JP2009199973A - Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery - Google Patents

Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery Download PDF

Info

Publication number
JP2009199973A
JP2009199973A JP2008042471A JP2008042471A JP2009199973A JP 2009199973 A JP2009199973 A JP 2009199973A JP 2008042471 A JP2008042471 A JP 2008042471A JP 2008042471 A JP2008042471 A JP 2008042471A JP 2009199973 A JP2009199973 A JP 2009199973A
Authority
JP
Japan
Prior art keywords
active material
current collector
electrode active
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008042471A
Other languages
Japanese (ja)
Inventor
Takashi Nonoshita
孝 野々下
Hitoshi Katayama
仁 片山
Takahiro Nishimura
卓寛 西村
Yoshifumi Taguchi
良文 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008042471A priority Critical patent/JP2009199973A/en
Publication of JP2009199973A publication Critical patent/JP2009199973A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a collector of an electrode plate for a nonaqueous secondary battery capable of securing strength of the collector necessary for manufacturing of the electrode plate and effectively supporting an electrode active material on a projected section at high sticking force since the projected section having a specific arrangement pattern is formed on the surface of the collector by making a processing roller having recessed sections pass through twice or more. <P>SOLUTION: In the collector for the nonaqueous secondary battery wherein at least a positive electrode active material or a negative electrode active material is held on a beltlike metal foil, a plurality of projected sections 2 are formed on at least one surface of the collector 1B made of metal foil, and fine projections 3 as surface treated sections for enhancing the sticking force with the electrode active material are formed on the surface of the tip of the projected section 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン電池に代表される非水系二次電池に関し、特にこの非水系二次電池用集電体およびこれを用いた非水系二次電池用電極板と非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery typified by a lithium ion battery, and more particularly to a current collector for a non-aqueous secondary battery, a non-aqueous secondary battery electrode plate using the same, and a non-aqueous secondary battery. It is.

近年、携帯用電子機器の電源として利用が広がっているリチウム二次電池は、負極にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極にLiCoO2等の遷移金属とリチウムの複合酸化物を電極活物質として用いており、これによって、高電位で高放電容量のリチウム二次電池を実現している。しかし、近年の電子機器および通信機器の多機能化に伴って、リチウム二次電池の充放電サイクルに伴う特性劣化の改善が望まれている。一般的に、リチウム二次電池の発電要素である電極板としては、正極活物質または負極活物質、結着剤としてのバインダー、必要に応じて導電材を分散媒に混錬分散した合剤塗料を集電体の片面もしくは両面に塗布し乾燥後にプレスして構成されている。 In recent years, lithium secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode and a composite oxidation of transition metal such as LiCoO 2 and lithium for the positive electrode. As a result, a lithium secondary battery having a high potential and a high discharge capacity is realized. However, with the recent multi-functionalization of electronic devices and communication devices, it is desired to improve the characteristic deterioration accompanying the charge / discharge cycle of the lithium secondary battery. In general, as an electrode plate that is a power generation element of a lithium secondary battery, a positive electrode active material or a negative electrode active material, a binder as a binder, and a mixture paint in which a conductive material is kneaded and dispersed in a dispersion medium as required. Is applied to one or both sides of the current collector, dried and pressed.

ここで、充放電サイクルに伴う特性劣化の要因の一つとして、集電体上に塗布された正極活物質合剤層または負極活物質合剤層と集電体との結着力の低下が挙げられ、これは充放電に伴う電極板の膨張や収縮により集電体の界面での結着力が弱まり正極活物質合剤層または負極活物質合剤層が脱落するためである。   Here, as one of the causes of characteristic deterioration accompanying the charge / discharge cycle, there is a decrease in the binding force between the positive electrode active material mixture layer or the negative electrode active material mixture layer applied on the current collector and the current collector. This is because the binding force at the interface of the current collector is weakened due to expansion and contraction of the electrode plate accompanying charging and discharging, and the positive electrode active material mixture layer or the negative electrode active material mixture layer falls off.

そこで、正極活物質合剤層または負極活物質合剤層と集電体との結着力を高める手段として、集電体の界面の接触面積を増大させる方法があり、一般的には電解により集電体の表面をエッチングする方法、あるいは電着により表面に構成金属を析出させる方法により集電体の表面を粗面化している。このように集電体の表面を粗面化する別の方法として、例えば被処理材である圧延銅箔の表面に微粒子を高速で衝突させ表面に微小な凹凸を形成する方法が提案されている(例えば、特許文献1参照)。   Therefore, as a means for increasing the binding force between the positive electrode active material mixture layer or the negative electrode active material mixture layer and the current collector, there is a method of increasing the contact area of the current collector interface, which is generally collected by electrolysis. The surface of the current collector is roughened by a method of etching the surface of the current collector or a method of depositing a constituent metal on the surface by electrodeposition. As another method for roughening the surface of the current collector as described above, for example, a method of forming fine irregularities on the surface by causing fine particles to collide with the surface of a rolled copper foil, which is a material to be processed, at high speed has been proposed. (For example, refer to Patent Document 1).

また、金属箔にレーザー光を照射して表面粗さが10点平均粗さで0.5から10μmの凹凸を形成する方法が提案されている(例えば、特許文献2参照)。   In addition, a method has been proposed in which a metal foil is irradiated with laser light to form irregularities having a surface roughness of 0.5 to 10 μm with an average roughness of 10 points (see, for example, Patent Document 2).

また目的は別であるが集電体の表面に凹凸を形成する方法が種々知られており、例えば図7に示したように電極活物質合剤層を塗布する厚みを薄くしないで出力密度を向上させたリチウム二次電池を得ることを目的として、金属箔からなる集電体71を一対のガイドローラ72,73に挟み込んでその表面を凹凸状とし、単位面積当たりの表面積を増やして電極活物質合剤層と集電体との接触面積を増大させる方法が提案されている(例えば、特許文献3参照)。   Although there are different purposes, various methods for forming irregularities on the surface of the current collector are known. For example, as shown in FIG. 7, the output density can be increased without reducing the thickness of the electrode active material mixture layer. For the purpose of obtaining an improved lithium secondary battery, a current collector 71 made of metal foil is sandwiched between a pair of guide rollers 72 and 73 so that the surface thereof is uneven, and the surface area per unit area is increased to increase the electrode activity. A method of increasing the contact area between the material mixture layer and the current collector has been proposed (see, for example, Patent Document 3).

また、電極活物質の担持性と電気伝導性とに優れたリチウム二次電池用の集電体を得ることを目的として、図8(a)〜(e)に示したように金属箔の片側の面が窪んでいるとき反対側の面が突出した形状で、且つ、金属箔の平面に規則的に分散した凹凸を形成する方法が提案されている(例えば、特許文献4参照)。   Further, for the purpose of obtaining a current collector for a lithium secondary battery excellent in the supportability and electrical conductivity of the electrode active material, one side of the metal foil as shown in FIGS. A method has been proposed in which the opposite surface protrudes when the surface is depressed and the irregularities regularly dispersed on the plane of the metal foil are formed (for example, see Patent Document 4).

さらに、容量、出力等のばらつきが少なく出力特性に優れしかも低価格で長寿命なリチウム二次電池を得ることを目的として、図9(a)〜(c)に示したようにエンボス加工によって凹凸部を形成し、この凹部に電極活物質を充填し凸部は表面が露出した状態または電極活物質が付着した状態とする方法が提案されている(例えば、特許文献5参照)。   Furthermore, for the purpose of obtaining a lithium secondary battery with little variation in capacity, output, etc., excellent output characteristics, low cost and long life, embossing as shown in FIGS. There has been proposed a method of forming a portion and filling the concave portion with an electrode active material so that the surface of the convex portion is exposed or an electrode active material is attached (see, for example, Patent Document 5).

一方、リチウム二次電池の発電要素である電極板を作製する別の方法として、集電体の上に電解メッキ法や真空蒸着法等により電極活物質の薄膜を形成する方法が知られている。この方法においても、集電体と電極活物質との結着力が安定した電池を得るために重要であるが、例えば放電容量が大きく、且つ、充放電サイクル特性に優れたリチウム二次電池用電極板を得ることを目的として、リチウムと合金化しない金属からなる集電体上に(電極活物質薄膜の表面粗さRa)−(集電体の表面粗さRa)の値を0.1μm以下とする方法が提案されている(例えば、特許文献6参照)。
特開2002−79466号公報 特開2003−258182号公報 特開平8−195202号公報 特開2002−270186号公報 特開2005−32642号公報 特開2002−279972号公報
On the other hand, as another method for producing an electrode plate that is a power generation element of a lithium secondary battery, a method of forming a thin film of an electrode active material on a current collector by an electrolytic plating method, a vacuum deposition method, or the like is known. . Also in this method, it is important to obtain a battery having a stable binding force between the current collector and the electrode active material. For example, the electrode for a lithium secondary battery having a large discharge capacity and excellent charge / discharge cycle characteristics. For the purpose of obtaining a plate, a value of (surface roughness Ra of electrode active material thin film) − (surface roughness Ra of current collector) is 0.1 μm or less on a current collector made of a metal that does not alloy with lithium. Has been proposed (for example, see Patent Document 6).
JP 2002-79466 A JP 2003-258182 A JP-A-8-195202 Japanese Patent Laid-Open No. 2002-270186 JP-A-2005-32642 JP 2002-279972 A

しかしながら、放電容量が大きくなるほど、充放電に伴う電極板の膨張や収縮も大きくなり集電体の界面での結着力が必要となる。上述した従来技術の特許文献においては、金属箔の表面が凹部とすると対向する裏面は必ず凸部となることは避けられず、凹凸形成時に金属箔に波打ち、シワ、ソリ等の発生を防止することが困難であるという課題を有していた。   However, the larger the discharge capacity, the greater the expansion and contraction of the electrode plate that accompanies charging / discharging, and the need for a binding force at the interface of the current collector. In the above-mentioned prior art patent documents, if the surface of the metal foil is a concave, the opposite back surface is inevitably a convex, and the metal foil is prevented from wavy, wrinkled, warped and the like when forming the irregularities. It had the problem that it was difficult.

また、上述した特許文献2の従来技術では、金属箔にレーザーを照射することで局部的に加熱し金属を蒸発させることで凹部を形成し、照射を連続的に行なうことで金属箔の全面に凹凸部を形成することは可能であるが、レーザーを線上に走査するため局所的に金属融点以上の熱がかかることによる金属箔への波打ち、シワ、ソリ発生を防止することは困難であり、さらにリチウム二次電池の集電体のような20μm以下の厚みの金属箔にレーザー加工する際は、レーザーの出力バラツキにより金属箔に穴が開く不具合を引き起こす場合がある。   Moreover, in the prior art of patent document 2 mentioned above, a metal foil is irradiated with a laser to locally heat and evaporate the metal to form a recess, and the irradiation is continuously performed on the entire surface of the metal foil. Although it is possible to form uneven portions, it is difficult to prevent undulations, wrinkles and warpage on the metal foil due to local heat applied above the metal melting point because the laser is scanned on the line, Further, when laser processing is performed on a metal foil having a thickness of 20 μm or less, such as a current collector of a lithium secondary battery, there may be a problem that holes are formed in the metal foil due to variations in laser output.

