WO2008059937A1 - Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery - Google Patents

Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery Download PDF

Info

Publication number
WO2008059937A1
WO2008059937A1 PCT/JP2007/072221 JP2007072221W WO2008059937A1 WO 2008059937 A1 WO2008059937 A1 WO 2008059937A1 JP 2007072221 W JP2007072221 W JP 2007072221W WO 2008059937 A1 WO2008059937 A1 WO 2008059937A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
roller
secondary battery
convex portion
metal foil
Prior art date
Application number
PCT/JP2007/072221
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Nonoshita
Takuhiro Nishimura
Hitoshi Katayama
Masanori Sumihara
Seiichi Kato
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/447,230 priority Critical patent/US20100003599A1/en
Priority to CN2007800419422A priority patent/CN101536223B/en
Priority to KR1020097010044A priority patent/KR101139639B1/en
Priority claimed from JP2007296872A external-priority patent/JP2008270153A/en
Publication of WO2008059937A1 publication Critical patent/WO2008059937A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Non-aqueous electrolyte secondary battery current collector manufacturing method non-aqueous electrolyte secondary battery electrode manufacturing method, and non-aqueous electrolyte secondary battery
  • the present invention relates to a method for producing a current collector for a non-aqueous electrolyte secondary battery, a method for producing an electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery. More specifically, the present invention mainly relates to improvement of a current collector for a non-aqueous electrolyte secondary battery.
  • Lithium secondary batteries have a high potential and high capacity, and are relatively easy to reduce in size and weight. Therefore, their use as a power source for portable electronic devices has increased remarkably recently. Yes.
  • a typical lithium secondary battery uses a carbonaceous material or the like capable of occluding and releasing lithium as a negative electrode active material, and lithium and a transition metal such as LiCoO as a positive electrode active material.
  • lithium secondary batteries used as power sources are also expected to improve the characteristic deterioration associated with charge / discharge cycles.
  • An electrode that is a power generation element of a lithium secondary battery includes a current collector and an active material layer.
  • the active material layer is generally formed by applying a mixture slurry on one side or both sides of a current collector and drying it, followed by press molding.
  • the mixture slurry is prepared by mixing and dispersing a positive electrode active material or a negative electrode active material, a binder and, if necessary, a conductive material in a dispersion medium.
  • the electrode expands and contracts with the charge / discharge cycle, so that the binding force between the current collector and the active material layer is weakened, and the active material layer is separated from the current collector. Dropping occurs and the characteristics deteriorate.
  • Current collector surface roughening methods include, for example, a method of etching the surface of the current collector by electrolysis, a method of depositing the same metal contained in the current collector by electrodeposition on the current collector surface, etc. Is mentioned.
  • a method has been proposed in which a metal foil is irradiated with a laser beam to form a concave / convex surface with a 10-point average roughness of 0.5 to 10 lO ⁇ m (for example, see Patent Document 2).
  • a laser beam is irradiated to locally heat a metal foil to evaporate the metal, thereby forming a recess.
  • the metal foil is locally heated to a temperature higher than the melting point of the metal foil to prevent the metal foil from wavy, wrinkled, warped, etc. It is difficult.
  • laser processing is performed on a metal foil with a thickness of 20 m or less, such as a current collector of a lithium secondary battery, there may be a problem that a hole is formed in the metal foil due to variations in laser output.
  • a roller having an uneven surface and a roller having a hard rubber layer on the surface are brought into contact with each other so that the respective axes are parallel to each other, and the current collector is passed through the contact portion.
  • a method of forming irregularities on the current collector see, for example, Patent Document 3).
  • irregularities are formed on the current collector in order to improve the output density of the lithium secondary battery without reducing the thickness of the active material layer.
  • Patent Document 3 since a roller having a hard rubber layer provided on the surface is used, even if a current collector is passed through a contact portion between the roller and the roller, plastic deformation hardly occurs.
  • FIG. Patent Document 4 is a perspective view schematically showing the configuration of the current collector of Patent Document 4.
  • FIG. Patent Document 4 current collector When a local part of one surface of the metal foil is depressed, the body has a partial force corresponding to the local part on the other surface, and irregularities that protrude outward from the other surface are regularly formed. It has been done. Such a current collector has sufficient mechanical strength. Furthermore, when an active material layer is formed on such a current collector, the thickness of the active material layer tends to be non-uniform, which adversely affects battery performance.
  • Patent Documents !! to 4 when a concave portion is formed on one surface of a metal foil, a portion corresponding to the concave portion on the other surface is inevitably formed as a convex portion, forming irregularities. It is difficult to prevent the metal foil from wavy, wrinkled, warped, etc.
  • the current collector includes a current collector made of punch metal having an opening degree of 20% or less in which unevenness is formed by embossing, and an active material layer filled in the recess of the current collector.
  • a current collector made of punch metal having an opening degree of 20% or less in which unevenness is formed by embossing
  • an active material layer filled in the recess of the current collector There has been proposed an electrode in which a part is exposed or an electrode in which an active material adheres to a convex part (see, for example, Patent Document 5).
  • FIG. 21 is a longitudinal sectional view schematically showing the configuration of the electrodes 101 to 103 of Patent Document 5.
  • An electrode 101 shown in FIG. 21 (a) includes a current collector 110 having irregularities formed thereon and an active material layer 111 filled in a concave portion 110b of the current collector 110, and a convex portion 30a of the current collector 110.
  • the active material layer 11 1 also adheres to the surface.
  • the convex portions 120a and 130a of the current collectors 120 and 130 are exposed, respectively.
  • Patent Document 5 since unevenness is formed by embossing a punch metal having an opening degree of 20% or less, the obtained current collector does not have sufficient mechanical strength. This may cause inconveniences such as electrode breakage.
  • an electrode that includes a current collector and an active material layer and has a value of (surface roughness Ra of active material layer)-(surface roughness Ra of current collector) of 0 .; 1 m or more (For example, see Patent Document 6).
  • a thin film of an active material is formed on the surface of the current collector by a vacuum deposition method or the like, a thin film having substantially the same surface roughness as that of the current collector surface is obtained.
  • the surface roughness of the thin film is adjusted to the specific value by subjecting the thin film formed by an ordinary method to processing such as sand blasting and surface polishing. This is trying to relieve the expansion stress of the active material.
  • Patent Document 6 Although the technique of Patent Document 6 is effective to some extent in preventing cracking of the active material, a thin film of the active material is formed on the entire surface of the current collector. Therefore, peeling of the thin film from the current collector, electrode deformation, and the like are likely to occur. As a result, the charge / discharge cycle characteristics deteriorate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-79466
  • Patent Document 2 JP 2003-258182 A
  • Patent Document 3 JP-A-8-195202
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-270186
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-32642
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2002-279972
  • An object of the present invention is to provide a nonaqueous electrolyte secondary battery collection having a high mechanical strength in which a plurality of convex portions capable of efficiently supporting an active material layer are formed on at least one surface without being subjected to compression processing.
  • An object of the present invention is to provide a method for manufacturing an electric body.
  • Another object of the present invention is to provide a method for producing an electrode for a nonaqueous electrolyte secondary battery comprising a current collector obtained by the method for producing a current collector for a nonaqueous electrolyte secondary battery of the present invention and an active material layer. It is to be.
  • a further object of the present invention is to provide a nonaqueous electrolyte secondary battery including an electrode produced by the method for producing an electrode for a nonaqueous electrolyte secondary battery of the present invention.
  • the present invention provides a pair of processing means provided so as to form a press-fitting two-ply portion through which a surface can be pressed against each other and through which a sheet-like material can pass, and a plurality of recesses formed on at least one surface.
  • a non-aqueous electrolyte secondary that forms a plurality of convex portions on at least one surface of the current collector metal foil by passing the metal foil for current collector through the pressure-welded ep portion of the processing means and compressing the current collector metal foil.
  • the present invention relates to a method for producing a battery current collector.
  • the surface roughness of the tip surface of the convex portion is substantially the same as the surface roughness of the current collector metal foil before compression processing.
  • the cross section of the recess in the direction perpendicular to the processing means surface has a tapered shape in which the width of the cross section in the direction parallel to the processing means surface gradually decreases from the processing means surface toward the bottom of the recess. Preferably it is.
  • the convex portion it is preferable to compress the convex portion so that the volume of the convex portion is 85% or less of the volume of the internal space of the concave portion.
  • the boundary between the concave portion and the surface of the processing means is preferably a curved surface.
  • the curved surface at the boundary between the concave portion and the surface of the processing means is formed by forming the concave portion by laser processing and removing the bulge at the boundary between the concave portion and the surface of the processing means.
  • a plurality of grooves having a width of 1 ⁇ m or less and a depth of 1 ⁇ m or less are formed at the boundary between the recess and the surface of the processing means.
  • grooves by polishing with diamond particles having an average particle size of 5 m or less.
  • the pair of processing means is a pair of rollers, and a recess is formed on the surface of at least one of the rollers.
  • a surface coating layer containing cemented carbide, alloy tool steel, or chromium oxide is formed on the surface of the roller where the recess is formed and on the surface facing the inner space of the recess.
  • a protective layer containing an amorphous carbon material is preferably formed on the surface of the surface coating layer.
  • the surface coating layer and the protective layer are formed by a physical vapor deposition method using sputtering, a physical vapor deposition method using ion implantation, a chemical vapor deposition method using thermal evaporation, and a chemistry using plasma deposition.
  • a physical vapor deposition method using sputtering a physical vapor deposition method using ion implantation
  • a chemical vapor deposition method using thermal evaporation a chemistry using plasma deposition.
  • it is formed by at least one gas phase growth method selected from the group consisting of chemical vapor deposition methods.
  • At least one roller force is a roller provided with a ceramic layer on the surface, A recess is formed on the surface!
  • the lubricant preferably contains a fatty acid.
  • the present invention also includes a base member made of a current collector metal foil and a plurality of convex portions formed so as to extend outward from at least one surface of the base member.
  • the present invention relates to a current collector for a non-aqueous electrolyte secondary battery in which the boundary between the surface of the substrate portion and the convex portion is a curved surface.
  • the present invention provides a current collector for a nonaqueous electrolyte secondary battery produced by any one of the above methods for producing a current collector for a nonaqueous electrolyte secondary battery, or the above-mentioned nonaqueous electrolyte secondary battery.
  • the present invention relates to a method for producing an electrode for a nonaqueous electrolyte secondary battery in which a positive electrode active material or a negative electrode active material is supported on the surface of a current collector.
  • the present invention is a non-aqueous electrolyte secondary battery containing a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
  • At least one of the positive electrode and the negative electrode relates to a non-aqueous electrolyte secondary battery that is an electrode manufactured by the method for manufacturing an electrode for a non-aqueous electrolyte secondary battery.
  • the convex portions are formed without being subjected to compression processing, the mechanical strength is improved and the current collector is rich in durability.
  • the body is obtained.
  • the convex portion is formed by plastic deformation without being subjected to compression processing.
  • the tip surface of the convex part is formed with almost no influence of the compression process and the plastic deformation accompanying it, it has almost the same surface roughness as the current collector metal foil before the compression process.
  • the current collector having such a convex portion is further improved in mechanical strength and thus durability, and has a very strong adhesion to the active material layer when the active material layer is supported.
  • a current collector including a base material part and a plurality of convex parts formed so as to extend outward from at least one surface of the base material part, the surface of the base material part and the convex part By making the boundary part a curved surface, the mechanical strength and durability of the current collector are further improved. Further, the convex portions can be formed at a lower pressure during the compression processing, and the releasability of the current collector from the processing means after the compression processing can be improved.
  • FIG. 1 is a longitudinal sectional view schematically showing a method for producing a current collector which is one embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically illustrating plastic deformation of a current collector metal foil accompanying compression processing.
  • FIG. 3 is a side view schematically showing the configuration of the current collector manufacturing apparatus.
  • FIG. 4 is an enlarged perspective view showing a configuration of a main part of the current collector manufacturing apparatus shown in FIG.
  • FIG. 5 is a drawing showing a configuration of a roller used for compression processing.
  • FIG. 5 (a) is a perspective view showing the appearance of the roller.
  • FIG. 5 (b) is an oblique view showing an enlarged surface area of the roller shown in FIG. 5 (a).
  • FIG. 6 is a longitudinal sectional view schematically showing a method of manufacturing a current collector of another form which is one of the embodiments of the present invention.
  • FIG. 7 is a longitudinal sectional view schematically showing the structure of a current collector obtained by the method for producing a current collector for a non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 8 is a longitudinal sectional view schematically showing a method for manufacturing the current collector shown in FIG.
  • FIG. 9 is a drawing showing the configuration of another form of roller used for compression processing.
  • Fig. 8 (a) is a perspective view showing the appearance of the mouth roller.
  • FIG. 8 (b) is an enlarged perspective view showing the surface area of the roller shown in FIG. 8 (a).
  • FIG. 8 (c) is an enlarged perspective view showing a recess formed on the roller peripheral surface shown in FIG. 8 (b).
  • FIG. 10 is a longitudinal sectional view schematically showing a configuration of a current collector of another embodiment obtained by the method for producing a current collector for a non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 11 is a longitudinal sectional view schematically showing a method for manufacturing the current collector shown in FIG. 10.
  • FIG. 12 is a partially exploded perspective view schematically showing a configuration of a wound non-aqueous electrolyte secondary battery which is one embodiment of the present invention.
  • FIG. 13 is a longitudinal sectional view schematically showing a configuration of a laminated nonaqueous electrolyte secondary battery which is one embodiment of the present invention.
  • FIG. 14 is a drawing schematically showing a configuration of a current collector obtained in Example 5.
  • Figure 14 (a) is a perspective view.
  • FIG. 14 (b) is a longitudinal sectional view.
  • FIG. 15 is a drawing schematically showing a configuration of a current collector obtained in Example 6.
  • FIG. 15 (a) is a perspective view.
  • Fig. 15 (b) is a longitudinal sectional view.
  • FIG. 16 is a drawing schematically showing a configuration of a current collector obtained in Example 24.
  • Figure 16 (a) is a perspective view.
  • FIG. 16 (b) is a longitudinal sectional view.
  • FIG. 17 is a drawing schematically showing a configuration of a current collector obtained in Example 25.
  • Figure 17 (a) is a perspective view.
  • FIG. 17 (b) is a longitudinal sectional view.
  • FIG. 18 is an electron micrograph of a cross section of the current collector obtained in Example 1.
  • FIG. 19 is an electron micrograph of a cross section of a current collector obtained in Comparative Example 1.
  • FIG. 20 is a perspective view schematically showing a configuration of a current collector of the prior art.
  • FIG. 21 is a longitudinal sectional view schematically showing a configuration of a conventional electrode.
  • the step of forming a convex portion on the surface of the current collector metal foil, the electrode active material is supported on the convex portion of the current collector.
  • the electrode active material is supported on the convex part of the current collector, and the electrode active material is prevented from falling off the current collector in the process of manufacturing the electrode and slitting the electrode to a predetermined width. it can. Therefore, a highly reliable non-aqueous electrolyte secondary battery is finally obtained.
  • the method for producing a current collector for a non-aqueous electrolyte secondary battery according to the present invention passes the current collector metal foil through the pressure nip portion of a pair of processing means. It is characterized by performing compression processing. More specifically, by adopting the above-described configuration and causing partial plastic deformation on the surface of the current collector metal foil, the tip surface is formed with a convex portion that is hardly affected by compression processing and plastic deformation. It is characterized by.
  • the pair of processing means is provided so as to form a press-fitting dip portion through which a sheet-like material can pass through pressure contact with each other, and a plurality of concave portions are formed on at least one surface.
  • a pair of processing means As the pair of processing means, a pair of rollers is preferable.
  • the pair of rollers has a plurality of recesses formed on at least one surface.
  • the compression processing of the present invention for example, the current collector metal foil is passed through the press nip portion of a pair of rollers, the current collector metal foil is mechanically pressed, and the current collector metal foil is partially processed. This is done by plastic deformation.
  • a current collector having a convex portion on the surface is produced by performing compression processing using a pair of rollers, peeling of the convex portion from the current collector can be almost certainly prevented.
  • a current collector having a convex portion on the surface can be manufactured at low cost with high productivity.
  • a current collector for a non-aqueous electrolyte secondary battery in which a plurality of convex portions are formed on one surface in the thickness direction (hereinafter simply referred to as “current collector”) Is obtained.
  • FIG. 1 is a longitudinal sectional view schematically showing compression processing of a current collector metal foil 10 which is one embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically illustrating plastic deformation of the current collector metal foil 10 accompanying compression processing.
  • 3 is a side view schematically showing the configuration of the current collector manufacturing apparatus 35.
  • FIG. FIG. 4 is an enlarged perspective view showing a configuration of a main part (processing means 37) of the current collector manufacturing apparatus 35 shown in FIG.
  • FIG. 5 is a diagram showing the configuration of the roller 4 used for compression processing.
  • FIG. 5A is a perspective view showing the appearance of the roller 4.
  • FIG. 5 (b) is an enlarged perspective view showing the surface region 4x of the roller 4 shown in FIG. 5 (a).
  • the current collector manufacturing method of the present invention is performed using, for example, a current collector manufacturing apparatus 35 shown in FIG.
  • the current collector manufacturing apparatus 35 includes metal foil supply means 36, processing means 37, and current collector winding means 38.
  • the metal foil supply means 36 is a metal foil supply roller.
  • the metal foil supply roller is pivotally supported by a support means (not shown) so as to be rotatable around the axis.
  • Metal foil supply A metal foil 10 for current collector is wound around the peripheral surface of the roller.
  • the current collector metal foil 10 is supplied to the press-fitting dip portion 6 of the processing means 37.
  • the current collector metal foil 10 is a metal foil made of a metal material that does not cause an electrochemical reaction with lithium.
  • examples of the metal foil 10 for current collector include copper, nickel, iron, and an alloy containing at least one of these.
  • the metal foil etc. which consist of etc. can be used. Among these, a metal foil made of copper or a copper alloy is preferable.
  • Examples of copper alloys include zinc-containing copper, tin-containing copper, and silver-containing Examples thereof include precipitation hardening alloys such as copper, zirconium-containing copper, chromium copper, tellurium copper, titanium copper, beryllium copper, iron-containing copper, phosphorus-containing copper, and aluminum copper, and composite alloys of two or more of these.
  • Examples of copper and copper alloy metal foils include electrolytic copper foil, electrolytic copper alloy foil, rolled copper foil, copper alloy foil, rolled copper alloy foil, and a foil that has been subjected to a surface roughening treatment.
  • the thickness of the metal foil for the negative electrode current collector is not particularly limited, but is preferably about 5 to 100 m.
  • the current collector 1 for the positive electrode is produced from the metal foil 10 for the current collector, the metal foil for the current collector is used.
  • the metal 10 for example, a metal foil made of aluminum, aluminum alloy, stainless steel, titanium, or the like can be used.
  • the thickness of the metal foil for the positive electrode current collector is not particularly limited but is preferably about 5 to 100 in. Of course, these metal foils may be roughened.
  • the processing means 37 includes rollers 4 and 5 as shown in FIG. 3 and FIG.
  • the rollers 4 and 5 are pressed against each other so that their axes are parallel to each other, thereby forming a press-contacting two-ply portion 6.
  • a sheet-like object such as a current collector metal foil 10 can pass through the pressure-welding nipping portion 6.
  • Each of the rollers 4 and 5 is rotatably supported by a support means (not shown), and is rotatably provided around an axis line by a drive means (not shown).
  • Both rollers 4 and 5 may be drive rollers, or one may be a drive roller and the other may be a driven roller that rotates as the drive roller rotates.
  • the current collector 1 includes a base material portion 2 and a plurality of convex portions 3.
  • the base material portion 2 is a plate-like portion in which the current collector metal foil 10 is compressed in the thickness direction.
  • the convex part 3 is a protruding part formed so as to extend outward from the one surface 2 a of the base part 2. The convex part 3 is formed without being subjected to compression.
  • the roller 4 is a roller having a plurality of recesses 4a formed on the peripheral surface.
  • the roller 4 forms the recess 4a on a recess forming roller made of, for example, one or more metal materials selected from the group consisting of various metals and alloys, preferably stainless steel, iron hardened steel, and the like. You can make it.
  • a coating layer containing cemented carbide or alloy tool steel may be provided on the peripheral surface of the recess forming roller. By forming such a coating layer, the surface hardness of the finally obtained roller 4 is further increased. Therefore, when the current collector metal foil 10 is subjected to compression processing, the shape of the formed protrusion 3 varies. Can be suppressed.
  • a coating layer containing cemented carbide or chromium oxide may be provided on the peripheral surface of the recess forming roller.
  • Such a coating layer has the effect of relaxing resistance such as frictional force and stress under pressure. Therefore, when the roller 4 made of the concave forming roller provided with such a coating layer is used, the resistance generated between the roller 4 and the current collector metal foil 10 during the compression process is reduced. As a result, after the compression process, the releasability of the current collector 1 from the roller 4 is improved, process management is facilitated, the defective product rate is reduced, and this is industrially advantageous.
  • such a coating layer is firmly bonded to the recess forming roller, it is industrially advantageous in this respect that the coating layer hardly peels off even if it is repeatedly used.
  • a protective layer containing an amorphous carbon material may be provided on the surface of the coating layer containing cemented carbide or chromium oxide.
  • the various coating layers and protective layers described above include, for example, physical vapor deposition using sputtering, physical vapor deposition using ion implantation, chemical vapor deposition using thermal evaporation, It is preferably formed by a vapor deposition method such as a chemical vapor deposition method using plasma deposition. Thereby, the release property of the current collector 1 from the roller 4 after the compression processing can be improved.
  • a coating layer made of a ceramic such as tungsten carbide (WC) or titanium nitride (TiN) may be provided on the peripheral surface of the recess forming roller.
  • the recess 4a may be formed in the various coating layers or protective layers described above.
  • the recess 4a is formed by, for example, etching, sandblasting, electric discharge machining, laser machining, or the like. Can be formed. Among these, laser processing is preferable. According to the laser processing, the minute recesses 4a and the array pattern of the recesses 4a having dimensions on the order of several orders can be formed almost accurately. Examples of the laser used for laser processing include a carbon dioxide gas laser, a YAG laser, and an excimer laser. Among these, YAG laser is preferable. When laser processing is performed, the edge of the opening of the recess 4a on the circumferential surface of the roller 4 is raised. Even if it uses as it is, without removing the protrusion of the roller 4, the electrical power collector 1 is obtained. Further, it may be used after removing the protrusions of the roller 4 by polishing or the like.
  • the arrangement pattern of the recesses 4a on the circumferential surface of the roller 4 is as follows in the present embodiment.
  • a row in which a plurality of recesses 4 a are connected at a pitch Pa in the longitudinal direction of the roller 4 is defined as one row unit 7.
  • the plurality of row units 7 are arranged at a pitch Pb in the circumferential direction of the roller 4.
  • the pitch Pa and the pitch Pb can be set arbitrarily.
  • one row unit 7 and the adjacent row unit 7 are arranged so that the recess 4 a is displaced in the longitudinal direction of the roller 4.
  • the displacement in the longitudinal direction of the recess 4a is 0.5 ⁇ 5 Pa.
  • the present invention is not limited to this, and an arbitrary setting is possible.
  • the shape of the opening of the recess 4a on the circumferential surface of the roller 4 is substantially circular, but is not limited to this.
  • it is substantially elliptical, substantially rectangular, substantially rhombus, or substantially square.
  • a substantially regular hexagonal shape or a substantially regular octagonal shape may be used.
  • the width in the direction parallel to the circumferential surface of the roller 4 gradually decreases from the circumferential surface of the roller 4 toward the bottom of the recess 4a. It preferably has a tapered shape. This improves the releasability of the current collector 1 from the roller 4 after completion of the compression process.
  • a covering layer containing cemented carbide, a coating layer containing alloy tool steel, a coating layer containing chromium oxide, an amorphous You may form 1 or 2 or more, such as a protective layer containing a carbon material.
  • a protective layer containing a carbon material such as a carbon material.
  • the coating layer and the protective layer are evenly applied to the surface facing the inner space of the recess 4a.
  • materials such as cemented carbide contain cobalt as a binder, and when the current collector metal foil 10 contains copper, the affinity between cobalt and copper is high, so a copper roller This is effective in preventing adhesion to the inner surface of the four peripheral surfaces and the recess 4a.
  • Tungsten carbide is provided on the circumferential surface of the roller 4 and the surface facing the internal space of the recess 4a.
  • the coating layer which consists of ceramics, such as (WC) and titanium nitride (TiN).
  • WC ceramics
  • TiN titanium nitride
  • the roller 5 may be a roller having a smooth or flat peripheral surface, preferably a metal roller having a smooth or flat peripheral surface.
  • the pressure contact pressure of the rollers 4 and 5 is not particularly limited, but is preferably about 8 kN to about 15 kN per lcm of the current collector metal foil 10.
  • a lubricant may be applied to at least one of the roller 4 and the current collector metal foil 10.
  • the lubricant is applied to the circumferential surface of the roller 4 or the surface of the current collector metal foil 10 and dried. Thereby, the resistance force generated between the roller 4 and the current collector metal foil 10 during compression can be reduced, and the releasability of the current collector 1 from the roller 4 is further improved.
  • the lubricant preferably contains a fatty acid. Of the fatty acids, myristic acid, which is preferable to saturated fatty acids, is particularly preferable. The fatty acid is preferably used in the form of a solution.
  • the solvent for dissolving the fatty acid a solvent that can dissolve the fatty acid and easily volatilizes by drying is preferable.
  • a low-boiling solvent such as methanol or ethanol can be used.
  • FIG. 1A is a longitudinal sectional view showing a state immediately after the current collector metal foil 10 is supplied to the press-contact nip 6 of the processing means 37.
  • Fig. 1 (b) shows a state in which plastic deformation is progressing on one surface of the current collector metal foil 10 at the pressure-welded ep portion 6. It is a longitudinal cross-sectional view.
  • FIG. 1 (c) is a longitudinal sectional view of the current collector 1 after passing through the press-fitting nipping portion 6.
  • Fig. 2 shows the progress of plastic deformation shown in Fig. 1 (b) in three stages.
  • the current collector metal foil 10 has a film thickness t at the inlet of the pressure-welding nipping portion 6.
  • the current collector metal foil 10 is pressed in contact with the surfaces of the rollers 4 and 5.
  • the current collector metal foil 10 is pressed in the thickness direction.
  • the surface of the current collector metal foil 10 is a non-contact surface 4b facing the recess 4a of the roller 4 and a contact surface 4c that exists around the non-contact surface 4b and contacts the flat portion of the peripheral surface of the roller 4. And divided.
  • the contact surface 4c is compressed in the thickness direction, and the base material portion 2 is formed.
  • the thickness of the base material part 2 is t. t is smaller than
  • the non-contact surface 4b rises toward the bottom of the recess 4a in the space of the recess 4a, and the projection 3 is formed.
  • the convex portion 3 is not subjected to compression processing by pressure, and is formed by plastic deformation accompanying compression processing. Further, the non-contact surface 4 b becomes the tip surface of the convex portion 3.
  • the tip surface of the convex portion 3 is not subjected to any compression processing, and therefore has almost the same surface roughness as the surface of the original current collector metal foil 10.
  • the current collector metal foil 10 is supplied to the pressure-welding nipping portion 6. At this time, the current collector metal foil 10 has a thickness t. Metal foil for current collector 10 rollers 4 recesses
  • the plastic deformation of the non-contact surface 4b proceeds, and the non-contact surface 4b rises toward the bottom of the concave portion 4a to form the convex portion 3x.
  • the volume of the protrusion 3x occupies about 50% of the space volume inside the recess 4a. Since the tip surface of the convex portion 3x is not compressed, it has substantially the same surface state as the original metal foil 10 for current collector. Stresses 12a and 12b that push the convex portion 3x further toward the bottom of the concave portion 4a are added to the convex portion 3x. As a result, plastic deformation further proceeds along the inner wall surface of the recess 4a.
  • the plastic deformation force of the facing portion 4b proceeds to the limit value of the space volume inside the concave portion 4a, the convex portion 3 is formed, and the current collector 1 is obtained.
  • Air is present inside the recess 4a. Therefore, when the plastic deformation of the facing portion 4b progresses, the air loses the escape field and is compressed, so that stress in the directions of the arrows 13a, 13b, and 14 is applied to the convex portion 3. .
  • the base material part 2 may be deformed and the current collector 1 may be wrinkled or warped.
  • the shape and size of the convex portion 3 may be uneven.
  • the compression processing is preferably performed so that the volume of the convex portion 3 is preferably not more than the spatial volume inside the concave portion 4a, and more preferably not more than 85% of the spatial volume inside the concave portion 4a.
  • the current collector 1 can be efficiently produced while suppressing the occurrence of defects such as wrinkles, warping, and cutting.
  • the tip surface of the convex portion 3 is almost the same as the surface of the original metal foil 10 for current collector.
  • the incidental effect that the convex portions 3 can be formed so as to have the same surface roughness is obtained.
  • the active material layer is supported on the surface of the convex portion 3 and the electrode is manufactured and the electrode is slit to a predetermined width. Can be suppressed.
  • the convex portion 3 is formed without being subjected to compression processing. Therefore, in the direction in which the convex portion 3 extends, the front end surface of the convex portion 3 is free from processing distortion and the surface condition (surface roughness) and surface accuracy of the current collector metal foil 10 are maintained as they are. is doing.
  • the side surface of the projection 3 also has a surface state close to the current collector metal foil 10.
  • the concave portion 2a existing between the adjacent convex portions 3 is subjected to compression processing, and thus has a surface state different from that of the current collector metal foil 10.
  • the maximum thickness t of the current collector 1 is a table in which the convex portion 3 is not formed in the thickness direction of the current collector 1.
  • the maximum thickness t of current collector 1 is the current collector gold
  • the thickness of the metal foil 10 is larger than the thickness t.
  • the relationship between thickness and maximum thickness t is
  • the pressure can be adjusted by appropriately selecting the pressing force at the pressure-welding two-ply portion 6.
  • the crystal part has almost the same crystal state, and the convex part from the base material part 2 There is at least one continuous region over 3.
  • a cross section of the current collector 1 in the thickness direction is observed with an electron microscope. Then, a region having substantially the same crystal state exists in at least a part of the cross section, and the region extends across both the base material portion 2 and the convex portion 3 and is connected without being interrupted. As long as observed with an electron microscope, there is no crystalline state showing the joint in this region. By adopting such a configuration, it is possible to remarkably prevent peeling of the convex portion 3 from the base material portion 2 and further peeling of the active material layer from the convex portion 3.
  • the current collector winding means 38 is specifically a current collector winding roller.
  • the current collector winding roller is pivotally supported by a support means (not shown) so as to be rotatable around an axis. Further, the current collector winding roller is driven to rotate by a driving means (not shown). The current collector winding roller rotates and winds the current collector 1 formed by the processing means 37 on its peripheral surface.
  • the current collector metal foil 10 is compressed and partially plastically deformed, and the current collector 1 including the base material 2 and the plurality of convex portions 3 is obtained. Manufactured.
  • the surface of the current collector metal foil 10 is linear and has a very small area. Since pressurization is possible, sufficient compression processing can be performed even if the pressurization capacity is relatively small. Therefore, the current collector manufacturing apparatus 35 can be downsized. Further, by using the current collector manufacturing apparatus 35, it is possible to continuously form the convex portions 3 on the surface of the strip-shaped current collector metal foil 10, which is industrially advantageous.
  • FIG. 6 is a vertical cross-sectional view schematically showing a method for manufacturing a current collector of another form, which is one embodiment of the present invention.
  • FIG. 6A is a longitudinal cross-sectional view showing a state immediately after the current collector metal foil 10 is supplied to the pressure contact ep portion 6.
  • FIG. 6B is a longitudinal sectional view showing a state in which the plastic deformation of the surface of the current collector metal foil 10 is proceeding in the pressure contact ep portion 6.
  • FIG. 6 (c) is a longitudinal sectional view of the current collector 1 after passing through the pressure epping section 6.
  • the method for manufacturing the current collector 15 shown in FIG. 6 is similar to the method for manufacturing the current collector 1 shown in FIG. 1, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the manufacturing method of the current collector 15 shown in FIG. 6 is characterized in that as a pair of processing means, those having recesses formed on the surface of both processing means are used, and otherwise, the current collector shown in FIG. It can be carried out in the same manner as the manufacturing method of body 1.
  • the method for manufacturing the current collector 15 is performed, for example, using a current collector manufacturing apparatus in which a roller 4 is mounted instead of the roller 5 in the current collector manufacturing apparatus 35 shown in FIG. Based on FIG. 6, a method for manufacturing the current collector 15 will be described.
  • the current collector metal foil 10 has a film thickness t at the inlet of the pressure-welding nipping portion 6.
  • the current collector metal foil 10 is pressed against the peripheral surfaces of the two rollers 4.
  • the Both sides in the thickness direction of the current collector metal foil 10 are divided into a non-contact surface 4b that faces the recess 4a of the roller 4 and does not contact the peripheral surface of the roller 4, and a contact surface 4c that contacts the peripheral surface of the roller 4.
  • the contact surface 4c exists around the non-contact surface 4b.
  • the two rollers 4 are arranged and pressed so that a plurality of recesses 4a formed on the peripheral surface face each other.
  • the contact surface 4c is compressed, and the base material portion 16 is formed.
  • the thickness of the base material portion 16 is t. t is smaller than In contrast, the non-contact surface 4b is not pressurized.
  • the non-contact surface 4b rises toward the bottom of the recess 4a in the space of the recess 4a, and the protrusions 17x and 17y are formed. That is, the convex portions 17x and 17y are not subjected to compression processing by pressurization, and are formed by plastic deformation associated therewith.
  • the non-contact surface 4b becomes the tip surface of the convex portions 17x and 17y with almost no influence of compression processing and plastic deformation, and has almost the same surface roughness as the current collector metal foil 10.
  • the current collector 15 is obtained.
  • the convex portions 17x and 17y are formed without being subjected to compression processing. Therefore, in the direction in which the convex portions 17x and 17y extend, the surface of the tip of the convex portions 17x and 17y almost maintains the surface roughness and surface accuracy of the current collector metal foil 10 free from processing strain.
  • the side surfaces of the protrusions 17x and 17y are not subjected to compression processing, but are affected by plastic deformation, and thus have a surface roughness close to that of the current collector metal foil 10.
  • the surface of the base material portion 16 existing between the adjacent convex portions 17x and 17y is subjected to compression processing, it has a surface state different from that of the current collector metal foil 10.
  • the maximum thickness t of current collector 1 is the convex portions 17x, 1 formed on both sides of current collector 1 in the thickness direction.
  • the maximum thickness t of current collector 1 is the original metal foil for current collector 1
  • FIG. 7 is a longitudinal sectional view schematically showing a configuration of a current collector 20 for a non-aqueous electrolyte secondary battery which is another embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view schematically showing a method of manufacturing the non-aqueous electrolyte secondary battery current collector 20 shown in FIG.
  • FIG. 8 (a) is a longitudinal sectional view showing a state immediately after the current collector metal foil 10 is supplied to the pressing ep portion 8.
  • FIG. 8 (b) is a longitudinal sectional view showing a state in which the plastic deformation of the surface of the current collector metal foil 10 is proceeding in the pressure welding nip portion 8.
  • FIG. 8C is a longitudinal sectional view of the current collector 20 after passing through the pressure nip 8.
  • FIG. 8 is a longitudinal sectional view schematically showing a configuration of a current collector 20 for a non-aqueous electrolyte secondary battery which is another embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional
  • FIG. 9 is a drawing schematically showing the configuration of the roller 28 used in the manufacturing method shown in FIG.
  • FIG. 9A is a perspective view showing the appearance of the roller 28.
  • FIG. 9B is an enlarged perspective view showing the surface region 28 a of the roller 28.
  • FIG. 9 (c) is an enlarged perspective view showing the configuration of the concave portion 29 formed on the circumferential surface of the roller 28.
  • FIG. 9A is a perspective view showing the appearance of the roller 28.
  • FIG. 9B is an enlarged perspective view showing the surface region 28 a of the roller 28.
  • FIG. 9 (c) is an enlarged perspective view showing the configuration of the concave portion 29 formed on the circumferential surface of the roller 28.
  • FIG. 9A is a perspective view showing the appearance of the roller 28.
  • FIG. 9B is an enlarged perspective view showing the surface region 28 a of the roller 28.
  • FIG. 9 (c) is an enlarged perspective view showing the configuration of the concave portion 29 formed on the circum
  • the current collector 20 includes a base material portion 21 and a plurality of convex portions 22.
  • the current collector 20 can be manufactured by compressing the current collector metal foil 10 by a pair of processing means and generating partial plastic deformation, as with the current collector 1.
  • the compression process is performed on one side of the current collector metal foil 10. Details of the compression processing will be described later.
  • the current collector 20 When the current collector 20 is used as the negative electrode current collector, the current collector 20 is composed of the same material as the current collector metal foil 10 when the current collector 1 is used as the negative electrode current collector. Further, when the current collector 20 is used as the positive electrode current collector, the current collector 20 is made of the same material as the current collector metal foil 10 when the current collector 1 is used as the positive electrode current collector. .
  • the base material portion 21 is formed in a sheet shape, and the cross-sectional shape in the thickness direction is substantially rectangular.
  • the thickness of the base material portion 21 is t. Thickness is not particularly limited, but preferably 5 111 ⁇ ; lOO ⁇ m
  • the thickness of the base material portion 21 is less than 5 m, the mechanical strength of the current collector 20 may be insufficient, and the handleability of the current collector 20 at the time of electrode manufacture may be reduced, and the electrode at the time of battery charging It is easy to break.
  • the thickness of the base material portion 21 exceeds lOO ⁇ m, the mechanical strength of the current collector 20 is secured S, and the volume of the current collector 20 occupying the entire electrode increases, resulting in a high battery capacity. in some cases force s can not be sufficiently achieved reduction.
  • the surface 21a of the base material portion 21 is subjected to compression processing, so that the original current collecting It has a surface roughness different from that of the body metal foil 10.
  • the plurality of convex portions 22 are formed on one surface of the base material portion 21 in the thickness direction.
  • the convex portion 22 is formed so as to extend from the surface of the base material portion 21 toward the outside of the base material portion 21.
  • the convex portion 22 has a function of supporting the active material layer on at least a part of its surface, for example.
  • the convex portion 22 is formed by plastic deformation accompanying the compression processing of the base material portion 21 without being subjected to the compression processing. Further, the tip surface of the convex portion 22 is hardly affected by compression processing and plastic deformation. Therefore, the tip surface of the convex portion 22 has a surface roughness substantially equal to the surface of the original current collector metal foil 10.
  • the tip surface of the convex portion 22 is a flat surface that is at the most distant portion from the base material portion 21 of the convex portion 22 in the extending direction or the protruding direction of the convex portion 22.
  • two adjacent convex portions 22 are formed so as to be separated from each other with a gap. Therefore, in the cross section in the thickness direction of the current collector 20 shown in FIG. 7, the surface 21a of the base material portion 21 exists as a concave portion between two adjacent convex portions 22.
  • the convex portion 22 has a taper-shaped cross section in the thickness direction of the current collector 20 (hereinafter simply referred to as “the cross section of the convex portion 22”). More specifically, the cross section of the convex portion 22 has a width in a direction parallel to the surface of the base material portion 21 from the surface of the base material portion 21 to the direction in which the convex portion 22 extends (hereinafter simply referred to as “cross-sectional width of the convex portion 22”) Have a tapered shape that gradually or continuously decreases. In the present embodiment, the cross section of the convex portion 22 is substantially trapezoidal.
  • the convex portion 22 has a tapered shape, the releasability of the current collector 20 from the roller 28 is improved after the compression processing is completed, the deformation of the convex portion 22 is prevented, and the convex portion 22 is prevented. Variations in the shape of the can be minimized.
  • the shape of the convex portion 22 is not particularly limited as long as the shape of the convex portion 22 is a truncated cone and the cross section of the convex portion 22 has a taper shape.
  • the force in which the tip surface of the convex portion 22 is a plane substantially parallel to the surface of the base material portion 21 in the extending direction of the convex portion 22 is not limited thereto.
  • a plane that is not parallel to the surface of the base member 21, a surface hemisphere with irregularities, or a dome shape may be used. These shapes are effective for increasing the bonding strength between the convex portion 22 and the active material layer.
  • the length of a perpendicular drawn from one point on the straight line indicating the tip surface of the convex portion 22 to the straight line indicating the surface where the convex portion 22 of the base material portion 21 is not formed is t. t, the original
  • the convex portion 22 is formed so as to be larger than the thickness t of the current collector metal foil 10.
  • T can also be defined as the maximum thickness of the current collector 20.
  • the boundary 22a between the base material portion 21 and the convex portion 22 on the surface 21a of the base material portion 21 is formed of a curved surface.
  • the boundary 22a also includes the vicinity of the boundary 22a.
  • FIG. 8 is a longitudinal sectional view for explaining the method for manufacturing the current collector 20 as described above.
  • the current collector manufacturing apparatus 35 shown in FIG. 5 has the same configuration except that the roller 28 shown in FIG. 9 is used instead of the roller 4.
  • the metal foil 10 for current collector is compressed using the device.
  • the roller 28 has a plurality of recesses 29 formed on its peripheral surface.
  • an opening edge 29a on the circumferential surface of the roller 28 of the recess 29 is formed by a curved surface, and a plurality of grooves 29x are formed on the curved surface.
  • the groove 29x is formed linearly in the direction from the circumferential surface of the roller 28 to the bottom of the recess 29.
  • the width of the groove 29x is not particularly limited, but is preferably 1 m or less.
  • the depth of the groove 29x is not particularly limited, but is preferably 1 m or less. Note that the depth of the groove 29x is the length in the direction of force from the surface of the opening edge 29a toward the axis of the roller 28.
  • the arrangement pattern of the recesses 29 on the circumferential surface of the roller 28 is as follows in the present embodiment.
  • a row in which a plurality of concave portions 29 are connected at a pitch Pc in the longitudinal direction of the roller 28 is defined as one row unit 33.
  • the plurality of row units 33 are arranged with pitches Pd in the circumferential direction of the roller 28.
  • Pitch Pc and pitch Pd can be set arbitrarily.
  • one row unit 33 and the adjacent row unit 33 are arranged so that the concave portion 29 is displaced in the longitudinal direction of the roller 28.
  • the displacement of the concave portion 29 in the longitudinal direction is a force of 0.5 Pc.
  • the present invention is not limited to this, and an arbitrary setting is possible.
  • the shape of the opening of the recess 29 on the circumferential surface of the roller 28 is substantially circular, but is not limited to this.
  • it is substantially elliptical, substantially rectangular, almost rhomboid, substantially square, A substantially regular hexagon, a substantially regular octagon, or the like may be used.
  • the roller 28 can be manufactured, for example, by processing a recess-forming roller used for manufacturing the roller 4 by etching, sandblasting, electric discharge machining, laser machining, or the like.
  • etching etching, sandblasting, electric discharge machining, laser machining, or the like.
  • laser processing the same method as that for forming the roller 4 is used.
  • a bump (not shown) occurs at the opening edge 29a in the surface. By removing this bulge, a concave portion 29 having a curved opening edge 29a is formed, and a roller 28 is obtained.
  • the removal of the bumps is preferably done by polishing with diamond particles.
  • the diamond particles particles larger than the minimum size of the recess 29 are preferably used. More preferably, the average particle size of the diamond particles is 30 m or more and less than 35 m.
  • the size of the recess 29 means the opening diameter of the recess 29 on the circumferential surface of the roller 28.
  • the opening edge 29a is formed of a curved surface having a large radius of curvature, and peeling of the convex portion 22 from the base material portion 21 can be more significantly prevented. Further, the burying of the diamond particles inside the recess 29 is prevented.
  • the polishing using diamond particles can be performed in the same manner as a general polishing method, except that diamond particles are used as abrasive grains or polishing grains. Usually, it is carried out by a polishing machine having a polishing pad while placing diamond particles on the polishing surface and supplying a medium such as water.
  • the formation of the groove 29x on the surface of the opening edge 29a is preferably performed by polishing with diamond particles having an average particle size of 5 ⁇ m or less. Thereby, the groove 29x having a width of 1 ⁇ m or less and a depth of 1 ⁇ m or less can be easily formed.
  • the formation of the groove 29x may be performed after the ridge is removed by polishing or simultaneously with the removal of the ridge by polishing. Since the diamond particles used here have a very small particle size, they can be easily removed by washing after the formation of the groove 29x that is difficult to be buried in the recess 29.
  • a coating layer containing cemented carbide, a coating layer containing alloy tool steel, One or more of a coating layer containing chromium oxide, a protective layer containing an amorphous carbon material, and a coating layer having a ceramic strength may be formed.
  • a coating layer containing chromium oxide, a protective layer containing an amorphous carbon material, and a coating layer having a ceramic strength may be formed.
  • the roller 28 is arranged so that its peripheral surface is in pressure contact with the peripheral surface of the roller 5 and its axis is parallel to the axis of the roller 5, thereby forming a pressure-contacting two-pipe portion 34.
  • the current collector metal foil 10 is supplied to the press-fitting nipping portion 34, and pressures 30a and 30b in the thickness direction of the current collector metal foil 10 are applied.
  • the non-contact surface that does not contact the roller 28 circumferential surface and faces the recess 29 is not subjected to compression processing. There is a contact surface around the non-contact surface.
  • the non-contact surface is applied with stress 31a and 31b from the periphery of the non-contact surface to the bottom of the recess 29 along the surface facing the inner space of the recess 29 as the contact surface is pressurized. Is done. As a result, plastic deformation of the non-contact surface begins to occur and rises toward the bottom of the concave portion 29 to form the convex portion 22x.
  • the boundary force between the raised portion 21x and the convex portion 22x is formed into a curved shape along the opening edge 29a of the concave portion 29.
  • the volume of the convex portion 22x is less than 50% of the volume of the internal space of the concave portion 29, the pressurization is further continued.
  • the current collector 20 is obtained.
  • a boundary portion 22a between the base material portion 21 and the convex portion 22 is formed of a curved surface.
  • the pressure applied by the rollers 28 and 5 is preferably such that the thickness t of the base material portion 21 is smaller than the thickness t of the current collector metal foil 10,
  • the pressurization is more preferably performed until the volume of the convex portion 22 is 50% or more, preferably 50 to 85% of the volume of the internal space of the concave portion 29. If it is less than 50%, the height of the convex portion 29 becomes insufficient, and there is a possibility that the active material cannot be carried smoothly. Furthermore, there is a possibility that the active material may be peeled off from the current collector 20 after loading the active material. On the other hand, if it exceeds 85%, the air remaining inside the concave portion 29, the vapor of the lubricant, etc. are compressed and the internal pressure is increased, and the smooth plastic deformation of the convex portion 22 is hindered. Variations may occur.
  • the surface 21a on which the convex portion 22 of the base material portion 21 is not formed has a surface roughness different from that of the current collector metal foil 10, since it has been subjected to compression processing. Yes.
  • the tip end surface of the convex portion 22 is not subjected to compression processing and is hardly affected by plastic deformation, and therefore has almost the same surface roughness as the current collector metal foil 10.
  • the side surface of the convex portion 22 is not compressed, but is affected by plastic deformation, so that the surface roughness close to the current collector metal foil 10 is obtained. have. Therefore, by supporting the active material layer on the surface of the convex portion 22, preferably on the tip surface, the active material layer is prevented from peeling off from the current collector 20 in the charge / discharge cycle.
  • FIG. 10 is a longitudinal sectional view schematically showing a configuration of a collector 23 for a non-aqueous electrolyte secondary battery in another form.
  • FIG. 11 is a longitudinal sectional view schematically showing a method for manufacturing the current collector 23 shown in FIG.
  • FIG. 11 (a) is a longitudinal sectional view showing a state immediately after the current collector metal foil 10 is supplied to the press-contact nip portion 34a.
  • FIG. 11 (b) is a longitudinal sectional view showing a state in which the plastic deformation of the surface of the current collector metal foil 10 proceeds in the pressure contact ep portion 34a.
  • FIG. 11 (c) is a longitudinal sectional view showing a state immediately after the current collector 23 is formed in the pressure-welding two-ply portion 34a.
  • the current collector 23 has the same configuration as the current collector 20 except that a plurality of convex portions 25x and 25y are formed on both surfaces in the thickness direction of the base material portion 24. . That is, the base material portion 24 has the same configuration as the base material portion 21.
  • the convex portions 25x and 25y have the same configuration as the convex portion 22.
  • the convex portion 25x is formed so as to extend or protrude from one surface in the thickness direction of the base material portion 24 toward the outside of the base material portion 24.
  • the convex portion 25y is formed so as to extend or protrude from the other surface in the thickness direction of the base material portion 24 toward the outside of the base material portion 24.
  • the direction in which the convex portion 25x extends is opposite to the direction in which the convex portion 25y extends.
  • a boundary portion 25a between the base material portion 24 and the convex portions 25x, 25y is formed of a curved surface.
  • the same effect can be obtained as when the boundary portion 22a of the current collector 20 is formed of a curved surface.
  • the lines indicating the tip surfaces of the convex portions 25 x and 25 y are substantially parallel to the line indicating the surface 24 a of the base material portion 24.
  • the tip surfaces of the convex portions 25x and 25y are substantially flat surfaces and have not been subjected to compression processing, and therefore have substantially the same surface roughness as the current collector metal foil 10 as a raw material.
  • the side surfaces of the convex portions 25x and 25y are not compressed, but are affected by plastic deformation, and thus have a surface roughness close to that of the current collector metal foil 10.
  • the active material layer is prevented from peeling off from the current collector 20 in the charge / discharge cycle.
  • the thickness of the base material portion 24 is formed to be smaller than the thickness t of the current collector metal foil 10 used as a raw material. Also, from the tip surface of convex part 25x, convex part 2
  • the thickness t to the tip surface of 7y is shaped to be larger than the thickness t of the current collector metal foil 10.
  • the thickness can also be defined as the maximum thickness of the current collector 23. This configuration
  • the current collector 23 uses, for example, a current collector manufacturing apparatus that requires the same configuration except that the current collector manufacturing apparatus 35 shown in FIG. 5 uses two rollers 28 instead of the rollers 4 and 5. Can be produced.
  • FIG. 11 is a longitudinal sectional view for explaining a method of manufacturing the current collector 23 as described above.
  • the two rollers 28 are gathered on a pressure-welding dip portion 34a formed by arranging the circumferential surfaces so that their circumferential surfaces are in pressure-contact with each other and their axes are parallel to each other.
  • the metal foil 10 for current collector is applied with pressures 30a and 30b in the thickness direction.
  • the non-contact surface is pressurized, the contact force from the periphery of the non-contact surface to the bottom of the recess 29 along the surface facing the inner space of the recess 29, the stress 31a, 31b, 31x and 31y are added.
  • plastic deformation inside the non-contact surface progresses and rises toward the bottom of the recess 29, forming the protrusions 32x and 32y.
  • it is formed into a curved surface shape along the boundary force S between the raised portion 24x and the convex portions 32x and 32y and the opening edge 29a of the concave portion 29.
  • the volume of the convex portions 32x and 32y is less than 50% of the volume of the internal space of the concave portion 29, the pressurization is further continued.
  • the current collector 23 is obtained.
  • base material A boundary portion 25a between 24 and the convex portions 25x and 25y is formed of a curved surface.
  • the pressure applied by the two rollers 28 is preferably such that the thickness t of the base material portion 24 is smaller than the thickness t of the current collector metal foil 10.
  • the pressurization is more preferably performed until the volume force of the convex portions 25x and 25y reaches 50% or more, preferably 50 to 85% of the volume of the internal space of the concave portion 29. If it is less than 50%, the height of the convex part 29 becomes insufficient, and there is a possibility that the active material cannot be carried smoothly. Furthermore, there is a risk that the active material may be peeled off from the current collector 20 after the active material is loaded. On the other hand, if it exceeds 85%, the air remaining in the concave portion 29, the vapor of the lubricant, etc. are compressed and the internal pressure increases, and there is a possibility that the convex portions 25x and 25y may have a variation in shape.
  • current collector manufacturing apparatus 35 shown in FIG. 5 or a current collector manufacturing apparatus similar thereto is used.
  • a die such as a die set die having a concave portion having a shape corresponding to the convex portion
  • the current collector metal foil 10 is sandwiched from both sides in the thickness direction by this die and pressed.
  • the metal foil 10 for current collector can be subjected to the compression processing of the present invention. This also makes it possible to produce current collectors 1, 15, 20, and 23 of the present invention.
  • the current collector obtained by the production method of the present invention is not limited to a force that can be suitably used as a current collector for a non-aqueous electrolyte secondary battery.
  • a current collector other than a non-aqueous electrolyte secondary battery can be used. It can also be used as a current collector for primary batteries such as secondary batteries and lithium primary batteries.
  • the method for producing an electrode for a non-aqueous electrolyte secondary battery of the present invention is the same as the conventional method for producing a current collector, except that the current collector produced by the production method of the present invention is used as the current collector.
  • the active material layer can be supported on the surface of the current collector by applying an electrode mixture slurry to the surface of the current collector produced by the production method of the present invention and drying it. Further, a thin film active material layer may be formed on the current collector surface.
  • the convex portion of the current collector obtained by the production method of the present invention is formed without being subjected to compression processing.
  • the convex surface is not affected by compression, and the tip surface of the convex part is particularly plastic. Since it is formed with almost no influence of deformation, there is no processing distortion. Therefore, when a thin film of an active material layer is formed on the surface of a current collector obtained by the production method of the present invention, a thin film having a uniform thickness can be formed with high accuracy.
  • the surface of the convex portion, particularly the tip surface of the convex portion maintains the surface roughness of the metal foil before processing, the adhesion between the thin film as the active material layer and the current collector surface is improved. This effect is particularly remarkable when the active material layer is formed on a current collector in which the boundary portion between the base material portion and the convex portion is a curved surface.
