WO2008062667A1 - Electron beam irradiation apparatus - Google Patents

Electron beam irradiation apparatus Download PDF

Info

Publication number
WO2008062667A1
WO2008062667A1 PCT/JP2007/071604 JP2007071604W WO2008062667A1 WO 2008062667 A1 WO2008062667 A1 WO 2008062667A1 JP 2007071604 W JP2007071604 W JP 2007071604W WO 2008062667 A1 WO2008062667 A1 WO 2008062667A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
window
window unit
emission
irradiation apparatus
Prior art date
Application number
PCT/JP2007/071604
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Matsumura
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2008062667A1 publication Critical patent/WO2008062667A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J33/00Discharge tubes with provision for emergence of electrons or ions from the vessel; Lenard tubes
    • H01J33/02Details
    • H01J33/04Windows

Definitions

  • Electron beam irradiation device
  • the present invention relates to an electron beam irradiation apparatus.
  • An electron beam irradiation device is a device that houses an electron gun that emits an electron beam in a container and emits the electron beam into the atmosphere through an electron beam emission window formed of a thin film.
  • Such an electron beam irradiation apparatus has uses such as drying, sterilization, and surface modification of an irradiation object.
  • Patent Document 1 JP-A-8-166497
  • the present invention has been made to solve the above-described problems, and can sufficiently secure the dose of an electron beam emitted to the outside of the apparatus while preventing the adhesion of dirt to the electron beam emission window.
  • An object of the present invention is to provide an electron beam irradiation apparatus that can perform this.
  • an electron beam irradiation apparatus accommodates an electron gun having an electron emission member that emits an electron beam, an electron emission member, and allows an electron beam to pass therethrough. And a first window unit having an electron beam emission window fixed to the container so as to close the electron beam passage hole and emitting the electron beam having passed through the electron beam passage hole to the outside of the container. And a second window unit that is fixed to the first window unit and has an outer window that emits an electron beam emitted from the electron beam emission window to the outside of the apparatus, and in the direction of the emission axis of the electron beam in the outer window.
  • the special feature is that the thickness is smaller than the thickness of the electron beam exit window in the electron beam exit axis direction.
  • a second window unit having an outer window is provided for a first window unit having an electron beam exit window. For this reason, the scattered matter generated when the irradiation object is irradiated with the electron beam is blocked by the outer window, and the contamination of the electron beam emission window is prevented. Further, in this electron beam irradiation apparatus, the thickness of the outer window in the electron beam exit axis direction is smaller than the thickness of the electron beam exit window in the exit axis direction. Therefore, the output loss when the electron beam emitted from the electron beam emission window passes through the outer window can be suppressed to be extremely small, and the dose of the electron beam emitted to the outside of the apparatus can be secured sufficiently.
  • the second window unit is preferably detachable with respect to the first window unit. This makes it easy to replace the second window unit when dirt adheres to the outer window. In addition, since it is not necessary to remove the first window unit from the container, a step of vacuum leakage in the container is also unnecessary.
  • an introduction pipe for introducing an inert gas into a space between the first window unit and the second window unit, and a discharge pipe for discharging the inert gas from the space.
  • an inert gas can flow between the first window unit and the second window unit. It is possible to fiddle the chilled cocoon.
  • the second window unit preferably has a current readout electrode arranged so as not to overlap the outer window when viewed from the electron beam emission axis direction.
  • a current readout electrode arranged so as not to overlap the outer window when viewed from the electron beam emission axis direction.
  • the current generated by the electron beam returning to the outer window due to scattering or the like can be measured, and the actual output of the electron beam can be accurately measured in real time. It becomes.
  • the current reading electrode does not block a part of the outer window. It can be secured.
  • the electron beam emitting apparatus of the present invention it is possible to sufficiently secure the dose of the electron beam emitted to the outside of the apparatus while preventing the adhesion of dirt to the electron beam emitting window.
  • FIG. 1 is a side sectional view showing a configuration of an electron beam irradiation apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB.
  • FIG. 4 is an enlarged side sectional view of each window unit.
  • FIG. 5 is a side sectional view showing a configuration of an electron beam irradiation apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
  • FIG. 7 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB.
  • FIG. 8 is an enlarged side sectional view of the window unit.
  • Electron beam irradiation device 2 ... Electron gun, 3 ... Container, 4, 41 ... First window unit, 5, 42 ... Second window unit, 9 ⁇ Filament (electron emitting member), 14 ⁇ Electron beam passage hole, 24, 54... Electron beam exit window, 30, 57 ⁇ Inlet tube, 31, 58 ⁇ Discharge tube, 32 ⁇ Disc member (current readout electrode), 34, 63 ⁇ Outer window, 61 ⁇ Plate member (current readout electrode), ⁇ ⁇ Electron beam, S2_ space.
  • FIG. 1 is a side sectional view showing a configuration of an electron beam irradiation apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • the electron beam irradiation apparatus 1 includes an electron gun 2 that emits an electron beam EB, and a container 3 that houses a filament (electron emission member) 9 at the tip of the electron gun 2.
  • the first window unit 4 that emits the electron beam EB from the container 3 and the electron beam EB emitted from the window unit 4 are emitted to the outside of the apparatus.
  • a second window unit 5 is a second window unit 5.
  • This electron beam irradiation apparatus 1 irradiates an irradiation object (not shown) flowing on the line with an electron beam EB in an atmosphere of an inert gas such as nitrogen, for example, to dry, sterilize, and modify the surface of the irradiation object. It is configured as a device that performs quality etc.
  • the electron gun 2 has a rectangular parallelepiped case 6, an insulating block 7 made of an electrically insulating material, a high breakdown voltage connector 8, and a filament 9 that emits an electron beam EB. ing.
  • the case 6 is formed of metal, for example, and is fixed to the proximal end side of the container 3.
  • An opening 6 a that communicates the inside of the case 6 and the accommodation space S 1 in the container 3 is provided on the wall of the case 6 on the container 3 side.
  • an opening 6b for attaching the connector 8 is provided on the side wall of the case 6! /.
  • the inner wall of the case 6 around the opening 6b is provided with an uneven portion so as to ensure the bonding strength with the insulating block 7.
  • the insulating block 7 is made of an electrically insulating material such as an epoxy resin, and insulates the power supply path from the connector 8 to the filament 9 from the outside.
  • the insulating block 7 has a base portion 7a housed in the case 6, and a frustoconical projecting portion 7b projecting from the base portion 7a to the housing space S1 side in the container 3 through the opening 6a. Yes.
  • the base 7a occupies most of the inside of the case 6 and is in contact with the inner walls of the case 6 on the opening 6a side and the opening 6b side.
  • a conductive film 10 is attached to a portion of the base portion 7a that does not contact the inner wall of the case 6.
  • the connector 8 is a connector for supplying a power supply voltage to the filament 9 from the outside of the electron beam irradiation apparatus 1.
  • the connector 8 is inserted into the opening 6 b on the side surface of the case 6, and is buried and fixed in the insulating block 7 with the tip portion positioned near the center of the insulating block 7.
  • the tip portion of the connector 8 is provided with an uneven portion similar to the inner wall of the case 6 so as to ensure the bonding strength with the insulating block 7.
  • the base end of the connector 8 is provided with a plug inlet 8a for a power plug that holds the distal end of an external wiring (not shown) that extends the power supply device force.
  • a pair of internal wires 11, 11 is connected to the tip of the connector 8. Internal wiring 11 and 11 are insulated from the tip of connector 8.
  • the lock 7 extends toward the center of the base portion 7a, bends from the center of the base portion 7a toward the protruding portion 7b, and extends to the tip of the protruding portion 7b through the center of the protruding portion 7b.
  • the filament 9 is a member that emits electrons to be the electron beam EB.
  • the filament 9 is attached to the tip of the protruding portion 7b of the insulating block 7 and connected to the internal wirings 11 and 11.
  • a grid portion 12 is provided around the filament 9.
  • the grid part 12 is electrically connected to one of the internal wirings 11 and 11, and when a high voltage is applied to the filament 9, a high voltage is also applied to the grid part 12, An electric field for extracting electrons from the filament 9 is formed.
  • the electrons extracted from the filament 9 are emitted as an electron beam EB from a hole formed at the center of the grid portion 12.
  • a wiring for the grid portion 12 is added separately and independent of the potential of the filament 9. It is preferable to control the potential of the grid part 12.
  • the container 3 is formed in a cylindrical shape extending along the emission axis of the electron beam EB, and is hermetically sealed to the case 6 of the electron gun 2.
  • a cylindrical accommodation portion 13 that accommodates the filament 9 of the electron gun 2, the grid portion 12, and the protruding portion 7 b of the insulating block 7 is formed inside the container 3 on the proximal end side.
  • the diameter of the accommodating portion 13 is larger than that of the opening 6a of the case 6 and extends from the base end of the container 3 to the vicinity of the center.
  • an electron beam passage hole 14 that communicates with the accommodating portion 13 is formed inside the distal end side of the container 3.
  • the electron beam passage hole 14 has a cylindrical shape with a smaller diameter than the accommodating portion 13 and extends from the vicinity of the center of the container 3 to the tip of the container 3 along the emission axis of the electron beam EB.
  • the tip of the container 3 is provided with a plurality of (for example, six) screw holes (not shown) with a predetermined phase angle!
  • an electromagnetic coil 15 and an electromagnetic coil 16 are arranged along the emission axis of the electron beam EB.
  • the arrangement center of the electromagnetic coil 15 and the electromagnetic coil 16 coincides with the central axis of the electron beam passage hole 14.
  • the electromagnetic coil 15 includes a mechanical center shift of each member constituting the passage path of the electron gun 2 and the electron beam EB, a residual magnetism of each component member, and a magnetic field around the installation site.
  • This is a alignment coil for correcting the deviation of the electron beam EB with respect to a desired passage path (center axis of the electron passage hole 14) caused by the influence of the above.
  • four electromagnetic coils 15 are arranged with a phase angle of 90 degrees across the electron beam passage hole 14 so that two opposing electromagnetic coils 15 function as a pair. Used.
  • the electromagnetic coil 16 is a bundling coil for collecting the electron beam EB emitted from the electron gun 2 to the electron beam emission window 24.
  • the electromagnetic coil 16 is a magnetic coil composed of a cylindrical coil portion made of enameled wire and soft iron. It consists of a circuit.
  • the electron beam EB emitted from the filament 9 by these electromagnetic coils 15 and 16 accurately passes through the central axis of the electron passage hole 14 and does not collide with the inner wall of the electron passage hole 14. Accurately led to the center of
  • an exhaust pipe 17 is provided on the side of the container 3.
  • the front end of the exhaust pipe 17 is connected to a vacuum pump 18 that exhausts the accommodating portion 13 and the electron beam passage hole 14.
  • the exhaust pipe 17 and the vacuum pump 18 are provided at positions that do not overlap the connector 8 when the electron beam irradiation apparatus 1 is viewed from the direction of the emission axis of the electron beam EB. As a result, interference between the power supply plug and external wiring inserted into the connector 8 and the vacuum pump 18 can be avoided, and the electron beam irradiation apparatus 1 can be downsized.
  • FIG. 3 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB.
  • FIG. 4 is an enlarged side sectional view of each window unit.
  • the window unit 4 is a structure on one end side of the electron beam irradiation device 1 for emitting the electron beam EB that has passed through the electron beam passage hole 14 to the outside of the container 3.
  • the first window unit 4 includes a pedestal 21, a window substrate 22, a cap 23, an electron beam emission window 24, and an outer member 25.
  • the pedestal 21 is made of, for example, stainless steel, and includes a cylindrical barrel portion 21a and a flange portion 21b provided at the base end side edge of the barrel portion 21a.
  • a through hole 21c having the same diameter as the electron beam passage hole 14 is formed at the center of the body portion 21a.
  • a circular recess 21d for setting the window substrate 22 is formed at the tip of the body portion 21a.
  • a male thread portion 2 le for attaching the cap 23 is formed on the outer surface of the trunk portion 21a.
  • an insulating ring 26 is provided on the flange portion 21b.
  • the insulating ring 26 is formed of an electrically insulating material such as polytetrafluoroethylene, and is fixed to the flange portion 21b so as to surround the body portion 21a.
  • the pedestal 21 passes the bolts 28 through the respective borehole holes 27 and screws the bolts 28 into the screw holes of the container 3 so that the through holes 21c and the electron beam passage holes 14 are concentric. It is firmly fixed to the tip of 3.
  • a groove in which an O-ring 38 is installed is formed at the tip of the container 3 so that the hermetic seal between the pedestal 21 and the container 3 is maintained.
  • the pedestal 21 may be formed integrally with the container 3. In this case, it is not necessary to provide the O-ring 38 at the tip of the container 3.
  • the window substrate 22 is made of, for example, stainless steel, and includes a cylindrical barrel portion 22a and a flange portion 22b provided at an edge on the proximal end side of the barrel portion 22a.
  • a through hole 22c having a slightly smaller diameter than the through hole 21c of the base 21 is formed at the center of the body portion 22a.
  • a rectangular recess 22d for setting the electron beam exit window 24 is formed at the tip of the body 22a.
  • the window substrate 22 is disposed in the recess 21d of the pedestal 21 with the through hole 22c and the electron beam passage hole 14 being concentric.
  • the cap 23 is made of, for example, stainless steel, and includes a circular zenith portion 23a and a cylindrical threaded portion 23b formed on one end side of the zenith portion 23a. In the center of the zenith 23a, an opening 23c having a diameter larger than the outer diameter of the trunk 22a of the window substrate 22 is formed.
  • the inner diameter of the threaded portion 23b is substantially the same as the outer diameter of the trunk portion 21a of the pedestal 21, and the inner surface of the threaded portion 23b is connected to the male threaded portion 21e on the outer surface of the barrel portion 21a.
  • a corresponding female thread portion 23d is formed.
  • the cap 23 is formed by screwing the female threaded portion 23d of the threaded portion 23b with the male threaded portion 21e of the pedestal 21, so that the body portion 22a of the window substrate 22 and the electron beam emission window 24 are fitted into the opening 23c. It is fitted in the base 21 in a state of passing through.
  • the flange portion 22b of the window substrate 22 is pressed against the bottom surface of the recess 21d of the base 21 by the top portion 23a of the cap 23, and the window substrate 22 and the base 21 are firmly fixed.
  • a groove in which an O-ring 39 is installed is formed on the bottom surface of the recess 21d in the base 21.
  • the window substrate 22 and the base 21 Hermetic sealing is maintained.
  • the O-ring 38 and the O-ring 39 are arranged so as to overlap when viewed from the emission direction of the electron beam EB, and surround the vicinity of the passage path of the electron beam EB. Therefore, the pressing force applied to the O-rings 35 and 36 is almost equal, and a highly reliable sealing is possible.
  • the electron beam exit window 24 is a foil-like member that emits the electron beam EB that has passed through the electron beam passage hole 14 of the container 3 to the outside of the container 3.
  • the electron beam exit window 24 is formed in a rectangular shape by, for example, beryllium, and the thickness of the electron beam exit window 24 in the direction of the exit axis of the electron beam EB is about 10 m.
  • the electron beam emission window 24 is disposed on the bottom surface of the recess 22d of the window substrate 22 so as to close the tip of the through hole 22c of the window substrate 22, and is airtightly fixed to the window substrate 22 by brazing, for example.
  • the electron beam exit window 24 may be made of a material having a high electron beam EB transmittance, such as titanium or aluminum in addition to the above-described beryllium.