また、上述した特許文献3や特許文献4の従来技術では、金属箔の表面が凹部とすると対向する裏面は必ず凸部となることは避けられず、凹凸部を形成する際に金属箔に波打ち、シワ、ソリ等が発生するのを防止することが困難である。   Moreover, in the prior arts of Patent Document 3 and Patent Document 4 described above, if the surface of the metal foil is a recess, the opposite back surface is inevitably a convex portion, and the corrugated metal foil is formed when the uneven portion is formed. It is difficult to prevent the occurrence of wrinkles, warps and the like.

また、上述した特許文献5の従来技術では、開口率20%以下のパンチングメタルにエンボス加工により凹凸部を形成するため、集電体の強度が低下し、電極板が切れる不具合を引き起こす場合がある。   Moreover, in the prior art of the above-mentioned patent document 5, since the uneven | corrugated | grooved part is formed in the punching metal of 20% or less of aperture ratio by embossing, the intensity | strength of a collector falls and it may cause the malfunction which an electrode plate cuts. .

また、上述した特許文献6の従来技術では、リチウムと合金化しない金属からなる集電体上に(電極活物質合剤層の表面粗さRa)−(集電体の表面粗さRa)の値を0.1μm以下とすることにより、集電体と電極活物質合剤層との結着力は安定するが、リチウムがインターカレーションすると電極活物質合剤層の膨張率が大きくなる金属においては、集電体と電極活物質合剤層との結着力が弱くなり、電極板にシワが発生し、充放電サイクル特性が劣化する不具合を引き起こす場合がある。   Further, in the above-described prior art disclosed in Patent Document 6, (surface roughness Ra of electrode active material mixture layer) − (surface roughness Ra of current collector) on a current collector made of a metal that is not alloyed with lithium. By setting the value to 0.1 μm or less, the binding force between the current collector and the electrode active material mixture layer is stabilized, but in a metal in which the expansion coefficient of the electrode active material mixture layer increases when lithium intercalates. In this case, the binding force between the current collector and the electrode active material mixture layer becomes weak, wrinkles are generated on the electrode plate, and the charge / discharge cycle characteristics may be deteriorated.

本発明は上記課題を鑑みてなされたもので、電極板を作製するための集電体と電極活物質合剤層との結着力を確保すると共に、この凸部の上に電極活物質を効率良く担持することができる非水系二次電池用集電体およびこれを用いた非水系二次電池用電極板と非水系二次電池を提供することを目的としている。   The present invention has been made in view of the above problems, and ensures the binding force between the current collector for producing the electrode plate and the electrode active material mixture layer, and efficiently uses the electrode active material on the convex portions. It is an object of the present invention to provide a non-aqueous secondary battery current collector that can be well supported, a non-aqueous secondary battery electrode plate using the same, and a non-aqueous secondary battery.

上記従来の課題を解決するために本発明の非水系二次電池用集電体は、帯状の金属箔の上に少なくとも正極活物質または負極活物質を担持させる非水系二次電池用集電体であって、金属箔の少なくとも一方の表面に多数の凸部を設け、且つ、凸部の先端表面に電極活物質との結着力を高める表面処理部を設けたことを特徴とするものである。   In order to solve the above-described conventional problems, the current collector for a non-aqueous secondary battery of the present invention is a current collector for a non-aqueous secondary battery in which at least a positive electrode active material or a negative electrode active material is supported on a strip-shaped metal foil. The metal foil is characterized in that a large number of convex portions are provided on at least one surface of the metal foil, and a surface treatment portion for increasing the binding force with the electrode active material is provided on the tip surface of the convex portion. .

本発明の非水系二次電池用集電体によると、凸部を多数設けているため柔軟性に富み、金属箔を加工したことによる波打ち、シワ、ソリ発生を防止し、同時に集電体の凸部の先端表面に電極活物質との結着力を高める表面処理部を設けたことで、集電体と電極活物質合剤層の結着力を確保し電極活物質の脱落を抑止することができ、信頼性の高い非水系二次電池を得ることができる。   According to the current collector for a non-aqueous secondary battery of the present invention, since a large number of convex portions are provided, it is rich in flexibility and prevents waviness, wrinkles and warpage due to processing of the metal foil, and at the same time, By providing a surface treatment part that increases the binding force with the electrode active material on the tip surface of the convex part, it is possible to secure the binding force between the current collector and the electrode active material mixture layer and to prevent the electrode active material from falling off. And a highly reliable non-aqueous secondary battery can be obtained.

本発明の第1の発明においては、帯状の金属箔の上に少なくとも正極活物質または負極活物質を担持させる非水系二次電池用集電体であって、金属箔の少なくとも一方の表面に多数の凸部を設け、且つ、凸部の先端表面に活物質との結着力を高める表面処理部を設けたことにより、巻回等の曲げ応力にも強く電極板の電極活物質が集電体から脱落しない安全で品質の良い非水系二次電池用集電体を提供することができる。   In the first invention of the present invention, there is provided a current collector for a non-aqueous secondary battery in which at least a positive electrode active material or a negative electrode active material is supported on a strip-shaped metal foil, and a large number of current collectors are provided on at least one surface of the metal foil. In addition, the electrode active material of the electrode plate is highly resistant to bending stress such as winding by providing a surface treatment portion that increases the binding force with the active material on the tip surface of the convex portion. It is possible to provide a safe and high-quality non-aqueous secondary battery current collector that does not fall out of the battery.

本発明の第2の発明においては、凸部の表面処理部が微細な突部であることにより、集電体と電極活物質合剤層との結着にアンカー効果が働き結着力の高い非水系二次電池用集電体を提供することができる。   In the second invention of the present invention, since the surface treatment portion of the convex portion is a fine protrusion, the anchor effect acts on the binding between the current collector and the electrode active material mixture layer, and the non-sticking force is high. A current collector for an aqueous secondary battery can be provided.

本発明の第3の発明においては、凸部の表面処理部の微細な突部が規則的な突部であることにより、集電体と電極活物質合剤層との結着力を均一にすることができ品質の安定した非水系二次電池用集電体を提供することができる。   In the third invention of the present invention, the fine protrusions of the surface treatment part of the protrusions are regular protrusions, so that the binding force between the current collector and the electrode active material mixture layer is made uniform. Therefore, it is possible to provide a current collector for a non-aqueous secondary battery with stable quality.

本発明の第4の発明においては、凸部の表面処理部の微細な突部が不規則な突部であることにより、万が一、電極活物質合剤層を剥離または脱落させる力が働いても力の伝播を途中で止めることができる結着性の良い非水系二次電池用集電体を提供することができる。   In the fourth invention of the present invention, even if a force that peels or drops the electrode active material mixture layer works by the fact that the fine protrusions of the surface treatment part of the protrusions are irregular protrusions, It is possible to provide a non-aqueous secondary battery current collector with good binding properties that can stop the propagation of force in the middle.

本発明の第5の発明においては、凸部の表面処理部の微細な突部が高さ1〜5μmであることにより、集電体と電極活物質合剤層との結着面積を増やし結着力を増すことができ電極活物質の脱落を抑止した非水系二次電池用集電体を提供することができる。   In the fifth invention of the present invention, the fine protrusions of the surface treatment part of the convex part have a height of 1 to 5 μm, thereby increasing the binding area between the current collector and the electrode active material mixture layer. It is possible to provide a current collector for a non-aqueous secondary battery that can increase the adhesion and suppress the electrode active material from falling off.

本発明の第6の発明においては、凸部の表面処理部の微細な突部がピッチ1〜5μmであることにより、凸部の先端表面の全面に多数の微細な突部を形成することができ、アンカー効果の高い非水系二次電池用集電体を提供することができる。   In the sixth aspect of the present invention, the fine protrusions of the surface treatment portion of the convex portion have a pitch of 1 to 5 μm, so that a large number of fine protrusions can be formed on the entire front surface of the convex portion. It is possible to provide a current collector for a non-aqueous secondary battery having a high anchor effect.

本発明の第7の発明においては、帯状の金属箔の上に少なくとも正極活物質または負極活物質を担持させる非水系二次電池用集電体の製造方法であって、集電体の少なくとも一方の表面に多数形成する凸部と、凸部の先端表面に電極活物質との結着力を高めるために形成する表面処理部を、凹部を形成した一対のローラの間を2回以上通過させて形成することにより、容易に所定の寸法の凸部および凸部の先端表面に電極活物質との結着力を高める表面処理部を形成することが可能となる。   In a seventh aspect of the present invention, there is provided a method for producing a current collector for a non-aqueous secondary battery in which at least a positive electrode active material or a negative electrode active material is supported on a strip-shaped metal foil, wherein at least one of the current collectors A plurality of convex portions formed on the surface of the surface and a surface treatment portion formed on the tip surface of the convex portion to increase the binding force with the electrode active material are passed between the pair of rollers formed with the concave portions twice or more. By forming it, it becomes possible to easily form a convex portion having a predetermined dimension and a surface treatment portion that enhances the binding force with the electrode active material on the tip surface of the convex portion.

本発明の第8の発明においては、1回目に通過させる一対のローラの凹部で表面処理部
を形成し、2回目以降に通過させる一対のローラの凹部で凸部を形成することにより、ローラの間を通過した集電体の凸部の先端表面部に表面処理の微細な突部を形成することが可能となる。
In the eighth aspect of the present invention, the surface treatment portion is formed by the concave portions of the pair of rollers that pass through the first time, and the convex portion is formed by the concave portion of the pair of rollers that passes through the second time. It is possible to form a fine protrusion of the surface treatment on the tip surface portion of the convex portion of the current collector that has passed through.

本発明の第9の発明においては、凹部をレーザー加工、エッチング加工、ドライエッチング加工、ブラスト加工のいずれかの方法で形成したローラを用いることにより、高さ1〜5μm、ピッチが1〜5μmの微細な突部をローラ表面に形成することが可能となる。   In the ninth aspect of the present invention, by using a roller in which the concave portion is formed by any one of laser processing, etching processing, dry etching processing, and blast processing, the height is 1 to 5 μm and the pitch is 1 to 5 μm. Fine protrusions can be formed on the roller surface.

