed on the upper layer thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐食性かつ導電性に優れ、高耐久性である耐食導電被覆材料に関するものであり、より詳しくは、酸素発生を伴う電解工程、特に有機物を電解酸化するための陽極、あるいは腐食性の電解質を具備した色素増感型太陽電池向けの電極、又は、腐食環境下に曝される固体高分子型燃料電池用セパレータ等を用途とする耐食導電被覆材料に関するものである。   The present invention relates to a corrosion-resistant conductive coating material that is excellent in corrosion resistance, conductivity, and durability. More specifically, the present invention relates to an electrolysis process involving oxygen generation, particularly an anode for electrolytically oxidizing organic substances, or corrosive. The present invention relates to a corrosion-resistant conductive coating material that uses an electrode for a dye-sensitized solar cell provided with an electrolyte or a separator for a polymer electrolyte fuel cell that is exposed to a corrosive environment.

従来の電解用電極の例を挙げ、背景技術を説明する。   The background art will be described with reference to an example of a conventional electrode for electrolysis.

従来の有機電解用電極としては、水系で用いるものとしては主に酸素過電圧の高い貴金属やカーボンが使用されており、また、非プロトン性の有機溶媒中では耐食性の面から、主に白金が用いられている。   As conventional electrodes for organic electrolysis, noble metals and carbon with high oxygen overvoltage are mainly used as water-based electrodes, and platinum is mainly used in aprotic organic solvents from the viewpoint of corrosion resistance. It has been.

しかし、白金や金などは電解中に溶解し消耗する上に、非常に高価であり、工業的に不利である。また、カーボン電極においては、陽極として機能させた場合に酸化され易く消耗が激しいため寿命が短く、長期信頼性に欠けるという問題点を有している。   However, platinum, gold and the like are dissolved and consumed during electrolysis and are very expensive and industrially disadvantageous. In addition, the carbon electrode has a problem that it is easily oxidized when it functions as an anode and is consumed so quickly that its life is short and long-term reliability is lacking.

そこで、塩素酸製造用電極などで広く用いられている高耐食性のチタン等の電極基体上に、白金族の金属酸化物を含有する触媒被膜を熱分解法により形成した不溶性金属電極が知られている。しかし、この金属電極は熱分解法により触媒層を形成するため、触媒層に多数のクラックやピンホールを生じやすい。このクラックやピンホールなどから有機物が浸透すると、触媒層とチタン基体界面に酸化チタン層の成長を促進させ、電極が不導体化され、反応電流効率の低下を招き、あるいは触媒層の剥離が生じ、電極が早期に寿命を迎えるという問題点を有している。   Therefore, an insoluble metal electrode is known in which a catalyst coating containing a platinum group metal oxide is formed by pyrolysis on an electrode substrate such as titanium having high corrosion resistance, which is widely used in electrodes for producing chloric acid. Yes. However, since this metal electrode forms a catalyst layer by a thermal decomposition method, many cracks and pinholes are easily generated in the catalyst layer. When organic matter penetrates from these cracks, pinholes, etc., the growth of the titanium oxide layer is promoted at the interface between the catalyst layer and the titanium substrate, the electrode is made non-conductive, the reaction current efficiency is reduced, or the catalyst layer is peeled off. The electrode has a problem that it reaches the end of its life.

上記高耐久性と高電流効率とを両立すべく、電極表面を改質する方法として、電析浴中に疎水性物質の粒子を共存、溶解させながら、電極物質を電析させ、それらの粒子が電析層に取り込まれてなる複合材料層を形成し、電極とする方法が提案されている。このようにして作製された疎水性電極上では、有機分子が電極表面に吸着されやすく、結果的に電極表面上の有機物の濃度が高くなることになり、電流効率が向上する。しかし、電析法においては、電極触媒となる貴金属種によっては電析が困難なものもある。また、疎水性物質と触媒物質の組成比の制御が難しいという問題点も抱えている。   As a method of modifying the electrode surface in order to achieve both the above high durability and high current efficiency, electrode particles are electrodeposited while coexisting and dissolving particles of hydrophobic substances in the electrodeposition bath. There has been proposed a method of forming a composite material layer in which electrodeposits are taken into an electrodeposition layer to form an electrode. On the hydrophobic electrode produced in this way, organic molecules are easily adsorbed on the electrode surface, resulting in an increase in the concentration of organic matter on the electrode surface, and current efficiency is improved. However, in the electrodeposition method, there are some noble metal species that are difficult to deposit depending on the type of noble metal used as the electrode catalyst. In addition, there is a problem that it is difficult to control the composition ratio between the hydrophobic substance and the catalyst substance.

一方、電析法ではなく、疎水性物質、触媒物質、バインダーを混合し、成形することで種々の触媒物質と疎水性物質とを任意の配合比に制御する方法があるが、この方法で作製した電極は機械的強度の点で問題を抱えている。加えて、各物質を均一に混合することが容易ではなく、疎水性能にも限界がある。   On the other hand, instead of the electrodeposition method, there is a method to control various catalyst materials and hydrophobic materials to an arbitrary mixing ratio by mixing and molding a hydrophobic material, a catalyst material, and a binder. The electrode has a problem in terms of mechanical strength. In addition, it is not easy to mix each substance uniformly, and the hydrophobic performance is limited.

従って、従来の有機電解用電極においては、長電極寿命と高反応電流効率との両立という観点から不十分であり、該両特性を兼ね備え、かつ安価で生産性に優れる電極材料が要望されている。   Accordingly, conventional electrodes for organic electrolysis are insufficient from the viewpoint of achieving both long electrode life and high reaction current efficiency, and there is a demand for electrode materials that combine these characteristics, are inexpensive, and have excellent productivity. .

また、色素増感太陽電池用電極に求められる性能としては、前記両特性を兼ね備えたものであり、すなわち、チタニア極側で励起された電子を効率よく伝達する良好な導電性や、直射日光下の高温下における耐久性などが挙げられる。また、一般に色素増感太陽電池の電解質には酸化還元対としてヨウ素が混合されているが、該ヨウ素は腐食性が非常に強いため、電極材料には高い耐食性が求められる。   In addition, the performance required for the dye-sensitized solar cell electrode has both of the above characteristics, that is, good conductivity for efficiently transmitting electrons excited on the titania electrode side, and direct sunlight. And durability at high temperatures. In general, iodine is mixed as an oxidation-reduction pair in an electrolyte of a dye-sensitized solar cell. However, since the iodine is very corrosive, electrode materials are required to have high corrosion resistance.

安価な金属基体を用いた色素増感太陽電池用電極材料は若干の事例を除きほとんど提案されていない。例えば非特許文献1に開示されているものは、耐熱性とフレキシブル性を兼備することを主眼としており、ステンレス基体上にケイ素酸化物薄膜を形成し、その上から導電性金属酸化物であるITOを被覆することで耐食性を持たせているものの、実用的な耐久性不足と材料自身の高電気抵抗により、得られる太陽電池特性が大幅に低下するという問題点がある。そのため、一般的には、ヨウ素により腐食しないITO、FTOなどの導電性金属酸化物により被覆したガラス基体電極が用いられている。又、特に対極側の電極として、酸化還元対の酸化体を還元する触媒作用を有し、かつ耐食性を有する白金を被覆した電極が用いられている。   Almost no electrode materials for dye-sensitized solar cells using inexpensive metal substrates have been proposed except in some cases. For example, what is disclosed in Non-Patent Document 1 is mainly intended to have both heat resistance and flexibility. A silicon oxide thin film is formed on a stainless steel substrate, and a conductive metal oxide is formed thereon. However, there is a problem that the obtained solar cell characteristics are greatly deteriorated due to insufficient practical durability and high electrical resistance of the material itself. Therefore, generally, a glass substrate electrode coated with a conductive metal oxide such as ITO or FTO that does not corrode with iodine is used. In particular, as a counter electrode, an electrode coated with platinum having a catalytic action for reducing the oxidized form of the redox pair and having corrosion resistance is used.

このような金属酸化物被覆電極には大型の設備が必要であるなど製造コストが高いという問題点があり、加えて電極の電導度も不足しているため、特に実用的な面積では大幅に性能が低下してしまうという問題点があった。また、白金被覆電極においても、材料コストが高いという問題点があり、又、水あるいは酸素存在下電解質溶媒として一般的に用いられている有機溶媒に溶解することが知られており、その使用は安定性の面からも問題があった。従って、依然としてより安価な製造コストとプロセスで作製でき、かつ良好な導電性と高い耐食性を有する色素増感太陽電池用電極材料が求められている。   Such metal oxide-coated electrodes have the problem of high manufacturing costs, such as the need for large-scale equipment, and the conductivity of the electrodes is also insufficient. There was a problem that would decrease. Also, the platinum-coated electrode has a problem that the material cost is high, and it is known that it dissolves in an organic solvent that is generally used as an electrolyte solvent in the presence of water or oxygen. There was also a problem in terms of stability. Accordingly, there is a need for a dye-sensitized solar cell electrode material that can still be produced with a lower manufacturing cost and process, and that has good conductivity and high corrosion resistance.

以上、有機電解合成用電極や色素増感太陽電池用電極に関する従来技術を説明したが、耐食導電被覆材料に関しては、本出願人による特許文献1が開示されている。該特許文献には金属基体に導電性中間層が形成された後、π共役系導電性高分子層が形成されてなる耐食導電被覆材料が開示されているが、導電性中間層中に含まれる絶縁性の樹脂成分により、材料自身の電気抵抗が高くなりやすい問題点を抱えていた。さらに、導電性中間層は汎用金属との密着性が不十分であり、長時間経過とともに徐々に導電性が失われるという問題もあり、さらなる特性の向上が求められている。   As mentioned above, although the prior art regarding the electrode for organic electrolytic synthesis and the electrode for dye-sensitized solar cells was demonstrated, the patent document 1 by the present applicant is disclosed regarding the corrosion-resistant conductive coating material. This patent document discloses a corrosion-resistant conductive coating material in which a conductive intermediate layer is formed on a metal substrate and then a π-conjugated conductive polymer layer is formed, but is included in the conductive intermediate layer. There was a problem that the electrical resistance of the material itself was likely to be high due to the insulating resin component. Furthermore, the conductive intermediate layer has insufficient adhesion to a general-purpose metal, and there is a problem that the conductivity is gradually lost over time, and further improvement in characteristics is required.

特開2006−167925号公報JP 2006-167925 A Man Gu Kang,外4名,「A 4.2% efficient flexible dye−sensitized TiO2 solar cells using stainless steel substrate」,Solar Energy Materials & Solar Cells,2006年,90,p.574−581Man Gu Kang, 4 others, “A 4.2% effective flexible dye-sensitized TiO2 solar cells using stain steel substage”, Solar Energy 90. 574-581

有機電解に使用しても有機物による消耗がなく、電極表面で効率良く目的物を生成でき、長期間安定的に高電導性を保持できる耐食導電被覆材料を提供することを目的とする。また、ヨウ素等に代表される腐食性物質、酸化性物質の存在雰囲気下での使用においても長時間耐えうる、安価で信頼性に優れた耐食導電被覆材料を提供することを目的とする。   An object of the present invention is to provide a corrosion-resistant conductive coating material that can be efficiently produced on the electrode surface even when it is used for organic electrolysis, can efficiently produce the object, and can maintain high conductivity stably for a long period of time. It is another object of the present invention to provide a corrosion-resistant conductive coating material that can withstand a long time even when used in the presence of a corrosive substance or an oxidative substance typified by iodine or the like and that is inexpensive and excellent in reliability.

すなわち、本発明は以下に示すものである。   That is, the present invention is as follows.

(1)基体上に、白金族金属層及び/またはその酸化物層からなる中間層が形成され、その上層にπ共役系導電性高分子層が形成されていることを特徴とする耐食導電被覆材料。 (1) A corrosion-resistant conductive coating characterized in that an intermediate layer comprising a platinum group metal layer and / or an oxide layer thereof is formed on a substrate, and a π-conjugated conductive polymer layer is formed thereon. material.

(2)前記基体が、チタン、ジルコニウム、ニオブ、タンタル、アルミニウム、鉄からなる群から選ばれる少なくとも一つの金属基体及び/又はそれらの合金であることを特徴とする前記(1)に記載の耐食導電被覆材料。 (2) The corrosion resistance according to (1), wherein the substrate is at least one metal substrate selected from the group consisting of titanium, zirconium, niobium, tantalum, aluminum, and iron and / or an alloy thereof. Conductive coating material.

(3)前記白金族金属層及び/またはその酸化物層からなる中間層が、イリジウム、ルテニウム、ロジウム、パラジウム、白金からなる群から選ばれる少なくとも一つの白金族金属及び/またはその酸化物を含むことを特徴とする前記(1)又は(2)に記載の耐食導電被覆材料。 (3) The intermediate layer composed of the platinum group metal layer and / or its oxide layer contains at least one platinum group metal selected from the group consisting of iridium, ruthenium, rhodium, palladium and platinum and / or its oxide. The corrosion-resistant conductive coating material as described in (1) or (2) above.

