WO2008059888A1 - Purifying apparatus, purifying method, exhaust gas purifying system, and method for producing purifying structure - Google Patents
Purifying apparatus, purifying method, exhaust gas purifying system, and method for producing purifying structure Download PDFInfo
- Publication number
- WO2008059888A1 WO2008059888A1 PCT/JP2007/072114 JP2007072114W WO2008059888A1 WO 2008059888 A1 WO2008059888 A1 WO 2008059888A1 JP 2007072114 W JP2007072114 W JP 2007072114W WO 2008059888 A1 WO2008059888 A1 WO 2008059888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- solid electrolyte
- exhaust gas
- purification
- fine particles
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0892—Electric or magnetic treatment, e.g. dissociation of noxious components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/42—Auxiliary equipment or operation thereof
- B01D46/50—Means for discharging electrostatic potential
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/06—Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/027—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
- F01N3/0275—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/104—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2279/00—Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
- B01D2279/30—Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/323—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/30—Details of magnetic or electrostatic separation for use in or with vehicles
Definitions
- Purification device Purification device, purification method, exhaust gas purification system, and purification structure manufacturing method
- the present invention relates to a purification device, a purification method for purifying unburned particulates (diesel particulates) and nitrogen oxides discharged from a combustor, and an exhaust gas for purifying exhaust gas containing diesel particulates and nitrogen oxides.
- the present invention relates to a purification system and a method for manufacturing a purification structure. Background art
- the conventional PM purification method has a problem of how to remove and regenerate the fine particles accumulated on the filter.
- a continuous regeneration trap one of the continuous regeneration systems, oxidizes NO in the exhaust gas to NO, and particulates collected on the filter are oxidized by this NO. There is S power to make it.
- S power to make it.
- DPNR Diesel Particulate-NOx Reduction system
- DPNR Diesel Particulate-NOx Reduction system
- the present invention provides a purification device, a purification method, and an exhaust gas purification system that are capable of purifying exhaust gas and efficiently purify, and are further used in the purification device and the exhaust gas purification system.
- An object of the present invention is to provide a method for producing a purification structure.
- a purification apparatus of the present invention includes a solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side, and one side and the other side of the solid electrolyte.
- a purification structure having a first electrode and a second electrode provided, and the purification structure emits exhaust gas containing unburned fine particles discharged from the combustor force from the first electrode side to the second electrode.
- the fine particles can be collected on the first electrode side by passing to the side, and the first electrode side is configured to collect the collected fine particles to the first electrode side by the solid electrolyte.
- the purification structure further includes a support for increasing the mechanical strength of the purification structure.
- the purification structure is porous, it is possible to collect the fine particles on the first electrode side by passing exhaust gas containing unburned fine particles through the purification structure. Yes (can be filtered). Then, on the first electrode side, the solid carbonaceous fine particles in the collected fine particles can be oxidized with oxygen ions given by the solid electrolyte to form a carbon oxide.
- the purification structure since the mechanical strength of the purification structure can be increased by the support, the purification structure It is possible to reduce the thickness of electrodes and solid electrolytes, which are other members constituting the body. That is, it is not necessary to increase the thickness of the electrode or the solid electrolyte in order to increase the mechanical strength of the purification structure. For this reason, it is possible to reduce the resistance when the exhaust gas permeates through the electrode and the solid electrolyte, and since the solid electrolyte is thinned, oxygen ions can be conducted with a small amount of applied voltage. Unburned particulates discharged include, for example, diesel engines, gasoline engines (direct injection gasoline engines), boilers, and industrial furnace power.
- the support is provided in a state of being laminated with the first electrode or the second electrode, and the support has a network structure or a porous structure through which the exhaust gas can pass. It is preferable.
- a support body can be included in the purification structure as an integral body, and the mechanical strength of the purification structure is increased. Further, since the support has a net structure or a porous structure, it is possible to transmit the exhaust gas. For this reason, the presence of the support does not prevent simultaneous purification of the solid carbonaceous fine particles and the nitrogen oxides in the exhaust gas.
- At least one of the first electrode and the second electrode includes the same material as the solid electrolyte. According to this, since the decomposition reaction occurs at the interface between the electrode and the solid electrolyte, the reaction active point can be increased by mixing the solid electrolyte material with the electrode material. This can promote the decomposition of the components in the exhaust gas.
- the first electrode contains silver. According to this, silver has the ability to adsorb oxygen. For this reason, there are many active sites that oxidize (decompose) the solid carbonaceous fine particles in the first electrode. Thereby, oxygen ions can be efficiently used for the oxidation of the solid carbonaceous fine particles, and a high decomposition rate can be obtained.
- the purification method of the present invention is provided with a porous solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side, and one side and the other side of the solid electrolyte.
- a purification method using a purification structure having a first electrode and a second electrode, and a support for increasing mechanical strength, from the one surface side of the porous solid electrolyte By passing the exhaust gas containing unburned particulates to the other side, the particulates The fine particles collected on the side are oxidized by the oxygen ions given to the one surface side by the solid electrolyte.
- the exhaust gas containing the unburned fine particles is passed through the porous solid electrolyte, whereby the fine particles can be collected on the one surface side.
- the solid carbonaceous fine particles in the collected fine particles can be oxidized on one side to form carbon oxides.