  • the outer member 25 is made of stainless steel, for example, and has a hollow cylindrical shape having the same diameter as the insulating ring 26 provided on the flange portion 21b of the base 21.
  • the outer member 25 is disposed so as to cover the trunk portion 21a of the pedestal 21, the window substrate 22, the cap 23, and the electron beam emission window 24, and is fixed to the flange portion 21b of the pedestal 21 via the insulating ring 26.
  • a plurality of (for example, four) screw holes 25 a having a predetermined phase angle are provided at the front end of the outer member 25.
  • an introduction pipe 30 is formed on the side surface of the outer member 25, and a discharge pipe 31 is formed on the opposite side of the introduction pipe 30.
  • the introduction pipe 30 and the discharge pipe 31 are connected to a nitrogen gas circulation device (not shown). Note that when the outer member 25 is fixed to the flange portion 21b of the base 21, it may be directly fixed without using the insulating ring 26. In this case, the insulating ring 26 is preferably arranged between the outer member 25 and the second window unit 5.
  • the second window unit 5 includes a disk member 32, an outer window mounting ring 33, and an outer window 34.
  • the disc member 32 is formed with the same diameter as the outer diameter of the outer member 25 by, for example, stainless steel.
  • An opening 32a having a diameter slightly smaller than the outer diameter of the body 22a of the window substrate 22 is formed in the central portion of the disc member 32.
  • six screw holes 32b are formed around the opening 32a!
  • four screw holes 32 c corresponding to the screw holes 25 a of the outer member 25 are formed at the edge of the disc member 32.
  • the disk member 32 is screwed into the screw hole 25a and the screw hole 32c so that the screw hole 32b faces the electron beam emission window 24 and the opening 32a is It is detachably fixed to the distal end of the outer member 25 so as to be concentric with the passage hole 14.
  • a lead wire (not shown) is attached to the disc member 32.
  • This lead wire is connected to an ammeter 29 installed outside the electron beam irradiation apparatus 1 (see Fig. 1).
  • the disc member 32 functions as a current reading electrode into which a part of the electron beam EB flows. That is, of the electron beam EB emitted from the outer window 34, the electron beam EB returned to the outer window 34 side due to the influence of scattering or the like flows into the disc member 32.
  • the current generated by the electron beam EB flowing into the disk member 32 is sent to the ammeter 29 through the lead wire.
  • the disc member 32 may be formed integrally with the outer member 25.
  • the outer window mounting ring 33 is a flat member having a smaller diameter than the disk member 32. Outside window mounting ring
  • An opening 33 a having a diameter larger than that of the electron beam exit window 24 is formed in the central portion of 33.
  • Six screw holes 33b corresponding to the screw holes 32b of the disk member 32 are formed around the opening 33a.
  • the outer window mounting ring 33 is screwed into each of the screw hole 32b and the screw hole 33b so that the opening 32a is concentric with the electron beam passage hole 14 on the back side of the disk member 32. It is fixed.
  • the outer window 34 is a foil-like member that emits the electron beam EB emitted from the electron beam emission window 24 to the outside of the apparatus 1.
  • the outer window 34 is formed of, for example, aluminum in a rectangular shape, and the thickness of the electron beam EB in the outer window 34 in the emission axis direction is about several meters.
  • the outer window 34 is brazed and fixed to one surface side of the outer window mounting ring 33 so as to close the opening 33 a of the outer window mounting ring 33, and is disposed in the opening 32 a of the disk member 32.
  • the outer window 34 is fixed to the outer window mounting ring 33 and the disc instead of being fixed by brazing. You may fix by pinching with the member 32.
  • FIG. if the opening 33a of the outer window mounting ring 33 and the opening 32a of the disk member 32 have the same dimensions, for example, when fixing the outer window 34, etc.
  • the thickness of the outer window 34 in the direction of the emission axis of the electron beam EB is equal to the electron beam emission window described above.
  • Electron beam EB is a force that is smaller than the thickness of the electron beam EB in the exit axis direction.Because it is not necessary to maintain tight airtightness between the first window unit 4 and the second window unit 5, the electron beam EB From the viewpoint of further reducing the output loss, the outer window 34 can be made as thin as about 1 ⁇ m. Furthermore, the material constituting the outer window 34 may include a material having an atomic number larger than that of the material constituting the electron beam emission window 24. Examples of the material constituting the outer window 34 include carbon (organic film), aluminum, silicon, titanium, nickel, copper, silver, gold, and various alloys. Since these materials are excellent in heat resistance, they are excellent in durability as an outer window.
  • the inside of the container 3 is evacuated by the vacuum pump 18, and a voltage of about several tens kV to several hundreds kV from an external power source through the internal wirings 11 and 11.
  • Is supplied to the filament 9 electrons are emitted from the filament 9.
  • the electrons emitted from the filament 9 are accelerated by the electric field formed by the grid portion 12, and become an electron beam EB.
  • the central axis is corrected by the electromagnetic coil 15, and then converged by the electromagnetic coil 16, and passes through the electron beam emission window 24 and the outer window 34 to the outside.
  • the emitted electron beam EB is irradiated to an irradiation object such as a printed material flowing on the line in an inert gas atmosphere such as nitrogen gas.
  • the second window unit 5 having the outer window 34 is provided for the first window unit 4 having the electron beam emission window 24. . Therefore, electric Scattered matter or the like generated when the beam EB is irradiated onto the irradiation object is blocked by the outer window 34, and contamination of the electron beam emission window 24 is prevented.
  • the thickness force of the outer window 34 in the direction of the emission axis of the electron beam EB is smaller than the thickness of the electron beam EB in the direction of the emission axis of the electron beam EB. Therefore, the output loss when the electron beam EB emitted from the electron beam emission window 24 passes through the outer window 34 can be suppressed extremely small, and the dose of the electron beam EB emitted outside the apparatus can be sufficiently secured. .
  • the disc member 32 of the second window unit 5 also functions as a current readout electrode. Therefore, the surface state of the outer window 34 that changes over time due to unevenness in the thickness of the electron beam exit window 24 and adhesion of scattered objects and dirt generated when the electron beam EB is irradiated onto the irradiation object.
  • the output (actual output) of the electron beam EB actually emitted from the outer window 34 can be measured in real time with high accuracy.
  • the disc member 32 is disposed so as not to overlap the electron beam exit window 24 and the outer window 34 when viewed from the exit axis direction of the electron beam EB, the electron beam EB from the electron beam exit window 24 is arranged. A sufficient amount of light can be secured.
  • the introduction pipe 30 for introducing nitrogen gas into the space S2 between the first window unit 4 and the second window unit 5 and the nitrogen gas is discharged from the space S2.
  • a discharge pipe 31 to be provided With such a configuration, generation of ozone in the space S2 when the electron beam EB is emitted from the electron beam emission window 24 is suppressed. Further, the cooling effect of the electron beam emission window 24 and the outer window 34 can be obtained by the flow of nitrogen gas in the space S.
  • FIG. 5 is a side sectional view showing the configuration of the electron beam irradiation apparatus according to the second embodiment of the present invention.
  • 6 is a cross-sectional view taken along line VI-VI in FIG.
  • the electron beam irradiation apparatus 40 according to the second embodiment uses the deflection coil 52 to move the electron beam EB that has passed through the electron beam passage hole 14 of the container 3 in a predetermined direction at high speed.
  • the electron beam EB is emitted from the first window unit 4 and the second window unit 5 at one point. Different from the first embodiment.
  • FIG. 7 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB.
  • FIG. 8 is an enlarged side sectional view of each window unit.
  • the window unit 41 includes a casing 51, a window substrate 53, an electron beam emission window 54, and an outer member 55.
  • the casing 51 has a shape in which the width in the deflection direction of the electron beam EB (the X direction in FIG. 5) increases as the force is directed from the proximal end side to the distal end side.
  • An opening 51a having the same diameter as the electron beam passage hole 14 is formed on the base end side of the casing 51, and the distal end side of the casing 51 is opened in a rectangular shape. Further, a circular flange portion 51b is formed on the base end side edge of the casing 51.
  • the casing 51 is positioned so that the opening 51a and the electron beam passage hole 14 are concentric, and is hermetically fixed to the tip of the container 3.
  • a deflection coil 52 is provided in the vicinity of the flange portion 51b on the base end side of the casing 51.
  • the deflection coil 52 is a coil that deflects the electron beam EB that has passed through the electron beam passage hole 14 in the housing 51.
  • L-shaped support members 52a are attached to both ends of the deflection coil 52.
  • the deflection coil 52 is sandwiched between the support members 52a and 52a so that the side wall on the proximal end side of the casing 51 is sandwiched therebetween.
  • the body 51 is disposed so as to be close to one of the side walls orthogonal to the deflection direction.
  • the deflection coil 52 is linear in the direction of travel of the electron beam EB that has passed through the electron beam passage hole 14 based on the current value supplied from an external power source (not shown). To deflect.
  • the window substrate 53 is formed in a rectangular shape using, for example, stainless steel, and is fixed to the tip of the housing 51.
  • a plurality (five in this embodiment) of rectangular through holes 53a are formed in the center of the window substrate 53.
  • Each through-hole 53a has a predetermined interval along the deflection direction of the electron beam EB.
  • a partition groove 53b is formed between the through holes 53a and 53a in a direction orthogonal to the deflection direction of the electron beam EB.
  • a rectangular annular insulating ring 56 made of, for example, polytetrafluoroethylene is fixed to the edge of the window substrate 53.
  • the electron beam exit window 54 is formed in a rectangular shape by, for example, beryllium, and the thickness of the electron beam exit window 54 in the direction of the exit axis of the electron beam EB is about lO ⁇ m. Yes.
  • the electron beam emission window 54 is provided for each through hole 53a, and is brazed to the window substrate 53 so as to block the tip of each through hole 53a. Note that a groove in which an O-ring 60 is installed is formed at the tip of the casing 51. As a result, hermetic sealing between the window substrate 53 and the casing 51 is maintained.
  • the outer member 55 has a hollow rectangular parallelepiped shape having the same dimensions as the window substrate 53, and is fixed to the window substrate 53 via an insulating ring 56. Screw holes 55a are formed at both ends in the X direction on the distal end side of the outer shell member 55, respectively.
  • An introduction pipe 57 is formed on the side surface in the X direction of the outer member 55, and a discharge pipe 58 is formed on the opposite side of the introduction pipe 57.
  • the introduction pipe 57 and the discharge pipe 58 are connected to a nitrogen gas circulation device (not shown).
  • the insulating ring 56 is preferably disposed between the outer member 55 and the second window unit 42.
  • the second window unit 42 includes a plate member 61, an outer window mounting member 62, and an outer window 63.
  • the plate member 61 is formed, for example, of stainless steel with the same dimensions as the outer member 55.
  • a rectangular opening 61 a that exposes each electron beam emission window 54 is formed in the central portion of the plate member 61, and both ends of the plate member 61 in the X direction correspond to the screw holes 55 a of the outer member 55.
  • Screw holes 61b are formed respectively.
  • a screw hole 61c is formed at a position inside the screw hole 61b so as to sandwich the opening 61a. Then, the plate member 61 is screwed into the screw hole 55a and the screw hole 6 lb, respectively, so that the screw hole 61c faces the electron beam emission window 54 at the tip of the outer member 55.
  • a lead wire (not shown) is attached to the plate member 61.
  • This lead wire is connected to an ammeter 29 installed outside the electron beam irradiation device 40 (see FIG. 5).
  • the plate member 61 functions as a current reading electrode into which a part of the electron beam EB flows. That is, among the electron beams EB emitted from the outer window 63, the electron beams EB returning to the outer window 63 side due to the influence of scattering and the like flow into the plate member 61.
  • the current generated by the electron beam EB flowing into the plate member 61 is sent to the ammeter 29 through the lead wire.
  • the plate member 61 may be formed integrally with the outer member 55.
  • the outer window mounting member 62 has a flat rectangular shape with a width dimension smaller than that of the plate member 61.
  • a rectangular opening 62 a that exposes the electron beam emission window 54 is formed at the center of the outer window mounting member 62, as with the plate member 61.
  • screw holes 62b corresponding to the screw holes 61c of the plate member 61 are formed at the edge portions in the X direction of the outer window mounting member 62, respectively.
  • the outer window attaching member 62 is fixed to the back side of the plate member 61 by screwing screws 65 into the screw holes 61c and 62b.
  • the outer window 63 is formed in a rectangular shape, for example, from aluminum, and the thickness of the outer window 63 in the direction of the emission axis of the electron beam EB is about several meters.
  • the outer window 63 is brazed and fixed to one surface side of the outer window mounting member 62 so as to close the opening 62 a of the outer window mounting member 62, and is disposed in the opening 61 a of the plate member 61.
  • the outer window 63 is connected to the outer window mounting member 62. You may fix by pinching with the board member 61. FIG. In this case, if the opening 62a of the outer window attaching member 62 and the opening 61a of the plate member 61 have the same dimensions, for example, when the outer window 62 is fixed, the opening 61a and the opening It is possible to prevent the outer window 63 from being damaged by hitting the edge of 62a.
  • the thickness of the outer window 63 in the direction of the emission axis of the electron beam EB is smaller than the thickness of each electron beam emission window 54 described above in the direction of the emission axis of the electron beam EB. Since it is not necessary to maintain tight airtightness between the unit 41 and the second window unit 42, the outer window 63 is thinned to about 1 ⁇ m from the viewpoint of further reducing the output loss of the electron beam EB. It is also possible to do this.
  • a second window unit having an outer window 63 with respect to a first window unit 41 having an electron beam emission window 54. 42 provided It has been. For this reason, the scattered matter generated when the irradiation object is irradiated with the electron beam EB is blocked by the outer window 63, and contamination of the electron beam emission window 54 is prevented. Further, in the electron beam irradiation apparatus 40, the thickness force of the outer window 63 in the direction of the emission axis of the electron beam EB is smaller than the thickness of the electron beam emission window 54 in the direction of the emission axis of the electron beam EB. Therefore, the output aperture when the electron beam EB emitted from the electron beam emission window 54 passes through the outer window 63 can be kept extremely small, and a sufficient dose of the electron beam EB emitted outside the apparatus can be secured. That's the power S.
  • the plate member 61 of the second window unit 42 also functions as a current readout electrode. Therefore, the surface condition of the outer window 63 that changes over time due to unevenness of the thickness of the electron beam exit window 54 and adhesion of scattered objects and dirt generated when the electron beam EB is irradiated on the irradiation object. In addition, the actual output of the electron beam EB actually emitted from the outer window 63 can be accurately measured in real time. Further, since the plate member 61 is disposed so as not to overlap the electron beam emission window 54 and the outer window 63 when viewed from the emission axis direction of the electron beam EB, the emission of the electron beam EB from the outer window 63 is performed. Enough amount can be secured
  • generation of ozone in the space S2 when the electron beam EB is emitted from the electron beam emission window 54 is suppressed.
  • the cooling effect of the electron beam emission window 54 and the outer window 63 is obtained by the flow of nitrogen gas in the space S2.
  • the electron beam emitting apparatus of the present invention it is possible to sufficiently secure the dose of the electron beam emitted to the outside of the apparatus while preventing the adhesion of dirt to the electron beam emitting window.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Coating Apparatus (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