(4)前記白金族金属層及び/またはその酸化物層が、
含白金族金属有機化合物のアルコール溶液からなる塗布液を塗布、乾燥、焼成してなる白金族金属層及び/またはその酸化物層であることを特徴とする前記(1)〜(3)のいずれかにに記載の耐食導電被覆材料。
(4) The platinum group metal layer and / or the oxide layer thereof,
Any of the above (1) to (3), which is a platinum group metal layer and / or an oxide layer thereof formed by applying, drying and firing a coating solution comprising an alcohol solution of a platinum group metal organic compound. The corrosion-resistant conductive coating material according to crab.

(5)前記π共役系導電性高分子層が、ポリピロール又はその誘導体、ポリアニリン又はその誘導体、ポリチオフェン又はその誘導体からなる群から選ばれる少なくとも一つであることを特徴とする前記(1)〜(4)のいずれかに記載の耐食導電被覆材料。 (5) The (1) to (1) above, wherein the π-conjugated conductive polymer layer is at least one selected from the group consisting of polypyrrole or a derivative thereof, polyaniline or a derivative thereof, polythiophene or a derivative thereof. 4) The corrosion-resistant conductive coating material according to any one of 4).

(6)用途が電解用電極であることを特徴とする前記(1)〜(5)のいずれかに記載の耐食導電被覆材料。 (6) The corrosion-resistant conductive coating material according to any one of (1) to (5), wherein the application is an electrode for electrolysis.

(7)用途が色素増感型太陽電池用電極であることを特徴とする前記(1)〜(5)のいずれかに記載の耐食導電被覆材料。 (7) The corrosion-resistant conductive coating material according to any one of (1) to (5), wherein the use is an electrode for a dye-sensitized solar cell.

(8)用途が燃料電池用セパレータであることを特徴とする前記(1)〜(5)のいずれかに記載の耐食導電被覆材料。 (8) The corrosion-resistant conductive coating material according to any one of (1) to (5), wherein the application is a fuel cell separator.

(9)基体上に、含白金族金属有機化合物のアルコール溶液からなる塗布液を塗布、乾燥、焼成し、白金族金属層及び/またはその酸化物層を形成する工程、次いで、該層上においてπ共役系導電性高分子モノマーを重合し、π共役系導電性高分子層を前記白金族金属層及び/またはその酸化物層上に形成する工程を包含することを特徴とする耐食導電被覆材料の製造方法。 (9) A step of applying a coating solution comprising an alcohol solution of a platinum group metal organic compound on a substrate, drying and baking to form a platinum group metal layer and / or an oxide layer thereof, and then on the layer Corrosion-resistant conductive coating material comprising a step of polymerizing a π-conjugated conductive polymer monomer and forming a π-conjugated conductive polymer layer on the platinum group metal layer and / or its oxide layer Manufacturing method.

(10)前記焼成工程が、350℃以上の熱処理による焼成工程であることを特徴とする前記(9)に記載の耐食導電被覆材料の製造方法。 (10) The method for producing a corrosion-resistant conductive coating material according to (9), wherein the firing step is a firing step by heat treatment at 350 ° C. or higher.

本発明によれば、特定の金属基体とπ共役系導電性高分子層との間に、熱処理によって形成された白金族金属層及び/またはその酸化物層が形成されることにより、金属基体とπ共役系導電性高分子層との密着性が向上し、導通性と耐食性が著しく改善する。   According to the present invention, a platinum group metal layer formed by heat treatment and / or an oxide layer thereof is formed between a specific metal substrate and a π-conjugated conductive polymer layer. Adhesion with the π-conjugated conductive polymer layer is improved, and conductivity and corrosion resistance are remarkably improved.

すなわち、熱処理によって金属基体表層に形成される導電性金属酸化物層と白金族金属層及び/またはその酸化物層は、耐食性と導電性に優れ、π共役系導電性高分子膜と金属基材の導電経路を長期間にわたり良好に保持、維持することができる。この結果、該π共役系導電性高分子層が電極表層の触媒として有効に作用し、反応物と電極との接触効率が向上するため、特に有機電解などで高い電流効率を達成することが可能となる。   That is, the conductive metal oxide layer and the platinum group metal layer and / or the oxide layer formed on the surface of the metal substrate by heat treatment are excellent in corrosion resistance and conductivity, and the π-conjugated conductive polymer film and the metal substrate. Can be maintained and maintained well over a long period of time. As a result, the π-conjugated conductive polymer layer effectively acts as a catalyst for the electrode surface layer, and the contact efficiency between the reactant and the electrode is improved, so that high current efficiency can be achieved particularly in organic electrolysis. It becomes.

さらに、色素増感型太陽電池用電極においては、電解質に対して電極との接触効率が向上し、発電特性を低下させることなく、量産性に優れる金属基材を用いることが可能となる。   Furthermore, in the electrode for a dye-sensitized solar cell, the contact efficiency with an electrode improves with respect to electrolyte, and it becomes possible to use the metal base material which is excellent in mass productivity, without reducing a power generation characteristic.

本発明の耐食導電被覆材料において、使用する基体は金属基体であり、特に陽極として使用した場合に、酸化性の使用環境に対する耐食性の観点からチタン、ジルコニウム、ニオブ、タンタル、アルミ、鉄およびそれを主成分とする合金からなる群から選ばれる少なくとも一つの金属基体であることが好ましい。この基体とπ共役系導電性高分子層との密着性を強化するため、事前に該基体表面を、ブラストやエッチング処理等を行い、表面積拡大、表面粗化を行ったものを使用することが好ましい。   In the corrosion-resistant conductive coating material of the present invention, the substrate to be used is a metal substrate. In particular, when used as an anode, titanium, zirconium, niobium, tantalum, aluminum, iron and the like are used from the viewpoint of corrosion resistance to an oxidizing use environment. It is preferably at least one metal substrate selected from the group consisting of alloys as the main component. In order to reinforce the adhesion between the substrate and the π-conjugated conductive polymer layer, the surface of the substrate may be blasted or etched to increase the surface area and roughen the surface in advance. preferable.

ブラストやエッチング処理後、表面の選択エッチングを行い清浄化及び活性化を行う。この清浄化における酸洗浄として代表的なものは、硫酸、塩酸及びフッ酸などであり、これらの液に前記金属基体を浸漬し表面の一部を溶解することにより活性化を行うことができる。   After blasting or etching, the surface is selectively etched to clean and activate. Typical examples of the acid cleaning in this cleaning are sulfuric acid, hydrochloric acid, hydrofluoric acid, and the like, and activation can be performed by immersing the metal substrate in these solutions to dissolve a part of the surface.

次いで、活性化した金属基体表面に、中間層である白金族金属層及び/またはその酸化物層を形成する。該白金族金属層及び/またはその酸化物層は熱分解法やゾルゲル法などの方法で形成することが好ましい。   Next, a platinum group metal layer and / or an oxide layer thereof as an intermediate layer is formed on the surface of the activated metal substrate. The platinum group metal layer and / or its oxide layer is preferably formed by a method such as a thermal decomposition method or a sol-gel method.

前記白金族金属層及び/またはその酸化物層の成分としては、イリジウム、ルテニウム、ロジウム、パラジウム、白金からなるであることが好ましく、各金属の有機金属化合物や塩化物をアルコールなどの溶媒に溶解させて塗布液を調製する。   The component of the platinum group metal layer and / or its oxide layer is preferably made of iridium, ruthenium, rhodium, palladium, platinum, and an organometallic compound or chloride of each metal is dissolved in a solvent such as alcohol. To prepare a coating solution.

さらに、前記塗布液にチタン、ジルコニウム、タンタル、ニオブ、アルミニウム、錫の有機金属化合物または塩化物を添加し伝導性と耐食性を高めることが好ましい。添加する割合として、前記塗布液中に、タンタル、アルミニウム、ニオブでは20〜48モル%、チタン、ジルコニウム、錫では5〜20モル%となるように調製することが好ましい。   Furthermore, it is preferable to add conductivity, corrosion resistance by adding an organometallic compound or chloride of titanium, zirconium, tantalum, niobium, aluminum, tin to the coating solution. As a ratio to be added, it is preferable that the coating liquid is prepared so as to be 20 to 48 mol% for tantalum, aluminum and niobium, and 5 to 20 mol% for titanium, zirconium and tin.

中間層を形成するための塗布方法として特に限定されず従来公知のものを使用することができ、スプレー塗布法、ディップ塗布法、刷毛塗法、スピンコート法などを用いることができる。   A coating method for forming the intermediate layer is not particularly limited, and a conventionally known coating method can be used, and a spray coating method, a dip coating method, a brush coating method, a spin coating method, or the like can be used.

塗布液を塗布した金属基体を50〜100℃で10分程度乾燥させた後、350℃以上、より好ましくは380〜550℃の範囲で熱処理を行う熱分解法により白金族金属層及び/またはその酸化物層を形成する。   After the metal substrate coated with the coating liquid is dried at 50 to 100 ° C. for about 10 minutes, the platinum group metal layer and / or its layer is subjected to a thermal decomposition method in which heat treatment is performed at 350 ° C. or higher, more preferably 380 to 550 ° C. An oxide layer is formed.

上記の熱分解工程では、金属基体も高温で熱するために、金属基体の最表に極薄い絶縁性の金属酸化物も同時に生成する。しかし、該金属酸化物層中へ、熱処理によって形成される白金族金属層及び/またはその酸化物粒子が熱拡散によって浸透する。すなわち、該金属酸化物層中に白金族金属層及び/またはその酸化物粒子が分散した混合層が形成され、該白金族金属層及び/またはその酸化物粒子を介することで、絶縁性の金属酸化物層に導電経路が形成される。この結果、金属基体と白金族金属層及び/またはその酸化物との良好な導電性が保持できるようになる。   In the above pyrolysis process, since the metal substrate is also heated at a high temperature, an extremely thin insulating metal oxide is simultaneously formed on the outermost surface of the metal substrate. However, the platinum group metal layer and / or oxide particles thereof formed by heat treatment penetrate into the metal oxide layer by thermal diffusion. That is, a mixed layer in which a platinum group metal layer and / or oxide particles thereof are dispersed in the metal oxide layer is formed, and an insulating metal is formed through the platinum group metal layer and / or oxide particles thereof. Conductive paths are formed in the oxide layer. As a result, good conductivity between the metal substrate and the platinum group metal layer and / or its oxide can be maintained.

白金族金属層及び/またはその酸化物層、該金属酸化物層中に白金族金属層及び/またはその酸化物粒子が分散した混合層は、金属基体を保護する機能を持つ。しかし、塗布から熱分解の工程を複数回繰り返すと、該白金族金属層及び/またはその酸化物層の厚みが増し、基体金属表層の酸化物層も同時に成長するうえ、ピンホールやクラックが多く発生し耐食性導電被覆材料の導電性や耐食性に悪影響を及ぼしてしまう。逆に、薄すぎると基体金属への保護機能が低下してしまうため、導電性と保護機能が高く発現できるように厚みは5nm〜200nmの範囲が好ましいが、経済的観念から5nm〜100nmの範囲がより好ましい。   The platinum group metal layer and / or oxide layer thereof, and the mixed layer in which the platinum group metal layer and / or oxide particles thereof are dispersed in the metal oxide layer have a function of protecting the metal substrate. However, if the process from coating to thermal decomposition is repeated a plurality of times, the thickness of the platinum group metal layer and / or its oxide layer increases, the oxide layer of the base metal surface layer grows at the same time, and there are many pinholes and cracks. It generates and adversely affects the conductivity and corrosion resistance of the corrosion-resistant conductive coating material. On the other hand, if the thickness is too thin, the protective function for the base metal is lowered. Therefore, the thickness is preferably in the range of 5 nm to 200 nm so that the electrical conductivity and the protective function can be expressed highly, but from the economic viewpoint, the range of 5 nm to 100 nm. Is more preferable.

次いで、金属基体および白金族金属層及び/またはその酸化物層の耐食性と導電性をさらに向上させ、かつ耐食性導電被覆材料の表面を疎水性にして有機化合物との接触を効率的にするために、π共役系導電性高分子被膜を形成させる。π共役系導電性高分子の被膜形成方法には、化学重合法、電解重合法、溶液法など多くの方法があるが、目的とするπ共役系導電性高分子の種類やその形態によって適切な方法を選択できる。   Next, in order to further improve the corrosion resistance and conductivity of the metal substrate and the platinum group metal layer and / or its oxide layer, and to make the surface of the corrosion-resistant conductive coating material hydrophobic so that the contact with the organic compound is efficient. Then, a π-conjugated conductive polymer film is formed. There are many methods for forming a film of a π-conjugated conductive polymer, such as a chemical polymerization method, an electrolytic polymerization method, and a solution method, and an appropriate method depends on the type and form of the target π-conjugated conductive polymer. You can choose the method.