  • the electrode mixture slurry includes a positive electrode mixture slurry and a negative electrode mixture slurry.
  • the positive electrode mixture slurry contains a positive electrode active material and a solvent, and further contains a positive electrode binder, a conductive material, etc., as necessary.
  • the positive electrode active material is used in the field of non-aqueous electrolyte secondary batteries. For example, lithium cobaltate and its modified products (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and its modified products (part of nickel with cobalt) can be used. And substituted oxides such as lithium manganate and modified products thereof.
  • One type of positive electrode active material can be used alone, or two or more types can be used in combination.
  • the positive electrode binder those commonly used in the field of non-aqueous electrolyte secondary batteries can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • examples thereof include a rubber particle binder having a rate unit.
  • an acrylate monomer or acrylate oligomer into which a reactive functional group has been introduced may be used.
  • the positive electrode binder can be used alone or in combination of two or more.
  • conductive material those commonly used in the field of non-aqueous electrolyte secondary batteries can be used, and examples thereof include carbon black such as amplifier black and thermal black, and various graphite.
  • carbon black such as amplifier black and thermal black
  • graphite various graphite.
  • One type of conductive material can be used alone, or two or more types can be used in combination.
  • the positive electrode mixture slurry is prepared by, for example, dispersing a positive electrode active material and, if necessary, a binder for a positive electrode, a conductive material, and the like in an appropriate dispersion medium, and, if necessary, a viscosity suitable for applying a current collector. It is produced by adjusting to.
  • a dispersion medium water, organic solvents such as 2-methyl-N-pyrrolidone, and the like can be used.
  • a general disperser such as a planetary mixer can be used to disperse the solid solvent such as the positive electrode active material.
  • the positive electrode mixture slurry is applied to one or both surfaces of the positive electrode current collector, dried, and subjected to press molding as necessary to adjust to a predetermined thickness, whereby a positive electrode plate is obtained.
  • the thickness of the positive electrode current collector is not particularly limited, but is preferably 5 to 30 111.
  • a general application device such as a die coater can be used.
  • the drying temperature is appropriately selected mainly depending on the type of solvent.
  • the negative electrode mixture slurry contains a negative electrode active material and a dispersion medium, and further contains a negative electrode binder, a conductive material, and the like as necessary.
  • negative electrode active material those commonly used in the field of non-aqueous electrolyte secondary batteries can be used.
  • various natural graphites, graphite materials such as artificial graphite, silicon-based composite materials such as silicide, various alloy materials, etc. can be used.
  • One type of negative electrode active material can be used alone, or two or more types can be used in combination.
  • the binder for the negative electrode those commonly used in the field of non-aqueous electrolyte secondary batteries can be used.
  • PVDF and modified products thereof styrene butadiene copolymer rubber (SBR) particles and modified products thereof
  • the body include cellulosic resins such as carboxymethylcellulose (CMC).
  • the negative electrode binder can be used alone or in combination of two or more.
  • a mixture of SBR particles and a cellulose resin, a mixture obtained by adding a small amount of a cellulose resin to SBR particles, and the like are preferable. When such a mixture is used, for example, lithium ion acceptability is improved.
  • the same material as that used for the positive electrode can be used.
  • the negative electrode mixture slurry can be prepared in the same manner as the positive electrode mixture slurry.
  • the dispersion medium for dispersing the negative electrode active material for example, water, an organic solvent such as 2-methyl-N pyrrolidone, or the like can be used.
  • the negative electrode mixture slurry is applied to one or both surfaces of the negative electrode current collector, dried, and subjected to press molding as necessary to adjust to a predetermined thickness, thereby obtaining a negative electrode plate. It is done.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 5 to 25 111.
  • a general application device such as a die coater can be used.
  • the drying temperature is appropriately selected mainly depending on the type of solvent.
  • a vacuum process can be suitably used.
  • a vapor deposition method a sputtering method, a chemical vapor deposition method (CVD method), etc.
  • the active material is vapor-deposited on the surface of the current collector, for example, using a general vapor deposition apparatus.
  • the vacuum deposition process the active material layer can be selectively formed at a predetermined portion of the current collector.
  • the vapor deposition apparatus is not particularly limited, but a vacuum vapor deposition apparatus that includes an electron beam heating means, heats the active material by the electron beam heating means to vaporize, and adheres the vapor to the collector surface is preferable.
  • a vacuum deposition apparatus is commercially available from ULVAC, Inc., for example. In the case of vapor deposition, mainly only the active material is deposited.
  • the active material is preferably a negative electrode active material.
  • the negative electrode active material include Si, Sn, Ge, Al, alloys containing one or more of these, oxides such as SiOx and SnOx, and sulfides such as SiSx and SnS.
  • the negative electrode active material layer is preferably formed in a columnar shape on the surface of the negative electrode current collector, preferably on the front surface of the convex portion of the negative electrode current collector.
  • the negative electrode active material layer preferably contains an amorphous or low crystalline negative electrode active material.
  • the thickness of the active material layer formed on the current collector surface preferably the convex surface, and more preferably the convex tip surface, is determined depending on the type of the active material, the method for forming the active material layer, and the final thickness obtained.
  • the force that can be appropriately selected according to various conditions such as the characteristics required for the water electrolyte secondary battery and the use of the battery is preferably 5 to 30 111, more preferably 10 to 25 111.
  • the nonaqueous electrolyte secondary battery of the present invention includes the electrode of the present invention, its counter electrode, and a lithium ion conductive nonaqueous electrolyte. That is, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte lithium secondary battery.
  • the nonaqueous electrolyte secondary battery of the present invention includes the electrode of the present invention as a negative electrode
  • the structure of the positive electrode is not particularly limited.
  • the nonaqueous electrolyte secondary battery of the present invention includes the electrode of the present invention as a positive electrode
  • the structure of the negative electrode is not particularly limited.
  • the electrode of the present invention is preferably used as a negative electrode.
  • the nonaqueous electrolyte secondary battery 40 includes an electrode group 41, a positive electrode lead 42, a negative electrode lead (not shown), an insulating plate 44, a sealing plate 45, a gasket 46, and a battery case 47.
  • the electrode group 41 includes a positive electrode 50, a negative electrode 51, and a separator 52.
  • the positive electrode 50, the separator 52, the negative electrode 51, and the separator 52 are overlapped in this order and wound to form a spiral shape.
  • the electrode group 41 includes an electrolyte (not shown).
  • the positive electrode 50 includes a force that is an electrode of the present invention, or, when the negative electrode 51 is an electrode of the present invention, a positive electrode current collector and a positive electrode active material layer (not shown).
  • the positive electrode current collector those commonly used in this field can be used, and examples thereof include foils made of aluminum, aluminum alloys, stainless steel, titanium, and nonwoven fabrics.
  • the thickness of the positive electrode current collector is not particularly limited, but is preferably 5 m to 30 m.
  • the positive electrode active material layer is formed on one surface or both surfaces in the thickness direction of the positive electrode current collector, contains the positive electrode active material, and includes a conductive material and a binder as necessary.
  • the positive electrode active material include lithium such as lithium-containing transition metal oxides exemplified above and MnO.
  • the conductive material those commonly used in this field can be used.
  • natural black lead artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon blacks such as thermal black, conductive fibers such as carbon fibers and metal fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, and conductivity such as titanium oxide
  • carbon blacks such as thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride and aluminum
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductivity such as titanium oxide
  • organic conductive materials such as metal oxides and phenylene derivatives.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyethylene, polypropylene, aramid, resin, polyamide, polyimide, polyamide, imide, polyacrylonitrile, Polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, Examples thereof include poly (vinyl acetate), poly (pyrrolidone), polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber, carboxymethyl cellulose, and rubber particle binders containing phthalate units.
  • PVDF polyvinylidene fluoride
  • PVDF polytetrafluoroethylene
  • polyethylene polyethylene
  • a copolymer composed of two or more monomer compounds selected from chloromethyl ether, acrylic acid, hexagen, an acrylate monomer containing a reactive functional group, an acrylate oligomer containing a reactive functional group, and the like is bonded. It may be used as a dressing.
  • the positive electrode 50 is manufactured, for example, as follows. First, a positive electrode mixture slurry is prepared by mixing and dispersing a positive electrode active material and, if necessary, a conductive material and a binder in a dispersion medium.
  • a dispersion medium for example, a dispersion medium commonly used in this field such as N-methyl 2-pyrrolidone can be used.
  • a general disperser such as a planetary mixer can be used to mix and disperse the dispersion medium such as the positive electrode active material.
  • the positive electrode mixture slurry thus obtained is applied to one or both surfaces of the positive electrode current collector, dried, and rolled to a predetermined thickness, whereby a positive electrode active material layer is formed and the positive electrode 50 is obtained.
  • the negative electrode 51 includes a force that is an electrode of the present invention, or a negative electrode current collector and a negative electrode active material layer (not shown) when the positive electrode 50 is an electrode of the present invention.
  • the negative electrode current collector examples thereof include metal foil and metal film made of copper, nickel oleore, iron, an alloy containing at least one of these, and the like. Of these, metal foils and metal films made of copper or copper alloys are preferred.
  • the copper alloy a copper alloy can be used as exemplified earlier in this specification. Taking copper and copper alloy metal foils as examples, for example, electrolytic copper foil, electrolytic copper alloy foil, rolled copper foil, copper alloy foil, rolled copper alloy foil, and foils that have been subjected to surface roughening treatment. Can be mentioned.
  • electrolytic copper foil, rolled copper foil, copper alloy foil and the like are preferable.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 5 m to 100 m, and more preferably 8 to 35 m. If the thickness of the negative electrode current collector is less than 5 m, the mechanical strength of the negative electrode current collector may be insufficient, and the handleability during electrode production will be reduced. In addition, the electrode is easily broken when the battery is charged. On the other hand, if the thickness of the negative electrode current collector exceeds lOO ⁇ m, the mechanical strength is ensured. The volume of the negative electrode current collector occupies the entire electrode, and the battery capacity cannot be sufficiently increased. There is.
  • the negative electrode active material layer is formed on one surface or both surfaces in the thickness direction of the negative electrode current collector, contains the negative electrode active material, and includes a conductive material, a binder, a thickener, and the like as necessary. including.
  • a conductive material for example, graphite materials such as various natural graphites and artificial graphite, silicon-based composite materials such as silicide, alloy-based negative electrode active materials, and the like can be used.
  • the conductive material the same material as that added to the positive electrode active material layer can be used.
  • the binder the same material as that added to the positive electrode active material layer can be used.
  • SBR styrene-butadiene copolymer rubber particles
  • the thickener those commonly used in this field can be used. Among them, those having water solubility and viscosity in the form of an aqueous solution are preferred.
  • cellulose resins such as carboxymethyl cellulose (CMC) and modified products thereof, polyethylene oxide (PEO), polybulu alcohol (PVA).
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • PVA polybulu alcohol
  • a cellulose resin and a modified product thereof are particularly preferable from the viewpoints of dispersibility of the negative electrode mixture slurry and viscosity increase described later.
  • the negative electrode 51 can be produced in the same manner as the positive electrode 50 except that a negative electrode active material and, if necessary, a conductive material, a binder, a thickener, etc. are mixed and dispersed in a dispersion medium to prepare a negative electrode mixture slurry. .
  • the separator 52 those commonly used in the field of non-aqueous electrolyte secondary batteries can be used.
  • a microporous film of polyolefin such as polyethylene or polypropylene is generally used singly or in combination.
  • the separator 52 includes a porous film made of a synthetic resin.
  • the synthetic resin include polyolefins such as polyethylene and polypropylene, aramid resins, polyamideimides, polyphenylene sulfide, polyimides, and the like.
  • the porous membrane include a microporous membrane and a nonwoven fabric.
  • the separator 52 has an anolemina, magnesia, silica, tita or the like inside or on the surface. You may include heat resistant fillers, such as your. Further, a heat-resistant layer may be provided on both sides or one side of the separator 52 in the thickness direction.
  • the heat-resistant layer includes, for example, the heat-resistant filler and a binder. The same binder as that used for the positive electrode active material layer can be used.
  • the thickness of the separator 17 is not particularly limited, but is preferably 10 m to 30 m, more preferably 10 to 25 ⁇ m.
  • nonaqueous electrolyte an electrolyte solution in which a solute is dissolved in an organic solvent, a polymer electrolyte containing a solute and an organic solvent, and non-fluidized with a polymer compound, a solid electrolyte, or the like can be used.
  • the separator 17 is preferably impregnated with the electrolyte solution.
  • the non-aqueous electrolyte may contain additives in addition to the solute, the organic solvent, and the polymer compound.
  • the solute is selected based on the oxidation-reduction potential of the active material.
  • solutes commonly used in the field of lithium batteries can be used, for example, LiPF, LiBF,
  • LiCIO LiAlCl, LiSbF, LiSCN, LiCF SO, LiN (CF CO), LiN (CF SO)
  • Solutes can be used alone or in combination of two or more as required
  • organic solvents commonly used in the field of lithium batteries can be used.
  • ethylene carbonate (EC) propylene carbonate, butylene carbonate, vinylene carbonate, dimethylolene carbonate (DMC), Tinole carbonate, Ethenole methyl carbonate (EMC), Dipropyl carbonate, Methyl formate, Methyl acetate, Methyl propionate, Ethyl propionate, Dimethoxymethane, ⁇ -Butyrolatatane, ⁇ Vale latataton, 1, 2-diethoxyethane, 1, 2 —Tetrahydrofurans such as dimethoxyethane, ethoxymethoxyethane, trimethoxymethane, tetrahydrofuran and 2-methyltetrahydrofuran Derivatives, dimethyl sulfoxide, dioxolane derivatives such as 1,3-dioxolane, 4-methyl-1,3-dioxolane,
  • Nole methane methane, ethinolemonoglyme, phosphoric acid !; Estenole, oxalate, propionate, sulfolane, 3-methylsulfolane, 1,3-dimethylthiolane, imidazolidinone, 3— Examples include methyl-2-oxazolidinone, propylene carbonate derivatives, ethyl ether, jetyl ether, 1,3-propane sultone, aniso-norole, and fluorobenzene.
  • One organic solvent can be used alone, or two or more organic solvents can be used in combination as required.
  • Examples of the additive include vinylene carbonate, cyclohexylbenzene, biphenylenole, diphenenoleatenore, vinylenoleethylene carbonate, divininoleethylene carbonate, phenylethylene carbonate, diaryl carbonate. , Fluoroethylene carbonate, catechol carbonate, butyl acetate, ethylene sulfite, propane sulfate, trifluoropropylene carbonate, dibenzofuran, 2,4 difluoroadiazole, o terphenyl, m terphenyl, etc. May be included.
  • One additive can be used alone, or two or more additives can be used in combination as required.
  • the non-aqueous electrolyte is a polymer material such as polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polybutyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene.
  • the above solute may be mixed with a seed or a mixture of two or more kinds and used as a solid electrolyte. Moreover, you may mix with the said organic solvent and use it in a gel form.
  • i PO Li S—SiS, phosphorus sulfide compounds and other inorganic materials can be used as solid electrolytes
  • the separator 17 may be disposed between the positive electrode 50 and the negative electrode 51.
  • the gel electrolyte may be disposed adjacent to the separator 52.
  • a positive terminal 53 is provided at the center of the sealing plate 45.
  • the nonaqueous electrolyte secondary battery 40 of the present invention is manufactured, for example, as follows. One end of each of the positive electrode lead 42 and the negative electrode lead is electrically connected to the positive electrode current collector of the positive electrode 50 and the negative electrode current collector of the negative electrode 51, respectively.
  • the electrode group 41 is housed inside the bottomed cylindrical battery case 47 together with the insulating plate 44.
  • Fig. 13 is a cross-sectional view schematically showing a configuration of a stacked battery 55 which is one embodiment of the present invention.
  • the laminated battery 55 includes a positive electrode 56, a negative electrode 57, a separator 58, a battery case 59, a positive electrode lead 60, a negative electrode y-node 61, and a sealing resin 62.
  • the positive electrode 56 includes a positive electrode current collector 56a and a positive electrode active material layer 56b formed on one surface in the thickness direction of the positive electrode current collector 56a.
  • the negative electrode 57 includes a negative electrode current collector 57a and a negative electrode active material layer 57b formed on one surface in the thickness direction of the negative electrode current collector 57a.
  • the positive electrode 56 and the negative electrode 57 are provided to face each other with the separator 58 interposed therebetween. That is, in the laminated battery 55, the positive electrode 56, the separator 58, and the negative electrode 57 are stacked in this order and stacked to form a flat electrode group.
  • the positive electrode 56, the negative electrode 57, and the separator 58 have the same configurations as the positive electrode 50, the negative electrode 51, and the separator 52 in the nonaqueous electrolyte secondary battery 40, respectively.
  • the battery case 59 is a container-like member having two openings, and accommodates an electrode group in its internal space.
  • the two openings of the battery case 59 are each sealed with a sealing resin 62.
  • One end of the positive electrode lead 60 is electrically connected to the positive electrode current collector 66 a and the other end of the positive electrode lead 60 is led out of the battery 55 by one opening force of the battery case 59.
  • One end of the negative electrode lead 61 is electrically connected to the negative electrode current collector 57 a, and the other open end of the battery case 59 is also led out of the battery 55.
  • the same non-aqueous electrolyte as in the non-aqueous electrolyte secondary battery 40 can be used.
  • the nonaqueous electrolyte secondary battery of the present invention includes, for example, a prismatic battery having a spirally wound electrode group, a cylindrical battery having a spirally wound electrode group, and a stacked electrode group.
  • a prismatic battery having a spirally wound electrode group for example, a prismatic battery having a spirally wound electrode group, a cylindrical battery having a spirally wound electrode group, and a stacked electrode group.
  • Various forms, such as a stacked battery having the above, can be adopted.
  • the strength of the current collector for producing the electrode plate is ensured, and the convex portions formed on the current collector Since an electrode active material can be efficiently carried on the substrate and a highly reliable non-aqueous secondary battery can be obtained, a higher capacity is desired as electronic devices and communication devices become more multifunctional. It is useful as a power source for portable electronic devices.
  • the roller 4 is a cemented carbide roller having a diameter of 50 mm, and concave portions 4a are formed on the peripheral surface thereof with the arrangement pattern shown in FIG.
  • the opening diameter of the recess 4a was 10 m, and the depth was 8 ⁇ 111.
  • Roller 5 was a 50 mm diameter iron roller with a flat peripheral surface. The pressure of contact between the roller 4 and the roller 5 at the pressure dip portion 6 was 10 kN in terms of linear pressure.
  • a copper foil for a current collector having a thickness of force S 18 ⁇ was wound around a metal foil supply roller 36 and shown in FIG.
  • This copper foil for current collector is supplied to the pressure-welded ep portion 6 of the processing means 7, and the copper foil is subjected to partial non-compression processing, as shown in FIG. A current collector 1 was produced and wound around a winding roller 38.
  • t ttl Z ⁇ m, t is 21 m
  • the surface of the circumferential surface of the roller 4 facing the recess 4 a was plastically deformed along with the compression processing of other portions, and the protrusion 3 was formed.
  • the convex surface was not formed on the surface facing the roller 5 having a flat peripheral surface, and the surface was a flat surface.
  • FIG. 18 is an electron micrograph of a cross section of the current collector 1. From Fig. 18, current collector 1 It is clear that problems such as warping and wrinkles occur!
  • the current collector 1 obtained above was mounted inside a vacuum deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target and performing deposition while introducing oxygen with a purity of 99.7%, a SiO layer with a thickness of 20 m was formed on the surface of the convex part 3 of the current collector 1.
  • a negative electrode current collector 1 was produced in the same manner as in Example 1, except that the raised portion generated when the concave portion 4a was formed on the peripheral surface of the roller 4 was used without being removed by polishing.
  • t was 17 m and t was 21 nm. That is, t> t> t. Obtained negative electrode collection
  • the negative electrode plate was produced by processing.
  • the convex portion 3 was formed by subjecting one surface of the copper foil to the compression processing of the present invention.
  • Such a negative electrode current collector 1 was able to efficiently deposit a negative electrode active material on the surface of the protrusion 3.
  • it had sufficient durability against the tensile stress applied in the longitudinal direction of the negative electrode current collector 1. Therefore, when the negative electrode active material is vapor-deposited on the negative electrode current collector 1, or when slitting to a predetermined width after the negative electrode active material is vapor-deposited, local deformation and stagnation are applied to the negative electrode current collector 1. Is prevented from occurring. At the same time, the negative electrode active material layer could be prevented from falling off.
  • a SiO layer with a film thickness of 20 111 was formed in the same manner as in Example 1. Formed. This was slit to a predetermined width to prepare a negative electrode plate.
  • the negative electrode current collector 15 obtained in Examples 3 and 4 was subjected to the compression processing of the present invention on both sides of the copper foil, whereby partial plastic deformation occurred, and the convex portions 17x and 17y were formed. It was. Such a negative electrode current collector 15 was able to efficiently deposit a negative electrode active material on the surfaces of the convex portions 17x and 17y. Moreover, the anode current collector 1 had sufficient durability against the tensile stress applied in the longitudinal direction. For this reason, when depositing a negative electrode active material on the negative electrode current collector 1, or when slitting it to a predetermined width after the deposition of the negative electrode active material, local deformation and stagnation of the negative electrode current collector 1 occur. Is prevented from occurring. At the same time, it was possible to suppress the negative electrode active material layer from falling off with the force S.
  • FIG. 20 (a) The surface shape shown in Fig. 20 (a) was applied to the peripheral surface of a 50 mm diameter cemented carbide roller with a flat peripheral surface. Except that this roller was used in place of the roller 4 in the current collector production apparatus 35, the current collector copper foil (thickness 18 ⁇ ) was processed in the same manner as in Example 1. The cut surface of the processed copper foil was observed with a scanning electron microscope.
  • FIG. 19 is an electron micrograph of the cross section of the current collector 90 obtained in Comparative Example 1. From FIG. 19, it is clear that the current collector of Comparative Example 1 is struck. Further, in the current collector manufacturing apparatus 35, the roller 5 was used in place of the rubber roller and the copper foil for the current collector was processed, but the undulation could not be eliminated.
  • the current collector obtained by the production method of the present invention has a plurality of convex portions formed on its surface due to partial plastic deformation accompanying compression processing, and the convex portions have sufficient durability. Sex It is clear that it will work. Therefore, local deformation and sag of the current collector are prevented in the step of forming the convex portion on the surface of the metal foil and the step of supporting the electrode active material on the convex portion of the current collector. Also, the electrode active material can be prevented from falling off even in the step of supporting the electrode active material on the convex portion of the current collector and the step of slitting to a predetermined width.
  • the surface of the tip of the convex portion of the current collector is hardly affected by compression processing and plastic deformation, so that no processing strain remains on the surface of the convex portion.
  • the surface accuracy is good. Therefore, a uniform thin film can be formed.
  • the tip surface of the convex part maintains the initial surface roughness that does not decrease the surface roughness due to the compression processing, the adhesion with the thin-film active material layer can be increased. It can be considered. From this point of view, it is very effective to make the surface of the current collector before processing more rough in order to further increase the adhesion between the convex surface and the active material. It is done.
  • FIG. 14 is a drawing schematically showing a configuration of a current collector 70 which is one embodiment of the present invention.
  • 14 (a) is a perspective view of the current collector 70.
  • FIG. FIG. 14B is a longitudinal sectional view of the current collector 70, that is, a sectional view in the thickness direction.
  • the obtained current collector 70 is composed of a base portion 71 made of aluminum, and a substantially circular convex portion 72x, 72y having a height of 4 m and regularly formed on both surfaces of the base portion 71 in the thickness direction. (Hereinafter referred to as “convex portion 72”), and the base portion 71 has a thickness t force 2 111 and a maximum thickness t force ⁇ O ⁇ m.
  • the convex portions 72 are arranged so as to be shifted by 0.5 P in the width direction X. Such an array pattern of the protrusions 72 is a close-packed array.
  • an aluminum foil having a length of 1000 mm and a thickness of 15 m was used, and the volume ratio of the convex portion 72 was changed as shown in Table 1 by adjusting the pressing force at the pressure-welding nip portion 6. Except for the above, a convex portion 72 having a volume ratio different from the internal space volume of the concave portion 4a was formed in the same manner as described above, a current collector 70 was produced, and its surface condition was evaluated. The evaluation was performed by visually examining the number of wrinkles, warpage, and breakage of 1000 current collectors 70 to determine the occurrence rate. The results are shown in Table 1.
  • the volume ratio of the convex portion is a percentage of the volume of the convex portion 72 with respect to the internal space volume of the concave portion 4a. The same shall apply hereinafter.
  • the current collector 70 When the current collector 70 is manufactured, a tensile stress is applied in the longitudinal direction X of the current collector 70. If the current collector 70 is not durable against tensile stress, the current collector 70 will have problems such as wrinkling, warping, and cutting. However, as is apparent from Table 1, when the volume ratio of the protrusions 72 is 85% or less, the almost circular protrusions 72 are formed in a close-packed arrangement. The current collector 70 had sufficient durability against the tensile stress applied in the longitudinal direction X, and the occurrence of the above-described defects could be suppressed.
  • the volume ratio of the convex portion 72 is up to 55% is described, but when the volume ratio is 55% or less, the pressing force is further reduced, so that It was possible to manufacture the current collector 70 without causing defects.
  • the volume ratio of the convex portion 72 was larger than 85%, the strength of the surface 71a of the base material portion 71 was insufficient, and defects such as wrinkles, warpage, and cutting occurred locally.
  • the surface roughness of the positive electrode current collector 70 having a volume ratio of the convex portion 72 of 85% or less was measured with a surface roughness meter, the surface roughness of the surface 71a of the base material portion 71 was It was smaller than the surface roughness of the aluminum foil before processing. The surface roughness of the surface 71a of the base material portion 71 was almost equal to the surface roughness of the ceramic peripheral surface.
  • the surface roughness of the tip surface of the protrusion 72 was almost equal to the surface roughness of the aluminum foil before processing. Further, when the tip surface of the convex portion 72 was observed with a scanning electron microscope, the same fine scratches as those observed on the surface of the aluminum foil before processing were observed.
  • the surface 71a of the base material 71 and the inside of the convex part 72 were an aluminum foil before processing. It was observed that the crystal grains were more vigorous than. Further, when the tensile strength of the current collector 70 was measured, no decrease in tensile strength was observed even though the thickness of the base material portion 71 was thinner than the thickness of the aluminum foil before processing. Since the base material portion 71 is subjected to compression processing, it is presumed that the tensile strength has been improved by work hardening by compression processing.
  • EBSP backscattered electron diffraction image
  • the current collector shown in Fig. 3 is manufactured from a ceramic roller with multiple openings 4a with a rhombus shape and a depth of 10 111 and an opening diameter of 20 m (long diagonal length of the rhombus). Mounted as rollers 4 and 5 in apparatus 35.
  • the metal foil 10 for the current collector is passed through a 12 m thick strip-shaped copper foil through the pressure welding two-ply part 6 of the current collector production device 35 under a linear pressure of 10 kN for partial non-compression processing.
  • a positive electrode current collector 75 shown in FIG. 15 was produced.
  • FIG. 15 is a drawing schematically showing a configuration of a current collector 75 which is one of the embodiments of the present invention.
  • FIG. 15 is a drawing schematically showing a configuration of a current collector 75 which is one of the embodiments of the present invention.
  • FIG. 15A is a perspective view of the current collector 75.
  • FIG. 15B is a longitudinal sectional view of the current collector 75.
  • the obtained current collector 75 includes a base material portion 76 made of copper, and a substantially rhomboid convex portion 77x having a height of 4 m, which is regularly formed on both surfaces of the base material portion 76 in the thickness direction. 77y (hereinafter referred to as “convex portion 77”), and a base-like portion 71 having a thickness t force 0 111 and a maximum thickness t force S i 8 m
  • the convex portions 77 are arranged in a line at a pitch P.
  • a row unit 78 is formed. In short direction Y, line unit 78 is flat at pitch P.
  • the convex portions 77 are arranged so as to be shifted by 0.5 ⁇ 5P in the width direction X. Such protrusions 77
  • This arrangement pattern is a close-packed arrangement.
  • the volume ratio of the convex portion is a percentage of the volume of the convex portion 77 with respect to the internal space volume of the concave portion 4a. The same shall apply hereinafter.
  • the volume ratio of the convex portion 77 is up to 55% is described, but when the volume ratio is 55% or less, the pressing force is further reduced, so that
  • the volume ratio of the convex portion 77 is greater than 85%, the strength of the surface 76a of the base material portion 76 is insufficient, and wrinkles, warpage, and cutting are possible. Such defects occurred locally.
  • the surface roughness of the positive electrode current collector 75 in which the volume ratio of the convex portions 77 is 85% or less was measured with a surface roughness meter, the surface roughness of the surface 76a of the base material portion 76 was It was smaller than the surface roughness of the aluminum foil before processing. The surface roughness of the surface 76a of the base material portion 76 was almost equal to the surface roughness of the ceramic peripheral surface.
  • the surface roughness of the tip surface of the protrusion 77 was almost equal to the surface roughness of the aluminum foil before processing. Further, when the tip surface of the convex portion 77 was observed with a scanning electron microscope, the same fine scratches as those observed on the surface of the aluminum foil before processing were observed.
  • the surface 76a of the base material portion 76 and the inside of the convex portion 77 are aluminum foil before processing. It was observed that the crystal grains were more vigorous than. Further, when the tensile strength of the current collector 75 was measured, no decrease in tensile strength was observed even though the thickness of the base material portion 76 was thinner than the thickness of the aluminum foil before processing. Since the base material portion 76 is subjected to compression processing, it is presumed that the tensile strength has been improved by work hardening by compression processing.
  • EBSP backscattered electron diffraction image
  • Example 6 except that 18 m thick copper foil was used instead of 12 m thick copper foil, and the pressing force at the pressure welding two-ply part 6 was adjusted so that the volume ratio of the convex part 77 would be 80%.
  • a strip-shaped current collector 75 was produced.
  • the current collector 75 had sufficient durability against the tensile stress applied in the longitudinal direction X because the substantially rhombic projections 77 were arranged in a close-packed shape. For this reason, when the current collector 75 is processed, it is possible to prevent local deformation and stagnation of the current collector 75 and to prevent the active material from peeling off from the current collector 75.
  • the processing of the current collector 75 includes supporting an active material on the surface of the current collector 75, slitting an electrode obtained by supporting the active material on the surface of the current collector 75, and the like.
  • the current collector 75 obtained above was mounted inside a vacuum vapor deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target, vapor deposition was performed while introducing oxygen with a purity of 99.7%, and a columnar SiO film with a thickness of 25 m was formed on the surface of the convex part 77 of the current collector 75.
  • This slitter is applied to a predetermined width in a cylindrical nonaqueous electrolyte secondary battery.
  • the negative electrode plate was produced by processing.
  • the substantially rhombic protrusions 77 are arranged in a close-packed shape, so that when the negative electrode active material is deposited in the short direction Y, it adheres efficiently to the surface of the protrusions 77. I was able to.
  • the process of producing an electrode by supporting an active material on the surface of the current collector It is possible to remarkably prevent the occurrence of local defects.
  • the active material from being separated from the current collector in the step of manufacturing the electrode by supporting the active material on the current collector surface, the step of slitting the electrode to a predetermined width, and the like.
  • the convex portions of the current collector are subjected to plastic deformation accompanying compression processing. Since the tip surface of the convex portion is hardly affected by plastic deformation, almost no processing distortion occurs on the tip surface of the convex portion. Therefore, the surface accuracy of the tip surface of the convex portion is good, and a uniform thin-film active material layer can be formed on the tip surface. Further, since the tip surface of the convex portion has not been subjected to compression processing, the surface roughness of the metal foil for the current collector is maintained without reducing the surface roughness force S. Therefore, it is considered that the adhesion with the active material layer is further increased. From this point of view, in order to further enhance the adhesion between the flat surface of the convex portion and the electrode active material, it is very effective to previously roughen the surface of the current collector before processing. Conceivable.
  • a roller 28 shown in FIG. 9 was produced as follows.
  • a circular recess with an opening of about 10 m in diameter and a depth of about 8 m is formed on the peripheral surface of one la by laser processing using a YAG laser. did.
  • the laser frequency of laser processing is ⁇ .
  • the surface roughness of the roller 28 is approximately the same as the surface roughness of the metal foil as the raw material. Therefore, in the current collector obtained after compression processing, the tip end surface of the convex portion maintains the surface roughness of the original metal foil, and the surface of the base material portion is subjected to compression processing by the roller 28, and the roller 28 The surface roughness is almost the same as the surface roughness. That is, the entire surface of the current collector has almost the same surface roughness. When such a current collector is used, the adhesion between the current collector and the active material layer can be further improved.
  • a roller 28 was produced in the same manner as in Example 8 except that diamond particles having an average particle diameter of 30 Hm were used instead of diamond particles having an average particle diameter of 8 [I m.
  • a roller 28 was produced in the same manner as in Example 8 except that diamond particles having an average particle diameter of 53 Hm were used instead of diamond particles having an average particle diameter of 8 Hm.
  • a roller 28 was produced in the same manner as in Example 8 except that diamond particles having an average particle size of 74 Hm were used instead of diamond particles having an average particle size of 8 Hm. At this time, the average surface roughness of the roller 28 was a force that could not be made smaller than 0.8a.
  • the diamond pad having an average particle diameter of 5 m was used as the abrasive on the opening edge 29a of the recess 29, and water was supplied while supplying the polishing pad. Polishing was carried out with a polishing machine equipped to form a groove 29 ⁇ having a width of about 1 ⁇ m and a depth of about 1 ⁇ m. Diamond particles with an average particle size of 5 inches are the smallest particles on the market that can control the variation in particle size distribution.
  • the height of the convex portion from the surface of the base material portion is determined in consideration of the life of the roller 28 in addition to the characteristics of the electrode to be finally obtained.
  • Example 12 In the same manner as in Example 9, a recess 29 was formed on the peripheral surface of a ceramic recess-forming roller having a diameter of 25 mm, and a roller 28 was produced.
  • the roller 28 was mounted as the roller 4 in the current collector manufacturing apparatus 35 shown in FIG. Copper foil with a thickness of 18 ⁇ m, a width of 80 mm in the direction perpendicular to the conveying direction and a length of 100 m is supplied to the press-fitting nipping part 34 and subjected to compression processing under a pressure of 80 kN to cause partial plastic deformation.
  • the current collector 20 shown in Fig. 8 was made /
  • a current collector 20 was produced in the same manner as in Example 12 except that the diameter of the recess forming roller was changed to 50 mm.
  • a current collector 20 was produced in the same manner as in Example 12 except that the diameter of the recess forming roller was changed to 100 mm.
  • a current collector 20 was produced in the same manner as in Example 12 except that the diameter of the recess forming roller was changed to 150 mm.
  • the average height of the protrusions 22 and the difference between the maximum value and the minimum value of the protrusions 22 were determined by electron microscope observation.
  • the average height of the convex portion is an average value of 100 convex portions 22.
  • the roller 28 after the current collector 20 was produced the damaged state of the recess 29 was visually observed.
  • the height of the convex portion 20 is had contact to the cross-sectional view shown in FIG. 7, in the direction perpendicular to the surface 21a of the base 21, the length from the surface 21a to the end surfaces of the projections 20. The results are shown in Table 4.
  • the roller diameter was 50 mm
  • the average height of the convex portion 22 was 7.4 111. Not a little deflection of the roller 28 was observed, and the height variation of the convex portion 22 was about ⁇ 1 m. Further, when the concave portion 29 of the roller 28 was observed after the current collector 20 was produced, many cracks were generated. It is assumed that the roller diameter has a great influence on the life of the roller 28.
  • the average height of the convex portion 22 was 2. l ⁇ m, and the variation in the height of the convex portion 22 was ⁇ 1 ⁇ m or less.
  • the crack showed a force that was not recognized. Furthermore, the force that produced current collector 20 to 1000 m.
  • roller 28 produced in Example 14 can be used suitably.
  • diamond particles having an average particle diameter of 30 m are used in the polishing process, grooves 29x are formed in the opening edge 29a of the recess 29, and the average surface roughness of the roller peripheral surface is 0.4a.
  • the Ronore diameter was set to 100 mm.
  • the boundary portion 22a between the base material portion 21 and the convex portion 22 is formed of a curved surface, and the sectional force of the convex portion 22 shown in FIG. It has a shape.
  • the electrode group is formed of a positive electrode plate having a positive electrode active material supported on a current collector 20 having many protrusions 22 that are easily peeled off
  • the current collector 20 causes wrinkling of the positive electrode plate in the process of repeated charge and discharge.
  • the positive electrode active material peeled off. This is considered to be caused by a variation in the mechanical strength of the current collector 20.
  • a roller 28A having the same configuration as that of the roller 28 shown in FIG. 9 except that the opening shape of the recess 29 is substantially rhombus was produced as follows.
  • the aperture shape is approximately rhombus by laser processing using YAG laser on the peripheral surface of a 50 mm diameter cemented carbide recess forming roller, the long diagonal of the rhombus is 20 m long and the depth is approximately 10 mm.
  • a recess which is m was formed. The laser was operated with a laser frequency of 1 kHz.
  • the surface roughness of the roller 28A is approximately the same as the surface roughness of the metal foil as the raw material. Therefore, in the current collector obtained after compression processing, the tip surface of the convex portion maintains the surface roughness of the original metal foil, and the surface of the base material portion is subjected to compression processing by the roller 28A.
  • the surface roughness is substantially the same as the surface roughness. That is, the entire surface of the current collector has substantially the same surface roughness. When such a current collector is used, the adhesion between the current collector and the active material layer can be further improved.
  • roller life when the compression processing of the present invention is performed on the metal foil using a roller that is not subjected to polishing, stress concentrates on the raised portion of the opening edge of the recess, which becomes the starting point of the crack on the roller peripheral surface, Roller life may be reduced.
  • the opening shape is almost diamond-shaped, the two sharp corners are stress concentrated due to the shape and immediately become the starting point of the crack on the peripheral surface of the roller 28A, and also in the propagation path of the crack between the adjacent recesses 29. As a result, it was found that the roller life was greatly reduced.
  • a roller 28A was produced in the same manner as in Example 16 except that diamond particles having an average particle diameter of 30 am were used instead of diamond particles having an average particle diameter of 8 m.
  • a roller 28A was produced in the same manner as in Example 16 except that diamond particles having an average particle size of 53 / m were used instead of diamond particles having an average particle size of 8 ⁇ m.
  • a roller 28A was produced in the same manner as in Example 16 except that diamond particles having an average particle size of 74 and im were used instead of diamond particles having an average particle size of 8 m. At this time, the average surface roughness of the roller 28A could not be made smaller than 0.8a.
  • the height of the convex portion from the surface of the base material portion is determined in consideration of the life of the roller 28A in addition to the characteristics of the electrode to be finally obtained.
  • the opening shape is approximately diamond-shaped
  • a higher pressing force is required than when the opening shape is approximately circular.
  • the height was reduced by about 15% to 23% even when pressed under the same conditions into a nearly circular shape with the same area projected from the plane.
  • a recess 29 was formed on the peripheral surface of a ceramic recess-forming roller having a diameter of 25 mm, and a roller 28A was produced.
  • the roller 28A was mounted as the rollers 4 and 5 in the current collector manufacturing apparatus 35 shown in FIG. 3 to form the press-contacting dip portion 34a.
  • Copper foil with a thickness of 26 111, a width of 80 mm in the direction perpendicular to the transport direction and a length of 100 m is supplied to the press-fitting nip part 34a, and compression processing is performed under a pressure of 80 kN to cause partial plastic deformation.
  • a current collector 23 shown in FIG. 10 was produced.
  • a current collector 23 was produced in the same manner as in Example 20 except that the diameter of the recess forming roller was changed to 50 mm.
  • a current collector 23 was produced in the same manner as in Example 20, except that the diameter of the recess forming roller was changed to 100 mm.
  • a current collector 23 was produced in the same manner as in Example 20 except that the diameter of the recess forming roller was changed to 150 mm.
  • the average height of the convex portions 25x and 25y (hereinafter referred to as "convex portion 25") and the difference between the maximum value and the minimum value of the convex portion 25 was obtained by electron microscope observation.
  • the convex average height is an average value of 100 convex portions 25. Further, the damaged state of the recess 29 was visually observed on the roller 28A after the current collector 23 was produced.
  • the average height of the convex portions 25 was 10 m at a roller diameter of 25 mm.
  • the roller 28A itself had relatively large stagnation, and the variation in the height of the convex part 25 was large.
  • the rotation of the roller 28A was uneven, and it was assumed that continuous machining was difficult.
  • the roller diameter is 50 mm
  • the average height of the convex portion 25 is 8.2 mm.
  • the deflection of the force roller 28A is not a little, and the height variation of the convex portion 25 is about ⁇ 1 m.
  • the concave portion 29 of the roller 28A was observed after the current collector 23 was produced, many cracks were generated. From these facts, it is estimated that the roller diameter has a great influence on the life of the roller 28.
  • roller 28A diamond particles having an average particle diameter of 30 mm are used in the polishing process, grooves 29x are formed in the opening edge 29a of the recess 29, and the average surface roughness of the roller peripheral surface is 0.4a.
  • the roll diameter was set to 100 mm.
  • the boundary portion 25a between the base material portion 24 and the convex portion 25 is composed of a curved surface, and the sectional force of the convex portion 25 shown in FIG. 10 is tapered. have.
  • the workability during compression processing and the releasability of the current collector 23 from the roller 28A are improved, and the convex portion 25 is tightly fitted into the concave portion 29 of the roller 28A and peeled off from the current collector 23. We were able to prevent.
  • the electrode group is composed of a negative electrode plate having a negative electrode active material supported on a current collector 23 having many convex portions 25 that are easily peeled off
  • the current collector 23 causes wrinkling of the negative electrode plate in the process of repeated charge and discharge.
  • the negative electrode active material peeled off. This is considered to be caused by a variation in the mechanical strength of the current collector 23.
  • FIG. 16 is a drawing schematically showing a configuration of a current collector 80 which is one of the embodiments of the present invention.
  • FIG. 16A is a perspective view of the current collector 80.
  • FIG. 16 (b) is a longitudinal sectional view of the current collector 80.
  • the obtained current collector 80 includes a base part 81 made of aluminum, and a substantially circular convex part 82x, 82y having a height of 5 m regularly formed on both surfaces of the base part 81 in the thickness direction. (Hereinafter referred to as “convex portion 82”), and the thickness of the base material portion 81 is t force 2 111, and the maximum thickness t force is ⁇ O ⁇ m.
  • the protrusions 82 are arranged in a row at a pitch P.
  • a row unit 83 arranged in a row is formed.
  • the row units 83 are arranged in parallel by the pitch P. Furthermore, in line unit 83 and adjacent line unit 83,
  • the convex portions 82 are arranged so as to be shifted by 0.5 P in the width direction X. like this
  • the arrangement pattern of the convex portions 82 is a close-packed arrangement.
  • boundary portion 82a between base material portion 81 and convex portion 82 was formed of a curved surface. As a result, the workability during the compression process and the releasability of the current collector 80 from the roller 28 are improved. At the same time, since the substantially circular protrusions 82 are arranged in a close-packed manner, the current collector 80 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, it was possible to prevent the current collector 80 from being locally deformed or sagged during manufacture of the current collector 80 or during processing of the current collector 80.
  • the surface 81a of the base member 81 was found to have a smaller surface roughness than the aluminum foil before processing.
  • the surface roughness of the surface 81 a of the base material portion 81 was almost the same as the surface roughness of the ceramic roller 28.
  • the surface roughness of the tip surface of the protrusion 82 was almost the same as that of the aluminum foil before processing. Further, when the tip surface of the projection 82 was observed with a scanning electron microscope, the same fine scratches as those observed on the aluminum foil before processing were observed.
  • the positive electrode was pressed to 126 m, and the positive electrode active material layer on one side had a thickness of 58 ⁇ m. This was slitted to a predetermined width to produce a positive electrode plate.
  • the positive electrode mixture slurry consists of 100 parts by weight of lithium cobaltate in which a part of cobalt is substituted with nickel and manganese, 2 parts by weight of acetylene black (conductive material), 2 parts by weight of active material of polyvinylidene fluoride (binder) and appropriate amount N-methyl-2-pyrrolidone was stirred and kneaded in a double-arm kneader.
  • the substantially circular convex portions 82 are arranged in a close-packed manner, and the boundary portion 82a between the substrate portion 81 and the convex portion 82 is formed of a curved surface.
  • the current collector 80 is locally deformed or deformed in a process of applying a positive electrode mixture slurry to the current collector 80, drying and pressing to produce a positive electrode, and slitting the positive electrode to a predetermined width. As a result, it was possible to prevent the positive electrode active material layer from falling off.
  • FIG. 17 is a drawing schematically showing a configuration of a current collector 85 which is one embodiment of the present invention.
  • FIG. 17A is a perspective view of the current collector 85.
  • FIG. 17B is a longitudinal sectional view of the current collector 85.
  • the obtained current collector 85 includes a base material portion 86 made of copper, and a substantially rhombic convex portion 87x having a height of 6 m, which is regularly formed on both surfaces of the base material portion 86 in the thickness direction. 87y (hereinafter referred to as “convex portion 87”), and a current collector in the form of a strip with a thickness t force of the base material portion 86, 1 m, and a maximum thickness t force S18 m
  • width direction (longitudinal direction) X row units 88 in which convex portions 86 are arranged in a line at a pitch P are formed.
  • line unit 88 is flat at pitch P.
  • the convex portions 87 are arranged so as to be shifted by 0.5 ⁇ 5P in the width direction X.
  • Such an arrangement pattern of the protrusions 87 is a close-packed arrangement.
  • boundary portion 86a between base material portion 86 and convex portion 87 is formed of a curved surface. It was. This improves the workability during compression processing and the releasability of the current collector 85 from the roller 28. At the same time, since the approximately rhombic projections 87 are arranged in a close-packed manner, the current collector 85 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, it was possible to prevent the current collector 85 from being locally deformed or sagged during manufacture of the current collector 85 or during processing of the current collector 85.
  • the surface 86a of the base material portion 86 was found to have a smaller surface roughness than the copper foil before processing.
  • the surface roughness of the surface 86a of the base material portion 86 was almost the same as the surface roughness of the ceramic roller 28.
  • the surface roughness of the tip surface of the convex portion 87 was almost the same as the copper foil before processing. Further, when the tip surface of the convex portion 87 was observed with a scanning electron microscope, the same fine scratches as those observed on the copper foil before processing were observed.
  • the current collector 85 obtained above was mounted inside a vacuum vapor deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target, vapor deposition was carried out while introducing oxygen with a purity of 99.7%.
  • 0.5 layers were formed in a column shape. This was slit to a predetermined width to prepare a negative electrode plate.
  • the current collector 85 has substantially rhombic convex portions 87 formed on both surfaces thereof in a close-packed arrangement, and the boundary portion between the base material portion 86 and the convex portion 87. 87a is a curved surface. For this reason, when the negative electrode active material is deposited in the longitudinal direction X of the current collector 85, it can be efficiently attached to the surface of the convex portion 87. In addition, the current collector 85 has sufficient durability against the tensile stress applied in the longitudinal direction X.
  • the step of producing the strip-shaped current collector 85 the step of depositing the negative electrode active material on the surface of the current collector 85 to produce the negative electrode plate, the step of slitting the negative electrode plate to a predetermined width, etc.
  • the negative electrode active material could be prevented from falling off.
  • the ceramic roller 28 shown in FIG. 9 having a substantially circular opening, a plurality of recesses 29 having a depth of 10 111 and an opening diameter of 10 m is used as rollers 4 and 5 in the current collector manufacturing apparatus 35 shown in FIG. Installed.
  • the metal foil 10 for the current collector which is 18 ⁇ thick, is passed through the pressure welding two-ply part 34a (Fig. 11) of the current collector manufacturing device 35 under a pressure of 10 kN and compressed.
  • the obtained current collector 80 includes a base material portion 81 made of copper, and a substantially circular convex portion 82x having a height of 8 m, which is regularly formed on both surfaces of the base material portion 81 in the thickness direction. 82y (hereinafter referred to as “convex portion 82”), and a base-shaped portion 81 having a thickness t force 0 111 and a maximum thickness t force 3 ⁇ 46 m.
  • the protrusions 82 are arranged in a line at a pitch P.
  • a row unit 83 is formed. In short direction Y, line unit 83 is flat at pitch P.
  • the respective protrusions 82 are arranged so as to be shifted by 0.5 ⁇ 5P in the width direction X.
  • This arrangement pattern is a close-packed arrangement.
  • the boundary portion 82a between the base material portion 81 and the convex portion 82 was formed of a curved surface. As a result, the workability during the compression process and the releasability of the current collector 80 from the roller 28 are improved. At the same time, since the substantially circular protrusions 82 are arranged in a close-packed manner, the current collector 80 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, it was possible to prevent the current collector 80 from being locally deformed or sagged during manufacture of the current collector 80 or during processing of the current collector 80.
  • the surface 81a of the base member 81 was found to have a smaller surface roughness than the copper foil before processing.
  • Surface of substrate 81 surface roughness of surface 81a This was almost the same as the surface roughness of the ceramic roller 28.
  • the surface roughness of the tip surface of the convex portion 82 was almost the same as the copper foil before processing. Further, when the tip surface of the convex portion 82 was observed with a scanning electron microscope, the same fine scratches as those observed on the copper foil before processing were observed.
  • the current collector 85 obtained above was mounted inside a vacuum vapor deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target, vapor deposition was carried out while introducing oxygen with a purity of 99.7%.
  • 0.5 layers were formed in a column shape. This was slit to a predetermined width to prepare a negative electrode plate.
  • the current collector 80 has substantially circular convex portions 82 formed on both surfaces thereof in a close-packed arrangement, and a boundary portion between the base material portion 81 and the convex portions 82.
  • 82a is a curved surface. For this reason, when the negative electrode active material is deposited in the longitudinal direction X of the current collector 80, the negative electrode active material can be efficiently attached to the surface of the convex portion 82.
  • the current collector 80 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, in the step of manufacturing the strip-shaped current collector 80, the step of depositing the negative electrode active material on the surface of the current collector 80 to prepare the negative electrode plate, the step of slitting the negative electrode plate to a predetermined width, etc. Thus, local deformation and stagnation of the current collector 85 are prevented. At the same time, the negative electrode active material could be prevented from falling off.
  • a cylindrical nonaqueous electrolyte secondary battery 40 shown in Fig. 12 was produced.
  • positive plate 50, separator 52, negative plate 5 1 and separator 52 were superposed in this order, and wound in a spiral shape to produce electrode group 41.
  • an electrode group 14 was produced in which a positive electrode plate 15 and a negative electrode plate 17 were spirally wound through a separator 19.
  • the electrode group 41 was housed together with an insulating plate 44 in a bottomed cylindrical battery case 47.
  • a negative lead (not shown) derived from the lower part of the electrode group 41 is connected to the bottom of the battery case 47, and then a positive lead 42 led from the upper part of the electrode group 41 is connected to the sealing plate 45.
  • An electrolyte solution (not shown) made of a nonaqueous solvent was injected. Thereafter, a sealing plate 45 having a sealing gasket 46 attached to the periphery thereof is inserted into the opening of the battery case 47, and the opening of the battery case 47 is folded inward to seal it.
  • a secondary battery 40 was produced.
  • the electrode group 41 wound in the spiral shape in the non-aqueous secondary battery 40 was produced, the electrode group 41 was disassembled and observed. If both the positive electrode plate 50 and the negative electrode plate 51 were broken, it was active. There were no defects such as falling off of the material layer. Furthermore, when the non-aqueous secondary battery 40 and the electrode group 41 were disassembled after 300 cycles without any cycle deterioration, the force that caused the non-aqueous secondary battery 40 to charge and discharge for 300 cycles, lithium precipitation, active material layer dropping, etc. No defects were found.
  • the thin film of the active material layer is formed in a columnar shape on the surface of the convex portion that is not subjected to compression processing, so that the thin film of the active material layer during lithium occlusion and the active material layer during lithium release It is considered that good battery characteristics were maintained by the effect of reducing the volume change due to the shrinkage of the thin film.
  • the electrode plate for a non-aqueous secondary battery according to the present invention is such that the boundary portion between the base portion and the convex portion of the current collector is a curved surface. Good workability during compression processing and release property of current collector. In addition, since the tip surface of the convex portion of the current collector is not compressed, there is no processing strain due to the processing, and the surface accuracy of the convex tip surface is good. A thin film active material layer can be formed. Further, since the convex portion is formed by plastic deformation accompanying compression processing, the surface roughness of the surface of the convex portion tip is not reduced, and the initial surface roughness is maintained. Therefore, it is considered that the adhesion with the thin film active material layer is high.
  • the active material layer in the non-aqueous secondary battery of the present invention is preferably formed in a columnar shape on the tip surface of the convex portion.
  • the volume change due to the expansion of the active material layer during lithium occlusion accompanying the charge / discharge of the non-aqueous secondary battery and the contraction of the active material layer during lithium release is alleviated.
  • a non-aqueous secondary battery with high capacity and high reliability is obtained that is less likely to cause defects such as electrode plate breakage and dropping of the active material layer due to charge and discharge.
  • the strength of the current collector for producing the electrode plate is ensured, and the convex portions formed on the current collector Since an electrode active material can be efficiently carried on the substrate and a highly reliable non-aqueous secondary battery can be obtained, a higher capacity is desired as electronic devices and communication devices become more multifunctional. It is useful as a power source for portable electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Intended is to improve the mechanical strength and the durability of a collector for a nonaqueous secondary battery, so that an active substance layer may be carried efficiently in a high adhesion on the surface of the collector. This improvement is achieved by using a pair of working means, which have surfaces pressed toward each other to form a pressing nip portion for allowing a sheet-shaped substance to pass therethrough and which have a plurality of recesses formed in at least one surface. A metal foil for the collector is subjected to a compressing treatment by passing it through the pressing nip portion of the working means so that a plurality of projections are formed on at least one surface of the collector metal foil by the partial plastic deformation caused according to the compressing treatment.