In an electron beam irradiation apparatus (1), a second window unit (5) having an outer window (34) is provided opposing a first window unit (4) having an electron beam exit window (24). This prevents dirt from adhering to the electron beam exit window (24) because the outer window (34) blocks flying particles and the like produced when an irradiation object is irradiated with an electron beam (EB). Further, in the electron beam irradiation apparatus (1), the thickness of the outer window (34) in the direction of the exit axis of the electron beam (EB) is made smaller than the thickness of the electron beam exit window (24) in the direction of the exit axis of the electron beam (EB). Accordingly, the output loss occurring when the electron beam (EB) exiting the electron beam exit window (24) passes through the outer window (34) is suppressed to be extremely small, so that a sufficient dose of the electron beam (EB) emitted to the outside of the apparatus can be ensured.

Description

明 細 書  Specification
電子線照射装置  Electron beam irradiation device
技術分野  Technical field
[0001] 本発明は、電子線照射装置に関する。  [0001] The present invention relates to an electron beam irradiation apparatus.
背景技術  Background art
[0002] 電子線照射装置は、電子線を放出する電子銃を容器に収容し、薄膜で形成した電 子線出射窓を通して大気中に電子線を出射させる装置である。このような電子線照 射装置は、照射対象物の乾燥、殺菌、表面改質といった用途を有している。  An electron beam irradiation device is a device that houses an electron gun that emits an electron beam in a container and emits the electron beam into the atmosphere through an electron beam emission window formed of a thin film. Such an electron beam irradiation apparatus has uses such as drying, sterilization, and surface modification of an irradiation object.
[0003] ところで、電子線照射装置を実際に動作させると、電子線が照射対象物に照射され る際に発生する飛散物や汚れなどが出射窓に付着する場合がある。そこで、電子線 出射窓の外側に別の窓 (外窓)を設け、二重窓構造とした電子線照射装置も存在し て!/、る(例えば特許文献 1参照)。  [0003] By the way, when the electron beam irradiation apparatus is actually operated, scattered objects or dirt generated when the irradiation object is irradiated with an electron beam may adhere to the emission window. Therefore, there is also an electron beam irradiation apparatus in which another window (outer window) is provided outside the electron beam emission window and has a double window structure (see, for example, Patent Document 1).
特許文献 1 :特開平 8— 166497号公報  Patent Document 1: JP-A-8-166497
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上述したような二重窓構造の電子線照射装置では、電子線が外窓を通過する際に エネルギーを失い、その結果として出力ロスが生じることが考えられる。このことは、電 子線のエネルギーが小さい場合であるほど顕著になると考えられる。そこで、照射対 象物に十分な線量の電子線を照射させるため、電子線出射窓への汚れの付着を防 止しつつ、外窓における電子線の出力ロスを極力抑えることができる技術が望まれて いる。 [0004] In the electron beam irradiation apparatus having the double window structure as described above, it is considered that energy is lost when the electron beam passes through the outer window, resulting in output loss. This is considered to be more remarkable when the energy of the electron beam is small. Therefore, in order to irradiate the irradiation object with a sufficient dose of electron beam, a technology that can suppress the output loss of the electron beam in the outer window as much as possible while preventing dirt from adhering to the electron beam emission window is desired. It is rare.
[0005] 本発明は、上記課題の解決のためになされたものであり、電子線出射窓への汚れ の付着を防止しつつ、装置外部に出射する電子線の線量を十分に確保することがで きる電子線照射装置を提供することを目的とする。  [0005] The present invention has been made to solve the above-described problems, and can sufficiently secure the dose of an electron beam emitted to the outside of the apparatus while preventing the adhesion of dirt to the electron beam emission window. An object of the present invention is to provide an electron beam irradiation apparatus that can perform this.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題の解決のため、本発明に係る電子線照射装置は、電子線を放出する電 子放出部材を有する電子銃と、電子放出部材を収容すると共に、電子線を通過させ る電子線通過孔を有する容器と、電子線通過孔を閉じるように容器に固定され、電子 線通過孔を通過した電子線を容器の外部に出射させる電子線出射窓を有する第 1 の窓ユニットと、第 1の窓ユニットに固定され、電子線出射窓から出射した電子線を装 置外部に出射させる外窓を有する第 2の窓ユニットとを備え、外窓における電子線の 出射軸方向の厚さは、電子線出射窓における電子線の出射軸方向の厚さよりも小さ いことを特 ί毁としている。 In order to solve the above problems, an electron beam irradiation apparatus according to the present invention accommodates an electron gun having an electron emission member that emits an electron beam, an electron emission member, and allows an electron beam to pass therethrough. And a first window unit having an electron beam emission window fixed to the container so as to close the electron beam passage hole and emitting the electron beam having passed through the electron beam passage hole to the outside of the container. And a second window unit that is fixed to the first window unit and has an outer window that emits an electron beam emitted from the electron beam emission window to the outside of the apparatus, and in the direction of the emission axis of the electron beam in the outer window The special feature is that the thickness is smaller than the thickness of the electron beam exit window in the electron beam exit axis direction.
[0007] この電子線照射装置では、電子線出射窓を有する第 1の窓ユニットに対して、外窓 を有する第 2の窓ユニットが設けられている。そのため、電子線が照射対象物に照射 される際に発生する飛散物等は外窓によってブロックされ、電子線出射窓への汚れ の付着が防止される。また、この電子線照射装置では、外窓における電子線 ΕΒの出 射軸方向の厚さが、電子線出射窓における電子線 ΕΒの出射軸方向の厚さよりも小 さくなつている。したがって、電子線出射窓から出射した電子線が外窓を通過する際 の出力ロスを極めて小さく抑えることができ、装置外部に出射する電子線の線量を十 分に確保することカでさる。  [0007] In this electron beam irradiation apparatus, a second window unit having an outer window is provided for a first window unit having an electron beam exit window. For this reason, the scattered matter generated when the irradiation object is irradiated with the electron beam is blocked by the outer window, and the contamination of the electron beam emission window is prevented. Further, in this electron beam irradiation apparatus, the thickness of the outer window in the electron beam exit axis direction is smaller than the thickness of the electron beam exit window in the exit axis direction. Therefore, the output loss when the electron beam emitted from the electron beam emission window passes through the outer window can be suppressed to be extremely small, and the dose of the electron beam emitted to the outside of the apparatus can be secured sufficiently.
[0008] また、第 2の窓ユニットは、第 1の窓ユニットに対して着脱自在であることが好ましい 。こうすると、外窓への汚れの付着が進行した場合に、第 2の窓ユニットの交換作業 が簡単なものとなる。また、第 1の窓ユニットを容器から外す必要はないため、容器内 を真空リークする工程も不要となる。  [0008] The second window unit is preferably detachable with respect to the first window unit. This makes it easy to replace the second window unit when dirt adheres to the outer window. In addition, since it is not necessary to remove the first window unit from the container, a step of vacuum leakage in the container is also unnecessary.
[0009] また、第 1の窓ユニットと第 2の窓ユニットとの間の空間に不活性ガスを導入する導 入管と、空間から不活性ガスを排出する排出管とを更に備えたことが好ましい。このよ うな構成により、第 1の窓ユニットと第 2の窓ユニットとの間に不活性ガスを流動させる ことが可能となるので、電子線出射の際、オゾンの発生の抑制と電子線出射窓の冷 去 Ρとを fiうこと力できる。  [0009] Further, it is preferable to further include an introduction pipe for introducing an inert gas into a space between the first window unit and the second window unit, and a discharge pipe for discharging the inert gas from the space. . With such a configuration, an inert gas can flow between the first window unit and the second window unit. It is possible to fiddle the chilled cocoon.
[0010] 第 2の窓ユニットは、電子線の出射軸方向から見て、外窓と重ならないように配置さ れた電流読出電極を有していることが好ましい。この場合、外窓から出射した電子線 のうち、散乱等で外窓側に戻ってきた電子線によって生じる電流を測定することがで き、電子線の実出力をリアルタイムで精度良く測定することが可能となる。また、電流 読取電極が外窓の一部を塞いでしまうこともなぐ外窓からの電子線の線量を十分に 確保できる。 [0010] The second window unit preferably has a current readout electrode arranged so as not to overlap the outer window when viewed from the electron beam emission axis direction. In this case, among the electron beams emitted from the outer window, the current generated by the electron beam returning to the outer window due to scattering or the like can be measured, and the actual output of the electron beam can be accurately measured in real time. It becomes. In addition, the current reading electrode does not block a part of the outer window. It can be secured.
発明の効果  The invention's effect
[0011] 本発明に係る電子線出射装置によれば、電子線出射窓への汚れの付着を防止し つつ、装置外部に出射する電子線の線量を十分に確保することができる。  [0011] According to the electron beam emitting apparatus of the present invention, it is possible to sufficiently secure the dose of the electron beam emitted to the outside of the apparatus while preventing the adhesion of dirt to the electron beam emitting window.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の第 1実施形態に係る電子線照射装置の構成を示す側断面図である。  FIG. 1 is a side sectional view showing a configuration of an electron beam irradiation apparatus according to a first embodiment of the present invention.
[図 2]図 1における II II線断面図である。  FIG. 2 is a sectional view taken along line II-II in FIG.
[図 3]電子線 EBの出射軸方向から見た各窓ユニットの平面図である。  FIG. 3 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB.
[図 4]各窓ユニットの拡大側断面図である。  FIG. 4 is an enlarged side sectional view of each window unit.
[図 5]本発明の第 2実施形態に係る電子線照射装置の構成を示す側断面図である。  FIG. 5 is a side sectional view showing a configuration of an electron beam irradiation apparatus according to a second embodiment of the present invention.
[図 6]図 5における VI— VI線断面図である。  FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
[図 7]電子線 EBの出射軸方向から見た各窓ユニットの平面図である。  FIG. 7 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB.
[図 8]窓ユニットの拡大側断面図である。  FIG. 8 is an enlarged side sectional view of the window unit.
符号の説明  Explanation of symbols
[0013] 1, 40···電子線照射装置、 2···電子銃、 3···容器、 4, 41···第 1の窓ユニット、 5, 42 …第 2の窓ユニット、 9···フィラメント(電子放出部材)、 14···電子線通過孔、 24, 54 …電子線出射窓、 30, 57···導入管、 31, 58···排出管、 32···円板部材 (電流読出 電極)、 34, 63···外窓、 61···板部材(電流読出電極)、 ΕΒ···電子線、 S2_ 空間。 発明を実施するための最良の形態  [0013] 1, 40 ... Electron beam irradiation device, 2 ... Electron gun, 3 ... Container, 4, 41 ... First window unit, 5, 42 ... Second window unit, 9 ··· Filament (electron emitting member), 14 ··· Electron beam passage hole, 24, 54… Electron beam exit window, 30, 57 ··· Inlet tube, 31, 58 ··· Discharge tube, 32 ··· Disc member (current readout electrode), 34, 63 ··· Outer window, 61 ··· Plate member (current readout electrode), ΕΒ ··· Electron beam, S2_ space. BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、図面を参照しながら、本発明に係る電子線照射装置の好適な実施形態につ いて詳細に説明する。 Hereinafter, preferred embodiments of the electron beam irradiation apparatus according to the present invention will be described in detail with reference to the drawings.
[第 1実施形態]  [First embodiment]
[0015] 図 1は、本発明の第 1実施形態に係る電子線照射装置の構成を示す側断面図であ る。また、図 2は、図 1における II— II線断面図である。図 1及び図 2に示すように、電 子線照射装置 1は、電子線 EBを放出させる電子銃 2と、電子銃 2の先端部分のフイラ メント(電子放出部材) 9を収容する容器 3と、電子線 EBを容器 3から外部に出射させ る第 1の窓ユニット 4と、窓ユニット 4から出射した電子線 EBを装置外部に出射させる 第 2の窓ユニット 5とを備えている。この電子線照射装置 1は、例えば窒素などの不活 性ガスの雰囲気下において、ライン上を流れる照射対象物(図示しない)に電子線 E Bを照射し、照射対象物の乾燥、殺菌、表面改質などを行う装置として構成されてい FIG. 1 is a side sectional view showing a configuration of an electron beam irradiation apparatus according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line II-II in FIG. As shown in FIGS. 1 and 2, the electron beam irradiation apparatus 1 includes an electron gun 2 that emits an electron beam EB, and a container 3 that houses a filament (electron emission member) 9 at the tip of the electron gun 2. The first window unit 4 that emits the electron beam EB from the container 3 and the electron beam EB emitted from the window unit 4 are emitted to the outside of the apparatus. And a second window unit 5. This electron beam irradiation apparatus 1 irradiates an irradiation object (not shown) flowing on the line with an electron beam EB in an atmosphere of an inert gas such as nitrogen, for example, to dry, sterilize, and modify the surface of the irradiation object. It is configured as a device that performs quality etc.
[0016] 電子銃 2は、直方体形状のケース 6と、電気絶縁性を有する材料によって形成され た絶縁ブロック 7と、高耐圧型のコネクタ 8と、電子線 EBを放出させるフィラメント 9とを 有している。ケース 6は、例えば金属によって形成され、容器 3の基端側に固定され ている。ケース 6における容器 3側の壁には、ケース 6の内部と容器 3内の収容空間 S 1とを連通させる開口部 6aが設けられている。また、ケース 6の側壁には、コネクタ 8を 取り付けるための開口部 6bが設けられて!/、る。開口部 6bの周りのケース 6の内壁に は、凹凸部分が設けられており、絶縁ブロック 7との結合強度の確保が図られている。 [0016] The electron gun 2 has a rectangular parallelepiped case 6, an insulating block 7 made of an electrically insulating material, a high breakdown voltage connector 8, and a filament 9 that emits an electron beam EB. ing. The case 6 is formed of metal, for example, and is fixed to the proximal end side of the container 3. An opening 6 a that communicates the inside of the case 6 and the accommodation space S 1 in the container 3 is provided on the wall of the case 6 on the container 3 side. Further, an opening 6b for attaching the connector 8 is provided on the side wall of the case 6! /. The inner wall of the case 6 around the opening 6b is provided with an uneven portion so as to ensure the bonding strength with the insulating block 7.