本発明の第10の発明においては、帯状の金属箔に少なくとも一方の表面に凸部を多数形成し、且つ、凸部の先端表面に電極活物質との結着力を高める表面処理部を形成した非水系二次電池用集電体の上に少なくとも正極活物質または負極活物質を担持した非水系二次電池用電極板にすることにより正極活物質または負極活物質の結着性の優れた柔軟な電極板となり、巻回時や充放電を繰返し電極活物質合剤層の膨張、収縮しても正極活物質または負極活物質の脱落しない電極板を提供することができる。   In the tenth invention of the present invention, a large number of convex portions are formed on at least one surface of the strip-shaped metal foil, and a surface treatment portion that increases the binding force with the electrode active material is formed on the tip surface of the convex portion. The electrode plate for a non-aqueous secondary battery in which at least a positive electrode active material or a negative electrode active material is supported on a current collector for a non-aqueous secondary battery makes the positive electrode active material or the negative electrode active material have excellent binding properties. Thus, it is possible to provide an electrode plate in which the positive electrode active material or the negative electrode active material does not fall off even when the electrode active material mixture layer expands or contracts repeatedly during winding or charging / discharging.

本発明の第11の発明においては、帯状の金属箔に少なくとも一方の表面に凸部を多数形成し、且つ、凸部の先端表面に電極活物質との結着力を高める表面処理部を形成した非水系二次電池用集電体の上に少なくとも正極活物質または負極活物質を担持した電極板と対極となる電極板とをセパレータを介して巻回または積層して構成した電極群を非水系電解液とともに電池ケースに封入して構成したことにより、信頼性の高い非水系二次電池用電池を提供することができる。   In the eleventh aspect of the present invention, a large number of convex portions are formed on at least one surface of the band-shaped metal foil, and a surface treatment portion that increases the binding force with the electrode active material is formed on the tip surface of the convex portion. A non-aqueous electrode group constituted by winding or laminating an electrode plate carrying at least a positive electrode active material or a negative electrode active material and a counter electrode plate on a current collector for a non-aqueous secondary battery via a separator By being enclosed in the battery case together with the electrolytic solution, a highly reliable non-aqueous secondary battery can be provided.

以下、本発明の一実施の形態について図面を参照しながら説明する。図1は本発明の実施の形態における非水系二次電池用集電体の図である。図1(a)は金属箔からなる集電体1Bの表面に多数の凸部2を設け、且つ、凸部2の先端表面に電極活物質との結着力を高める表面処理部である微細な突部3を規則的に設けた図である。凸部2は金属箔からなる集電体1Bの幅方向に等間隔にピッチP1で一列に配列しその行単位L1を金属箔からなる集電体1Bの長手方向にピッチP2で等間隔人に配列し、その行単位L1が二分の一の間隔でずれた形態を示しているがこれに限定されるものでなく行単位L1をずらす間隔は任意に変更することが可能である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram of a current collector for a non-aqueous secondary battery in an embodiment of the present invention. FIG. 1A shows a fine surface treatment portion provided with a large number of convex portions 2 on the surface of a current collector 1B made of a metal foil and increasing the binding force with the electrode active material on the tip surface of the convex portion 2. It is the figure which provided the protrusion part 3 regularly. The protrusions 2 are arranged in a line at a pitch P1 at equal intervals in the width direction of the current collector 1B made of metal foil, and the row units L1 are arranged at equal intervals at a pitch P2 in the longitudinal direction of the current collector 1B made of metal foil. However, the present invention is not limited to this, and the interval for shifting the row unit L1 can be arbitrarily changed.

この際、金属箔からなる集電体1Bの表面に凸部2を多数形成し、且つ、凸部2の先端表面に電極活物質との結着力を高める表面処理部である規則的な微細な突部3の高さは1〜5μmでピッチは1〜5μmが好ましい。これは高さが1μm以下では集電体と電極活物質との接触面積もあまり拡大できず結着力の向上は図れない。また高さが5μm以上はローラ表面の凹部の深さが5μm以上ということでありレーザーを使用した場合ビームを小さく集光させると焦点深度は浅くなるためローラ表面の凹部の深さを深く加工することは困難なためである。   At this time, a large number of convex portions 2 are formed on the surface of the current collector 1 </ b> B made of metal foil, and a regular fine treatment is a surface treatment portion that increases the binding force with the electrode active material on the tip surface of the convex portion 2. The height of the protrusions 3 is preferably 1 to 5 μm and the pitch is preferably 1 to 5 μm. If the height is 1 μm or less, the contact area between the current collector and the electrode active material cannot be increased so much that the binding force cannot be improved. If the height is 5 μm or more, the depth of the recess on the roller surface is 5 μm or more. When a laser is used, if the beam is focused small, the depth of focus becomes shallow, so the depth of the recess on the roller surface is deeply processed. This is because it is difficult.

また、ピッチが1μm以下では規則的な微細な突部3は非常に小さくなくては実現できず規則的な微細な突部3自身の強度が弱くなり形状維持が困難であり、ピッチ5μm以上と大きくなると金属箔からなる集電体1Bと電極活物質との接触面積はあまり拡大できず結着力の向上は図れない。結着力を高くするためには規則的な微細な突部3の突部と突部が間隔を保ち多数繰り返すことが必要であり高さが1〜5μmでピッチが1〜5μmが非常に良い結果であった。また、今回のように微細な突部3が規則的に配列されることで金属箔からなる集電体1Bと電極活物質合剤層との結着力を均一にすることができ品質を安定させることができた。   Also, if the pitch is 1 μm or less, the regular fine protrusions 3 cannot be realized unless they are very small, and the regular fine protrusions 3 themselves are weak in strength and difficult to maintain the shape, and the pitch is 5 μm or more. If it is increased, the contact area between the current collector 1B made of metal foil and the electrode active material cannot be increased so much and the binding force cannot be improved. In order to increase the binding force, it is necessary to repeat the projections of the regular fine projections 3 with a large distance between the projections, and the result is that the height is 1 to 5 μm and the pitch is 1 to 5 μm. Met. In addition, since the fine protrusions 3 are regularly arranged as in this time, the binding force between the current collector 1B made of metal foil and the electrode active material mixture layer can be made uniform, and the quality is stabilized. I was able to.

図1(b)は金属箔からなる集電体1Bの表面に多数の凸部2を設け、且つ、凸部2の先端表面に電極活物質との結着力を高める表面処理部である微細な突部4を不規則に設け
た図である。凸部2は金属箔からなる集電体1Bの幅方向に等間隔にピッチP3で一列に配列しその行単位L2を金属箔からなる集電体1の長手方向にピッチP4で等間隔に配列し、その行単位L2が二分の一の間隔でずれた形態を示しているがこれに限定されるものでなく行単位L2をずらす間隔は任意に変更することが可能である。
FIG. 1B shows a fine surface treatment portion provided with a large number of convex portions 2 on the surface of a current collector 1B made of a metal foil, and increasing the binding force with the electrode active material on the tip surface of the convex portion 2. It is the figure which provided the protrusion 4 irregularly. The convex portions 2 are arranged in a line at a pitch P3 at equal intervals in the width direction of the current collector 1B made of metal foil, and the row units L2 are arranged at equal intervals in the longitudinal direction of the current collector 1 made of metal foil at a pitch P4. However, although the line unit L2 is shifted by a half interval, the present invention is not limited to this, and the interval for shifting the line unit L2 can be arbitrarily changed.

この際、金属箔からなる集電体1Bの表面に凸部2を多数形成し、且つ、凸部2の先端表面に電極活物質との結着力を高める表面処理部である不規則な微細な突部4の高さは1〜5μmが好ましい。これはエッチング加工やドライエッチング加工やブラスト加工を使用した場合、加工面全体を荒らすようになり高さのみやピッチのみの制御は難しく加工状態は不規則に並ぶ。したがって、高さが1μm以下では金属箔からなる集電体1と電極活物質との接触面積もあまり拡大できず結着力の向上は図れない。また高さが5μm以上と大きくなると加工間隔の細かい部分では不規則な微細な突部4自身の強度が弱くなり形状維持が困難になる。   At this time, a large number of convex portions 2 are formed on the surface of the current collector 1B made of metal foil, and the surface of the convex portion 2 is irregularly fine that is a surface treatment portion that increases the binding force with the electrode active material. The height of the protrusion 4 is preferably 1 to 5 μm. When etching, dry etching, or blasting is used, the entire processed surface is roughened, and it is difficult to control only the height and pitch, and the processing states are irregularly arranged. Therefore, if the height is 1 μm or less, the contact area between the current collector 1 made of metal foil and the electrode active material cannot be increased so much that the binding force cannot be improved. On the other hand, if the height is as large as 5 μm or more, the strength of the irregular fine protrusions 4 itself becomes weak at a portion where the processing interval is fine, and it becomes difficult to maintain the shape.

結着力を高くするためには不規則な微細な突部4の突部と突部が不規則ながら間隔を保ち多数繰り返すことが必要でありそのためには高さ1〜5μmが非常に良い結果であった。また、今回のように不規則な微細な突部4が配列されることで金属箔からなる集電体1Bと電極活物質合剤層を剥離または脱落させる力が働いても微細な突部4が不規則なため力の伝播を途中で止めることができ、結着性の良いこと金属箔からなる集電体1Bを作ることができた。   In order to increase the binding force, it is necessary to repeat the protrusions and protrusions of the irregular fine protrusions 4 at irregular intervals and repeatedly, and for that purpose, a height of 1 to 5 μm is a very good result. there were. Moreover, even if the irregular fine protrusions 4 are arranged like this time, even if the force for peeling or dropping the current collector 1B made of metal foil and the electrode active material mixture layer works, the fine protrusions 4 However, because of the irregularity, the propagation of force could be stopped in the middle, and the current collector 1B made of metal foil could be made because of its good binding property.

これら金属箔からなる集電体1Bを製作する方法としては、まず、非水系二次電池用電極板の集電体の電極活物質との結着力を高める表面処理部を規則的な微細な突部3で形成するための加工用ローラとして図2(a)に示した金属性の加工用ローラ5の表面にレーザー加工により拡大図を図2(b)に示したように凹部6を形成した。この凹部6は図2(a)の加工用ローラ5の長手方向に行単位L3として各凹部6をピッチP5で等間隔に一列に配列し、その行単位L3を加工用ローラ5の円周方向に並べた各凹部6のピッチP6で順次配列した。なお、本発明の実施の形態においては、上述の行単位L3が二分の一の間隔でずれた実施の形態を開示しているが、これに限定されるものではなく、行単位L3をずらす間隔は任意に設定することが可能である。   As a method of manufacturing the current collector 1B made of these metal foils, first, a surface treatment portion that increases the binding force of the current collector of the electrode plate for a non-aqueous secondary battery to the electrode active material is formed into a regular fine protrusion. As a processing roller for forming the portion 3, a concave portion 6 is formed on the surface of the metallic processing roller 5 shown in FIG. 2 (a) by laser processing as shown in FIG. 2 (b). . The recesses 6 are arranged in a line at equal intervals with a pitch P5 as row units L3 in the longitudinal direction of the processing roller 5 in FIG. 2A, and the row units L3 are arranged in the circumferential direction of the processing roller 5. Were sequentially arranged at a pitch P6 of the respective recesses 6 arranged in a row. In the embodiment of the present invention, an embodiment in which the above-described row unit L3 is shifted by a half interval is disclosed, but the present invention is not limited to this, and the interval by which the row unit L3 is shifted is disclosed. Can be set arbitrarily.