Description

明 細 書  Specification
非水電解質二次電池用集電体の製造方法、非水電解質二次電池用電 極の製造方法および非水電解質二次電池  Non-aqueous electrolyte secondary battery current collector manufacturing method, non-aqueous electrolyte secondary battery electrode manufacturing method, and non-aqueous electrolyte secondary battery
技術分野  Technical field
[0001] 本発明は、非水電解質二次電池用集電体の製造方法、非水電解質二次電池用電 極の製造方法および非水電解質二次電池に関する。より詳しくは、本発明は、主に、 非水電解質二次電池用集電体の改良に関する。  The present invention relates to a method for producing a current collector for a non-aqueous electrolyte secondary battery, a method for producing an electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery. More specifically, the present invention mainly relates to improvement of a current collector for a non-aqueous electrolyte secondary battery.
背景技術  Background art
[0002] リチウム二次電池は、高電位および高容量を有し、小型化および軽量化が比較的 容易なことから、最近では主に携帯用電子機器の電源としてその利用が顕著に増加 している。代表的なリチウム二次電池は、負極活物質としてリチウムの吸蔵および放 出が可能な炭素質材料等を用い、かつ正極活物質として LiCoO等の遷移金属とリ  [0002] Lithium secondary batteries have a high potential and high capacity, and are relatively easy to reduce in size and weight. Therefore, their use as a power source for portable electronic devices has increased remarkably recently. Yes. A typical lithium secondary battery uses a carbonaceous material or the like capable of occluding and releasing lithium as a negative electrode active material, and lithium and a transition metal such as LiCoO as a positive electrode active material.
2  2
チウムの複合酸化物を用いることにより、高電位および高容量を実現している。しかし ながら、携帯用電子機器の多機能化ひいては消費電力の増大が進むと共に、電源 として使用されるリチウム二次電池にも、充放電サイクルに伴う特性劣化の改善が望 まれている。  High potential and high capacity are realized by using a complex oxide of thium. However, as the functionality of portable electronic devices increases and power consumption continues to increase, lithium secondary batteries used as power sources are also expected to improve the characteristic deterioration associated with charge / discharge cycles.
[0003] リチウム二次電池の発電要素である電極は、集電体と、活物質層とを含む。活物質 層は、一般に、集電体の片面または両面に合剤スラリーを塗布し、乾燥させた後、プ レス成形を行うことにより形成される。合剤スラリーは、正極活物質または負極活物質 、結着材および必要に応じて導電材を分散媒に混合分散することにより調製される。 ここで、充放電サイクルに伴う特性劣化の要因の一つとして、集電体表面に形成さ れた活物質層と集電体との結着力の低下が挙げられる。リチウム二次電池では、充 放電サイクルに伴って電極が膨張および収縮することより、集電体と活物質層との界 面での両者の結着力が弱まり、活物質層の集電体からの脱落が起こり、特性が劣化 する。  [0003] An electrode that is a power generation element of a lithium secondary battery includes a current collector and an active material layer. The active material layer is generally formed by applying a mixture slurry on one side or both sides of a current collector and drying it, followed by press molding. The mixture slurry is prepared by mixing and dispersing a positive electrode active material or a negative electrode active material, a binder and, if necessary, a conductive material in a dispersion medium. Here, as one of the factors of the characteristic deterioration accompanying the charge / discharge cycle, there is a decrease in the binding force between the active material layer formed on the current collector surface and the current collector. In the lithium secondary battery, the electrode expands and contracts with the charge / discharge cycle, so that the binding force between the current collector and the active material layer is weakened, and the active material layer is separated from the current collector. Dropping occurs and the characteristics deteriorate.
[0004] 集電体と活物質層との結着力を高めるためには、集電体と活物質層との界面にお いて、両者の接触面積を増大させることが有効である。このために、集電体表面を粗 面化する方法、集電体表面に凹凸を形成する方法などが提案されている。 [0004] In order to increase the binding force between the current collector and the active material layer, it is effective to increase the contact area between the current collector and the active material layer. For this purpose, the current collector surface is roughened. A method for forming the surface and a method for forming irregularities on the surface of the current collector have been proposed.
集電体表面の粗面化方法としては、例えば、集電体の表面を電解によりエッチング する方法、集電体表面に電着により集電体に含まれるのと同じ金属を析出させる方 法などが挙げられる。  Current collector surface roughening methods include, for example, a method of etching the surface of the current collector by electrolysis, a method of depositing the same metal contained in the current collector by electrodeposition on the current collector surface, etc. Is mentioned.
[0005] 集電体表面に凹凸を形成する方法としては、例えば、集電体である圧延銅箔の表 面に微粒子を高速で衝突させ、表面に微小な凹凸を形成する方法 (例えば、特許文 献 1参照)が提案されている。特許文献 1では、局所的にはランダムな凹凸を有する 集電体を形成できるものの、ノズルから噴射させる微粒子に速度分布が生じるため、 集電体の幅方向、長手方向に均一に凹凸を形成することは難しい。  [0005] As a method for forming irregularities on the surface of the current collector, for example, a method of forming fine irregularities on the surface by causing fine particles to collide with the surface of a rolled copper foil as a current collector at high speed (for example, a patent (Ref. 1) has been proposed. In Patent Document 1, although a current collector having random irregularities can be formed locally, a velocity distribution is generated in the fine particles ejected from the nozzle, so that irregularities are uniformly formed in the width direction and the longitudinal direction of the current collector. It ’s difficult.
[0006] また、金属箔にレーザ光を照射して表面粗さが 10点平均粗さで 0. 5〜; lO ^ mの凹 凸を形成する方法 (例えば、特許文献 2参照)が提案されている。特許文献 2では、レ 一ザ光を照射して金属箔を局部的に加熱し、金属を蒸発させることで凹部を形成し ている。そして、レーザ光の照射を連続的に行なうことで、金属箔の全面に凹凸を形 成することは可能である。し力もながら、レーザ光を線状に走査するため、金属箔が 局所的に金属箔の融点以上の高温に加熱されることにより、金属箔の波打ち、しわ、 反りなどが発生するのを防止することは困難である。さらに、リチウム二次電池の集電 体のような厚み 20 m以下の金属箔にレーザ加工する際は、レーザの出力バラツキ により金属箔に穴が開く不具合を引き起こす場合がある。  [0006] Further, a method has been proposed in which a metal foil is irradiated with a laser beam to form a concave / convex surface with a 10-point average roughness of 0.5 to 10 lO ^ m (for example, see Patent Document 2). ing. In Patent Document 2, a laser beam is irradiated to locally heat a metal foil to evaporate the metal, thereby forming a recess. Then, it is possible to form irregularities on the entire surface of the metal foil by continuously irradiating the laser beam. However, since the laser beam is scanned linearly, the metal foil is locally heated to a temperature higher than the melting point of the metal foil to prevent the metal foil from wavy, wrinkled, warped, etc. It is difficult. In addition, when laser processing is performed on a metal foil with a thickness of 20 m or less, such as a current collector of a lithium secondary battery, there may be a problem that a hole is formed in the metal foil due to variations in laser output.
[0007] また、表面に凹凸が形成されたローラと、表面に硬質ゴム層が設けられたローラとを 、それぞれの軸線が平行になるように接触させ、この接触部分に集電体を通過させ て、集電体に凹凸を形成する方法が挙げられる(例えば、特許文献 3参照)。特許文 献 3では、活物質層の厚みを薄くすることなぐリチウム二次電池の出力密度を向上さ せるために、集電体に凹凸を形成している。特許文献 3では、表面に硬質ゴム層が 設けられたローラを使用するため、ローラとローラとの接触部分に集電体を通過させ ても、塑性変形が起こり難い。  [0007] Further, a roller having an uneven surface and a roller having a hard rubber layer on the surface are brought into contact with each other so that the respective axes are parallel to each other, and the current collector is passed through the contact portion. And a method of forming irregularities on the current collector (see, for example, Patent Document 3). In Patent Document 3, irregularities are formed on the current collector in order to improve the output density of the lithium secondary battery without reducing the thickness of the active material layer. In Patent Document 3, since a roller having a hard rubber layer provided on the surface is used, even if a current collector is passed through a contact portion between the roller and the roller, plastic deformation hardly occurs.
[0008] また、集電体と活物質層との結着力および電気伝導性を向上させるために、特定 の凹凸を有する集電体が提案されている(例えば、特許文献 4参照)。図 20 (a)〜(e )は、特許文献 4の集電体の構成を模式的に示す斜視図である。特許文献 4の集電 体は、金属箔の一方の表面における局所部分が窪んでいるとき、他方の表面におけ る前記局所部分に対応する部分力 他方の表面から外方に突出するような凹凸が規 則的に形成されたものである。このような集電体は十分な機械的強度を有してレ、なレ、 。さらに、このような集電体に活物質層を形成すると、活物質層の厚みが不均一にな り易ぐ結果として電池性能に悪影響を及ぼす。 [0008] In addition, in order to improve the binding force and electrical conductivity between the current collector and the active material layer, a current collector having specific irregularities has been proposed (see, for example, Patent Document 4). 20 (a) to 20 (e) are perspective views schematically showing the configuration of the current collector of Patent Document 4. FIG. Patent Document 4 current collector When a local part of one surface of the metal foil is depressed, the body has a partial force corresponding to the local part on the other surface, and irregularities that protrude outward from the other surface are regularly formed. It has been done. Such a current collector has sufficient mechanical strength. Furthermore, when an active material layer is formed on such a current collector, the thickness of the active material layer tends to be non-uniform, which adversely affects battery performance.
さらに、特許文献;!〜 4では、金属箔の一方の表面に凹部を形成すると、他方の表 面における前記凹部に対応する部分は必ず凸部になることが避けられず、凹凸を形 成する際に、金属箔に波打ち、しわ、反り等が発生するのを防止することは困難であ  Furthermore, in Patent Documents !! to 4, when a concave portion is formed on one surface of a metal foil, a portion corresponding to the concave portion on the other surface is inevitably formed as a convex portion, forming irregularities. It is difficult to prevent the metal foil from wavy, wrinkled, warped, etc.
[0009] また、エンボス加工によって凹凸が形成された開孔度 20%以下のパンチメタルから なる集電体と、集電体の凹部に充填された活物質層とを含み、集電体の凸部が露出 する力、または凸部に活物質が付着した電極が提案されている(例えば、特許文献 5 参照)。図 21は、特許文献 5の電極 101〜; 103の構成を模式的に示す縦断面図であ る。図 21 (a)に示す電極 101は、凹凸が形成された集電体 110と、集電体 110の凹 部 110bに充填された活物質層 111とを含み、集電体 110の凸部 30a表面にも活物 質層 11 1が付着している。図 21 (b)および(c)に示す電極 102、 103では、集電体 1 20、 130の凸部 120a、 130aはそれぞれ露出している。特許文献 5では、開孔度 20 %以下のパンチメタルにエンボス加工を施して凹凸を形成するので、得られる集電 体が十分な機械的強度を有していない。このため、電極が切れるといった不都合を 引き起こす場合がある。 [0009] In addition, the current collector includes a current collector made of punch metal having an opening degree of 20% or less in which unevenness is formed by embossing, and an active material layer filled in the recess of the current collector. There has been proposed an electrode in which a part is exposed or an electrode in which an active material adheres to a convex part (see, for example, Patent Document 5). FIG. 21 is a longitudinal sectional view schematically showing the configuration of the electrodes 101 to 103 of Patent Document 5. An electrode 101 shown in FIG. 21 (a) includes a current collector 110 having irregularities formed thereon and an active material layer 111 filled in a concave portion 110b of the current collector 110, and a convex portion 30a of the current collector 110. The active material layer 11 1 also adheres to the surface. In the electrodes 102 and 103 shown in FIGS. 21 (b) and 21 (c), the convex portions 120a and 130a of the current collectors 120 and 130 are exposed, respectively. In Patent Document 5, since unevenness is formed by embossing a punch metal having an opening degree of 20% or less, the obtained current collector does not have sufficient mechanical strength. This may cause inconveniences such as electrode breakage.
[0010] また、集電体および活物質層を含み、(活物質層の表面粗さ Ra)—(集電体の表面 粗さ Ra)の値が 0.; 1 m以上である電極が提案されている(例えば、特許文献 6参照 )。通常、集電体表面に真空蒸着法などによって活物質の薄膜を形成すると、集電 体表面とほぼ同じ表面粗さを有する薄膜が得られる。一方、特許文献 6では、通常の 方法で形成された薄膜に、サンドブラスト、表面研磨などの処理を施すことによって、 薄膜の表面粗さが前記特定の値になるように調整している。これによつて、活物質の 膨張応力を緩和しょうとしている。特許文献 6の技術は、活物質の割れを防止する点 ではある程度有効であるものの、集電体表面の全面に活物質の薄膜が形成されてい るので、薄膜の集電体からの剥離、電極の変形などが起こり易くなる。その結果、充 放電サイクル特性が劣化する。 [0010] In addition, an electrode is proposed that includes a current collector and an active material layer and has a value of (surface roughness Ra of active material layer)-(surface roughness Ra of current collector) of 0 .; 1 m or more (For example, see Patent Document 6). Usually, when a thin film of an active material is formed on the surface of the current collector by a vacuum deposition method or the like, a thin film having substantially the same surface roughness as that of the current collector surface is obtained. On the other hand, in Patent Document 6, the surface roughness of the thin film is adjusted to the specific value by subjecting the thin film formed by an ordinary method to processing such as sand blasting and surface polishing. This is trying to relieve the expansion stress of the active material. Although the technique of Patent Document 6 is effective to some extent in preventing cracking of the active material, a thin film of the active material is formed on the entire surface of the current collector. Therefore, peeling of the thin film from the current collector, electrode deformation, and the like are likely to occur. As a result, the charge / discharge cycle characteristics deteriorate.
[0011] 特許文献 1 :特開 2002— 79466号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-79466
特許文献 2 :特開 2003— 258182号公報  Patent Document 2: JP 2003-258182 A
特許文献 3:特開平 8— 195202号公報  Patent Document 3: JP-A-8-195202
特許文献 4 :特開 2002— 270186号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-270186
特許文献 5:特開 2005— 32642号公報  Patent Document 5: Japanese Patent Laid-Open No. 2005-32642
特許文献 6:特開 2002— 279972号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 2002-279972
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明の目的は、少なくとも一方の表面に、活物質層を効率良く担持できる複数の 凸部が圧縮加工を受けることなく形成されかつ機械的強度が高い非水電解質二次 電池用集電体の製造方法を提供することである。 [0012] An object of the present invention is to provide a nonaqueous electrolyte secondary battery collection having a high mechanical strength in which a plurality of convex portions capable of efficiently supporting an active material layer are formed on at least one surface without being subjected to compression processing. An object of the present invention is to provide a method for manufacturing an electric body.
本発明の他の目的は、本発明の非水電解質二次電池用集電体の製造方法により 得られる集電体と活物質層とを含む非水電解質二次電池用電極の製造方法を提供 することである。  Another object of the present invention is to provide a method for producing an electrode for a nonaqueous electrolyte secondary battery comprising a current collector obtained by the method for producing a current collector for a nonaqueous electrolyte secondary battery of the present invention and an active material layer. It is to be.
本発明のさらなる目的は、本発明の非水電解質二次電池用電極の製造方法により 製造される電極を含む非水電解質二次電池を提供することである。  A further object of the present invention is to provide a nonaqueous electrolyte secondary battery including an electrode produced by the method for producing an electrode for a nonaqueous electrolyte secondary battery of the present invention.
課題を解決するための手段  Means for solving the problem
[0013] 本発明は、表面が互いに圧接してシート状物が通過可能な圧接二ップ部を形成す るように設けられかつ少なくとも一方の表面に複数の凹部が形成された一対の加工 手段を用い、集電体用金属箔を加工手段の圧接エップ部に通過させて圧縮加工を 行い、集電体用金属箔の少なくとも一方の表面に複数の凸部を形成する非水電解 質二次電池用集電体の製造方法に係る。 [0013] The present invention provides a pair of processing means provided so as to form a press-fitting two-ply portion through which a surface can be pressed against each other and through which a sheet-like material can pass, and a plurality of recesses formed on at least one surface. A non-aqueous electrolyte secondary that forms a plurality of convex portions on at least one surface of the current collector metal foil by passing the metal foil for current collector through the pressure-welded ep portion of the processing means and compressing the current collector metal foil. The present invention relates to a method for producing a battery current collector.
[0014] 凸部の先端表面の表面粗さは、圧縮加工前の集電体用金属箔の表面粗さとほぼ 同じであることが好ましい。 [0014] It is preferable that the surface roughness of the tip surface of the convex portion is substantially the same as the surface roughness of the current collector metal foil before compression processing.
凹部の加工手段表面に垂直な方向の断面は、該断面の加工手段表面に平行な方 向の幅が加工手段表面から凹部底面に向けて徐々に小さくなるテーパ形状を有して いることが好ましい。 The cross section of the recess in the direction perpendicular to the processing means surface has a tapered shape in which the width of the cross section in the direction parallel to the processing means surface gradually decreases from the processing means surface toward the bottom of the recess. Preferably it is.
凸部の体積は、凹部の内部空間の体積以下になるように圧縮加工することが好まし い。  It is preferable to compress the convex portion so that the volume of the convex portion is equal to or less than the volume of the internal space of the concave portion.
凸部の体積は、凹部の内部空間の体積の 85%以下になるように圧縮加工すること が好ましい。  It is preferable to compress the convex portion so that the volume of the convex portion is 85% or less of the volume of the internal space of the concave portion.
[0015] 表面に複数の凹部が形成された加工手段において、凹部と加工手段の表面との境 界が曲面であることが好ましい。  [0015] In the processing means in which a plurality of concave portions are formed on the surface, the boundary between the concave portion and the surface of the processing means is preferably a curved surface.
凹部と加工手段の表面との境界の曲面が、凹部をレーザ加工にて形成し、レーザ 加工により生じる、凹部と加工手段の表面との境界の隆起を除去することにより形成 されることが好ましい。  It is preferable that the curved surface at the boundary between the concave portion and the surface of the processing means is formed by forming the concave portion by laser processing and removing the bulge at the boundary between the concave portion and the surface of the processing means.
平均粒径 30 ,1 m以上、 53 ,1 m未満のダイヤモンド粒子で研磨することにより、隆起 を除去することが好ましい。  It is preferable to remove the bumps by polishing with diamond particles having an average particle size of 30,1 m or more and less than 53,1 m.
[0016] 凹部と加工手段の表面との境界に幅 1 μ m以下、深さ 1 μ m以下の溝が複数形成 されていることが好ましい。 [0016] Preferably, a plurality of grooves having a width of 1 μm or less and a depth of 1 μm or less are formed at the boundary between the recess and the surface of the processing means.
平均粒径 5 m以下のダイヤモンド粒子で研磨することにより、溝を形成することが 好ましい。  It is preferable to form grooves by polishing with diamond particles having an average particle size of 5 m or less.
[0017] 一対の加工手段が一対のローラであり、少なくとも一方のローラの表面に凹部が形 成されていることが好ましい。  [0017] Preferably, the pair of processing means is a pair of rollers, and a recess is formed on the surface of at least one of the rollers.
凹部が形成されているローラの表面および凹部の内部空間を臨む表面に、超硬合 金、合金工具鋼または酸化クロムを含有する表面被覆層が形成されていることが好 ましい。  It is preferable that a surface coating layer containing cemented carbide, alloy tool steel, or chromium oxide is formed on the surface of the roller where the recess is formed and on the surface facing the inner space of the recess.
表面被覆層の表面に、非晶質炭素材料を含有する保護層が形成されていることが 好ましい。  A protective layer containing an amorphous carbon material is preferably formed on the surface of the surface coating layer.
表面被覆層および保護層が、スパッタリングを利用する物理的気相成長法、イオン 注入を利用する物理的気相成長法、熱蒸着を利用する化学的気相成長法およびプ ラズマ蒸着を利用する化学的気相成長法よりなる群から選ばれる少なくとも 1つの気 相成長法により形成されることが好ましレ、。  The surface coating layer and the protective layer are formed by a physical vapor deposition method using sputtering, a physical vapor deposition method using ion implantation, a chemical vapor deposition method using thermal evaporation, and a chemistry using plasma deposition. Preferably, it is formed by at least one gas phase growth method selected from the group consisting of chemical vapor deposition methods.
[0018] 少なくとも一方のローラ力 表面にセラミック層を設けたローラであり、セラミック層の 表面に凹部が形成されて!/、ること力 S好ましレ、。 [0018] At least one roller force is a roller provided with a ceramic layer on the surface, A recess is formed on the surface!
ローラまたは集電体用金属箔の表面に潤滑剤を塗布し、乾燥させていることが好ま しい。  It is preferable to apply a lubricant to the surface of the roller or current collector metal foil and dry it.
潤滑剤が脂肪酸を含有することが好ましい。  The lubricant preferably contains a fatty acid.
[0019] また本発明は、集電体用金属箔からなる基材部と、基材部の少なくとも一方の表面 から基材部の外方に延びるように形成される複数の凸部とを含み、基材部表面と凸 部との境界が曲面である非水電解質二次電池用集電体に係る。 [0019] The present invention also includes a base member made of a current collector metal foil and a plurality of convex portions formed so as to extend outward from at least one surface of the base member. The present invention relates to a current collector for a non-aqueous electrolyte secondary battery in which the boundary between the surface of the substrate portion and the convex portion is a curved surface.
[0020] また本発明は、前記のいずれか 1つの非水電解質二次電池用集電体の製造方法 により製造される非水電解質二次電池用集電体または前記の非水電解質二次電池 用集電体の表面に、正極活物質または負極活物質を担持させる非水電解質二次電 池用電極の製造方法に係る。 [0020] Further, the present invention provides a current collector for a nonaqueous electrolyte secondary battery produced by any one of the above methods for producing a current collector for a nonaqueous electrolyte secondary battery, or the above-mentioned nonaqueous electrolyte secondary battery. The present invention relates to a method for producing an electrode for a nonaqueous electrolyte secondary battery in which a positive electrode active material or a negative electrode active material is supported on the surface of a current collector.
非水電解質二次電池用集電体の凸部表面に、正極活物質または負極活物質を担 持させることが好ましい。  It is preferable to support the positive electrode active material or the negative electrode active material on the convex surface of the current collector for the non-aqueous electrolyte secondary battery.
[0021] また本発明は、正極、負極、セパレータおよび非水電解質を含有する非水電解質 二次電池であって、 [0021] The present invention is a non-aqueous electrolyte secondary battery containing a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
正極および負極の少なくとも一方が、前記の非水電解質二次電池用電極の製造方 法により製造された電極である非水電解質二次電池に係る。  At least one of the positive electrode and the negative electrode relates to a non-aqueous electrolyte secondary battery that is an electrode manufactured by the method for manufacturing an electrode for a non-aqueous electrolyte secondary battery.
発明の効果  The invention's effect
[0022] 本発明の非水系二次電池用集電体の製造方法によれば、凸部は圧縮加工を受け ることなく形成されるため、機械的強度が向上し、耐久性に富む集電体が得られる。 また、凸部が圧縮加工を受けることなく塑性変形により形成されている。また、凸部 の先端表面は圧縮加工およびそれに伴う塑性変形の影響をほとんど受けることなく 形成されているため、圧縮加工前の集電体用金属箔とほぼ同じ表面粗さを有してい る。このような凸部を有する集電体は、機械的強度ひいては耐久性が一層向上する とともに、活物質層を担持させる場合に、活物質層との密着力が非常に強い。  [0022] According to the method for producing a current collector for a non-aqueous secondary battery of the present invention, since the convex portions are formed without being subjected to compression processing, the mechanical strength is improved and the current collector is rich in durability. The body is obtained. Further, the convex portion is formed by plastic deformation without being subjected to compression processing. In addition, since the tip surface of the convex part is formed with almost no influence of the compression process and the plastic deformation accompanying it, it has almost the same surface roughness as the current collector metal foil before the compression process. The current collector having such a convex portion is further improved in mechanical strength and thus durability, and has a very strong adhesion to the active material layer when the active material layer is supported.
また、基材部と、基材部の少なくとも一方の表面から基材部の外方に延びるように 形成される複数の凸部とを含む集電体において、基材部表面と凸部との境界部分を 曲面にすることによって、集電体の機械的強度および耐久性が一層向上する。さらに 、圧縮加工の際により低い圧力で凸部を形成できるとともに、圧縮加工後における集 電体の加工手段からの離型性を向上させ得る。 Further, in a current collector including a base material part and a plurality of convex parts formed so as to extend outward from at least one surface of the base material part, the surface of the base material part and the convex part By making the boundary part a curved surface, the mechanical strength and durability of the current collector are further improved. further In addition, the convex portions can be formed at a lower pressure during the compression processing, and the releasability of the current collector from the processing means after the compression processing can be improved.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施形態の 1つである集電体の製造方法を模式的に示す縦断面図 である。 FIG. 1 is a longitudinal sectional view schematically showing a method for producing a current collector which is one embodiment of the present invention.
[図 2]圧縮加工に伴う集電体用金属箔の塑性変形を模式的に説明する縦断面図で ある。  FIG. 2 is a longitudinal sectional view schematically illustrating plastic deformation of a current collector metal foil accompanying compression processing.
[図 3]集電体製造装置の構成を模式的に示す側面図である。  FIG. 3 is a side view schematically showing the configuration of the current collector manufacturing apparatus.
[図 4]図 3に示す集電体製造装置の要部の構成を拡大して示す斜視図である。  4 is an enlarged perspective view showing a configuration of a main part of the current collector manufacturing apparatus shown in FIG.
[図 5]圧縮加工に用いられるローラの構成を示す図面である。図 5 (a)はローラの外観 を示す斜視図である。図 5 (b)は図 5 (a)に示すローラの表面領域を拡大して示す斜 視図である。  FIG. 5 is a drawing showing a configuration of a roller used for compression processing. FIG. 5 (a) is a perspective view showing the appearance of the roller. FIG. 5 (b) is an oblique view showing an enlarged surface area of the roller shown in FIG. 5 (a).
[図 6]本発明の実施形態の 1つである別形態の集電体の製造方法を模式的に示す 縦断面図である。  FIG. 6 is a longitudinal sectional view schematically showing a method of manufacturing a current collector of another form which is one of the embodiments of the present invention.
[図 7]本発明の非水電解質二次電池用集電体の製造方法により得られる集電体の構 成を模式的に示す縦断面図である。  FIG. 7 is a longitudinal sectional view schematically showing the structure of a current collector obtained by the method for producing a current collector for a non-aqueous electrolyte secondary battery of the present invention.
[図 8]図 7に示す集電体の製造方法を模式的に示す縦断面図である。  8 is a longitudinal sectional view schematically showing a method for manufacturing the current collector shown in FIG.
[図 9]圧縮加工に用いられる別形態のローラの構成を示す図面である。図 8 (a)は口 ーラの外観を示す斜視図である。図 8 (b)は図 8 (a)に示すローラの表面領域を拡大 して示す斜視図である。図 8 (c)は図 8 (b)に示すローラ周面に形成された凹部を拡 大して示す斜視図である。 FIG. 9 is a drawing showing the configuration of another form of roller used for compression processing. Fig. 8 (a) is a perspective view showing the appearance of the mouth roller. FIG. 8 (b) is an enlarged perspective view showing the surface area of the roller shown in FIG. 8 (a). FIG. 8 (c) is an enlarged perspective view showing a recess formed on the roller peripheral surface shown in FIG. 8 (b).
[図 10]本発明の非水電解質二次電池用集電体の製造方法により得られる別形態の 集電体の構成を模式的に示す縦断面図である。  FIG. 10 is a longitudinal sectional view schematically showing a configuration of a current collector of another embodiment obtained by the method for producing a current collector for a non-aqueous electrolyte secondary battery of the present invention.
[図 11]図 10に示す集電体の製造方法を模式的に示す縦断面図である。  FIG. 11 is a longitudinal sectional view schematically showing a method for manufacturing the current collector shown in FIG. 10.
[図 12]本発明の実施形態の一つである捲回型非水電解質二次電池の構成を模式 的に示す部分分解斜視図である。  FIG. 12 is a partially exploded perspective view schematically showing a configuration of a wound non-aqueous electrolyte secondary battery which is one embodiment of the present invention.
[図 13]本発明の実施形態の一つである積層形非水電解質二次電池の構成を模式 的に示す縦断面図である。 [図 14]実施例 5で得られる集電体の構成を模式的に示す図面である。図 14 (a)は斜 視図である。図 14 (b)は縦断面図である。 FIG. 13 is a longitudinal sectional view schematically showing a configuration of a laminated nonaqueous electrolyte secondary battery which is one embodiment of the present invention. FIG. 14 is a drawing schematically showing a configuration of a current collector obtained in Example 5. Figure 14 (a) is a perspective view. FIG. 14 (b) is a longitudinal sectional view.
[図 15]実施例 6で得られる集電体の構成を模式的に示す図面である。図 15 (a)斜視 図である。図 15 (b)は縦断面図である。  FIG. 15 is a drawing schematically showing a configuration of a current collector obtained in Example 6. FIG. 15 (a) is a perspective view. Fig. 15 (b) is a longitudinal sectional view.
[図 16]実施例 24で得られる集電体の構成を模式的に示す図面である。図 16 (a)斜 視図である。図 16 (b)は縦断面図である。  FIG. 16 is a drawing schematically showing a configuration of a current collector obtained in Example 24. Figure 16 (a) is a perspective view. FIG. 16 (b) is a longitudinal sectional view.
[図 17]実施例 25で得られる集電体の構成を模式的に示す図面である。図 17 (a)斜 視図である。図 17 (b)は縦断面図である。  FIG. 17 is a drawing schematically showing a configuration of a current collector obtained in Example 25. Figure 17 (a) is a perspective view. FIG. 17 (b) is a longitudinal sectional view.
[図 18]実施例 1で得られる集電体の断面の電子顕微鏡写真である。  FIG. 18 is an electron micrograph of a cross section of the current collector obtained in Example 1.
[図 19]比較例 1で得られる集電体の断面の電子顕微鏡写真である。  FIG. 19 is an electron micrograph of a cross section of a current collector obtained in Comparative Example 1.
[図 20]従来技術の集電体の構成を模式的に示す斜視図である。  FIG. 20 is a perspective view schematically showing a configuration of a current collector of the prior art.
[図 21]従来技術の電極の構成を模式的に示す縦断面図である。  FIG. 21 is a longitudinal sectional view schematically showing a configuration of a conventional electrode.
[0024] 本発明の非水系二次電池用集電体の製造方法によれば、集電体用金属箔の表面 に凸部を形成する工程、集電体の凸部に電極活物質を担持する工程などにおいて 、集電体用金属箔および集電体に局所的な変形、橈み、反り、切れなどが発生する のを防止できる。それとともに、集電体の凸部に電極活物質を担持させて電極を作製 する工程、電極を所定の幅にスリット加工する工程などにおいても、集電体からの電 極活物質の脱落を抑制できる。したがって、最終的には、信頼性の高い非水電解質 二次電池が得られる。 [0024] According to the method for producing a current collector for a non-aqueous secondary battery of the present invention, the step of forming a convex portion on the surface of the current collector metal foil, the electrode active material is supported on the convex portion of the current collector In such a process, it is possible to prevent local deformation, stagnation, warping, cutting and the like of the current collector metal foil and current collector. At the same time, the electrode active material is supported on the convex part of the current collector, and the electrode active material is prevented from falling off the current collector in the process of manufacturing the electrode and slitting the electrode to a predetermined width. it can. Therefore, a highly reliable non-aqueous electrolyte secondary battery is finally obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] [非水電解質二次電池用集電体の製造方法] [0025] [Method for producing current collector for non-aqueous electrolyte secondary battery]
本発明の非水電解質二次電池用集電体の製造方法 (以下単に「集電体の製造方 法」とする)は、集電体用金属箔を一対の加工手段の圧接ニップ部に通過させて圧 縮加工を行うことを特徴とする。より具体的には、前記構成を採り、集電体用金属箔 表面に部分的な塑性変形を発生させることにより、先端表面が圧縮加工および塑性 変形の影響をほとんど受けない凸部を形成することを特徴としている。  The method for producing a current collector for a non-aqueous electrolyte secondary battery according to the present invention (hereinafter simply referred to as “current collector production method”) passes the current collector metal foil through the pressure nip portion of a pair of processing means. It is characterized by performing compression processing. More specifically, by adopting the above-described configuration and causing partial plastic deformation on the surface of the current collector metal foil, the tip surface is formed with a convex portion that is hardly affected by compression processing and plastic deformation. It is characterized by.
ここで、一対の加工手段とは、表面が互いに圧接してシート状物が通過可能な圧接 二ップ部を形成するように設けられ、かつ少なくとも一方の表面に複数の凹部が形成 された一対の加工手段である。一対の加工手段としては、一対のローラが好ましい。 一対のローラは、少なくとも一方の表面に複数の凹部が形成されている。本発明の圧 縮加工は、たとえば、一対のローラの圧接ニップ部に集電体用金属箔を通過させ、 集電体用金属箔を機械的にプレス加工し、集電体用金属箔を部分的に塑性変形さ せることにより行われる。一対のローラを用いて圧縮加工を行い、表面に凸部を有す る集電体を作製すると、凸部の集電体からの剥落をほぼ確実に防止できる。また、表 面に凸部を有する集電体を低コストで生産性良く製造できる。 Here, the pair of processing means is provided so as to form a press-fitting dip portion through which a sheet-like material can pass through pressure contact with each other, and a plurality of concave portions are formed on at least one surface. A pair of processing means. As the pair of processing means, a pair of rollers is preferable. The pair of rollers has a plurality of recesses formed on at least one surface. In the compression processing of the present invention, for example, the current collector metal foil is passed through the press nip portion of a pair of rollers, the current collector metal foil is mechanically pressed, and the current collector metal foil is partially processed. This is done by plastic deformation. When a current collector having a convex portion on the surface is produced by performing compression processing using a pair of rollers, peeling of the convex portion from the current collector can be almost certainly prevented. In addition, a current collector having a convex portion on the surface can be manufactured at low cost with high productivity.
本発明の集電体の製造方法によれば、厚み方向の一方の表面に、複数の凸部が 形成された非水電解質二次電池用集電体 (以下単に「集電体」とする)が得られる。  According to the method for producing a current collector of the present invention, a current collector for a non-aqueous electrolyte secondary battery in which a plurality of convex portions are formed on one surface in the thickness direction (hereinafter simply referred to as “current collector”) Is obtained.
[0026] 図 1は、本発明の実施形態の 1つである集電体用金属箔 10の圧縮加工を模式的 に示す縦断面図である。図 2は、圧縮加工に伴う集電体用金属箔 10の塑性変形を 模式的に説明する縦断面図である。図 3集電体製造装置 35の構成を模式的に示す 側面図である。図 4は図 3に示す集電体製造装置 35の要部 (加工手段 37)の構成を 拡大して示す斜視図である。図 5は圧縮加工に用いられるローラ 4の構成を示す図 面である。図 5 (a)はローラ 4の外観を示す斜視図である。図 5 (b)は図 5 (a)に示す口 ーラ 4の表面領域 4xを拡大して示す斜視図である。  FIG. 1 is a longitudinal sectional view schematically showing compression processing of a current collector metal foil 10 which is one embodiment of the present invention. FIG. 2 is a longitudinal sectional view schematically illustrating plastic deformation of the current collector metal foil 10 accompanying compression processing. 3 is a side view schematically showing the configuration of the current collector manufacturing apparatus 35. FIG. FIG. 4 is an enlarged perspective view showing a configuration of a main part (processing means 37) of the current collector manufacturing apparatus 35 shown in FIG. FIG. 5 is a diagram showing the configuration of the roller 4 used for compression processing. FIG. 5A is a perspective view showing the appearance of the roller 4. FIG. 5 (b) is an enlarged perspective view showing the surface region 4x of the roller 4 shown in FIG. 5 (a).
[0027] 本発明の集電体の製造方法は、たとえば、図 3に示す集電体製造装置 35を用いて 行われる。集電体製造装置 35は、金属箔供給手段 36、加工手段 37および集電体 巻取 手段 38を含む。  The current collector manufacturing method of the present invention is performed using, for example, a current collector manufacturing apparatus 35 shown in FIG. The current collector manufacturing apparatus 35 includes metal foil supply means 36, processing means 37, and current collector winding means 38.
金属箔供給手段 36は、具体的には、金属箔供給ローラである。金属箔供給ローラ は、図示しない支持手段により軸線回りに回転可能に軸支されている。金属箔供給 ローラの周面には、集電体用金属箔 10が捲回されている。この集電体用金属箔 10 は、加工手段 37の圧接二ップ部 6に供給される。  Specifically, the metal foil supply means 36 is a metal foil supply roller. The metal foil supply roller is pivotally supported by a support means (not shown) so as to be rotatable around the axis. Metal foil supply A metal foil 10 for current collector is wound around the peripheral surface of the roller. The current collector metal foil 10 is supplied to the press-fitting dip portion 6 of the processing means 37.
[0028] 集電体用金属箔 10は、リチウムと電気化学反応を起こさない金属材料からなる金 属箔である。集電体用金属箔 10から負極用の集電体 1を作製する場合には、集電 体用金属箔 10としては、たとえば、銅、ニッケル、鉄、これらの少なくとも 1つを含有す る合金などからなる金属箔などを使用できる。これらの中でも、銅または銅合金からな る金属箔が好ましい。銅合金としては、たとえば、亜鉛含有銅、スズ含有銅、銀含有 銅、ジルコニウム含有銅、クロム銅、テルル銅、チタン銅、ベリリウム銅、鉄含有銅、リ ン含有銅、アルミニウム銅などの析出硬化型合金、これらの 2種以上の複合合金など が挙げられる。銅および銅合金の金属箔としては、たとえば、電解銅箔、電解銅合金 箔、圧延銅箔、銅合金箔、圧延銅合金箔、これらに粗面化処理を施した箔などが挙 げられる。負極集電体用金属箔の厚みは特に制限されないが、好ましくは 5〜; 100 m程度である。 [0028] The current collector metal foil 10 is a metal foil made of a metal material that does not cause an electrochemical reaction with lithium. When the current collector 1 for the negative electrode is produced from the metal foil 10 for current collector, examples of the metal foil 10 for current collector include copper, nickel, iron, and an alloy containing at least one of these. The metal foil etc. which consist of etc. can be used. Among these, a metal foil made of copper or a copper alloy is preferable. Examples of copper alloys include zinc-containing copper, tin-containing copper, and silver-containing Examples thereof include precipitation hardening alloys such as copper, zirconium-containing copper, chromium copper, tellurium copper, titanium copper, beryllium copper, iron-containing copper, phosphorus-containing copper, and aluminum copper, and composite alloys of two or more of these. Examples of copper and copper alloy metal foils include electrolytic copper foil, electrolytic copper alloy foil, rolled copper foil, copper alloy foil, rolled copper alloy foil, and a foil that has been subjected to a surface roughening treatment. The thickness of the metal foil for the negative electrode current collector is not particularly limited, but is preferably about 5 to 100 m.
[0029] 集電体用金属箔 10から正極用の集電体 1を作製する場合には、集電体用金属箔  [0029] When the current collector 1 for the positive electrode is produced from the metal foil 10 for the current collector, the metal foil for the current collector is used.
10としては、たとえば、アルミニウム、アルミニウム合金、ステンレス鋼、チタンなどから なる金属箔などを使用できる。正極集電体用金属箔の厚みは特に制限されないが、 好ましくは 5〜; 100 in程度である。もちろん、これらの金属箔にも粗面化処理を施し てもよい。  As the metal 10, for example, a metal foil made of aluminum, aluminum alloy, stainless steel, titanium, or the like can be used. The thickness of the metal foil for the positive electrode current collector is not particularly limited but is preferably about 5 to 100 in. Of course, these metal foils may be roughened.
[0030] 加工手段 37は、図 3および図 4に示すように、ローラ 4、 5を含んでいる。ローラ 4、 5 は、互いの軸線が平行になるように圧接され、圧接二ップ部 6を形成している。圧接二 ップ部 6は、集電体用金属箔 10などのシート状物が通過可能である。また、ローラ 4、 5は、それぞれ、図示しない支持手段により回転可能に軸支され、図示しない駆動手 段により軸線回りに回転駆動可能に設けられている。ローラ 4、 5は両方を駆動ローラ としてもよく、または一方を駆動ローラとし、他方を駆動ローラの回転に伴って回転す る従動ローラとしてもよい。ローラ 4、 5の回転駆動により、集電体用金属箔 10が圧接 二ップ部 6の入口力、ら出口へと導かれ、集電体用金属箔 10に圧縮加工が施され、図 1 (c)に示す集電体 1が得られる。  The processing means 37 includes rollers 4 and 5 as shown in FIG. 3 and FIG. The rollers 4 and 5 are pressed against each other so that their axes are parallel to each other, thereby forming a press-contacting two-ply portion 6. A sheet-like object such as a current collector metal foil 10 can pass through the pressure-welding nipping portion 6. Each of the rollers 4 and 5 is rotatably supported by a support means (not shown), and is rotatably provided around an axis line by a drive means (not shown). Both rollers 4 and 5 may be drive rollers, or one may be a drive roller and the other may be a driven roller that rotates as the drive roller rotates. By rotating the rollers 4 and 5, the current collector metal foil 10 is guided to the inlet force of the pressure welding two-pipe part 6 and the outlet, and the current collector metal foil 10 is compressed and processed as shown in FIG. The current collector 1 shown in (c) is obtained.
[0031] 集電体 1は、基材部 2および複数の凸部 3を含む。基材部 2は、集電体用金属箔 10 が厚み方向に圧縮された板状部分である。凸部 3は、基材部 2の一方の表面 2aから 、基材部 2の外方に延びるように形成されている突出部分である。凸部 3は、圧縮加 ェを受けずに形成される。  The current collector 1 includes a base material portion 2 and a plurality of convex portions 3. The base material portion 2 is a plate-like portion in which the current collector metal foil 10 is compressed in the thickness direction. The convex part 3 is a protruding part formed so as to extend outward from the one surface 2 a of the base part 2. The convex part 3 is formed without being subjected to compression.
[0032] ローラ 4は、周面に複数の凹部 4aが形成されたローラである。ローラ 4は、たとえば、 各種の金属および合金よりなる群から選ばれる 1種または 2種以上の金属材料、好ま しくはステンレス鋼、鉄焼入れ鋼などからなる凹部形成用ローラに、凹部 4aを形成す ることにより作製でさる。 凹部形成用ローラの周面には、超硬合金または合金工具鋼を含有する被覆層を設 けてもよい。このような被覆層の形成により、最終的に得られるローラ 4の表面硬度が 一層高くなるので、集電体用金属箔 10を圧縮加工する際に、形成される凸部 3の形 状がばらつくのを抑制できる。 [0032] The roller 4 is a roller having a plurality of recesses 4a formed on the peripheral surface. The roller 4 forms the recess 4a on a recess forming roller made of, for example, one or more metal materials selected from the group consisting of various metals and alloys, preferably stainless steel, iron hardened steel, and the like. You can make it. A coating layer containing cemented carbide or alloy tool steel may be provided on the peripheral surface of the recess forming roller. By forming such a coating layer, the surface hardness of the finally obtained roller 4 is further increased. Therefore, when the current collector metal foil 10 is subjected to compression processing, the shape of the formed protrusion 3 varies. Can be suppressed.
[0033] また、凹部形成用ローラの周面に、超硬合金または酸化クロムを含有する被覆層を 設けてもよい。このような被覆層は加圧下での摩擦力、応力などの抵抗を緩和する効 果を有している。したがって、このような被覆層を設けた凹部形成用ローラから作製さ れるローラ 4を用いると、圧縮加工時にローラ 4と集電体用金属箔 10との間に発生す る抵抗が緩和される。その結果、圧縮加工後に、集電体 1のローラ 4からの離型性が 向上し、工程管理が容易になり、不良品率が低下し、工業的に有利である。なお、こ のような被覆層は、凹部形成用ローラと強固に接合しているので、繰返し使用しても、 被覆層が剥離することは非常に少なぐこの点でも工業的に有利である。  [0033] Further, a coating layer containing cemented carbide or chromium oxide may be provided on the peripheral surface of the recess forming roller. Such a coating layer has the effect of relaxing resistance such as frictional force and stress under pressure. Therefore, when the roller 4 made of the concave forming roller provided with such a coating layer is used, the resistance generated between the roller 4 and the current collector metal foil 10 during the compression process is reduced. As a result, after the compression process, the releasability of the current collector 1 from the roller 4 is improved, process management is facilitated, the defective product rate is reduced, and this is industrially advantageous. In addition, since such a coating layer is firmly bonded to the recess forming roller, it is industrially advantageous in this respect that the coating layer hardly peels off even if it is repeatedly used.
[0034] また、超硬合金または酸化クロムを含有する被覆層の表面に、非晶質炭素材料を 含有する保護層を設けてもよい。これにより、最終的に得られるローラ 4の表面硬度が さらに向上し、圧縮加工時にローラ 4と集電体用金属箔 10との間に発生する抵抗の 緩和、および、圧縮加工後における集電体 1のローラ 4からの離型性の向上が一層 顕著になる。  [0034] Further, a protective layer containing an amorphous carbon material may be provided on the surface of the coating layer containing cemented carbide or chromium oxide. As a result, the surface hardness of the finally obtained roller 4 is further improved, the resistance generated between the roller 4 and the current collector metal foil 10 during compression processing is reduced, and the current collector after compression processing is The improvement in releasability from 1 roller 4 becomes even more remarkable.
[0035] 上記した各種被覆層および保護層は、たとえば、スパッタリングを利用する物理的 気相成長法、イオン注入を利用する物理的気相成長法、熱蒸着を利用する化学的 気相成長法、プラズマ蒸着を利用する化学的気相成長法などの気相成長法により形 成するのが好ましい。これにより、圧縮加工後における集電体 1のローラ 4からの離型 性の向上を図り得る。  [0035] The various coating layers and protective layers described above include, for example, physical vapor deposition using sputtering, physical vapor deposition using ion implantation, chemical vapor deposition using thermal evaporation, It is preferably formed by a vapor deposition method such as a chemical vapor deposition method using plasma deposition. Thereby, the release property of the current collector 1 from the roller 4 after the compression processing can be improved.
[0036] さらに凹部形成用ローラの周面には、炭化タングステン (WC)、窒化チタン (TiN) などのセラミックからなる被覆層を設けてもよい。これにより、最終的に得られるローラ 4の表面硬度を高め、圧縮加工を受けることなく塑性変形により形成される凸部 3の 形状がばらつくのを抑制できる。  Furthermore, a coating layer made of a ceramic such as tungsten carbide (WC) or titanium nitride (TiN) may be provided on the peripheral surface of the recess forming roller. As a result, the surface hardness of the finally obtained roller 4 can be increased, and variations in the shape of the convex portion 3 formed by plastic deformation can be suppressed without being subjected to compression processing.
本発明では、上記した各種被覆層または保護層に凹部 4aを形成してもよい。  In the present invention, the recess 4a may be formed in the various coating layers or protective layers described above.
[0037] 凹部 4aは、たとえば、エッチング、サンドブラスト、放電加工、レーザ加工などにより 形成できる。これらの中でも、レーザ加工が好ましい。レーザ加工によれば、数 ォ ーダ一の寸法を有する微細な凹部 4aおよび凹部 4aの配列パターンを、ほぼ精確に 形成できる。レーザ加工に用いるレーザとしては、たとえば、炭酸ガスレーザ、 YAG レーザ、エキシマレーザなどが挙げられる。これらの中でも、 YAGレーザが好ましい。 なお、レーザ加工を行うと、ローラ 4周面における凹部 4aの開口部分の縁が隆起する 。ローラ 4の隆起を除去することなくそのまま用いても、集電体 1が得られる。また、口 ーラ 4の隆起を研磨加工などにより除去した後に、用いても良い。 [0037] The recess 4a is formed by, for example, etching, sandblasting, electric discharge machining, laser machining, or the like. Can be formed. Among these, laser processing is preferable. According to the laser processing, the minute recesses 4a and the array pattern of the recesses 4a having dimensions on the order of several orders can be formed almost accurately. Examples of the laser used for laser processing include a carbon dioxide gas laser, a YAG laser, and an excimer laser. Among these, YAG laser is preferable. When laser processing is performed, the edge of the opening of the recess 4a on the circumferential surface of the roller 4 is raised. Even if it uses as it is, without removing the protrusion of the roller 4, the electrical power collector 1 is obtained. Further, it may be used after removing the protrusions of the roller 4 by polishing or the like.
[0038] また、ローラ 4周面における凹部 4aの配列パターンは、本実施の形態では次のよう になる。図 5 (b)に示すように、ローラ 4の長手方向に複数の凹部 4aがピッチ Paで連 なった列を 1つの行単位 7とする。複数の行単位 7は、ローラ 4の円周方向にピッチ Pb で配列されている。ピッチ Paおよびピッチ Pbは、任意に設定できる。なお、ローラ 4の 円周方向において、 1つの行単位 7と、それに隣り合う行単位 7とは、凹部 4aがローラ 4の長手方向にずれるように配列されている。本実施の形態では、凹部 4aの長手方 向のずれは 0· 5Paである力 これに限定されず、任意の設定が可能である。また、本 実施の形態では、ローラ 4周面における凹部 4aの開口部分の形状は、ほぼ円形であ るが、これに限定されず、たとえば、ほぼ楕円形、ほぼ長方形、ほぼ菱形、ほぼ正方 形、ほぼ正六角形、ほぼ正八角形などでもよい。  [0038] The arrangement pattern of the recesses 4a on the circumferential surface of the roller 4 is as follows in the present embodiment. As shown in FIG. 5 (b), a row in which a plurality of recesses 4 a are connected at a pitch Pa in the longitudinal direction of the roller 4 is defined as one row unit 7. The plurality of row units 7 are arranged at a pitch Pb in the circumferential direction of the roller 4. The pitch Pa and the pitch Pb can be set arbitrarily. In the circumferential direction of the roller 4, one row unit 7 and the adjacent row unit 7 are arranged so that the recess 4 a is displaced in the longitudinal direction of the roller 4. In the present embodiment, the displacement in the longitudinal direction of the recess 4a is 0.5 · 5 Pa. The present invention is not limited to this, and an arbitrary setting is possible. In the present embodiment, the shape of the opening of the recess 4a on the circumferential surface of the roller 4 is substantially circular, but is not limited to this. For example, it is substantially elliptical, substantially rectangular, substantially rhombus, or substantially square. A substantially regular hexagonal shape or a substantially regular octagonal shape may be used.
[0039] また、凹部 4aのローラ 4周面に垂直な方向の断面は、該断面のローラ 4周面に平行 な方向の幅がローラ 4周面から凹部 4aの底部に向けて徐々に小さくなるテーパ形状 を有していることが好ましい。これにより、圧縮加工終了後における、集電体 1のロー ラ 4からの離型性が向上する。  [0039] Further, in the cross section of the recess 4a in the direction perpendicular to the circumferential surface of the roller 4, the width in the direction parallel to the circumferential surface of the roller 4 gradually decreases from the circumferential surface of the roller 4 toward the bottom of the recess 4a. It preferably has a tapered shape. This improves the releasability of the current collector 1 from the roller 4 after completion of the compression process.
[0040] ローラ 4の周面および凹部 4aの内部空間を臨む表面には、超硬合金を含有する被 覆層、合金工具鋼を含有する被覆層、酸化クロムを含有する被覆層、非晶質炭素材 料を含有する保護層などの 1または 2以上を形成してもよい。これにより、凹部形成用 ローラにこれらの被覆層および保護層を形成するのと同様の効果が得られる。また、 これらの被覆層および保護層を、上記したのと同様の物理的気相成長法、化学的気 相成長法などで形成することにより、上記と同様の効果が得られる。これらの気相成 長法によれば、凹部 4aの内部空間を臨む表面にも、被覆層および保護層を均一に 形成できる。また、超硬合金などの材料には結着材としてコバルトが含まれており、集 電体用金属箔 10が銅を含有する場合は、コバルトと銅との親和性が高いため、銅の ローラ 4周面や凹部 4aの内部表面への凝着を防止するのに有効である。 [0040] On the peripheral surface of the roller 4 and the surface facing the inner space of the recess 4a, a covering layer containing cemented carbide, a coating layer containing alloy tool steel, a coating layer containing chromium oxide, an amorphous You may form 1 or 2 or more, such as a protective layer containing a carbon material. As a result, the same effects as those obtained by forming the coating layer and the protective layer on the recess forming roller can be obtained. In addition, the same effects as described above can be obtained by forming these coating layers and protective layers by the same physical vapor deposition method and chemical vapor deposition method as described above. According to these vapor phase growth methods, the coating layer and the protective layer are evenly applied to the surface facing the inner space of the recess 4a. Can be formed. In addition, materials such as cemented carbide contain cobalt as a binder, and when the current collector metal foil 10 contains copper, the affinity between cobalt and copper is high, so a copper roller This is effective in preventing adhesion to the inner surface of the four peripheral surfaces and the recess 4a.
[0041] また、ローラ 4の周面および凹部 4aの内部空間を臨む表面には、炭化タングステン  [0041] Tungsten carbide is provided on the circumferential surface of the roller 4 and the surface facing the internal space of the recess 4a.
(WC)、窒化チタン (TiN)などのセラミックスからなる被覆層を形成してもよい。これに より、ローラ 4の表面硬度が向上し、圧縮加工に伴う塑性変形による凸部 3の形状の ばらつきが非常に少なくなる。  You may form the coating layer which consists of ceramics, such as (WC) and titanium nitride (TiN). As a result, the surface hardness of the roller 4 is improved, and the variation in the shape of the convex portion 3 due to plastic deformation accompanying compression processing is extremely reduced.
また、ローラ 5としては、周面が平滑または平坦なローラ、好ましくは周面が平滑また は平坦な金属製ローラを使用できる。  The roller 5 may be a roller having a smooth or flat peripheral surface, preferably a metal roller having a smooth or flat peripheral surface.
また、ローラ 4、 5の圧接圧は特に制限されないが、好ましくは、集電体用金属箔 10 の lcm当たり 8kN〜; 15kN程度である。  The pressure contact pressure of the rollers 4 and 5 is not particularly limited, but is preferably about 8 kN to about 15 kN per lcm of the current collector metal foil 10.