[0017] 絶縁ブロック 7は、例えばエポキシ樹脂などの電気絶縁性の材料によって形成され ており、コネクタ 8からフィラメント 9への電力供給経路を外部から絶縁している。絶縁 ブロック 7は、ケース 6内に収容された基部 7aと、基部 7aから開口部 6aを通って容器 3内の収容空間 S 1側に突出する切頭円錐状の突出部 7bとを有している。基部 7aは 、ケース 6の内部の大部分を占めており、ケース 6における開口部 6a側及び開口部 6 b側の内壁に接触している。また、基部 7aにおいてケース 6の内壁と接触しない部分 には、導電性を有するフィルム 10が貼り付けられている。このフィルム 10が接地電位 であるケース 6と電気的に接続されることで、ケース 6の内面に面する絶縁ブロック 7 の表面電位を接地電位とすることができ、動作時の安定性の向上が図られる。  The insulating block 7 is made of an electrically insulating material such as an epoxy resin, and insulates the power supply path from the connector 8 to the filament 9 from the outside. The insulating block 7 has a base portion 7a housed in the case 6, and a frustoconical projecting portion 7b projecting from the base portion 7a to the housing space S1 side in the container 3 through the opening 6a. Yes. The base 7a occupies most of the inside of the case 6 and is in contact with the inner walls of the case 6 on the opening 6a side and the opening 6b side. A conductive film 10 is attached to a portion of the base portion 7a that does not contact the inner wall of the case 6. By electrically connecting the film 10 to the case 6 having the ground potential, the surface potential of the insulating block 7 facing the inner surface of the case 6 can be set to the ground potential, which improves the stability during operation. Figured.
[0018] コネクタ 8は、電子線照射装置 1の外部からフィラメント 9に電源電圧を供給するため のコネクタである。コネクタ 8は、ケース 6の側面の開口部 6bに差し込まれ、先端部分 が絶縁ブロック 7の中心付近に位置した状態で、絶縁ブロック 7中に埋没されて固定 されている。コネクタ 8の先端部分には、ケース 6の内壁と同様の凹凸部分が設けら れており、絶縁ブロック 7との結合強度の確保が図られている。  The connector 8 is a connector for supplying a power supply voltage to the filament 9 from the outside of the electron beam irradiation apparatus 1. The connector 8 is inserted into the opening 6 b on the side surface of the case 6, and is buried and fixed in the insulating block 7 with the tip portion positioned near the center of the insulating block 7. The tip portion of the connector 8 is provided with an uneven portion similar to the inner wall of the case 6 so as to ensure the bonding strength with the insulating block 7.
[0019] コネクタ 8の基端には、図示しない電源装置力 延びる外部配線の先端を保持した 電源用プラグの揷入口 8aが設けられている。また、コネクタ 8の先端には、一対の内 部配線 11 , 11が接続されている。内部配線 11 , 11は、コネクタ 8の先端から絶縁ブ ロック 7の基部 7aの中心に向かって延びると共に、基部 7aの中心から突出部 7bに向 けて折り曲がり、突出部 7bの中心を通って突出部 7bの先端まで延在している。 [0019] The base end of the connector 8 is provided with a plug inlet 8a for a power plug that holds the distal end of an external wiring (not shown) that extends the power supply device force. A pair of internal wires 11, 11 is connected to the tip of the connector 8. Internal wiring 11 and 11 are insulated from the tip of connector 8. The lock 7 extends toward the center of the base portion 7a, bends from the center of the base portion 7a toward the protruding portion 7b, and extends to the tip of the protruding portion 7b through the center of the protruding portion 7b.
[0020] フィラメント 9は、電子線 EBとなる電子を放出する部材である。フィラメント 9は、絶縁 ブロック 7の突出部 7bの先端部分に取り付けられ、内部配線 11 , 11に接続されてい る。フィラメント 9の周囲には、グリッド部 12が設けられている。グリッド部 12は、内部配 線 11 , 11のいずれか一方と電気的に接続されており、フィラメント 9に高電圧が印加 された場合に、グリッド部 12にも高電圧が印加されることで、フィラメント 9から電子を 引き出すための電界が形成される。フィラメント 9から引き出された電子は、グリッド部 12の中心に形成された孔から電子線 EBとして出射する。なお、フィラメント 9からの 電子の放出をより精密に制御したい場合には、例えば内部配線 11 , 11と同様にして 、別途グリッド部 12用の配線を追加し、フィラメント 9の電位とは独立してグリッド部 12 の電位を制御することが好ましレ、。  [0020] The filament 9 is a member that emits electrons to be the electron beam EB. The filament 9 is attached to the tip of the protruding portion 7b of the insulating block 7 and connected to the internal wirings 11 and 11. A grid portion 12 is provided around the filament 9. The grid part 12 is electrically connected to one of the internal wirings 11 and 11, and when a high voltage is applied to the filament 9, a high voltage is also applied to the grid part 12, An electric field for extracting electrons from the filament 9 is formed. The electrons extracted from the filament 9 are emitted as an electron beam EB from a hole formed at the center of the grid portion 12. In addition, when it is desired to control the emission of electrons from the filament 9 more precisely, for example, in the same way as the internal wirings 11 and 11, a wiring for the grid portion 12 is added separately and independent of the potential of the filament 9. It is preferable to control the potential of the grid part 12.
[0021] 容器 3は、電子線 EBの出射軸に沿って延びる円筒状に形成され、電子銃 2のケー ス 6に気密に封止されている。容器 3の基端側の内部には、電子銃 2のフィラメント 9、 グリッド部 12、及び絶縁ブロック 7の突出部 7bを収容する円筒状の収容部 13が形成 されている。収容部 13の径は、ケース 6の開口部 6aよりも大径となっており、容器 3の 基端から中央付近まで延在している。また、容器 3の先端側の内部には、収容部 13 と連通する電子線通過孔 14が形成されている。電子線通過孔 14は、収容部 13より も小径の円筒状をなし、電子線 EBの出射軸に沿って容器 3の中央付近から容器 3の 先端まで延在している。容器 3の先端には、所定の位相角をもって複数 (例えば 6個) のネジ穴(図示しなレ、)が設けられて!/、る。  The container 3 is formed in a cylindrical shape extending along the emission axis of the electron beam EB, and is hermetically sealed to the case 6 of the electron gun 2. A cylindrical accommodation portion 13 that accommodates the filament 9 of the electron gun 2, the grid portion 12, and the protruding portion 7 b of the insulating block 7 is formed inside the container 3 on the proximal end side. The diameter of the accommodating portion 13 is larger than that of the opening 6a of the case 6 and extends from the base end of the container 3 to the vicinity of the center. In addition, an electron beam passage hole 14 that communicates with the accommodating portion 13 is formed inside the distal end side of the container 3. The electron beam passage hole 14 has a cylindrical shape with a smaller diameter than the accommodating portion 13 and extends from the vicinity of the center of the container 3 to the tip of the container 3 along the emission axis of the electron beam EB. The tip of the container 3 is provided with a plurality of (for example, six) screw holes (not shown) with a predetermined phase angle!
[0022] 電子線通過孔 14の周囲には、電子線 EBの出射軸に沿って電磁コイル 15及び電 磁コイル 16が配置されている。電磁コイル 15及び電磁コイル 16の配置中心は、電子 線通過孔 14の中心軸に一致している。これらの電磁コイル 15及び電磁コイル 16の 協働により、電子線通過孔 14を通過する電子線 EBは、後述する電子線出射窓 24 に向けて集束するようになっている。  Around the electron beam passage hole 14, an electromagnetic coil 15 and an electromagnetic coil 16 are arranged along the emission axis of the electron beam EB. The arrangement center of the electromagnetic coil 15 and the electromagnetic coil 16 coincides with the central axis of the electron beam passage hole 14. By the cooperation of the electromagnetic coil 15 and the electromagnetic coil 16, the electron beam EB passing through the electron beam passage hole 14 is focused toward an electron beam exit window 24 described later.
[0023] より具体的には、電磁コイル 15は、電子銃 2や電子線 EBの通過経路を構成する各 部材の機械的な中心のズレや、各構成部材の残留磁気および設置場所周辺の磁界 等の影響によって生じる所望の通過経路(電子通過孔 14の中心軸)に対する電子線 EBのズレを補正するためのァライメントコイルである。本実施形態では、対向する 2つ の電磁コイル 15が対となって機能するように、 4つの電磁コイル 15が電子線通過孔 1 4を挟んで 90度の位相角をもって配置され、必要に応じて使用される。一方、電磁コ ィル 16は、電子銃 2から出射された電子線 EBを電子線出射窓 24に集めるための集 束コイルで、エナメル線などから成る円筒状のコイル部及び軟鉄などから成る磁気回 路から構成される。これらの電磁コイル 15, 16により、フィラメント 9から出射された電 子線 EBは、電子通過孔 14の中心軸を正確に通過し、電子通過孔 14の内壁に衝突 することなく電子線出射窓 24の中心へと正確に導かれる。 [0023] More specifically, the electromagnetic coil 15 includes a mechanical center shift of each member constituting the passage path of the electron gun 2 and the electron beam EB, a residual magnetism of each component member, and a magnetic field around the installation site. This is a alignment coil for correcting the deviation of the electron beam EB with respect to a desired passage path (center axis of the electron passage hole 14) caused by the influence of the above. In the present embodiment, four electromagnetic coils 15 are arranged with a phase angle of 90 degrees across the electron beam passage hole 14 so that two opposing electromagnetic coils 15 function as a pair. Used. On the other hand, the electromagnetic coil 16 is a bundling coil for collecting the electron beam EB emitted from the electron gun 2 to the electron beam emission window 24. The electromagnetic coil 16 is a magnetic coil composed of a cylindrical coil portion made of enameled wire and soft iron. It consists of a circuit. The electron beam EB emitted from the filament 9 by these electromagnetic coils 15 and 16 accurately passes through the central axis of the electron passage hole 14 and does not collide with the inner wall of the electron passage hole 14. Accurately led to the center of
[0024] また、図 2に示すように、容器 3の側部には排気管 17が設けられている。排気管 17 の先端は、収容部 13及び電子線通過孔 14を排気する真空ポンプ 18に接続されて いる。排気管 17及び真空ポンプ 18は、電子線照射装置 1を電子線 EBの出射軸方 向から見たときに、コネクタ 8と重ならない位置に設けられている。これにより、コネクタ 8に差し込まれる電源用プラグや外部配線と、真空ポンプ 18との干渉を回避し、電子 線照射装置 1を小型化できる。  As shown in FIG. 2, an exhaust pipe 17 is provided on the side of the container 3. The front end of the exhaust pipe 17 is connected to a vacuum pump 18 that exhausts the accommodating portion 13 and the electron beam passage hole 14. The exhaust pipe 17 and the vacuum pump 18 are provided at positions that do not overlap the connector 8 when the electron beam irradiation apparatus 1 is viewed from the direction of the emission axis of the electron beam EB. As a result, interference between the power supply plug and external wiring inserted into the connector 8 and the vacuum pump 18 can be avoided, and the electron beam irradiation apparatus 1 can be downsized.
[0025] 次に、図 3及び図 4を参照して、第 1の窓ユニット 4及び第 2の窓ユニット 5の構成に ついて説明する。図 3は、電子線 EBの出射軸方向から見た各窓ユニットの平面図で ある。また、図 4は、各窓ユニットの拡大側断面図である。  Next, the configuration of the first window unit 4 and the second window unit 5 will be described with reference to FIG. 3 and FIG. FIG. 3 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB. FIG. 4 is an enlarged side sectional view of each window unit.
[0026] 同図に示すように、窓ユニット 4は、電子線照射装置 1の一端側の構造体であり、電 子線通過孔 14を通過した電子線 EBを容器 3の外部に出射させるためのユニットであ る。第 1の窓ユニット 4は、台座 21と、窓基板 22と、キャップ 23と、電子線出射窓 24と 、外郭部材 25とを備えて構成されている。台座 21は、例えばステンレスによって形成 され、円筒状の胴部 21aと、胴部 21aの基端側の縁に設けられたフランジ部 21bとを 有している。  [0026] As shown in the figure, the window unit 4 is a structure on one end side of the electron beam irradiation device 1 for emitting the electron beam EB that has passed through the electron beam passage hole 14 to the outside of the container 3. Unit. The first window unit 4 includes a pedestal 21, a window substrate 22, a cap 23, an electron beam emission window 24, and an outer member 25. The pedestal 21 is made of, for example, stainless steel, and includes a cylindrical barrel portion 21a and a flange portion 21b provided at the base end side edge of the barrel portion 21a.
[0027] 胴部 21aの中心には、電子線通過孔 14と同径の貫通孔 21cが形成されている。ま た、胴部 21aの先端部には、窓基板 22をセットするための円状の凹部 21dが形成さ れている。さらに、胴部 21aの外側面には、キャップ 23を取り付けるための雄ネジ部 2 leが形成されている。一方、フランジ部 21bには、絶縁リング 26が設けられている。 絶縁リング 26は、例えばポリテトラフルォロエチレンなどの電気絶縁性を有する材料 によって形成され、胴部 21aを囲うようにしてフランジ部 21bに固定されている。 [0027] A through hole 21c having the same diameter as the electron beam passage hole 14 is formed at the center of the body portion 21a. In addition, a circular recess 21d for setting the window substrate 22 is formed at the tip of the body portion 21a. Further, a male thread portion 2 le for attaching the cap 23 is formed on the outer surface of the trunk portion 21a. On the other hand, an insulating ring 26 is provided on the flange portion 21b. The insulating ring 26 is formed of an electrically insulating material such as polytetrafluoroethylene, and is fixed to the flange portion 21b so as to surround the body portion 21a.