また、集電体の電極活物質との結着力を高める表面処理部を不規則な微細な突部4で形成するための加工用ローラとしては図2(a)に示した金属製の加工用ローラ5の表面にレーザー加工以外にエッチング加工、ドライエッチング加工、ブラスト加工等を用いて拡大図を図2(c)に示したように不規則に凹部7を形成することができた。   Further, as a processing roller for forming the surface treatment portion for enhancing the binding force between the current collector and the electrode active material with the irregular fine protrusions 4, the metal processing shown in FIG. As shown in FIG. 2C, the concave portions 7 could be irregularly formed on the surface of the roller 5 using an etching process, a dry etching process, a blast process, or the like in addition to the laser process.

集電体の少なくとも一方の表面に凸部2を多数形成するために用いられる加工用ローラとしては、図4(a)に示したように金属製の凸部加工用ローラ8の表面にレーザー加工等により拡大図を図4(b)に示したように凹部9を形成した。凹部9は図4(a)の凸部加工用ローラ8の長手方向に行単位L5として各凹部9をピッチP9で等間隔に一列に配列し、その行単位L5を凸部加工用ローラ8の円周方向に並べた各凹部9のピッチP10で順次配列した。なお、本発明の実施の形態においては、上述の行単位L5が二分の一の間隔でずれた実施の形態を開示しているが、これに限定されるものではなく、行単位L5をずらす間隔は任意に設定することが可能である。   As a processing roller used for forming a large number of convex portions 2 on at least one surface of the current collector, laser processing is performed on the surface of the metallic convex portion processing roller 8 as shown in FIG. The concave portion 9 was formed as shown in FIG. The concave portions 9 are arranged in a line at equal intervals with a pitch P9 as the row unit L5 in the longitudinal direction of the convex portion processing roller 8 of FIG. The concave portions 9 arranged in the circumferential direction were sequentially arranged at a pitch P10. In the embodiment of the present invention, an embodiment in which the above-described row unit L5 is shifted by a half interval is disclosed, but the present invention is not limited to this, and the interval by which the row unit L5 is shifted is disclosed. Can be set arbitrarily.

非水系二次電池用電極板の集電体に凸部2を多数形成し、且つ、凸部2の先端表面に電極活物質との結着力を高める表面処理部を規則的な微細な突部3で形成する方法としては、図5に示したように1回目に上述の電極活物質との結着力を高める表面処理部である規則的な微細な突部3で形成するための凹部を施した一対のローラである加工用上ローラ15と加工用下ローラ25の隙間に金属箔からなる集電体1を加圧しながら通過させること
により金属箔からなる集電体1Aの全面に形成した。
A large number of convex portions 2 are formed on the current collector of the electrode plate for the non-aqueous secondary battery, and the surface treatment portion that increases the binding force with the electrode active material is formed on the tip surface of the convex portion 2. As shown in FIG. 5, a concave portion for forming regular fine protrusions 3 which are surface-treated portions that enhance the binding force with the electrode active material is applied as shown in FIG. The current collector 1 made of a metal foil was passed through the gap between the upper roller 15 for processing and the lower roller 25 for processing, which was a pair of rollers, to form the current collector 1A made of the metal foil over the entire surface.

この際、加工用上ローラ15と加工用下ローラ25の表面を図2(b)に示すように規則的な凹部6を形成した場合、金属箔からなる集電体1Aは、図3(a)に示したように表面に電極活物質との結着力を高める表面処理部である規則的な微細な突部3と表面処理部の金属箔からなる集電体表面1Aを全面に形成した状態となった。規則的な微細な突部3は集電体の幅方向に等間隔にピッチP7で一列に配列しその行単位L4を集電体の長手方向にピッチP8で等間隔人に配列し、その行単位L4が二分の一の間隔でずれた形態を示しているがこれに限定されるものでなく行単位L4をずらす間隔は任意に変更することが可能である。   At this time, when the regular recesses 6 are formed on the surfaces of the processing upper roller 15 and the processing lower roller 25 as shown in FIG. 2B, the current collector 1A made of a metal foil has the structure shown in FIG. As shown in FIG. 3A, the current collector surface 1A is formed on the entire surface, which is formed of regular fine protrusions 3 which are surface-treated portions that enhance the binding force with the electrode active material and metal foil of the surface-treated portions. It became. The regular minute protrusions 3 are arranged in a line at a pitch P7 at equal intervals in the width direction of the current collector, and the row units L4 are arranged at equal intervals in the longitudinal direction of the current collector at a pitch P8. Although the unit L4 is shifted by a half interval, the present invention is not limited to this, and the interval by which the row unit L4 is shifted can be arbitrarily changed.

同様に、表面処理部を不規則な微細な突部4で形成するには、図5に示した加工用上ローラ15と加工用下ローラ25の表面に図2(c)に示すような不規則な凹部7を形成すると、金属箔からなる集電体1Aは、図3(b)に示したように表面に電極活物質との結着力を高める表面処理部である不規則な微細な突部4と表面処理部の金属箔からなる集電体表面1Aを全面に形成した状態となった。   Similarly, in order to form the surface treatment portion with the irregular fine protrusions 4, the irregularities as shown in FIG. 2C are formed on the surfaces of the processing upper roller 15 and the processing lower roller 25 shown in FIG. When the regular recesses 7 are formed, the current collector 1A made of a metal foil has an irregular fine protrusion that is a surface treatment portion that increases the binding force with the electrode active material on the surface as shown in FIG. The collector surface 1A made of the metal foil of the portion 4 and the surface treatment portion was formed on the entire surface.

上述のように図5に示す金属箔からなる集電体1Aの電極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成した後、2回目に凸部を多数形成する凹部を施した一対のローラである凸部加工用上ローラ18と凸部加工用下ローラ28の隙間を電極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成した金属箔からなる集電体1Aが通過することで任意の形状の凸部2を形成し、且つその凸部2の先端表面に電極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成する金属箔からなる集電体1Bを製作することが可能であった。   As described above, after forming the regular fine protrusions 3 that are the surface treatment portions that enhance the binding force of the current collector 1A made of the metal foil shown in FIG. A regular fine protrusion that is a surface treatment portion that enhances the binding force between the electrode active material and the gap between the convex processing upper roller 18 and the convex processing lower roller 28 that are a pair of rollers provided with a plurality of concave portions. The surface treatment part which forms the convex part 2 of arbitrary shapes when the collector 1A which consists of metal foil which formed the part 3 passes, and raises the binding force with an electrode active material on the front-end | tip surface of the convex part 2 It was possible to produce a current collector 1B made of a metal foil forming regular fine protrusions 3.

金属箔からなる集電体1Bの表面は、たとえば規則的な微細な突部3を作製した場合、図1(a)に示したように凸部2の先端表面に電極活物質との結着力を高める表面処理部である規則的な微細な突部3を規則的に形成した状態となる。なお、当初集電体全面に形成された表面処理部である規則的な微細な突部3は凸部2の先端表面だけが残り、他の金属箔からなる集電体1Bの表面部分は凸部加工用上ローラ18と凸部加工用下ローラ28でつぶされて消失する。   The surface of the current collector 1B made of metal foil has a binding force with the electrode active material on the tip surface of the protrusion 2 as shown in FIG. In this state, the regular fine protrusions 3 that are surface treatment portions that improve the surface are regularly formed. In addition, the regular fine protrusions 3 which are the surface treatment portions originally formed on the entire surface of the current collector remain only at the tip surface of the convex portion 2, and the surface portion of the current collector 1B made of another metal foil is convex. The part processing upper roller 18 and the convex part processing lower roller 28 are crushed and disappear.

これは図5に示す2回目に凸部2を多数形成する凸部加工用上ローラ18と凸部加工用下ローラ28を通過する際、ローラの凹部部分は加圧を受けることなく通過するため表面処理部である規則的な微細な突部3の形状が残るが、ローラの凹部以外の箇所はローラの加圧を受け、表面処理部である規則的な微細な突部3は押しつぶされるためである。なお、集電体の表面に凸部2を形成し、その凸部2の先端表面に電極活物質との結着力を高める表面処理部を形成する方法としては、上述の方法に限定されるものではなく、例えばローラの代わりに金型等を用いて金属箔からなる集電体1を上型と下型に挟んで圧縮加工することも同様に可能である。   This is because, when passing through the convex processing upper roller 18 and the convex processing lower roller 28 that form a large number of convex portions 2 in the second time shown in FIG. The shape of the regular fine protrusions 3 that are the surface treatment portions remains, but the portions other than the concave portions of the roller are pressed by the rollers, and the regular fine protrusions 3 that are the surface treatment portions are crushed. It is. In addition, as a method of forming the convex part 2 on the surface of the current collector and forming the surface treatment part that increases the binding force with the electrode active material on the tip surface of the convex part 2, the method described above is limited. Instead, for example, the current collector 1 made of metal foil may be sandwiched between the upper mold and the lower mold by using a mold or the like instead of the roller, and may be compressed.