[0042] さらに、加工手段 37による集電体用金属箔 10の圧縮加工に際し、ローラ 4および 集電体用金属箔 10の少なくとも一方に、潤滑剤を塗布してもよい。潤滑剤は、ローラ 4周面または集電体用金属箔 10の表面に塗布され、乾燥される。これにより、圧縮加 ェ時にローラ 4と集電体用金属箔 10との間に発生する抵抗力を低減化でき、集電体 1のローラ 4からの離型性がより一層向上する。さらに、潤滑剤は脂肪酸を含有するこ とが好ましい。脂肪酸の中でも、飽和脂肪酸が好ましぐミリスチン酸が特に好ましい 。脂肪酸は溶液の形態で用いるのが好ましい。脂肪酸を溶解させる溶媒としては、脂 肪酸を溶解できかつ乾燥により容易に揮発するものが好ましぐたとえば、メタノーノレ 、エタノールなどの低沸点溶媒などを使用できる。脂肪酸を塗布および乾燥すること により、圧縮加工時に発生する抵抗力、特に摩擦力が一層低減化され、集電体用金 属箔 10の長手方向の伸びが抑制され、元の集電体用金属箔 10の結晶構造をほぼ 保持する凸部 3が安定的に形成される。その結果、凸部 3の基材部 2からの剥落が顕 著に抑制される。  [0042] Further, when the current collector metal foil 10 is compressed by the processing means 37, a lubricant may be applied to at least one of the roller 4 and the current collector metal foil 10. The lubricant is applied to the circumferential surface of the roller 4 or the surface of the current collector metal foil 10 and dried. Thereby, the resistance force generated between the roller 4 and the current collector metal foil 10 during compression can be reduced, and the releasability of the current collector 1 from the roller 4 is further improved. Furthermore, the lubricant preferably contains a fatty acid. Of the fatty acids, myristic acid, which is preferable to saturated fatty acids, is particularly preferable. The fatty acid is preferably used in the form of a solution. As the solvent for dissolving the fatty acid, a solvent that can dissolve the fatty acid and easily volatilizes by drying is preferable. For example, a low-boiling solvent such as methanol or ethanol can be used. By applying and drying the fatty acid, the resistance force, especially the frictional force, generated during the compression process is further reduced, the elongation in the longitudinal direction of the current collector metal foil 10 is suppressed, and the original current collector metal Protrusions 3 that substantially retain the crystal structure of foil 10 are stably formed. As a result, peeling of the convex portion 3 from the base material portion 2 is remarkably suppressed.
[0043] 加工手段 37による集電体用金属箔 10の部分的な塑性変形を、図 1および図 2に 基づいて説明する。図 1 (a)は、集電体用金属箔 10が加工手段 37の圧接ニップ部 6 に供給された直後の状態を示す縦断面図である。図 1 (b)は、圧接エップ部 6におい て、集電体用金属箔 10の一方の表面において塑性変形が進行している状態を示す 縦断面図である。図 1 (c)は、圧接二ップ部 6を通過した後の、集電体 1の縦断面図で ある。 [0043] The partial plastic deformation of the current collector metal foil 10 by the processing means 37 will be described with reference to Figs. FIG. 1A is a longitudinal sectional view showing a state immediately after the current collector metal foil 10 is supplied to the press-contact nip 6 of the processing means 37. Fig. 1 (b) shows a state in which plastic deformation is progressing on one surface of the current collector metal foil 10 at the pressure-welded ep portion 6. It is a longitudinal cross-sectional view. FIG. 1 (c) is a longitudinal sectional view of the current collector 1 after passing through the press-fitting nipping portion 6.
また、図 2は、図 1 (b)に示す塑性変形の進行を 3段階に分けて示している。  Fig. 2 shows the progress of plastic deformation shown in Fig. 1 (b) in three stages.
[0044] 図 1 (a)に示す工程では、集電体用金属箔 10は、圧接二ップ部 6の入口では膜厚 t [0044] In the process shown in Fig. 1 (a), the current collector metal foil 10 has a film thickness t at the inlet of the pressure-welding nipping portion 6.
を有している。この集電体用金属箔 10は、ローラ 4、 5の表面と接触して加圧される。 have. The current collector metal foil 10 is pressed in contact with the surfaces of the rollers 4 and 5.
0 0
図 1 (b)に示す工程では、集電体用金属箔 10は、厚み方向に加圧される。集電体 用金属箔 10の表面は、ローラ 4の凹部 4aに対向する非接触面 4bと、非接触面 4bの 周囲に存在し、かつローラ 4の周面の平坦部分に接触する接触面 4cとに分かれる。 接触面 4cは厚み方向に圧縮加工され、基材部 2が形成される。基材部 2の厚みは t になる。 tは よりも小さい。一方、非接触面 4bは加圧を受けないので、接触面 4cが  In the step shown in FIG. 1 (b), the current collector metal foil 10 is pressed in the thickness direction. The surface of the current collector metal foil 10 is a non-contact surface 4b facing the recess 4a of the roller 4 and a contact surface 4c that exists around the non-contact surface 4b and contacts the flat portion of the peripheral surface of the roller 4. And divided. The contact surface 4c is compressed in the thickness direction, and the base material portion 2 is formed. The thickness of the base material part 2 is t. t is smaller than On the other hand, since the non-contact surface 4b is not subjected to pressure, the contact surface 4c
1 0  Ten
圧縮されるのに伴って塑性変形が起こる。その結果、非接触面 4bは凹部 4aの空間 内で凹部 4aの底部に向けて盛り上がり、凸部 3が形成される。すなわち、凸部 3は加 圧による圧縮加工を受けず、圧縮加工に伴う塑性変形により形成される。また、非接 触面 4bが凸部 3の先端表面になる。凸部 3の先端表面は、圧縮加工が全く施されな いので、元の集電体用金属箔 10表面とほぼ同じ表面粗さを有している。  Plastic deformation occurs as it is compressed. As a result, the non-contact surface 4b rises toward the bottom of the recess 4a in the space of the recess 4a, and the projection 3 is formed. In other words, the convex portion 3 is not subjected to compression processing by pressure, and is formed by plastic deformation accompanying compression processing. Further, the non-contact surface 4 b becomes the tip surface of the convex portion 3. The tip surface of the convex portion 3 is not subjected to any compression processing, and therefore has almost the same surface roughness as the surface of the original current collector metal foil 10.
[0045] 図 1 (b)に示す工程における塑性変形の進行を、図 2に基づいてさらに詳しく説明 する。 The progress of plastic deformation in the step shown in FIG. 1 (b) will be described in more detail based on FIG.
図 2 (a)に示す工程では、集電体用金属箔 10が圧接二ップ部 6に供給される。この とき、集電体用金属箔 10は厚み tを有している。集電体用金属箔 10のローラ 4の凹  In the step shown in FIG. 2 (a), the current collector metal foil 10 is supplied to the pressure-welding nipping portion 6. At this time, the current collector metal foil 10 has a thickness t. Metal foil for current collector 10 rollers 4 recesses
0  0
部 4aへの対向部分 4bでは、矢符 l la、 l ibの方向、すなわち集電体用金属箔 10の 内部から凹部 4aに向けて応力が付加される。これにより、対向部分 4aにおいて、塑 性変形が起こり始める。  In the portion 4b facing the portion 4a, stress is applied in the directions of the arrows lla and lib, that is, from the inside of the current collector metal foil 10 toward the recess 4a. As a result, plastic deformation starts to occur in the facing portion 4a.
[0046] 図 2 (b)に示す工程では、非接触面 4bの塑性変形が進行し、非接触面 4bが凹部 4 aの底部に向けて隆起し、凸部 3xが形成される。凸部 3xの体積は、凹部 4a内部の空 間体積の約 50%を占めている。凸部 3xの先端表面は、圧縮加工が施されていない ので、元の集電体用金属箔 10とほぼ同じ表面状態を有している。凸部 3xには、凸部 3xをさらに凹部 4aの底部に向けて押し上げる応力 12a、 12bが付加されている。これ により、凹部 4aの内壁面に沿って、塑性変形がさらに進行する。 [0047] 図 2 (c)に示す工程では、対向部分 4bの塑性変形力 凹部 4a内部の空間体積の 限界値まで進行し、凸部 3が形成され、集電体 1が得られている。 In the step shown in FIG. 2 (b), the plastic deformation of the non-contact surface 4b proceeds, and the non-contact surface 4b rises toward the bottom of the concave portion 4a to form the convex portion 3x. The volume of the protrusion 3x occupies about 50% of the space volume inside the recess 4a. Since the tip surface of the convex portion 3x is not compressed, it has substantially the same surface state as the original metal foil 10 for current collector. Stresses 12a and 12b that push the convex portion 3x further toward the bottom of the concave portion 4a are added to the convex portion 3x. As a result, plastic deformation further proceeds along the inner wall surface of the recess 4a. In the step shown in FIG. 2 (c), the plastic deformation force of the facing portion 4b proceeds to the limit value of the space volume inside the concave portion 4a, the convex portion 3 is formed, and the current collector 1 is obtained.
なお、凹部 4aの内部には空気が存在している。したがって、対向部分 4bの塑性変 形が進むと、空気が逃げ場を失って圧縮されることで、凸部 3に対して矢符 13a、 13b 、 14の方向への応力が付加されることになる。このような応力が大きくなると、基材部 2が変形して集電体 1にしわ、反りなどが発生するおそれがある。また、凸部 3の形状 、大きさなどが不均一になるおそれがある。  Air is present inside the recess 4a. Therefore, when the plastic deformation of the facing portion 4b progresses, the air loses the escape field and is compressed, so that stress in the directions of the arrows 13a, 13b, and 14 is applied to the convex portion 3. . When such a stress becomes large, the base material part 2 may be deformed and the current collector 1 may be wrinkled or warped. In addition, the shape and size of the convex portion 3 may be uneven.
[0048] このため、圧縮加工は、凸部 3の体積が好ましくは凹部 4a内部の空間体積以下、さ らに好ましくは凹部 4a内部の空間体積の 85%以下になるように行うのがよい。これに より、しわ、反り、切れなどの不具合の発生を抑制しながら、集電体 1を効率良く作製 できる。さらに、凸部 3の体積が凹部 4a内部の空間体積の 85%以下になるように圧 縮加工を行うことにより、凸部 3の先端表面が、元の集電体用金属箔 10表面とほぼ 同じ表面粗さを有するように、凸部 3を形成できるという付随的な効果が得られる。こ れにより、凸部 3表面に活物質層を担持させて電極を作製する工程、電極を所定幅 にスリット加工する工程などにお!/、て、活物質の集電体 1からの剥落を抑制できる。  [0048] Therefore, the compression processing is preferably performed so that the volume of the convex portion 3 is preferably not more than the spatial volume inside the concave portion 4a, and more preferably not more than 85% of the spatial volume inside the concave portion 4a. As a result, the current collector 1 can be efficiently produced while suppressing the occurrence of defects such as wrinkles, warping, and cutting. Further, by performing compression processing so that the volume of the convex portion 3 is 85% or less of the space volume inside the concave portion 4a, the tip surface of the convex portion 3 is almost the same as the surface of the original metal foil 10 for current collector. The incidental effect that the convex portions 3 can be formed so as to have the same surface roughness is obtained. As a result, the active material layer is supported on the surface of the convex portion 3 and the electrode is manufactured and the electrode is slit to a predetermined width. Can be suppressed.
[0049] ここで、図 1に基づく説明に戻る。図 1 (c)に示す工程では、凸部 3は圧縮加工を受 けることなく形成されている。したがって、凸部 3の延びる方向において、凸部 3の先 端表面は、加工歪などが発生せず、集電体用金属箔 10の表面状態 (表面粗さ)およ び面精度をそのまま維持している。凸部 3の側面も、集電体用金属箔 10に近い表面 状態を有している。一方、隣り合う凸部 3の間に存在する凹部 2aは、圧縮加工を受け ているので、集電体用金属箔 10とは異なった表面状態を有している。また、集電体 1 の最大厚み tは、集電体 1の厚み方向において、凸部 3が形成されていない方の表  Now, the description returns to FIG. In the process shown in FIG. 1 (c), the convex portion 3 is formed without being subjected to compression processing. Therefore, in the direction in which the convex portion 3 extends, the front end surface of the convex portion 3 is free from processing distortion and the surface condition (surface roughness) and surface accuracy of the current collector metal foil 10 are maintained as they are. is doing. The side surface of the projection 3 also has a surface state close to the current collector metal foil 10. On the other hand, the concave portion 2a existing between the adjacent convex portions 3 is subjected to compression processing, and thus has a surface state different from that of the current collector metal foil 10. In addition, the maximum thickness t of the current collector 1 is a table in which the convex portion 3 is not formed in the thickness direction of the current collector 1.
2  2
面から、凸部 3の先端表面までの長さである。集電体 1の最大厚み tは、集電体用金  This is the length from the surface to the tip surface of the protrusion 3. The maximum thickness t of current collector 1 is the current collector gold
2  2
属箔 10の厚み tよりも大きくなつている。なお、厚み と最大厚み tとの関係は、たと  The thickness of the metal foil 10 is larger than the thickness t. The relationship between thickness and maximum thickness t is
0 0 2  0 0 2
えば、圧接二ップ部 6における加圧力を適宜選択することにより調整可能である。  For example, the pressure can be adjusted by appropriately selecting the pressing force at the pressure-welding two-ply portion 6.
[0050] ローラ加工法で得られる集電体 1においては、基材部 2と凸部 3との間に界面が存 在せず、ほぼ同じ結晶状態を有しかつ基材部 2から凸部 3にかけて連続する領域が 少なくとも 1つ存在している。この集電体 1の厚み方向の断面を電子顕微鏡で観察す ると、該断面の少なくとも一部分に、ほぼ同じ結晶状態を有する領域が存在し、該領 域は基材部 2および凸部 3の両方にまたがってかつ途中で途切れずに繋がっている 。電子顕微鏡で観察する限り、この領域には接合部を示すような結晶状態が認めら れない。このような構成を採ることによって、凸部 3の基材部 2からの剥落、さらには活 物質層の凸部 3からの剥離を顕著に防止できる。 [0050] In the current collector 1 obtained by the roller processing method, there is no interface between the base material part 2 and the convex part 3, the crystal part has almost the same crystal state, and the convex part from the base material part 2 There is at least one continuous region over 3. A cross section of the current collector 1 in the thickness direction is observed with an electron microscope. Then, a region having substantially the same crystal state exists in at least a part of the cross section, and the region extends across both the base material portion 2 and the convex portion 3 and is connected without being interrupted. As long as observed with an electron microscope, there is no crystalline state showing the joint in this region. By adopting such a configuration, it is possible to remarkably prevent peeling of the convex portion 3 from the base material portion 2 and further peeling of the active material layer from the convex portion 3.
[0051] ここで、図 3に基づく説明に戻る。集電体巻取り手段 38は、具体的には、集電体巻 取りローラである。集電体巻取りローラは、図示しない支持手段により軸線回りに回転 可能に軸支されている。また、集電体巻取りローラは、図示しない駆動手段により回 転駆動される。集電体巻取りローラは、回転しながら、加工手段 37により形成された 集電体 1をその周面に巻き取る。  [0051] Returning to the description based on FIG. The current collector winding means 38 is specifically a current collector winding roller. The current collector winding roller is pivotally supported by a support means (not shown) so as to be rotatable around an axis. Further, the current collector winding roller is driven to rotate by a driving means (not shown). The current collector winding roller rotates and winds the current collector 1 formed by the processing means 37 on its peripheral surface.
集電体製造装置 35によれば、集電体用金属箔 10を圧縮加工し、部分的に塑性変 形を発生させ、基材 2と、複数の凸部 3とを含む集電体 1が製造される。  According to the current collector manufacturing apparatus 35, the current collector metal foil 10 is compressed and partially plastically deformed, and the current collector 1 including the base material 2 and the plurality of convex portions 3 is obtained. Manufactured.
[0052] また、上記のような構成を有する集電体製造装置 35を用いて圧縮加工することによ り、集電体用金属箔 10表面に対して、線状でかつ非常に少ない面積に加圧できるの で、加圧能力が比較的小さくても十分な圧縮加工を施すことが可能になる。したがつ て、集電体製造装置 35の小型化が可能になる。また、集電体製造装置 35を用いる ことにより、帯状の集電体用金属箔 10の表面に、凸部 3を連続的に形成することが可 能になり、工業的に有利である。  [0052] Further, by performing compression processing using the current collector manufacturing apparatus 35 having the above-described configuration, the surface of the current collector metal foil 10 is linear and has a very small area. Since pressurization is possible, sufficient compression processing can be performed even if the pressurization capacity is relatively small. Therefore, the current collector manufacturing apparatus 35 can be downsized. Further, by using the current collector manufacturing apparatus 35, it is possible to continuously form the convex portions 3 on the surface of the strip-shaped current collector metal foil 10, which is industrially advantageous.
[0053] 図 6は、本発明の実施形態の 1つである別形態の集電体の製造方法を模式的に示 す縦断面図である。図 6 (a)は、集電体用金属箔 10が圧接エップ部 6に供給された 直後の状態を示す縦断面図である。図 6 (b)は、圧接エップ部 6において集電体用金 属箔 10表面の塑性変形が進行している状態を示す縦断面図である。図 6 (c)は、圧 接エップ部 6通過後の集電体 1の縦断面図である。図 6に示す集電体 15の製造方法 は、図 1に示す集電体 1の製造方法に類似し、対応する部分については、同一の参 照符号を付して説明を省略する。  FIG. 6 is a vertical cross-sectional view schematically showing a method for manufacturing a current collector of another form, which is one embodiment of the present invention. FIG. 6A is a longitudinal cross-sectional view showing a state immediately after the current collector metal foil 10 is supplied to the pressure contact ep portion 6. FIG. 6B is a longitudinal sectional view showing a state in which the plastic deformation of the surface of the current collector metal foil 10 is proceeding in the pressure contact ep portion 6. FIG. 6 (c) is a longitudinal sectional view of the current collector 1 after passing through the pressure epping section 6. The method for manufacturing the current collector 15 shown in FIG. 6 is similar to the method for manufacturing the current collector 1 shown in FIG. 1, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
図 6に示す集電体 15の製造方法は、一対の加工手段として、両方の加工手段の表 面に凹部が形成されたものを用いることを特徴とし、それ以外は、図 1に示す集電体 1の製造方法と同様に実施できる。 [0054] 集電体 15の製造方法は、たとえば、図 3に示す集電体製造装置 35において、ロー ラ 5に代えてローラ 4を装着した集電体製造装置を用レ、て行われる。図 6に基づ!/、て 、集電体 15の製造方法を説明する。 The manufacturing method of the current collector 15 shown in FIG. 6 is characterized in that as a pair of processing means, those having recesses formed on the surface of both processing means are used, and otherwise, the current collector shown in FIG. It can be carried out in the same manner as the manufacturing method of body 1. The method for manufacturing the current collector 15 is performed, for example, using a current collector manufacturing apparatus in which a roller 4 is mounted instead of the roller 5 in the current collector manufacturing apparatus 35 shown in FIG. Based on FIG. 6, a method for manufacturing the current collector 15 will be described.
図 6 (a)に示す工程では、集電体用金属箔 10は、圧接二ップ部 6の入口では膜厚 t を有している。この集電体用金属箔 10は、 2つのローラ 4の周面と接触して加圧され In the step shown in FIG. 6 (a), the current collector metal foil 10 has a film thickness t at the inlet of the pressure-welding nipping portion 6. The current collector metal foil 10 is pressed against the peripheral surfaces of the two rollers 4.
0 0
る。集電体用金属箔 10の厚み方向の両面が、ローラ 4の凹部 4aに対向しかつローラ 4の周面に接触しない非接触面 4bと、ローラ 4周面に接触する接触面 4cとに分かれ る。接触面 4cは、非接触面 4bの周囲に存在している。なお、 2つのローラ 4は、周面 に成形された複数の凹部 4aが対向するよう、配置され、圧接されている。  The Both sides in the thickness direction of the current collector metal foil 10 are divided into a non-contact surface 4b that faces the recess 4a of the roller 4 and does not contact the peripheral surface of the roller 4, and a contact surface 4c that contacts the peripheral surface of the roller 4. The The contact surface 4c exists around the non-contact surface 4b. The two rollers 4 are arranged and pressed so that a plurality of recesses 4a formed on the peripheral surface face each other.
[0055] 図 6 (b)に示す工程では、接触面 4cは圧縮され、基材部 16が形成される。基材部 1 6の厚みは tである。 t は よりも小さい。これに対し、非接触面 4bは加圧を受けない In the step shown in FIG. 6 (b), the contact surface 4c is compressed, and the base material portion 16 is formed. The thickness of the base material portion 16 is t. t is smaller than In contrast, the non-contact surface 4b is not pressurized.
3 3 0  3 3 0
ので、接触面 4cが圧縮されるのに伴って塑性変形が起こる。その結果、非接触面 4b は凹部 4aの空間内で凹部 4aの底部に向けて盛り上がり、凸部 17x、 17yが形成され る。すなわち、凸部 17x、 17yは加圧による圧縮加工を受けず、それに伴う塑性変形 によって形成される。非接触面 4bは、圧縮加工および塑性変形の影響をほとんど受 けることなく凸部 17x、 17yの先端表面になり、集電体用金属箔 10とほぼ同じ表面粗 さを有している。  Therefore, plastic deformation occurs as the contact surface 4c is compressed. As a result, the non-contact surface 4b rises toward the bottom of the recess 4a in the space of the recess 4a, and the protrusions 17x and 17y are formed. That is, the convex portions 17x and 17y are not subjected to compression processing by pressurization, and are formed by plastic deformation associated therewith. The non-contact surface 4b becomes the tip surface of the convex portions 17x and 17y with almost no influence of compression processing and plastic deformation, and has almost the same surface roughness as the current collector metal foil 10.
[0056] 図 6 (c)に示す工程では、集電体 15が得られている。凸部 17x、 17yは圧縮加工を 受けることなく形成されている。したがって、凸部 17x、 17yの延びる方向において、 凸部 17x、 17yの先端表面は、加工歪などがなぐ集電体用金属箔 10の表面粗さお よび面精度をほぼ維持している。凸部 17x、 17yの側面は、圧縮加工が施されてい ないが、塑性変形の影響を受けているので、集電体用金属箔 10に近い表面粗さを 有している。一方、隣り合う凸部 17x、 17yの間に存在する基材部 16の表面は、圧縮 加工を受けているので、集電体用金属箔 10とは異なった表面状態を有している。ま た、集電体 1の最大厚み tは、集電体 1の厚み方向の両面に形成された凸部 17x、 1  In the step shown in FIG. 6 (c), the current collector 15 is obtained. The convex portions 17x and 17y are formed without being subjected to compression processing. Therefore, in the direction in which the convex portions 17x and 17y extend, the surface of the tip of the convex portions 17x and 17y almost maintains the surface roughness and surface accuracy of the current collector metal foil 10 free from processing strain. The side surfaces of the protrusions 17x and 17y are not subjected to compression processing, but are affected by plastic deformation, and thus have a surface roughness close to that of the current collector metal foil 10. On the other hand, since the surface of the base material portion 16 existing between the adjacent convex portions 17x and 17y is subjected to compression processing, it has a surface state different from that of the current collector metal foil 10. In addition, the maximum thickness t of current collector 1 is the convex portions 17x, 1 formed on both sides of current collector 1 in the thickness direction.
4  Four
7yの先端部平面間の長さである。集電体 1の最大厚み tは、元の集電体用金属箔 1  7y is the length between the tip planes. The maximum thickness t of current collector 1 is the original metal foil for current collector 1
4  Four
0の厚み tよりも大きくなつている。なお、厚み と最大厚み tとの関係は、たとえば、  It is larger than 0 thickness t. The relationship between the thickness and the maximum thickness t is, for example,
0 0 4  0 0 4
圧接二ップ部 6における加圧力を適宜選択することにより調整可能である。 [0057] [非水電解質二次電池用集電体] It can be adjusted by appropriately selecting the pressing force in the pressure-welding two-ply portion 6. [0057] [Current collector for non-aqueous electrolyte secondary battery]
図 7は、本発明の別の実施形態である非水電解質二次電池用集電体 20の構成を 模式的に示す縦断面図である。図 8は、図 7に示す非水電解質二次電池用集電体 2 0の製造方法を模式的に示す縦断面図である。図 8 (a)は、集電体用金属箔 10が圧 接エップ部 8に供給された直後の状態を示す縦断面図である。図 8 (b)は、圧接ニッ プ部 8において集電体用金属箔 10表面の塑性変形が進行している状態を示す縦断 面図である。図 8 (c)は、圧接ニップ部 8通過後の集電体 20の縦断面図である。図 9 は、図 8に示す製造方法において用いられるローラ 28の構成を模式的に示す図面 である。図 9 (a)はローラ 28の外観を示す斜視図である。図 9 (b)はローラ 28の表面 領域 28aを拡大して示す斜視図である。図 9 (c)はローラ 28周面に形成された凹部 2 9の構成を拡大して示す斜視図である。  FIG. 7 is a longitudinal sectional view schematically showing a configuration of a current collector 20 for a non-aqueous electrolyte secondary battery which is another embodiment of the present invention. FIG. 8 is a longitudinal sectional view schematically showing a method of manufacturing the non-aqueous electrolyte secondary battery current collector 20 shown in FIG. FIG. 8 (a) is a longitudinal sectional view showing a state immediately after the current collector metal foil 10 is supplied to the pressing ep portion 8. FIG. 8 (b) is a longitudinal sectional view showing a state in which the plastic deformation of the surface of the current collector metal foil 10 is proceeding in the pressure welding nip portion 8. FIG. 8C is a longitudinal sectional view of the current collector 20 after passing through the pressure nip 8. FIG. 9 is a drawing schematically showing the configuration of the roller 28 used in the manufacturing method shown in FIG. FIG. 9A is a perspective view showing the appearance of the roller 28. FIG. 9B is an enlarged perspective view showing the surface region 28 a of the roller 28. FIG. 9 (c) is an enlarged perspective view showing the configuration of the concave portion 29 formed on the circumferential surface of the roller 28. FIG.
[0058] 集電体 20は、基材部 21および複数個の凸部 22を含む。  The current collector 20 includes a base material portion 21 and a plurality of convex portions 22.
集電体 20は、集電体 1と同様に、集電体用金属箔 10を一対の加工手段により圧縮 加工し、部分的な塑性変形を発生させることにより製造できる。圧縮加工は、集電体 用金属箔 10の片面に施される。圧縮加工の詳細については、後記する。  The current collector 20 can be manufactured by compressing the current collector metal foil 10 by a pair of processing means and generating partial plastic deformation, as with the current collector 1. The compression process is performed on one side of the current collector metal foil 10. Details of the compression processing will be described later.
集電体 20を負極集電体として用いる場合、集電体 20は、集電体 1を負極集電体と して用いる場合における集電体用金属箔 10と同様の材料で構成される。また、集電 体 20を正極集電体として用いる場合、集電体 20は、集電体 1を正極集電体として用 いる場合における集電体用金属箔 10と同様の材料で構成される。  When the current collector 20 is used as the negative electrode current collector, the current collector 20 is composed of the same material as the current collector metal foil 10 when the current collector 1 is used as the negative electrode current collector. Further, when the current collector 20 is used as the positive electrode current collector, the current collector 20 is made of the same material as the current collector metal foil 10 when the current collector 1 is used as the positive electrode current collector. .
[0059] 基材部 21はシート状に形成され、厚み方向の断面形状はほぼ長方形である。基材 部 21の厚みは tである。厚みは t特に制限されないが、好ましくは 5 111〜; lOO ^ m  [0059] The base material portion 21 is formed in a sheet shape, and the cross-sectional shape in the thickness direction is substantially rectangular. The thickness of the base material portion 21 is t. Thickness is not particularly limited, but preferably 5 111 ~; lOO ^ m
5 5  5 5
、さらに好ましくは 8〜35 111である。基材部 21の厚みが 5 m未満では、集電体 20 の機械的強度が不十分になる場合があり、電極製造時における集電体 20の取り扱 い性の低下、電池充電時における電極の破断などが起こり易くなる。一方、基材部 2 1の厚みが lOO ^ mを超えると、集電体 20の機械的強度は確保される力 S、電極全体 に占める集電体 20の体積が大きくなり、電池の高容量化を十分に達成できない場合 力 sある。 More preferably, it is 8-35 111. If the thickness of the base material portion 21 is less than 5 m, the mechanical strength of the current collector 20 may be insufficient, and the handleability of the current collector 20 at the time of electrode manufacture may be reduced, and the electrode at the time of battery charging It is easy to break. On the other hand, if the thickness of the base material portion 21 exceeds lOO ^ m, the mechanical strength of the current collector 20 is secured S, and the volume of the current collector 20 occupying the entire electrode increases, resulting in a high battery capacity. in some cases force s can not be sufficiently achieved reduction.
基材部 21の表面 21aは、後記するように、圧縮加工を受けているので、元の集電 体用金属箔 10とは異なる表面粗さを有している。 As will be described later, the surface 21a of the base material portion 21 is subjected to compression processing, so that the original current collecting It has a surface roughness different from that of the body metal foil 10.
[0060] 複数個の凸部 22は、基材部 21における厚み方向の一方の表面に形成されている 。また、凸部 22は、基材部 21の表面から基材部 21の外方に向けて延びるように形成 されている。凸部 22は、たとえば、その表面の少なくとも一部に活物質層を担持する 機能を有している。 [0060] The plurality of convex portions 22 are formed on one surface of the base material portion 21 in the thickness direction. The convex portion 22 is formed so as to extend from the surface of the base material portion 21 toward the outside of the base material portion 21. The convex portion 22 has a function of supporting the active material layer on at least a part of its surface, for example.
凸部 22は圧縮加工を受けることなぐ基材部 21の圧縮加工に伴う塑性変形により 形成されている。また、凸部 22の先端表面は圧縮加工および塑性変形の影響をほと んど受けていない。したがって、凸部 22の先端表面は、元の集電体用金属箔 10表 面とほぼ同等の表面粗さを有している。凸部 22の先端表面とは、凸部 22が延びる方 向または突出する方向において、凸部 22の基材部 21から最も離れた部分にある平 面である。  The convex portion 22 is formed by plastic deformation accompanying the compression processing of the base material portion 21 without being subjected to the compression processing. Further, the tip surface of the convex portion 22 is hardly affected by compression processing and plastic deformation. Therefore, the tip surface of the convex portion 22 has a surface roughness substantially equal to the surface of the original current collector metal foil 10. The tip surface of the convex portion 22 is a flat surface that is at the most distant portion from the base material portion 21 of the convex portion 22 in the extending direction or the protruding direction of the convex portion 22.
また、隣り合う 2つの凸部 22は、間隙を有して離隔するように形成されている。した がって、図 7に示す集電体 20の厚み方向の断面において、隣り合う 2つの凸部 22の 間には、基材部 21の表面 21aが凹部として存在することになる。  Further, two adjacent convex portions 22 are formed so as to be separated from each other with a gap. Therefore, in the cross section in the thickness direction of the current collector 20 shown in FIG. 7, the surface 21a of the base material portion 21 exists as a concave portion between two adjacent convex portions 22.
[0061] また、凸部 22は、集電体 20の厚み方向の断面(以下単に「凸部 22の断面」とする) がテーパ状形状を有している。より詳しくは、凸部 22の断面は、基材部 21表面から 凸部 22の延びる方向に向かって、基材部 21表面に平行な方向の幅(以下単に「凸 部 22の断面幅」とする)が徐々にまたは連続的に小さくなるテーパ状形状を有してい る。本実施の形態では、凸部 22の断面はほぼ台形状である。凸部 22がテーパ状形 状を有していることにより、圧縮加工終了後において、集電体 20のローラ 28からの離 型性が向上し、凸部 22の変形が防止され、凸部 22の形状のばらつきを最小限にで きる。 Further, the convex portion 22 has a taper-shaped cross section in the thickness direction of the current collector 20 (hereinafter simply referred to as “the cross section of the convex portion 22”). More specifically, the cross section of the convex portion 22 has a width in a direction parallel to the surface of the base material portion 21 from the surface of the base material portion 21 to the direction in which the convex portion 22 extends (hereinafter simply referred to as “cross-sectional width of the convex portion 22”) Have a tapered shape that gradually or continuously decreases. In the present embodiment, the cross section of the convex portion 22 is substantially trapezoidal. Since the convex portion 22 has a tapered shape, the releasability of the current collector 20 from the roller 28 is improved after the compression processing is completed, the deformation of the convex portion 22 is prevented, and the convex portion 22 is prevented. Variations in the shape of the can be minimized.
[0062] また、本実施の形態では、凸部 22の形状は円錐台である力 凸部 22の断面がテ ーパ状形状を有していれば、凸部 22の形状は特に制限されない。また、本実施の形 態では、凸部 22の延びる方向において、凸部 22の先端表面は、基材部 21表面に ほぼ平行な平面になっている力 それに限定されない。たとえば、基材部 21表面に 平行でない平面、凹凸を有する面半球状、ドーム状などでもよい。これらの形状であ れば、凸部 22と活物質層との接合強度を高めるのに有効である。 [0063] 図 7において、凸部 22の先端表面を示す直線上の一点から、基材部 21の凸部 22 が形成されていない表面を示す直線まで降ろした垂線の長さが tである。 t 、元の In the present embodiment, the shape of the convex portion 22 is not particularly limited as long as the shape of the convex portion 22 is a truncated cone and the cross section of the convex portion 22 has a taper shape. Further, in the present embodiment, the force in which the tip surface of the convex portion 22 is a plane substantially parallel to the surface of the base material portion 21 in the extending direction of the convex portion 22 is not limited thereto. For example, a plane that is not parallel to the surface of the base member 21, a surface hemisphere with irregularities, or a dome shape may be used. These shapes are effective for increasing the bonding strength between the convex portion 22 and the active material layer. [0063] In FIG. 7, the length of a perpendicular drawn from one point on the straight line indicating the tip surface of the convex portion 22 to the straight line indicating the surface where the convex portion 22 of the base material portion 21 is not formed is t. t, the original
6 6 集電体用金属箔 10の厚み tよりも大きくなるように、凸部 22が形成されている。なお  6 6 The convex portion 22 is formed so as to be larger than the thickness t of the current collector metal foil 10. In addition
0  0
、 tは、集電体 20の最大厚みとも定義できる。  , T can also be defined as the maximum thickness of the current collector 20.
6  6
[0064] また、基材部 21の表面 21aにおける、基材部 21と凸部 22との境界 22aは、曲面で 構成されている。ここで、境界 22aは、境界 22aの近傍部分をも包含している。境界 2 2aを曲面にすることによって、凸部 22に力が作用しても、応力分散することが可能に なり、集電体 20の機械的強度が増加する。その結果、凸部 22を形成する工程、凸部 22に活物質を担持させて電極を作製する工程などにおいて、集電体 20に局所的な 橈み、変形などが発生するのを防止できる。また、電極作製後に電極を所定幅にスリ ット加工する工程などにおいて、活物質層の集電体 20からの剥離、部分的な脱落な どを ί卬止できる。  [0064] Further, the boundary 22a between the base material portion 21 and the convex portion 22 on the surface 21a of the base material portion 21 is formed of a curved surface. Here, the boundary 22a also includes the vicinity of the boundary 22a. By making the boundary 22a into a curved surface, even if a force acts on the convex portion 22, it becomes possible to disperse stress, and the mechanical strength of the current collector 20 increases. As a result, local stagnation and deformation of the current collector 20 can be prevented in the step of forming the convex portion 22 and the step of manufacturing the electrode by supporting the active material on the convex portion 22. Further, in the process of slitting the electrode to a predetermined width after manufacturing the electrode, it is possible to prevent the active material layer from being peeled off from the current collector 20 or partially dropped.
[0065] 図 8は、上記したように、集電体 20の製造方法を説明するための縦断面図である。  FIG. 8 is a longitudinal sectional view for explaining the method for manufacturing the current collector 20 as described above.
図 8 (a)に示す工程では、たとえば、図 5に示す集電体製造装置 35において、ロー ラ 4に代えて図 9に示すローラ 28を用いる以外は同様の構成を要する集電体製造装 置を用いて、集電体用金属箔 10の圧縮加工が行われる。  In the process shown in FIG. 8 (a), for example, the current collector manufacturing apparatus 35 shown in FIG. 5 has the same configuration except that the roller 28 shown in FIG. 9 is used instead of the roller 4. The metal foil 10 for current collector is compressed using the device.
ローラ 28は、図 9 (a)および図 9 (b)に示すように、その周面に、複数の凹部 29が形 成されている。凹部 29は、図 9 (c)に示すように、凹部 29のローラ 28周面における開 口縁 29aが曲面で構成され、該曲面には複数の溝 29xが形成されている。溝 29xは 、ローラ 28の周面から凹部 29の底部に向力、う方向に線状に形成されている。溝 29x の幅は特に制限されないが、好ましくは 1 m以下である。また、溝 29xの深さは特に 制限されないが、好ましくは 1 m以下である。なお、、溝 29xの深さとは、開口縁 29a の表面からローラ 28の軸線に向力、う方向の長さである。  As shown in FIGS. 9 (a) and 9 (b), the roller 28 has a plurality of recesses 29 formed on its peripheral surface. In the recess 29, as shown in FIG. 9 (c), an opening edge 29a on the circumferential surface of the roller 28 of the recess 29 is formed by a curved surface, and a plurality of grooves 29x are formed on the curved surface. The groove 29x is formed linearly in the direction from the circumferential surface of the roller 28 to the bottom of the recess 29. The width of the groove 29x is not particularly limited, but is preferably 1 m or less. The depth of the groove 29x is not particularly limited, but is preferably 1 m or less. Note that the depth of the groove 29x is the length in the direction of force from the surface of the opening edge 29a toward the axis of the roller 28.
[0066] 開口縁 29aが曲面で構成される凹部 29が形成されたローラ 28を用いることにより、 集電体用金属箔 10の圧縮加工時に、集電体用金属箔 10とローラ 28との表面に発 生する抵抗力、摩擦力などの応力を低減化し、圧縮加工終了後における集電体 20 のローラ 28からの離型性を向上させる。また、集電体用金属箔 10を部分的に塑性変 形させる応力が、緩やかにかつ確実に付加されるので、凸部 22を確実に形成するこ とが可能になり、加工性が向上する。その結果、集電体 20に局所的な橈み、変形な どが発生するのを防止するとともに、凸部 22の形状、高さなどのばらつきが顕著に少 なくなり、凸部 22を変形させることなぐ形状や高さなどの寸法が揃った凸部 22を形 成できる。 [0066] The surface of the current collector metal foil 10 and the roller 28 during the compression processing of the current collector metal foil 10 by using the roller 28 in which the recess 29 having the opening edge 29a formed of a curved surface is formed. The stress such as resistance force and frictional force generated in the surface is reduced, and the releasability of the current collector 20 from the roller 28 after the compression processing is finished is improved. In addition, since the stress that partially plastically deforms the current collector metal foil 10 is gently and reliably applied, the convex portion 22 can be reliably formed. And processability is improved. As a result, local stagnation and deformation of the current collector 20 can be prevented, and variations in the shape and height of the convex portion 22 can be remarkably reduced and the convex portion 22 can be deformed. Protrusions 22 with uniform dimensions such as shape and height can be formed.
[0067] また、開口縁 29aに複数の溝 29xを形成することにより、圧縮加工時に、凹部 29の 内部空間に残留する雰囲気、ローラ 29の周面および/または集電体用金属箔 10の 表面に塗布された潤滑剤などが溝 29xを介して、凹部 29の内部空間から外部に排 出される。これにより、凹部 29の内部空間において、凸部 22の塑性変形を阻害しょう とする内部抵抗が低減化される。その結果、凸部 22の塑性変形が円滑に進行し、凸 部 22の形状、寸法などのばらつきが少なくなり、得られる集電体 20の機械的強度の 局所的なばらつきが少なくなる。この効果は、溝 29xの幅を 1 μ m以下、深さを 1 μ m 以下にした場合に、特に顕著である。溝 29xの幅または深さが大きすぎると、残留雰 囲気、潤滑剤などの抜けは良くなるが、凸部 22の塑性変形が十分に進行しないおそ れがある。  [0067] Also, by forming a plurality of grooves 29x in the opening edge 29a, the atmosphere remaining in the internal space of the recess 29, the peripheral surface of the roller 29 and / or the surface of the current collector metal foil 10 during compression processing The lubricant or the like applied to the surface is discharged from the inner space of the recess 29 to the outside through the groove 29x. As a result, in the internal space of the concave portion 29, the internal resistance that tends to inhibit the plastic deformation of the convex portion 22 is reduced. As a result, the plastic deformation of the convex portion 22 proceeds smoothly, variation in the shape and dimensions of the convex portion 22 is reduced, and local variation in the mechanical strength of the current collector 20 obtained is reduced. This effect is particularly remarkable when the width of the groove 29x is 1 μm or less and the depth is 1 μm or less. If the width or depth of the groove 29x is too large, the residual atmosphere, lubricant, etc. can be removed, but the plastic deformation of the convex portion 22 may not proceed sufficiently.
[0068] また、ローラ 28周面における凹部 29の配列パターンは、本実施の形態では次のよ うになる。図 9 (b)に示すように、ローラ 28の長手方向に複数の凹部 29がピッチ Pcで 連なった列を 1つの行単位 33とする。複数の行単位 33は、ローラ 28の円周方向にピ ツチ Pdで配列されている。ピッチ Pcおよびピッチ Pdは、任意に設定できる。なお、口 ーラ 28の円周方向において、 1つの行単位 33と、それに隣り合う行単位 33とは、凹 部 29がローラ 28の長手方向にずれるように配列されている。本実施の形態では、凹 部 29の長手方向のずれは 0. 5Pcである力 これに限定されず、任意の設定が可能 である。また、本実施の形態では、ローラ 28周面における凹部 29の開口部分の形状 は、ほぼ円形であるが、これに限定されず、たとえば、ほぼ楕円形、ほぼ長方形、ほ ぼ菱形、ほぼ正方形、ほぼ正六角形、ほぼ正八角形などでもよい。  In addition, the arrangement pattern of the recesses 29 on the circumferential surface of the roller 28 is as follows in the present embodiment. As shown in FIG. 9B, a row in which a plurality of concave portions 29 are connected at a pitch Pc in the longitudinal direction of the roller 28 is defined as one row unit 33. The plurality of row units 33 are arranged with pitches Pd in the circumferential direction of the roller 28. Pitch Pc and pitch Pd can be set arbitrarily. In the circumferential direction of the roller 28, one row unit 33 and the adjacent row unit 33 are arranged so that the concave portion 29 is displaced in the longitudinal direction of the roller 28. In the present embodiment, the displacement of the concave portion 29 in the longitudinal direction is a force of 0.5 Pc. The present invention is not limited to this, and an arbitrary setting is possible. In the present embodiment, the shape of the opening of the recess 29 on the circumferential surface of the roller 28 is substantially circular, but is not limited to this. For example, it is substantially elliptical, substantially rectangular, almost rhomboid, substantially square, A substantially regular hexagon, a substantially regular octagon, or the like may be used.
[0069] ローラ 28は、たとえば、ローラ 4を製造するのに用いられる凹部形成用ローラを、ェ ツチング、サンドブラスト、放電加工、レーザ加工などで加工することにより作製できる 。レーザ加工には、ローラ 4を形成する場合と同様の方法が利用される。  [0069] The roller 28 can be manufactured, for example, by processing a recess-forming roller used for manufacturing the roller 4 by etching, sandblasting, electric discharge machining, laser machining, or the like. For the laser processing, the same method as that for forming the roller 4 is used.
凹部形成用ローラ周面にレーザ加工により凹部を形成すると、凹部形成用ローラ周 面における開口縁 29aに図示しない隆起が発生する。この隆起を除去することにより 、開口縁 29aが曲面で構成された凹部 29が形成され、ローラ 28が得られる。隆起の 除去は、好ましくはダイヤモンド粒子を用いる研磨により行われる。ダイヤモンド粒子 としては、凹部 29の最小サイズよりも大きいものを用いるのが好ましい。さらに好ましく は、ダイヤモンド粒子の平均粒径が 30 m以上、 35 m未満である。ここで、凹部 2 9のサイズとは、ローラ 28周面における凹部 29の開口径を意味する。このような平均 粒径のダイヤモンド粒子を用いることにより、開口縁 29aが曲率半径の大きな曲面で 構成され、凸部 22の基材部 21からの剥離などを一層顕著に防止できる。また、ダイ ャモンド粒子の凹部 29内部への埋没が防止される。 When a recess is formed on the circumferential surface of the recess forming roller by laser processing, A bump (not shown) occurs at the opening edge 29a in the surface. By removing this bulge, a concave portion 29 having a curved opening edge 29a is formed, and a roller 28 is obtained. The removal of the bumps is preferably done by polishing with diamond particles. As the diamond particles, particles larger than the minimum size of the recess 29 are preferably used. More preferably, the average particle size of the diamond particles is 30 m or more and less than 35 m. Here, the size of the recess 29 means the opening diameter of the recess 29 on the circumferential surface of the roller 28. By using diamond particles having such an average particle diameter, the opening edge 29a is formed of a curved surface having a large radius of curvature, and peeling of the convex portion 22 from the base material portion 21 can be more significantly prevented. Further, the burying of the diamond particles inside the recess 29 is prevented.
なお、ダイヤモンド粒子を用いる研磨は、砥粒または研磨粒としてダイヤモンド粒子 を用いる以外は、一般的な研磨方法と同様に実施できる。通常は、研磨面にダイヤ モンド粒子を載置し、水などの媒体を供給しながら、研磨パッドを有する研磨機により 実施される。  The polishing using diamond particles can be performed in the same manner as a general polishing method, except that diamond particles are used as abrasive grains or polishing grains. Usually, it is carried out by a polishing machine having a polishing pad while placing diamond particles on the polishing surface and supplying a medium such as water.
[0070] 開口縁 29a表面における溝 29xの形成は、好ましくは、平均粒径 5 μ m以下のダイ ャモンド粒子で研磨することにより行われる。これにより、幅 1 μ m以下、深さ 1 μ m以 下の溝 29xを容易に形成できる。溝 29xの形成は、隆起の研磨除去後に行ってもよ ぐまたは隆起の研磨除去と同時に行ってもよい。なお、ここで用いられるダイヤモン ド粒子は、粒径が非常に小さいため、凹部 29内部には埋没し難ぐ溝 29x形成後に 洗浄を行うことによって容易に除去できる。  The formation of the groove 29x on the surface of the opening edge 29a is preferably performed by polishing with diamond particles having an average particle size of 5 μm or less. Thereby, the groove 29x having a width of 1 μm or less and a depth of 1 μm or less can be easily formed. The formation of the groove 29x may be performed after the ridge is removed by polishing or simultaneously with the removal of the ridge by polishing. Since the diamond particles used here have a very small particle size, they can be easily removed by washing after the formation of the groove 29x that is difficult to be buried in the recess 29.
[0071] このようにして得られるローラ 28の周面および凹部 29の内部空間を臨む表面には 、ローラ 4と同様に、超硬合金を含有する被覆層、合金工具鋼を含有する被覆層、酸 化クロムを含有する被覆層、非晶質炭素材料を含有する保護層、セラミックス力 な る被覆層などの 1または 2以上を形成してもよい。これにより、ローラ 4においてこれら の被覆層および保護層を形成するのと同様の効果が得られる。  [0071] As with the roller 4, the surface facing the peripheral surface of the roller 28 and the inner space of the recess 29 obtained in this way, a coating layer containing cemented carbide, a coating layer containing alloy tool steel, One or more of a coating layer containing chromium oxide, a protective layer containing an amorphous carbon material, and a coating layer having a ceramic strength may be formed. As a result, the same effect as the formation of these coating layers and protective layers in the roller 4 can be obtained.
ローラ 28は、その周面がローラ 5の周面に圧接しかつその軸線がローラ 5の軸線と 平行になるように配置され、圧接二ップ部 34を形成する。  The roller 28 is arranged so that its peripheral surface is in pressure contact with the peripheral surface of the roller 5 and its axis is parallel to the axis of the roller 5, thereby forming a pressure-contacting two-pipe portion 34.
[0072] 図 8 (a)に示す工程では、集電体用金属箔 10が圧接二ップ部 34に供給され、集電 体用金属箔 10の厚み方向における加圧力 30a、 30bが付加される。 図 8 (b)に示す工程では、集電体用金属箔 10のローラ 28周面に対向する表面のう ち、ローラ 28周面に接する接触面は加圧力 30a、 30bにより圧縮加工を施され、ロー ラ 28周面に接することなくかつ凹部 29を臨む非接触面は圧縮加工を受けない。非 接触面の周囲に接触面が存在する。すなわち、接触面は圧縮加工を施されることに より、接触面における厚みが集電体用金属箔 10の厚みよりも小さくなり、基材部 21の 原型になる隆起部 21xが形成される。一方、非接触面は、接触面への加圧に伴って 、非接触面の周囲から、凹部 29の内部空間を臨む表面に沿って凹部 29の底部に向 力、う応力 31a、 31bが付加される。これにより、非接触面の塑性変形が起こり始め、凹 部 29の底部に向けて隆起し、凸部 22xが形成される。それとともに、隆起部 21xと凸 部 22xとの境界力 凹部 29の開口縁 29aに沿って、曲面形状に成形される。この時 点では、凸部 22xの体積は、凹部 29の内部空間の体積の 50%未満であるため、さら に加圧が続けられる。 [0072] In the step shown in FIG. 8 (a), the current collector metal foil 10 is supplied to the press-fitting nipping portion 34, and pressures 30a and 30b in the thickness direction of the current collector metal foil 10 are applied. The In the process shown in FIG. 8 (b), of the surface of the current collector metal foil 10 facing the roller 28 circumferential surface, the contact surface in contact with the roller 28 circumferential surface is compressed by the applied pressures 30a and 30b. The non-contact surface that does not contact the roller 28 circumferential surface and faces the recess 29 is not subjected to compression processing. There is a contact surface around the non-contact surface. That is, by compressing the contact surface, the thickness of the contact surface becomes smaller than the thickness of the current collector metal foil 10, and the raised portion 21 x that becomes the prototype of the base material portion 21 is formed. On the other hand, the non-contact surface is applied with stress 31a and 31b from the periphery of the non-contact surface to the bottom of the recess 29 along the surface facing the inner space of the recess 29 as the contact surface is pressurized. Is done. As a result, plastic deformation of the non-contact surface begins to occur and rises toward the bottom of the concave portion 29 to form the convex portion 22x. At the same time, the boundary force between the raised portion 21x and the convex portion 22x is formed into a curved shape along the opening edge 29a of the concave portion 29. At this time, since the volume of the convex portion 22x is less than 50% of the volume of the internal space of the concave portion 29, the pressurization is further continued.
[0073] 図 8 (c)に示す工程では、集電体 20が得られている。集電体 20において、基材部 2 1と凸部 22との境界部分 22aは、曲面で構成されている。ローラ 28とローラ 5とによる 加圧は、好ましくは、基材部 21の厚み tが集電体用金属箔 10の厚み tよりも小さく、  In the step shown in FIG. 8 (c), the current collector 20 is obtained. In the current collector 20, a boundary portion 22a between the base material portion 21 and the convex portion 22 is formed of a curved surface. The pressure applied by the rollers 28 and 5 is preferably such that the thickness t of the base material portion 21 is smaller than the thickness t of the current collector metal foil 10,
5 0  5 0
かつ集電体 20の最大厚み tが集電体用金属箔 10の厚み tよりも大きくなるまで行わ  And until the maximum thickness t of the current collector 20 is greater than the thickness t of the current collector metal foil 10.
6 0  6 0
れる。前記加圧は、さらに好ましくは、凸部 22の体積が、凹部 29の内部空間の体積 の 50%以上、好ましくは 50〜85%になるまで行われる。 50%未満では、凸部 29の 高さが不十分になり、活物質の担持を円滑に実施できないおそれがある。さらに、活 物質担持後に、活物質が集電体 20から剥落する可能性が大きくなるおそれがある。 一方、 85%を超えると、凹部 29の内部に残留する空気、潤滑剤の蒸気などが圧縮さ れて内部圧力が高まり、凸部 22の円滑な塑性変形を阻害し、凸部 22に形状のばら つきが生じるおそれがある。  It is. The pressurization is more preferably performed until the volume of the convex portion 22 is 50% or more, preferably 50 to 85% of the volume of the internal space of the concave portion 29. If it is less than 50%, the height of the convex portion 29 becomes insufficient, and there is a possibility that the active material cannot be carried smoothly. Furthermore, there is a possibility that the active material may be peeled off from the current collector 20 after loading the active material. On the other hand, if it exceeds 85%, the air remaining inside the concave portion 29, the vapor of the lubricant, etc. are compressed and the internal pressure is increased, and the smooth plastic deformation of the convex portion 22 is hindered. Variations may occur.
[0074] 集電体 20において、基材部 21の凸部 22が形成されない面 21aは、圧縮加工が施 されているので、集電体用金属箔 10とは異なる表面粗さを有している。凸部 22の先 端表面は圧縮加工が施されず、塑性変形の影響も非常少ないので、集電体用金属 箔 10とほぼ同じ表面粗さを有している。また、凸部 22の側面は圧縮加工が施されて いないが、塑性変形の影響を受けているので、集電体用金属箔 10に近い表面粗さ を有している。したがって、凸部 22の表面、好ましくは先端表面に活物質層を担持さ せることにより、充放電サイクルにおける活物質層の集電体 20からの剥落などが一層 防止される。 [0074] In the current collector 20, the surface 21a on which the convex portion 22 of the base material portion 21 is not formed has a surface roughness different from that of the current collector metal foil 10, since it has been subjected to compression processing. Yes. The tip end surface of the convex portion 22 is not subjected to compression processing and is hardly affected by plastic deformation, and therefore has almost the same surface roughness as the current collector metal foil 10. Further, the side surface of the convex portion 22 is not compressed, but is affected by plastic deformation, so that the surface roughness close to the current collector metal foil 10 is obtained. have. Therefore, by supporting the active material layer on the surface of the convex portion 22, preferably on the tip surface, the active material layer is prevented from peeling off from the current collector 20 in the charge / discharge cycle.
[0075] 図 10は、別形態の非水電解質二次電池用集電体 23の構成を模式的に示す縦断 面図である。図 11は、図 10に示す集電体 23の製造方法を模式的に示す縦断面図 である。図 11 (a)は、集電体用金属箔 10が圧接ニップ部 34aに供給された直後の状 態を示す縦断面図である。図 11 (b)は、圧接エップ部 34aにおいて集電体用金属箔 10表面の塑性変形が進行している状態を示す縦断面図である。図 11 (c)は、圧接 二ップ部 34aにおいて集電体 23が形成された直後の状態を示す縦断面図である。  FIG. 10 is a longitudinal sectional view schematically showing a configuration of a collector 23 for a non-aqueous electrolyte secondary battery in another form. FIG. 11 is a longitudinal sectional view schematically showing a method for manufacturing the current collector 23 shown in FIG. FIG. 11 (a) is a longitudinal sectional view showing a state immediately after the current collector metal foil 10 is supplied to the press-contact nip portion 34a. FIG. 11 (b) is a longitudinal sectional view showing a state in which the plastic deformation of the surface of the current collector metal foil 10 proceeds in the pressure contact ep portion 34a. FIG. 11 (c) is a longitudinal sectional view showing a state immediately after the current collector 23 is formed in the pressure-welding two-ply portion 34a.
[0076] 集電体 23は、基材部 24の厚み方向における両方の表面に、複数の凸部 25x、 25 yが形成されている以外は、集電体 20と同じ構成を有している。すなわち、基材部 24 は基材部 21と同様の構成である。凸部 25x、 25yは、凸部 22と同様の構成である。 凸部 25xは、基材部 24の厚み方向における一方の表面から基材部 24の外方に向 けて延びるようにまたは突出するように形成されている。凸部 25yは、基材部 24の厚 み方向における他方の表面から基材部 24の外方に向けて延びるようにまたは突出 するように形成されている。凸部 25xの延びる方向と、凸部 25yの延びる方向は逆方 向である。  The current collector 23 has the same configuration as the current collector 20 except that a plurality of convex portions 25x and 25y are formed on both surfaces in the thickness direction of the base material portion 24. . That is, the base material portion 24 has the same configuration as the base material portion 21. The convex portions 25x and 25y have the same configuration as the convex portion 22. The convex portion 25x is formed so as to extend or protrude from one surface in the thickness direction of the base material portion 24 toward the outside of the base material portion 24. The convex portion 25y is formed so as to extend or protrude from the other surface in the thickness direction of the base material portion 24 toward the outside of the base material portion 24. The direction in which the convex portion 25x extends is opposite to the direction in which the convex portion 25y extends.