- the mechanical strength of the purification structure can be increased by the support, it is possible to reduce the thickness of electrodes and solid electrolytes that are other members constituting the purification structure. That is, it is not necessary to increase the thickness of the electrode or the solid electrolyte in order to increase the mechanical strength of the purification structure. For this reason, it is possible to reduce the resistance when the exhaust gas permeates the electrode and the solid electrolyte, and since the solid electrolyte is made thin, oxygen ions can be conducted with a small amount of applied voltage.
- the exhaust gas purification system of the present invention is provided in an exhaust passage through which exhaust gas containing unburned particulates and nitrogen oxides discharged from the combustor passes, and in a part of the exhaust passage.
- An exhaust gas purification system comprising: a solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side; and one side of the solid electrolyte.
- a purification structure having a first electrode and a second electrode respectively provided on the side and the other surface side. The purification structure allows the exhaust gas from the exhaust passage to be discharged from the first electrode side.
- the fine particles can be collected on the first electrode side by passing to the second electrode side, and the first electrode side uses the solid electrolyte to collect the collected fine particles.
- Oxygen ions given to the electrode side And the second electrode side is a reducing unit that reduces nitrogen oxides contained in the exhaust gas that has permeated the purification structure, and the purification structure includes the purification structure. It further has a support for increasing the mechanical strength of the body.
- the mechanical strength of the purification structure can be increased by the support, it is possible to reduce the thickness of electrodes and solid electrolytes that are other members constituting the purification structure. That is, it is not necessary to increase the thickness of the electrode or the solid electrolyte in order to increase the mechanical strength of the purification structure. For this reason, it is possible to reduce the resistance when the exhaust gas permeates the electrode and the solid electrolyte, and since the solid electrolyte is made thin, oxygen ions can be conducted with a small amount of applied voltage.
- the purification structure manufacturing method of the present invention is provided with a solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side, and one side and the other side of the solid electrolyte.
- a purification structure having a first electrode, a second electrode, and a porous support for increasing mechanical strength, wherein one surface side of the support is coated with an electrolyte slurry, Is fired to obtain a solid electrolyte on the support, and the electrode slurry is infiltrated from the other side of the porous support to the back of the solid electrolyte, and the electrode slurry is applied to the surface of the solid electrolyte. And is fired to obtain electrodes on both sides of the solid electrolyte.
- the electrode is fired after firing the solid electrolyte first, it is effective when the melting point of the electrode material is lower than the firing temperature of the solid electrolyte. That is, if the solid electrolyte and the electrode are simultaneously fired at a high temperature for firing the solid electrolyte, there is a possibility that the metal constituting the electrode may be aggregated. This manufacturing method can prevent this.
- FIG. 1 is a model diagram showing an embodiment of a purification device.
- FIG. 2 is a model diagram showing another purification device.
- FIG. 3 is a model diagram showing still another purification device.
- FIG. 4 is a model diagram for explaining the action of switching means for reversing the polarity of the applied voltage of the applying means.
- FIG. 5 is a schematic diagram showing an outline of an exhaust gas purification system.
- Fig. 6 is a configuration diagram of a main part of an exhaust gas purification device.
- Fig. 7 is a main part configuration diagram showing a modified example of the exhaust gas purification device.
- FIG. 8 is a schematic diagram showing an outline of another exhaust gas purification system.
- FIG. 9 is a main part configuration diagram showing an exhaust gas purifying device included in the purification system of FIG.
- FIG. 10 is a model diagram showing still another purification device.
- FIG. 11 is an explanatory diagram for explaining the mechanism of reduction of nitrogen oxides.
- FIG. 12 is an explanatory diagram for explaining another mechanism of reduction of nitrogen oxides.
- FIG. 13 is a schematic diagram showing an outline of another exhaust gas purification system.
- FIG. 14 is a main part configuration diagram showing an exhaust gas purifying device included in the purification system of FIG.
- FIG. 15 is a graph showing the relationship between the reduction rate of solid carbonaceous fine particles and the purification time.
- FIG. 16 is a graph showing the relationship between the reduction rate of solid carbonaceous fine particles and the current flowing through the purification structure.
- FIG. 17 is a graph showing the relationship between the reduction rate of nitrogen oxides and the current flowing through the purification structure.
- FIG. 18 is an explanatory view of a purification structure provided with a support.
- FIG. 19 is an explanatory view for explaining a method for producing a purification structure provided with a support.
- FIG. 1 is a model diagram showing an embodiment of a purification device.
- This purification device is for purifying diesel particulates contained in, for example, exhaust gas.
- This purification device can purify solid carbonaceous fine particles (particulate matter) PM in diesel fine particles.
- this apparatus is an apparatus for purifying by oxidizing carbon contained in the solid carbonaceous fine particles M.
- the equipment can also process hydrocarbon particulates in the diesel particulates.
- the apparatus shown in FIG. 1 applies a voltage between the solid electrolyte 1 having oxygen ion conductivity and both sides of the solid electrolyte 1.
- Application means 2 is provided.
- the solid electrolyte 1 shown in FIG. 1 has a panel shape, and the first electrode 3 is laminated on one surface 10 and the second electrode 4 is laminated on the other surface 11.