上記のように電極活物質との結着力を高める表面処理部である規則的な微細な突部3を凸部2の先端表面に形成した金属箔からなる集電体1Bの上に少なくとも正極活物質または負極活物質を担持させる手段として、これらの電極活物質を含有した塗料を金属箔からなる集電体1Bに塗着させる方法があり、この非水系二次電池用電極板を用いた本発明の非水系二次電池としては、例えば図6に示したように複合リチウム酸化物を電極活物質とする正極板64とリチウムを保持しうる材料を電極活物質とする負極板66とをセパレータ68を介して渦巻状に巻回した電極群63を作製した。次に、この電極群63を有底円筒形の電池ケース60の内部に絶縁板69と共に収容し、電極群63の下部より導出した負極リード67を電池ケース60の底部に接続し、次いで電極群63の上部より導出した
正極リード65を封口板61に接続し電池ケース60に所定量の非水溶媒からなる電解液(図示せず)を注液した後、電池ケース60の開口部に封口ガスケット62を周縁に取り付けた封口板61を挿入し電池ケース60の開口部を内方向に折り曲げてかしめ封口して構成することができる。
As described above, at least the positive electrode active material on the current collector 1 </ b> B made of the metal foil in which the regular fine protrusions 3 that are the surface treatment portions that enhance the binding force with the electrode active material are formed on the tip surface of the protrusions 2. As a means for supporting the material or the negative electrode active material, there is a method in which a paint containing these electrode active materials is applied to the current collector 1B made of a metal foil, and this book using the electrode plate for a non-aqueous secondary battery As the nonaqueous secondary battery of the invention, for example, as shown in FIG. 6, a positive electrode plate 64 using a composite lithium oxide as an electrode active material and a negative electrode plate 66 using a material capable of holding lithium as an electrode active material are separators. An electrode group 63 wound in a spiral shape via 68 was produced. Next, the electrode group 63 is accommodated in the bottomed cylindrical battery case 60 together with the insulating plate 69, the negative electrode lead 67 led out from the lower part of the electrode group 63 is connected to the bottom of the battery case 60, and then the electrode group The positive electrode lead 65 led out from the upper part of 63 is connected to the sealing plate 61, and a predetermined amount of an electrolyte solution (not shown) made of a non-aqueous solvent is injected into the battery case 60. A sealing plate 61 with 62 attached to the periphery can be inserted, and the opening of the battery case 60 can be bent inward and caulked and sealed.

正極板64としては正極活物質、導電材、結着剤を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、電極活物質との結着力を高める表面処理部である規則的な微細な突部3を凸部2の先端表面に形成した金属箔からなる集電体1Bへの塗布に最適な粘度に調整して混練を行い、正極合剤塗料を作製する。   As the positive electrode plate 64, a positive electrode active material, a conductive material, and a binder are placed in an appropriate dispersion medium, and mixed and dispersed by a dispersing machine such as a planetary mixer to increase the binding force with the electrode active material. A certain positive fine protrusion 3 is kneaded by adjusting the viscosity to be optimum for application to the current collector 1B made of a metal foil formed on the tip surface of the protrusion 2, thereby preparing a positive electrode mixture paint.

このときの正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   As the positive electrode active material at this time, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) Composite oxides such as lithium manganate and modified products thereof.

このときの導電材の材種としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。   As a material type of the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites may be used alone or in combination.

このときの正極用結着剤としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着剤等を用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着剤中に混入させることも可能である。   As the binder for the positive electrode at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. At this time, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder.

上記のように作製した正極合剤塗料をダイコーターを用いてアルミニウム箔上に塗布し、次いで乾燥後プレスにて所定厚みまで圧縮することで正極板が得られる。   The positive electrode mixture paint prepared as described above is applied onto an aluminum foil using a die coater, then dried and then compressed to a predetermined thickness by a press to obtain a positive electrode plate.

負極板66としては、負極活物質、結着剤を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、電極活物質との結着力を高める表面処理部である規則的な微細な突部3を凸部2の先端表面に形成した金属箔からなる集電体1Bへの塗布に最適な粘度に調整して混練を行い、負極合剤塗料を作製する。   The negative electrode plate 66 is a rule that is a surface treatment unit that puts a negative electrode active material and a binder in an appropriate dispersion medium, and mixes and disperses the mixture with a dispersing machine such as a planetary mixer to increase the binding force with the electrode active material. The negative viscosity paint is prepared by adjusting the viscosity to be optimal for application to the current collector 1B made of a metal foil in which the fine protrusions 3 are formed on the tip surface of the protrusions 2.

このときの負極活物質としては、各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、および各種合金組成材料を用いることができる。   As the negative electrode active material at this time, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used.

このときの負極用結着剤としてはPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等を併用することや少量添加するのがより好ましいといえる。   Various binders such as PVdF and modified products thereof can be used as the negative electrode binder at this time. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof are used. In addition, it can be said that it is more preferable to use a cellulosic resin including carboxymethyl cellulose (CMC) or the like in combination or to add a small amount.

上記のように作製した負極合剤塗料をダイコーターを用いて銅箔上に塗布し、次いで乾燥後プレスにて所定厚みまで圧縮することで負極板が得られる。   A negative electrode plate is obtained by applying the negative electrode mixture paint produced as described above onto a copper foil using a die coater, and then compressing to a predetermined thickness with a press after drying.

また上記のように電極活物質との結着力を高める表面処理部である規則的な微細な突部3を凸部2の先端表面に形成した金属箔からなる集電体1Bの上に少なくとも正極活物質または負極活物質を担持させる別の手段として、集電体の特定部位へこれらの電極活物質の選択的担持が可能である真空プロセスを用いることができ、またこの際に電極活物質は主として凸部2上に柱状に形成するのがより好ましい。これは上記凸部2の先端表面に電
極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成しているためで、表面処理部の凹凸部が接触面積を増加させアンカー効果が働き凸部2の上面に強固に精度良く電極活物質の薄膜を形成することができ、しかも柱状に電極活物質の薄膜を形成することでリチウムを吸蔵した際における電極活物質の薄膜の体積膨張を緩和する効果も期待できるからである。
Further, at least the positive electrode on the current collector 1B made of the metal foil in which the regular fine protrusions 3 that are the surface treatment portions that enhance the binding force with the electrode active material as described above are formed on the tip surface of the protrusions 2. As another means for supporting the active material or the negative electrode active material, a vacuum process in which these electrode active materials can be selectively supported on specific parts of the current collector can be used. It is more preferable to form a column shape mainly on the convex portion 2. This is because the regular fine protrusions 3 which are surface-treated portions that enhance the binding force with the electrode active material are formed on the tip surface of the convex portions 2, so that the uneven portions of the surface-treated portions have a contact area. The anchor effect is increased and an electrode active material thin film can be formed on the upper surface of the convex portion 2 with high accuracy and the lithium ion is occluded by forming the electrode active material thin film in a columnar shape. This is because the effect of relaxing the volume expansion of the thin film can be expected.

この電極活物質との結着力を高める表面処理部である規則的な微細な突部3を凸部2の先端表面に形成した金属箔からなる集電体1Bに電極活物質の薄膜を形成する手段としては、真空プロセスであれば特に限定はされないが、蒸着法、スッパッタリング法、CVD法などのドライプロセスを用いることができる。   A thin film of an electrode active material is formed on a current collector 1B made of a metal foil in which regular fine protrusions 3 that are surface treatment portions that enhance the binding force with the electrode active material are formed on the tip surface of the protrusions 2. The means is not particularly limited as long as it is a vacuum process, but a dry process such as an evaporation method, a sputtering method, or a CVD method can be used.

このときの電極活物質としては、例えば負極活物質としてSi,Sn,Ge,Alやこれらの合金、SiOxやSnOx等の酸化物、SiSxやSnS等を用いることができ非晶質または低結晶性であることが好ましい。さらに電極活物質との結着力を高める表面処理部である規則的な微細な突部3を凸部2の先端表面に形成した金属箔からなる集電体1Bに電極活物質の薄膜を蒸着する厚みとしては、作製する非水系二次電池の要求特性によっても異なるが、概ね5〜30μmの範囲が好ましく、さらに10〜25μmの範囲であることがより好ましい。   As the electrode active material at this time, for example, Si, Sn, Ge, Al or an alloy thereof, an oxide such as SiOx or SnOx, SiSx, SnS, or the like can be used as the negative electrode active material. It is preferable that Further, a thin film of the electrode active material is deposited on the current collector 1B made of a metal foil in which regular fine protrusions 3 that are surface treatment portions that enhance the binding force with the electrode active material are formed on the tip surface of the protrusions 2. The thickness varies depending on the required characteristics of the non-aqueous secondary battery to be manufactured, but is preferably in the range of 5 to 30 μm, more preferably in the range of 10 to 25 μm.

また、セパレータ68については、非水系二次電池の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的でありまた態様として好ましい。このセパレータの厚みは特に限定されないが、10〜25μmとすれば良い。   The separator 68 is not particularly limited as long as it can withstand the use range of the non-aqueous secondary battery, but a microporous film of an olefin resin such as polyethylene or polypropylene may be used singly or in combination. It is general and preferred as an embodiment. The thickness of the separator is not particularly limited, but may be 10 to 25 μm.

さらに、電解液については、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正極板または負極板上に良好な皮膜を形成させる、あるいは過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。なお、集電体の表面に凸部2を形成し、その凸部2の先端表面に電極活物質との結着力を高める表面処理部としては、上述の方法に限定されるものではなく、例えばポーラス状にエッチング加工、ドライエッチング加工、ブラスト加工で表面処理部を形成しても同様に電極活物質との結着力を高めることが可能である。 Moreover, for the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as an electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), or a modified product thereof in order to form a good film on the positive electrode plate or the negative electrode plate, or to ensure stability during overcharge. Note that the surface treatment portion for forming the convex portion 2 on the surface of the current collector and increasing the binding force with the electrode active material on the tip surface of the convex portion 2 is not limited to the above-described method. Even when the surface treatment portion is formed by porous etching, dry etching, or blasting, it is possible to increase the binding force with the electrode active material.

高さが3μm、ピッチが3μmの電極活物質との結着力を高める表面処理部を規則的な微細な突部3で形成するためのロールとして図2(a)加工用ローラ5を図2(b)に示すように集電体幅方向ピッチP5、集電体の長手方向ピッチP6で全て同一形状の円形の凹部6を特定パターンで配置されるようレーザー加工で上下一対のローラ表面に施した。次に凸部2を形成するローラとして図4(a)凸部加工用ローラ8を図4(b)に示すように集電体幅方向ピッチP9、集電体の長手方向ピッチP10を20μmの全て同一形状の略円形の凹部9を特定パターンで上下一対のローラ表面に施した。この2種類の上下一対のローラを図5のように加工ピッチの細かい図2(a)加工用ローラ5を川上側に配置し、次いで加工ピッチの大きい図4(a)凸部加工用ローラ8を川下側に配置した。   FIG. 2A shows the processing roller 5 shown in FIG. 2 (a) as a roll for forming a surface-treated portion with a regular fine protrusion 3 that enhances the binding force with an electrode active material having a height of 3 μm and a pitch of 3 μm. As shown in b), the circular recesses 6 having the same shape are arranged on the surface of the pair of upper and lower rollers by laser processing so as to be arranged in a specific pattern at the current collector width direction pitch P5 and the current collector longitudinal direction pitch P6. . Next, as a roller for forming the convex portion 2, the convex portion processing roller 8 in FIG. 4 (a) has a current collector width direction pitch P9 as shown in FIG. 4 (b), and the current collector longitudinal pitch P10 is 20 μm. A substantially circular recess 9 having the same shape was applied to the surfaces of a pair of upper and lower rollers in a specific pattern. As shown in FIG. 5, the two types of upper and lower pairs of rollers shown in FIG. 2 (a) are arranged on the upper side of the processing roller 5 with a fine processing pitch, and then the convex processing roller 8 shown in FIG. Was placed downstream.