[0077] また、集電体 23において、基材部 24と凸部 25x、 25yとの境界部分 25aは曲面で 構成されている。これにより、集電体 20における境界部分 22aが曲面で構成されて いるのと同様の効果が得られる。  [0077] Further, in the current collector 23, a boundary portion 25a between the base material portion 24 and the convex portions 25x, 25y is formed of a curved surface. As a result, the same effect can be obtained as when the boundary portion 22a of the current collector 20 is formed of a curved surface.
また、集電体 23の厚み方向の断面において、凸部 25x、 25yの先端表面を示す線 は、基材部 24の表面 24aを示す線とほぼ平行になっている。凸部 25x、 25yの先端 表面は、ほぼ平坦な面であり、圧縮加工を受けていないので、原料になる集電体用 金属箔 10とほぼ同じ表面粗さを有している。凸部 25x、 25yの側面は圧縮加工が施 されてないが、塑性変形の影響を受けているので、集電体用金属箔 10に近い表面 粗さを有している。したがって、凸部 22の表面、好ましくは先端表面に活物質層を担 持させることにより、充放電サイクルにおける活物質層の集電体 20からの剥落などが 一層防止される。 [0078] また、集電体 23において、基材部 24の厚み は、原料になる集電体用金属箔 10 の厚み tよりも小さくなるように形成されている。また、凸部 25xの先端表面から凸部 2Further, in the cross section in the thickness direction of the current collector 23, the lines indicating the tip surfaces of the convex portions 25 x and 25 y are substantially parallel to the line indicating the surface 24 a of the base material portion 24. The tip surfaces of the convex portions 25x and 25y are substantially flat surfaces and have not been subjected to compression processing, and therefore have substantially the same surface roughness as the current collector metal foil 10 as a raw material. The side surfaces of the convex portions 25x and 25y are not compressed, but are affected by plastic deformation, and thus have a surface roughness close to that of the current collector metal foil 10. Therefore, by holding the active material layer on the surface of the convex portion 22, preferably on the tip surface, the active material layer is prevented from peeling off from the current collector 20 in the charge / discharge cycle. Further, in the current collector 23, the thickness of the base material portion 24 is formed to be smaller than the thickness t of the current collector metal foil 10 used as a raw material. Also, from the tip surface of convex part 25x, convex part 2
0 0
7yの先端表面までの厚み tは、集電体用金属箔 10の厚み tよりも大きくなるように形  The thickness t to the tip surface of 7y is shaped to be larger than the thickness t of the current collector metal foil 10.
8 0  8 0
成されている。厚み は、集電体 23の最大厚みとも定義できる。このように構成するこ  It is made. The thickness can also be defined as the maximum thickness of the current collector 23. This configuration
8  8
とにより、集電体 23の機械的強度が高くなり、耐用性が増す。  As a result, the mechanical strength of the current collector 23 is increased and the durability is increased.
[0079] 集電体 23は、たとえば、図 5に示す集電体製造装置 35において、ローラ 4、 5に代 えて 2つのローラ 28を用いる以外は同様の構成を要する集電体製造装置を用いて、 作製できる。 [0079] The current collector 23 uses, for example, a current collector manufacturing apparatus that requires the same configuration except that the current collector manufacturing apparatus 35 shown in FIG. 5 uses two rollers 28 instead of the rollers 4 and 5. Can be produced.
図 11は、上記したように、集電体 23の製造方法を説明するための縦断面図である FIG. 11 is a longitudinal sectional view for explaining a method of manufacturing the current collector 23 as described above.
Yes
図 11 (a)に示す工程では、 2つのローラ 28を、互いの周面が圧接しかつ互いの軸 線が平行になるように配置することにより形成される圧接二ップ部 34aに、集電体用 金属箔 10を供給する。集電体用金属箔 10は、その厚み方向の加圧力 30a、 30bを 付加される。  In the step shown in FIG. 11 (a), the two rollers 28 are gathered on a pressure-welding dip portion 34a formed by arranging the circumferential surfaces so that their circumferential surfaces are in pressure-contact with each other and their axes are parallel to each other. Supply metal foil 10 for electrical equipment. The metal foil 10 for current collector is applied with pressures 30a and 30b in the thickness direction.
[0080] 図 11 (b)に示す工程では、集電体用金属箔 10のローラ 28周面に対向する表面の うち、ローラ 28周面に接する接触面は加圧力 30a、 30bにより圧縮加工を施される。 一方、ローラ 28周面に接することなくかつ凹部 29を臨む非接触面には、圧縮加工は 施されないが、接触面の圧縮加工に伴って塑性変形が起こる。非接触面の周囲に接 触面が存在する。すなわち、接触面は圧縮加工を施されることにより、接触面におけ る厚みが集電体用金属箔 10の厚みよりも小さくなり、基材部 24の原型になる隆起部 24xが形成される。一方、非接触面は、接触面への加圧に伴って、非接触面の周囲 から、凹部 29の内部空間を臨む表面に沿って凹部 29の底部に向力、う応力 31a、 31 b、 31x、 31yが付加される。これにより、非接触面内部の塑性変形が進行し、凹部 2 9の底部に向けて隆起し、凸部 32x、 32yが形成される。それとともに、隆起部 24xと 凸部 32x、 32yとの境界力 S、凹部 29の開口縁 29aに沿って、曲面形状に成形される 。この時点では、凸部 32x、 32yの体積は、凹部 29の内部空間の体積の 50%未満 であるため、さらに加圧が続けられる。  [0080] In the step shown in Fig. 11 (b), of the surfaces of the current collector metal foil 10 facing the roller 28 circumferential surface, the contact surface in contact with the roller 28 circumferential surface is compressed by the applied pressures 30a and 30b. Applied. On the other hand, the non-contact surface that does not contact the circumferential surface of the roller 28 and faces the recess 29 is not subjected to compression processing, but plastic deformation occurs with the compression processing of the contact surface. There is a contact surface around the non-contact surface. That is, when the contact surface is subjected to compression processing, the thickness at the contact surface becomes smaller than the thickness of the current collector metal foil 10, and the raised portion 24x that becomes the prototype of the base material portion 24 is formed. . On the other hand, as the non-contact surface is pressurized, the contact force from the periphery of the non-contact surface to the bottom of the recess 29 along the surface facing the inner space of the recess 29, the stress 31a, 31b, 31x and 31y are added. As a result, plastic deformation inside the non-contact surface progresses and rises toward the bottom of the recess 29, forming the protrusions 32x and 32y. At the same time, it is formed into a curved surface shape along the boundary force S between the raised portion 24x and the convex portions 32x and 32y and the opening edge 29a of the concave portion 29. At this time, since the volume of the convex portions 32x and 32y is less than 50% of the volume of the internal space of the concave portion 29, the pressurization is further continued.
[0081] 図 11 (c)に示す工程では、集電体 23が得られている。集電体 20において、基材部 24と凸部 25x、 25yとの境界部分 25aは、曲面で構成されている。 2つのローラ 28に よる加圧は、好ましくは、基材部 24の厚み tが集電体用金属箔 10の厚み tよりも小さ In the step shown in FIG. 11 (c), the current collector 23 is obtained. In current collector 20, base material A boundary portion 25a between 24 and the convex portions 25x and 25y is formed of a curved surface. The pressure applied by the two rollers 28 is preferably such that the thickness t of the base material portion 24 is smaller than the thickness t of the current collector metal foil 10.
7 0 ぐかつ集電体 23の最大厚み tが集電体用金属箔 10の厚み tよりも大きくなるまで  7 0 Until the maximum thickness t of the current collector 23 is greater than the thickness t of the current collector metal foil 10.
8 0  8 0
行われる。前記加圧は、さらに好ましくは、凸部 25x、 25yの体積力 凹部 29の内部 空間の体積の 50%以上、好ましくは 50〜85%になるまで、行われる。 50%未満で は、凸部 29の高さが不十分になり、活物質の担持を円滑に実施できないおそれがあ る。さらに、活物質担持後に、活物質が集電体 20から剥落する可能性が大きくなる おそれがある。一方、 85%を超えると、凹部 29の内部に残留する空気、潤滑剤の蒸 気などが圧縮されて内部圧力が高まり、凸部 25x、 25yに形状のばらつきが生じるお それがある。  Done. The pressurization is more preferably performed until the volume force of the convex portions 25x and 25y reaches 50% or more, preferably 50 to 85% of the volume of the internal space of the concave portion 29. If it is less than 50%, the height of the convex part 29 becomes insufficient, and there is a possibility that the active material cannot be carried smoothly. Furthermore, there is a risk that the active material may be peeled off from the current collector 20 after the active material is loaded. On the other hand, if it exceeds 85%, the air remaining in the concave portion 29, the vapor of the lubricant, etc. are compressed and the internal pressure increases, and there is a possibility that the convex portions 25x and 25y may have a variation in shape.
[0082] なお、本実施の形態では、本発明の集電体 1、 15、 20、 23を製造するに当たり、図 5に示す集電体製造装置 35またはこれに類似の集電体製造装置を用いているが、 それに限定されるものではない。たとえば、凸部に対応する形状を有する凹部を形成 したダイセット金型などの金型を用い、この金型により集電体金属箔 10をその厚み方 向の両面から挟持し、加圧することにより、集電体用金属箔 10に本発明の圧縮加工 を施すことが可能になる。これによつても、本発明の集電体 1、 15、 20、 23を製造で きる。  In the present embodiment, when manufacturing current collectors 1, 15, 20, and 23 of the present invention, current collector manufacturing apparatus 35 shown in FIG. 5 or a current collector manufacturing apparatus similar thereto is used. Although it is used, it is not limited to this. For example, by using a die such as a die set die having a concave portion having a shape corresponding to the convex portion, the current collector metal foil 10 is sandwiched from both sides in the thickness direction by this die and pressed. Thus, the metal foil 10 for current collector can be subjected to the compression processing of the present invention. This also makes it possible to produce current collectors 1, 15, 20, and 23 of the present invention.
また、本発明の製造方法により得られる集電体は、非水電解質二次電池用の集電 体として好適に使用できる力 これに限定されず、たとえば、非水電解質二次電池以 外の二次電池、リチウム一次電池などの一次電池用の集電体としても使用できる。  Further, the current collector obtained by the production method of the present invention is not limited to a force that can be suitably used as a current collector for a non-aqueous electrolyte secondary battery. For example, a current collector other than a non-aqueous electrolyte secondary battery can be used. It can also be used as a current collector for primary batteries such as secondary batteries and lithium primary batteries.
[0083] [非水電解質二次電池用電極の製造方法]  [0083] [Method for producing electrode for nonaqueous electrolyte secondary battery]
本発明の非水電解質二次電池用電極の製造方法は、集電体として、本発明の製 造方法により製造された集電体を用いる以外は、従来の集電体の製造方法と同様に 実施できる。たとえば、本発明の製造方法により製造された集電体の表面に、電極合 剤スラリーを塗布し、乾燥させることにより、集電体表面に活物質層を担持させること 力 Sできる。また、集電体表面に薄膜状の活物質層を形成してもよい。  The method for producing an electrode for a non-aqueous electrolyte secondary battery of the present invention is the same as the conventional method for producing a current collector, except that the current collector produced by the production method of the present invention is used as the current collector. Can be implemented. For example, the active material layer can be supported on the surface of the current collector by applying an electrode mixture slurry to the surface of the current collector produced by the production method of the present invention and drying it. Further, a thin film active material layer may be formed on the current collector surface.
[0084] 本発明の製造方法で得られる集電体の凸部は、圧縮加工を受けることなく形成さ れている。また、凸部表面は圧縮加工の影響を受けず、特に凸部の先端表面は塑性 変形の影響をもほとんど受けることなく形成されているので、加工歪みなどが残らない 。したがって、本発明の製造方法で得られる集電体の表面に活物質層の薄膜を形成 すると、精度良くかつ均一な厚みを有する薄膜を形成できる。また、凸部表面、特に 凸部の先端表面が加工前の金属箔の表面粗さを保持しているため、活物質層であ る薄膜と集電体表面との密着力が向上する。なお、この効果は、基材部と凸部との境 界部分が曲面で構成される集電体に活物質層を形成する場合に、特に顕著になる。 The convex portion of the current collector obtained by the production method of the present invention is formed without being subjected to compression processing. In addition, the convex surface is not affected by compression, and the tip surface of the convex part is particularly plastic. Since it is formed with almost no influence of deformation, there is no processing distortion. Therefore, when a thin film of an active material layer is formed on the surface of a current collector obtained by the production method of the present invention, a thin film having a uniform thickness can be formed with high accuracy. In addition, since the surface of the convex portion, particularly the tip surface of the convex portion, maintains the surface roughness of the metal foil before processing, the adhesion between the thin film as the active material layer and the current collector surface is improved. This effect is particularly remarkable when the active material layer is formed on a current collector in which the boundary portion between the base material portion and the convex portion is a curved surface.
[0085] 電極合剤スラリーには、正極合剤スラリーと負極合剤スラリーとがある。まず、正極 合剤スラリーを用いる正極の製造について説明する。正極合剤スラリーは、正極活物 質および溶媒を含有し、さらに必要に応じて、正極用結着材、導電材などを含んでい 正極活物質としては、非水電解質二次電池の分野で常用されるものを使用でき、 例えば、コバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマ グネシゥムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(ニッケルの 一部をコバルトで置換したものなど)、マンガン酸リチウムおよびその変性体などの複 合酸化物が挙げられる。正極活物質は 1種を単独で使用できまたは 2種以上を組み 合わせて使用できる。 [0085] The electrode mixture slurry includes a positive electrode mixture slurry and a negative electrode mixture slurry. First, the production of the positive electrode using the positive electrode mixture slurry will be described. The positive electrode mixture slurry contains a positive electrode active material and a solvent, and further contains a positive electrode binder, a conductive material, etc., as necessary. The positive electrode active material is used in the field of non-aqueous electrolyte secondary batteries. For example, lithium cobaltate and its modified products (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and its modified products (part of nickel with cobalt) can be used. And substituted oxides such as lithium manganate and modified products thereof. One type of positive electrode active material can be used alone, or two or more types can be used in combination.
[0086] 正極用結着材としては、非水電解質二次電池の分野で常用されるものを使用でき 、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフル ォロエチレン (PTFE)、アタリレート単位を有するゴム粒子結着材などが挙げられる。 このような正極用結着材とともに、反応性官能基を導入したアタリレートモノマーまた はアタリレートオリゴマー用いても良い。正極用結着材は 1種を単独で使用できまた は 2種以上を組み合わせて使用できる。  [0086] As the positive electrode binder, those commonly used in the field of non-aqueous electrolyte secondary batteries can be used. For example, polyvinylidene fluoride (PVdF), modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), attaly Examples thereof include a rubber particle binder having a rate unit. Together with such a positive electrode binder, an acrylate monomer or acrylate oligomer into which a reactive functional group has been introduced may be used. The positive electrode binder can be used alone or in combination of two or more.
[0087] 導電材としては、非水電解質二次電池の分野で常用されるものを使用でき、例えば ンプブラック、サーマルブラック等のカーボンブラック、各種グラフアイトなどが挙げら れる。導電材は 1種を単独で使用でき、または 2種以上を組み合わせて使用できる。  [0087] As the conductive material, those commonly used in the field of non-aqueous electrolyte secondary batteries can be used, and examples thereof include carbon black such as amplifier black and thermal black, and various graphite. One type of conductive material can be used alone, or two or more types can be used in combination.
[0088] 正極合剤スラリーは、たとえば、正極活物質および必要に応じて正極用結着材、導 電材などを適当な分散媒に分散させ、必要に応じて集電体 の塗布に適する粘度 に調整することにより作製される。分散媒としては、水、 2—メチルー N—ピロリドンな どの有機溶媒などを使用できる。正極活物質などの固形分の溶媒 の分散には、た とえば、プラネタリーミキサーなどの一般的な分散機を使用できる。 [0088] The positive electrode mixture slurry is prepared by, for example, dispersing a positive electrode active material and, if necessary, a binder for a positive electrode, a conductive material, and the like in an appropriate dispersion medium, and, if necessary, a viscosity suitable for applying a current collector. It is produced by adjusting to. As the dispersion medium, water, organic solvents such as 2-methyl-N-pyrrolidone, and the like can be used. For example, a general disperser such as a planetary mixer can be used to disperse the solid solvent such as the positive electrode active material.
この正極合剤スラリーを正極集電体の一方または両方の表面に塗布し、乾燥させ、 必要に応じてプレス成形を行って所定の厚みに調整することにより、正極板が得られ る。正極集電体の厚みは特に制限されないが、好ましくは 5〜30 111である。正極合 剤スラリーの正極集電体への塗布には、たとえば、ダイコータなどの一般的な塗布装 置を使用できる。また、乾燥温度は、主に、溶媒の種類に応じて適宜選択される。  The positive electrode mixture slurry is applied to one or both surfaces of the positive electrode current collector, dried, and subjected to press molding as necessary to adjust to a predetermined thickness, whereby a positive electrode plate is obtained. The thickness of the positive electrode current collector is not particularly limited, but is preferably 5 to 30 111. For application of the positive electrode mixture slurry to the positive electrode current collector, for example, a general application device such as a die coater can be used. The drying temperature is appropriately selected mainly depending on the type of solvent.
[0089] 次に、負極合剤スラリーを用いる負極の製造について説明する。負極合剤スラリー は、負極活物質および分散媒を含有し、さらに必要に応じて、負極用結着材、導電 材などを含んでいる。  [0089] Next, the production of a negative electrode using a negative electrode mixture slurry will be described. The negative electrode mixture slurry contains a negative electrode active material and a dispersion medium, and further contains a negative electrode binder, a conductive material, and the like as necessary.
負極用活物質としては、非水電解質二次電池の分野で常用されるものを使用でき 、例えば、各種天然黒鉛、人造黒鉛などの黒鉛材料、シリサイドなどのシリコン系複 合材料、各種合金材料などを使用できる。負極活物質は 1種を単独で使用できまた は 2種以上を組み合わせて使用できる。  As the negative electrode active material, those commonly used in the field of non-aqueous electrolyte secondary batteries can be used.For example, various natural graphites, graphite materials such as artificial graphite, silicon-based composite materials such as silicide, various alloy materials, etc. Can be used. One type of negative electrode active material can be used alone, or two or more types can be used in combination.
[0090] 負極用結着材としては、非水電解質二次電池の分野で常用されるものを使用でき 、例えば、 PVDFおよびその変性体、スチレン ブタジエン共重合体ゴム(SBR)粒 子およびその変性体に、カルボキシメチルセルロース(CMC)などのセルロース系樹 脂などが挙げられる。負極用結着材は 1種を単独で使用できまたは 2種以上を組み 合わせて使用できる。特に、 SBR粒子とセルロース系樹脂との混合物、 SBR粒子に 少量のセルロース系樹脂を添加した混合物などが好ましい。このような混合物を用い ると、たとえば、リチウムイオン受け入れ性などが向上する。  [0090] As the binder for the negative electrode, those commonly used in the field of non-aqueous electrolyte secondary batteries can be used. For example, PVDF and modified products thereof, styrene butadiene copolymer rubber (SBR) particles and modified products thereof Examples of the body include cellulosic resins such as carboxymethylcellulose (CMC). The negative electrode binder can be used alone or in combination of two or more. In particular, a mixture of SBR particles and a cellulose resin, a mixture obtained by adding a small amount of a cellulose resin to SBR particles, and the like are preferable. When such a mixture is used, for example, lithium ion acceptability is improved.
導電材としては、正極に用いられるのと同様のものを使用できる。  As the conductive material, the same material as that used for the positive electrode can be used.
[0091] 負極合剤スラリーの調製は、正極合剤スラリーの調製と同様に実施できる。なお、 負極活物質を分散させる分散媒としては、たとえば、水、 2—メチルー N ピロリドン などの有機溶媒などを使用できる。  [0091] The negative electrode mixture slurry can be prepared in the same manner as the positive electrode mixture slurry. As the dispersion medium for dispersing the negative electrode active material, for example, water, an organic solvent such as 2-methyl-N pyrrolidone, or the like can be used.
この負極合剤スラリーを負極用集電体の一方または両方の表面に塗布し、乾燥さ せ、必要に応じてプレス成形を行って所定の厚みに調整することにより、負極板が得 られる。負極集電体の厚みは特に制限されないが、好ましくは 5〜25 111である。負 極合剤スラリーの集電体への塗布には、たとえば、ダイコータなどの一般的な塗布装 置を使用できる。また、乾燥温度は、主に、溶媒の種類に応じて適宜選択される。 The negative electrode mixture slurry is applied to one or both surfaces of the negative electrode current collector, dried, and subjected to press molding as necessary to adjust to a predetermined thickness, thereby obtaining a negative electrode plate. It is done. The thickness of the negative electrode current collector is not particularly limited, but is preferably 5 to 25 111. For the application of the negative electrode mixture slurry to the current collector, for example, a general application device such as a die coater can be used. The drying temperature is appropriately selected mainly depending on the type of solvent.
[0092] また、集電体表面に薄膜状活物質層を形成するには、真空プロセスを好適に利用 でき、それらの中でも、蒸着法、スパッタリング法、化学的気相成長法 (CVD法)など が好ましい。たとえば、集電体表面への活物質の蒸着は、たとえば、一般的な蒸着装 置を用いて行われる。真空蒸着プロセスによれば、活物質層を集電体の所定の部位 に選択的に形成できる。蒸着装置としては特に限定されないが、電子ビーム加熱手 段を備え、電子ビーム加熱手段により活物質を加熱して蒸気化し、この蒸気を集電 体表面に付着させる方式の真空蒸着装置が好ましい。このような真空蒸着装置は、 たとえば、(株)アルバックから市販されている。蒸着を行う場合には、主に、活物質の みが蒸着される。 [0092] In order to form a thin film active material layer on the surface of the current collector, a vacuum process can be suitably used. Among them, a vapor deposition method, a sputtering method, a chemical vapor deposition method (CVD method), etc. Is preferred. For example, the active material is vapor-deposited on the surface of the current collector, for example, using a general vapor deposition apparatus. According to the vacuum deposition process, the active material layer can be selectively formed at a predetermined portion of the current collector. The vapor deposition apparatus is not particularly limited, but a vacuum vapor deposition apparatus that includes an electron beam heating means, heats the active material by the electron beam heating means to vaporize, and adheres the vapor to the collector surface is preferable. Such a vacuum deposition apparatus is commercially available from ULVAC, Inc., for example. In the case of vapor deposition, mainly only the active material is deposited.
[0093] 蒸着を行う場合、活物質としては負極活物質が好まし V、。負極活物質としては、たと えば、 Si、 Sn、 Ge、 Al、これらの 1種以上を含有する合金、 SiOx、 SnOxなどの酸化 物、 SiSx、 SnSなどの硫化物などを使用できる。負極活物質層は、負極集電体表面 、好ましくは負極集電体の凸部先端表面に柱状に形成するのがよい。負極活物質層 は、非晶質または低結晶性の負極活物質を含有するのが好ましい。  [0093] In the case of performing vapor deposition, the active material is preferably a negative electrode active material. Examples of the negative electrode active material include Si, Sn, Ge, Al, alloys containing one or more of these, oxides such as SiOx and SnOx, and sulfides such as SiSx and SnS. The negative electrode active material layer is preferably formed in a columnar shape on the surface of the negative electrode current collector, preferably on the front surface of the convex portion of the negative electrode current collector. The negative electrode active material layer preferably contains an amorphous or low crystalline negative electrode active material.
[0094] 集電体表面、好ましくは凸部表面、さらに好ましくは凸部先端表面に形成する活物 質層の厚みは、活物質の種類、活物質層の形成方法、最終的に得られる非水電解 質二次電池に要求される特性、該電池の用途などの各種条件に応じて適宜選択で きる力 好ましくは5〜30 111、さらに好ましくは 10〜25 111である。  [0094] The thickness of the active material layer formed on the current collector surface, preferably the convex surface, and more preferably the convex tip surface, is determined depending on the type of the active material, the method for forming the active material layer, and the final thickness obtained. The force that can be appropriately selected according to various conditions such as the characteristics required for the water electrolyte secondary battery and the use of the battery is preferably 5 to 30 111, more preferably 10 to 25 111.
[0095] [非水電解質二次電池]  [0095] [Nonaqueous electrolyte secondary battery]
本発明の非水電解質二次電池は、本発明の電極、その対極およびリチウムイオン 伝導性の非水電解質を含む。すなわち本発明の非水電解質二次電池は、非水電解 質リチウム二次電池である。本発明の非水電解質二次電池が、本発明の電極を負極 として含む場合、正極の構造は特に制限されない。また、本発明の非水電解質二次 電池が、本発明の電極を正極として含む場合、負極の構造は特に制限されない。な お、本発明の電極は、好ましくは負極として用いられる。 [0096] 図 12は、本発明の実施形態の一つである非水電解質二次電池 40の構成を模式 的に示す部分分解斜視図である。非水電解質二次電池 40は、電極群 41、正極リー ド 42、図示しない負極リード、絶縁板 44、封口板 45、ガスケット 46および電池ケース 47を含む。 The nonaqueous electrolyte secondary battery of the present invention includes the electrode of the present invention, its counter electrode, and a lithium ion conductive nonaqueous electrolyte. That is, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte lithium secondary battery. When the nonaqueous electrolyte secondary battery of the present invention includes the electrode of the present invention as a negative electrode, the structure of the positive electrode is not particularly limited. In addition, when the nonaqueous electrolyte secondary battery of the present invention includes the electrode of the present invention as a positive electrode, the structure of the negative electrode is not particularly limited. The electrode of the present invention is preferably used as a negative electrode. FIG. 12 is a partially exploded perspective view schematically showing a configuration of a nonaqueous electrolyte secondary battery 40 that is one embodiment of the present invention. The nonaqueous electrolyte secondary battery 40 includes an electrode group 41, a positive electrode lead 42, a negative electrode lead (not shown), an insulating plate 44, a sealing plate 45, a gasket 46, and a battery case 47.
電極群 41は、正極 50、負極 51およびセパレータ 52を含み、正極 50、セパレータ 5 2、負極 51およびセパレータ 52をこの順番で重ね合わせて捲回し、渦巻状に形成し たものである。電極群 41は、図示しない電解質を含んでいる。  The electrode group 41 includes a positive electrode 50, a negative electrode 51, and a separator 52. The positive electrode 50, the separator 52, the negative electrode 51, and the separator 52 are overlapped in this order and wound to form a spiral shape. The electrode group 41 includes an electrolyte (not shown).
[0097] 正極 50は本発明の電極である力、、または負極 51が本発明の電極である場合は、 図示しない正極集電体と正極活物質層とを含む。 The positive electrode 50 includes a force that is an electrode of the present invention, or, when the negative electrode 51 is an electrode of the present invention, a positive electrode current collector and a positive electrode active material layer (not shown).
正極集電体としてはこの分野で常用されるものを使用でき、たとえば、アルミニウム 、アルミニウム合金、ステンレス鋼、チタンなどからなる箔、不織布などが挙げられる。 正極集電体の厚みは特に制限されないが、好ましくは 5 m〜 30 mである。  As the positive electrode current collector, those commonly used in this field can be used, and examples thereof include foils made of aluminum, aluminum alloys, stainless steel, titanium, and nonwoven fabrics. The thickness of the positive electrode current collector is not particularly limited, but is preferably 5 m to 30 m.
正極活物質層は、正極集電体の厚み方向の一方の面または両方の面に形成され 、正極活物質を含有し、必要に応じて導電材および結着材を含む。正極活物質とし ては、上記に例示したリチウム含有遷移金属酸化物、 MnOなどのリチウムを含有し  The positive electrode active material layer is formed on one surface or both surfaces in the thickness direction of the positive electrode current collector, contains the positive electrode active material, and includes a conductive material and a binder as necessary. Examples of the positive electrode active material include lithium such as lithium-containing transition metal oxides exemplified above and MnO.
2  2
ない金属酸化物などを使用できる。  No metal oxides can be used.
[0098] 導電材としてはこの分野で常用されるものを使用でき、たとえば、たとえば、天然黒 鉛、人造黒鉛のグラフアイト類、アセチレンブラック、ケッチェンブラック、チャンネルブ ラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック 類、炭素繊維、金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの 金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウイスカ一類、酸化チタンな どの導電性金属酸化物、フエ二レン誘導体などの有機導電性材料などが挙げられる[0098] As the conductive material, those commonly used in this field can be used. For example, natural black lead, artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, Carbon blacks such as thermal black, conductive fibers such as carbon fibers and metal fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, and conductivity such as titanium oxide Examples include organic conductive materials such as metal oxides and phenylene derivatives.
Yes
[0099] 結着材としては、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルォロェチレ ン、ポリエチレン、ポリプロピレン、ァラミド、樹脂、ポリアミド、、ポリイミド、、ポリアミド、イミド、、 ポリアクリル二トリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸ェ チルエステル、ポリアクリル酸へキシルエステル、ポリメタクリル酸、ポリメタクリル酸メ チルエステル、ポリメタクリル酸ェチルエステル、ポリメタクリル酸へキシルエステル、 ポリ酢酸ビュル、ポリビュルピロリドン、ポリエーテル、ポリエーテルサルフォン、へキ サフルォロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、ァ タリレート単位を含有するゴム粒子結着材などが挙げられる。また、テトラフルォロェ チレン、へキサフノレオ口エチレン、へキサフノレオ口プロピレン、ノ ーフノレオロアノレキノレ ビニノレエーテノレ、フッ化ビニリデン、クロロトリフノレオ口エチレン、エチレン、プロピレン 、ペンタフルォロプロピレン、フルォロメチルビュルエーテル、アクリル酸、へキサジェ ン、反応性官能基を含有するアタリレートモノマー、反応性官能基を含有するアタリレ ートオリゴマーなどから選ばれる 2種以上のモノマー化合物からなる共重合体を結着 材として用いてもよい。 [0099] Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyethylene, polypropylene, aramid, resin, polyamide, polyimide, polyamide, imide, polyacrylonitrile, Polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, Examples thereof include poly (vinyl acetate), poly (pyrrolidone), polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber, carboxymethyl cellulose, and rubber particle binders containing phthalate units. Tetrafluoroethylene, hexafluoroethylene, hexafnoreopropylene, naphtholeoloanorequinole vininoreethenole, vinylidene fluoride, chlorotrifnoreo ethylene, ethylene, propylene, pentafluoropropylene, fluorene A copolymer composed of two or more monomer compounds selected from chloromethyl ether, acrylic acid, hexagen, an acrylate monomer containing a reactive functional group, an acrylate oligomer containing a reactive functional group, and the like is bonded. It may be used as a dressing.
[0100] 正極 50は、たとえば、次のようにして製造される。まず、正極活物質および必要に 応じて導電材、結着材などを分散媒に混合および分散させて正極合剤スラリーを調 製する。分散媒には、たとえば、 N メチル 2—ピロリドンなどのこの分野で常用さ れる分散媒を使用できる。正極活物質などの分散媒 の混合および分散には、たと えば、プラネタリーミキサーなどの一般的な分散機を使用できる。こうして得られる正 極合剤スラリーを正極集電体の片面または両面に塗布し、乾燥し、所定の厚さに圧 延することにより、正極活物質層が形成され、正極 50が得られる。  [0100] The positive electrode 50 is manufactured, for example, as follows. First, a positive electrode mixture slurry is prepared by mixing and dispersing a positive electrode active material and, if necessary, a conductive material and a binder in a dispersion medium. As the dispersion medium, for example, a dispersion medium commonly used in this field such as N-methyl 2-pyrrolidone can be used. For example, a general disperser such as a planetary mixer can be used to mix and disperse the dispersion medium such as the positive electrode active material. The positive electrode mixture slurry thus obtained is applied to one or both surfaces of the positive electrode current collector, dried, and rolled to a predetermined thickness, whereby a positive electrode active material layer is formed and the positive electrode 50 is obtained.
[0101] 負極 51は本発明の電極である力、、または正極 50が本発明の電極である場合は、 図示しない負極集電体と負極活物質層とを含む。  [0101] The negative electrode 51 includes a force that is an electrode of the present invention, or a negative electrode current collector and a negative electrode active material layer (not shown) when the positive electrode 50 is an electrode of the present invention.
負極集電体としてはこの分野で常用されるものを使用でき、たとえば、銅、ニッケノレ 、鉄、これらの少なくとも 1つを含有する合金などからなる金属箔、金属フィルムなどが 挙げられる。これらの中でも、銅または銅合金からなる金属箔、金属フィルムなどが好 ましい。銅合金としては、本明細書で先に例示したように銅合金を使用できる。銅お よび銅合金の金属箔を例に採ると、たとえば、電解銅箔、電解銅合金箔、圧延銅箔、 銅合金箔、圧延銅合金箔、これらに粗面化処理を施した箔などが挙げられる。粗面 化処理を施す箔としては、電解銅箔、圧延銅箔、銅合金箔などが好ましい。  As the negative electrode current collector, those commonly used in this field can be used, and examples thereof include metal foil and metal film made of copper, nickel oleore, iron, an alloy containing at least one of these, and the like. Of these, metal foils and metal films made of copper or copper alloys are preferred. As the copper alloy, a copper alloy can be used as exemplified earlier in this specification. Taking copper and copper alloy metal foils as examples, for example, electrolytic copper foil, electrolytic copper alloy foil, rolled copper foil, copper alloy foil, rolled copper alloy foil, and foils that have been subjected to surface roughening treatment. Can be mentioned. As the foil subjected to the roughening treatment, electrolytic copper foil, rolled copper foil, copper alloy foil and the like are preferable.
[0102] 負極集電体の厚みは特に制限されないが、好ましくは 5 m〜; 100 m、さらに好 ましくは 8〜35 mである。負極集電体の厚みが 5 m未満では、負極集電体の機 械的強度が不十分になる場合があり、電極製造時における取り扱い性が低下する。 また、電池充電時における電極の破断などが起こり易くなる。一方、負極集電体の厚 みが lOO ^ mを超えると、機械的強度は確保される力 電極全体に占める負極集電 体の体積が大きくなり、電池の高容量化を十分に達成できない場合がある。 [0102] The thickness of the negative electrode current collector is not particularly limited, but is preferably 5 m to 100 m, and more preferably 8 to 35 m. If the thickness of the negative electrode current collector is less than 5 m, the mechanical strength of the negative electrode current collector may be insufficient, and the handleability during electrode production will be reduced. In addition, the electrode is easily broken when the battery is charged. On the other hand, if the thickness of the negative electrode current collector exceeds lOO ^ m, the mechanical strength is ensured. The volume of the negative electrode current collector occupies the entire electrode, and the battery capacity cannot be sufficiently increased. There is.
[0103] 負極活物質層は、負極集電体の厚み方向の一方の面または両方の面に形成され 、負極活物質を含有し、必要に応じて導電材、結着材、増粘剤などを含む。負極活 物質としては、たとえば、各種天然黒鉛、人造黒鉛などの黒鉛材料、シリサイドなどの シリコン系複合材料、合金系負極活物質などを使用できる。導電材としては、正極活 物質層に添加されるのと同様のものを使用できる。結着材としても、正極活物質層に 添加されるのと同様のものを使用できる。さらに、リチウムイオン受入れ性向上の観点 から、スチレン ブタジエン共重合体ゴム粒子(SBR)およびその変性体などを結着 材として使用できる。  [0103] The negative electrode active material layer is formed on one surface or both surfaces in the thickness direction of the negative electrode current collector, contains the negative electrode active material, and includes a conductive material, a binder, a thickener, and the like as necessary. including. As the negative electrode active material, for example, graphite materials such as various natural graphites and artificial graphite, silicon-based composite materials such as silicide, alloy-based negative electrode active materials, and the like can be used. As the conductive material, the same material as that added to the positive electrode active material layer can be used. As the binder, the same material as that added to the positive electrode active material layer can be used. Furthermore, from the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof can be used as a binder.
[0104] 増粘剤としては、この分野で常用されるものを使用できる。その中でも、水溶性を有 しかつ水溶液の形態で粘性を有するものが好ましぐたとえば、カルボキシメチルセ ルロース(CMC)などのセルロース系樹脂およびその変性体、ポリエチレンォキシド( PEO)、ポリビュルアルコール(PVA)などが挙げられる。これらの中でも、後記する 負極合剤スラリーの分散性、増粘性などの観点から、セルロース系樹脂およびその 変性体が特に好ましい。  [0104] As the thickener, those commonly used in this field can be used. Among them, those having water solubility and viscosity in the form of an aqueous solution are preferred. For example, cellulose resins such as carboxymethyl cellulose (CMC) and modified products thereof, polyethylene oxide (PEO), polybulu alcohol (PVA). Among these, a cellulose resin and a modified product thereof are particularly preferable from the viewpoints of dispersibility of the negative electrode mixture slurry and viscosity increase described later.
負極 51は、負極活物質および必要に応じて導電材、結着材、増粘剤などを分散媒 に混合および分散させて負極合剤スラリーを調製する以外は、正極 50と同様にして 製造できる。  The negative electrode 51 can be produced in the same manner as the positive electrode 50 except that a negative electrode active material and, if necessary, a conductive material, a binder, a thickener, etc. are mixed and dispersed in a dispersion medium to prepare a negative electrode mixture slurry. .
[0105] セパレータ 52としては、非水電解質二次電池の分野で常用されるものを使用でき、 たとえば、ポリエチレン、ポリプロピレンなどのポリオレフインの微多孔フィルムを、単一 またはあるいは複合して用いるのが一般的でありまた態様として好まし!/、。さらに具体 的には、セパレータ 52としては、合成樹脂からなる多孔質膜が挙げられる。合成樹脂 としては、たとえば、ポリエチレン、ポリプロピレンなどのポリオレフイン、ァラミド樹脂、 ポリアミドイミド、ポリフエ二レンサルファイド、ポリイミドなどが挙げられる。多孔質膜に は、たとえば、微多孔膜、不織布などがある。  [0105] As the separator 52, those commonly used in the field of non-aqueous electrolyte secondary batteries can be used. For example, a microporous film of polyolefin such as polyethylene or polypropylene is generally used singly or in combination. And also preferred as an aspect! More specifically, the separator 52 includes a porous film made of a synthetic resin. Examples of the synthetic resin include polyolefins such as polyethylene and polypropylene, aramid resins, polyamideimides, polyphenylene sulfide, polyimides, and the like. Examples of the porous membrane include a microporous membrane and a nonwoven fabric.
[0106] また、セパレータ 52は、その内部または表面に、ァノレミナ、マグネシア、シリカ、チタ ユアなどの耐熱性フィラーを含んでもよい。また、セパレータ 52の厚み方向の両面ま たは片面に耐熱層を設けてもよい。耐熱層は、たとえば、前記耐熱性フィラーと結着 材とを含んでいる。結着材は、正極活物質層に用いられるのと同じものを使用できる 。また、セパレータ 17の厚みは特に限定されないが、好ましくは 10 m〜30 m、さ らに好ましくは 10〜25 μ mである。 [0106] In addition, the separator 52 has an anolemina, magnesia, silica, tita or the like inside or on the surface. You may include heat resistant fillers, such as your. Further, a heat-resistant layer may be provided on both sides or one side of the separator 52 in the thickness direction. The heat-resistant layer includes, for example, the heat-resistant filler and a binder. The same binder as that used for the positive electrode active material layer can be used. The thickness of the separator 17 is not particularly limited, but is preferably 10 m to 30 m, more preferably 10 to 25 μm.
[0107] 非水電解質としては、溶質を有機溶媒に溶解した電解質溶液、溶質および有機溶 媒を含み、高分子化合物で非流動化されたポリマー電解質または固体電解質などを 使用できる。電解質溶液を用いる場合には、セパレータ 17に電解質溶液を含浸させ るのが好ましい。なお、非水電解質は、溶質、有機溶媒および高分子化合物以外に 、添加剤を含んでいてもよい。  [0107] As the nonaqueous electrolyte, an electrolyte solution in which a solute is dissolved in an organic solvent, a polymer electrolyte containing a solute and an organic solvent, and non-fluidized with a polymer compound, a solid electrolyte, or the like can be used. When using an electrolyte solution, the separator 17 is preferably impregnated with the electrolyte solution. The non-aqueous electrolyte may contain additives in addition to the solute, the organic solvent, and the polymer compound.
[0108] 溶質は、活物質の酸化還元電位などに基づいて選択される。具体的に、溶質とし ては、リチウム電池の分野で常用される溶質を使用でき、たとえば、 LiPF 、 LiBF 、  [0108] The solute is selected based on the oxidation-reduction potential of the active material. Specifically, as solutes, solutes commonly used in the field of lithium batteries can be used, for example, LiPF, LiBF,
6 4 6 4
LiCIO 、 LiAlCl、 LiSbF、 LiSCN、 LiCF SO 、 LiN (CF CO )、 LiN (CF SO ) LiCIO, LiAlCl, LiSbF, LiSCN, LiCF SO, LiN (CF CO), LiN (CF SO)
4 4 6 3 3 3 2 3 2 4 4 6 3 3 3 2 3 2
、 LiAsF、 LiB CI 、低級脂肪族カルボン酸リチウム、 LiF、 LiCl、 LiBr、 Lil、クロ, LiAsF, LiB CI, lower aliphatic lithium carboxylate, LiF, LiCl, LiBr, Lil, black
2 6 10 10 2 6 10 10
ロボランリチウム、ビス(1 , 2—ベンゼンジォレート(2—)一〇,〇,)ホウ酸リチウム、ビ ス(2, 3 ナフタレンジォレート(2 )一O, 〇,)ホウ酸リチウム、ビス(2, 2,ービフエ 二ルジォレート(2—) -0,〇,)ホウ酸リチウム、ビス(5 フルオロー 2 ォレートー1 ベンゼンスルホン酸—O, Ο' )ホウ酸リチウムなどのホウ酸塩類、(CF SO ) NLi  Roborane lithium, bis (1,2-benzenediolate (2—) 10,0,) lithium borate, bis (2,3 naphthalenediolate (2) 1 O, ○,) lithium borate , Borate salts such as bis (2,2, bibididiolate (2—) -0, 〇,) lithium borate, bis (5 fluoro-2-olate-1 benzenesulfonic acid—O, Ο ′) lithium borate, ( CF SO) NLi
3 2 2 3 2 2
、 LiN (CF SO ) (C F SO )、 (C F SO ) NLi、テトラフェニルホウ酸リチウムなど , LiN (CF SO) (C F SO), (C F SO) NLi, lithium tetraphenylborate, etc.
3 2 4 9 2 2 5 2 2  3 2 4 9 2 2 5 2 2
が挙げられる。溶質は 1種を単独で使用できまたは必要に応じて 2種以上を併用でき  Is mentioned. Solutes can be used alone or in combination of two or more as required
[0109] 有機溶媒としては、リチウム電池の分野で常用される有機溶媒を使用でき、たとえ ば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビ 二レンカーボネート、ジメチノレカーボネート(DMC)、ジェチノレカーボネート、ェチノレ メチルカーボネート(EMC)、ジプロピルカーボネート、ギ酸メチル、酢酸メチル、プロ ピオン酸メチル、プロピオン酸ェチル、ジメトキシメタン、 γ ブチロラタトン、 Ί バレ 口ラタトン、 1 , 2—ジエトキシェタン、 1 , 2—ジメトキシェタン、エトキシメトキシェタン、 トリメトキシメタン、テトラヒドロフラン、 2—メチルテトラヒドロフランなどのテトラヒドロフラ ン誘導体、ジメチルスルホキシド、 1 , 3—ジォキソラン、 4ーメチルー 1 , 3—ジォキソ ランなどのジォキソラン誘導体、ホルムアミド、ァセトアミド、ジメチルホルムアミド、ァセ 卜こ二卜 Uノレ、プロピノレこニ卜!;ノレ、 こ二卜口メタン、ェチノレモノグライム、リン酸卜!;エステノレ、醉 酸エステル、プロピオン酸エステル、スルホラン、 3—メチルスルホラン、 1 , 3—ジメチ ルー 2 イミダゾリジノン、 3—メチルー 2 ォキサゾリジノン、プロピレンカーボネート 誘導体、ェチルエーテル、ジェチルエーテル、 1 , 3—プロパンサルトン、ァニソ一ノレ 、フルォロベンゼンなどが挙げられる。有機溶媒は 1種を単独で使用できまたは必要 に応じて 2種以上を併用できる。 [0109] As the organic solvent, organic solvents commonly used in the field of lithium batteries can be used. For example, ethylene carbonate (EC), propylene carbonate, butylene carbonate, vinylene carbonate, dimethylolene carbonate (DMC), Tinole carbonate, Ethenole methyl carbonate (EMC), Dipropyl carbonate, Methyl formate, Methyl acetate, Methyl propionate, Ethyl propionate, Dimethoxymethane, γ-Butyrolatatane, ΊVale latataton, 1, 2-diethoxyethane, 1, 2 —Tetrahydrofurans such as dimethoxyethane, ethoxymethoxyethane, trimethoxymethane, tetrahydrofuran and 2-methyltetrahydrofuran Derivatives, dimethyl sulfoxide, dioxolane derivatives such as 1,3-dioxolane, 4-methyl-1,3-dioxolane, formamide, acetoamide, dimethylformamide, acetonol, Unore, propinoreconi! ; Nole, methane methane, ethinolemonoglyme, phosphoric acid !; Estenole, oxalate, propionate, sulfolane, 3-methylsulfolane, 1,3-dimethylthiolane, imidazolidinone, 3— Examples include methyl-2-oxazolidinone, propylene carbonate derivatives, ethyl ether, jetyl ether, 1,3-propane sultone, aniso-norole, and fluorobenzene. One organic solvent can be used alone, or two or more organic solvents can be used in combination as required.
[0110] 添加剤としては、たとえば、ビニレンカーボネート、シクロへキシルベンゼン、ビフエ 二ノレ、ジフエニノレエーテノレ、ビニノレエチレンカーボネート、ジビニノレエチレンカーボネ ート、フエニルエチレンカーボネート、ジァリルカーボネート、フルォロエチレンカーボ ネート、カテコールカーボネート、酢酸ビュル、エチレンサルファイト、プロパンサルト ン、トリフルォロプロピレンカーボネート、ジベンゾフラン、 2, 4 ジフルォロア二ソー ル、 o ターフェニル、 m ターフェニルなどの添加剤を含んでいてもよい。添加剤は 1種を単独で使用できまたは必要に応じて 2種以上を併用できる。  [0110] Examples of the additive include vinylene carbonate, cyclohexylbenzene, biphenylenole, diphenenoleatenore, vinylenoleethylene carbonate, divininoleethylene carbonate, phenylethylene carbonate, diaryl carbonate. , Fluoroethylene carbonate, catechol carbonate, butyl acetate, ethylene sulfite, propane sulfate, trifluoropropylene carbonate, dibenzofuran, 2,4 difluoroadiazole, o terphenyl, m terphenyl, etc. May be included. One additive can be used alone, or two or more additives can be used in combination as required.
[0111] なお、非水電解質は、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスフ ァゼン、ポリアジリジン、ポリエチレンスルフイド、ポリビュルアルコール、ポリフッ化ビニ リデン、ポリへキサフルォロプロピレンなどの高分子材料の 1種または 2種以上の混合 物などに上記溶質を混合して、固体電解質として用いてもよい。また、上記有機溶媒 と混合してゲル状で用いてもよい。さらに、リチウム窒化物、リチウムハロゲン化物、リ チウム酸素酸塩、 Li SiO Li L  [0111] The non-aqueous electrolyte is a polymer material such as polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polybutyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene. The above solute may be mixed with a seed or a mixture of two or more kinds and used as a solid electrolyte. Moreover, you may mix with the said organic solvent and use it in a gel form. In addition, lithium nitride, lithium halide, lithium oxyacid salt, Li SiO Li L
4 4、 SiO Lil LiOH  4 4, SiO Lil LiOH
4 4 、 Li PO Li SiO  4 4, Li PO Li SiO
3 4 4 4、 Li SiS  3 4 4 4, Li SiS
2 3、 i PO Li S— SiS、硫化リン化合物などの無機材料を固体電解質として用いても 2 3, i PO Li S—SiS, phosphorus sulfide compounds and other inorganic materials can be used as solid electrolytes
3 4 2 2 3 4 2 2
よい。固体電解質またはゲル状電解質を用いる場合、これらセパレータ 17の代わり に正極 50と負極 51との間に配置してもよい。または、ゲル状電解質を、セパレータ 5 2に隣接するように配置してもよい。  Good. When a solid electrolyte or a gel electrolyte is used, the separator 17 may be disposed between the positive electrode 50 and the negative electrode 51. Alternatively, the gel electrolyte may be disposed adjacent to the separator 52.
[0112] 正極リード 42、負極リード、絶縁板 44、封口板 45、ガスケット 46および電池ケース [0112] Positive electrode lead 42, negative electrode lead, insulating plate 44, sealing plate 45, gasket 46, and battery case
47については、非水電解質二次電池の分野で常用されるものをいずれも使用できる 。なお、封口板 45の中央部には、正極端子 53が設けられている。 本発明の非水電解質二次電池 40は、たとえば、次のようにして製造される。正極リ ード 42および負極リードは、それぞれ、その一端が正極 50の正極集電体および負 極 51の負極集電体に電気的に接続される。電極群 41は、絶縁板 44とともに、有底 円筒形の電池ケース 47の内部に収容される。電極群 41の下部より導出した負極リー ドの他端を電池ケース 47の底部に接続し、次いで電極群 41の上部より導出した正 極リード 42を封口板 45に接続し、電池ケース 47に所定量の図示しない非水電解質 を注液する。次いで、電池ケース 47の開口部に、周縁にガスケット 46を取り付けた封 口板 45を揷入し、電池ケース 47の開口部を内方向に折り曲げてかしめ封口すること により、非水電解質二次電池 40が得られる。 As for 47, any of those commonly used in the field of non-aqueous electrolyte secondary batteries can be used. A positive terminal 53 is provided at the center of the sealing plate 45. The nonaqueous electrolyte secondary battery 40 of the present invention is manufactured, for example, as follows. One end of each of the positive electrode lead 42 and the negative electrode lead is electrically connected to the positive electrode current collector of the positive electrode 50 and the negative electrode current collector of the negative electrode 51, respectively. The electrode group 41 is housed inside the bottomed cylindrical battery case 47 together with the insulating plate 44. Connect the other end of the negative electrode lead led out from the bottom of the electrode group 41 to the bottom of the battery case 47, then connect the positive electrode lead 42 led out from the top of the electrode group 41 to the sealing plate 45 and place it in the battery case 47. A nonaqueous electrolyte (not shown) is injected. Next, a sealing plate 45 with a gasket 46 attached to the periphery is inserted into the opening of the battery case 47, and the opening of the battery case 47 is folded inward and crimped to seal the nonaqueous electrolyte secondary battery. 40 is obtained.
[0113] 図 13は、本発明の実施形態の一つである積層形電池 55の構成を模式的に示す 断面図である。積層形電池 55は、正極 56、負極 57、セパレータ 58、電池ケース 59 、正極リード 60、負極 y—ド 61および封止樹脂 62を含む。正極 56は、正極集電体 5 6aおよび正極集電体 56aの厚み方向の一方の表面に形成される正極活物質層 56b を含む。負極 57は、負極集電体 57aおよび負極集電体 57aの厚み方向の一方の表 面に形成される負極活物質層 57bを含む。正極 56および負極 57は、セパレータ 58 を介して対向するように設けられる。すなわち、積層形電池 55では、正極 56、セパレ ータ 58および負極 57をこの順番で重ね合わせて積層し、平板状の電極群を形成し ている。正極 56、負極 57およびセパレータ 58は、それぞれ、非水電解質二次電池 4 0における正極 50、負極 51およびセパレータ 52と同様の構成を有している。  [0113] Fig. 13 is a cross-sectional view schematically showing a configuration of a stacked battery 55 which is one embodiment of the present invention. The laminated battery 55 includes a positive electrode 56, a negative electrode 57, a separator 58, a battery case 59, a positive electrode lead 60, a negative electrode y-node 61, and a sealing resin 62. The positive electrode 56 includes a positive electrode current collector 56a and a positive electrode active material layer 56b formed on one surface in the thickness direction of the positive electrode current collector 56a. The negative electrode 57 includes a negative electrode current collector 57a and a negative electrode active material layer 57b formed on one surface in the thickness direction of the negative electrode current collector 57a. The positive electrode 56 and the negative electrode 57 are provided to face each other with the separator 58 interposed therebetween. That is, in the laminated battery 55, the positive electrode 56, the separator 58, and the negative electrode 57 are stacked in this order and stacked to form a flat electrode group. The positive electrode 56, the negative electrode 57, and the separator 58 have the same configurations as the positive electrode 50, the negative electrode 51, and the separator 52 in the nonaqueous electrolyte secondary battery 40, respectively.
[0114] 電池ケース 59は、 2つの開口を有する容器状部材であり、その内部空間に電極群 を収容している。電池ケース 59の 2つの開口は、それぞれ、封止樹脂 62を介して封 口されている。正極リード 60は、一端が正極集電体 66aに電気的に接続され、他端 が電池ケース 59の一方の開口力も電池 55の外部に導出されている。負極リード 61 は、一端が負極集電体 57aに電気的に接続され、他端が電池ケース 59の他方の開 ロカも電池 55の外部に導出されている。また、積層形電池 55においても、非水電解 質二次電池 40におけるのと同様の非水電解質を使用できる。  [0114] The battery case 59 is a container-like member having two openings, and accommodates an electrode group in its internal space. The two openings of the battery case 59 are each sealed with a sealing resin 62. One end of the positive electrode lead 60 is electrically connected to the positive electrode current collector 66 a and the other end of the positive electrode lead 60 is led out of the battery 55 by one opening force of the battery case 59. One end of the negative electrode lead 61 is electrically connected to the negative electrode current collector 57 a, and the other open end of the battery case 59 is also led out of the battery 55. Also, in the laminated battery 55, the same non-aqueous electrolyte as in the non-aqueous electrolyte secondary battery 40 can be used.
このように本発明の非水電解質二次電池は、たとえば、渦巻状に巻回した電極群を 有する角型電池、渦巻状に巻回した電極群を有する円筒形電池、積層形の電極群 を有する積層形電池など、種々の形態を採ることができる。 As described above, the nonaqueous electrolyte secondary battery of the present invention includes, for example, a prismatic battery having a spirally wound electrode group, a cylindrical battery having a spirally wound electrode group, and a stacked electrode group. Various forms, such as a stacked battery having the above, can be adopted.
本発明に係る非水系二次電池用の集電体および電極板の製造方法によると、電 極板を作製するための集電体の強度を確保すると共に、集電体上に形成した凸部の 上に電極活物質を効率良く担持することができ、信頼性の高い非水系二次電池が得 られるため、電子機器および通信機器の多機能化に伴って、高容量化が望まれてい る携帯用電子機器類の電源などとして有用である。 実施例  According to the method for manufacturing a current collector and an electrode plate for a non-aqueous secondary battery according to the present invention, the strength of the current collector for producing the electrode plate is ensured, and the convex portions formed on the current collector Since an electrode active material can be efficiently carried on the substrate and a highly reliable non-aqueous secondary battery can be obtained, a higher capacity is desired as electronic devices and communication devices become more multifunctional. It is useful as a power source for portable electronic devices. Example
以下に実施例および比較例を挙げ、本発明を具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(実施例 1)  (Example 1)
[0116] (負極用集電体の作製) [0116] (Preparation of current collector for negative electrode)
図 3に示す集電体製造装置 35を用い、次のようにして、本発明の負極用集電体 1 を作製した。ローラ 4は径 50mmの超硬合金製ローラであり、その周面には図 5 (a)に 示す配列パターンで凹部 4aを形成した。凹部 4aの開口径は 10 m、深さは 8 ^ 111で あった。凹部 4aをレーザ加工により形成すると、凹部 4aの開口の縁に隆起部分が出 来るが、これは研磨加工により除去した。ローラ 5は周面が平坦な、径 50mmの鉄製 ローラであった。ローラ 4とローラ 5との圧接二ップ部 6における圧接圧は線圧で 10kN であった。  Using the current collector manufacturing apparatus 35 shown in FIG. 3, the negative electrode current collector 1 of the present invention was produced as follows. The roller 4 is a cemented carbide roller having a diameter of 50 mm, and concave portions 4a are formed on the peripheral surface thereof with the arrangement pattern shown in FIG. The opening diameter of the recess 4a was 10 m, and the depth was 8 ^ 111. When the recess 4a was formed by laser processing, a raised portion appeared at the edge of the opening of the recess 4a, but this was removed by polishing. Roller 5 was a 50 mm diameter iron roller with a flat peripheral surface. The pressure of contact between the roller 4 and the roller 5 at the pressure dip portion 6 was 10 kN in terms of linear pressure.
[0117] 厚さ 力 S 18 πιである集電体用銅箔を、金属箔供給ローラ 36に捲回し、図 3に示  [0117] A copper foil for a current collector having a thickness of force S 18 πι was wound around a metal foil supply roller 36 and shown in FIG.
0  0