- the solid electrolyte 1 for example, one used in a fuel cell can be applied, and an oxygen ion can be moved by applying a potential difference to both ends of the solid electrolyte 1.
- the first electrode 3 and the second electrode 4 are usually made of materials used as electrodes.
- the first electrode 3 and the second electrode 4 are plate-like, but the first electrode 3 and the second electrode 4 are porous electrodes so that the! /!
- the application means 2 can be a DC power supply that is usually used, and preferably has a variable voltage.
- the application means 2 applies a voltage between both surfaces of the solid electrolyte 1 so that the first electrode 3 provided on one side 10 of the solid electrolyte 1 serves as a canon and the second electrode 4 provided on the other side 11 serves as a force sword. Apply.
- the voltage applied by the applying means 2 is set according to the electrical characteristics of the solid electrolyte 1 and the ambient temperature. For example, when the solid electrolyte 1 is yttrium-stabilized zirconium, it is 10 volts or less at an ambient temperature of 350 ° C.
- This purification device is provided, for example, in an exhaust passage (not shown) for flowing exhaust gas discharged from a diesel engine.
- the one surface 10 side of the solid electrolyte 1 is provided so as to face the exhaust passage, and the one surface 10 side becomes the exhaust gas side G.
- the solid electrolyte 1 is provided so that the other surface 11 side of the solid electrolyte 1 faces the atmosphere side (atmosphere release side) A.
- a deposition surface 12 on which diesel particulates are deposited is formed on the surface 10 side, which is the anode side of the solid electrolyte 1, and the outer surface of the first electrode 3 is the deposition surface 12 in FIG.
- the outer surface of the first electrode 3 is the surface opposite to the contact surface with the solid electrolyte 1.
- diesel particulates are deposited on the deposition surface 12 on the one surface 10 side of the solid electrolyte 1, and a predetermined voltage is applied between both surfaces of the solid electrolyte 1 by the application means 2. Then, oxygen ions are supplied from the force sword side to the anode side. The oxygen ions oxidize diesel particulates present on the deposition surface 12 on the anode side. That is, oxygen contained in the atmosphere side A that is the force sword side is supplied as oxygen ions to the exhaust gas side G that is the anode side.
- the carbon contained in the solid carbonaceous fine particles M in the diesel particulates is continuously oxidized to carbon monoxide and carbon dioxide (C + O ⁇ C ⁇ 2 , 2C + ⁇ 2 ⁇ 2CO), and solid carbonaceous fine particles M are purified (decomposed).
- the arrows in solid electrolyte 1 indicate the direction of oxygen ion movement.
- a voltage is applied between both surfaces of the solid electrolyte 1 having oxygen ion conductivity and the solid electrolyte 1 so that one side of the solid electrolyte 1 on which diesel particulates are deposited is the anode side.
- oxygen ions are supplied from the force sword side to the anode side through the solid electrolyte 1 by applying a voltage between both surfaces of the solid electrolyte 1 by the application means 2.
- the solid carbonaceous fine particles M in the diesel fine particles deposited on the anode side can be oxidized to form carbon oxides.
- exhaust gas purification is performed by setting the surface of the solid electrolyte 1 on the power sword side to the atmosphere side (atmosphere release side) and the surface of the solid electrolyte 1 on the anode side to the exhaust gas side containing diesel particulates. Can do.
- the purification device shown in FIG. 2 is obtained by omitting the first electrode 3 of the purification device of FIG. 1, and the other configurations are the same. That is, the electrode 4 on the force sword side is provided only on the other surface 11 side of the solid electrolyte 1.
- This purification device utilizes the fact that the solid carbonaceous fine particles M in the diesel fine particles have electrical conductivity.
- the surface 10 of the solid electrolyte 1 is directly used as the deposition surface 12 of the solid carbonaceous fine particles M contained in the diesel fine particles.
- the lead wire 13 connected to the applying means 2 is connected to the one surface 10 side of the solid electrolyte 1.
- the application means 2 application of voltage is started by the application means 2 and The carbonaceous fine particle M itself is used as an anode and energized.
- a predetermined potential difference is generated between both surfaces of the solid electrolyte 1 to supply oxygen ions. That is, when a certain amount of diesel particulates accumulates on the deposition surface 12, the purification is automatically started.
- the lead wire 13 is provided in a ring shape or a mesh shape on the one surface 10 side of the solid electrolyte 1.
- the purification device shown in FIG. 3 performs the simultaneous treatment of diesel particulates by the purification device shown in FIG. 1 (FIG. 2) and nitrogen oxide treatment using an oxidation catalyst simultaneously. .
- the nitrogen oxides to be treated are contained in the exhaust gas along with diesel particulates.
- an adsorbent 5 and an oxidation catalyst 6 are provided on one surface 10 side of the solid electrolyte 1 of the purification device shown in FIG.
- this apparatus is provided on the solid electrolyte 1 having oxygen ion conductivity, the application means 2 for applying a voltage between both surfaces of the solid electrolyte 1, and the one surface 10 side of the solid electrolyte 1, and adsorbs nitrogen oxides.
- An adsorbent 5 to be formed and an oxidation catalyst 6 provided on one side 10 of the solid electrolyte 1.
- the solid electrolyte 1 is the same as that shown in FIG.
- the applying means 2 applies a voltage so that the side 10 of the solid electrolyte 1 on which the diesel particulates are deposited becomes the anode side.