本発明に用いるπ共役系導電性高分子の種類としては、特に制限されないが、ポリピロール又はその誘導体、ポリアルキルチオフェン、ポリアルキレンジオキシチオフェン等のポリチオフェン又はその誘導体、ポリアニリン又はその誘導体が好適である。   The type of the π-conjugated conductive polymer used in the present invention is not particularly limited, but polypyrrole or a derivative thereof, polythiophene such as polyalkylthiophene or polyalkylenedioxythiophene or a derivative thereof, polyaniline or a derivative thereof is preferable. .

高い電気伝導性と腐食環境下から基体を保護するバリアー効果を大きく得るには、ポリピロールまたはその誘導体では電解重合法または溶液法が好適であり、ポリアルキルチオフェンまたはその誘導体では電解重合法または溶液法または化学重合法が好適であり、ポリアルキレンジオキシチオフェンまたはその誘導体では化学重合法が好適であり、ポリアニリンまたはその誘導体では電解重合法または溶液法が好適である。特に、電解重合法により形成されるπ共役系導電性高分子膜は、ドーピング率が高いために電気伝導度が高く、他の形成法に比べて配向性が高く緻密なπ共役系導電性高分子膜を容易に得ることができるので最も好適である。   In order to obtain a high barrier property for protecting the substrate from high electrical conductivity and corrosive environment, the electrolytic polymerization method or solution method is suitable for polypyrrole or its derivatives, and the electrolytic polymerization method or solution method for polyalkylthiophenes or its derivatives. Alternatively, a chemical polymerization method is preferable, a chemical polymerization method is preferable for polyalkylenedioxythiophene or a derivative thereof, and an electrolytic polymerization method or a solution method is preferable for polyaniline or a derivative thereof. In particular, a π-conjugated conductive polymer film formed by an electropolymerization method has high electrical conductivity due to a high doping rate, and has a high orientation and dense π-conjugated conductive property compared to other formation methods. Since a molecular film can be obtained easily, it is most preferable.

また、金属が腐食される環境下としては、硫酸水溶液などの酸性雰囲気だけではない。例えば、色素増感太陽電池では電解質であるヨウ素によって同様に酸化性雰囲気に、また燃料電池内の酸素極側では酸素ガスによって酸化性雰囲気となる。そのような環境下では、ある種のドーパントでは、π共役系導電性高分子の電気伝導性が失われる恐れが生じる。そのため、酸化性腐食環境下では、π共役系導電性高分子のドーパントであるアニオン化合物が耐酸化性に優れている必要がある。そのため、高い電気伝導度を発現させ、耐酸化性に優れ、かつ耐食性の高いπ共役系導電性高分子膜のドーパントとしては、スルホン酸基またはヘテロポリ酸基を有するアニオン化合物を用いるのが好適である。また化合物中のスルホン酸基またはヘテロポリ酸基の数は、特に限定されない。   In addition, the environment in which metals are corroded is not limited to an acidic atmosphere such as an aqueous sulfuric acid solution. For example, in a dye-sensitized solar cell, an oxidizing atmosphere is similarly formed by iodine as an electrolyte, and an oxidizing atmosphere is formed by oxygen gas on the oxygen electrode side in the fuel cell. Under such circumstances, certain dopants may cause the electrical conductivity of the π-conjugated conductive polymer to be lost. Therefore, in an oxidative corrosion environment, an anionic compound that is a dopant of a π-conjugated conductive polymer needs to be excellent in oxidation resistance. Therefore, it is preferable to use an anionic compound having a sulfonic acid group or a heteropolyacid group as a dopant for a π-conjugated conductive polymer film that exhibits high electrical conductivity, excellent oxidation resistance, and high corrosion resistance. is there. The number of sulfonic acid groups or heteropolyacid groups in the compound is not particularly limited.

アニオン化合物の分子量が240未満である場合、すなわち分子が小さいと容易に脱ドーピング作用が生じ易く、π共役系導電性高分子の電気伝導性が失われてしまう。この現象を防ぐには、分子が大きいアニオン化合物が適しており、その分子量は240以上であることが好ましい。1つ以上のスルホン酸基またはヘテロポリ酸基を有し、分子量が240以上のアニオン化合物としては、具体的に、アルキルナフタレンスルホン酸イオン、リグニンスルホン酸イオン、モリブド燐酸イオン、タングスト燐酸イオンなどを例示することができる。また、このようなアニオン化合物を含有するπ共役系導電性高分子被膜は緻密となり、腐食環境と基体とを遮断するバリアー効果が大きく好適である。   When the molecular weight of the anionic compound is less than 240, that is, when the molecule is small, the dedoping action is easily generated, and the electrical conductivity of the π-conjugated conductive polymer is lost. In order to prevent this phenomenon, an anionic compound having a large molecule is suitable, and its molecular weight is preferably 240 or more. Specific examples of anionic compounds having one or more sulfonic acid groups or heteropolyacid groups and having a molecular weight of 240 or more include alkylnaphthalene sulfonate ions, lignin sulfonate ions, molybdophosphate ions, and tungstophosphate ions. can do. In addition, a π-conjugated conductive polymer film containing such an anionic compound is dense and has a favorable barrier effect for blocking the corrosive environment from the substrate.

上述した、スルホン酸基またはヘテロポリ酸基を有し分子量が240以上のアニオン化合物をドーパントとするπ共役系導電性高分子膜の形成法としては、例えばポリピロール膜を成膜する場合には、単量体であるピロールと支持電解質であるアルキルナフタレンスルホン酸ナトリウムやモリブド燐酸テトラエチルアンモニウム等を水溶液中に溶解させ、白金族金属層及び/またはその酸化物層を形成した金属基体を陽極、ステンレス基体などを陰極として電解する電解重合法により、ポリピロール膜を得ることができる。ポリピロールやポリアニリンの成膜における電解重合法は、緻密で規則性の高い電気伝導度を有するπ共役系導電性高分子膜が得やすく、バリアー性に優れるために耐食性に優れる。   As a method for forming the π-conjugated conductive polymer film using an anionic compound having a sulfonic acid group or a heteropolyacid group and having a molecular weight of 240 or more as a dopant, for example, when forming a polypyrrole film, A metal substrate on which a platinum group metal layer and / or an oxide layer thereof is formed by dissolving pyrrole as a monomer and sodium alkylnaphthalenesulfonate as a supporting electrolyte, tetraethylammonium molybdophosphate in an aqueous solution, and an oxide layer thereof is an anode, a stainless steel substrate, etc. A polypyrrole film can be obtained by an electropolymerization method in which electrolysis is performed using as a cathode. The electrolytic polymerization method for forming a film of polypyrrole or polyaniline is easy to obtain a π-conjugated conductive polymer film having a dense and highly regular electric conductivity, and is excellent in corrosion resistance because of excellent barrier properties.

化学重合法においては、基体表面上で目的とするπ共役系導電性高分子の単量体と酸化剤溶液を接触させることで、耐食性の高いπ共役系導電性高分子膜を形成することができる。例えばポリ−3,4−エチレンジオキシチオフェン被膜を形成する場合には、白金族金属層及び/またはその酸化物層を形成した金属基体上で、単量体である3,4−エチレンジオキシチオフェンと酸化剤であるナフトキノンスルホン酸鉄(III)を含むブタノール−水混合溶液を接触させることによって、ポリ−3,4−エチレンジオキシチオフェン被膜を得ることができる。ポリチオフェンの成膜における化学重合法は、微細な粒子が緻密に充填されたπ共役系導電性高分子膜が得やすく、バリアー性に優れるために耐食性に優れる。   In the chemical polymerization method, a π-conjugated conductive polymer film having high corrosion resistance can be formed by contacting a target π-conjugated conductive polymer monomer with an oxidant solution on the substrate surface. it can. For example, in the case of forming a poly-3,4-ethylenedioxythiophene film, the monomer 3,4-ethylenedioxy is formed on the metal substrate on which the platinum group metal layer and / or its oxide layer is formed. A poly-3,4-ethylenedioxythiophene coating can be obtained by bringing a butanol-water mixed solution containing thiophene and iron (III) naphthoquinonesulfonate as an oxidizing agent into contact with each other. The chemical polymerization method for forming a polythiophene film is easy to obtain a π-conjugated conductive polymer film in which fine particles are densely packed, and is excellent in corrosion resistance because of excellent barrier properties.

溶液法においては、π共役系導電性高分子の単量体、酸化剤溶液、ドーパント溶液を接触させて重合させ、得られた重合物を乾燥後、有機溶媒に溶解させ塗布液とする。該塗布液を、白金族金属層及び/またはその酸化物層を形成した金属基体上に塗布、乾燥すれば目的の耐食性の高いπ共役系導電性高分子膜を形成することができる。例えば、3−ヘキシルチオフェンの被膜を形成する場合には、3−ヘキシルチオフェン、酸化剤であるペルオキソ二硫酸アンモニウム、ドーパントであるフェロセンスルホン酸ナトリウムをエタノール−水混合溶液中で溶解、攪拌しながら重合反応を進め、得られたポリ−3−ヘキシルチオフェンチオフェンを乾燥後にトルエンに溶解させることで塗布液を得ることができる。該塗布液を、導電性微粒子をエッチング孔内へ埋め込んだ金属基体上に塗布後乾燥させることでポリアルキルチオフェン膜を得ることができる。   In the solution method, a monomer of a π-conjugated conductive polymer, an oxidant solution, and a dopant solution are brought into contact with each other for polymerization, and the obtained polymer is dried and then dissolved in an organic solvent to obtain a coating solution. By applying and drying the coating solution on a metal substrate on which a platinum group metal layer and / or its oxide layer is formed, a desired π-conjugated conductive polymer film having high corrosion resistance can be formed. For example, in the case of forming a film of 3-hexylthiophene, 3-hexylthiophene, ammonium peroxodisulfate as an oxidizing agent, and sodium ferrocenesulfonate as a dopant are dissolved in an ethanol-water mixed solution and polymerized while stirring. The coating liquid can be obtained by proceeding and dissolving the obtained poly-3-hexylthiophenethiophene in toluene after drying. A polyalkylthiophene film can be obtained by applying the coating liquid onto a metal substrate in which conductive fine particles are embedded in etching holes and then drying the coating.

溶液法によるπ導電性高分子膜の形成法としては、従来周知の方法が利用でき、特に限定はされない。例えば、スクリーン印刷法、ディップコート法、ロールコート法、噴霧法、カーテンフローコート法、バーコート法、ドクターブレード法等、刷毛塗布法などがあり、簡便で生産性が高いディップコート法、刷毛塗布法が好ましい。   As a method of forming the π conductive polymer film by the solution method, a conventionally known method can be used and is not particularly limited. For example, screen printing method, dip coating method, roll coating method, spraying method, curtain flow coating method, bar coating method, doctor blade method, brush coating method, etc., there are simple and highly productive dip coating method, brush coating The method is preferred.

上述のように、導電性高分子膜の形成は酸化反応により進行する。そのため、該導電性高分子形成時には金属基体表面は酸化雰囲気に晒されるために、なにも処理しない金属基体表層には絶縁性の基材由来の金属酸化物層が形成され、導電材料として働かなくなる。しかし、本発明では、焼成工程で形成された白金族金属層及び/またはその酸化物層、導電経路が形成された基体由来の酸化物層により、金属基体から耐食性導電被覆材料表面へ電子を伝える経路が形成される。そのため、導電性高分子膜形成時に導電性の金属酸化物層が形成され、導電材料として働かなくなることはなく、金属の持つ良好な電気特性を保持できる。   As described above, the formation of the conductive polymer film proceeds by an oxidation reaction. For this reason, since the surface of the metal substrate is exposed to an oxidizing atmosphere when the conductive polymer is formed, a metal oxide layer derived from an insulating base material is formed on the surface of the metal substrate that is not treated at all, and acts as a conductive material. Disappear. However, in the present invention, electrons are transferred from the metal substrate to the surface of the corrosion-resistant conductive coating material by the platinum group metal layer and / or its oxide layer formed in the firing process and the oxide layer derived from the substrate on which the conductive path is formed. A path is formed. Therefore, a conductive metal oxide layer is formed at the time of forming the conductive polymer film, so that it does not work as a conductive material, and it is possible to maintain good electrical characteristics of the metal.