[0028] また、フランジ部 21bにおいて、絶縁リング 26よりも外側の位置には、約 60° の位 相角をもって 6つのボルト穴 27が設けられている(図 3参照)。そして、台座 21は、各 ボノレト穴 27にボルト 28を揷通し、ボルト 28を容器 3のネジ穴に螺合させることにより、 貫通孔 21cと電子線通過孔 14とが同心になった状態で容器 3の先端に強固に固定 されている。なお、容器 3の先端には、 Oリング 38が設置された溝が形成されており、 これにより、台座 21と容器 3との気密封止が保たれている。また、台座 21は容器 3と 一体に形成されていてもよい。この場合、 Oリング 38を容器 3の先端に設ける必要は ない。 [0028] Further, in the flange portion 21b, six bolt holes 27 having a phase angle of about 60 ° are provided at positions outside the insulating ring 26 (see Fig. 3). The pedestal 21 passes the bolts 28 through the respective borehole holes 27 and screws the bolts 28 into the screw holes of the container 3 so that the through holes 21c and the electron beam passage holes 14 are concentric. It is firmly fixed to the tip of 3. A groove in which an O-ring 38 is installed is formed at the tip of the container 3 so that the hermetic seal between the pedestal 21 and the container 3 is maintained. The pedestal 21 may be formed integrally with the container 3. In this case, it is not necessary to provide the O-ring 38 at the tip of the container 3.
[0029] 窓基板 22は、例えばステンレスによって形成され、円筒状の胴部 22aと、胴部 22a の基端側の縁に設けられたフランジ部 22bとを有している。胴部 22aの中心には、台 座 21の貫通孔 21cよりも僅かに小径の貫通孔 22cが形成されている。また、胴部 22a の先端部には、電子線出射窓 24をセットするための矩形状の凹部 22dが形成されて いる。そして、窓基板 22は、貫通孔 22cと電子線通過孔 14とが同心になった状態で 、台座 21の凹部 21dに配置されている。  [0029] The window substrate 22 is made of, for example, stainless steel, and includes a cylindrical barrel portion 22a and a flange portion 22b provided at an edge on the proximal end side of the barrel portion 22a. A through hole 22c having a slightly smaller diameter than the through hole 21c of the base 21 is formed at the center of the body portion 22a. Further, a rectangular recess 22d for setting the electron beam exit window 24 is formed at the tip of the body 22a. The window substrate 22 is disposed in the recess 21d of the pedestal 21 with the through hole 22c and the electron beam passage hole 14 being concentric.
[0030] キャップ 23は、例えばステンレスによって形成され、円形の天頂部 23aと、天頂部 2 3aの一端側に形成された円筒状の螺合部 23bとを有している。天頂部 23aの中央に は、窓基板 22の胴部 22aの外径よりも大径の開口部 23cが形成されている。また、螺 合部 23bの内径は、台座 21の胴部 21aの外径とほぼ同径となっており、螺合部 23b の内側面には、胴部 21aの外側面の雄ネジ部 21eに対応する雌ネジ部 23dが形成さ れている。  [0030] The cap 23 is made of, for example, stainless steel, and includes a circular zenith portion 23a and a cylindrical threaded portion 23b formed on one end side of the zenith portion 23a. In the center of the zenith 23a, an opening 23c having a diameter larger than the outer diameter of the trunk 22a of the window substrate 22 is formed. The inner diameter of the threaded portion 23b is substantially the same as the outer diameter of the trunk portion 21a of the pedestal 21, and the inner surface of the threaded portion 23b is connected to the male threaded portion 21e on the outer surface of the barrel portion 21a. A corresponding female thread portion 23d is formed.
[0031] そして、キャップ 23は、螺合部 23bの雌ネジ部 23dを台座 21の雄ネジ部 21eに螺 合させることにより、開口部 23cに窓基板 22の胴部 22a及び電子線出射窓 24を揷通 した状態で台座 21に嵌め込まれている。これにより、窓基板 22のフランジ部 22bは、 キャップ 23の天頂部 23aによって台座 21の凹部 21dの底面に押し付けられ、窓基板 22と台座 21とが強固に固定されている。さらに、台座 21における凹部 21dの底面に は、 Oリング 39が設置された溝が形成されている。これにより、窓基板 22と台座 21と の気密封止が保たれている。なお、 Oリング 38と Oリング 39とは、電子線 EBの出射方 向から見た場合に、重なるように配置され、電子線 EBの通過経路の近傍を囲んでい る。そのため、各 Oリング 35, 36にかかる押圧力がほぼ等しくなり、信頼性の高い封 止が可能となる。 [0031] Then, the cap 23 is formed by screwing the female threaded portion 23d of the threaded portion 23b with the male threaded portion 21e of the pedestal 21, so that the body portion 22a of the window substrate 22 and the electron beam emission window 24 are fitted into the opening 23c. It is fitted in the base 21 in a state of passing through. Thus, the flange portion 22b of the window substrate 22 is pressed against the bottom surface of the recess 21d of the base 21 by the top portion 23a of the cap 23, and the window substrate 22 and the base 21 are firmly fixed. Further, a groove in which an O-ring 39 is installed is formed on the bottom surface of the recess 21d in the base 21. As a result, the window substrate 22 and the base 21 Hermetic sealing is maintained. Note that the O-ring 38 and the O-ring 39 are arranged so as to overlap when viewed from the emission direction of the electron beam EB, and surround the vicinity of the passage path of the electron beam EB. Therefore, the pressing force applied to the O-rings 35 and 36 is almost equal, and a highly reliable sealing is possible.
[0032] 電子線出射窓 24は、容器 3の電子線通過孔 14を通過した電子線 EBを容器 3の外 部に出射させる箔状の部材である。電子線出射窓 24は、例えばベリリウムによって矩 形上に形成され、電子線出射窓 24における電子線 EBの出射軸方向の厚さは 10 m程度となっている。電子線出射窓 24は、窓基板 22の貫通孔 22cの先端を塞ぐよう にして窓基板 22の凹部 22dの底面上に配置され、例えばロウ付けによって窓基板 2 2に気密に固定されている。なお、電子線出射窓 24の材質は、電子線 EBの透過率 が高い材料であればよぐ上述したベリリウムの他、チタンやアルミニウムなどを用い ることあでさる。  The electron beam exit window 24 is a foil-like member that emits the electron beam EB that has passed through the electron beam passage hole 14 of the container 3 to the outside of the container 3. The electron beam exit window 24 is formed in a rectangular shape by, for example, beryllium, and the thickness of the electron beam exit window 24 in the direction of the exit axis of the electron beam EB is about 10 m. The electron beam emission window 24 is disposed on the bottom surface of the recess 22d of the window substrate 22 so as to close the tip of the through hole 22c of the window substrate 22, and is airtightly fixed to the window substrate 22 by brazing, for example. The electron beam exit window 24 may be made of a material having a high electron beam EB transmittance, such as titanium or aluminum in addition to the above-described beryllium.
[0033] 外郭部材 25は、例えばステンレスによって形成され、台座 21のフランジ部 21bに設 けられた絶縁リング 26と同径の中空の円筒状をなしている。外郭部材 25は、台座 21 の胴部 21a、窓基板 22、キャップ 23、及び電子線出射窓 24を覆うように配置され、 絶縁リング 26を介して台座 21のフランジ部 21bに固定されている。外郭部材 25の先 端には、所定の位相角をもって複数 (例えば 4個)のネジ孔 25aが設けられている。ま た、外郭部材 25の側面には、導入管 30がー体的に形成されており、導入管 30と反 対の位置には、排出管 31がー体的に形成されている。導入管 30及び排出管 31は、 窒素ガス循環装置(図示しない)に接続されている。なお、外郭部材 25を台座 21の フランジ部 21bに固定する際、絶縁リング 26を介さずに直接固定してもよい。この場 合、絶縁リング 26は、外郭部材 25と第 2の窓ユニット 5との間に配置することが好まし い。  The outer member 25 is made of stainless steel, for example, and has a hollow cylindrical shape having the same diameter as the insulating ring 26 provided on the flange portion 21b of the base 21. The outer member 25 is disposed so as to cover the trunk portion 21a of the pedestal 21, the window substrate 22, the cap 23, and the electron beam emission window 24, and is fixed to the flange portion 21b of the pedestal 21 via the insulating ring 26. A plurality of (for example, four) screw holes 25 a having a predetermined phase angle are provided at the front end of the outer member 25. In addition, an introduction pipe 30 is formed on the side surface of the outer member 25, and a discharge pipe 31 is formed on the opposite side of the introduction pipe 30. The introduction pipe 30 and the discharge pipe 31 are connected to a nitrogen gas circulation device (not shown). Note that when the outer member 25 is fixed to the flange portion 21b of the base 21, it may be directly fixed without using the insulating ring 26. In this case, the insulating ring 26 is preferably arranged between the outer member 25 and the second window unit 5.
[0034] 一方、第 2の窓ユニット 5は、円板部材 32と、外窓取付リング 33と、外窓 34とを備え て構成されている。円板部材 32は、例えばステンレスによって外郭部材 25の外径と 同径に形成されている。円板部材 32の中央部分には、窓基板 22の胴部 22aの外径 よりやや小径の開口部 32aが形成されている。開口部 32aの周りには、例えば 6つの ネジ孔 32bが形成されて!/、る。 [0035] また、円板部材 32の縁部には、外郭部材 25の各ネジ孔 25aに対応する 4つのネジ 孔 32cが形成されている。そして、円板部材 32は、ネジ孔 25a及びネジ孔 32cのそれ ぞれにネジ 35を螺合することにより、ネジ孔 32bが電子線出射窓 24を向いた状態で 、開口部 32aが電子線通過孔 14と同心になるようにして外郭部材 25の先端に着脱 自在に固定されている。 On the other hand, the second window unit 5 includes a disk member 32, an outer window mounting ring 33, and an outer window 34. The disc member 32 is formed with the same diameter as the outer diameter of the outer member 25 by, for example, stainless steel. An opening 32a having a diameter slightly smaller than the outer diameter of the body 22a of the window substrate 22 is formed in the central portion of the disc member 32. For example, six screw holes 32b are formed around the opening 32a! In addition, four screw holes 32 c corresponding to the screw holes 25 a of the outer member 25 are formed at the edge of the disc member 32. The disk member 32 is screwed into the screw hole 25a and the screw hole 32c so that the screw hole 32b faces the electron beam emission window 24 and the opening 32a is It is detachably fixed to the distal end of the outer member 25 so as to be concentric with the passage hole 14.
[0036] さらに、円板部材 32には、図示しないリード線が取り付けられている。このリード線 は、電子線照射装置 1の外部に設置された電流計 29に接続されている(図 1参照)。 このような円板部材 32の構成により、円板部材 32は、電子線 EBの一部が流れ込む 電流読出電極として機能する。すなわち、円板部材 32には、外窓 34から出射した電 子線 EBのうち、散乱等の影響によって外窓 34側に戻ってきた電子線 EBが流れ込 む。円板部材 32に流れ込んだ電子線 EBによって発生した電流は、リード線を通って 電流計 29に送られる。なお、円板部材 32は、外郭部材 25と一体的に形成してもよい  Furthermore, a lead wire (not shown) is attached to the disc member 32. This lead wire is connected to an ammeter 29 installed outside the electron beam irradiation apparatus 1 (see Fig. 1). With such a configuration of the disc member 32, the disc member 32 functions as a current reading electrode into which a part of the electron beam EB flows. That is, of the electron beam EB emitted from the outer window 34, the electron beam EB returned to the outer window 34 side due to the influence of scattering or the like flows into the disc member 32. The current generated by the electron beam EB flowing into the disk member 32 is sent to the ammeter 29 through the lead wire. The disc member 32 may be formed integrally with the outer member 25.
[0037] 外窓取付リング 33は、円板部材 32よりも小径の扁平な部材である。外窓取付リング The outer window mounting ring 33 is a flat member having a smaller diameter than the disk member 32. Outside window mounting ring
33の中央部分には、電子線出射窓 24よりも大径の開口部 33aが形成されている。開 口部 33aの周りには、円板部材 32の各ネジ孔 32bに対応する 6つのネジ孔 33bが形 成されている。外窓取付リング 33は、ネジ孔 32b及びネジ孔 33bのそれぞれにネジ 3 6を螺合することにより、開口部 32aが電子線通過孔 14と同心になるようにして円板 部材 32の裏側に固定されている。  An opening 33 a having a diameter larger than that of the electron beam exit window 24 is formed in the central portion of 33. Six screw holes 33b corresponding to the screw holes 32b of the disk member 32 are formed around the opening 33a. The outer window mounting ring 33 is screwed into each of the screw hole 32b and the screw hole 33b so that the opening 32a is concentric with the electron beam passage hole 14 on the back side of the disk member 32. It is fixed.
[0038] 外窓 34は、電子線出射窓 24から出射した電子線 EBを装置 1の外部に出射させる 箔状の部材である。外窓 34は、例えばアルミニウムによって矩形状に形成され、外窓 34における電子線 EBの出射軸方向の厚さは数 m程度となっている。外窓 34は、 外窓取付リング 33の開口部 33aを塞ぐようにして外窓取付リング 33の一面側にロウ 付け固定され、円板部材 32の開口部 32a内に配置されている。  The outer window 34 is a foil-like member that emits the electron beam EB emitted from the electron beam emission window 24 to the outside of the apparatus 1. The outer window 34 is formed of, for example, aluminum in a rectangular shape, and the thickness of the electron beam EB in the outer window 34 in the emission axis direction is about several meters. The outer window 34 is brazed and fixed to one surface side of the outer window mounting ring 33 so as to close the opening 33 a of the outer window mounting ring 33, and is disposed in the opening 32 a of the disk member 32.
[0039] ここで、外窓 34と外窓取付リング 33の間は気密封止する必要は無いため、ロウ付 けによつて固定する代わりに、外窓 34を外窓取付リング 33と円板部材 32とで挟み込 むことによって固定してもよい。この場合には、外窓取付リング 33の開口部 33aと、円 板部材 32の開口部 32aとを同寸法とすると、例えば外窓 34の固定作業を行う際など に、開口部 32aおよび開口部 33aのエッジ部に当たって外窓 34が破損してしまうこと を防止できる。 [0039] Here, since it is not necessary to hermetically seal between the outer window 34 and the outer window mounting ring 33, the outer window 34 is fixed to the outer window mounting ring 33 and the disc instead of being fixed by brazing. You may fix by pinching with the member 32. FIG. In this case, if the opening 33a of the outer window mounting ring 33 and the opening 32a of the disk member 32 have the same dimensions, for example, when fixing the outer window 34, etc. In addition, it is possible to prevent the outer window 34 from being damaged by hitting the edges of the opening 32a and the opening 33a.
[0040] また、外窓 34における電子線 EBの出射軸方向の厚さは、上述した電子線出射窓  [0040] The thickness of the outer window 34 in the direction of the emission axis of the electron beam EB is equal to the electron beam emission window described above.