- the first electrode 3 provided on the one surface 10 side of the solid electrolyte 1 is preferably constituted by a porous electrode including the oxidation catalyst 6.
- the first electrode 3 is made of porous platinum or silver. That is, the first electrode 3 is used together as the oxidation catalyst 6.
- a nitrogen compound adsorbent 5 is laminated on the first electrode 3 (oxidation catalyst 6) in a net shape.
- the adsorbent 5 can be an alkaline earth metal or an alkali metal, and can include, for example, norium.
- the adsorbent 5 shown in FIG. 3 is formed in layers.
- a purification method using this purification apparatus shown in FIG. 3 is as follows. First, the same as Fig. 1 (Fig. 2) Similarly, a voltage is applied between both surfaces of the solid electrolyte 1 by the applying means 2 to supply oxygen ions from the force sword side to the anode side.
- the oxidized ions oxidize (2C + 0 ⁇ 2CO) the solid carbonaceous fine particles M in the diesel fine particles present on the deposition surface 12 on the anode side of the solid electrolyte 1 to obtain carbon oxides containing carbon monoxide. (Arrow a).
- the diesel particulates having the solid carbon particulates M are contained in the exhaust gas, and are deposited on the deposition surface 12 on the one side 10 side of the solid electrolyte 1.
- the deposition surface 12 becomes the outer surface of the first electrode 3 having the oxidation catalyst 6 and the outer surface of the adsorbent 5.
- nitric oxide contained in the exhaust gas together with diesel particulates is oxidized (NO + O ⁇ NO + ⁇ *) by the oxidation catalyst 6 on the anode side of the solid electrolyte 1 to form nitrogen dioxide (arrow b). -1 and arrow b-2).
- the oxygen used in this oxidation is mainly oxygen contained in the exhaust gas.
- the nitrogen dioxide is adsorbed on the adsorbent 5. Further, the adsorbed nitrogen dioxide is reduced (2NO + 4CO ⁇ N + 4CO) with carbon monoxide obtained by oxidizing the solid carbonaceous fine particles M, using nitrogen dioxide as nitrogen and carbon monoxide as carbon dioxide. (Arrow c).
- diesel particulates (solid carbonaceous particulates M) and nitrogen oxides (nitrogen monoxide) contained in the exhaust gas are continuously purified into nitrogen and carbon dioxide.
- the oxidation of the solid carbonaceous fine particles M in the diesel fine particles is promoted by the oxidation catalyst 6 present on the deposition surface 12 of the diesel fine particles.
- the oxidation catalyst 6 present on the deposition surface 12 of the diesel fine particles.
- the oxidation of solid carbonaceous fine particles M is promoted by the active oxygen ( ⁇ *) generated. .
- the solid electrolyte 1 having oxygen ion conductivity and the application of applying a voltage between both surfaces of the solid electrolyte 1 such that one side of the solid electrolyte 1 on which the diesel particulates are deposited becomes the anode side.
- the configuration comprising the means 2, the adsorbent 5 provided on one side of the solid electrolyte 1 for adsorbing nitrogen oxides, and the oxidation catalyst 6 provided on the one side of the solid electrolyte 1, the solid electrolyte Oxygen ions can be supplied from the force sword side to the anode side through the solid electrolyte 1 by applying a voltage between the both surfaces of 1 by applying means 2.
- the solid carbonaceous fine particles M in the diesel fine particles deposited on the anode side can be oxidized to form carbon oxides containing carbon monoxide.
- oxidation catalyst 6 Nitric oxide contained in the exhaust gas can be oxidized to nitrogen dioxide. Further, the nitrogen dioxide can be adsorbed on the adsorbent 5. Then, the nitrogen dioxide adsorbed on the adsorbent 5 is reduced with carbon monoxide obtained by oxidizing the solid carbonaceous fine particles M in the diesel fine particles into nitrogen gas, and the carbon monoxide is converted into carbon dioxide. Can do. Therefore, it is possible to simultaneously purify both the solid carbonaceous fine particles M and the nitrogen oxides in the diesel fine particles.
- the exhaust gas purification is performed by setting the surface of the solid electrolyte 1 on the power sword side to the atmospheric side (atmosphere release side) and the surface of the solid electrolyte 1 on the anode side to the exhaust gas side containing diesel particulates. Can do.
- the applying means 2 of this purification device has switching means for periodically inverting the polarity of the applied voltage. That is, the first electrode 3 on the anode side is set to the force sword side, and the second electrode 4 on the cathode side is switched to the anode side, and this switching is performed continuously.
- FIG. 4 shows a state in which the first electrode 3 is on the force sword side and the second electrode 4 is on the anode side.
- the active oxygen (O *) generated on the surface 10 side of the solid electrolyte 1 that is the exhaust gas side G is forced to return to the other surface 11 side of the solid electrolyte 1 that is the atmosphere side A.
- FIG. 5 is a schematic diagram showing a purification system that purifies exhaust gas from a diesel engine.
- This exhaust gas contains diesel particulates (solid carbonaceous particulates M) and nitrogen oxides (nitrogen monoxide).