金属箔からなる集電体1として厚さ20μmの銅箔を用い、この銅箔を2種類の上下一対のローラ間を加圧しながら順次通過させた。1回目を通過した銅箔の集電体1Aは加工用上ローラ15と加工用下ローラ25の間を加圧されながら通過することで、表面は図3(a)に示すように高さが3μm、ピッチが3μmの電極活物質との結着力を高める表面
処理部である規則的な微細な突部3を形成する。次いで連続し2回目に凸部加工用上ローラ18と凸部加工用下ローラ28の間を加圧されながら通過することで、銅箔の集電体1Bの表面は図1(a)に示すように凸部2の先端表面に電極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成した総厚28μmの銅箔の集電体1Bを作製した。
A copper foil having a thickness of 20 μm was used as the current collector 1 made of a metal foil, and the copper foil was sequentially passed while pressing between a pair of upper and lower rollers. The copper foil current collector 1A that has passed the first time passes between the upper processing roller 15 and the lower processing roller 25 while being pressed, so that the surface has a height as shown in FIG. Regular fine protrusions 3 are formed which are surface-treated portions that increase the binding force with an electrode active material having a pitch of 3 μm and a pitch of 3 μm. Next, the surface of the copper foil current collector 1 </ b> B is shown in FIG. 1 (a) by continuously passing through the second portion between the convex processing upper roller 18 and the convex processing lower roller 28 while being pressurized. Thus, a current collector 1B made of copper foil having a total thickness of 28 μm in which regular fine protrusions 3 that are surface-treated portions that enhance the binding force with the electrode active material were formed on the tip surface of the protrusions 2 was prepared.

次いでターゲットとして純度99.9999%の珪素を用い、電子ビーム加熱手段を具備した蒸着装置により凸部2の先端表面に電極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成した図1(a)に示す銅箔の集電体1Bの両面に純度99.7%の酸素を導入しながら蒸着を行い、凸部上に膜厚10μmのSiO0.5を形成した後、規定されている幅にスリッタ加工して負極板を作製した。 Next, silicon having a purity of 99.9999% is used as a target, and a regular fine protrusion is a surface treatment portion that increases the binding force with the electrode active material on the tip surface of the convex portion 2 by a vapor deposition apparatus equipped with an electron beam heating means. Deposition was carried out while introducing oxygen of 99.7% purity on both sides of the copper foil current collector 1B shown in FIG. 1 (a) in which the portion 3 was formed, and SiO 0.5 having a thickness of 10 μm was formed on the convex portion. After forming, the negative electrode plate was produced by slitting to a specified width.

このような凸部2の配列で形成された銅箔の集電体1Bは、略楕円形の凸部2を集電体1Bの幅方向に配列させているため、銅箔の集電体1Bの長手方向に向かって負極活物質を蒸着する際に凸部2の上に効率良く付着させることができ、また凸部2の先端表面に高さが3μm、ピッチが3μmの電極活物質との結着力を高める表面処理部である規則的な微細な突部3を有しているので銅箔の集電体1B上に負極活物質層を蒸着し負極板を製造する際、あるいは負極板を所定の幅にスリットする際に銅箔の集電体1BとSiO0.5の決着面積を増やし決着力が高く負極活物質層の脱落を抑止することができた。結着力を高くするためには規則的な微細な突部3の突部と突部が間隔を保ち多数繰り返すことが必要であり高さが3μmでピッチが3μmが非常に良い結果であった。 The copper foil current collector 1B formed with such an array of convex portions 2 has the substantially elliptical convex portions 2 arranged in the width direction of the current collector 1B. When the negative electrode active material is vapor-deposited in the longitudinal direction, it can be efficiently attached onto the convex portion 2 and the electrode active material having a height of 3 μm and a pitch of 3 μm on the tip surface of the convex portion 2 Since it has regular fine protrusions 3 which are surface treatment portions that enhance the binding force, a negative electrode active material layer is deposited on a copper foil current collector 1B to produce a negative electrode plate, or When slitting to a predetermined width, the fixing area of the copper foil current collector 1B and SiO 0.5 was increased, and the fixing power was high, and the negative electrode active material layer could be prevented from falling off. In order to increase the binding force, it is necessary to repeat the protrusions of the regular fine protrusions 3 with a large distance between the protrusions, and the result is that the height is 3 μm and the pitch is 3 μm.

以下に凸部2の先端表面に電極活物質との結着力を高める表面処理部である規則的な微細な突部3の高さおよびピッチを0.5μm、1μm、3μm、5μm、8μm、10μmと可変させ作製したサンプル電極板の銅箔の集電体1Bと電極活物質との剥離強度と、このサンプル電極板1Bを使用して作製したサンプルコインセルの充放電100サイクル後の電極活物質のはがれの有無を記載する。   Below, the height and pitch of the regular fine protrusions 3 which are surface treatment portions for increasing the binding force with the electrode active material on the tip surface of the convex portion 2 are 0.5 μm, 1 μm, 3 μm, 5 μm, 8 μm, 10 μm. The peel strength between the copper foil current collector 1B and the electrode active material of the sample electrode plate produced by varying the amount of the electrode active material after 100 cycles of charge / discharge of the sample coin cell produced using this sample electrode plate 1B Indicate the presence or absence of peeling.

Figure 2009199973
Figure 2009199973

(表1)に示すように高さおよびピッチが1μm〜5μmの電極板は25kgf/cm2以上の剥離強度を示し、サンプルコインセルを作製し充放電100サイクル後の電極活物質のはがれも発生せず良好であった
なお、今回は高さが3μm、ピッチが3μmの電極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成し確認したが、高さが1〜5μm、ピッチが1〜5μmの電極活物質との結着力を高める表面処理部を有するロールとして図2(a)加工用ローラ5を図2(c)に示すように集電体幅方向、集電体の長手方向に不規則に凹部7が配置されるようブラスト加工で上下一対のローラ表面に施した。
As shown in (Table 1), an electrode plate having a height and a pitch of 1 μm to 5 μm exhibits a peel strength of 25 kgf / cm 2 or more, and a sample coin cell is produced and peeling of the electrode active material after 100 cycles of charge / discharge occurs. It was confirmed that a regular fine protrusion 3 was formed as a surface treatment portion for enhancing the binding force with an electrode active material having a height of 3 μm and a pitch of 3 μm. As shown in FIG. 2 (c), the processing roller 5 as a roll having a surface treatment portion for increasing the binding force with the electrode active material having a pitch of 1-5 μm and a pitch of 1-5 μm is shown in FIG. 2 (c). The surface of the pair of upper and lower rollers was blasted so that the concave portions 7 were irregularly arranged in the longitudinal direction of the current collector.

次に凸部を形成するローラとして図4(a)凸部加工用ローラ8を図4(b)に示すように集電体幅方向ピッチP9、集電体の長手方向ピッチP10を20μmの全て同一形状の略円形の凹部9を特定パターンで上下一対のローラ表面に施し、この2種類の上下一対
のローラを図5のように加工ピッチの細かい図2(a)加工用ローラ5を川上側に配置し、次いで加工ピッチの大きい図4(a)凸部加工用ローラ8を川下側に配置し加工した銅箔の表面は図1(b)に示すように凸部の先端表面に電極活物質との結着力を高める表面処理部である不規則な微細な突部4を形成した総厚28μmの銅箔の集電体1Bを作製しても同様の結果が得られた。
Next, as a roller for forming the convex portion, the convex portion processing roller 8 shown in FIG. 4A has a current collector width direction pitch P9 as shown in FIG. 4B, and the current collector longitudinal direction pitch P10 is all 20 μm. The substantially circular recesses 9 having the same shape are formed in a specific pattern on the surface of a pair of upper and lower rollers, and these two types of upper and lower pair of rollers are processed as shown in FIG. 4 (a), the convex processing roller 8 having a large processing pitch is disposed downstream, and the surface of the processed copper foil is placed on the tip surface of the convex portion as shown in FIG. 1 (b). A similar result was obtained even when a 28 μm thick copper foil current collector 1B having irregular fine protrusions 4 which are surface-treated portions that enhance the binding force with the substance was produced.

本発明の非水系二次電池用電極板を用いた非水系二次電池における一実施の形態について以下に説明する。まず、正極活物質としてコバルトの一部をニッケルおよびマンガンで置換したコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを電極活物質100重量部に対して2重量部、結着剤としてポリフッ化ビニリデンを電極活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した後にこの正極合剤塗料を集電体のアルミニウム箔の両面に塗布乾燥した後に総厚が126μmとなるようにプレスし、図6に示した円筒形のリチウムイオン二次電池で規定する幅にスリッタ加工し正極板64を作製した。   An embodiment of a non-aqueous secondary battery using the electrode plate for a non-aqueous secondary battery of the present invention will be described below. First, 100 parts by weight of lithium cobaltate in which a part of cobalt is substituted with nickel and manganese as the positive electrode active material, 2 parts by weight of acetylene black as the conductive material with respect to 100 parts by weight of the electrode active material, and polyfluoride as the binder After preparing a positive electrode mixture paint by stirring and kneading vinylidene with 2 parts by weight of 100 parts by weight of an electrode active material together with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader. The positive electrode mixture paint is applied on both sides of the aluminum foil of the current collector and dried, then pressed to a total thickness of 126 μm, and slitted to the width specified by the cylindrical lithium ion secondary battery shown in FIG. A positive electrode plate 64 was produced.

次に実施例1と同様にして銅箔の集電体を作製し、これに実施例1と同様に負極活物質として純度99.9999%の珪素を用い、電子ビーム加熱手段を具備した蒸着装置により図1(a)に示した8μm高さの凸部2を形成した銅箔の集電体1の両面に純度99.7%の酸素を導入しながら蒸着を行い、凸部2上に膜厚10μmのSiO0.5を柱状に形成した後、図6に示した円筒形のリチウムイオン二次電池で規定する幅にスリッタ加工し負極板66を作製した。 Next, a copper foil current collector was prepared in the same manner as in Example 1, and a vapor deposition apparatus equipped with electron beam heating means using 99.9999% purity silicon as the negative electrode active material, as in Example 1. Then, vapor deposition was performed while introducing oxygen having a purity of 99.7% on both sides of the copper foil current collector 1 on which the convex portion 2 having a height of 8 μm shown in FIG. 1A was formed, and a film was formed on the convex portion 2. After forming SiO 0.5 with a thickness of 10 μm in a columnar shape, slitting was performed to a width defined by the cylindrical lithium ion secondary battery shown in FIG.