24における電子線 EBの出射軸方向の厚さよりも小さくなつている力 第 1の窓ュニッ ト 4と第 2の窓ユニット 5との間は気密性を厳密に保つ必要はないため、電子線 EBの 出力ロスをより低減する観点から、外窓 34は 1 μ m程度にまで薄膜化することも可能 である。さらには、外窓 34を構成する材料は、電子線出射窓 24を構成する材料より も原子番号の大きい材料を含んでいてもよい。外窓 34を構成する材料としては、例 えばカーボン(有機膜)、アルミ、シリコン、チタン、ニッケル、銅、銀、金、および各種 合金などが挙げられる。これらの材料は、耐熱性に優れるため、外窓としての耐久性 に優れている。  Electron beam EB is a force that is smaller than the thickness of the electron beam EB in the exit axis direction.Because it is not necessary to maintain tight airtightness between the first window unit 4 and the second window unit 5, the electron beam EB From the viewpoint of further reducing the output loss, the outer window 34 can be made as thin as about 1 μm. Furthermore, the material constituting the outer window 34 may include a material having an atomic number larger than that of the material constituting the electron beam emission window 24. Examples of the material constituting the outer window 34 include carbon (organic film), aluminum, silicon, titanium, nickel, copper, silver, gold, and various alloys. Since these materials are excellent in heat resistance, they are excellent in durability as an outer window.
[0041] 上述した構成を有する電子線照射装置 1では、真空ポンプ 18によって容器 3の内 部が排気され、内部配線 11 , 11を介して外部電源から数十 kV〜数百 kV程度の電 圧がフィラメント 9に供給されると、フィラメント 9から電子が放出される。フィラメント 9か ら放出された電子は、グリッド部 12が形成する電界によって加速し、電子線 EBとなる 。電子線 EBは、電子線通過孔 14を通過する際、電磁コイル 15によって中心軸の補 正がなされた後、電磁コイル 16によって集束され、電子線出射窓 24及び外窓 34を 通って外部に出射する。出射した電子線 EBは、例えば窒素ガスのような不活性ガス の雰囲気下において、ライン上を流れる印刷物などの照射対象物に照射される。  In the electron beam irradiation apparatus 1 having the above-described configuration, the inside of the container 3 is evacuated by the vacuum pump 18, and a voltage of about several tens kV to several hundreds kV from an external power source through the internal wirings 11 and 11. Is supplied to the filament 9, electrons are emitted from the filament 9. The electrons emitted from the filament 9 are accelerated by the electric field formed by the grid portion 12, and become an electron beam EB. When the electron beam EB passes through the electron beam passage hole 14, the central axis is corrected by the electromagnetic coil 15, and then converged by the electromagnetic coil 16, and passes through the electron beam emission window 24 and the outer window 34 to the outside. Exit. The emitted electron beam EB is irradiated to an irradiation object such as a printed material flowing on the line in an inert gas atmosphere such as nitrogen gas.
[0042] 電子線 EBを電子線出射窓 24及び外窓 34から出射させる際、照射対象物に向か つた電子線 EBの一部が散乱等の影響によって外窓 34側に戻り、第 2の窓ユニット 5 の円板部材 32に流れ込む。電子線 EBの一部が流れ込むことによって発生した電流 は円板部材 32から電流計 29に送られ、電流値のモニタリングが行われる。また、第 1 の窓ユニット 4と第 2の窓ユニット 5との間の空間 S2には、導入管 30から一定量の窒 素ガスが導入される。空間 S2に導入された窒素ガスは、排出管 31から窒素ガス循環 装置に排出される。  [0042] When the electron beam EB is emitted from the electron beam emission window 24 and the outer window 34, a part of the electron beam EB toward the irradiation object returns to the outer window 34 side due to the influence of scattering or the like, and the second It flows into the disk member 32 of the window unit 5. The current generated when part of the electron beam EB flows is sent from the disk member 32 to the ammeter 29, and the current value is monitored. A certain amount of nitrogen gas is introduced into the space S2 between the first window unit 4 and the second window unit 5 from the introduction pipe 30. The nitrogen gas introduced into the space S2 is discharged from the discharge pipe 31 to the nitrogen gas circulation device.
[0043] 以上説明したように、電子線照射装置 1では、電子線出射窓 24を有する第 1の窓ュ ニット 4に対して、外窓 34を有する第 2の窓ユニット 5が設けられている。そのため、電 子線 EBが照射対象物に照射される際に発生する飛散物等は外窓 34によってブロッ クされ、電子線出射窓 24への汚れの付着が防止される。また、この電子線照射装置 1では、外窓 34における電子線 EBの出射軸方向の厚さ力 電子線出射窓 24におけ る電子線 EBの出射軸方向の厚さよりも小さくなつている。したがって、電子線出射窓 24から出射した電子線 EBが外窓 34を通過する際の出力ロスを極めて小さく抑える ことができ、装置外部に出射する電子線 EBの線量を十分に確保することができる。 [0043] As described above, in the electron beam irradiation apparatus 1, the second window unit 5 having the outer window 34 is provided for the first window unit 4 having the electron beam emission window 24. . Therefore, electric Scattered matter or the like generated when the beam EB is irradiated onto the irradiation object is blocked by the outer window 34, and contamination of the electron beam emission window 24 is prevented. In the electron beam irradiation apparatus 1, the thickness force of the outer window 34 in the direction of the emission axis of the electron beam EB is smaller than the thickness of the electron beam EB in the direction of the emission axis of the electron beam EB. Therefore, the output loss when the electron beam EB emitted from the electron beam emission window 24 passes through the outer window 34 can be suppressed extremely small, and the dose of the electron beam EB emitted outside the apparatus can be sufficiently secured. .
[0044] また、電子線照射装置 1では、第 2の窓ユニット 5の円板部材 32が電流読出電極と しても機能する。したがって、電子線出射窓 24の厚みのムラや、電子線 EBが照射対 象物に照射される際に発生する飛散物や汚れなどの付着によって動作時間の経過 と共に変化する外窓 34の表面状態を加味した上で、実際に外窓 34から出射した電 子線 EBの出力(実出力)をリアルタイムで精度良く測定することが可能となる。また、 円板部材 32は、電子線 EBの出射軸方向から見て、電子線出射窓 24及び外窓 34と 重ならないように配置されているので、電子線出射窓 24からの電子線 EBの出射量を 十分に確保できる。 In the electron beam irradiation apparatus 1, the disc member 32 of the second window unit 5 also functions as a current readout electrode. Therefore, the surface state of the outer window 34 that changes over time due to unevenness in the thickness of the electron beam exit window 24 and adhesion of scattered objects and dirt generated when the electron beam EB is irradiated onto the irradiation object. In addition, the output (actual output) of the electron beam EB actually emitted from the outer window 34 can be measured in real time with high accuracy. Further, since the disc member 32 is disposed so as not to overlap the electron beam exit window 24 and the outer window 34 when viewed from the exit axis direction of the electron beam EB, the electron beam EB from the electron beam exit window 24 is arranged. A sufficient amount of light can be secured.
[0045] 電子線 EBの実出力の測定により、実出力が低下してきたことが確認された場合、 外窓 34への汚れの付着が原因と考えられるため、外窓 34の交換が必要となる。この 場合、電子線照射装置 1では、ネジ 35を外すことにより、第 2の窓ユニット 5を第 1の 窓ユニット 4から容易に取り外すことが可能となっている。したがって、外窓 34の交換 を簡単に行うことができる。また、第 1の窓ユニット 4を容器 3から外す必要はないため 、容器 3内を真空リークする工程も不要となる。このため、窓交換を行う際の装置の停 止時間を著しく短縮することが可能となる。  [0045] If the actual output of the electron beam EB is confirmed to have decreased, it is considered that the dirt is attached to the outer window 34, so the outer window 34 must be replaced. . In this case, in the electron beam irradiation apparatus 1, the second window unit 5 can be easily detached from the first window unit 4 by removing the screw 35. Therefore, the outer window 34 can be easily replaced. Further, since it is not necessary to remove the first window unit 4 from the container 3, a step of vacuum leaking the container 3 is also unnecessary. For this reason, it is possible to significantly shorten the downtime of the apparatus when performing window replacement.
[0046] さらに、電子線照射装置 1では、第 1の窓ユニット 4と第 2の窓ユニット 5との間の空 間 S2に窒素ガスを導入する導入管 30と、空間 S2から窒素ガスを排出する排出管 31 と備えている。このような構成により、電子線出射窓 24から電子線 EBが出射する際 の空間 S2内でのオゾンの発生が抑制される。また、空間 S内を窒素ガスが流動する ことにより、電子線出射窓 24及び外窓 34の冷却効果が得られる。  [0046] Further, in the electron beam irradiation apparatus 1, the introduction pipe 30 for introducing nitrogen gas into the space S2 between the first window unit 4 and the second window unit 5 and the nitrogen gas is discharged from the space S2. And a discharge pipe 31 to be provided. With such a configuration, generation of ozone in the space S2 when the electron beam EB is emitted from the electron beam emission window 24 is suppressed. Further, the cooling effect of the electron beam emission window 24 and the outer window 34 can be obtained by the flow of nitrogen gas in the space S.
[第 2実施形態]  [Second Embodiment]
[0047] 続いて、本発明の第 2実施形態に係る電子線照射装置について詳細に説明する。 [0048] 図 5は、本発明の第 2実施形態に係る電子線照射装置の構成を示す側断面図であ る。また、図 6は、図 1における VI— VI線断面図である。図 5及び図 6に示すように、 第 2実施形態に係る電子線照射装置 40は、偏向コイル 52により、容器 3の電子線通 過孔 14を通過した電子線 EBを所定の方向に高速で偏向させることによって第 1の 窓ユニット 41及び第 2の窓ユニット 42から線状に電子線 EBを出射させる点で、第 1 の窓ユニット 4及び第 2の窓ユニット 5から一点で電子線 EBを出射させる第 1実施形 態と異なっている。 [0047] Next, an electron beam irradiation apparatus according to the second embodiment of the present invention will be described in detail. FIG. 5 is a side sectional view showing the configuration of the electron beam irradiation apparatus according to the second embodiment of the present invention. 6 is a cross-sectional view taken along line VI-VI in FIG. As shown in FIG. 5 and FIG. 6, the electron beam irradiation apparatus 40 according to the second embodiment uses the deflection coil 52 to move the electron beam EB that has passed through the electron beam passage hole 14 of the container 3 in a predetermined direction at high speed. By deflecting the electron beam EB from the first window unit 41 and the second window unit 42 in a linear manner, the electron beam EB is emitted from the first window unit 4 and the second window unit 5 at one point. Different from the first embodiment.
[0049] 第 1の窓ユニット 41及び第 2の窓ユニット 42の構成について説明する。図 7は、電 子線 EBの出射軸方向から見た各窓ユニットの平面図である。また、図 8は、各窓ュニ ットの拡大側断面図である。  [0049] The configurations of the first window unit 41 and the second window unit 42 will be described. FIG. 7 is a plan view of each window unit as viewed from the exit axis direction of the electron beam EB. FIG. 8 is an enlarged side sectional view of each window unit.
[0050] 図 7及び図 8に示すように、窓ユニット 41は、筐体 51と、窓基板 53と、電子線出射 窓 54と、外郭部材 55とを備えて構成されている。筐体 51は、基端側から先端側に向 力、うに従って電子線 EBの偏向方向(図 5における X方向)の幅が拡大する形状となつ ている。筐体 51の基端側には、電子線通過孔 14と同径の開口部 51aが形成されて おり、筐体 51の先端側は、矩形に開口している。また、筐体 51の基端側の縁には、 円形のフランジ部 51bが形成されている。そして、筐体 51は、開口部 51aと電子線通 過孔 14とが同心になるように位置決めされ、容器 3の先端に気密に固定されている。  As shown in FIGS. 7 and 8, the window unit 41 includes a casing 51, a window substrate 53, an electron beam emission window 54, and an outer member 55. The casing 51 has a shape in which the width in the deflection direction of the electron beam EB (the X direction in FIG. 5) increases as the force is directed from the proximal end side to the distal end side. An opening 51a having the same diameter as the electron beam passage hole 14 is formed on the base end side of the casing 51, and the distal end side of the casing 51 is opened in a rectangular shape. Further, a circular flange portion 51b is formed on the base end side edge of the casing 51. The casing 51 is positioned so that the opening 51a and the electron beam passage hole 14 are concentric, and is hermetically fixed to the tip of the container 3.
[0051] また、筐体 51の基端側のフランジ部 51bの近傍には、偏向コイル 52が設けられて いる。偏向コイル 52は、電子線通過孔 14を通過した電子線 EBを筐体 51内において 偏向させるコイルである。偏向コイル 52の両端には、 L字状の支持部材 52aがそれぞ れ取り付けられており、偏向コイル 52は、支持部材 52a, 52aで筐体 51の基端側の 側壁を挟み込むことにより、筐体 51において偏向方向と直交する側壁の一方に近接 するように配置されている。そして、偏向コイル 52は、外部電源(図示しない)から供 給される電流値に基づ!/、て、電子線通過孔 14を通過した電子線 EBの進行方向を X 方向に沿って線状に偏向させる。  In addition, a deflection coil 52 is provided in the vicinity of the flange portion 51b on the base end side of the casing 51. The deflection coil 52 is a coil that deflects the electron beam EB that has passed through the electron beam passage hole 14 in the housing 51. L-shaped support members 52a are attached to both ends of the deflection coil 52. The deflection coil 52 is sandwiched between the support members 52a and 52a so that the side wall on the proximal end side of the casing 51 is sandwiched therebetween. The body 51 is disposed so as to be close to one of the side walls orthogonal to the deflection direction. The deflection coil 52 is linear in the direction of travel of the electron beam EB that has passed through the electron beam passage hole 14 based on the current value supplied from an external power source (not shown). To deflect.