- This purification system includes an exhaust passage 7 connected to an exhaust port of a diesel engine (diesel engine) 15 and exhausting exhaust gas, and an exhaust gas purification device 8 provided in a part of the exhaust passage 7. ing. Further, the exhaust passage 7 shown in FIG. 5 is constituted by an exhaust pipe. An exhaust gas purification chamber 16 having an exhaust gas purification device 8 is provided in the middle of the exhaust pipe. A plurality of solid electrolytes 1 are provided in the exhaust gas purification chamber 16. The solid electrolyte 1 is the same as that shown in FIG.
- the exhaust gas purification device 8 is connected to the control device 17.
- the control device 17 is provided with the switching means for periodically reversing the polarity of the applied voltage of the application means 2 and the application means 2, and controls the operation of the purification device 8.
- the purification device 8 has a charging device 18.
- the charging device 18 charges the diesel particulates contained in the exhaust gas and deposits the diesel fine particles on the deposition surface 12 (see FIG. 3) of the solid electrolyte 1.
- the exhaust gas purification device 8 includes a plurality of solid electrolytes 1.
- an adsorbent 5 that is provided on the first surface 10 side of the stationary electrolyte 1 and adsorbs nitrogen oxides, and is provided on the first surface 10 side of the solid electrolyte 1.
- the oxidation catalyst 6 and the application means 2 for applying a voltage between both surfaces of the solid electrolyte 1 are provided.
- the applying means 2 is shared by a plurality of solid electrolytes 1.
- Each solid electrolyte 1 has oxygen ion conductivity, and is provided so that one side 10 is in contact with exhaust gas from the exhaust flow path 7 and the other side 11 is in contact with oxygen in the atmosphere. .
- the application means 2 is provided on both sides of the solid electrolyte 1 so that the first electrode 3 provided on the first surface 10 side of the solid electrolyte 1 is the anode side and the second electrode 4 provided on the other surface 11 side is the force sword side. A voltage is applied between them.
- the solid electrolyte 1, the adsorbent 5, the oxidation catalyst 6, and the applying means 2 included in the exhaust gas purification device 8 are the same as those described with reference to FIGS.
- the applying means 2 has switching means for periodically inverting the polarity of the applied voltage.
- FIG. 6 is a configuration diagram of a main part of the exhaust gas purification device 8 provided in the purification system of FIG.
- This purification device 8 has a plurality of solid electrolytes 1.
- a plurality of (seven in FIG. 6) flat panel-shaped solids are disposed in the exhaust gas purification chamber 16 connected to the exhaust flow path 7.
- the electrolytes 1 are arranged so as to face each other with a gap between them.
- the solid electrolytes 1 are alternately turned over to form a laminated structure, and are arranged so that the one surfaces 10, 10 of the adjacent solid electrolytes 1, 1 or the other surfaces 11, 11 face each other.
- a rod-like spacer member 19 is provided in each gap.
- a solid electrolyte layer 20 is formed by the plurality of solid electrolytes 1. This solid electrolyte layer 20 is provided in the exhaust gas purification chamber 16.
- An exhaust gas flow path 21 or an air flow path 22 is formed in each gap between the plurality of solid electrolytes 20 and between the spacer members 19 and 19. That is, the exhaust gas flow paths 21 and the air flow paths 22 are alternately formed in order from one side of the solid electrolyte layer 20 in the stacking direction (the lower part in FIG. 6). Note that the exhaust gas flow path 21 is formed between the surfaces 10 and 10 of the adjacent solid electrolytes 1 and 1, and the air flow path 22 is formed between the other surfaces 11 and 11 of the adjacent solid electrolytes 1 and 1.
- the direction of the spacer member 19 in the gap constituting the exhaust gas flow path 21 and the direction of the spacer member 19 in the gap constituting the air flow path 22 may be the same direction (not shown). ) Or change direction at a certain angle.
- the spacer member 19 in the gap constituting the air flow path 22 is provided with a 90 ° orientation changed with respect to the spacer member 19 of the exhaust gas flow path 21.
- the exhaust gas flow path 21 penetrating in the exhaust gas flow direction (arrow g direction) and the air flow path 22 penetrating in the direction orthogonal to the exhaust gas flow direction (arrow a direction) alternate. Formed.
- the exhaust gas flowing from the exhaust flow path 7 is directly sent to the exhaust gas flow path 21 as it is, and the air flow path 22 is communicated with the atmosphere side A outside the exhaust gas purification chamber 16 so that the air Is sent to the air flow path 22.
- the exhaust gas passes through the exhaust gas passage 21, the diesel particulates contained in the exhaust gas face the exhaust gas passage 21. Is deposited and oxidized, and nitrogen oxides in the exhaust gas are reduced.
- FIG. 7 shows a modification of the exhaust gas purification device 8.
- a plurality of cylindrical solid electrolytes 1 are provided in a cylindrical exhaust gas purification chamber 16 having a rectangular cross section penetrating in the flow direction of the exhaust gas flowing in the exhaust flow path 7 (arrow g direction).
- the solid electrolyte 1 is formed in a cylindrical shape so that the other surface 11 side that is the atmosphere side A is the inner surface.
- the outer peripheral surface of the solid electrolyte 1 in the form of a cylinder is the exhaust gas side G on one side 10 side and the deposition surface 12.
- cylindrical solid The axial direction of the body electrolyte 1 is the direction (arrow a direction) perpendicular to the flow direction of the exhaust gas (arrow g direction).