以上のようにπ共役系導電性高分子膜を白金族金属層及び/またはその酸化物層上に被覆することで、導電性と耐食性を飛躍的に向上することができる。該白金族金属層及び/またはその酸化物層は非常に薄く、また島状に点在しているため導電性に劣る。しかしながら、π共役系導電性高分子膜で被覆されることにより材料全面が導電性を帯びることで導電性が向上し、かつ熱処理工程で生じたピンホールやクラックを該π共役系導電性高分子膜が覆うことで耐食性も向上するためである。   As described above, by covering the platinum group metal layer and / or its oxide layer with the π-conjugated conductive polymer film, the conductivity and corrosion resistance can be greatly improved. The platinum group metal layer and / or the oxide layer thereof are very thin and are scattered in islands, resulting in poor conductivity. However, by covering with the π-conjugated system conductive polymer film, the entire surface of the material becomes conductive, so that the conductivity is improved, and pinholes and cracks generated in the heat treatment process are removed from the π-conjugated system conductive polymer. This is because the corrosion resistance is also improved by covering the film.

また、あらかじめ基体にプレス加工等の曲げ加工、切削加工、エッチング加工等の機械加工後に、π共役系導電性高分子の形成工程を行うことによって、複雑な形状の基体形成時にπ共役系導電性高分子膜を損傷することなく、該π共役系導電性高分子膜の効果を確実に得ることができる。例えば、π共役系導電性高分子膜の形成に関し、上記のように加工後の基体を電極として電解重合を行えば、加工によって基体表面が凹凸状態にあっても、均一にπ共役系導電性高分子膜を形成することが可能となり、安定した性能を得ることができる。   In addition, by forming the π-conjugated system conductive polymer after the bending process such as press processing, cutting, etching, etc. on the substrate in advance, the π-conjugated system conductivity is formed when forming a complex-shaped substrate. The effect of the π-conjugated conductive polymer film can be reliably obtained without damaging the polymer film. For example, regarding the formation of a π-conjugated conductive polymer film, if electrolytic polymerization is performed using the processed substrate as an electrode as described above, even if the substrate surface is uneven due to processing, the π-conjugated conductive property is uniformly obtained. A polymer film can be formed, and stable performance can be obtained.

形成するπ共役系導電性高分子層の厚みは、0.001μm〜100μmが適当であるが、経済的観点から、0.01μm〜50μmがより好ましく、0.1μm〜35μmが最も好ましい。   The thickness of the π-conjugated conductive polymer layer to be formed is suitably 0.001 μm to 100 μm, but is preferably 0.01 μm to 50 μm, and most preferably 0.1 μm to 35 μm from the economical viewpoint.

以下、本発明を実施例に基づいて詳細に説明するが、本発明は実施例によりなんら限定されるものではない。なお、本実施例中wt%とあるのは質量%を指す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by the Example. In this example, wt% refers to mass%.

(実施例1)
金属基体としてTi基材(JIS2種)を用いた。Ti基体は大きさが20×30mm、厚さが0.5mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行った。次に、有機溶媒による脱脂処理後、3N塩酸中に30秒間浸漬させて酸化被膜除去を行い、Ti基体表面処理工程を終了した。
Example 1
A Ti substrate (JIS type 2) was used as the metal substrate. The Ti substrate is a rolled material having a size of 20 × 30 mm and a thickness of 0.5 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot. Next, after degreasing treatment with an organic solvent, the oxide substrate was removed by immersion in 3N hydrochloric acid for 30 seconds to complete the Ti substrate surface treatment step.

三塩化イリジウム三水和物3.00g、チタニウムテトラ−n−ブトキシド0.51g、6N塩酸2ml、ブタノール45ml、アセチルアセトン3mlを混ぜて、窒素雰囲気下で3時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したTi基体をデッィプ法により塗布後、420℃で1時間の熱処理を行うことで、厚み90nmのIrO−TiO層および導電経路が形成されたTiO層を形成した。 The intermediate layer coating solution was prepared by mixing 3.00 g of iridium trichloride trihydrate, 0.51 g of titanium tetra-n-butoxide, 2 ml of 6N hydrochloric acid, 45 ml of butanol and 3 ml of acetylacetone and stirring for 3 hours in a nitrogen atmosphere. It was adjusted. After applying the Ti substrate after the surface treatment step by the dip method, a heat treatment is performed at 420 ° C. for 1 hour, thereby forming an IrO 2 —TiO 2 layer having a thickness of 90 nm and a TiO 2 layer in which a conductive path is formed.

次に、該基体上に、電解重合法によってスルホン基を有する化合物をドーパントとして含むπ共役系導電性高分子膜を形成する。溶媒を純水とし、単量体としてピロール0.5mol/L、支持電解質として2,7−ナフタレンジスルホン酸ナトリウム0.30mol/Lを含む電解液を用いて、中間層を形成したTi基体を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を1mA/cmとして電解重合を行い、25μm厚みのポリピロール膜を形成し、耐食導電被覆材料を合計10枚作製した。 Next, a π-conjugated conductive polymer film containing a compound having a sulfone group as a dopant is formed on the substrate by electrolytic polymerization. The Ti substrate on which the intermediate layer was formed was made into an anode using an electrolytic solution containing pure water as a solvent, pyrrole 0.5 mol / L as a monomer, and sodium 2,7-naphthalenedisulfonate 0.30 mol / L as a supporting electrolyte. SUS304 was used as the cathode, the electropolymerization time was 1 hour, the current density was 1 mA / cm 2 , electropolymerization was performed to form a 25 μm-thick polypyrrole film, and a total of 10 corrosion-resistant conductive coating materials were produced.

(実施例2)
金属基体としてTi基材(JIS2種)を用いた。Ti基体は大きさが20×30mm、厚さが0.5mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行った。次に、有機溶媒による脱脂処理後、3N塩酸中に30秒間浸漬させて酸化被膜除去を行い、Ti基体表面処理工程を終了した。
(Example 2)
A Ti substrate (JIS type 2) was used as the metal substrate. The Ti substrate is a rolled material having a size of 20 × 30 mm and a thickness of 0.5 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot. Next, after degreasing treatment with an organic solvent, the oxide substrate was removed by immersion in 3N hydrochloric acid for 30 seconds to complete the Ti substrate surface treatment step.

三塩化イリジウム三水和物2.82g、五塩化タンタル1.43g、12N塩酸10ml、ブタノール40mlを混ぜて、窒素雰囲気下で3時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したTi基体をデッィプ法により塗布後、420℃で1時間の熱処理を行うことで、厚み50nmのIrO−Ta層および導電経路が形成されたTiO層を形成した。 An intermediate layer coating solution was prepared by mixing 2.82 g of iridium trichloride trihydrate, 1.43 g of tantalum pentachloride, 10 ml of 12N hydrochloric acid, and 40 ml of butanol and stirring for 3 hours in a nitrogen atmosphere. After applying the surface treatment process Ti substrate by dipping method, heat treatment is performed at 420 ° C. for 1 hour to form a 50 nm thick IrO 2 —Ta 2 O 3 layer and a TiO 2 layer in which a conductive path is formed. did.

次に、電解重合法によってヘテロポリ酸基を有する化合物をドーパントとして含むπ共役系導電性高分子膜を形成する。溶媒を純水とし、単量体としてピロール0.5mol/L、支持電解質としてケイタングステン酸0.30mol/Lを含む電解液を用いて、中間層を形成したTi基体を陽極、SUS304を陰極、電解重合時間は2時間、電流密度を0.25mA/cmとして電解重合を行い、18μm厚みのポリピロール膜を形成し、耐食導電被覆材料を合計10枚作製した。 Next, a π-conjugated conductive polymer film containing a compound having a heteropolyacid group as a dopant is formed by electrolytic polymerization. Using a pure water as a solvent, an electrolyte containing 0.5 mol / L of pyrrole as a monomer and 0.30 mol / L of silicotungstic acid as a supporting electrolyte, a Ti substrate on which an intermediate layer is formed is an anode, SUS304 is a cathode, The electropolymerization time was 2 hours, the current density was 0.25 mA / cm 2 , electropolymerization was performed to form a 18 μm-thick polypyrrole film, and a total of 10 corrosion-resistant conductive coating materials were produced.

(実施例3)
金属基体としてNb基体を用いた。Nb基体は大きさが20×30mm、厚さが0.1mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行った。次に、有機溶媒による脱脂処理後、1Nフッ酸中に1分間浸漬させて酸化被膜除去を行い、Nb基体表面処理工程を終了した。
(Example 3)
An Nb substrate was used as the metal substrate. The Nb substrate is a rolled material having a size of 20 × 30 mm and a thickness of 0.1 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot. Next, after degreasing treatment with an organic solvent, the oxide film was removed by immersing in 1N hydrofluoric acid for 1 minute to complete the Nb substrate surface treatment step.

三塩化ルテニウムn水和物2.03g、チタニウムテトラ−n−ブトキシド0.34g、6N塩酸2ml、ブタノール45ml、アセチルアセトン3mlを混ぜて、窒素雰囲気下で8時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したNb基体をデッィプ法により塗布後、490℃で1時間の熱処理を行うことで、厚み80nmのRuO−TiO層および導電経路が形成されたNbO層を形成した。 Ruthenium trichloride n-hydrate (2.03 g), titanium tetra-n-butoxide (0.34 g), 6N hydrochloric acid (2 ml), butanol (45 ml), and acetylacetone (3 ml) were mixed and stirred for 8 hours in a nitrogen atmosphere to obtain a coating solution for an intermediate layer. It was adjusted. After applying the Nb substrate after the surface treatment step by a dip method, heat treatment was performed at 490 ° C. for 1 hour, thereby forming a RuO 2 —TiO 2 layer having a thickness of 80 nm and an NbO 2 layer in which a conductive path was formed.

次に、電解重合法によってスルホン酸基を有する化合物をドーパントとして含む耐食性の高いπ共役系導電性高分子膜を形成する。溶媒を純水とし、単量体としてアニリン0.1mol/L、支持電解質としてポリビニルスルホン酸0.15mol/Lを含む電解液を用いて、Auを陰極、銀/塩化銀(飽和KCl)を参照電極、電極電解重合時間は1時間、電解電圧を0.5V(vs銀/塩化銀参照電極)として定電位電解重合を10分間行い、31μm厚みのポリアニリン膜を形成し、耐食導電被覆材料を合計10枚作製した。   Next, a π-conjugated conductive polymer film having high corrosion resistance and containing a compound having a sulfonic acid group as a dopant is formed by electrolytic polymerization. Use pure water as solvent, 0.1 mol / L aniline as monomer, 0.15 mol / L polyvinyl sulfonic acid as supporting electrolyte, Au as cathode, see silver / silver chloride (saturated KCl) Electrode, electrode electropolymerization time is 1 hour, electrolysis voltage is 0.5 V (vs silver / silver chloride reference electrode), constant potential electropolymerization is performed for 10 minutes, 31 μm-thick polyaniline film is formed, and the corrosion-resistant conductive coating material is totaled Ten sheets were produced.

(参考例1)
実施例3において、π共役系導電性高分子膜を形成する工程において、支持電解質としてポリビニルカルボン酸を用いた以外は、同様に実施してポリアニリン膜を形成し、被覆材料を合計10枚作製した。
(Reference Example 1)
In Example 3, in the step of forming the π-conjugated conductive polymer film, a polyaniline film was formed in the same manner except that polyvinyl carboxylic acid was used as the supporting electrolyte, and a total of 10 coating materials were produced. .

(実施例4)
金属基体としてFe系基体であるSS330基体を用いた。SS330基体は大きさが20×30mm、厚さが0.1mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行った。次に、有機溶媒による脱脂処理後、1Nフッ酸中に1分間浸漬させて酸化被膜除去を行い、SS330基体表面処理工程を終了した。
Example 4
An SS330 substrate, which is an Fe-based substrate, was used as the metal substrate. The SS330 substrate is a rolled material having a size of 20 × 30 mm and a thickness of 0.1 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot. Next, after degreasing treatment with an organic solvent, the oxide film was removed by immersion in 1N hydrofluoric acid for 1 minute to complete the SS330 substrate surface treatment step.

三塩化ルテニウムn水和物2.03g、アルミニウムトリ−n−ブトキシド1.48g、6N塩酸2ml、ブタノール45ml、アセチルアセトン3mlを混ぜて、窒素雰囲気下で8時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したFe基体を刷毛塗法により塗布後、1%酸素を含有する窒素雰囲気において450℃で1時間の熱処理を行うことで、厚み80nmのRuO−Al層および導電経路が形成されたFe層を形成した。 Ruthenium trichloride n-hydrate (2.03 g), aluminum tri-n-butoxide (1.48 g), 6N hydrochloric acid (2 ml), butanol (45 ml), and acetylacetone (3 ml) were mixed and stirred for 8 hours in a nitrogen atmosphere to obtain an intermediate layer coating solution. It was adjusted. After applying the Fe substrate after the surface treatment process by a brush coating method, a heat treatment is performed at 450 ° C. for 1 hour in a nitrogen atmosphere containing 1% oxygen, whereby a RuO 2 —Al 2 O 3 layer having a thickness of 80 nm and a conductive layer are formed. A Fe 2 O 3 layer in which a path was formed was formed.