[0052] 窓基板 53は、例えばステンレスによって長方形状に形成され、筐体 51の先端に固 定されている。窓基板 53の中央には、複数 (本実施形態では 5個)の矩形の貫通孔 5 3aが形成されている。各貫通孔 53aは、電子線 EBの偏向方向に沿って所定の間隔 で一列に配列されている。また、貫通孔 53a, 53aの間には、電子線 EBの偏向方向 と直交する方向に仕切溝 53bがそれぞれ形成されている。そして、窓基板 53の縁部 には、例えばポリテトラフルォロエチレンなどによって形成された矩形環状の絶縁リン グ 56が固定されている。電子線出射窓 54は、第 1実施形態と同様に、例えばベリリウ ムによって矩形状に形成され、電子線出射窓 54における電子線 EBの出射軸方向の 厚さは、 lO ^ m程度となっている。電子線出射窓 54は、貫通孔 53aごとに設けられ、 各貫通孔 53aの先端を塞ぐようにして窓基板 53にロウ付けされている。なお、筐体 51 の先端には、 Oリング 60が設置された溝が形成されている。これにより、窓基板 53と 筐体 51との気密封止が保たれている。 The window substrate 53 is formed in a rectangular shape using, for example, stainless steel, and is fixed to the tip of the housing 51. In the center of the window substrate 53, a plurality (five in this embodiment) of rectangular through holes 53a are formed. Each through-hole 53a has a predetermined interval along the deflection direction of the electron beam EB. Are arranged in a row. Further, a partition groove 53b is formed between the through holes 53a and 53a in a direction orthogonal to the deflection direction of the electron beam EB. A rectangular annular insulating ring 56 made of, for example, polytetrafluoroethylene is fixed to the edge of the window substrate 53. Similarly to the first embodiment, the electron beam exit window 54 is formed in a rectangular shape by, for example, beryllium, and the thickness of the electron beam exit window 54 in the direction of the exit axis of the electron beam EB is about lO ^ m. Yes. The electron beam emission window 54 is provided for each through hole 53a, and is brazed to the window substrate 53 so as to block the tip of each through hole 53a. Note that a groove in which an O-ring 60 is installed is formed at the tip of the casing 51. As a result, hermetic sealing between the window substrate 53 and the casing 51 is maintained.
[0053] 外郭部材 55は、窓基板 53と同寸法の中空の直方体形状をなし、絶縁リング 56を 介して窓基板 53に固定されている。外郭部材 55の先端側における X方向の両端部 には、ネジ孔 55aがそれぞれ形成されている。また、外郭部材 55の X方向の側面に は、導入管 57がー体的に形成されており、導入管 57と反対の位置には、排出管 58 がー体的に形成されている。導入管 57及び排出管 58は、窒素ガス循環装置(図示 しない)に接続されている。なお、外郭部材 55を窓基板 53に固定する際、絶縁リング 56を介さずに直接固定してもよい。この場合、絶縁リング 56は、外郭部材 55と第 2の 窓ユニット 42との間に配置することが好ましい。  The outer member 55 has a hollow rectangular parallelepiped shape having the same dimensions as the window substrate 53, and is fixed to the window substrate 53 via an insulating ring 56. Screw holes 55a are formed at both ends in the X direction on the distal end side of the outer shell member 55, respectively. An introduction pipe 57 is formed on the side surface in the X direction of the outer member 55, and a discharge pipe 58 is formed on the opposite side of the introduction pipe 57. The introduction pipe 57 and the discharge pipe 58 are connected to a nitrogen gas circulation device (not shown). When the outer member 55 is fixed to the window substrate 53, it may be directly fixed without using the insulating ring 56. In this case, the insulating ring 56 is preferably disposed between the outer member 55 and the second window unit 42.
[0054] 第 2の窓ユニット 42は、板部材 61と、外窓取付部材 62と、外窓 63とを備えて構成さ れている。板部材 61は、例えばステンレスによって外郭部材 55と同寸法に形成され ている。板部材 61の中央部分には、各電子線出射窓 54を露出させる矩形の開口部 61 aが形成され、板部材 61における X方向の両端部には、外郭部材 55のネジ孔 55 aに対応するネジ孔 61bがそれぞれ形成されている。さらに、板部材 61の一面側に おいて、ネジ孔 61bよりも内側の位置には、開口部 61aを挟むようにネジ孔 61cが形 成されている。そして、板部材 61は、ネジ孔 55a及びネジ孔 6 lbのそれぞれにネジ 6 4を螺合することにより、ネジ孔 61cが電子線出射窓 54を向いた状態で、外郭部材 5 5の先端に着脱自在に固定されて!/、る。  [0054] The second window unit 42 includes a plate member 61, an outer window mounting member 62, and an outer window 63. The plate member 61 is formed, for example, of stainless steel with the same dimensions as the outer member 55. A rectangular opening 61 a that exposes each electron beam emission window 54 is formed in the central portion of the plate member 61, and both ends of the plate member 61 in the X direction correspond to the screw holes 55 a of the outer member 55. Screw holes 61b are formed respectively. Further, on one surface side of the plate member 61, a screw hole 61c is formed at a position inside the screw hole 61b so as to sandwich the opening 61a. Then, the plate member 61 is screwed into the screw hole 55a and the screw hole 6 lb, respectively, so that the screw hole 61c faces the electron beam emission window 54 at the tip of the outer member 55. Removably fixed! /
[0055] さらに、板部材 61には、図示しないリード線が取り付けられている。このリード線は、 電子線照射装置 40の外部に設置された電流計 29に接続されている(図 5参照)。こ のような板部材 61の構成により、板部材 61は、電子線 EBの一部が流れ込む電流読 出電極として機能する。すなわち、板部材 61には、外窓 63から出射した電子線 EB のうち、散乱等の影響によって外窓 63側に戻ってきた電子線 EBが流れ込む。板部 材 61に流れ込んだ電子線 EBによって発生した電流は、リード線を通って電流計 29 に送られる。なお、板部材 61は、外郭部材 55と一体的に形成してもよい。 Furthermore, a lead wire (not shown) is attached to the plate member 61. This lead wire is connected to an ammeter 29 installed outside the electron beam irradiation device 40 (see FIG. 5). This With the configuration of the plate member 61 as described above, the plate member 61 functions as a current reading electrode into which a part of the electron beam EB flows. That is, among the electron beams EB emitted from the outer window 63, the electron beams EB returning to the outer window 63 side due to the influence of scattering and the like flow into the plate member 61. The current generated by the electron beam EB flowing into the plate member 61 is sent to the ammeter 29 through the lead wire. The plate member 61 may be formed integrally with the outer member 55.
[0056] 外窓取付部材 62は、板部材 61よりも幅寸法の小さい扁平な矩形状をなしている。  The outer window mounting member 62 has a flat rectangular shape with a width dimension smaller than that of the plate member 61.
外窓取付部材 62の中央には、板部材 61と同様に、電子線出射窓 54を露出させる 矩形の開口部 62aが形成されている。また、外窓取付部材 62における X方向の縁部 には、板部材 61の各ネジ孔 61cに対応するネジ孔 62bがそれぞれ形成されている。 外窓取付部材 62は、ネジ孔 61c及びネジ孔 62bのそれぞれにネジ 65を螺合するこ とにより、板部材 61の裏側に固定されている。  A rectangular opening 62 a that exposes the electron beam emission window 54 is formed at the center of the outer window mounting member 62, as with the plate member 61. In addition, screw holes 62b corresponding to the screw holes 61c of the plate member 61 are formed at the edge portions in the X direction of the outer window mounting member 62, respectively. The outer window attaching member 62 is fixed to the back side of the plate member 61 by screwing screws 65 into the screw holes 61c and 62b.
[0057] 外窓 63は、例えばアルミニウムによって矩形状に形成され、外窓 63における電子 線 EBの出射軸方向の厚さは、数 m程度となっている。外窓 63は、外窓取付部材 6 2の開口部 62aを塞ぐようにして外窓取付部材 62の一面側にロウ付け固定され、板 部材 61の開口部 61a内に配置されている。  [0057] The outer window 63 is formed in a rectangular shape, for example, from aluminum, and the thickness of the outer window 63 in the direction of the emission axis of the electron beam EB is about several meters. The outer window 63 is brazed and fixed to one surface side of the outer window mounting member 62 so as to close the opening 62 a of the outer window mounting member 62, and is disposed in the opening 61 a of the plate member 61.
[0058] 第 1実施形態と同様に、外窓 63と外窓取付部材 62の間は気密封止する必要は無 いため、ロウ付けによって固定する代わりに、外窓 63を外窓取付部材 62と板部材 61 とで挟み込むことによって固定してもよい。この場合には、外窓取付部材 62の開口部 62aと、板部材 61の開口部 61aとを同寸法にすると、例えば外窓 62の固定作業を行 う際などに、開口部 61aおよび開口部 62aのエッジ部に当たって外窓 63が破損して しまうことを防止できる。  [0058] As in the first embodiment, since there is no need to hermetically seal between the outer window 63 and the outer window mounting member 62, instead of fixing by brazing, the outer window 63 is connected to the outer window mounting member 62. You may fix by pinching with the board member 61. FIG. In this case, if the opening 62a of the outer window attaching member 62 and the opening 61a of the plate member 61 have the same dimensions, for example, when the outer window 62 is fixed, the opening 61a and the opening It is possible to prevent the outer window 63 from being damaged by hitting the edge of 62a.
[0059] また、外窓 63における電子線 EBの出射軸方向の厚さは、上述した各電子線出射 窓 54における電子線 EBの出射軸方向の厚さよりも小さくなつている力 第 1の窓ュ ニット 41と第 2の窓ユニット 42との間は気密性を厳密に保つ必要はないため、電子線 EBの出力ロスをより低減する観点から、外窓 63は 1 μ m程度にまで薄膜化することも 可能である。  Further, the thickness of the outer window 63 in the direction of the emission axis of the electron beam EB is smaller than the thickness of each electron beam emission window 54 described above in the direction of the emission axis of the electron beam EB. Since it is not necessary to maintain tight airtightness between the unit 41 and the second window unit 42, the outer window 63 is thinned to about 1 μm from the viewpoint of further reducing the output loss of the electron beam EB. It is also possible to do this.
[0060] このような電子線照射装置 40においても、第 1実施形態と同様に、電子線出射窓 5 4を有する第 1の窓ユニット 41に対して、外窓 63を有する第 2の窓ユニット 42が設け られている。そのため、電子線 EBが照射対象物に照射される際に発生する飛散物 等は外窓 63によってブロックされ、電子線出射窓 54への汚れの付着が防止される。 また、電子線照射装置 40では、外窓 63における電子線 EBの出射軸方向の厚さ力 電子線出射窓 54における電子線 EBの出射軸方向の厚さよりも小さくなつている。し たがって、電子線出射窓 54から出射した電子線 EBが外窓 63を通過する際の出力口 スを極めて小さく抑えることができ、装置外部に出射する電子線 EBの線量を十分に 確保すること力 Sでさる。 In such an electron beam irradiation apparatus 40 as well, as in the first embodiment, a second window unit having an outer window 63 with respect to a first window unit 41 having an electron beam emission window 54. 42 provided It has been. For this reason, the scattered matter generated when the irradiation object is irradiated with the electron beam EB is blocked by the outer window 63, and contamination of the electron beam emission window 54 is prevented. Further, in the electron beam irradiation apparatus 40, the thickness force of the outer window 63 in the direction of the emission axis of the electron beam EB is smaller than the thickness of the electron beam emission window 54 in the direction of the emission axis of the electron beam EB. Therefore, the output aperture when the electron beam EB emitted from the electron beam emission window 54 passes through the outer window 63 can be kept extremely small, and a sufficient dose of the electron beam EB emitted outside the apparatus can be secured. That's the power S.
[0061] また、電子線照射装置 40では、第 2の窓ユニット 42の板部材 61が電流読出電極と しても機能する。したがって、電子線出射窓 54の厚みのムラや、電子線 EBが照射対 象物に照射される際に発生する飛散物や汚れなどの付着によって動作時間の経過 と共に変化する外窓 63の表面状態を加味した上で、実際に外窓 63から出射した電 子線 EBの実出力をリアルタイムで精度良く測定することが可能となる。また、板部材 61は、電子線 EBの出射軸方向から見て、電子線出射窓 54及び外窓 63と重ならな いように配置されているので、外窓 63からの電子線 EBの出射量を十分に確保できる  In the electron beam irradiation apparatus 40, the plate member 61 of the second window unit 42 also functions as a current readout electrode. Therefore, the surface condition of the outer window 63 that changes over time due to unevenness of the thickness of the electron beam exit window 54 and adhesion of scattered objects and dirt generated when the electron beam EB is irradiated on the irradiation object. In addition, the actual output of the electron beam EB actually emitted from the outer window 63 can be accurately measured in real time. Further, since the plate member 61 is disposed so as not to overlap the electron beam emission window 54 and the outer window 63 when viewed from the emission axis direction of the electron beam EB, the emission of the electron beam EB from the outer window 63 is performed. Enough amount can be secured
[0062] 電子線 EBの実出力の測定により、実出力が低下してきたことが確認された場合、 外窓 63への汚れの付着が原因と考えられるため、外窓 63の交換が必要となる。この 場合、電子線照射装置 40では、ネジ 64を外すことにより、第 2の窓ユニット 42を第 1 の窓ユニット 41から容易に取り外すことが可能となっている。したがって、外窓 63の 交換を簡単に行うことができる。また、第 1の窓ユニット 41を容器 3から外す必要はな いため、容器 3内を真空リークする工程も不要となる。このため、窓交換を行う際の装 置の停止時間を著しく短縮することが可能となる。 [0062] When the actual output of the electron beam EB is confirmed to have decreased, it is considered that the dirt is attached to the outer window 63, and therefore the outer window 63 must be replaced. . In this case, in the electron beam irradiation apparatus 40, the second window unit 42 can be easily detached from the first window unit 41 by removing the screw 64. Therefore, the outer window 63 can be easily replaced. Further, since it is not necessary to remove the first window unit 41 from the container 3, a step of vacuum leaking the inside of the container 3 is also unnecessary. For this reason, it is possible to significantly shorten the equipment stop time when performing window replacement.
[0063] さらに、電子線照射装置 40では、第 1の窓ユニット 41と第 2の窓ユニット 42との間の 空間 S2に窒素ガスを導入する導入管 57と、空間 S2から窒素ガスを排出する排出管 58と備えている。このような構成により、電子線出射窓 54から電子線 EBが出射する 際の空間 S2内でのオゾンの発生が抑制される。また、空間 S2内を窒素ガスが流動 することにより、電子線出射窓 54及び外窓 63の冷却効果が得られる。  [0063] Further, in the electron beam irradiation apparatus 40, the introduction pipe 57 for introducing nitrogen gas into the space S2 between the first window unit 41 and the second window unit 42, and the nitrogen gas is discharged from the space S2. Equipped with a discharge pipe 58. With such a configuration, generation of ozone in the space S2 when the electron beam EB is emitted from the electron beam emission window 54 is suppressed. Further, the cooling effect of the electron beam emission window 54 and the outer window 63 is obtained by the flow of nitrogen gas in the space S2.
産業上の利用可能性 本発明に係る電子線出射装置によれば、電子線出射窓への汚れの付着を防止し つつ、装置外部に出射する電子線の線量を十分に確保することができる。 Industrial applicability According to the electron beam emitting apparatus of the present invention, it is possible to sufficiently secure the dose of the electron beam emitted to the outside of the apparatus while preventing the adhesion of dirt to the electron beam emitting window.