す集電体製造装置 35に装着した。この集電体用銅箔を加工手段 7の圧接エップ部 6 に供給し、銅箔に部分的な非圧縮加工を施し、基材部 2と凸部 3とからなる図 1 (c)に 示す集電体 1を作製し、巻取りローラ 38に巻き取った。 t ttl Z ^ m, tは 21 mであ  It was attached to the current collector manufacturing apparatus 35. This copper foil for current collector is supplied to the pressure-welded ep portion 6 of the processing means 7, and the copper foil is subjected to partial non-compression processing, as shown in FIG. A current collector 1 was produced and wound around a winding roller 38. t ttl Z ^ m, t is 21 m
1 2  1 2
つた。すなわち、 t >t >tである。  I got it. That is, t> t> t.
2 0 1  2 0 1
なお、集電体 1において、ローラ 4周面の凹部 4aに対向した面は、他の部分の圧縮 加工に伴って塑性変形が起こり、凸部 3が形成されていた。一方、周面が平坦なロー ラ 5に対向した面は、凸部は形成されず、平坦な面になった。  In the current collector 1, the surface of the circumferential surface of the roller 4 facing the recess 4 a was plastically deformed along with the compression processing of other portions, and the protrusion 3 was formed. On the other hand, the convex surface was not formed on the surface facing the roller 5 having a flat peripheral surface, and the surface was a flat surface.
ここで得られた集電体 1の厚み方向の断面を、走査型電子顕微鏡で観察した。図 1 8は、集電体 1の断面の電子顕微鏡写真である。図 18から、集電体 1には、波打ち、 反り、しわなどの不具合が発生して!/、な!/、ことが明らかである。 A cross section in the thickness direction of the current collector 1 obtained here was observed with a scanning electron microscope. FIG. 18 is an electron micrograph of a cross section of the current collector 1. From Fig. 18, current collector 1 It is clear that problems such as warping and wrinkles occur!
[0118] (負極の作製) [0118] (Production of negative electrode)
電子ビーム加熱手段を備える真空蒸着装置の内部に、上記で得られた集電体 1を 装着した。ターゲットとして純度 99. 9999%の珪素を用い、純度 99. 7%の酸素を導 入しながら蒸着を行い、集電体 1の凸部 3の表面に膜厚 20 mの SiO 層を形成し  The current collector 1 obtained above was mounted inside a vacuum deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target and performing deposition while introducing oxygen with a purity of 99.7%, a SiO layer with a thickness of 20 m was formed on the surface of the convex part 3 of the current collector 1.
0. 5 た。このものを所定の幅にスリツタ加工して負極板を作製した。  0.5. This was slit to a predetermined width to prepare a negative electrode plate.
[0119] (実施例 2) [0119] (Example 2)
ローラ 4の周面に凹部 4aを形成する際に生じる隆起部分を研磨加工により除去す ることなくそのまま使用する以外は、実施例 1と同様にして、負極用集電体 1を作製し た。 tは 17 m、 tは 21 n mであった。すなわち、 t >t >tである。得られた負極集 A negative electrode current collector 1 was produced in the same manner as in Example 1, except that the raised portion generated when the concave portion 4a was formed on the peripheral surface of the roller 4 was used without being removed by polishing. t was 17 m and t was 21 nm. That is, t> t> t. Obtained negative electrode collection
1 2 2 0 1 1 2 2 0 1
電体 1の断面を、実施例 1と同様にして顕微鏡観察したところ、波打ち、反り、しわな どの不具合の発生は認められな力 た。この負極用集電体 1の凸部 3表面に、実施 例 1と同様にして、膜厚 20 μ mの SiO 層を形成した。このものを所定の幅にスリツタ  When the cross section of the electric body 1 was observed with a microscope in the same manner as in Example 1, no occurrence of defects such as waving, warping, and wrinkles was observed. An SiO layer having a thickness of 20 μm was formed on the surface of the convex portion 3 of the current collector for negative electrode 1 in the same manner as in Example 1. Slitter this to a predetermined width
0. 5  0.5
加工して負極板を作製した。  The negative electrode plate was produced by processing.
[0120] 実施例 1および 2で得られた負極集電体 1は、銅箔の一方の表面に本発明の圧縮 加工を施すことにより、凸部 3が形成されていた。このような負極用集電体 1は、凸部 3の表面に負極活物質を効率良く蒸着させることができた。しかも、負極用集電体 1 の長手方向に加わる引張応力に対して十分な耐久性を有していた。このため、負極 用集電体 1上に負極活物質を蒸着する際、負極活物質の蒸着後に所定の幅にスリツ トする際などに、負極用集電体 1に局部的な変形、橈みなどが生じるのが防止される 。それとともに、負極活物質層の脱落を抑止することができた。  [0120] In the negative electrode current collector 1 obtained in Examples 1 and 2, the convex portion 3 was formed by subjecting one surface of the copper foil to the compression processing of the present invention. Such a negative electrode current collector 1 was able to efficiently deposit a negative electrode active material on the surface of the protrusion 3. In addition, it had sufficient durability against the tensile stress applied in the longitudinal direction of the negative electrode current collector 1. Therefore, when the negative electrode active material is vapor-deposited on the negative electrode current collector 1, or when slitting to a predetermined width after the negative electrode active material is vapor-deposited, local deformation and stagnation are applied to the negative electrode current collector 1. Is prevented from occurring. At the same time, the negative electrode active material layer could be prevented from falling off.
[0121] (実施例 3)  [0121] (Example 3)
集電体製造装置 35において、ローラ 5をローラ 4に変更する以外は、実施例 1と同 様にして、基材部 16の厚み方向の両面に凸部 17x、 17yが形成された図 6 (c)に示 す負極用集電体 15を作製した。 tは 16 ^ 111、 tは 25 mであった。すなわち、 t >t  In the current collector manufacturing apparatus 35, except that the roller 5 is changed to the roller 4, as in Example 1, the convex portions 17x and 17y are formed on both surfaces in the thickness direction of the base material portion 16 as shown in FIG. A negative electrode current collector 15 shown in c) was produced. t was 16 ^ 111 and t was 25 m. That is, t> t
3 4 4 3 4 4
>tである。得られた負極集電体 15の断面を、実施例 1と同様にして顕微鏡観察し> t. The cross section of the obtained negative electrode current collector 15 was observed with a microscope in the same manner as in Example 1.
0 3 0 3
たところ、波打ち、反り、しわなどの不具合の発生は認められな力 た。この負極用集 電体 15の凸部 17x、 17y表面に、実施例 1と同様にして、膜厚 20 111の SiO 層を 形成した。このものを所定の幅にスリツタ加工して負極板を作製した。 As a result, the occurrence of defects such as waviness, warpage and wrinkles was not recognized. On the surface of the convex portions 17x and 17y of the negative electrode current collector 15, a SiO layer with a film thickness of 20 111 was formed in the same manner as in Example 1. Formed. This was slit to a predetermined width to prepare a negative electrode plate.
[0122] (実施例 4) [0122] (Example 4)
集電体製造装置 35において、ローラ 5をローラ 4に変更する以外は、実施例 2と同 様にして、基材部 16の厚み方向の両面に凸部 17x、 17yが形成された図 6 (c)に示 す負極用集電体 15を作製した。 tは 16 ^ 111、 tは 25 mであった。すなわち、 t >t  In the current collector manufacturing apparatus 35, except that the roller 5 is changed to the roller 4, as in Example 2, the convex portions 17x and 17y are formed on both surfaces in the thickness direction of the base material portion 16 as shown in FIG. A negative electrode current collector 15 shown in c) was produced. t was 16 ^ 111 and t was 25 m. That is, t> t
3 4 4 3 4 4
>tである。得られた負極集電体 15の断面を、実施例 1と同様にして顕微鏡観察し> t. The cross section of the obtained negative electrode current collector 15 was observed with a microscope in the same manner as in Example 1.
0 3 0 3
たところ、波打ち、反り、しわなどの不具合の発生は認められな力 た。この負極用集 電体 15の凸部 17x、 17y表面に、実施例 1と同様にして、膜厚 20 111の SiO 層を  As a result, the occurrence of defects such as waviness, warpage and wrinkles was not recognized. On the surface of the convex portions 17x and 17y of the negative electrode current collector 15, a SiO layer with a film thickness of 20 111 was formed in the same manner as in Example 1.
0. 5 形成した。このものを所定の幅にスリツタ加工して負極板を作製した。  0.5 formed. This was slit to a predetermined width to prepare a negative electrode plate.
[0123] 実施例 3および 4で得られた負極用集電体 15は、銅箔両面に本発明の圧縮加工を 施すことにより、部分的な塑性変形が起こり、凸部 17x、 17yが形成されていた。この ような負極集電体 15は、凸部 17x、 17yの表面に負極活物質を効率良く蒸着させる こと力 Sできた。しかも、負極用集電体 1の長手方向に加わる引張応力に対して十分な 耐久性を有していた。このため、負極用集電体 1上に負極活物質を蒸着する際、負 極活物質の蒸着後に所定の幅にスリットする際などに、負極用集電体 1に局部的な 変形、橈みなどが生じるのが防止される。それとともに、負極活物質層の脱落を抑止 すること力 Sでさた。 [0123] The negative electrode current collector 15 obtained in Examples 3 and 4 was subjected to the compression processing of the present invention on both sides of the copper foil, whereby partial plastic deformation occurred, and the convex portions 17x and 17y were formed. It was. Such a negative electrode current collector 15 was able to efficiently deposit a negative electrode active material on the surfaces of the convex portions 17x and 17y. Moreover, the anode current collector 1 had sufficient durability against the tensile stress applied in the longitudinal direction. For this reason, when depositing a negative electrode active material on the negative electrode current collector 1, or when slitting it to a predetermined width after the deposition of the negative electrode active material, local deformation and stagnation of the negative electrode current collector 1 occur. Is prevented from occurring. At the same time, it was possible to suppress the negative electrode active material layer from falling off with the force S.
[0124] (比較例 1) [0124] (Comparative Example 1)
周面が平坦である径 50mmの超硬合金製ローラの周面に、図 20 (a)に示す表面 形状の加工を施した。このローラを集電体製造装置 35におけるローラ 4に代えて使 用する以外は、実施例 1と同様にして、集電体用銅箔 (厚み 18 πι)の加工を行った 。加工後の銅箔の切断面を走査型電子顕微鏡で観察した。図 19は比較例 1で得ら れた集電体 90の断面の電子顕微鏡写真である。図 19から、比較例 1の集電体には 、浪打ちが発生していることが明らかである。また、集電体製造装置 35において、さら にローラ 5をゴムローラに代えて使用し、集電体用銅箔の加工を行ったが、波打ちを 無くすことはできなかった。  The surface shape shown in Fig. 20 (a) was applied to the peripheral surface of a 50 mm diameter cemented carbide roller with a flat peripheral surface. Except that this roller was used in place of the roller 4 in the current collector production apparatus 35, the current collector copper foil (thickness 18πι) was processed in the same manner as in Example 1. The cut surface of the processed copper foil was observed with a scanning electron microscope. FIG. 19 is an electron micrograph of the cross section of the current collector 90 obtained in Comparative Example 1. From FIG. 19, it is clear that the current collector of Comparative Example 1 is struck. Further, in the current collector manufacturing apparatus 35, the roller 5 was used in place of the rubber roller and the copper foil for the current collector was processed, but the undulation could not be eliminated.
[0125] 以上の結果から、本発明の製造方法により得られた集電体は、圧縮加工に伴う部 分的な塑性変形によりその表面に複数の凸部が形成され、凸部が十分な耐久性を 発揮することが明らかである。したがって、金属箔表面に凸部を形成する工程、集電 体の凸部に電極活物質を担持する工程などにお!/、て、集電体の局所的な変形や橈 みを防止する。また、集電体の凸部に電極活物質を担持する工程、所定の幅にスリ ット加工する工程などにお!/、ても、電極活物質の脱落を抑止することができる。 [0125] From the above results, the current collector obtained by the production method of the present invention has a plurality of convex portions formed on its surface due to partial plastic deformation accompanying compression processing, and the convex portions have sufficient durability. Sex It is clear that it will work. Therefore, local deformation and sag of the current collector are prevented in the step of forming the convex portion on the surface of the metal foil and the step of supporting the electrode active material on the convex portion of the current collector. Also, the electrode active material can be prevented from falling off even in the step of supporting the electrode active material on the convex portion of the current collector and the step of slitting to a predetermined width.
[0126] また本発明の製造方法により得られた電極は、集電体の凸部先端表面が圧縮加工 および塑性変形の影響をほとんど受けていないので、凸部先端表面には加工歪が 残留せず、その表面精度が良好である。したがって、均一な薄膜形成が可能である。 また、凸部先端表面は圧縮加工が施されることに起因する表面粗さの減少もなぐ初 期の表面粗さを維持しているため、薄膜状の活物質層との密着力を高め得るものと 考えられる。この観点からすれば、凸部平面と活物質との密着力をさらに高めるため には、加工前の集電体の表面を予め一層粗な状態にしておくことは非常に有効であ ると考えられる。  [0126] Further, in the electrode obtained by the manufacturing method of the present invention, the surface of the tip of the convex portion of the current collector is hardly affected by compression processing and plastic deformation, so that no processing strain remains on the surface of the convex portion. The surface accuracy is good. Therefore, a uniform thin film can be formed. In addition, since the tip surface of the convex part maintains the initial surface roughness that does not decrease the surface roughness due to the compression processing, the adhesion with the thin-film active material layer can be increased. It can be considered. From this point of view, it is very effective to make the surface of the current collector before processing more rough in order to further increase the adhesion between the convex surface and the active material. It is done.
[0127] (実施例 5)  [Example 5]
開口の形状がほぼ円形であり、深さ 10 111、開口径 10 mの凹部 4aを複数形成 したセラミックローラを、図 3に示す集電体製造装置 35におけるローラ 4、 5として装着 した。集電体用金属箔 10である厚さ Ι δ ΐηの帯状アルミニウム箔を、集電体製造装 置 35の圧接二ップ部 6に線圧として 10kN加圧下で通過させて部分的な非圧縮加工 を行い、図 14に示す正極用集電体 70を作製した。図 14は、本発明の実施形態の一 つである集電体 70の構成を模式的に示す図面である。図 14 (a)は集電体 70の斜視 図である。図 14 (b)は集電体 70の縦断面図、すなわち厚み方向の断面図である。  Ceramic rollers having a substantially circular opening shape and a plurality of recesses 4a each having a depth of 10111 and an opening diameter of 10 m were mounted as rollers 4 and 5 in the current collector manufacturing apparatus 35 shown in FIG. The strip-shaped aluminum foil of thickness δ δ ΐ η, which is the metal foil 10 for the current collector, is passed through the pressure welding two-ply part 6 of the current collector manufacturing device 35 under a pressure of 10 kN and partially uncompressed. Processing was performed to produce a positive electrode current collector 70 shown in FIG. FIG. 14 is a drawing schematically showing a configuration of a current collector 70 which is one embodiment of the present invention. 14 (a) is a perspective view of the current collector 70. FIG. FIG. 14B is a longitudinal sectional view of the current collector 70, that is, a sectional view in the thickness direction.
[0128] 得られた集電体 70は、アルミニウムからなる基材部 71と、基材部 71の厚み方向の 両面に規則的に形成される高さ 4 mのほぼ円形の凸部 72x、 72y (以下「凸部 72」 とする)とを含み、その基材部 71の厚み t力 2 111、最大厚み t力 ^O ^ mである帯 [0128] The obtained current collector 70 is composed of a base portion 71 made of aluminum, and a substantially circular convex portion 72x, 72y having a height of 4 m and regularly formed on both surfaces of the base portion 71 in the thickness direction. (Hereinafter referred to as “convex portion 72”), and the base portion 71 has a thickness t force 2 111 and a maximum thickness t force ^ O ^ m.
3 4  3 4
状の集電体であった。幅方向(長手方向) Xにおいては、凸部 72がピッチ Pで一列 に配列された行単位 73が形成されている。短手方向 Yにおいては、行単位 73がピッ チ Pで平行に配列されている。さらに、行単位 73と、それに隣り合う行単位 73とでは Current collector. In the width direction (longitudinal direction) X, row units 73 in which convex portions 72 are arranged in a line at a pitch P are formed. In the lateral direction Y, the row units 73 are arranged in parallel by the pitch P. Furthermore, in line unit 73 and adjacent line unit 73,
2 2
、各凸部 72が幅方向 Xにおいて 0. 5P分だけずれるように配置されている。このよう な凸部 72の配列パターンは、最密充填配列である。 [0129] 次に、長さ 1000mm、厚さ 15 mのアルミニウム箔を用い、かつ圧接二ップ部 6に おける加圧力を調整して凸部 72の体積比率を表 1に示すように変更する以外は、上 記と同様にして、凹部 4aの内部空間体積に対して体積比率の異なる凸部 72を形成 し、集電体 70を作製し、その表面状態を評価した。評価は、 1000個の集電体 70に ついて、目視により、しわ、反り、切れの発生個数を調べ、発生率を求めた。結果を表 1に示す。 The convex portions 72 are arranged so as to be shifted by 0.5 P in the width direction X. Such an array pattern of the protrusions 72 is a close-packed array. [0129] Next, an aluminum foil having a length of 1000 mm and a thickness of 15 m was used, and the volume ratio of the convex portion 72 was changed as shown in Table 1 by adjusting the pressing force at the pressure-welding nip portion 6. Except for the above, a convex portion 72 having a volume ratio different from the internal space volume of the concave portion 4a was formed in the same manner as described above, a current collector 70 was produced, and its surface condition was evaluated. The evaluation was performed by visually examining the number of wrinkles, warpage, and breakage of 1000 current collectors 70 to determine the occurrence rate. The results are shown in Table 1.
なお、表 1において、凸部の体積比率とは、凹部 4aの内部空間体積に対する凸部 72の体積の百分率である。以下、同様とする。  In Table 1, the volume ratio of the convex portion is a percentage of the volume of the convex portion 72 with respect to the internal space volume of the concave portion 4a. The same shall apply hereinafter.
[0130] [表 1] [0130] [Table 1]
Figure imgf000042_0001
Figure imgf000042_0001
[0131] 集電体 70を作製する際に、集電体 70の長手方向 Xに引張応力が加わる。集電体 70に引張応力に対する耐久性がないと、集電体 70にしわ、反り、切れなどの不具合 が発生する。ところ力 表 1から明ら力^ように、凸部 72の体積比率が 85%以下の場 合には、ほぼ円形の凸部 72が最密充填配列で形成されていることも相俟って、集電 体 70が長手方向 Xに加わる引張応力に対して十分な耐久性を有し、前記のような不 具合の発生を抑止できた。なお、本実施例においては、凸部 72の体積比率が 55% までの実施例しか記載していないが、 55%以下の場合には、加圧力がさらに低くな るためで、前記のような不具合を発生することなぐ集電体 70の作製が可能であった 一方、凸部 72の体積比率が 85%より大きくなると、基材部 71の表面 71aの強度が 不足し、しわ、反り、切れなどの不良が局所的に発生した。 [0131] When the current collector 70 is manufactured, a tensile stress is applied in the longitudinal direction X of the current collector 70. If the current collector 70 is not durable against tensile stress, the current collector 70 will have problems such as wrinkling, warping, and cutting. However, as is apparent from Table 1, when the volume ratio of the protrusions 72 is 85% or less, the almost circular protrusions 72 are formed in a close-packed arrangement. The current collector 70 had sufficient durability against the tensile stress applied in the longitudinal direction X, and the occurrence of the above-described defects could be suppressed. In the present embodiment, only the embodiment in which the volume ratio of the convex portion 72 is up to 55% is described, but when the volume ratio is 55% or less, the pressing force is further reduced, so that It was possible to manufacture the current collector 70 without causing defects. On the other hand, when the volume ratio of the convex portion 72 was larger than 85%, the strength of the surface 71a of the base material portion 71 was insufficient, and defects such as wrinkles, warpage, and cutting occurred locally.
[0132] また、凸部 72の体積比率を 85%以下である正極用集電体 70の表面粗さを表面粗 さ計で測定したところ、基材部 71の表面 71aの表面粗さは、加工前のアルミニウム箔 の表面粗さよりも小さくなつていた。基材部 71の表面 71aの表面粗さは、セラミック口 ーラ周面の表面粗さとほぼ同等であった。  [0132] Further, when the surface roughness of the positive electrode current collector 70 having a volume ratio of the convex portion 72 of 85% or less was measured with a surface roughness meter, the surface roughness of the surface 71a of the base material portion 71 was It was smaller than the surface roughness of the aluminum foil before processing. The surface roughness of the surface 71a of the base material portion 71 was almost equal to the surface roughness of the ceramic peripheral surface.
一方、凸部 72の先端表面の表面粗さは、加工前のアルミニウム箔の表面粗さとほ ぼ同等であった。また、凸部 72の先端表面を走査型電子顕微鏡で観察したところ、 加工前のアルミニウム箔表面で観察されたものと同様の細かなスレ傷が認められた。  On the other hand, the surface roughness of the tip surface of the protrusion 72 was almost equal to the surface roughness of the aluminum foil before processing. Further, when the tip surface of the convex portion 72 was observed with a scanning electron microscope, the same fine scratches as those observed on the surface of the aluminum foil before processing were observed.
[0133] さらに、集電体 70について、後方散乱電子回折像 (EBSP)法による結晶方位解析 を行ったところ、基材部 71の表面 71aおよび凸部 72の内部は、加工前のアルミユウ ム箔に比べて結晶粒が細力べなっているのが観察された。また、集電体 70の引張強 度を測定したところ、基材部 71の厚みが加工前のアルミニウム箔の厚みよりも薄くな つているにもかかわらず、引張強度の低下が認められなかった。基材部 71は圧縮加 ェを受けているので、圧縮加工による加工硬化により引張強度が向上したものと推測 される。  [0133] Further, when the crystal orientation analysis of the current collector 70 by the backscattered electron diffraction image (EBSP) method was performed, the surface 71a of the base material 71 and the inside of the convex part 72 were an aluminum foil before processing. It was observed that the crystal grains were more vigorous than. Further, when the tensile strength of the current collector 70 was measured, no decrease in tensile strength was observed even though the thickness of the base material portion 71 was thinner than the thickness of the aluminum foil before processing. Since the base material portion 71 is subjected to compression processing, it is presumed that the tensile strength has been improved by work hardening by compression processing.
以上の解析結果から、アルミニウム箔に上記の加工を施したことで、凸部 72の部分 には圧縮加工が施されず、基材部 71の表面 71aには圧縮加工が施され、集電体 70 が得られたものと考えられる。  From the above analysis results, by applying the above processing to the aluminum foil, the convex portion 72 is not compressed, and the surface 71a of the base material portion 71 is compressed, and the current collector It is thought that 70 was obtained.
[0134] (実施例 6) [Example 6]
開口の形状がほぼ菱形であり、深さ 10 111、開口径 20 m (菱形の長い方の対角 線の長さ)の凹部 4aを複数形成したセラミックローラを、図 3に示す集電体製造装置 3 5におけるローラ 4、 5として装着した。集電体用金属箔 10である厚さ 12 mの帯状 銅箔を、集電体製造装置 35の圧接二ップ部 6に線圧 10kN加圧下で通過させて部 分的な非圧縮加工を行い、図 15に示す正極用集電体 75を作製した。図 15は、本発 明の実施形態の一つである集電体 75の構成を模式的に示す図面である。図 15 (a) は集電体 75の斜視図である。図 15 (b)は集電体 75の縦断面図である。 [0135] 得られた集電体 75は、銅からなる基材部 76と、基材部 76の厚み方向の両面に規 則的に形成される高さ 4 mのほぼ菱形の凸部 77x、 77y (以下「凸部 77」とする)と を含み、その基材部 71の厚み t力 0 111、最大厚み t力 S i 8 mである帯状の集電 The current collector shown in Fig. 3 is manufactured from a ceramic roller with multiple openings 4a with a rhombus shape and a depth of 10 111 and an opening diameter of 20 m (long diagonal length of the rhombus). Mounted as rollers 4 and 5 in apparatus 35. The metal foil 10 for the current collector is passed through a 12 m thick strip-shaped copper foil through the pressure welding two-ply part 6 of the current collector production device 35 under a linear pressure of 10 kN for partial non-compression processing. As a result, a positive electrode current collector 75 shown in FIG. 15 was produced. FIG. 15 is a drawing schematically showing a configuration of a current collector 75 which is one of the embodiments of the present invention. FIG. 15A is a perspective view of the current collector 75. FIG. 15B is a longitudinal sectional view of the current collector 75. [0135] The obtained current collector 75 includes a base material portion 76 made of copper, and a substantially rhomboid convex portion 77x having a height of 4 m, which is regularly formed on both surfaces of the base material portion 76 in the thickness direction. 77y (hereinafter referred to as “convex portion 77”), and a base-like portion 71 having a thickness t force 0 111 and a maximum thickness t force S i 8 m
3 4  3 4
体であった。幅方向(長手方向) Xにおいては、凸部 77がピッチ Pで一列に配列され  It was a body. In the width direction (longitudinal direction) X, the convex portions 77 are arranged in a line at a pitch P.
3  Three
た行単位 78が形成されている。短手方向 Yにおいては、行単位 78がピッチ Pで平  A row unit 78 is formed. In short direction Y, line unit 78 is flat at pitch P.
4 行に配列されている。さらに、行単位 78と、それに隣り合う行単位 78とでは、各凸部 77が幅方向 Xにおいて 0· 5P分だけずれるように配置されている。このような凸部 77  Arranged in 4 rows. Furthermore, in the row unit 78 and the row unit 78 adjacent thereto, the convex portions 77 are arranged so as to be shifted by 0.5 · 5P in the width direction X. Such protrusions 77
3  Three
の配列パターンは、最密充填配列である。  This arrangement pattern is a close-packed arrangement.
[0136] 次に、長さ 1000mm、厚み 12 mの銅箔を用い、かつ圧接二ップ部 6における加 圧力を調整して凸部 77の体積比率を表 2に示すように変更する以外は、上記と同様 にして、凹部 4aの内部空間体積に対して体積比率の異なる凸部 77を形成し、集電 体 75を作製し、その表面状態を評価した。評価は、 1000個の集電体 75について、 目視により、しわ、反り、切れの発生個数を調べ、それぞれの発生率を求めた。結果 を表 2に示す。 [0136] Next, a copper foil having a length of 1000 mm and a thickness of 12 m was used, and the volume ratio of the convex portion 77 was changed as shown in Table 2 by adjusting the pressing force at the pressure-welding nipping portion 6. In the same manner as described above, a convex portion 77 having a volume ratio different from the internal space volume of the concave portion 4a was formed, a current collector 75 was produced, and its surface state was evaluated. The evaluation was performed by visually checking the number of wrinkles, warpage, and breakage of 1000 current collectors 75, and obtaining the respective occurrence rates. The results are shown in Table 2.
なお、表 2において、凸部の体積比率とは、凹部 4aの内部空間体積に対する凸部 77の体積の百分率である。以下、同様とする。  In Table 2, the volume ratio of the convex portion is a percentage of the volume of the convex portion 77 with respect to the internal space volume of the concave portion 4a. The same shall apply hereinafter.
[0137] [表 2] [0137] [Table 2]
凸部の しわ不良 反り不良 切れ不良 Wrinkle defect on convex part Warp defect Cut defect
体積比率 発生率 発生率 発生率  Volume ratio Occurrence rate Occurrence rate Occurrence rate
( % ) ( % ) ( % ) ( % )  (%) (%) (%) (%)
5 5 0 0 0  5 5 0 0 0
6 5 0 0 0  6 5 0 0 0
7 5 0 0 0  7 5 0 0 0
8 1 0 0 0  8 1 0 0 0
8 3 0 0 0  8 3 0 0 0
8 5 0 0 0  8 5 0 0 0
8 7 1 . 4 3 0 . 4  8 7 1 .4 3 0 .4
8 9 5 9 1 . 7 [0138] 集電体 75を作製する際に、集電体 75の長手方向 Xに引張応力が加わる。集電体 75に引張応力に対する耐久性がないと、集電体 75にしわ、反り、切れなどの不具合 が発生する。ところ力 表 1から明らかなように、凸部 77の体積比率が 85%以下の場 合には、ほぼ円形の凸部 77が最密充填配列で形成されていることと相俟って、集電 体 75が長手方向 Xに加わる引張応力に対して十分な耐久性を有し、前記のような不 具合の発生を抑止できた。なお、本実施例においては、凸部 77の体積比率が 55% までの実施例しか記載していないが、 55%以下の場合には、加圧力がさらに低くな るためで、前記のような不具合を発生することなぐ集電体 75の作製が可能であった 一方、凸部 77の体積比率が 85%より大きくなると、基材部 76の表面 76aの強度が 不足し、しわ、反り、切れなどの不良が局所的に発生した。 8 9 5 9 1. 7 When producing the current collector 75, a tensile stress is applied in the longitudinal direction X of the current collector 75. If the current collector 75 is not durable against tensile stress, the current collector 75 will have problems such as wrinkles, warpage, and breakage. However, as is apparent from Table 1, when the volume ratio of the convex portions 77 is 85% or less, the fact that the substantially circular convex portions 77 are formed in a close-packed arrangement is combined. The electric conductor 75 has sufficient durability against the tensile stress applied in the longitudinal direction X, and the occurrence of the above-described defects can be suppressed. In the present example, only the example in which the volume ratio of the convex portion 77 is up to 55% is described, but when the volume ratio is 55% or less, the pressing force is further reduced, so that On the other hand, if the volume ratio of the convex portion 77 is greater than 85%, the strength of the surface 76a of the base material portion 76 is insufficient, and wrinkles, warpage, and cutting are possible. Such defects occurred locally.
[0139] また、凸部 77の体積比率が 85%以下である正極用集電体 75の表面粗さを表面粗 さ計で測定したところ、基材部 76の表面 76aの表面粗さは、加工前のアルミニウム箔 の表面粗さよりも小さくなつていた。基材部 76の表面 76aの表面粗さは、セラミック口 ーラ周面の表面粗さとほぼ同等であった。  [0139] Further, when the surface roughness of the positive electrode current collector 75 in which the volume ratio of the convex portions 77 is 85% or less was measured with a surface roughness meter, the surface roughness of the surface 76a of the base material portion 76 was It was smaller than the surface roughness of the aluminum foil before processing. The surface roughness of the surface 76a of the base material portion 76 was almost equal to the surface roughness of the ceramic peripheral surface.
一方、凸部 77の先端表面の表面粗さは、加工前のアルミニウム箔の表面粗さとほ ぼ同等であった。また、凸部 77の先端表面を走査型電子顕微鏡で観察したところ、 加工前のアルミニウム箔表面で観察されたものと同様の細かなスレ傷が認められた。  On the other hand, the surface roughness of the tip surface of the protrusion 77 was almost equal to the surface roughness of the aluminum foil before processing. Further, when the tip surface of the convex portion 77 was observed with a scanning electron microscope, the same fine scratches as those observed on the surface of the aluminum foil before processing were observed.
[0140] さらに、集電体 75について、後方散乱電子回折像 (EBSP)法による結晶方位解析 を行ったところ、基材部 76の表面 76aおよび凸部 77の内部は、加工前のアルミユウ ム箔に比べて結晶粒が細力べなっているのが観察された。また、集電体 75の引張強 度を測定したところ、基材部 76の厚みが加工前のアルミニウム箔の厚みよりも薄くな つているにもかかわらず、引張強度の低下が認められなかった。基材部 76は圧縮加 ェを受けているので、圧縮加工による加工硬化により引張強度が向上したものと推測 される。  [0140] Further, when the crystal orientation analysis of the current collector 75 by the backscattered electron diffraction image (EBSP) method was performed, the surface 76a of the base material portion 76 and the inside of the convex portion 77 are aluminum foil before processing. It was observed that the crystal grains were more vigorous than. Further, when the tensile strength of the current collector 75 was measured, no decrease in tensile strength was observed even though the thickness of the base material portion 76 was thinner than the thickness of the aluminum foil before processing. Since the base material portion 76 is subjected to compression processing, it is presumed that the tensile strength has been improved by work hardening by compression processing.
以上の解析結果から、アルミニウム箔に上記の加工を施したことで、凸部 77の部分 には圧縮加工が施されず、基材部 76の表面 76aには圧縮加工が施され、集電体 75 が得られたものと考えられる。 [0141] (実施例 7) From the above analysis results, by applying the above processing to the aluminum foil, the convex portion 77 is not compressed, and the surface 76a of the base material portion 76 is compressed, and the current collector It is considered that 75 was obtained. [0141] (Example 7)
厚さ 12 mの銅箔に代えて厚さ 18 mの銅箔を用い、凸部 77の体積比率が 80% になるように圧接二ップ部 6における加圧力を調整する以外は、実施例 6と同様にし て、帯状の集電体 75を作製した。集電体 75は、ほぼ菱形の凸部 77が最密充填形状 で配列されているので、長手方向 Xに加わる引張応力に対して十分な耐久性を有し ていた。このため、集電体 75に加工を施す際に、集電体 75に局部的な変形や橈み が生じるのを防止することができ、さらに活物質の集電体 75からの剥落を抑止できた 。集電体 75の加工とは、集電体 75表面 の活物質の担持、集電体 75表面に活物 質を担持させて得られる電極のスリット加工などである。  Example except that 18 m thick copper foil was used instead of 12 m thick copper foil, and the pressing force at the pressure welding two-ply part 6 was adjusted so that the volume ratio of the convex part 77 would be 80%. In the same manner as in Example 6, a strip-shaped current collector 75 was produced. The current collector 75 had sufficient durability against the tensile stress applied in the longitudinal direction X because the substantially rhombic projections 77 were arranged in a close-packed shape. For this reason, when the current collector 75 is processed, it is possible to prevent local deformation and stagnation of the current collector 75 and to prevent the active material from peeling off from the current collector 75. The The processing of the current collector 75 includes supporting an active material on the surface of the current collector 75, slitting an electrode obtained by supporting the active material on the surface of the current collector 75, and the like.
[0142] 電子ビーム加熱手段を備える真空蒸着装置の内部に、上記で得られた集電体 75 を装着した。ターゲットとして純度 99. 9999%の珪素を用い、純度 99. 7%の酸素を 導入しながら蒸着を行い、集電体 75の凸部 77の表面に膜厚 25 mの柱状の SiO [0142] The current collector 75 obtained above was mounted inside a vacuum vapor deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target, vapor deposition was performed while introducing oxygen with a purity of 99.7%, and a columnar SiO film with a thickness of 25 m was formed on the surface of the convex part 77 of the current collector 75.
0. 層を形成した。このものを円筒形非水電解質二次電池における所定の幅にスリツタ 0. Layer formed. This slitter is applied to a predetermined width in a cylindrical nonaqueous electrolyte secondary battery.
5 Five
加工して負極板を作製した。なお、集電体 75では、ほぼ菱形の凸部 77が最密充填 形状で配列されているので、短手方向 Yに向かって負極活物質を蒸着する際に、凸 部 77表面に効率良く付着させることができた。  The negative electrode plate was produced by processing. In the current collector 75, the substantially rhombic protrusions 77 are arranged in a close-packed shape, so that when the negative electrode active material is deposited in the short direction Y, it adheres efficiently to the surface of the protrusions 77. I was able to.
[0143] 実施例 5〜7の本発明の製造方法によれば、周面に複数の凹部が形成されたセラ ミックローラを用いることによって、集電体用金属箔表面に部分的な塑性変形を発生 させ、凸部を形成する。また、凸部の体積を凹部の内部空間体積以下にすることによ つて、凸部の形状、大きさなどのばらつきをなくす。その結果、得られる集電体の機械 的強度ひいては耐久性を向上させることができる。さらに、凸部の配列パターンを選 択することによって、集電体の耐久性は一層向上する。したがって、集電体用金属箔 表面に凸部を形成して集電体を作製する工程、集電体表面に活物質を担持させて 電極を作製する工程などにおいて、集電体に変形、橈みなどが局所的に発生するの を顕著に防止できる。また、集電体表面に活物質を担持させて電極を作製する工程 、電極を所定幅にスリット加工する工程などにおいて、活物質が集電体から剥離する のを防止できる。 [0143] According to the production methods of Examples 5 to 7 of the present invention, partial plastic deformation is applied to the surface of the current collector metal foil by using the ceramic roller having a plurality of recesses formed on the peripheral surface. To form a convex part. In addition, by making the volume of the convex part less than or equal to the internal space volume of the concave part, variations in the shape and size of the convex part are eliminated. As a result, the mechanical strength and thus durability of the current collector obtained can be improved. Furthermore, the durability of the current collector is further improved by selecting the arrangement pattern of the convex portions. Therefore, in the process of producing a current collector by forming convex portions on the surface of the current collector metal foil, the process of producing an electrode by supporting an active material on the surface of the current collector, It is possible to remarkably prevent the occurrence of local defects. In addition, it is possible to prevent the active material from being separated from the current collector in the step of manufacturing the electrode by supporting the active material on the current collector surface, the step of slitting the electrode to a predetermined width, and the like.
[0144] また、本発明の製造方法によれば、集電体の凸部が圧縮加工に伴う塑性変形によ り形成され、凸部の先端表面は塑性変形の影響をもほとんど受けていないため、凸 部の先端表面には加工歪みがほとんど発生していない。したがって、凸部の先端表 面の表面精度が良好であり、該先端表面に均一な薄膜状の活物質層を形成すること が可能になる。また、凸部の先端表面は、圧縮加工を受けていないので、表面粗さ 力 S小さくなることはなぐ集電体用金属箔の表面粗さを維持している。したがって、活 物質層との密着力が一層高くなるものと考えられる。この観点からすれば、凸部の平 面と電極活物質との密着力をさらに高めるためには、加工前の集電体の表面を予め 粗の状態しておくことは非常に有効であると考えられる。 [0144] Further, according to the manufacturing method of the present invention, the convex portions of the current collector are subjected to plastic deformation accompanying compression processing. Since the tip surface of the convex portion is hardly affected by plastic deformation, almost no processing distortion occurs on the tip surface of the convex portion. Therefore, the surface accuracy of the tip surface of the convex portion is good, and a uniform thin-film active material layer can be formed on the tip surface. Further, since the tip surface of the convex portion has not been subjected to compression processing, the surface roughness of the metal foil for the current collector is maintained without reducing the surface roughness force S. Therefore, it is considered that the adhesion with the active material layer is further increased. From this point of view, in order to further enhance the adhesion between the flat surface of the convex portion and the electrode active material, it is very effective to previously roughen the surface of the current collector before processing. Conceivable.
[0145] (実施例 8) [Example 8]
図 9に示すローラ 28を次のようにして作製した。径 50mmの超硬合金製凹部形成口 一ラの周面に、 YAGレーザを利用するレーザ加工により、開口形状が直径約 10 mのほぼ円形であり、深さが約 8 mである凹部を形成した。レーザ加工のレーザ周 波数は ΙΚΗζである。  A roller 28 shown in FIG. 9 was produced as follows. Chamfering hole made of cemented carbide with a diameter of 50 mm A circular recess with an opening of about 10 m in diameter and a depth of about 8 m is formed on the peripheral surface of one la by laser processing using a YAG laser. did. The laser frequency of laser processing is ΙΚΗζ.
上記で形成した凹部の開口の縁には、ノ リや盛り上がりからなる隆起が形成され、 ローラの表面粗さが部分的に大きくなつた。このため、研磨粒として平均粒径 8 m のダイヤモンド粒子を用い、水を供給しながら、研磨パッドを備える研磨機で研磨を 行った。研磨はローラ周面の平均表面粗さが 0. 4aになるまで行った。これにより、隆 起が除去され、開口の縁 29aが曲面で構成される凹部 29を形成し、ローラ 28を作製 した。  At the edge of the opening of the recess formed as described above, a bulge consisting of a groove and a bulge was formed, and the surface roughness of the roller partially increased. For this reason, diamond particles having an average particle diameter of 8 m were used as abrasive grains, and polishing was performed with a polishing machine equipped with a polishing pad while supplying water. Polishing was performed until the average surface roughness of the roller peripheral surface reached 0.4a. As a result, the ridges were removed, and the recesses 29 having the curved edges 29a were formed, and the rollers 28 were produced.
[0146] ローラ 28の表面粗さは、原材料である金属箔の表面粗さと同程度である。したがつ て、圧縮加工後に得られる集電体において、凸部の先端表面は元の金属箔の表面 粗さを維持し、基材部の表面はローラ 28による圧縮加工を受けて、ローラ 28の表面 粗さとほぼ同じ表面粗さを有している。すなわち、集電体の表面全面がほぼ同じ表面 粗さを有することになる。このような集電体を用いると、集電体と活物質層との密着性 を一層向上させることができる。  [0146] The surface roughness of the roller 28 is approximately the same as the surface roughness of the metal foil as the raw material. Therefore, in the current collector obtained after compression processing, the tip end surface of the convex portion maintains the surface roughness of the original metal foil, and the surface of the base material portion is subjected to compression processing by the roller 28, and the roller 28 The surface roughness is almost the same as the surface roughness. That is, the entire surface of the current collector has almost the same surface roughness. When such a current collector is used, the adhesion between the current collector and the active material layer can be further improved.
なお、研磨加工を施さないローラを用いて、金属箔に圧縮加工を行うと、凹部の開 口縁の隆起部分に応力が集中し、ローラ周面における亀裂の起点になり、ローラ寿 命が低下するおそれがある。 [0147] (実施例 9) If a metal foil is compressed using a roller that is not polished, stress concentrates on the raised part of the opening edge of the recess, causing cracks on the roller peripheral surface, and reducing the roller life. There is a risk. [Example 9]
平均粒径 8 [I mのダイヤモンド粒子に代えて、平均粒径 30 H mのダイヤモンド粒子 を用いる以外は、実施例 8と同様にして、ローラ 28を作製した。  A roller 28 was produced in the same manner as in Example 8 except that diamond particles having an average particle diameter of 30 Hm were used instead of diamond particles having an average particle diameter of 8 [I m.
(実施例 10)  (Example 10)
平均粒径 8 H mのダイヤモンド粒子に代えて、平均粒径 53 H mのダイヤモンド粒子 を用いる以外は、実施例 8と同様にして、ローラ 28を作製した。  A roller 28 was produced in the same manner as in Example 8 except that diamond particles having an average particle diameter of 53 Hm were used instead of diamond particles having an average particle diameter of 8 Hm.
(実施例 11 )  (Example 11)
平均粒径 8 H mのダイヤモンド粒子に代えて、平均粒径 74 H mのダイヤモンド粒子 を用いる以外は、実施例 8と同様にして、ローラ 28を作製した。なお、この時は、ロー ラ 28の平均表面粗さは 0. 8aよりも小さくすることはできな力、つた。  A roller 28 was produced in the same manner as in Example 8 except that diamond particles having an average particle size of 74 Hm were used instead of diamond particles having an average particle size of 8 Hm. At this time, the average surface roughness of the roller 28 was a force that could not be made smaller than 0.8a.
実施例 8〜; 11で得られたローラ 28について、ダイヤモンド研磨後の、ローラ 28周面 における研磨粒子(ダイヤモンド粒子)の残留状態、ローラ 28周面の平均表面粗さお よび集電体作製後のローラ 28周面の破損状態を判定した。なお、残留状態および 破損状態は電子顕微鏡観察により判定した。結果を表 3に示す。  For the roller 28 obtained in Examples 8 to 11, the remaining state of abrasive particles (diamond particles) on the circumferential surface of the roller 28 after diamond polishing, the average surface roughness of the circumferential surface of the roller 28 and the current collector preparation The damaged state of the 28 circumference of the roller was judged. The residual state and the damaged state were determined by observation with an electron microscope. The results are shown in Table 3.
[0148] [表 3] [0148] [Table 3]
Figure imgf000048_0001
Figure imgf000048_0001
[0149] 表 3から、平均粒径 8 H mのダイヤモンド粒子を用いて研磨を行うと、凹部 29の開 口縁 29aの隆起は除去され、開口縁 29aは曲面化される力 凹部 29にダイヤモンド 粒子が残留することが明らかである。凹部 29内部に残留するダイヤモンド粒子は、超 音波洗浄を行っても、完全に除去することが出来な力 た。また、凹部 29にダイヤモ ンド粒子が残留したままで集電体を作製すると、凸部の形成が不十分になることもあ つた。 [0149] From Table 3, when polishing is performed using diamond particles having an average particle diameter of 8 Hm, the bulge of the opening edge 29a of the recess 29 is removed and the opening edge 29a is curved. It is clear that the particles remain. The diamond particles remaining in the recesses 29 could not be completely removed even by ultrasonic cleaning. In addition, when the current collector was produced with the diamond particles remaining in the recesses 29, the formation of the protrusions was sometimes insufficient.
[0150] また、平均粒径 74 inのダイヤモンド粒子を用いると、ローラ 28周面の平均表面粗 さは平均粗さ 0. 8 inまでの仕上げにとどまり、隆起が除去されない部分が認められ た。さらに、平均粒径 30 mおよび 53 mのダイヤモンド粒子を用いると、凹部 29の 開口縁 29aが曲面化されるとともに、ダイヤモンド粒子の残留がなぐ周面の平均表 面粗さが 0. 4aまたはそれ以下のローラ 28が得られた。 [0150] If diamond particles with an average particle size of 74 in are used, the average surface roughness of the 28 circumferential surface of the roller The roughness was only finished to an average roughness of 0.8 in, and a portion where the bumps were not removed was observed. Further, when diamond particles having an average particle diameter of 30 m and 53 m are used, the opening edge 29a of the recess 29 is curved and the average surface roughness of the peripheral surface where the diamond particles remain is 0.4a or more. The following roller 28 was obtained.
[0151] さらに、実施例 9および実施例 10のローラ 28について、凹部 29の開口縁 29aに、 研磨材として平均粒径 5 mのダイヤモンド粒子を用い、水を供給しながら、研磨パ ッドを備える研磨機により研磨を行い、幅約 1 μ m、深さ約 1 μ mの溝 29χを形成した 。平均粒径 5 inのダイヤモンド粒子は、粒度分布のばらつきを制御可能な市販品 の中での最小の粒子である。  [0151] Further, with respect to the roller 28 of Example 9 and Example 10, the diamond pad having an average particle diameter of 5 m was used as the abrasive on the opening edge 29a of the recess 29, and water was supplied while supplying the polishing pad. Polishing was carried out with a polishing machine equipped to form a groove 29χ having a width of about 1 μm and a depth of about 1 μm. Diamond particles with an average particle size of 5 inches are the smallest particles on the market that can control the variation in particle size distribution.
[0152] このような溝 29χを形成することにより、凸部形成時に凹部内に残留する空気など が凹部の外部に円滑に排出される。これにより、凹部内部に残留する空気が圧縮さ れ、その圧力によって凸部の円滑な塑性変形が阻害され、凸部の形状、高さなどが 不均一になるのが防止される。  [0152] By forming such a groove 29χ, air or the like remaining in the concave portion when the convex portion is formed is smoothly discharged to the outside of the concave portion. As a result, the air remaining in the concave portion is compressed, the smooth plastic deformation of the convex portion is hindered by the pressure, and the convex portion is prevented from being uneven in shape, height and the like.
なお、集電体において、凸部の基材部表面からの高さは、最終的に得ようとする電 極の特性の他に、ローラ 28の寿命などを考慮して決定される。ローラ 28の耐用寿命 を高めるためには、圧接ニップ部における加圧力を小さくすることが望ましい。したが つて、加圧力を小さくして、必要な高さの凸部を形成するように調整することが望まし い。  In the current collector, the height of the convex portion from the surface of the base material portion is determined in consideration of the life of the roller 28 in addition to the characteristics of the electrode to be finally obtained. In order to increase the service life of the roller 28, it is desirable to reduce the applied pressure at the pressure nip. Therefore, it is desirable to adjust so as to form a convex portion with a required height by reducing the applied pressure.
[0153] 溝 29yが形成されたローラ 28を用い、厚み 26 mの銅箔の搬送方向に垂直な方 向の長さを 80mm、圧接ニップ部における加圧力を 80kNとして圧縮加工を行い、部 分的な塑性変形を発生させると、基材部表面からの高さが平均 5. Ι πιである凸部 が形成された。  [0153] Using a roller 28 in which a groove 29y was formed, compression was performed with a length of 80 mm in the direction perpendicular to the conveying direction of the copper foil having a thickness of 26 m and a pressing force at the pressure nip of 80 kN. When a plastic deformation was generated, a convex part having an average height of 5.ππι from the surface of the base material part was formed.
一方、溝 29yが形成されていない実施例 9および 10のローラ 28を用いる以外は、 上記と同様にして銅箔の圧縮加工を行ったところ、基材部表面からの高さが平均 3. 4 11 mである凸部が形成された。離形性や磨耗 ·潤滑のために固形潤滑材または液 状潤滑材を使用すると、凸部の高さが一層大きくなり、形状が均一になることがわか つた。  On the other hand, when the copper foil was compressed in the same manner as above except that the rollers 28 of Examples 9 and 10 in which the grooves 29y were not formed were used, the average height from the surface of the base material portion was 3.4. A convex part of 11 m was formed. It was found that when solid or liquid lubricants were used for releasability, wear and lubrication, the height of the protrusions became even larger and the shape became uniform.
[0154] (実施例 12) 径 25mmのセラミック製凹部形成ローラの周面に、実施例 9と同様にして、凹部 29 を形成し、ローラ 28を作製した。このローラ 28を、図 3に示す集電体製造装置 35に おけるローラ 4として装着し、圧接二ップ部 34を形成した。厚み 18 ^ m、搬送方向に 垂直な方向の幅 80mm、長さ 100mの銅箔を圧接二ップ部 34に供給し、 80kNの加 圧下に圧縮加工を施し、部分的な塑性変形を発生させ、図 8に示す集電体 20を作 し/ [Example 12] In the same manner as in Example 9, a recess 29 was formed on the peripheral surface of a ceramic recess-forming roller having a diameter of 25 mm, and a roller 28 was produced. The roller 28 was mounted as the roller 4 in the current collector manufacturing apparatus 35 shown in FIG. Copper foil with a thickness of 18 ^ m, a width of 80 mm in the direction perpendicular to the conveying direction and a length of 100 m is supplied to the press-fitting nipping part 34 and subjected to compression processing under a pressure of 80 kN to cause partial plastic deformation. The current collector 20 shown in Fig. 8 was made /
[0155] (実施例 13)  [Example 13]
凹部形成用ローラのローラ径を 50mmに変更する以外は、実施例 12と同様にして 、集電体 20を作製した。  A current collector 20 was produced in the same manner as in Example 12 except that the diameter of the recess forming roller was changed to 50 mm.
(実施例 14)  (Example 14)
凹部形成用ローラのローラ径を 100mmに変更する以外は、実施例 12と同様にし て、集電体 20を作製した。  A current collector 20 was produced in the same manner as in Example 12 except that the diameter of the recess forming roller was changed to 100 mm.
(実施例 15)  (Example 15)
凹部形成用ローラのローラ径を 150mmに変更する以外は、実施例 12と同様にし て、集電体 20を作製した。  A current collector 20 was produced in the same manner as in Example 12 except that the diameter of the recess forming roller was changed to 150 mm.
[0156] 実施例 12〜; 15で得られた集電体 20について、凸部 22の平均高さおよび凸部 22 の最大値と最小値との差を電子顕微鏡観察により求めた。凸部平均高さは、 100個 の凸部 22の平均値である。さらに、集電体 20作製後のローラ 28について、凹部 29 の損傷状態を目視により観察した。なお、凸部 20の高さは、図7に示す断面図にお いて、基材部 21の表面 21aに垂直な方向の、表面 21aから凸部 20の先端表面まで の長さである。結果を表 4に示す。 [0156] With respect to the current collector 20 obtained in Examples 12 to 15; the average height of the protrusions 22 and the difference between the maximum value and the minimum value of the protrusions 22 were determined by electron microscope observation. The average height of the convex portion is an average value of 100 convex portions 22. Further, regarding the roller 28 after the current collector 20 was produced, the damaged state of the recess 29 was visually observed. The height of the convex portion 20 is had contact to the cross-sectional view shown in FIG. 7, in the direction perpendicular to the surface 21a of the base 21, the length from the surface 21a to the end surfaces of the projections 20. The results are shown in Table 4.
[0157] [表 4] ローラ径 凸部平均高さ 凸部高さの最大値と 口 ラの凹部  [0157] [Table 4] Roller diameter Average height of convex part Maximum height of convex part and concave part of mouth
( m m ) ( ) 最小値の差 (ii m ) の損傷状態 実施例 1 2 2 5 8 . 0 4 . 2 有り 実施例 1 3 5 0 7 . 4 1 . 8 有り 実施例 1 4 1 0 0 4 . 1 1 . 1 «Εし 実施例 1 5 1 5 0 2 . 1 1 . 2 1 [0158] 表 2から明らかなように、ローラ径 25mmでは、凸部 22の平均高さは 8 mであった 。しかしながら、ローラ 28自体にも比較的大きな橈みが発生し、凸部 22高さのばらつ きが大きかった。また、ローラ 28の回転にむらがあり、連続的な加工は困難であると 推測された。 (mm) () Damage state of minimum difference (ii m) Example 1 2 2 5 8 .0 4 .2 Yes Example 1 3 5 0 7 .4 1 .8 Yes Example 1 4 1 0 0 4 1 1. 1 «Example 1 5 1 5 0 2. 1 1. 2 1 As is apparent from Table 2, when the roller diameter was 25 mm, the average height of the convex portions 22 was 8 m. However, a relatively large stagnation occurred in the roller 28 itself, and the variation in the height of the convex portion 22 was large. In addition, the rotation of the roller 28 was uneven, and it was assumed that continuous machining was difficult.
ローラ径 50mmでは、凸部 22の平均高さは 7. 4 111である力 ローラ 28のたわみ が少なからず認められ、凸部 22の高さのばらつきは ± 1 m程度であった。また、集 電体 20作製後にローラ 28の凹部 29の観察をしたところ、多数の亀裂が発生してい た。これらのこと力、ら、ローラ径がローラ 28の寿命に大きな影響を及ぼすものと推測さ れる。  When the roller diameter was 50 mm, the average height of the convex portion 22 was 7.4 111. Not a little deflection of the roller 28 was observed, and the height variation of the convex portion 22 was about ± 1 m. Further, when the concave portion 29 of the roller 28 was observed after the current collector 20 was produced, many cracks were generated. It is assumed that the roller diameter has a great influence on the life of the roller 28.
[0159] ローラ径 100mmでは、凸部 22の平均高さは 4· 1 mであり、凸部 22の高さのばら つきは ± 1 μ m以下であった。また、集電体 20作製後にローラ 28の凹部 29の観察を したところ、亀裂は認められなかった。さらに集電体 20を 500mおよび 1000mを作製 した力 やはり凹部 29には亀裂は認められな力 た。  [0159] When the roller diameter was 100 mm, the average height of the convex portion 22 was 4.1 m, and the variation in the height of the convex portion 22 was ± 1 μm or less. Further, when the concave portion 29 of the roller 28 was observed after the current collector 20 was produced, no crack was observed. Furthermore, the force that produced current collector 20 of 500 m and 1000 m.
ローラ径 150mmでは、凸部 22の平均高さは 2. l ^ mであり、凸部 22の高さのばら つきは ± 1 μ m以下であった。集電体 20作製後にローラ 28の凹部 29の観察をしたと ころ、亀裂は認められな力、つた。さらに集電体 20を 1000mを作製した力 やはり凹部 29には亀裂は認められな力 た。ただし、十分な高さを有する凸部 22を得るために は、加圧力を非常に大きくする必要があり、そのためには設備サイズの大型化が必 要であることがわかった。  When the roller diameter was 150 mm, the average height of the convex portion 22 was 2. l ^ m, and the variation in the height of the convex portion 22 was ± 1 μm or less. When the concavity 29 of the roller 28 was observed after the current collector 20 was produced, the crack showed a force that was not recognized. Furthermore, the force that produced current collector 20 to 1000 m. However, it was found that in order to obtain the convex portion 22 having a sufficient height, it was necessary to increase the applied pressure very much, and for that purpose, it was necessary to increase the equipment size.
[0160] 表 3および表 4に示す結果に基づいて、実施例 14で作製したローラ 28が好適に使 用できることがわ力 た。ローラ 28の作製には、研磨工程では平均粒径 30 mのダ ィャモンド粒子を用い、凹部 29の開口縁 29aには溝 29xを形成し、ローラ周面の平 均表面粗さを 0. 4aとし、ローノレ径を 100mmとした。  [0160] Based on the results shown in Tables 3 and 4, it was found that the roller 28 produced in Example 14 can be used suitably. For the production of the roller 28, diamond particles having an average particle diameter of 30 m are used in the polishing process, grooves 29x are formed in the opening edge 29a of the recess 29, and the average surface roughness of the roller peripheral surface is 0.4a. The Ronore diameter was set to 100 mm.