さらに、図6に示したように正極板64と負極板66とをセパレータ68を介して渦巻状に巻回した電極群63を作製した後、この電極群63を有底円筒形の電池ケース60の内部に絶縁板69と共に収容し、電極群63の下部より導出した負極リード67を電池ケース60の底部に接続し、次いで電極群63の上部より導出した正極リード65を封口板61に接続し、電池ケース60に所定量の非水溶媒からなる電解液(図示せず)を注液した後、電池ケース60の開口部に封口ガスケット62を周縁に取り付けた封口板61を挿入し電池ケース60の開口部を内方向に折り曲げてかしめ封口することにより非水系二次電池を作製した。   Further, as shown in FIG. 6, an electrode group 63 in which a positive electrode plate 64 and a negative electrode plate 66 are spirally wound through a separator 68 is manufactured, and then the electrode group 63 is used as a bottomed cylindrical battery case 60. Is connected to the bottom of the battery case 60, and then the positive lead 65 led out from the upper part of the electrode group 63 is connected to the sealing plate 61. After injecting a predetermined amount of an electrolyte solution (not shown) made of a non-aqueous solvent into the battery case 60, a sealing plate 61 with a sealing gasket 62 attached to the periphery is inserted into the opening of the battery case 60, and the battery case 60 is inserted. The non-aqueous secondary battery was produced by bending the opening of the inside and crimping it inward.

上記非水系二次電池において渦巻状に巻回した電極群63を作製後に、この電極群63を解体して観察したところ正極板64、負極板66ともに電極板切れや電極活物質層の脱落などの不具合は認められなかった。さらにこの非水系二次電池を300サイクル充放電させたが、サイクル劣化もなく300サイクル後に非水系二次電池および電極群63を解体したところリチウム析出や電極活物質層の脱落などの不具合は認められなかった。   After producing the spirally wound electrode group 63 in the non-aqueous secondary battery, the electrode group 63 was disassembled and observed. As a result, both the positive electrode plate 64 and the negative electrode plate 66 were broken, the electrode active material layer was dropped, etc. No defects were found. Furthermore, this non-aqueous secondary battery was charged and discharged for 300 cycles. However, when the non-aqueous secondary battery and the electrode group 63 were disassembled after 300 cycles with no cycle deterioration, defects such as lithium deposition and electrode active material layer dropping were recognized. I couldn't.

これは凸部2の先端表面に高さが3μm、ピッチが3μmの電極活物質との結着力を高める表面処理部である規則的な微細な突部3を形成している上面に電極活物質の薄膜を柱状に形成することで銅箔の集電体1Bと電極活物質の接触面積が増え、リチウムを吸蔵した際における電極活物質の薄膜の膨張およびリチウムを放出した際における電極活物質の薄膜の収縮による体積変化に負けない決着力を有し良好な電池特性を維持できたものと考えられる。   This is because the electrode active material is formed on the upper surface where the regular fine protrusions 3 are formed on the surface of the tip of the convex portion 2 to increase the binding force with the electrode active material having a height of 3 μm and a pitch of 3 μm. The contact area between the copper foil current collector 1B and the electrode active material is increased by forming the thin film in a columnar shape, and the expansion of the thin film of the electrode active material when lithium is occluded and of the electrode active material when lithium is released It is considered that good battery characteristics were maintained with a decisive force comparable to the volume change due to the shrinkage of the thin film.

また凸部2の先端表面に高さが3μm、ピッチが3μmの電極活物質との結着力を高める表面処理部である規則的な微細な突部3の替わりに、図1(b)に示した凸部2の先端表面に高さが1〜5μm、ピッチが1〜5μmの電極活物質との結着力を高める表面処理部である不規則な微細な突部4を形成した銅箔の集電体1Bを作製し、上述した方法で負
極電極板を作製した後、図6に示したように非水系二次電池を作製して300サイクル充放電をさせても同様の結果が得られた。これは上述と同様に高さが1〜5μm、ピッチが1〜5μmの電極活物質との結着力を高める表面処理部により銅箔の集電体1Bと電極活物質の接触面積が増え、結着力が増したためと考えられる。
In addition, instead of the regular fine protrusions 3 which are surface treatment portions that increase the binding force with the electrode active material having a height of 3 μm and a pitch of 3 μm on the tip surface of the convex portion 2, as shown in FIG. A collection of copper foils on which irregular fine protrusions 4 are formed on the tip surface of the protrusions 2, which are surface-treated portions that increase the binding force with an electrode active material having a height of 1 to 5 μm and a pitch of 1 to 5 μm. After the electric conductor 1B was produced and the negative electrode plate was produced by the method described above, the same result was obtained even if a non-aqueous secondary battery was produced and charged and discharged for 300 cycles as shown in FIG. . As described above, the contact area between the copper foil current collector 1B and the electrode active material is increased by the surface treatment portion that increases the binding force with the electrode active material having a height of 1 to 5 μm and a pitch of 1 to 5 μm. This is thought to be due to increased wearing power.

以上述べたように本発明の非水系二次電池用電極板は金属からなる集電体1Bの表面に凸部2を形成し、凸部2の先端表面に高さが1〜5μm、ピッチが1〜5μmの電極活物質との結着力を高める表面処理部である規則的な微細な突部3または不規則な微細な突部4を形成したことで、金属箔からなる集電体1Bと電極活物質合剤層との結着にアンカー効果が増し金属箔からなる集電体1Bの凸部2に電極活物質を担持する工程やその後に所定の幅にスリット加工する等の後工程においても電極活物質の脱落を抑止することができる。さらに金属箔からなる集電体1Bの凸部2の先端表面に高さが1〜5μm、ピッチが1〜5μmの電極活物質との結着力を高める表面処理部である規則的な突部3または不規則な微細な突部4を形成しているので金属箔からなる集電体1Bと薄膜形成した電極活物質との密着力を高めることができ非常に有効であると考えられる。   As described above, the electrode plate for a non-aqueous secondary battery according to the present invention has the convex portion 2 formed on the surface of the current collector 1B made of metal, the height of 1-5 μm on the tip surface of the convex portion 2, and the pitch. By forming the regular fine protrusions 3 or the irregular fine protrusions 4 which are surface treatment parts that enhance the binding force with the electrode active material of 1 to 5 μm, the current collector 1B made of metal foil and In the post-process such as the step of supporting the electrode active material on the convex part 2 of the current collector 1B made of metal foil and the slit processing to a predetermined width after the anchor effect is increased in the binding with the electrode active material mixture layer Can also prevent the electrode active material from falling off. Furthermore, the regular protrusion 3 which is a surface treatment part which raises the binding force with the electrode active material whose height is 1-5 micrometers and a pitch is 1-5 micrometers on the front-end | tip surface of the convex part 2 of the collector 1B which consists of metal foils. Or, since the irregular fine protrusions 4 are formed, the adhesion between the current collector 1B made of metal foil and the electrode active material formed as a thin film can be increased, which is considered to be very effective.

本発明に係る非水系二次電池に用いられる集電体および電極板は、電極板を作製するための集電体の強度を確保すると共に、集電体上に形成した凸部の先端表面に高さが1〜5μm、ピッチが1〜5μmの電極活物質との結着力を高める表面処理部を形成していることで電極活物質を効率良く決着力高く担持することができ、信頼性の高い非水系二次電池が得られるため電子機器および通信機器の多機能化に伴って高容量化が望まれている携帯用電源等として有用である。   The current collector and electrode plate used in the non-aqueous secondary battery according to the present invention ensure the strength of the current collector for producing the electrode plate, and on the tip surface of the convex portion formed on the current collector. By forming a surface treatment portion that increases the binding force with an electrode active material having a height of 1 to 5 μm and a pitch of 1 to 5 μm, the electrode active material can be efficiently and highly loaded, and reliable. Since a high non-aqueous secondary battery can be obtained, it is useful as a portable power source or the like that is desired to have a higher capacity as the electronic device and communication device become multifunctional.

(a)本発明の実施の形態に係る凸部の先端表面に表面処理部を規則的な微細な突部で形成した集電体の要部を示す斜視図、(b)本発明の実施の形態に係る凸部の先端表面に表面処理部を不規則な微細な突部で形成した集電体の要部を示す斜視図(A) The perspective view which shows the principal part of the electrical power collector which formed the surface treatment part in the front end surface of the convex part which concerns on embodiment of this invention with the regular fine protrusion, (b) Implementation of this invention The perspective view which shows the principal part of the electrical power collector which formed the surface treatment part in the front surface of the convex part which concerns on a form with the irregular fine protrusion. (a)本発明の実施の形態に係る表面処理部を形成する加工用ローラを示す斜視図、(b)本発明の実施の形態に係る規則的な表面処理部を形成する加工用ローラの表面を示す要部の拡大斜視図、(c)本発明の実施の形態に係る不規則な表面処理部を形成する加工用ローラの表面を示す要部の拡大斜視図(A) The perspective view which shows the processing roller which forms the surface treatment part which concerns on embodiment of this invention, (b) The surface of the processing roller which forms the regular surface treatment part which concerns on embodiment of this invention The enlarged perspective view of the principal part which shows the surface of the processing roller which forms the irregular surface treatment part which concerns on embodiment of this invention, (c) (a)本発明の実施の形態に係る表面処理部を規則的な微細な突部で施した集電体の要部の表面を示す斜視図、(b)本発明の実施の形態に係る表面処理部を不規則な微細な突部で施した集電体の要部の表面を示す斜視図(A) The perspective view which shows the surface of the principal part of the electrical power collector which gave the surface treatment part which concerns on embodiment of this invention with the regular fine protrusion, (b) The surface which concerns on embodiment of this invention The perspective view which shows the surface of the principal part of the electrical power collector which gave the process part with the irregular fine protrusion (a)本発明の実施の形態に係る凸部を形成する加工用ローラを示す斜視図、(b)本発明の実施の形態に係る凸部を形成する加工用ローラの表面を示す要部の拡大斜視図(A) The perspective view which shows the processing roller which forms the convex part which concerns on embodiment of this invention, (b) Of the principal part which shows the surface of the processing roller which forms the convex part concerning embodiment of this invention Enlarged perspective view 本発明の実施の形態に係る集電体へのローラ加工を示す斜視図The perspective view which shows the roller process to the electrical power collector which concerns on embodiment of this invention 本発明の実施の形態に係わる円筒形二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical secondary battery according to an embodiment of the present invention. 従来例における集電体への凹凸加工の状態を示す断面図Sectional drawing which shows the state of uneven | corrugated processing to the electrical power collector in a prior art example (a)従来例における波板状の凹凸部を有する金属箔の斜視図、(b)同従来例における角錐状の凹凸部を有する金属箔を上から見た斜視図、(c)同従来例における角錐状の凹凸部を有する金属箔を下から見た斜視図、(d)同従来例における角錐状の凹凸部を有する別の金属箔を上から見た斜視図、(e)同従来例における角錐状の凹凸部を有する別の金属箔を下から見た斜視図(A) Perspective view of metal foil having corrugated plate-like irregularities in conventional example, (b) Perspective view of metal foil having pyramidal irregularities in the conventional example, (c) Conventional example The perspective view which looked at the metal foil which has a pyramid-shaped unevenness | corrugation part in from the bottom, (d) The perspective view which looked at another metal foil which has a pyramid-shaped unevenness | corrugation part in the same prior art example, (e) The said prior art example The perspective view which looked at another metal foil which has a pyramid-shaped uneven part in from the bottom (a)従来例における電極活物質合剤を充填した状態を示す集電体の断面図、(b)同従来例における電極活物質合剤を充填した別の状態を示す集電体の断面図、(c)同従来例における電極活物質合剤を充填したさらに別の状態を示す集電体の断面図(A) Sectional view of current collector showing state filled with electrode active material mixture in conventional example, (b) Sectional view of current collector showing another state filled with electrode active material mixture in the conventional example (C) Sectional drawing of the electrical power collector which shows another state with which the electrode active material mixture in the same prior art example was filled