アニリン9.3gに水150gと濃塩酸10.1gを加え、温度0〜10℃に保ちながら、過硫酸アンモニウム22.8gを水40gに溶解した溶液を2時間で滴下した後、3時間攪拌した。その後、濃アンモニア水41gを1時間で滴下し、さらに5時間攪拌した後、ろ別し、水洗及びメタ ノール洗浄を繰り返した後、真空乾燥して銅色のポリアニリン8.3gを得た。得られた銅色のポリアニリンをメタノール200mlに分散し、ヒドラジン一水和物20gを加え、室温で15時間攪拌した後、ろ別し、水及びメタノールで洗浄し、真空乾燥して灰青色の可溶性ポリアニリン7.5gを得た。さらに、インジゴトリスルホン酸3.5wt%及びポリアニリン2.0wt%となるようにN−メチル−2−ピロリドンに溶解し、ドーパントを含むポリアニリン溶液を得た。   150 g of water and 10.1 g of concentrated hydrochloric acid were added to 9.3 g of aniline, and a solution obtained by dissolving 22.8 g of ammonium persulfate in 40 g of water was added dropwise over 2 hours while maintaining the temperature at 0 to 10 ° C., followed by stirring for 3 hours. Thereafter, 41 g of concentrated aqueous ammonia was added dropwise over 1 hour, and the mixture was further stirred for 5 hours. After filtration, water washing and methanol washing were repeated, and vacuum drying was performed to obtain 8.3 g of copper-colored polyaniline. The obtained copper-colored polyaniline was dispersed in 200 ml of methanol, added with 20 g of hydrazine monohydrate, stirred at room temperature for 15 hours, filtered, washed with water and methanol, and vacuum-dried to obtain a grayish blue soluble 7.5 g of polyaniline was obtained. Furthermore, it melt | dissolved in N-methyl-2-pyrrolidone so that it might become 3.5 wt% of indigo trisulfonic acid and 2.0 wt% of polyaniline, and the polyaniline solution containing a dopant was obtained.

次に、溶液法によって耐食性の高いπ共役系導電性高分子膜を形成する。先に調製したポリアニリン溶液中に、中間層を形成したSS330基体を浸漬し、温度150℃で10分間乾燥する工程を2回繰り返すことで、24μm厚みのポリアニリン膜を形成し、耐食導電被覆材料を合計10枚作製した。   Next, a π-conjugated conductive polymer film having high corrosion resistance is formed by a solution method. By immersing the SS330 substrate on which the intermediate layer is formed in the previously prepared polyaniline solution and drying it at a temperature of 150 ° C. for 10 minutes twice, a polyaniline film having a thickness of 24 μm is formed, and a corrosion-resistant conductive coating material is formed. A total of 10 sheets were produced.

(参考例2)
金属基体としてNb基体を用いた。Nb基体は大きさが20×30mm、厚さが1mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行った。次に、有機溶媒による脱脂処理後、1Nフッ酸中に1分間浸漬させて酸化被膜除去を行い、Nb基体表面処理工程を終了した。
(Reference Example 2)
An Nb substrate was used as the metal substrate. The Nb substrate is a rolled material having a size of 20 × 30 mm and a thickness of 1 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot. Next, after degreasing treatment with an organic solvent, the oxide film was removed by immersing in 1N hydrofluoric acid for 1 minute to complete the Nb substrate surface treatment step.

三塩化ルテニウムn水和物2.03g、アルミニウムトリ‐n‐ブトキシド1.48g、6N塩酸2ml、ブタノール45ml、アセチルアセトン3mlを混ぜて、窒素雰囲気下で8時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したNb基体を刷毛塗法により塗布後、450℃で1時間の熱処理を行うことで、厚み80nmのRuO−Al層および導電経路が形成されたNbO層を形成した。 Mixing ruthenium trichloride nhydrate 2.03g, aluminum tri-n-butoxide 1.48g, 6N hydrochloric acid 2ml, butanol 45ml, acetylacetone 3ml, and stirring for 8 hours under nitrogen atmosphere, the coating solution for the intermediate layer It was adjusted. After the Nb substrate having been subjected to the surface treatment process is applied by a brush coating method, a heat treatment is performed at 450 ° C. for 1 hour, whereby a RuO 2 —Al 2 O 3 layer having a thickness of 80 nm and an NbO 2 layer in which a conductive path is formed are obtained. Formed.

次に、化学重合法によってπ共役系導電性高分子であるポリアニリン膜を形成した。アニリン9.3gに水150gと濃塩酸10.1gを加え、温度0〜10℃に保ちながら、過硫酸アンモニウム22.8gを水40gに溶解した溶液を2時間で滴下した後、3時間攪拌した。その後、濃アンモニア水41gを1時間で滴下し、さらに5時間攪拌した後、ろ別し、水洗及びメタノール洗浄を繰り返した後、真空乾燥して銅色のポリアニリン8.3gを得た。得られた銅色のポリアニリンをメタノール200mlに分散し、ヒドラジン一水和物20gを加え、室温で15時間攪拌した後、ろ別し、水及びメタノールで洗浄し、真空乾燥して灰青色の可溶性ポリアニリン7.5gを得た。さらに、インジゴトリスルホン酸3.5wt%及びポリアニリン2.0wt%、ドデシルベンゼンスルホン酸1.0wt%となるようにトルエン溶媒に加え、ドーパントを含むポリアニリン分散液を得た。   Next, a polyaniline film, which is a π-conjugated conductive polymer, was formed by chemical polymerization. 150 g of water and 10.1 g of concentrated hydrochloric acid were added to 9.3 g of aniline, and a solution obtained by dissolving 22.8 g of ammonium persulfate in 40 g of water was added dropwise over 2 hours while maintaining the temperature at 0 to 10 ° C., followed by stirring for 3 hours. Thereafter, 41 g of concentrated aqueous ammonia was added dropwise over 1 hour, and the mixture was further stirred for 5 hours, followed by filtration, repeated washing with water and methanol, and then vacuum drying to obtain 8.3 g of copper-colored polyaniline. The obtained copper-colored polyaniline was dispersed in 200 ml of methanol, added with 20 g of hydrazine monohydrate, stirred at room temperature for 15 hours, filtered, washed with water and methanol, and vacuum-dried to obtain a grayish blue soluble 7.5 g of polyaniline was obtained. Furthermore, in addition to toluene solvent so that it might become 3.5 wt% of indigo trisulfonic acid, 2.0 wt% of polyaniline, and 1.0 wt% of dodecylbenzenesulfonic acid, the polyaniline dispersion liquid containing a dopant was obtained.

前述で調整されたポリアニリン分散液中に、中間層を形成したNb基体を浸漬し、温度150℃で5分間乾燥する工程を10回繰り返すことで、ポリアニリン膜を形成し、被覆材料を合計10枚作製した。   The polyaniline film is formed by immersing the Nb substrate on which the intermediate layer has been formed in the polyaniline dispersion prepared as described above and drying it at a temperature of 150 ° C. for 5 minutes to form a polyaniline film, and a total of 10 coating materials. Produced.

(実施例5)
金属基体としてZr基材を用いた。Zr基体は大きさが20×30mm、厚さが0.1mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行った。次に、有機溶媒による脱脂処理後、6N塩酸中に1分間浸漬させて酸化被膜除去を行い、Zr基体表面処理工程を終了した。
(Example 5)
A Zr substrate was used as the metal substrate. The Zr substrate is a rolled material having a size of 20 × 30 mm and a thickness of 0.1 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot. Next, after degreasing treatment with an organic solvent, the oxide film was removed by immersion in 6N hydrochloric acid for 1 minute, and the Zr substrate surface treatment step was completed.

塩化白金酸六水和物4.40g、四塩化すず五水和物0.53g、6N塩酸2ml、ブタノール40ml、シクロヘキサノール10mlを混ぜて、窒素雰囲気下で8時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したZr基体を刷毛塗法により塗布後、500℃で1時間の熱処理を行うことで、厚み75nmのPt−SnO層および導電経路が形成されたZrO層を形成した。 Chloroplatinic acid hexahydrate 4.40g, tin tetrachloride pentahydrate 0.53g, 6N hydrochloric acid 2ml, butanol 40ml, cyclohexanol 10ml were mixed and applied for intermediate layer by stirring for 8 hours under nitrogen atmosphere The liquid was adjusted. The Zr substrate after the surface treatment process was applied by a brush coating method and then heat-treated at 500 ° C. for 1 hour, thereby forming a 75-nm-thick Pt—SnO 2 layer and a ZrO 2 layer in which a conductive path was formed.

続いて、pHが7に調整されたエタノール・水混合溶媒中に、3−ヘキシルチオフェン0.4mol/L、酸化剤およびドーパント剤として作用する2,6−アントラキノンジスルホン酸鉄(III)0.20mol/Lを氷浴温度下で6時間攪拌した。その溶液をろ過後、得られた粉末に対して減圧乾燥を行って完全に溶媒を除去し、その粉末をトルエン溶液に溶解させてポリ−3−ヘキシルチオフェン溶液を得た。   Subsequently, in ethanol / water mixed solvent whose pH was adjusted to 7, 3-hexylthiophene 0.4 mol / L, 0.20 mol of iron (III) 2,6-anthraquinone disulfonate acting as an oxidizing agent and a dopant agent / L was stirred under ice bath temperature for 6 hours. After filtering the solution, the obtained powder was dried under reduced pressure to completely remove the solvent, and the powder was dissolved in a toluene solution to obtain a poly-3-hexylthiophene solution.

次に、溶液法によって耐食性の高いπ共役系導電性高分子膜を形成する。先に調整した塗布液を噴霧法によって均一に中間層を形成したZr基体上に塗布後、70℃の乾燥機中でトルエンを除去する工程を繰り返し、15μm厚みのポリ−3−ヘキシルチオフェン膜を形成し、耐食導電被覆材料を10枚作製した。   Next, a π-conjugated conductive polymer film having high corrosion resistance is formed by a solution method. After applying the previously prepared coating solution onto the Zr substrate on which the intermediate layer has been uniformly formed by spraying, the process of removing toluene in a dryer at 70 ° C. is repeated to form a poly-3-hexylthiophene film having a thickness of 15 μm. Then, 10 sheets of corrosion-resistant conductive coating material were produced.

(参考例3)
実施例5において、中間層の熱処理温度を200℃にした以外は、同様に実施してポリチオフェン膜を形成し、被覆材料を合計10枚作製した。
(Reference Example 3)
In Example 5, a polythiophene film was formed in the same manner except that the heat treatment temperature of the intermediate layer was 200 ° C., and a total of 10 coating materials were produced.

(実施例6)
金属基体としてTa基体を用いた。Ta基体は大きさが20×30mm、厚さが0.1mmの圧延材である。該基体に、ジルコンショットを用いたショットブラスト加工により、梨地仕上げを行った。次に、有機溶媒による脱脂処理後、1Nフッ酸中に1分間浸漬させて酸化被膜除去を行い、Ta基体表面処理工程を終了した。
(Example 6)
A Ta substrate was used as the metal substrate. The Ta substrate is a rolled material having a size of 20 × 30 mm and a thickness of 0.1 mm. The substrate was finished with a satin finish by shot blasting using a zircon shot. Next, after degreasing treatment with an organic solvent, the oxide film was removed by immersion in 1N hydrofluoric acid for 1 minute, and the Ta substrate surface treatment step was completed.

酢酸ロジウム1.99g、ペンタ−n−ブトキシニオブ0.46g、6N酢酸2ml、ブタノール40ml、アセチルアセトン8mlを混ぜて、窒素雰囲気下で24時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したTa基体をスピンコート法により塗布後、500℃で1時間の熱処理を行うことで、厚み47nmのRh−NbO層および導電経路が形成されたTaO層を形成した。 The intermediate layer coating solution was prepared by mixing 1.99 g of rhodium acetate, 0.46 g of penta-n-butoxyniobium, 2 ml of 6N acetic acid, 40 ml of butanol and 8 ml of acetylacetone and stirring for 24 hours in a nitrogen atmosphere. After applying the Ta substrate having been subjected to the surface treatment step by spin coating, heat treatment was performed at 500 ° C. for 1 hour, thereby forming a 47 nm thick Rh—NbO 2 layer and a TaO 2 layer in which a conductive path was formed.