- These solid electrolytes 1 are provided in the exhaust gas purification chamber 16 so as to have a mutual gap.
- the inside of the cylindrical solid electrolyte 1 communicates with the atmosphere side A, and air can pass through the inside of the cylindrical solid electrolyte 1.
- the exhaust gas flowing from the exhaust passage 7 flows through the gap between the cylindrical solid electrolytes 1, 1, and the diesel particulate force contained in the exhaust gas passing through the gap is the outer peripheral surface of the cylindrical solid electrolyte 1. It is deposited on the side deposition surface 12 and oxidized, and nitrogen oxides in the exhaust gas are reduced.
- the diesel particulates in the exhaust gas introduced into the exhaust gas purification chamber 16 are charged by the charging device 18 (see Fig. 5) to obtain a solid electrolyte.
- Diesel particulates are actively collected on the deposition surface 12 of 1. That is, the charging electrode is provided in the upstream portion where the exhaust gas flows into the exhaust gas purification device 8. Then, by setting the electrode 3 (see Fig. 3) on the deposition surface 12 side of the solid electrolyte 1 to the ground level, an electric field is formed and the diesel particulates are charged, and the charged diesel particulates are efficiently converted into the solid electrolyte. Dust is collected on 1 accumulation surface 12.
- the exhaust gas purification device 8 shown in FIG. 7 is arranged such that the outer peripheral surface serving as the deposition surface 12 of the cylindrical solid electrolyte 1 partially blocks the exhaust gas. For this reason, exhaust gas is sprayed directly on the outer peripheral surface, and diesel particulates in the exhaust gas are efficiently collected on the outer peripheral surface of the solid electrolyte 1 by its inertial force. Furthermore, since there is only the solid electrolyte 1 that can purify the exhaust gas in the exhaust gas purification chamber 16, the concentration of diesel particulates in the exhaust gas, where there is no risk of diesel particulates accumulating on other parts and blocking the flow path, It is effective when it is high.
- FIG. 8 and FIG. 9 show still another modification of the exhaust gas purification device 8.
- the solid electrolyte 1 of the purification device 8 is formed in a U-shaped cross section.
- the solid electrolyte 1 is composed of a side wall 23 extending from the opening to the back and a back wall 24 having a butting shape at the back.
- the side wall 23 is in a direction parallel to the flow direction of the exhaust gas flowing from the exhaust passage 7 (arrow g direction).
- a plurality of solid electrolytes 1 are provided in the exhaust gas purification chamber 16 so that the back wall 24 has a surface orthogonal to the flow direction of the exhaust gas.
- a solid electrolyte with a U-shaped cross section 1 The inner surface is the deposition surface 12 on the side 10 shown in FIG.
- the U-shaped solid electrolyte 1 can be formed into a bottomed cylindrical shape having a circumferential side wall 23 and a back wall 24. Furthermore, the solid electrolyte 1 having a U-shaped cross section is connected to the adjacent solid electrolyte 1 by a connecting wall member 25, and the connected solid electrolyte 1 allows the exhaust gas purification chamber 16 to be connected to the exhaust gas side G space. It is divided into the atmosphere side A space.
- a pipe-like exhaust conduit 26 is inserted inside the solid electrolyte 1 having a U-shaped cross section with a gap from the inner side surface of the solid electrolyte 1.
- the exhaust gas flowing from the exhaust passage 7 is guided to the back wall 24 side of the solid electrolyte 1 by the exhaust conduit 26.
- the induced exhaust gas collides with the back wall 24 of the solid electrolyte 1, and then flows between the outer peripheral surface of the exhaust conduit 26 and the side wall 2 3 of the solid electrolyte 1, and the exhaust gas purified by the solid electrolyte 1 is It is discharged outside the exhaust gas purification chamber 16.
- an air inlet 27 and its outlet 28 are provided in the portion on the atmosphere side A of the exhaust gas purification chamber 16 partitioned by a plurality of connected solid electrolytes 1.
- the diesel particulates are charged by the charging device 18 and the diesel particulates are collected on the deposition surface 12 of the solid electrolyte 1.
- the exhaust conduit 26 is used as a charging electrode, and the electrode 3 (see FIG. 3) on the deposition surface 12 side of the solid electrolyte 1 is set to the ground level.
- electrolysis is formed between the outer peripheral surface of the exhaust conduit 26 and the inner surface of the solid electrolyte 1.
- a purification method using the exhaust gas purification device 8 shown in FIG. 9 will be described.
- the exhaust gas flowing from the exhaust passage 7 first flows in the exhaust conduit 26. Diesel particulates in the exhaust gas that has passed through the exhaust pipe 26 are trapped on the deposition surface 12 of the back wall 24 of the solid electrolyte 1 by its inertial force.
- the exhaust gas further flows between the exhaust pipe 26 and the solid electrolyte 1, and diesel particulates charged by the charging device 18 between them are separated from the side wall 23 of the solid electrolyte 1 by the electric field formed by the charging device 18.
- the exhaust gas purifying device 8 has an inertia collecting action at the back wall 24 of the solid electrolyte 1 due to the inertia force of the exhaust gas and an electric collecting action by the charging device 18.