また、実施例 11〜; 14で作製された集電体 20では、基材部 21と凸部 22との境界部 分 22aが曲面から構成され、かつ図 7に示す凸部 22の断面力 テーパ形状を有して いる。これによつて、圧縮加工時の加工性および集電体 20のローラ 28からの離型性 が向上し、ローラ 28の凹部 29に凸部 22がきつく嵌合し、集電体 20から剥離するのを 防止できた。 [0161] 剥離し易い凸部 22が多くある集電体 20に正極活物質を担持した正極板で電極群 を構成すると、充放電を繰り返す過程で前記集電体 20が正極板のしわ発生の起点 となり、正極活物質が剥離してしまうことがわかった。これは、集電体 20の機械的強 度のばらつきが原因であると考えられる。 Further, in the current collector 20 produced in Examples 11 to 14; the boundary portion 22a between the base material portion 21 and the convex portion 22 is formed of a curved surface, and the sectional force of the convex portion 22 shown in FIG. It has a shape. As a result, the workability during compression processing and the releasability of the current collector 20 from the roller 28 are improved, and the convex portion 22 fits tightly into the concave portion 29 of the roller 28 and peels from the current collector 20. I was able to prevent. [0161] When the electrode group is formed of a positive electrode plate having a positive electrode active material supported on a current collector 20 having many protrusions 22 that are easily peeled off, the current collector 20 causes wrinkling of the positive electrode plate in the process of repeated charge and discharge. As a starting point, it was found that the positive electrode active material peeled off. This is considered to be caused by a variation in the mechanical strength of the current collector 20.
このように、一対のローラを用いて加工することにより、非常に少ない接触面積での 加圧が可能になり、加圧力を大きくすることができる。これにより、集電体製造装置 35 の小型化が可能になる。  In this way, by processing using a pair of rollers, it is possible to apply pressure with a very small contact area and to increase the applied pressure. As a result, the current collector manufacturing apparatus 35 can be downsized.
[0162] (実施例 16)  [0162] (Example 16)
凹部 29の開口形状がほぼ菱形である以外は、図 9に示すローラ 28と同じ構成を有 するローラ 28Aを次のようにして作製した。径 50mmの超硬合金製凹部形成ローラ の周面に、 YAGレーザを利用するレーザ加工により、開口形状がほぼ菱形であり、 菱形の長い方の対角線の長さが 20 m、深さが約 10 mである凹部を形成した。レ 一ザ加ェは、レーザ周波数を 1 kHzとして行った。  A roller 28A having the same configuration as that of the roller 28 shown in FIG. 9 except that the opening shape of the recess 29 is substantially rhombus was produced as follows. The aperture shape is approximately rhombus by laser processing using YAG laser on the peripheral surface of a 50 mm diameter cemented carbide recess forming roller, the long diagonal of the rhombus is 20 m long and the depth is approximately 10 mm. A recess which is m was formed. The laser was operated with a laser frequency of 1 kHz.
[0163] 上記で形成した凹部の開口の縁には、ノ リや盛り上がりからなる隆起が形成され、 ローラの表面粗さが部分的に大きくなつた。特に、凹部の開口形状が菱形である場 合、ノ リや盛り上がりには方向性が生じ、表面形状が全体的に悪化した。このため、 研磨粒として平均粒径 8 mのダイヤモンド粒子を用い、水を供給しながら、研磨パ ッドを備える研磨機で研磨を行った。研磨はローラ周面の平均表面粗さが 0. 4aにな るまで行った。これにより、隆起が除去され、開口の縁 29aが曲面で構成される凹部 2 9を形成し、ローラ 28Aを作製した。  [0163] At the edge of the opening of the recess formed as described above, a bulge consisting of a groove and a bulge was formed, and the surface roughness of the roller partially increased. In particular, when the opening shape of the concave portion was a rhombus, directionality occurred in the grooves and bulges, and the surface shape deteriorated as a whole. For this reason, diamond particles having an average particle diameter of 8 m were used as abrasive grains, and polishing was performed with a polishing machine equipped with a polishing pad while supplying water. Polishing was performed until the average surface roughness of the roller peripheral surface reached 0.4a. As a result, the bulges were removed, and the recesses 29 having the curved edges 29a were formed to produce the rollers 28A.
[0164] ローラ 28Aの表面粗さは、原材料である金属箔の表面粗さと同程度である。したが つて、圧縮加工後に得られる集電体において、凸部の先端表面は元の金属箔の表 面粗さを維持し、基材部の表面はローラ 28Aによる圧縮加工を受けて、ローラ 28A の表面粗さとほぼ同じ表面粗さを有している。すなわち、集電体の表面全面がほぼ 同じ表面粗さを有することになる。このような集電体を用いると、集電体と活物質層と の密着性を一層向上させることができる。  [0164] The surface roughness of the roller 28A is approximately the same as the surface roughness of the metal foil as the raw material. Therefore, in the current collector obtained after compression processing, the tip surface of the convex portion maintains the surface roughness of the original metal foil, and the surface of the base material portion is subjected to compression processing by the roller 28A. The surface roughness is substantially the same as the surface roughness. That is, the entire surface of the current collector has substantially the same surface roughness. When such a current collector is used, the adhesion between the current collector and the active material layer can be further improved.
[0165] なお、研磨加工を施さないローラを用いて、金属箔に本発明の圧縮加工を行うと、 凹部の開口縁の隆起部分に応力が集中し、ローラ周面における亀裂の起点になり、 ローラ寿命が低下するおそれがある。特に、開口形状がほぼ菱形の場合は、 2つの 鋭角部はその形状故に応力集中を受けやすぐローラ 28A周面における亀裂の起 点になり、隣り合う凹部 29の間の亀裂の伝播経路にもなることから、ローラ寿命を大 幅に低下させてしまうことがわかった。 [0165] Note that, when the compression processing of the present invention is performed on the metal foil using a roller that is not subjected to polishing, stress concentrates on the raised portion of the opening edge of the recess, which becomes the starting point of the crack on the roller peripheral surface, Roller life may be reduced. In particular, when the opening shape is almost diamond-shaped, the two sharp corners are stress concentrated due to the shape and immediately become the starting point of the crack on the peripheral surface of the roller 28A, and also in the propagation path of the crack between the adjacent recesses 29. As a result, it was found that the roller life was greatly reduced.
[0166] (実施例 17) [Example 17]
平均粒径 8 mのダイヤモンド粒子に代えて平均粒径 30 a mのダイヤモンド粒子 を使用する以外は、実施例 16と同様にして、ローラ 28Aを作製した。  A roller 28A was produced in the same manner as in Example 16 except that diamond particles having an average particle diameter of 30 am were used instead of diamond particles having an average particle diameter of 8 m.
(実施例 18)  (Example 18)
平均粒径 8 μ mのダイヤモンド粒子に代えて平均粒径 53 / mのダイヤモンド粒子 を使用する以外は、実施例 16と同様にして、ローラ 28Aを作製した。  A roller 28A was produced in the same manner as in Example 16 except that diamond particles having an average particle size of 53 / m were used instead of diamond particles having an average particle size of 8 μm.
(実施例 19)  (Example 19)
平均粒径 8 mのダイヤモンド粒子に代えて平均粒径 74 ,i mのダイヤモンド粒子 を使用する以外は、実施例 16と同様にして、ローラ 28Aを作製した。なお、この時は 、ローラ 28Aの平均表面粗さは 0. 8aよりも小さくすることはできなかった。  A roller 28A was produced in the same manner as in Example 16 except that diamond particles having an average particle size of 74 and im were used instead of diamond particles having an average particle size of 8 m. At this time, the average surface roughness of the roller 28A could not be made smaller than 0.8a.
実施例 16〜: 19で得られたローラ 28Aについて、ダイヤモンド研磨後の、ローラ 28 A周面における研磨粒子(ダイヤモンド粒子)の残留状態、ローラ 28A周面の平均表 面粗さおよび集電体作製後のローラ 28A周面の破損状態を判定した。なお、残留状 態および破損状態は電子顕微鏡観察により判定した。結果を表 5に示す。  Examples 16 to: Regarding the roller 28A obtained in 19, the residual state of abrasive particles (diamond particles) on the peripheral surface of the roller 28A after diamond polishing, the average surface roughness of the peripheral surface of the roller 28A and the production of the current collector The damaged state of the rear surface of the roller 28A was judged. The residual state and the damaged state were determined by observation with an electron microscope. The results are shown in Table 5.
[0167] [表 5] [0167] [Table 5]
Figure imgf000053_0001
Figure imgf000053_0001
[0168] 表 5から、平均粒径 8 mのダイヤモンド粒子を用いて研磨を行うと、凹部 29の開 口縁 29aの隆起は除去され、開口縁 29aは曲面化される力 凹部 29にダイヤモンド 粒子が残留することが明らかである。凹部 29内部に残留するダイヤモンド粒子は、超 音波洗浄を行っても、完全に除去することが出来なかった。また、凹部 29にダイヤモ ンド粒子が残留したままで集電体を作製すると、凸部の形成が不十分になることもあ つた。 [0168] From Table 5, when polishing was performed using diamond particles having an average particle diameter of 8 m, the recesses 29 were opened. It is clear that the ridges on the lip 29a are removed, and the diamond particles remain in the recesses 29 where the opening edge 29a is curved. The diamond particles remaining inside the recess 29 could not be completely removed even by ultrasonic cleaning. In addition, when the current collector was produced with the diamond particles remaining in the recesses 29, the formation of the protrusions was sometimes insufficient.
[0169] また、平均粒径 74 inのダイヤモンド粒子を用いると、ローラ 28A周面の平均表面 粗さは平均粗さ 0. 8 inまでの仕上げにとどまり、隆起が除去されない部分が認めら れた。さらに、平均粒径 30 mおよび 53 mのダイヤモンド粒子を用いると、凹部 2 9の開口縁 29aが曲面化されるとともに、ダイヤモンド粒子の残留がなぐ周面の平均 表面粗さが 0. 4aまたはそれ以下のローラ 28Aが得られた。  [0169] In addition, when diamond particles with an average particle size of 74 in were used, the average surface roughness of the roller 28A peripheral surface was only finished to an average roughness of 0.8 in, and a portion where the bumps were not removed was observed. . Further, when diamond particles having an average particle diameter of 30 m and 53 m are used, the opening edge 29a of the recess 29 is curved, and the average surface roughness of the peripheral surface where the diamond particles remain is 0.4a or more. The following roller 28A was obtained.
[0170] さらに、実施例 17および 18のローラ 28Aについて、凹部 29の開口縁 29aに、研磨 材として平均粒径 5 mのダイヤモンド粒子を用い、水を供給しながら、研磨パッドを 備える研磨機により研磨を行い、幅約 1 μ m、深さ約 1 μ mの溝 29χを形成した。平均 粒径 5 mのダイヤモンド粒子は、粒度分布のばらつきを制御可能な市販品の中で の最小の粒子である。  [0170] Further, with regard to the roller 28A of Examples 17 and 18, by using diamond particles having an average particle diameter of 5 m as an abrasive on the opening edge 29a of the recess 29 and supplying water, a polishing machine provided with a polishing pad Polishing was performed to form a groove 29χ having a width of about 1 μm and a depth of about 1 μm. Diamond particles with an average particle size of 5 m are the smallest particles on the market that can control the variation in particle size distribution.
[0171] このような溝 29xを形成することにより、凸部形成時に凹部内に残留する空気など が凹部の外部に円滑に排出される。これにより、凹部内部に残留する空気が圧縮さ れ、その圧力によって凸部の円滑な塑性変形が阻害され、凸部の形状、高さなどが 不均一になるのが防止される。  [0171] By forming such a groove 29x, air or the like remaining in the concave portion when the convex portion is formed is smoothly discharged to the outside of the concave portion. As a result, the air remaining in the concave portion is compressed, the smooth plastic deformation of the convex portion is hindered by the pressure, and the convex portion is prevented from being uneven in shape, height and the like.
なお、集電体において、凸部の基材部表面からの高さは、最終的に得ようとする電 極の特性の他に、ローラ 28Aの寿命などを考慮して決定される。ローラ 28Aの耐用 寿命を高めるためには、圧接ニップ部における加圧力を小さくすることが望ましい。し たがって、加圧力を小さくして、必要な高さの凸部を形成するように調整することが望 ましい。特に、開口形状がほぼ菱形である場合は、十分な高さを得るためには、開口 形状がほぼ円形である場合よりも高い加圧力が必要になる。また、平面から投影した 同じ面積をもつほぼ円形に同じ条件で加圧しても約 15%〜23%高さが低くなること がわかった。これは菱形の長軸断面からの肉の変動が断面形状の狭さからくる抵抗 力によるものと推測される。 [0172] 溝 29yが形成されたローラ 28Aを用い、厚み 18 mの銅箔の搬送方向に垂直な 方向の長さを 80mm、圧接ニップ部における加圧力を 80kNとして圧縮加工を行い、 部分的な塑性変形を発生させると、基材部表面からの高さが平均 7. Ι πιである凸 部が形成された。 In the current collector, the height of the convex portion from the surface of the base material portion is determined in consideration of the life of the roller 28A in addition to the characteristics of the electrode to be finally obtained. In order to increase the service life of the roller 28A, it is desirable to reduce the applied pressure at the pressure nip. Therefore, it is desirable to adjust so as to form a convex part with the required height by reducing the applied pressure. In particular, when the opening shape is approximately diamond-shaped, in order to obtain a sufficient height, a higher pressing force is required than when the opening shape is approximately circular. In addition, it was found that the height was reduced by about 15% to 23% even when pressed under the same conditions into a nearly circular shape with the same area projected from the plane. This is presumed to be due to the resistance force caused by the narrowness of the cross-sectional shape of the flesh from the long-axis cross section of the rhombus. [0172] Using a roller 28A in which a groove 29y was formed, compression processing was performed with the length in the direction perpendicular to the conveying direction of the 18m thick copper foil being 80mm and the applied pressure at the pressure nip being 80kN. When plastic deformation occurred, convex portions having an average height from the surface of the base material portion of 7.Ιπι were formed.
一方、溝 29yが形成されていないローラ 28Αを用いる以外は、上記と同様にして圧 縮加工を行ったところ、基材部表面からの高さが平均 5. 5 mである凸部が形成さ れた。離形性や磨耗 ·潤滑のために固形潤滑材または液状潤滑材を使用すると、凸 部の高さが一層大きくなり、形状が均一になることがわ力、つた。  On the other hand, when pressing was performed in the same manner as described above except that the roller 28 ロ ー ラ having no groove 29y was used, a convex portion having an average height of 5.5 m from the surface of the substrate portion was formed. It was. When using solid or liquid lubricants for releasability and wear / lubrication, the height of the protrusions becomes even larger and the shape becomes uniform.
[0173] (実施例 20)  [Example 20]
径 25mmのセラミック製凹部形成用ローラの周面に、実施例 17と同様にして、凹部 29を形成し、ローラ 28Aを作製した。このローラ 28Aを、図 3に示す集電体製造装置 35におけるローラ 4、 5として装着し、圧接二ップ部 34aを形成した。厚み 26 111、搬 送方向に垂直な方向の幅 80mm、長さ 100mの銅箔を圧接二ップ部 34aに供給し、 80kNの加圧下に圧縮加工を施し、部分的に塑性変形を発生させて、図 10に示す 集電体 23を作製した。  In the same manner as in Example 17, a recess 29 was formed on the peripheral surface of a ceramic recess-forming roller having a diameter of 25 mm, and a roller 28A was produced. The roller 28A was mounted as the rollers 4 and 5 in the current collector manufacturing apparatus 35 shown in FIG. 3 to form the press-contacting dip portion 34a. Copper foil with a thickness of 26 111, a width of 80 mm in the direction perpendicular to the transport direction and a length of 100 m is supplied to the press-fitting nip part 34a, and compression processing is performed under a pressure of 80 kN to cause partial plastic deformation. Thus, a current collector 23 shown in FIG. 10 was produced.
[0174] (実施例 21 )  [Example 17]
凹部形成用ローラのローラ径を 50mmに変更する以外は、実施例 20と同様にして 、集電体 23を作製した。  A current collector 23 was produced in the same manner as in Example 20 except that the diameter of the recess forming roller was changed to 50 mm.
(実施例 22)  (Example 22)
凹部形成用ローラのローラ径を 100mmに変更する以外は、実施例 20と同様にし て、集電体 23を作製した。  A current collector 23 was produced in the same manner as in Example 20, except that the diameter of the recess forming roller was changed to 100 mm.
(実施例 23)  (Example 23)
凹部形成用ローラのローラ径を 150mmに変更する以外は、実施例 20と同様にし て、集電体 23を作製した。  A current collector 23 was produced in the same manner as in Example 20 except that the diameter of the recess forming roller was changed to 150 mm.
[0175] 実施例 20〜23で得られた集電体 23について、凸部 25x、 25y (以下「凸部 25」と する)の平均高さおよび凸部 25の最大値と最小値との差を電子顕微鏡観察により求 めた。凸部平均高さは、 100個の凸部 25の平均値である。さらに、集電体 23作製後 のローラ 28Aについて、凹部 29の損傷状態を目視により観察した。なお、凸部 25の 高さは、図 8に示す断面図において、基材部 24の表面 24aに垂直な方向の、表面 2 4aから凸部 25の先端表面までの長さである。結果を表 6に示す。 [0175] For the current collector 23 obtained in Examples 20 to 23, the average height of the convex portions 25x and 25y (hereinafter referred to as "convex portion 25") and the difference between the maximum value and the minimum value of the convex portion 25 Was obtained by electron microscope observation. The convex average height is an average value of 100 convex portions 25. Further, the damaged state of the recess 29 was visually observed on the roller 28A after the current collector 23 was produced. The convex part 25 In the cross-sectional view shown in FIG. 8, the height is the length from the surface 24 a to the tip surface of the convex portion 25 in the direction perpendicular to the surface 24 a of the base material portion 24. The results are shown in Table 6.
[表 6]  [Table 6]
Figure imgf000056_0001
Figure imgf000056_0001
[0177] 表 6から明らかなように、ローラ径 25mmでは、凸部 25の平均高さは 10 mであつ た。し力もながら、ローラ 28A自体にも比較的大きな橈みが発生し、凸部 25高さのば らつきが大きかった。また、ローラ 28Aの回転にむらがあり、連続的な加工は困難で あると推測された。 [0177] As is apparent from Table 6, the average height of the convex portions 25 was 10 m at a roller diameter of 25 mm. However, the roller 28A itself had relatively large stagnation, and the variation in the height of the convex part 25 was large. In addition, the rotation of the roller 28A was uneven, and it was assumed that continuous machining was difficult.
ローラ径 50mmでは、凸部 25の平均高さは 8· 2〃mである力 ローラ 28Aのたわ みが少なからず認められ、凸部 25の高さのばらつきは ± 1 m程度であった。また、 集電体 23作製後にローラ 28Aの凹部 29の観察をしたところ、多数の亀裂が発生し ていた。これらのこと力ら、ローラ径がローラ 28の寿命に大きな影響を及ぼすものと推 測される。  When the roller diameter is 50 mm, the average height of the convex portion 25 is 8.2 mm. The deflection of the force roller 28A is not a little, and the height variation of the convex portion 25 is about ± 1 m. Further, when the concave portion 29 of the roller 28A was observed after the current collector 23 was produced, many cracks were generated. From these facts, it is estimated that the roller diameter has a great influence on the life of the roller 28.
[0178] ローラ径 100mmでは、凸部 25の平均高さは 7. 1 μ mであり、凸部 25の高さのばら つきは ± 1 μ m以下であった。また、集電体 23作製後にローラ 28Aの凹部 29の観察 をしたところ、亀裂は認められな力、つた。さらに集電体 23を 500mおよび 1000mを作 製した力 やはり凹部 29には亀裂は認められな力 た。  [0178] When the roller diameter was 100 mm, the average height of the convex portion 25 was 7.1 μm, and the variation in the height of the convex portion 25 was ± 1 μm or less. In addition, when the concave portion 29 of the roller 28A was observed after the current collector 23 was produced, the crack showed a force that was not recognized. In addition, the force that produced current collector 23 of 500 m and 1000 m.
ローラ径 150mmでは、凸部 25の平均高さは 4. 3 mであり、凸部 25の高さのばら つきは ± 1 m以下であった。集電体 23作製後にローラ 28Aの凹部 29の観察をし たところ、亀裂は認められなかった。さらに集電体 23を 1000m作製した力 やはり凹 部 29には亀裂は認められな力 た。ただし、十分な高さを有する凸部 25を得るため には、加圧力を非常に大きくする必要があり、そのためには設備サイズが大型化が必 要であることがわかった。 [0179] 表 5および表 6に示す結果に基づいて、実施例 22で作製したローラ 28Aが好適に 使用できることがわかった。ローラ 28Aの作製には、研磨工程では平均粒径 30〃 m のダイヤモンド粒子を用い、凹部 29の開口縁 29aには溝 29xを形成し、ローラ周面 の平均表面粗さを 0. 4aとし、ローノレ径を 100mmとした。 When the roller diameter was 150 mm, the average height of the convex part 25 was 4.3 m, and the variation in the height of the convex part 25 was ± 1 m or less. When the concavity 29 of the roller 28A was observed after the current collector 23 was produced, no cracks were observed. Furthermore, the force with which the current collector 23 was produced 1000 m. However, in order to obtain the convex part 25 having a sufficient height, it was found that the applied pressure had to be very large, and for that purpose, the equipment size had to be increased. [0179] Based on the results shown in Table 5 and Table 6, it was found that the roller 28A produced in Example 22 can be used suitably. For the production of roller 28A, diamond particles having an average particle diameter of 30 mm are used in the polishing process, grooves 29x are formed in the opening edge 29a of the recess 29, and the average surface roughness of the roller peripheral surface is 0.4a. The roll diameter was set to 100 mm.
また、実施例 20〜23で作製された集電体 23では、基材部 24と凸部 25との境界部 分 25aが曲面から構成され、かつ図 10に示す凸部 25の断面力 テーパ形状を有し ている。これによつて、圧縮加工時の加工性および集電体 23のローラ 28Aからの離 型性が向上し、ローラ 28Aの凹部 29に凸部 25がきつく嵌合し、集電体 23から剥離 するのを防止できた。  Further, in the current collector 23 produced in Examples 20 to 23, the boundary portion 25a between the base material portion 24 and the convex portion 25 is composed of a curved surface, and the sectional force of the convex portion 25 shown in FIG. 10 is tapered. have. As a result, the workability during compression processing and the releasability of the current collector 23 from the roller 28A are improved, and the convex portion 25 is tightly fitted into the concave portion 29 of the roller 28A and peeled off from the current collector 23. We were able to prevent.
[0180] 剥離し易い凸部 25が多くある集電体 23に負極活物質を担持した負極板で電極群 を構成すると、充放電を繰り返す過程で前記集電体 23が負極板のしわ発生の起点 となり、負極活物質が剥離してしまうことがわかった。これは、集電体 23の機械的強 度のばらつきが原因であると考えられる。  [0180] When the electrode group is composed of a negative electrode plate having a negative electrode active material supported on a current collector 23 having many convex portions 25 that are easily peeled off, the current collector 23 causes wrinkling of the negative electrode plate in the process of repeated charge and discharge. As a starting point, it was found that the negative electrode active material peeled off. This is considered to be caused by a variation in the mechanical strength of the current collector 23.
このように、一対のローラを用いて加工することにより、非常に少ない接触面積での 加圧が可能になり、加圧力を大きくすることができる。これにより、集電体製造装置 35 の小型化が可能になる。  In this way, by processing using a pair of rollers, it is possible to apply pressure with a very small contact area and to increase the applied pressure. As a result, the current collector manufacturing apparatus 35 can be downsized.
[0181] (実施例 24)  [0181] (Example 24)
開口の形状がほぼ円形であり、深さ 8 111、開口径 10 mの凹部 29を複数形成し た図 9に示すセラミックローラ 28を、図 3に示す集電体製造装置 35におけるローラ 4、 5として装着した。集電体用金属箔 10である厚さ 15 πιの帯状アルミユウム箔を、集 電体製造装置 35の圧接二ップ部 34a (図 11)に線圧 10kN加圧下で通過させて部 分的な非圧縮加工を行い、図 16に示す正極用集電体 80を作製した。図 16は、本発 明の実施形態の一つである集電体 80の構成を模式的に示す図面である。図 16 (a) は集電体 80の斜視図である。図 16 (b)は集電体 80の縦断面図である。  The ceramic roller 28 shown in FIG. 9 in which the shape of the opening is almost circular, the depth 8 111, and a plurality of recesses 29 having an opening diameter of 10 m is formed is used as the rollers 4 and 5 in the current collector manufacturing apparatus 35 shown in FIG. As fitted. A strip-shaped aluminum foil with a thickness of 15 πι, which is a metal foil for current collector 10, is passed through the pressure-welding two-ply part 34a (Fig. 11) of the current collector manufacturing apparatus 35 under a line pressure of 10 kN and partly passed. Non-compression processing was performed to produce a positive electrode current collector 80 shown in FIG. FIG. 16 is a drawing schematically showing a configuration of a current collector 80 which is one of the embodiments of the present invention. FIG. 16A is a perspective view of the current collector 80. FIG. 16 (b) is a longitudinal sectional view of the current collector 80.
[0182] 得られた集電体 80は、アルミニウムからなる基材部 81と、基材部 81の厚み方向の 両面に規則的に形成される高さ 5 mのほぼ円形の凸部 82x、 82y (以下「凸部 82」 とする)とを含み、その基材部 81の厚み t力 2 111、最大厚み t力 ^O ^ mである帯  [0182] The obtained current collector 80 includes a base part 81 made of aluminum, and a substantially circular convex part 82x, 82y having a height of 5 m regularly formed on both surfaces of the base part 81 in the thickness direction. (Hereinafter referred to as “convex portion 82”), and the thickness of the base material portion 81 is t force 2 111, and the maximum thickness t force is ^ O ^ m.
7 8  7 8
状の集電体であった。幅方向(長手方向) Xにおいては、凸部 82がピッチ Pで一列 に配列された行単位 83が形成されている。短手方向 Yにおいては、行単位 83がピッ チ Pで平行に配列されている。さらに、行単位 83と、それに隣り合う行単位 83とではCurrent collector. In the width direction (longitudinal direction) X, the protrusions 82 are arranged in a row at a pitch P. A row unit 83 arranged in a row is formed. In the lateral direction Y, the row units 83 are arranged in parallel by the pitch P. Furthermore, in line unit 83 and adjacent line unit 83,
6 6
、各凸部 82が幅方向 Xにおいて 0. 5P分だけずれるように配置されている。このよう  The convex portions 82 are arranged so as to be shifted by 0.5 P in the width direction X. like this
5  Five
な凸部 82の配列パターンは、最密充填配列である。  The arrangement pattern of the convex portions 82 is a close-packed arrangement.
[0183] 集電体 80において、基材部 81と凸部 82との境界部分 82aは曲面で構成されてい た。これにより、圧縮加工時の加工性および集電体 80のローラ 28からの離型性が向 上する。それと共に、ほぼ円形の凸部 82が最密充填配列されているので、集電体 80 は、長手方向 Xに加わる引張応力に対して十分な耐久性を有している。このため、集 電体 80の製造時、集電体 80の加工時などに、集電体 80に変形や橈みが局部的に 生じるのを防止することができた。  In current collector 80, boundary portion 82a between base material portion 81 and convex portion 82 was formed of a curved surface. As a result, the workability during the compression process and the releasability of the current collector 80 from the roller 28 are improved. At the same time, since the substantially circular protrusions 82 are arranged in a close-packed manner, the current collector 80 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, it was possible to prevent the current collector 80 from being locally deformed or sagged during manufacture of the current collector 80 or during processing of the current collector 80.
[0184] また、集電体 80の表面粗さを表面粗さ計で測定したところ、基材部 81の表面 81a は、加工前のアルミニウム箔よりも表面粗さが小さくなつていた。基材部 81の表面 81 aの表面粗さは、セラミックローラ 28の表面粗さとほぼ同じであった。  [0184] Further, when the surface roughness of the current collector 80 was measured with a surface roughness meter, the surface 81a of the base member 81 was found to have a smaller surface roughness than the aluminum foil before processing. The surface roughness of the surface 81 a of the base material portion 81 was almost the same as the surface roughness of the ceramic roller 28.
一方、凸部 82の先端表面の表面粗さは、加工前のアルミニウム箔とほぼ同じであつ た。また、凸部 82の先端表面を走査型電子顕微鏡で観察したところ、加工前のアル ミニゥム箔に観察されたのと同様の細かな擦れ傷が認められた。  On the other hand, the surface roughness of the tip surface of the protrusion 82 was almost the same as that of the aluminum foil before processing. Further, when the tip surface of the projection 82 was observed with a scanning electron microscope, the same fine scratches as those observed on the aluminum foil before processing were observed.
[0185] さらに、集電体 80について、後方散乱電子回折像 (EBSP)法による結晶方位解析 を行ったところ、基材部 81の表面 81aおよび凸部 82の内部は、加工前のアルミユウ ム箔に比べて結晶粒が細力べなっていることが判った。また、集電体 80の引張強度を 測定した結果、基材部 81の厚みが加工前のアルミニウム箔よりも薄くなつているにも 関わらず、引張強度の低下は認められず、圧縮加工による加工硬化により引張強度 が向上したものと推測される。  [0185] Further, when the crystal orientation analysis of the current collector 80 by the backscattered electron diffraction image (EBSP) method was performed, the surface 81a of the base material portion 81 and the inside of the convex portion 82 were aluminum foil before processing. It was found that the crystal grains were more vigorous than. In addition, as a result of measuring the tensile strength of the current collector 80, the tensile strength did not decrease even though the base material portion 81 was thinner than the aluminum foil before processing. It is estimated that the tensile strength was improved by curing.
以上の解析結果から、アルミニウム箔に上記の加工を施したことで、凸部 82の部分 には圧縮加工が施されず、基材部 81の表面 81aには圧縮加工が施され、集電体 80 が得られたものと考えられる。  From the above analysis results, by applying the above processing to the aluminum foil, the convex portion 82 is not compressed, and the surface 81a of the base member 81 is compressed, and the current collector It is considered that 80 was obtained.
[0186] 上記で得られた集電体 80の両面に、正極合剤スラリーを塗布し、乾燥させ、総厚が  [0186] The positive electrode mixture slurry was applied to both sides of the current collector 80 obtained as described above, dried, and the total thickness was
126 mになるようにプレスし、片面の正極活物質層の厚みが 58 μ mである正極を 作製した。このものを所定の幅にスリツタ加工し、正極板を作製した。 正極合剤スラリーは、コバルトの一部をニッケルおよびマンガンで置換したコバルト 酸リチウム 100重量部、アセチレンブラック(導電材) 2重量部、ポリフッ化ビニリデン( 結着材)を活物質 2重量部および適量の N—メチルー 2—ピロリドンを双腕式練合機 にて攪拌し混練することで調製した。 The positive electrode was pressed to 126 m, and the positive electrode active material layer on one side had a thickness of 58 μm. This was slitted to a predetermined width to produce a positive electrode plate. The positive electrode mixture slurry consists of 100 parts by weight of lithium cobaltate in which a part of cobalt is substituted with nickel and manganese, 2 parts by weight of acetylene black (conductive material), 2 parts by weight of active material of polyvinylidene fluoride (binder) and appropriate amount N-methyl-2-pyrrolidone was stirred and kneaded in a double-arm kneader.
[0187] 集電体 80は、図 16に示すように、ほぼ円形の凸部 82が最密充填配列され、基板 部 81と凸部 82との境界部分 82aが曲面で構成されているので、長手方向 Xに加わる 引張応力に対して十分な耐久性を有していた。したがって、集電体 80に正極合剤ス ラリーを塗布し、乾燥およびプレスして正極を作製する工程、正極を所定幅にスリット 加工する工程などにおいて、集電体 80に局部的な変形や橈みが生じるのを防止す ると同時に、正極活物質層の脱落を抑止することができた。  [0187] In the current collector 80, as shown in FIG. 16, the substantially circular convex portions 82 are arranged in a close-packed manner, and the boundary portion 82a between the substrate portion 81 and the convex portion 82 is formed of a curved surface. Sufficient durability against tensile stress applied in the longitudinal direction X. Therefore, the current collector 80 is locally deformed or deformed in a process of applying a positive electrode mixture slurry to the current collector 80, drying and pressing to produce a positive electrode, and slitting the positive electrode to a predetermined width. As a result, it was possible to prevent the positive electrode active material layer from falling off.
[0188] (実施例 25)  [Example 25]
開口の形状がほぼ菱形であり、深さ 10 111、菱形の長い方の対角線 20 mの凹 部 29を複数形成した図 9に示すセラミックローラ 28Aを、図 3に示す集電体製造装置 35におけるローラ 4、 5として装着した。集電体用金属箔 10である厚さ 12 mの帯状 銅箔を、集電体製造装置 35の圧接二ップ部 34a (図 11)に線圧 10kNの加圧下で通 過させて圧縮加工を行い、部分的に塑性変形を発生させて、図 17に示す負極用集 電体 85を作製した。図 17は、本発明の実施形態の一つである集電体 85の構成を模 式的に示す図面である。図 17 (a)は集電体 85の斜視図である。図 17 (b)は集電体 8 5の縦断面図である。  The ceramic roller 28A shown in FIG. 9 in which the shape of the opening is approximately rhombus, the depth is 10 111, and a plurality of the concave portions 29 of the longer diagonal of the rhombus 20 m is formed in the current collector manufacturing apparatus 35 shown in FIG. Mounted as rollers 4 and 5. A metal foil 10 for current collector, a strip-shaped copper foil with a thickness of 12 m, is passed through the pressure welding two-ply part 34a (Fig. 11) of current collector manufacturing equipment 35 under a pressure of 10 kN and compressed. Thus, plastic deformation was partially caused to produce a negative electrode current collector 85 shown in FIG. FIG. 17 is a drawing schematically showing a configuration of a current collector 85 which is one embodiment of the present invention. FIG. 17A is a perspective view of the current collector 85. FIG. 17B is a longitudinal sectional view of the current collector 85.
[0189] 得られた集電体 85は、銅からなる基材部 86と、基材部 86の厚み方向の両面に規 則的に形成される高さ 6 mのほぼ菱形の凸部 87x、 87y (以下「凸部 87」とする)と を含み、その基材部 86の厚み t力 ,1 m、最大厚み t 力 S18 mである帯状の集電  [0189] The obtained current collector 85 includes a base material portion 86 made of copper, and a substantially rhombic convex portion 87x having a height of 6 m, which is regularly formed on both surfaces of the base material portion 86 in the thickness direction. 87y (hereinafter referred to as “convex portion 87”), and a current collector in the form of a strip with a thickness t force of the base material portion 86, 1 m, and a maximum thickness t force S18 m
9 10  9 10
体であった。幅方向(長手方向) Xにおいては、凸部 86がピッチ Pで一列に配列され た行単位 88が形成されている。短手方向 Yにおいては、行単位 88がピッチ Pで平  It was a body. In the width direction (longitudinal direction) X, row units 88 in which convex portions 86 are arranged in a line at a pitch P are formed. In short direction Y, line unit 88 is flat at pitch P.
8 行に配列されている。さらに、行単位 88と、それに隣り合う行単位 88とでは、各凸部 87が幅方向 Xにおいて 0· 5P分だけずれるように配置されている。このような凸部 87 の配列パターンは、最密充填配列である。  Arranged in 8 rows. Further, in the row unit 88 and the adjacent row unit 88, the convex portions 87 are arranged so as to be shifted by 0.5 · 5P in the width direction X. Such an arrangement pattern of the protrusions 87 is a close-packed arrangement.
[0190] 集電体 85において、基材部 86と凸部 87との境界部分 86aは曲面で構成されてい た。これにより、圧縮加工時の加工性および集電体 85のローラ 28からの離型性が向 上する。それと共に、ほぼ菱形の凸部 87が最密充填配列されているので、集電体 85 は、長手方向 Xに加わる引張応力に対して十分な耐久性を有している。このため、集 電体 85の製造時、集電体 85の加工時などに、集電体 85に変形や橈みが局部的に 生じるのを防止することができた。 [0190] In current collector 85, boundary portion 86a between base material portion 86 and convex portion 87 is formed of a curved surface. It was. This improves the workability during compression processing and the releasability of the current collector 85 from the roller 28. At the same time, since the approximately rhombic projections 87 are arranged in a close-packed manner, the current collector 85 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, it was possible to prevent the current collector 85 from being locally deformed or sagged during manufacture of the current collector 85 or during processing of the current collector 85.
[0191] また、集電体 85の表面粗さを表面粗さ計で測定したところ、基材部 86の表面 86a は、加工前の銅箔よりも表面粗さが小さくなつていた。基材部 86の表面 86aの表面粗 さは、セラミックローラ 28の表面粗さとほぼ同じであった。  [0191] Further, when the surface roughness of the current collector 85 was measured with a surface roughness meter, the surface 86a of the base material portion 86 was found to have a smaller surface roughness than the copper foil before processing. The surface roughness of the surface 86a of the base material portion 86 was almost the same as the surface roughness of the ceramic roller 28.
一方、凸部 87の先端表面の表面粗さは、加工前の銅箔とほぼ同じであった。また、 凸部 87の先端表面を走査型電子顕微鏡で観察したところ、加工前の銅箔に観察さ れたのと同様の細かな擦れ傷が認められた。  On the other hand, the surface roughness of the tip surface of the convex portion 87 was almost the same as the copper foil before processing. Further, when the tip surface of the convex portion 87 was observed with a scanning electron microscope, the same fine scratches as those observed on the copper foil before processing were observed.
[0192] さらに、集電体 85について、後方散乱電子回折像 (EBSP)法による結晶方位解析 を行ったところ、基材部 86の表面 86aおよび凸部 87の内部は、加工前の銅箔に比 ベて結晶粒が細力べなっていることが判った。また、集電体 85の引張強度を測定した 結果、基材部 86の厚みが加工前の銅箔よりも薄くなつているにも関わらず、引張強 度の低下は認められず、圧縮加工による加工硬化により引張強度が向上したものと 推測される。  [0192] Further, when the crystal orientation analysis of the current collector 85 by the backscattered electron diffraction image (EBSP) method was performed, the surface 86a of the base material portion 86 and the inside of the convex portion 87 were formed on the copper foil before processing. In comparison, it was found that the crystal grains were weak. In addition, as a result of measuring the tensile strength of the current collector 85, no decrease in tensile strength was observed even though the thickness of the base material portion 86 was thinner than the copper foil before processing. It is estimated that the tensile strength was improved by work hardening.
以上の解析結果から、銅箔に上記の加工を施したことで、凸部 87の部分では圧縮 加工に伴う塑性変形が起こり、基材部 86の表面 86aには圧縮加工が施され、集電体 85が得られたものと考えられる。  From the above analysis results, by performing the above-described processing on the copper foil, plastic deformation accompanying compression processing occurs in the portion of the convex portion 87, and the surface 86a of the base material portion 86 is subjected to compression processing to collect current. It is probable that body 85 was obtained.
[0193] 電子ビーム加熱手段を備える真空蒸着装置の内部に、上記で得られた集電体 85 を装着した。ターゲットとして純度 99. 9999%の珪素を用い、純度 99. 7%の酸素を 導入しながら蒸着を行い、集電体 85の両面の凸部 87表面に膜厚 20 mの SiO [0193] The current collector 85 obtained above was mounted inside a vacuum vapor deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target, vapor deposition was carried out while introducing oxygen with a purity of 99.7%.
0. 5 層を柱状に形成した。このものを所定の幅にスリツタ加工して負極板を作製した。  0.5 layers were formed in a column shape. This was slit to a predetermined width to prepare a negative electrode plate.
[0194] 集電体 85は、図 17 (a)に示すように、その両面にほぼ菱形の凸部 87が最密充填 配列で形成され、かつ基材部 86と凸部 87との境界部分 87aが曲面で構成されてい る。このため、集電体 85の長手方向 Xに向かって負極活物質を蒸着する際に、凸部 87表面に効率良く付着させることができる。 また、集電体 85の長手方向 Xに加わる引張応力に対して十分な耐久性を有してい る。このため、帯状の集電体 85を作製する工程、集電体 85表面に負極活物質を蒸 着して負極板を作製する工程、負極板を所定の幅にスリットする工程などにお!/、て、 集電体 85に局部的な変形や橈みが生じるのが防止される。それと同時に、負極活物 質の脱落を抑止することができた。 As shown in FIG. 17 (a), the current collector 85 has substantially rhombic convex portions 87 formed on both surfaces thereof in a close-packed arrangement, and the boundary portion between the base material portion 86 and the convex portion 87. 87a is a curved surface. For this reason, when the negative electrode active material is deposited in the longitudinal direction X of the current collector 85, it can be efficiently attached to the surface of the convex portion 87. In addition, the current collector 85 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, in the step of producing the strip-shaped current collector 85, the step of depositing the negative electrode active material on the surface of the current collector 85 to produce the negative electrode plate, the step of slitting the negative electrode plate to a predetermined width, etc. Thus, local deformation and stagnation of the current collector 85 are prevented. At the same time, the negative electrode active material could be prevented from falling off.
[0195] (実施例 26) [0195] (Example 26)
開口の形状がほぼ円形であり、深さ 10 111、開口径 10 mの凹部 29を複数形成 した図 9に示すセラミックローラ 28を、図 3に示す集電体製造装置 35におけるローラ 4、 5として装着した。集電体用金属箔 10である厚さ 18 ΐηの帯状銅箔を、集電体製 造装置 35の圧接二ップ部 34a (図 11)に線圧 10kNの加圧下で通過させて圧縮加工 を行い、部分的に塑性変形を発生させて、図 16に示す負極用集電体 80を作製した The ceramic roller 28 shown in FIG. 9 having a substantially circular opening, a plurality of recesses 29 having a depth of 10 111 and an opening diameter of 10 m is used as rollers 4 and 5 in the current collector manufacturing apparatus 35 shown in FIG. Installed. The metal foil 10 for the current collector, which is 18 ΐη thick, is passed through the pressure welding two-ply part 34a (Fig. 11) of the current collector manufacturing device 35 under a pressure of 10 kN and compressed. To partially generate plastic deformation to produce a negative electrode current collector 80 shown in FIG.
Yes
[0196] 得られた集電体 80は、銅からなる基材部 81と、基材部 81の厚み方向の両面に規 則的に形成される高さ 8 mのほぼ円形の凸部 82x、 82y (以下「凸部 82」とする)と を含み、その基材部 81の厚み t力 0 111、最大厚み t力 ¾6 mである帯状の集電  [0196] The obtained current collector 80 includes a base material portion 81 made of copper, and a substantially circular convex portion 82x having a height of 8 m, which is regularly formed on both surfaces of the base material portion 81 in the thickness direction. 82y (hereinafter referred to as “convex portion 82”), and a base-shaped portion 81 having a thickness t force 0 111 and a maximum thickness t force ¾6 m.
7 8  7 8
体であった。幅方向(長手方向) Xにおいては、凸部 82がピッチ Pで一列に配列され  It was a body. In the width direction (longitudinal direction) X, the protrusions 82 are arranged in a line at a pitch P.
5  Five
た行単位 83が形成されている。短手方向 Yにおいては、行単位 83がピッチ Pで平  A row unit 83 is formed. In short direction Y, line unit 83 is flat at pitch P.
6 行に配列されている。さらに、行単位 83と、それに隣り合う行単位 83とでは、各凸部 82が幅方向 Xにおいて 0· 5P分だけずれるように配置されている。このような凸部 82  Arranged in 6 rows. Further, in the row unit 83 and the adjacent row unit 83, the respective protrusions 82 are arranged so as to be shifted by 0.5 · 5P in the width direction X. Such a convex part 82
5  Five
の配列パターンは、最密充填配列である。  This arrangement pattern is a close-packed arrangement.
[0197] 集電体 80において、基材部 81と凸部 82との境界部分 82aは曲面で構成されてい た。これにより、圧縮加工時の加工性および集電体 80のローラ 28からの離型性が向 上する。それと共に、ほぼ円形の凸部 82が最密充填配列されているので、集電体 80 は、長手方向 Xに加わる引張応力に対して十分な耐久性を有している。このため、集 電体 80の製造時、集電体 80の加工時などに、集電体 80に変形や橈みが局部的に 生じるのを防止することができた。  [0197] In the current collector 80, the boundary portion 82a between the base material portion 81 and the convex portion 82 was formed of a curved surface. As a result, the workability during the compression process and the releasability of the current collector 80 from the roller 28 are improved. At the same time, since the substantially circular protrusions 82 are arranged in a close-packed manner, the current collector 80 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, it was possible to prevent the current collector 80 from being locally deformed or sagged during manufacture of the current collector 80 or during processing of the current collector 80.
[0198] また、集電体 80の表面粗さを表面粗さ計で測定したところ、基材部 81の表面 81a は、加工前の銅箔よりも表面粗さが小さくなつていた。基材部 81の表面 81aの表面粗 さは、セラミックローラ 28の表面粗さとほぼ同じであった。 [0198] Further, when the surface roughness of the current collector 80 was measured with a surface roughness meter, the surface 81a of the base member 81 was found to have a smaller surface roughness than the copper foil before processing. Surface of substrate 81 surface roughness of surface 81a This was almost the same as the surface roughness of the ceramic roller 28.
一方、凸部 82の先端表面の表面粗さは、加工前の銅箔とほぼ同じであった。また、 凸部 82の先端表面を走査型電子顕微鏡で観察したところ、加工前の銅箔に観察さ れたのと同様の細かな擦れ傷が認められた。  On the other hand, the surface roughness of the tip surface of the convex portion 82 was almost the same as the copper foil before processing. Further, when the tip surface of the convex portion 82 was observed with a scanning electron microscope, the same fine scratches as those observed on the copper foil before processing were observed.
[0199] さらに、集電体 80について、後方散乱電子回折像 (EBSP)法による結晶方位解析 を行ったところ、基材部 81の表面 81aおよび凸部 82の内部は、加工前の銅箔に比 ベて結晶粒が細力べなっていることが判った。また、集電体 80の引張強度を測定した 結果、基材部 81の厚みが加工前の銅箔よりも薄くなつているにも関わらず、引張強 度の低下は認められず、圧縮加工による加工硬化により引張強度が向上したものと 推測される。 [0199] Further, when the crystal orientation analysis of the current collector 80 by the backscattered electron diffraction image (EBSP) method was performed, the surface 81a of the base material portion 81 and the inside of the convex portion 82 were formed on the copper foil before processing. In comparison, it was found that the crystal grains were weak. In addition, as a result of measuring the tensile strength of the current collector 80, no decrease in tensile strength was observed even though the thickness of the base material portion 81 was thinner than the copper foil before processing. It is estimated that the tensile strength was improved by work hardening.
以上の解析結果から、銅箔に上記の加工を施したことで、凸部 82の部分には圧縮 加工に伴って塑性変形が起こり、基材部 81の表面 81aには圧縮加工が施され、集電 体 80が得られたものと考えられる。  From the above analysis results, by performing the above-described processing on the copper foil, plastic deformation occurs in the portion of the convex portion 82 along with the compression processing, and the surface 81a of the base material portion 81 is subjected to the compression processing. It is considered that current collector 80 was obtained.
[0200] 電子ビーム加熱手段を備える真空蒸着装置の内部に、上記で得られた集電体 85 を装着した。ターゲットとして純度 99. 9999%の珪素を用い、純度 99. 7%の酸素を 導入しながら蒸着を行い、集電体 85の両面の凸部 87表面に膜厚 25 mの SiO [0200] The current collector 85 obtained above was mounted inside a vacuum vapor deposition apparatus equipped with an electron beam heating means. Using silicon with a purity of 99.9999% as a target, vapor deposition was carried out while introducing oxygen with a purity of 99.7%.
0. 5 層を柱状に形成した。このものを所定の幅にスリツタ加工して負極板を作製した。  0.5 layers were formed in a column shape. This was slit to a predetermined width to prepare a negative electrode plate.
[0201] 集電体 80は、図 16 (a)に示すように、その両面にほぼ円形の凸部 82が最密充填 配列で形成され、かつ基材部 81と凸部 82との境界部分 82aが曲面で構成されてい る。このため、集電体 80の長手方向 Xに向かって負極活物質を蒸着する際に、凸部 82表面に効率良く付着させることができる。 [0201] As shown in Fig. 16 (a), the current collector 80 has substantially circular convex portions 82 formed on both surfaces thereof in a close-packed arrangement, and a boundary portion between the base material portion 81 and the convex portions 82. 82a is a curved surface. For this reason, when the negative electrode active material is deposited in the longitudinal direction X of the current collector 80, the negative electrode active material can be efficiently attached to the surface of the convex portion 82.
また、集電体 80の長手方向 Xに加わる引張応力に対して十分な耐久性を有してい る。このため、帯状の集電体 80を作製する工程、集電体 80表面に負極活物質を蒸 着して負極板を作製する工程、負極板を所定の幅にスリットする工程などにお!/、て、 集電体 85に局部的な変形や橈みが生じるのが防止される。それと同時に、負極活物 質の脱落を抑止することができた。  In addition, the current collector 80 has sufficient durability against the tensile stress applied in the longitudinal direction X. For this reason, in the step of manufacturing the strip-shaped current collector 80, the step of depositing the negative electrode active material on the surface of the current collector 80 to prepare the negative electrode plate, the step of slitting the negative electrode plate to a predetermined width, etc. Thus, local deformation and stagnation of the current collector 85 are prevented. At the same time, the negative electrode active material could be prevented from falling off.
[0202] 実施例 24で得られた正極板および上記で得られた負極板を用い、図 12に示す円 筒型非水電解質二次電池 40を作製した。まず、正極板 50、セパレータ 52、負極板 5 1およびセパレータ 52をこの順番で重ね合わせ、渦巻き状に捲回して電極群 41を作 製した。さらに、図 9に示したように正極板 15と負極板 17とをセパレータ 19を介して 渦巻状に巻回した電極群 14を作製した。この電極群 41を有底円筒形の電池ケース 47の内部に絶縁板 44と共に収容した。電極群 41の下部より導出した図示しない負 極リードを電池ケース 47の底部に接続し、次いで電極群 41の上部より導出した正極 リード 42を封口板 45に接続し、電池ケース 47に所定量の非水溶媒からなる電解液( 図示せず)を注液した。その後、電池ケース 47の開口部に封口ガスケット 46を周縁 に取り付けた封口板 45を揷入し電池ケース 47の開口部を内方向に折り曲げてかし め封口することにより、本発明の非水系二次電池 40を作製した。 [0202] Using the positive electrode plate obtained in Example 24 and the negative electrode plate obtained above, a cylindrical nonaqueous electrolyte secondary battery 40 shown in Fig. 12 was produced. First, positive plate 50, separator 52, negative plate 5 1 and separator 52 were superposed in this order, and wound in a spiral shape to produce electrode group 41. Further, as shown in FIG. 9, an electrode group 14 was produced in which a positive electrode plate 15 and a negative electrode plate 17 were spirally wound through a separator 19. The electrode group 41 was housed together with an insulating plate 44 in a bottomed cylindrical battery case 47. A negative lead (not shown) derived from the lower part of the electrode group 41 is connected to the bottom of the battery case 47, and then a positive lead 42 led from the upper part of the electrode group 41 is connected to the sealing plate 45. An electrolyte solution (not shown) made of a nonaqueous solvent was injected. Thereafter, a sealing plate 45 having a sealing gasket 46 attached to the periphery thereof is inserted into the opening of the battery case 47, and the opening of the battery case 47 is folded inward to seal it. A secondary battery 40 was produced.
[0203] 上記非水系二次電池 40において渦巻状に巻回した電極群 41を作製した後に、こ の電極群 41を解体して観察したところ正極板 50、負極板 51ともに電極板切れゃ活 物質層の脱落などの不具合は認められなかった。さらに、この非水系二次電池 40を 300サイクル充放電させた力、サイクル劣化もなく 300サイクル後に非水系二次電池 40および電極群 41を解体したところ、リチウム析出、活物質層の脱落などの不具合 は認められなかった。 [0203] After the electrode group 41 wound in the spiral shape in the non-aqueous secondary battery 40 was produced, the electrode group 41 was disassembled and observed. If both the positive electrode plate 50 and the negative electrode plate 51 were broken, it was active. There were no defects such as falling off of the material layer. Furthermore, when the non-aqueous secondary battery 40 and the electrode group 41 were disassembled after 300 cycles without any cycle deterioration, the force that caused the non-aqueous secondary battery 40 to charge and discharge for 300 cycles, lithium precipitation, active material layer dropping, etc. No defects were found.
[0204] これは、圧縮加工が施されていない凸部表面に活物質層の薄膜を柱状に形成する ことで、リチウム吸蔵時における活物質層の薄膜の膨張およびリチウム放出時におけ る活物質層の薄膜の収縮による体積変化を緩和する効果により、良好な電池特性を 維持できたものと考えられる。  [0204] This is because the thin film of the active material layer is formed in a columnar shape on the surface of the convex portion that is not subjected to compression processing, so that the thin film of the active material layer during lithium occlusion and the active material layer during lithium release It is considered that good battery characteristics were maintained by the effect of reducing the volume change due to the shrinkage of the thin film.
[0205] 以上の実施例で述べてきたように、本発明の非水系二次電池用電極板は集電体 の基材部と凸部との間の境界部分が曲面で構成されることで、圧縮加工時の加工性 および集電体の離型性が良好である。また、集電体の凸部の先端表面は圧縮加工 が施されていないが故に、加工を施したことによる加工歪が残留せず、凸部先端表 面の面精度が良好であるため、均一な薄膜状活物質層の形成が可能である。また、 凸部が圧縮加工に伴う塑性変形により形成されるので、凸部先端表面は表面粗さが 小さくなることもなく、初期の表面粗さを維持している。したがって、薄膜状の活物質 層との密着力が高いものと考えられる。  [0205] As described in the above embodiments, the electrode plate for a non-aqueous secondary battery according to the present invention is such that the boundary portion between the base portion and the convex portion of the current collector is a curved surface. Good workability during compression processing and release property of current collector. In addition, since the tip surface of the convex portion of the current collector is not compressed, there is no processing strain due to the processing, and the surface accuracy of the convex tip surface is good. A thin film active material layer can be formed. Further, since the convex portion is formed by plastic deformation accompanying compression processing, the surface roughness of the surface of the convex portion tip is not reduced, and the initial surface roughness is maintained. Therefore, it is considered that the adhesion with the thin film active material layer is high.
[0206] この観点からすれば、凸部平面と電極活物質合剤層との密着力をさらに高めるた めには、加工前の集電体の表面をあらかじめさらに粗な状態しておくことは非常に有 効であると考えられる。 [0206] From this point of view, the adhesion between the flat surface of the convex portion and the electrode active material mixture layer was further increased. For this purpose, it is considered very effective to make the surface of the current collector before processing rougher in advance.
また、本発明の非水系二次電池における活物質層は凸部先端表面に柱状に形成 するのが好ましい。これにより、非水系二次電池の充放電に伴ったリチウム吸蔵時に おける活物質層の膨張およびリチウム放出時における活物質層の収縮による体積変 化を緩和される。その結果、充放電による電極板切れや活物質層の脱落などの不具 合が一層発生し難ぐ高容量で信頼性の高い非水系二次電池が得られる。  In addition, the active material layer in the non-aqueous secondary battery of the present invention is preferably formed in a columnar shape on the tip surface of the convex portion. As a result, the volume change due to the expansion of the active material layer during lithium occlusion accompanying the charge / discharge of the non-aqueous secondary battery and the contraction of the active material layer during lithium release is alleviated. As a result, a non-aqueous secondary battery with high capacity and high reliability is obtained that is less likely to cause defects such as electrode plate breakage and dropping of the active material layer due to charge and discharge.
産業上の利用可能性 Industrial applicability
本発明に係る非水系二次電池用の集電体および電極板の製造方法によると、電 極板を作製するための集電体の強度を確保すると共に、集電体上に形成した凸部の 上に電極活物質を効率良く担持することができ、信頼性の高い非水系二次電池が得 られるため、電子機器および通信機器の多機能化に伴って、高容量化が望まれてい る携帯用電子機器類の電源などとして有用である。  According to the method for manufacturing a current collector and an electrode plate for a non-aqueous secondary battery according to the present invention, the strength of the current collector for producing the electrode plate is ensured, and the convex portions formed on the current collector Since an electrode active material can be efficiently carried on the substrate and a highly reliable non-aqueous secondary battery can be obtained, a higher capacity is desired as electronic devices and communication devices become more multifunctional. It is useful as a power source for portable electronic devices.