次に、耐食性の高いπ共役系導電性高分子膜を化学重合法により形成する。中間層を形成したTa基体表面上に、単量体であるポリ−3,4−エチレンジオキシチオフェンとドーパント剤であるポリスチレンスルホン酸テトラエチルアンモニウム(平均分子量100,000)を含むエタノール−水混合溶液を塗布後、酸化剤溶液である塩化鉄(III)水溶液を噴霧し、50℃で10分間乾燥する工程を繰り返し、厚みが21μmであるポリ−3,4−エチレンジオキシチオフェン膜を形成し、耐食導電被覆材料を10枚作製した。   Next, a π-conjugated conductive polymer film having high corrosion resistance is formed by a chemical polymerization method. An ethanol-water mixed solution containing poly-3,4-ethylenedioxythiophene as a monomer and tetraethylammonium polystyrene sulfonate (average molecular weight 100,000) as a dopant agent on the surface of a Ta substrate on which an intermediate layer is formed After coating, an iron (III) chloride aqueous solution that is an oxidizing agent solution is sprayed, and the process of drying at 50 ° C. for 10 minutes is repeated to form a poly-3,4-ethylenedioxythiophene film having a thickness of 21 μm, Ten sheets of corrosion-resistant conductive coating material were produced.

(参考例4)
実施例6において、中間層の形成温度を250℃、π共役系導電性高分子膜を形成する工程において、ドーパント剤としてスチレンスルホン酸テトラエチルアンモニウムを用いた以外は、同様に実施してポリ−3,4−エチレンジオキシチオフェン膜を形成し、被覆材料を合計10枚作製した。
(Reference Example 4)
In Example 6, the formation temperature of the intermediate layer was 250 ° C., and the process of forming the π-conjugated conductive polymer film was carried out in the same manner except that tetraethylammonium styrenesulfonate was used as the dopant agent. , 4-ethylenedioxythiophene film was formed, and a total of 10 coating materials were produced.

(実施例7)
金属基体としてAL7050基体を用いた。AL7050基体は大きさが20×30mm、厚さが1.0mmの圧延材である。該基体を、#120番の耐水研磨紙によって梨地仕上げを行った。次に、有機溶媒による脱脂処理後、0.1N塩酸中に1分間浸漬させて酸化被膜除去を行い、AL7050基体表面処理工程を終了した。
(Example 7)
An AL7050 substrate was used as the metal substrate. The AL7050 substrate is a rolled material having a size of 20 × 30 mm and a thickness of 1.0 mm. The substrate was satin-finished with # 120 water-resistant abrasive paper. Next, after degreasing treatment with an organic solvent, the oxide film was removed by immersion in 0.1N hydrochloric acid for 1 minute, and the AL 7050 substrate surface treatment step was completed.

パラジウムアセチルアセトナート2.83g、ジルコニウムテトラ−n−ブトキシド0.22g、ブタノール45ml、アセチルアセトン4.5ml、水0.5mlを混ぜて、窒素雰囲気下で80℃にて24時間攪拌することで中間層用塗布液を調整した。表面処理工程を終了したAL7050基体をスピンコート法により塗布後、1%酸素を含有する窒素雰囲気において390℃で10分間の熱処理を行うことで、厚み28nmのPd−ZrO層および導電経路が形成されたAl層を形成した。 Palladium acetylacetonate (2.83 g), zirconium tetra-n-butoxide (0.22 g), butanol (45 ml), acetylacetone (4.5 ml), and water (0.5 ml) are mixed and stirred at 80 ° C. for 24 hours in a nitrogen atmosphere. The coating solution was adjusted. After the surface treatment process is finished, the AL7050 substrate is applied by spin coating, and then heat treated at 390 ° C. for 10 minutes in a nitrogen atmosphere containing 1% oxygen to form a Pd—ZrO 2 layer having a thickness of 28 nm and a conductive path. An Al 2 O 3 layer was formed.

π共役系導電性高分子膜を化学重合法により形成する。中間層を形成したAL7050基体表面上で、単量体であるピロールと酸化剤である2,7−ナフタレンジスルホン酸鉄(III)を含む水溶液を塗布後、50℃で10分間乾燥する工程を繰り返し、厚みが3μmであるポリピロール膜を形成した。   A π-conjugated conductive polymer film is formed by a chemical polymerization method. On the surface of the AL7050 substrate on which the intermediate layer is formed, after applying an aqueous solution containing pyrrole as a monomer and iron (III) 2,7-naphthalenedisulfonate as an oxidizing agent, a process of drying at 50 ° C. for 10 minutes is repeated. A polypyrrole film having a thickness of 3 μm was formed.

続いて、耐食性の高いπ共役系導電性高分子膜を電解重合法により形成する。溶媒を純水とし、単量体としてピロール0.5mol/L、支持電解質としてドデシルベンゼンスルホン酸0.30mol/Lを含む電解液を用いて、化学重合ポリピロールが被覆されている、AL7050基体を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を1mA/cmとして電解重合を行い、厚みが18μmのポリピロール膜を形成し、耐食導電被覆材料を合計10枚作製した。 Subsequently, a π-conjugated conductive polymer film having high corrosion resistance is formed by an electrolytic polymerization method. The AL7050 substrate is coated with chemically polymerized polypyrrole using an electrolytic solution containing pure water as a solvent, 0.5 mol / L of pyrrole as a monomer, and 0.30 mol / L of dodecylbenzenesulfonic acid as a supporting electrolyte. SUS304 was used as the cathode, the electropolymerization time was 1 hour, the current density was 1 mA / cm 2 , electropolymerization was performed to form a polypyrrole film having a thickness of 18 μm, and a total of 10 corrosion-resistant conductive coating materials were produced.

(比較例1)
実施例1において、中間層を形成しなかった以外は、同様に実施してポリピロール膜を形成し、被覆材料を合計10枚作製した。
(Comparative Example 1)
In Example 1, a polypyrrole film was formed in the same manner except that the intermediate layer was not formed, and a total of 10 coating materials were produced.

(比較例2)
実施例2において、ヘキサブロモイリジウム酸ナトリウム0.055mol/dm、ホウ酸0.30mol/dm、シュウ酸ナトリウム0.30mol/dm、アンモニア水にてpH4に調整した、良温85℃のめっき液を用い、電流密度1.0mA/cmの条件下、表面処理工程を終えたTi基体上に厚み88nmのIrめっき層を形成した以外は、同様に実施してポリピロール膜を形成し、被覆材料を合計10枚作製した。
(Comparative Example 2)
In Example 2, sodium hexabromoiridate 0.055 mol / dm 3 , boric acid 0.30 mol / dm 3 , sodium oxalate 0.30 mol / dm 3 , adjusted to pH 4 with aqueous ammonia, at a good temperature of 85 ° C. Using a plating solution, a polypyrrole film was formed in the same manner except that an Ir plating layer having a thickness of 88 nm was formed on the Ti substrate having been subjected to the surface treatment step under a current density of 1.0 mA / cm 2 . A total of 10 coating materials were produced.

(比較例3)
実施例7と同様にAL7050基体に表面処理を施した後に、中間層を市販のカーボンペースト剤により55nmのカーボン層を形成し、中間層を形成したAL7050基体を作製した。
(Comparative Example 3)
After subjecting the AL7050 substrate to surface treatment in the same manner as in Example 7, a 55 nm carbon layer was formed from a commercially available carbon paste agent as an intermediate layer, thereby producing an AL7050 substrate having the intermediate layer formed thereon.

続いて、π共役系導電性高分子膜を化学重合法により形成する。中間層を形成したAL7050基体表面上で、単量体であるピロールと酸化剤である2,7−ナフタレンジスルホン酸鉄(III)を含む水溶液を塗布後、50℃で10分間乾燥する工程を繰り返し、厚みが27μmであるポリピロール膜を形成し、耐食導電被覆材料を合計10枚作製した。   Subsequently, a π-conjugated conductive polymer film is formed by a chemical polymerization method. On the surface of the AL7050 substrate on which the intermediate layer is formed, after applying an aqueous solution containing pyrrole as a monomer and iron (III) 2,7-naphthalenedisulfonate as an oxidizing agent, a process of drying at 50 ° C. for 10 minutes is repeated. A polypyrrole film having a thickness of 27 μm was formed, and a total of 10 corrosion-resistant conductive coating materials were produced.

(各材料の用途評価)
1:有機電解用電極としての評価
このようにして作製した本発明にかかる耐食導電被覆材料および比較例で作製した材料に対して、電解用電極として作用させてクロロブロモフェノール誘導体を、アルゴンガスを電解液中にバブリングすることでアルゴン雰囲気にして電解酸化し、比較した(反応式1)。実施例および比較例で作製した耐食導電被覆材料を陽極、陰極には白金板、溶媒としてメタノール、支持電解質として過塩素酸リチウム、塩基性添加剤としてピリジン、基質濃度として0.5mMに調整された電解液を用い、100mA/cmの定電流電解にて通電量3.0F/molとなるように陽極酸化反応をバッチ方式で実施した。反応終了後、生成物をGC−MSにて分析し、電流効率を算出した結果を表1に示した。さらに比較のため、焼成法により作製した寸法安定性電極である白金電極を用いた場合についても表1に示した。さらに、実施例1〜3、比較例1〜2、参考例1にかかる耐食性導電被覆材料に対して、前述の電解試験を1000回実施し、各試験回数時における電流効率と電極間電圧を測定した結果を表2に示した。
(Evaluation of usage of each material)
1: Evaluation as an electrode for organic electrolysis The corrosion-resistant conductive coating material according to the present invention produced in this way and the material produced in the comparative example were allowed to act as an electrode for electrolysis, and a chlorobromophenol derivative, argon gas, By bubbling in the electrolytic solution, it was subjected to electrolytic oxidation in an argon atmosphere and compared (reaction formula 1). Corrosion-resistant conductive coating materials prepared in Examples and Comparative Examples were adjusted to an anode, a platinum plate as a cathode, methanol as a solvent, lithium perchlorate as a supporting electrolyte, pyridine as a basic additive, and 0.5 mM as a substrate concentration. Using the electrolytic solution, the anodic oxidation reaction was carried out by a batch method so that the amount of current supplied was 3.0 F / mol by constant current electrolysis at 100 mA / cm 2 . After completion of the reaction, the product was analyzed by GC-MS, and the results of calculating the current efficiency are shown in Table 1. For comparison, Table 1 also shows the case where a platinum electrode, which is a dimensionally stable electrode produced by a firing method, was used. Furthermore, with respect to the corrosion-resistant conductive coating materials according to Examples 1 to 3, Comparative Examples 1 to 2, and Reference Example 1, the above-described electrolytic test was performed 1000 times, and current efficiency and interelectrode voltage were measured at each test. The results are shown in Table 2.

Figure 2008266744
R:(CHOAc
Figure 2008266744
R: (CH 2 ) 3 OAc

2:色素増感太陽電池用電極としての評価
次に、作製した本発明にかかる耐食導電被覆材料と比較例で作製した材料に対して、太陽電池作動環境に近い模擬液である50℃に保持された4wt%Iおよびヨウ化物塩含有アセトニトリル溶液を用いて浸漬試験を30日間実施し、金属基体から模擬液中に溶出された金属イオン濃度をシーケンシャル形高周波プラズマ発光分析装置によって測定し、耐食性を比較した結果を表3に示す。また集電特性を図るために、図2に示した表面抵抗測定によって、初期表面抵抗と浸漬試験実施後表面処理抵抗の比較を行った結果を表4に示す。比較のため、本試験では基体がTiである膜厚2μm厚みの焼成白金電極を用いた場合についても示した。
2: Evaluation as an electrode for a dye-sensitized solar cell Next, the prepared corrosion-resistant conductive coating material according to the present invention and the material prepared in the comparative example are maintained at 50 ° C., which is a simulated liquid close to the operating environment of the solar cell. The 4 wt% I 2 and iodide salt-containing acetonitrile solution was subjected to an immersion test for 30 days, and the concentration of metal ions eluted from the metal substrate into the simulated solution was measured by a sequential type high-frequency plasma emission spectrometer, and was resistant to corrosion. Table 3 shows the result of comparison. Table 4 shows the results of comparing the initial surface resistance and the surface treatment resistance after the immersion test by the surface resistance measurement shown in FIG. For comparison, this test also shows a case where a fired platinum electrode having a thickness of 2 μm whose base is Ti is used.

さらに、実施例4および参考例2における電極を対極として用いて色素増感太陽電池セルを作製した。さらに、実施例4および参考例2に対して、太陽電池作動環境に近い模擬液である50℃に保持された4wt%Iおよびヨウ化物塩含有アセトニトリル溶液を用いて浸漬試験を30日間実施後、同様にセルを作製し、浸漬試験前後における太陽電池特性の変化について評価した結果について表5に示す。
すなわち、透明導電膜付きの透明基体としてFTOガラス(日本板ガラス製25mm×50mm)を用い、その表面に二酸化チタンペースト(昭和電工製)をバーコーターで塗布し、乾燥後450℃で30分焼成してそのまま室温となるまで放置し、10μmの厚さの多孔質酸化チタン半導体電極を形成した。
Furthermore, the dye-sensitized solar cell was produced using the electrode in Example 4 and Reference Example 2 as a counter electrode. Further, for Example 4 and Reference Example 2, an immersion test was performed for 30 days using a 4 wt% I 2 and iodide salt-containing acetonitrile solution maintained at 50 ° C., which is a simulated solution close to the solar cell operating environment. Table 5 shows the results of evaluation of changes in solar cell characteristics before and after the immersion test in the same manner.
That is, FTO glass (25 mm x 50 mm made by Nippon Sheet Glass) was used as a transparent substrate with a transparent conductive film, and a titanium dioxide paste (made by Showa Denko) was applied to the surface with a bar coater, dried and baked at 450 ° C. for 30 minutes. The porous titanium oxide semiconductor electrode having a thickness of 10 μm was formed as it was until the temperature reached room temperature.