- Diesel particulates with large particle diameters are effective for inertial collection, and those with small particle diameters are effective for electric collection. These two actions make diesel particulates with various particle sizes more efficient. It can be collected well.
- This purification apparatus is a modification of the purification apparatus shown in FIGS.
- FIG. 10 is a model diagram showing the purification device.
- This device can also purify exhaust gas exhausted from diesel engine power, and can purify solid carbonaceous particulates M and nitrogen oxides in diesel particulates contained in the exhaust gas.
- the purifying device includes a solid electrolyte 1 having ionic conductivity and capable of supplying oxygen ions to one side, and a first electrode 3 provided on one side 10 and the other side 11 of the solid electrolyte 1, respectively.
- a purification structure 30 having a second electrode 4 is provided.
- the solid electrolyte 1 has a panel shape, and the purification structure 30 is configured by laminating the first electrode 3 on one surface 10 and the second electrode 4 on the other surface 11.
- the solid electrolyte 1 for example, one used in a fuel cell can be applied, and a force S can be moved by causing a potential difference between both ends of the solid electrolyte 1.
- this solid electrolyte 1 can give oxygen ions to the first electrode 3 as a result, the ions that move through the solid electrolyte 1 are not limited to oxygen ions.
- the purification structure 30 is made porous so that gas containing nitrogen oxide can be permeated except for diesel particulates (solid carbonaceous particulates M) from the exhaust gas to be purified. . That is, the solid electrolyte 1 in the purification structure 30 is porous, and the first electrode 3 and the second electrode 4 are porous electrodes.
- exhaust gas containing diesel particulates is passed from the first electrode 3 side to the second electrode 4 side (arrow F), thereby capturing diesel particulates on the first electrode 3 side. It is possible to collect (filter).
- the solid electrolyte 1 in which a potential difference is generated is used. Then, the trapped diesel particulate solid carbonaceous particles M are oxidized by oxygen ions applied to the first electrode 3 side.
- the exhaust gas that has passed through the purification structure 30 contains nitrogen oxides. This nitrogen oxide is reduced on the second electrode 4 side as will be described later.
- the first electrode 3 side is an oxidation part that oxidizes the solid carbonaceous fine particles M
- the second electrode 4 side that is the opposite side (back side) across the solid electrolyte 1 is the purification structure. It becomes a reducing part that reduces nitrogen oxides contained in the exhaust gas that has permeated through the body 30.
- this purification device can purify the solid carbonaceous fine particles M on one surface side of the purification structure 30 and simultaneously purify nitrogen oxides on the other surface side.
- the solid carbonaceous fine particles M in the unburned fine particles can be oxidized into carbon oxides in the oxidation part on the first electrode 3 side.
- the solid electrolyte 1 moves oxygen ions from the second electrode 4 side to the first electrode 3 side, thereby passing the exhaust gas that has permeated the purification structure 30.
- Nitrogen oxides contained in can be reduced to nitrogen gas.
- the purification structure 30 is connected to a control means 31 provided for performing such a purification process.
- the control means 31 has an application means 2 similar to that shown in the purification device of FIG. More specifically, the control means 31 is provided with the application means 2 that can apply a voltage so that the first electrode 3 side becomes the anode side, and a resistor provided in parallel with the application means 2, and the control means 31 as a whole. And a bypass circuit section 34 capable of forming a closed circuit. Further, the control means 31 switches between the state where the voltage is applied between the electrodes 3 and 4 by the applying means 2 and the state where the application is stopped between the electrodes 3 and 4 and the closed circuit is configured. And a switching control unit 35 that can be used.
- the switching control unit 35 includes the solid electrolyte 1 as a state where the electrodes 3 and 4 are connected by the bypass circuit unit 34.
- the control means 31 is connected to a temperature sensor (not shown) for measuring the temperature of the exhaust gas.
- the switching control unit 35 is configured to perform switching operation according to the output of the temperature sensor. In other words, when the temperature of the exhaust gas is low, a voltage is applied between the electrodes 3 and 4 so that it is in a state of! /, And when the temperature is high, a closed circuit is formed! The mode is automatically switched to. This can reduce power consumption and increase energy efficiency.
- the switching of these states may be other than by means of detecting the temperature of the exhaust gas by a temperature sensor, and the solid electrolyte 1 has an ion conductive function to such an extent that the simultaneous purification can be performed. It may be determined by detecting whether or not the fuel cell can be operated.
- the exhaust gas purifying method performed by this purifying device is such that the exhaust gas containing diesel particulates is passed from one side 10 side to the other side 11 side of the solid electrolyte 1 made of porous material. Collect on the 10th side. Then, a predetermined potential difference is generated between both surfaces of the solid electrolyte 1. As a result, the ions are moved from the other surface 11 side of the solid electrolyte 1 to the first surface 10 side so as to give oxygen ions to the first surface 10 side, and the diesel particulates collected on the first surface 10 side are collected by this ion. Oxidize.
- nitrogen oxides contained in the exhaust gas that has passed through the purification structure 30 are purified on the second electrode 4 side (reduction part).
- FIG. 11 is a diagram for explaining the mechanism by which nitrogen oxides are purified on the second electrode 4 side. Ceria or ceria oxide is supported on the second electrode 4 side (force sword side) of the purification structure 30. ing.