符号の説明Explanation of symbols

1 集電体
1A 金属箔からなる集電体
1B 金属箔からなる集電体
2 凸部
3 規則的な微細な突部
4 不規則な微細な突部
5 加工用ローラ
6 凹部
7 凹部
8 凸部加工用ローラ
9 凹部
15 加工用上ローラ
18 凸部加工用上ローラ
25 加工用下ローラ
28 凸部加工用下ローラ
60 電池ケース
61 封口板
62 封口ガスケット
63 電極群
64 正極板
65 正極リード
66 負極板
67 負極リード
68 セパレータ
69 絶縁板
P1,P3,P5,P7,P9 幅方向の凸部のピッチ
P2,P4,P6,P8,P10 長手方向の凸部のピッチ
L1,L2,L3,L4,L5 集電体の幅方向の行単位
DESCRIPTION OF SYMBOLS 1 Current collector 1A Current collector which consists of metal foils 1B Current collector which consists of metal foils 2 Convex part 3 Regular fine protrusion 4 Irregular fine protrusion 5 Processing roller 6 Concave part 7 Concave part 8 Convex part Processing roller 9 Concave 15 Processing upper roller 18 Convex processing upper roller 25 Processing lower roller 28 Convex processing lower roller 60 Battery case 61 Sealing plate 62 Sealing gasket 63 Electrode group 64 Positive electrode plate 65 Positive electrode lead 66 Negative electrode plate 67 Negative electrode lead 68 Separator 69 Insulating plate P1, P3, P5, P7, P9 Pitch of projections in width direction P2, P4, P6, P8, P10 Pitch of projections in longitudinal direction L1, L2, L3, L4, L5 Line unit in the width direction of the electric body

Claims (11)

帯状の金属箔の上に少なくとも正極活物質または負極活物質を担持させる非水系二次電池用集電体であって、前記金属箔の少なくとも一方の表面に多数の凸部を設け、且つ、前記凸部の先端表面に活物質との結着力を高める表面処理部を設けたことを特徴とする非水系二次電池用集電体。   A current collector for a non-aqueous secondary battery supporting at least a positive electrode active material or a negative electrode active material on a band-shaped metal foil, provided with a plurality of protrusions on at least one surface of the metal foil, and A current collector for a non-aqueous secondary battery, wherein a surface treatment portion for increasing the binding force with an active material is provided on the tip surface of the convex portion. 前記表面処理部が微細な突部である請求項1に記載の非水系二次電池用集電体。   The current collector for a non-aqueous secondary battery according to claim 1, wherein the surface treatment portion is a fine protrusion. 前記表面処理部の微細な突部が規則的な突部である請求項1に記載の非水系二次電池用集電体。   The current collector for a non-aqueous secondary battery according to claim 1, wherein the fine protrusions of the surface treatment part are regular protrusions. 前記表面処理部の微細な突部が不規則な突部である請求項1に記載の非水系二次電池用集電体。   The current collector for a non-aqueous secondary battery according to claim 1, wherein the fine protrusions of the surface treatment part are irregular protrusions. 前記表面処理部の微細な突部の高さが1〜5μmであることを特徴とする請求項1に記載の非水系二次電池用集電体。   The current collector for a non-aqueous secondary battery according to claim 1, wherein the height of the fine protrusions of the surface treatment portion is 1 to 5 μm. 前記表面処理部の微細な突部のピッチが1〜5μmであることを特徴とする請求項1に記載の非水系二次電池用集電体。   The current collector for a non-aqueous secondary battery according to claim 1, wherein the pitch of the fine protrusions of the surface treatment portion is 1 to 5 μm. 帯状の金属箔の上に少なくとも正極活物質または負極活物質を担持させる非水系二次電池用集電体の製造方法であって、前記集電体の少なくとも一方の表面に多数形成する凸部と、前記凸部の先端表面に活物質との結着力を高めるために形成する表面処理部を、凹部を形成した一対のローラの間を2回以上通過させて形成することを特徴とする非水系二次電池用集電体の製造方法。   A method for producing a current collector for a non-aqueous secondary battery in which at least a positive electrode active material or a negative electrode active material is supported on a band-shaped metal foil, wherein a plurality of protrusions are formed on at least one surface of the current collector; The non-aqueous system is characterized in that the surface treatment part formed to increase the binding force with the active material on the tip surface of the convex part is formed by passing between the pair of rollers having the concave part twice or more. A method for producing a current collector for a secondary battery. 前記1回目に通過させる一対のローラの凹部で表面処理部を形成し、2回目以降に通過させる一対のローラの凹部で凸部を形成することを特徴とする請求項7に記載の非水系二次電池用集電体の製造方法。   The non-aqueous system according to claim 7, wherein a surface treatment portion is formed by the concave portions of the pair of rollers that pass through the first time, and a convex portion is formed by the concave portions of the pair of rollers that pass through the second time. A method for producing a current collector for a secondary battery. 前記凹部をレーザー加工、エッチング加工、ドライエッチング加工、ブラスト加工のいずれかの方法で形成したローラを用いることを特徴とする請求項7に記載の非水系二次電池の製造方法。   8. The method of manufacturing a non-aqueous secondary battery according to claim 7, wherein a roller in which the concave portion is formed by any one of laser processing, etching processing, dry etching processing, and blast processing is used. 請求項1〜6のいずれか一つに記載の非水系二次電池用集電体の上に少なくとも正極活物質または負極活物質を担持したことを特徴とする非水系二次電池用電極板。   An electrode plate for a non-aqueous secondary battery, wherein at least a positive electrode active material or a negative electrode active material is supported on the non-aqueous secondary battery current collector according to any one of claims 1 to 6. 請求項1〜6のいずれか一つに記載の非水系二次電池用集電体の上に少なくとも正極活物質または負極活物質を担持した非水系二次電池用電極板と対極となる電極板とをセパレータを介して巻回または積層して構成した電極群を電解液とともに電池ケースに封入して構成したことを特徴とする非水系二次電池。   The electrode plate which becomes a counter electrode with the electrode plate for non-aqueous secondary batteries which carry | supported at least the positive electrode active material or the negative electrode active material on the collector for non-aqueous secondary batteries as described in any one of Claims 1-6 A non-aqueous secondary battery comprising a battery case in which an electrode group formed by winding or laminating a battery with a separator is enclosed together with an electrolytic solution.
JP2008042471A 2008-02-25 2008-02-25 Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery Withdrawn JP2009199973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042471A JP2009199973A (en) 2008-02-25 2008-02-25 Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042471A JP2009199973A (en) 2008-02-25 2008-02-25 Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2009199973A true JP2009199973A (en) 2009-09-03

Family

ID=41143254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042471A Withdrawn JP2009199973A (en) 2008-02-25 2008-02-25 Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2009199973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151314A (en) * 2013-02-14 2014-08-25 Sumitomo Heavy Industries Fine Tech Co Ltd Rotating drum and rotating drum type magnetic separator
KR101519711B1 (en) 2012-05-03 2015-05-12 현대자동차주식회사 A substrate for a secondary battery
CN108470880A (en) * 2018-04-27 2018-08-31 河南省恒明风云电源有限公司 Alkaline bag-type accumulator plate roller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519711B1 (en) 2012-05-03 2015-05-12 현대자동차주식회사 A substrate for a secondary battery
JP2014151314A (en) * 2013-02-14 2014-08-25 Sumitomo Heavy Industries Fine Tech Co Ltd Rotating drum and rotating drum type magnetic separator
CN108470880A (en) * 2018-04-27 2018-08-31 河南省恒明风云电源有限公司 Alkaline bag-type accumulator plate roller

Similar Documents

Publication Publication Date Title
JP5153734B2 (en) Current collector for non-aqueous electrolyte secondary battery
JP4364298B2 (en) Current collector, electrode and non-aqueous electrolyte secondary battery
US8202642B2 (en) Current collector for non-aqueous secondary battery, electrode plate for non-aqueous secondary battery using the same, and non-aqueous secondary battery
JP4865673B2 (en) Lithium secondary battery
JP4362544B2 (en) Secondary battery and manufacturing method thereof
JP2010080432A5 (en)
JP2008270153A (en) Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
WO2008029719A1 (en) Nonaqueous electrolytic secondary cell
JP2005285607A (en) Nonaqueous secondary battery and manufacturing method thereof
US20220344632A1 (en) Manufacturing Apparatus and Manufacturing Method of Electrode for Secondary Battery Using Laser, and Electrode for Secondary Battery Manufactured by the Same
JP2018195576A (en) Lithium secondary battery
JP2010062136A (en) Nonaqueous electrolyte secondary battery
JPWO2011052122A1 (en) Non-aqueous electrolyte secondary battery current collector, electrode, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
JP2011023131A (en) Anode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
KR102111479B1 (en) Negative electrode and secondary battery comprising the same
JP2009199973A (en) Collector for nonaqueous secondary battery, electrode plate for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP2007324074A (en) Electrode plate for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this
KR20180081889A (en) Patterning of Lithium metal and electrochemical device prepared thereby
WO2008059936A1 (en) Collector for nonaqueous secondary battery, and nonaqueous secondary battery electrode plate and nonaqueous secondary battery using the collector
JP2014146475A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008159410A (en) Cathode plate for nonaqueous secondary battery, and nonaqueous secondary battery using this
JP2008123939A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using it
JP2009134916A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110113

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120920