続いて色素吸着工程に移った。増感色素として、一般にN3dyeと呼ばれるビス(4,4’−ジカルボキシ−2,2’−ビピリジン)ジイソチオシアネートルテニウム錯体を使用し、色素濃度0.5mmol/Lとなるよう調製したエタノール溶液中に、一旦150℃まで加熱した前記多孔質酸化チタン半導体電極を浸漬し、遮光下1晩静置した。その後エタノールにて余分な色素を洗浄してから風乾することで太陽電池の半導体電極を作製した。さらに、得られた半導体電極の酸化チタン投影面積が25mm2になるよう、半導体層を研削した。 Then, it moved to the dye adsorption process. In an ethanol solution prepared using a bis (4,4′-dicarboxy-2,2′-bipyridine) diisothiocyanate ruthenium complex generally called N3dye as a sensitizing dye and having a dye concentration of 0.5 mmol / L The porous titanium oxide semiconductor electrode once heated to 150 ° C. was immersed and allowed to stand overnight under light shielding. Thereafter, excess pigment was washed with ethanol and then air-dried to produce a semiconductor electrode of a solar cell. Furthermore, the semiconductor layer was ground so that the projected area of titanium oxide of the obtained semiconductor electrode was 25 mm 2 .

前記のように作製した半導体電極と、実施例4もしくは参考例2において作製した電極を対極として該半導体電極に対向するよう設置し、電解質を毛管現象にて両電極間に含浸させた。電解質としては、溶媒をメトキシアセトニル、還元剤としてヨウ化リチウム、酸化剤としてヨウ素、添加剤としてt−ブチルピリジン、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドを含む溶液を用いた。
上記の太陽電池セルについて、5mm角の窓をつけた光照射面積規定用マスクを装着させた上で、光量100mW/cm2の擬似太陽光を照射して開放電圧(以下、「Voc」と略記する。)、短絡電流密度(以下、「Jsc」と略記する。)、形状因子(以下、「FF」と略記する。)、および光電変換効率を評価した。
「Voc」、「Jsc」、「FF」及び光電変換効率の各測定値については、より大きい値が太陽電池セルの性能として好ましいことを表す。
The semiconductor electrode produced as described above and the electrode produced in Example 4 or Reference Example 2 were placed as a counter electrode so as to face the semiconductor electrode, and an electrolyte was impregnated between both electrodes by capillary action. As the electrolyte, a solution containing methoxyacetonyl as a solvent, lithium iodide as a reducing agent, iodine as an oxidizing agent, t-butylpyridine as an additive, and 1,2-dimethyl-3-propylimidazolium iodide was used.
About the above-mentioned solar battery cell, a mask for light irradiation area regulation with a 5 mm square window is attached, and then a simulated sunlight with a light amount of 100 mW / cm 2 is irradiated to open voltage (hereinafter abbreviated as “Voc”). ), Short circuit current density (hereinafter abbreviated as “Jsc”), form factor (hereinafter abbreviated as “FF”), and photoelectric conversion efficiency.
About each measured value of "Voc", "Jsc", "FF", and a photoelectric conversion efficiency, it represents that a larger value is preferable as a performance of a photovoltaic cell.

3:固体高分子型燃料電池用セパレータとしての評価
さらに、実施例7および参考例1に記載の方法により中間層を形成後、プレス加工にてガス流路を形成し、ポリピロール膜を成膜させてセパレータを製造した。両極に触媒を担持した固体電解質膜、ガス拡散電極、前述のセパレータを用いて単電池を組み立て、燃料として高純度水素ガスおよび空気を用いて発電を行い、I−V特性を調べた。続いて、1000時間の連続発電試験を実行した後に同様にI−V特性を調べた結果を図1に示した。
3: Evaluation as a separator for a polymer electrolyte fuel cell Further, after forming an intermediate layer by the method described in Example 7 and Reference Example 1, a gas flow path is formed by pressing and a polypyrrole film is formed. The separator was manufactured. A cell was assembled using a solid electrolyte membrane carrying a catalyst on both electrodes, a gas diffusion electrode, and the separator described above, and power generation was performed using high-purity hydrogen gas and air as fuel, and IV characteristics were examined. Subsequently, the results of examining the IV characteristics in the same manner after the continuous power generation test for 1000 hours is shown in FIG.

その表1の結果によれば、本発明にかかる各耐食性導電被覆材料は、有機電解酸化反応において従来から用いられてきた焼成法によるPt電極より高い電流効率を得ることができ、有機電解用電極として優れていることが認められた。さらに、同様に行った参考例2、比較例3では、π共役系導電性高分子が電解酸化反応中に脱落し、電解途中で電極として機能しなくなることが確認された。   According to the results of Table 1, each of the corrosion-resistant conductive coating materials according to the present invention can obtain higher current efficiency than the Pt electrode obtained by the firing method conventionally used in the organic electrolytic oxidation reaction. It was recognized as excellent. Further, in Reference Example 2 and Comparative Example 3 performed in the same manner, it was confirmed that the π-conjugated conductive polymer dropped out during the electrolytic oxidation reaction and did not function as an electrode during electrolysis.

その表2によれば、本発明にかかる各耐食性導電被覆材料は、有機電解酸化反応において従来から用いられてきた焼成法によるPt電極より長い寿命を得られ、耐久性にも優れることがわかった。さらに、同様に行った比較例1では、中間層を設けずに電極として作用させたため、絶縁性の酸化被膜層が徐々に形成されることで電解電圧が上昇し、10Vに達し電極寿命となった。比較例2では、加熱処理を行わずに金属中間層を設けたため、徐々に金属中間層から導電性金属酸化物へと結晶構造が変化することにより歪みが生じ、最終的には中間層およびπ共役系導電性高分子膜が基体より脱落して電極寿命となった。参考例1では、π共役系導電性高分子膜中のドーパントが酸化性雰囲気によって破壊されてしまい、電解途中でπ共役系導電性高分子の導電性が消失してしまい、電極寿命となった。   According to Table 2, it was found that each corrosion-resistant conductive coating material according to the present invention can have a longer life than the Pt electrode obtained by the firing method conventionally used in the organic electrolytic oxidation reaction and is excellent in durability. . Furthermore, in Comparative Example 1 performed in the same manner, the intermediate layer was not provided to act as an electrode, so that an insulating oxide film layer was gradually formed, so that the electrolysis voltage increased and reached 10 V, and the electrode life was reached. It was. In Comparative Example 2, since the metal intermediate layer was provided without performing the heat treatment, distortion occurred due to the crystal structure gradually changing from the metal intermediate layer to the conductive metal oxide, and finally the intermediate layer and π The conjugated conductive polymer film fell off the substrate and the electrode life was reached. In Reference Example 1, the dopant in the π-conjugated conductive polymer film was destroyed by the oxidizing atmosphere, and the conductivity of the π-conjugated conductive polymer disappeared during electrolysis, resulting in an electrode life. .

その表3の結果によれば、本発明にかかる各導電耐食被覆材料は、浸漬試験30日後においても全く変化することなく基体を保護し、色素増感太陽電池用途に必要な耐食特性に優れていることが認められた。これに対し、同様に浸漬試験を行った比較例1および比較例2では、熱処理による中間層が形成されていないために基体を腐食環境下から保護する機能が劣ることがわかった。参考例1では、π共役系導電性高分子膜中のドーパントが耐酸化性に劣るため該π共役系導電性高分子膜が破壊されることがわかった。参考例2では、π共役系導電性高分子膜の形成法が適切ではないためにヨウ素の浸透によって中間層および基体の腐食が進行した。参考例3、4では、中間層の形成温度が低いために白金族酸化物の結晶化が促進されず基材を腐食環境下から保護する機能が劣ることがわかった。比較例3では、π共役系導電性高分子膜が多孔質となり、該π共役系導電性高分子膜中のドーパントが電解液中に脱ドーピングし易く、さらに導電性中間層に用いたカーボンペースト層が電解液中のヨウ素によって破壊されたため、基体の腐食が最も進行した結果となった。また焼成白金電極では、ピンポールやクラックから徐々に電解液中のヨウ素が浸透し、基体のTiが腐食し、30日の試験終了後ではPt層の厚みも0.5μmとなり、Ptが溶解することがわかった。   According to the results in Table 3, each conductive and corrosion-resistant coating material according to the present invention protects the substrate without any change even after 30 days of immersion test, and has excellent corrosion resistance characteristics required for dye-sensitized solar cell applications. It was recognized that On the other hand, in Comparative Example 1 and Comparative Example 2 in which the immersion test was similarly performed, it was found that the function of protecting the substrate from the corrosive environment was inferior because no intermediate layer was formed by heat treatment. In Reference Example 1, it was found that the π-conjugated conductive polymer film was destroyed because the dopant in the π-conjugated conductive polymer film was poor in oxidation resistance. In Reference Example 2, since the formation method of the π-conjugated conductive polymer film was not appropriate, the corrosion of the intermediate layer and the substrate progressed due to the penetration of iodine. In Reference Examples 3 and 4, it was found that since the formation temperature of the intermediate layer was low, the crystallization of the platinum group oxide was not promoted and the function of protecting the substrate from the corrosive environment was inferior. In Comparative Example 3, the π-conjugated conductive polymer film is porous, and the dopant in the π-conjugated conductive polymer film is easy to dedope in the electrolyte solution, and the carbon paste used for the conductive intermediate layer Since the layer was destroyed by iodine in the electrolyte, the result was the most advanced corrosion of the substrate. In the case of a baked platinum electrode, iodine in the electrolyte gradually permeates from the pin pole and crack, and the substrate Ti is corroded. After the 30-day test is completed, the thickness of the Pt layer becomes 0.5 μm and Pt is dissolved. I understood.

その表4の結果によれば、本発明にかかる各導電耐食被覆材料は、浸漬試験30日後においても全く変化することなく基体を保護し、色素増感太陽電池用途に必要な導電特性に優れていることが認められた。これに対し、同様に浸漬試験を行った比較例1では中間層が形成されていないため初期表面抵抗が高く、浸漬時間が長くなるにつれて徐々に表面抵抗が高くなる傾向が見られた。比較例2では中間層であるIrめっき層と基体との密着性が悪いために、浸漬時間が長くなるにつれて中間層が剥離し、導電性高分子膜にマイクロクラックが発生して表面抵抗が高くなる傾向が見られた。
参考例1では、π共役系導電性高分子膜中のドーパントが耐酸化性に劣るため該π共役系導電性高分子膜が破壊され、表面抵抗が非常に高くなった。参考例2では、徐々にπ共役系導電性高分子膜の脱落が生じ、ヨウ素の浸透によって中間層および基体の腐食が進行し、表面抵抗も高くなった。参考例3、4では中間層の形成温度が低いために、導電性経路が形成されず初期表面抵抗が非常に高かった。比較例3では、カーボンペースト層の抵抗が高いために初期抵抗が高く、ヨウ素の侵入とともに急激に表面抵抗が高くなる結果となった。
According to the results of Table 4, each conductive and corrosion-resistant coating material according to the present invention protects the substrate without any change even after 30 days of immersion test, and is excellent in the conductive properties necessary for dye-sensitized solar cell applications. It was recognized that On the other hand, in Comparative Example 1 in which the immersion test was similarly performed, the initial surface resistance was high because the intermediate layer was not formed, and the surface resistance tended to gradually increase as the immersion time increased. In Comparative Example 2, since the adhesion between the Ir plating layer, which is an intermediate layer, and the substrate is poor, the intermediate layer peels off as the immersion time becomes longer, microcracks occur in the conductive polymer film, and the surface resistance is high. The tendency to become was seen.
In Reference Example 1, since the dopant in the π-conjugated conductive polymer film was inferior in oxidation resistance, the π-conjugated conductive polymer film was destroyed and the surface resistance was very high. In Reference Example 2, the π-conjugated conductive polymer film gradually dropped out, and the corrosion of the intermediate layer and the substrate progressed due to the infiltration of iodine, and the surface resistance increased. In Reference Examples 3 and 4, since the formation temperature of the intermediate layer was low, the conductive path was not formed and the initial surface resistance was very high. In Comparative Example 3, since the resistance of the carbon paste layer was high, the initial resistance was high, and as a result, the surface resistance rapidly increased as iodine entered.