Claims

請求の範囲 The scope of the claims
[I] 表面が互いに圧接してシート状物が通過可能な圧接二ップ部を形成するように設 けられかつ少なくとも一方の表面に複数の凹部が形成された一対の加工手段を用い 、集電体用金属箔を加工手段の圧接ニップ部に通過させて圧縮加工を行い、集電 体用金属箔の少なくとも一方の表面に複数の凸部を形成する非水電解質二次電池 用集電体の製造方法。  [I] Using a pair of processing means provided so as to form a pressure-welding two-ply portion through which the surfaces can be pressed against each other and through which a sheet-like material can pass, and a plurality of recesses are formed on at least one surface. A current collector for a non-aqueous electrolyte secondary battery in which a metal foil for electrical current is passed through a pressure nip of a processing means and subjected to compression to form a plurality of convex portions on at least one surface of the metal foil for current collector. Manufacturing method.
[2] 凸部の先端表面の表面粗さが圧縮加工前の集電体用金属箔の表面粗さとほぼ同 じである請求項 1に記載の製造方法。  [2] The manufacturing method according to claim 1, wherein the surface roughness of the tip surface of the convex portion is substantially the same as the surface roughness of the metal foil for current collector before compression processing.
[3] 凹部の加工手段表面に垂直な方向の断面は、該断面の加工手段表面に平行な方 向の幅が加工手段表面から凹部底面に向けて徐々に小さくなるテーパ形状を有して いる請求項 1または 2に記載の製造方法。 [3] The cross section of the recess in the direction perpendicular to the processing means surface has a tapered shape in which the width of the cross section in the direction parallel to the processing means surface gradually decreases from the processing means surface toward the bottom of the recess. The manufacturing method according to claim 1 or 2.
[4] 凸部の体積力 凹部の内部空間の体積以下になるように圧縮加工する請求項;!〜 [4] Volume force of the convex portion Claim that compresses so as to be less than or equal to the volume of the internal space of the concave portion;
3のいずれか 1つに記載の製造方法。  4. The production method according to any one of 3.
[5] 凸部の体積力 凹部の内部空間の体積の 85%以下になるように圧縮加工する請 求項 1〜4のいずれ力、 1つに記載の製造方法。 [5] Volume force of convex portion The manufacturing method according to any one of claims 1 to 4, wherein the compression processing is performed so that the volume of the internal space of the concave portion is 85% or less.
[6] 表面に複数の凹部が形成された加工手段において、凹部と加工手段の表面との境 界が曲面である請求項 1〜5のいずれ力、 1つに記載の製造方法。 6. The manufacturing method according to any one of claims 1 to 5, wherein the boundary between the recess and the surface of the processing means is a curved surface in the processing means having a plurality of recesses formed on the surface.
[7] 凹部と加工手段の表面との境界の曲面形状力 凹部をレーザ加工にて形成し、レ 一ザ加工により生じる、凹部と加工手段の表面との境界の隆起を除去することにより 形成される請求項 6に記載の製造方法。 [7] Curved shape force at the boundary between the recess and the surface of the processing means Formed by forming the recess by laser processing and removing the bulge at the boundary between the recess and the surface of the processing means generated by laser processing The manufacturing method according to claim 6.
[8] 平均粒径 30 ,1 m以上、 53 μ m未満のダイヤモンド粒子で研磨することにより、隆起 を除去する請求項 7に記載の製造方法。 [8] The production method according to claim 7, wherein the bumps are removed by polishing with diamond particles having an average particle diameter of 30,1 m or more and less than 53 μm.
[9] 凹部と加工手段の表面との境界に幅 1 μ m以下、深さ 1 μ m以下の溝が複数形成 されて!/、る請求項 6〜8の!/、ずれか 1つに記載の製造方法。 [9] A plurality of grooves having a width of 1 μm or less and a depth of 1 μm or less are formed at the boundary between the recess and the surface of the processing means! The manufacturing method as described.
[10] 平均粒径 5 a m以下のダイヤモンド粒子で研磨することにより、溝を形成する請求 項 9に記載の製造方法。 [10] The production method according to claim 9, wherein the grooves are formed by polishing with diamond particles having an average particle diameter of 5 am or less.
[I I] 一対の加工手段が一対のローラであり、少なくとも一方のローラの表面に凹部が形 成されて V、る請求項;!〜 10の!/、ずれか 1つに記載の製造方法。 [II] The manufacturing method according to claim 1, wherein the pair of processing means is a pair of rollers, and a concave portion is formed on the surface of at least one of the rollers, and V;
[12] 凹部が形成されているローラの表面および凹部の内部空間を臨む表面に、超硬合 金、合金工具鋼または酸化クロムを含有する表面被覆層が形成されている請求項 1 1に記載の製造方法。 [12] The surface coating layer containing cemented carbide, alloy tool steel or chromium oxide is formed on the surface of the roller on which the recess is formed and on the surface facing the inner space of the recess. Manufacturing method.
[13] 表面被覆層の表面に、非晶質炭素材料を含有する保護層が形成されている請求 項 12に記載の製造方法。  13. The method according to claim 12, wherein a protective layer containing an amorphous carbon material is formed on the surface of the surface coating layer.
[14] 表面被覆層および保護層が、スパッタリングを利用する物理的気相成長法、イオン 注入を利用する物理的気相成長法、熱蒸着を利用する化学的気相成長法およびプ ラズマ蒸着を利用する化学的気相成長法よりなる群から選ばれる少なくとも 1つの気 相成長法により形成される請求項 12または 13に記載の製造方法。  [14] The surface coating layer and the protective layer are formed by physical vapor deposition using sputtering, physical vapor deposition using ion implantation, chemical vapor deposition using thermal evaporation, and plasma deposition. 14. The production method according to claim 12 or 13, wherein the production method is formed by at least one gas phase growth method selected from the group consisting of chemical vapor deposition methods to be used.
[15] 少なくとも一方のローラ力 表面にセラミック層を設けたローラであり、セラミック層の 表面に凹部が形成されている請求項 1〜; 10のいずれ力、 1つに記載の製造方法。  15. The production method according to any one of claims 1 to 10, wherein at least one roller force is a roller provided with a ceramic layer on the surface, and a recess is formed on the surface of the ceramic layer.
[16] ローラまたは集電体用金属箔の表面に潤滑剤を塗布し、乾燥させている請求項 1 〜; 10の V、ずれか 1つに記載の製造方法。  [16] The method according to any one of [1] to [10], wherein a lubricant is applied to the surface of the roller or the current collector metal foil and dried.
[17] 潤滑剤が脂肪酸を含有する請求項 16に記載の製造方法。  17. The production method according to claim 16, wherein the lubricant contains a fatty acid.
[18] 集電体用金属箔からなる基材部と、基材部の少なくとも一方の表面から基材部の 外方に延びるように形成される複数の凸部とを含み、基材部表面と凸部との境界が 曲面である非水電解質二次電池用集電体。  [18] A substrate portion surface comprising a substrate portion made of a metal foil for a current collector, and a plurality of convex portions formed so as to extend outward from at least one surface of the substrate portion Current collector for a non-aqueous electrolyte secondary battery in which the boundary between the convex portion and the convex portion is a curved surface.
[19] 請求項;!〜 17のいずれか 1つに記載の非水電解質二次電池用集電体の製造方法 により製造される非水電解質二次電池用集電体または請求項 18の非水電解質二次 電池用集電体の表面に、正極活物質または負極活物質を担持させる非水電解質二 次電池用電極の製造方法。 [19] A non-aqueous electrolyte secondary battery current collector manufactured by the method for manufacturing a non-aqueous electrolyte secondary battery current collector according to any one of! A method for producing an electrode for a non-aqueous electrolyte secondary battery in which a positive electrode active material or a negative electrode active material is supported on the surface of a current collector for a water electrolyte secondary battery.
[20] 非水電解質二次電池用集電体の凸部表面に、正極活物質または負極活物質を担 持させる請求項 19に記載の非水電解質二次電池用電極の製造方法。 20. The method for producing a nonaqueous electrolyte secondary battery electrode according to claim 19, wherein the positive electrode active material or the negative electrode active material is supported on the convex surface of the current collector for the nonaqueous electrolyte secondary battery.
[21] 正極、負極、セパレータおよび非水電解質を含有する非水電解質二次電池であつ て、 [21] A non-aqueous electrolyte secondary battery containing a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte,
正極および負極の少なくとも一方が、請求項 19または請求項 20の非水電解質二 次電池用電極の製造方法により製造された電極である非水電解質二次電池。  21. A nonaqueous electrolyte secondary battery, wherein at least one of the positive electrode and the negative electrode is an electrode produced by the method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 19 or 20.
PCT/JP2007/072221 2006-11-15 2007-11-15 Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery WO2008059937A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/447,230 US20100003599A1 (en) 2006-11-15 2007-11-15 Method for producing current collector for non-aqueous electrolyte secondary battery, method for producing electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN2007800419422A CN101536223B (en) 2006-11-15 2007-11-15 Collector for nonaqueous secondary battery and method for manufacturing same, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR1020097010044A KR101139639B1 (en) 2006-11-15 2007-11-15 Method for producing current collector for nonaqueous electrolyte secondary battery, method for producing electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2006308774 2006-11-15
JP2006-308774 2006-11-15
JP2006-321495 2006-11-29
JP2006321495 2006-11-29
JP2006-321496 2006-11-29
JP2006321496 2006-11-29
JP2007059443 2007-03-09
JP2007-059443 2007-03-09
JP2007083733 2007-03-28
JP2007-083733 2007-03-28
JP2007296872A JP2008270153A (en) 2006-11-15 2007-11-15 Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2007-296872 2007-11-15

Publications (1)

Publication Number Publication Date
WO2008059937A1 true WO2008059937A1 (en) 2008-05-22

Family

ID=39401739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072221 WO2008059937A1 (en) 2006-11-15 2007-11-15 Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Country Status (2)

Country Link
KR (1) KR101139639B1 (en)
WO (1) WO2008059937A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826632A (en) * 2009-02-19 2010-09-08 株式会社半导体能源研究所 Electrical storage device
US20100330267A1 (en) * 2008-09-26 2010-12-30 Kyoushige Shimizu Method for producing electrode plate for battery
US8962190B1 (en) * 2010-12-17 2015-02-24 Hrl Laboratories, Llc Three-dimensional electrodes with conductive foam for electron and lithium-ion transport

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504482A (en) * 1988-11-14 1992-08-06 ミクソ インコーポレイテッド Improved grid for lead acid batteries
JPH04328244A (en) * 1991-04-26 1992-11-17 Riken Corp Battery positive pole and manufacture thereof
WO1994015375A1 (en) * 1992-12-28 1994-07-07 Yuasa Corporation Expanded net, method for its manufacture, and plate for lead storage battery
JPH07335208A (en) * 1994-06-10 1995-12-22 Matsushita Electric Ind Co Ltd Coated electrode for battery, and its manufacture
JP2006172773A (en) * 2004-12-13 2006-06-29 Ngk Spark Plug Co Ltd Thin battery
JP2007080609A (en) * 2005-09-13 2007-03-29 Hitachi Cable Ltd Electrode for electrochemical apparatus, solid electrolyte/electrode assembly, and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724913A (en) * 1993-07-12 1995-01-27 Sekisui Chem Co Ltd Roll-molding method for resin foamed sheet
US7678034B2 (en) * 2003-12-30 2010-03-16 Kimberly-Clark Worldwide, Inc. Embossing roll and embossed substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504482A (en) * 1988-11-14 1992-08-06 ミクソ インコーポレイテッド Improved grid for lead acid batteries
JPH04328244A (en) * 1991-04-26 1992-11-17 Riken Corp Battery positive pole and manufacture thereof
WO1994015375A1 (en) * 1992-12-28 1994-07-07 Yuasa Corporation Expanded net, method for its manufacture, and plate for lead storage battery
JPH07335208A (en) * 1994-06-10 1995-12-22 Matsushita Electric Ind Co Ltd Coated electrode for battery, and its manufacture
JP2006172773A (en) * 2004-12-13 2006-06-29 Ngk Spark Plug Co Ltd Thin battery
JP2007080609A (en) * 2005-09-13 2007-03-29 Hitachi Cable Ltd Electrode for electrochemical apparatus, solid electrolyte/electrode assembly, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330267A1 (en) * 2008-09-26 2010-12-30 Kyoushige Shimizu Method for producing electrode plate for battery
CN101826632A (en) * 2009-02-19 2010-09-08 株式会社半导体能源研究所 Electrical storage device
US8927156B2 (en) 2009-02-19 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8962190B1 (en) * 2010-12-17 2015-02-24 Hrl Laboratories, Llc Three-dimensional electrodes with conductive foam for electron and lithium-ion transport

Also Published As

Publication number Publication date
KR20090082223A (en) 2009-07-29
KR101139639B1 (en) 2012-05-14

Similar Documents

Publication Publication Date Title
JP2008270153A (en) Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP4364298B2 (en) Current collector, electrode and non-aqueous electrolyte secondary battery
JP5153734B2 (en) Current collector for non-aqueous electrolyte secondary battery
JP7031249B2 (en) Method of manufacturing electrodes for secondary batteries and method of manufacturing secondary batteries
US20080248386A1 (en) Electrodes with raised patterns
JP2010080432A5 (en)
CN110495024B (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
JP2010262860A (en) Lithium ion battery
US20210408608A1 (en) Electrode assembly and manufacturing method therefor
WO2008023733A1 (en) Non-aqueous electrolyte secondary battery negative electrode, its manufacturing method, and non-aqueous electrolyte secondary battery
WO2008053880A1 (en) Secondary cell and its manufacturing method
US11233296B2 (en) Electrode assembly and manufacturing method therefor
TW202034560A (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2004214140A (en) Electrode plate for battery and manufacturing method thereof, and nonaqueous electrolyte battery
WO2008059937A1 (en) Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP4636920B2 (en) Battery with spiral electrode
CN109075311B (en) Electrode for battery, battery provided with the same, and method for manufacturing the same
JP5904096B2 (en) Current collector for lithium ion secondary battery and lithium ion secondary battery using the same
WO2012131972A1 (en) Nonaqueous electrolyte battery
JP2009199973A (en) Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP2014160540A (en) Lithium ion secondary battery anode and manufacturing method therefor, and lithium ion secondary battery using the same
JP2008010419A (en) Manufacturing method of electrode for electrochemical element, and electrochemical element including it
JP2008123939A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP3969189B2 (en) Square battery and manufacturing method thereof
JP6699351B2 (en) Electrode manufacturing method and electrode inspection method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041942.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12447230

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097010044

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831951

Country of ref document: EP

Kind code of ref document: A1