Claims

請求の範囲 The scope of the claims
[1] 電子線を放出する電子放出部材を有する電子銃と、  [1] an electron gun having an electron emitting member that emits an electron beam;
前記電子放出部材を収容すると共に、前記電子線を通過させる電子線通過孔を有 する容器と、  A container having an electron beam passage hole for containing the electron emission member and allowing the electron beam to pass through;
前記電子線通過孔を閉じるように前記容器に固定され、前記電子線通過孔を通過 した前記電子線を前記容器の外部に出射させる電子線出射窓を有する第 1の窓ュ ニッ卜と、  A first window unit having an electron beam emission window fixed to the container so as to close the electron beam passage hole and emitting the electron beam that has passed through the electron beam passage hole to the outside of the container;
前記第 1の窓ユニットに固定され、前記電子線出射窓から出射した前記電子線を 装置外部に出射させる外窓を有する第 2の窓ユニットとを備え、  A second window unit fixed to the first window unit and having an outer window for emitting the electron beam emitted from the electron beam emission window to the outside of the apparatus,
前記外窓における前記電子線の出射軸方向の厚さは、前記電子線出射窓におけ る前記電子線の出射軸方向の厚さよりも小さいことを特徴とする電子線照射装置。  The electron beam irradiation apparatus according to claim 1, wherein a thickness of the electron beam in the exit axis direction of the outer window is smaller than a thickness of the electron beam in the exit axis direction of the electron beam exit window.
[2] 前記第 2の窓ユニットは、前記第 1の窓ユニットに対して着脱自在であることを特徴 とする請求項 1記載の電子線照射装置。 2. The electron beam irradiation apparatus according to claim 1, wherein the second window unit is detachable with respect to the first window unit.
[3] 前記第 1の窓ユニットと前記第 2の窓ユニットとの間の空間に不活性ガスを導入する 導入管と、 [3] An introduction pipe for introducing an inert gas into a space between the first window unit and the second window unit;
前記空間から前記不活性ガスを排出する排出管とを更に備えたことを特徴とする請 求項 1記載の電子線照射装置。  The electron beam irradiation apparatus according to claim 1, further comprising a discharge pipe for discharging the inert gas from the space.
[4] 前記第 2の窓ユニットは、前記電子線の出射軸方向から見て、前記外窓と重ならな いように配置された電流読出電極を有していることを特徴とする請求項 1記載の電子 線照射装置。 [4] The second window unit has a current readout electrode arranged so as not to overlap the outer window when viewed from the direction of the emission axis of the electron beam. 1. The electron beam irradiation apparatus according to 1.
PCT/JP2007/071604 2006-11-24 2007-11-07 Electron beam irradiation apparatus WO2008062667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-317499 2006-11-24
JP2006317499A JP4620034B2 (en) 2006-11-24 2006-11-24 Electron beam irradiation device

Publications (1)

Publication Number Publication Date
WO2008062667A1 true WO2008062667A1 (en) 2008-05-29

Family

ID=39429605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071604 WO2008062667A1 (en) 2006-11-24 2007-11-07 Electron beam irradiation apparatus

Country Status (3)

Country Link
JP (1) JP4620034B2 (en)
TW (1) TW200832448A (en)
WO (1) WO2008062667A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6068693B1 (en) * 2016-01-08 2017-01-25 浜松ホトニクス株式会社 Electron beam irradiation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271700A (en) * 1995-03-29 1996-10-18 Toshiba Corp Electron beam source
JP2004239920A (en) * 1994-07-22 2004-08-26 Ushio Internatl Technologies Inc Multiwindow electron gun
JP2005257476A (en) * 2004-03-11 2005-09-22 Mitsubishi Heavy Ind Ltd Window structure for extracting electron beam in electron beam irradiator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651700A (en) * 1979-10-02 1981-05-09 Sumitomo Electric Industries Electron beam irradiation device
JP2596636B2 (en) * 1990-09-03 1997-04-02 日本電信電話株式会社 X-ray extraction window with valve
JP3488524B2 (en) * 1994-12-12 2004-01-19 日本原子力研究所 Irradiation window equipment for electron beam irradiation equipment
JP3818162B2 (en) * 2002-01-30 2006-09-06 ウシオ電機株式会社 Electron beam irradiation processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239920A (en) * 1994-07-22 2004-08-26 Ushio Internatl Technologies Inc Multiwindow electron gun
JPH08271700A (en) * 1995-03-29 1996-10-18 Toshiba Corp Electron beam source
JP2005257476A (en) * 2004-03-11 2005-09-22 Mitsubishi Heavy Ind Ltd Window structure for extracting electron beam in electron beam irradiator

Also Published As

Publication number Publication date
JP2008128971A (en) 2008-06-05
JP4620034B2 (en) 2011-01-26
TW200832448A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
TWI497556B (en) X-ray generation device, X-ray generation device, and X-ray generation target
EP1096543B1 (en) X-ray tube
KR100766907B1 (en) X-ray tube system with disassembled carbon nanotube substrate for generating micro focusing level electron-beam
WO2015016019A1 (en) Target for x-ray generation and x-ray generation device
JP6792519B2 (en) X-ray generator
KR101257135B1 (en) Electron beam generating apparatus
JP2006266854A (en) Quadrupole mass spectrometer with total pressure measuring electrode, and vacuum device using it
KR101240779B1 (en) X-ray tube and x-ray source including same
JP2001319608A (en) Micro-focusing x-ray generator
JP4620034B2 (en) Electron beam irradiation device
JP2009301911A (en) X-ray generating device
US11110188B2 (en) Electron beam irradiation device
US20100002842A1 (en) Cathode assembly for rapid electron source replacement in a rotating anode x-ray generator
TW200832447A (en) Electron beam irradiation device
JP2009068973A (en) Electron beam irradiation equipment
KR102390110B1 (en) Ionizing Vacuum Gauges and Cartridges
JP2008128978A (en) Electron beam irradiation equipment
JP2007242556A (en) Electron gun, energy beam generating device, electron beam generating device, and x-ray generating device
TWI733264B (en) High voltage vacuum feedthrough
JP2006221876A (en) Ion detector, mass spectrometer having the same, and method for operating ion detector
JP2011216303A (en) X-ray source and method for manufacturing x-ray source
US3117224A (en) High vacuum mass analyser apparatus
TW200832446A (en) Electron beam irradiating device
KR100598273B1 (en) Hot cathode ion gage
WO2018189817A1 (en) Exposure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831335

Country of ref document: EP

Kind code of ref document: A1