表5の結果によれば、本発明における耐食導電被覆材料は、浸漬試験後30日においても良好な太陽電池特性を維持できていることが認められた。これに対し、同様に浸漬試験を行なった参考例2では、浸漬時間の経過とともに金属基体からπ共役系導電性高分子膜が剥離し、中間層および金属基体の溶解が始まるとともに、電解液との接触により短絡して発電が不可能になることが確認できた。   According to the result of Table 5, it was recognized that the corrosion-resistant conductive coating material in the present invention can maintain good solar cell characteristics even 30 days after the immersion test. On the other hand, in Reference Example 2 in which the immersion test was conducted in the same manner, the π-conjugated conductive polymer film was peeled off from the metal substrate with the lapse of the immersion time, and the dissolution of the intermediate layer and the metal substrate started. It was confirmed that power generation was impossible due to a short circuit due to the contact of.

図1によれば、実施例7のI−V特性曲線は良好な発電特性を示したが、比較例3では実施例7に比べて耐食導電被覆材料の抵抗が高いために、取り出せる電流密度が小さくなることがわかった。
また、1000時間の連続発電試験を実施後のI−V特性曲線を比較すると、実施例7において性能の劣化はほとんど見られず、耐食導電被覆材料が良好な集電性能を維持され、優れた発電特性を確認した。それに対して比較例3では、耐食導電被覆材料のアルミ基体が腐食して抵抗が高くなったうえに、溶解した金属イオンがプロトン伝導性電解質膜に悪影響を与えた結果、I−V特性の低下が見られ、耐食導電被覆材料として劣っていた。
According to FIG. 1, the IV characteristic curve of Example 7 showed good power generation characteristics. However, in Comparative Example 3, the resistance of the corrosion-resistant conductive coating material was higher than that of Example 7, and thus the current density that could be taken out was high. I found it smaller.
Moreover, when the IV characteristic curves after carrying out the continuous power generation test for 1000 hours were compared, almost no deterioration in performance was seen in Example 7, and the current collecting performance of the corrosion-resistant conductive coating material was maintained and excellent. The power generation characteristics were confirmed. On the other hand, in Comparative Example 3, the corrosion resistance of the aluminum substrate of the conductive coating material was corroded to increase the resistance, and the dissolved metal ions adversely affected the proton conductive electrolyte membrane, resulting in a decrease in IV characteristics. As a result, the corrosion-resistant conductive coating material was inferior.

Figure 2008266744
Figure 2008266744

Figure 2008266744
Figure 2008266744

Figure 2008266744
Figure 2008266744

Figure 2008266744
Figure 2008266744

Figure 2008266744
Figure 2008266744

本発明の耐食導電被覆材料は、有機電解合成用電極、色素増感太陽電池用電極、燃料電池用金属セパレータを主たる用途とするが、電気接点、端子へ好適に使用できる。   The corrosion-resistant conductive coating material of the present invention is mainly used for electrodes for organic electrolytic synthesis, electrodes for dye-sensitized solar cells, and metal separators for fuel cells, but can be suitably used for electrical contacts and terminals.

実施例7および比較例3の作成法に従い製作したセパレータを用いた単電池の電池特性(I−V特性曲線)を示す図である。It is a figure which shows the battery characteristic (IV characteristic curve) of the single cell using the separator manufactured according to the preparation method of Example 7 and Comparative Example 3. FIG.

Claims (10)

基体上に、白金族金属層及び/またはその酸化物層からなる中間層が形成され、その上層にπ共役系導電性高分子層が形成されていることを特徴とする耐食導電被覆材料。   A corrosion-resistant conductive coating material, characterized in that an intermediate layer comprising a platinum group metal layer and / or an oxide layer thereof is formed on a substrate, and a π-conjugated conductive polymer layer is formed thereon. 前記基体が、チタン、ジルコニウム、ニオブ、タンタル、アルミニウム、鉄からなる群から選ばれる少なくとも一つの金属基体及び/又はそれらの合金であることを特徴とする請求項1に記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to claim 1, wherein the substrate is at least one metal substrate selected from the group consisting of titanium, zirconium, niobium, tantalum, aluminum, and iron and / or an alloy thereof. 前記白金族金属層及び/またはその酸化物層からなる中間層が、イリジウム、ルテニウム、ロジウム、パラジウム、白金からなる群から選ばれる少なくとも一つの白金族金属及び/またはその酸化物を含むことを特徴とする請求項1又は2に記載の耐食導電被覆材料。   The intermediate layer composed of the platinum group metal layer and / or its oxide layer contains at least one platinum group metal selected from the group consisting of iridium, ruthenium, rhodium, palladium and platinum and / or its oxide. The corrosion-resistant conductive coating material according to claim 1 or 2. 前記白金族金属層及び/またはその酸化物層が、
含白金族金属有機化合物のアルコール溶液からなる塗布液を塗布、乾燥、焼成してなる白金族金属層及び/またはその酸化物層であることを特徴とする請求項1〜3のいずれかにに記載の耐食導電被覆材料。
The platinum group metal layer and / or its oxide layer is
A platinum group metal layer and / or an oxide layer thereof formed by applying, drying and firing a coating solution comprising an alcohol solution of a platinum group metal organic compound. The corrosion-resistant conductive coating material described.
前記π共役系導電性高分子層が、ポリピロール又はその誘導体、ポリアニリン又はその誘導体、ポリチオフェン又はその誘導体からなる群から選ばれる少なくとも一つであることを特徴とする請求項1〜4のいずれかに記載の耐食導電被覆材料。   The π-conjugated conductive polymer layer is at least one selected from the group consisting of polypyrrole or a derivative thereof, polyaniline or a derivative thereof, polythiophene or a derivative thereof. The corrosion-resistant conductive coating material described. 用途が電解用電極であることを特徴とする請求項1〜5のいずれかに記載の耐食導電被覆材料。   6. The corrosion-resistant conductive coating material according to claim 1, wherein the use is an electrode for electrolysis. 用途が色素増感型太陽電池用電極であることを特徴とする請求項1〜5のいずれかに記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to any one of claims 1 to 5, wherein the use is an electrode for a dye-sensitized solar cell. 用途が燃料電池用セパレータであることを特徴とする請求項1〜5のいずれかに記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to any one of claims 1 to 5, wherein the use is a fuel cell separator. 基体上に、含白金族金属有機化合物のアルコール溶液からなる塗布液を塗布、乾燥、焼成し、白金族金属層及び/またはその酸化物層を形成する工程、次いで、該層上においてπ共役系導電性高分子モノマーを重合し、π共役系導電性高分子層を前記白金族金属層及び/またはその酸化物層上に形成する工程を包含することを特徴とする耐食導電被覆材料の製造方法。   A step of applying a coating solution comprising an alcohol solution of a platinum group metal organic compound on a substrate, drying and baking to form a platinum group metal layer and / or an oxide layer thereof, and then a π-conjugated system on the layer A method for producing a corrosion-resistant conductive coating material comprising polymerizing a conductive polymer monomer and forming a π-conjugated conductive polymer layer on the platinum group metal layer and / or its oxide layer . 前記焼成工程が、350℃以上の熱処理による焼成工程であることを特徴とする請求項9に記載の耐食導電被覆材料の製造方法。   The method for producing a corrosion-resistant conductive coating material according to claim 9, wherein the firing step is a firing step by heat treatment at 350 ° C. or higher.
JP2007113482A 2007-04-23 2007-04-23 Corrosion resistant conductive coating material, and its use Pending JP2008266744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113482A JP2008266744A (en) 2007-04-23 2007-04-23 Corrosion resistant conductive coating material, and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113482A JP2008266744A (en) 2007-04-23 2007-04-23 Corrosion resistant conductive coating material, and its use

Publications (1)

Publication Number Publication Date
JP2008266744A true JP2008266744A (en) 2008-11-06

Family

ID=40046620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113482A Pending JP2008266744A (en) 2007-04-23 2007-04-23 Corrosion resistant conductive coating material, and its use

Country Status (1)

Country Link
JP (1) JP2008266744A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014414A1 (en) 2010-07-27 2012-02-02 島根県 Method for preventing catalyst release from dye-sensitized solar cell and from catalytic electrodes
JP2014095681A (en) * 2012-11-09 2014-05-22 Masanori Hashimoto Liquid level detection electrode bar with vinyl tube conductive coating
WO2015120858A1 (en) * 2014-02-12 2015-08-20 Aarhus Universitet A solar rechargeable redox flow cell
KR20160052462A (en) * 2013-08-30 2016-05-12 세키스이가가쿠 고교가부시키가이샤 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
US11127957B2 (en) 2018-04-23 2021-09-21 Toyota Jidosha Kabushiki Kaisha Fuel cell separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169543A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Highly corrosion resistant material for electric conduction and production method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169543A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Highly corrosion resistant material for electric conduction and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014414A1 (en) 2010-07-27 2012-02-02 島根県 Method for preventing catalyst release from dye-sensitized solar cell and from catalytic electrodes
US8993880B2 (en) 2010-07-27 2015-03-31 Shimane Prefectural Government Dye-sensitized solar cell and method for preventing elution of catalyst from catalyst electrode
US9183992B2 (en) 2010-07-27 2015-11-10 Shimane Prefectural Government Dye-sensitized solar cell and method for preventing elution of catalyst from catalyst electrode
US9214287B2 (en) 2010-07-27 2015-12-15 Shimane Perfectual Government Dye-sensitized solar cell and method for preventing elution of catalyst from catalyst electrode
JP2014095681A (en) * 2012-11-09 2014-05-22 Masanori Hashimoto Liquid level detection electrode bar with vinyl tube conductive coating
KR20160052462A (en) * 2013-08-30 2016-05-12 세키스이가가쿠 고교가부시키가이샤 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
JP5960921B2 (en) * 2013-08-30 2016-08-02 積水化学工業株式会社 Method for reactivating counter electrode active material of dye-sensitized solar cell, method for regenerating dye-sensitized solar cell, catalyst layer, counter electrode, and dye-sensitized solar cell
KR102286239B1 (en) * 2013-08-30 2021-08-06 세키스이가가쿠 고교가부시키가이샤 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
WO2015120858A1 (en) * 2014-02-12 2015-08-20 Aarhus Universitet A solar rechargeable redox flow cell
US11127957B2 (en) 2018-04-23 2021-09-21 Toyota Jidosha Kabushiki Kaisha Fuel cell separator

Similar Documents

Publication Publication Date Title
CN104562078B (en) Electrode for electrolysis, preparation method of electrode and electrolytic bath
US20120103828A1 (en) Electrode for electrolytic chlorine production
EP1670973B1 (en) Electrode
CN102260878A (en) Anode for electrolysis and manufacturing method thereof
CN106283125A (en) Metal electro-deposition coated titanium electrode and preparation method thereof
CN102762776B (en) Activated cathode for hydrogen evolution
CN1694282A (en) Cathode for whole vanadium oxide reduction flow battery and preparation method thereof
CN101740228A (en) Method for preparing counter electrode based on electrochemical synthesized polyaniline on surface of stainless steel
JP2008266744A (en) Corrosion resistant conductive coating material, and its use
CN103345958B (en) Containing the combination electrode material and preparation method thereof in reaction and plasma spraying nano TiN intermediate layer
CN111926309A (en) Titanium-based passivation prevention coating for metal oxide electrode and preparation method thereof
CN109518221A (en) A kind of surface is rich in the gradient distribution Ni―Ti anode and preparation method thereof of iridium dioxide
CN106086989A (en) A kind of titania modified by Argentine nanotube composite anode and preparation method thereof
CN111063548A (en) Three-dimensional silicon structure/polyaniline-based composite electrode material and preparation method thereof
JP2009102676A (en) Corrosion-resistant conductive-coated material and its use
CN113061926A (en) Titanium dioxide anode diffusion layer for PEM water electrolysis cell and preparation method and application thereof
CN112195482B (en) Composite titanium anode plate and preparation method thereof
Liu et al. Effect of molar ratio of ruthenium and antimony on corrosion mechanism of Ti/Sn-Sb-RuOx electrode for zinc electrowinning
Bin et al. Fabrication, annealing, and electrocatalytic properties of platinum nanoparticles supported on self-organized TiO2 nanotubes
Panizza et al. DSA-type anode based on conductive porous p-silicon substrate
CN102586836A (en) Preparation method for mesoporous titanium dioxide thin film
JP5669894B2 (en) Method for producing corrosion-resistant conductive coating material
CN101740226A (en) Method for forming electrode containing catalyst layer
CN111186883B (en) Novel preparation technology of lead dioxide electrode modified by titanium tetroxide nanotube
KR102605336B1 (en) Electrode for electrolysis, method for producing the same, and electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120706