- Ceria ceria oxide
- CeO + 1/20 ⁇ 2CeO oxygen storage effect by ceria
- FIG. 12 is a diagram illustrating another mechanism for purifying nitrogen oxides on the second electrode 4 side.
- An adsorbent 5 for adsorbing nitrogen oxide is supported on the second electrode 4 (force sword side) of the purification structure 30.
- the adsorbent 5 is the same as that in the purification apparatus of FIG. 3, and is an alkaline earth metal or an alkali metal. Specific examples include calcium, strontium, barium, radium, lithium, sodium, potassium, norevidium, cesium, and francium. Of these, calcium, strontium, norlium and potassium are preferred in terms of stability and other properties and costs.
- an oxidation catalyst 6 is supported on the second electrode 4 as in FIG.
- the oxidation catalyst 6 includes platinum and silver.
- the porous second electrode 4 itself contains platinum or silver, or the porous second electrode 4 itself is made of platinum or silver to form an acid hornworm medium 6 with a force S. Monkey.
- the purification method performed in the reduction unit is as follows.
- the exhaust gas that has passed through the purification structure 30 contains nitrogen monoxide and oxygen.
- the nitric oxide is oxidized (NO + 0 ⁇ NO + 0 2 —) by the oxidation catalyst 6. It becomes nitrogen dioxide.
- oxygen ions are generated.
- the oxygen ions are moved to the first electrode 3 side by the solid electrolyte 1, and the oxygen ions are used for oxidation of the solid carbonaceous fine particles M.
- the nitrogen dioxide and nitrogen dioxide contained in the exhaust gas are adsorbed on the adsorbent 5 (BaCO + 2NO + 0 ⁇ Ba (NO) + CO), and the voltage is applied by the application means 2.
- Nitrogen dioxide is reduced by carrying out calorie (Ba (NO) + 2e— ⁇ BaO + N + 2 o + o 2 ).
- oxygen ions generated on the second electrode 4 side can be forcibly moved to the first electrode 3 side by the solid electrolyte 1. For this reason, it can suppress that the nitrogen obtained by reduction
- this purification method is an electrochemical reduction method rather than a method using a reducing substance such as carbon monoxide.
- the voltage application by the application unit 2 may always be applied as a constant voltage, but the application state of the voltage is changed or varied periodically by the action of the control unit 31. May be. For example, it can be periodically changed between a state where a voltage is applied and a state where a voltage is not applied. That is, after a certain amount of solid carbonaceous fine particles M is deposited on the first electrode side 3 of the purification structure 30, the purification treatment may be performed intermittently by applying a voltage for a predetermined time. .
- the exhaust gas is forced to flow in from the first electrode 3 side and discharged to the second electrode 4 side by the pressure of the exhaust gas.
- the purification structure 30 is porous, particulate matter such as diesel particulates (solid carbonaceous particulate M) in the exhaust gas is collected on the first electrode 3 side. That is, the particulate matter in the exhaust gas is automatically collected on the first electrode 3 side by the filtering effect of the purification structure 30. This eliminates the need to collect diesel particulates on the electrode surface using an electrostatic precipitator, thereby reducing the cost and size of the device.
- the exhaust gas from which the fine particles are collected and removed on the first electrode 3 side passes through the purification structure 30 and flows out to the second electrode 4 side.
- Nitrogen oxides are occluded and decomposed by occlusion of nitrogen oxides by the alkali earth metal and nitrogen oxide reduction action by the reaction at the second electrode 4, and the oxygen ions generated at this time are decomposed.
- Active oxygen is forcibly removed to the first electrode 3 side through the solid electrolyte 1 to which a voltage is applied. This suppresses NOx recombination on the second electrode 4 side, promotes oxidation of the fine particles collected on the first electrode 3 side, and allows simultaneous purification of nitrogen oxides and solid carbonaceous fine particles M. It becomes.
- DPNR which has been known as a conventional purification device, has a force S, which is a NOx occlusion reduction catalyst supported on a ceramic filter, and the amount of solid carbonaceous fine particles M emitted relative to the amount of NOx normally emitted. Will increase. Therefore, it is necessary to add the reducing agent to the exhaust gas, and a configuration such as providing the addition device in the exhaust system is separately required.
- the purification of the solid carbonaceous fine particles M and NOx is performed independently on each of the one side and the other side of the purification structure 30.
- this purification device can be simplified and made compact, it can be retrofitted to existing automobiles.
- this sulfur may adversely affect the reduction treatment of nitrogen oxides.
- this purification device collects the diesel particulates containing sulfur on the first electrode 3 side of the purification structure 30 and the second electrode on the back side thereof. Since nitrogen oxide is reduced on the 4th side, fine particles containing sulfur are not deposited on the nitrogen oxide reduction electrode, so that the influence of sulfur can be suppressed.
- the solid electrolyte 1 used in the purification device shown in FIGS. 1 to 4 and the porous purification structure 30 used in the purification device shown in FIG. 10 will be further described.
- the solid electrolyte 1 to be used include conventionally known yttrium-stabilized zirconia (zirconia-based electrolyte YSZ), ceria-based solid electrolyte (SDC), or molten carbonate type.
- zirconium oxide electrolyte sufficient oxygen ions can be supplied at a high exhaust temperature of 350 ° C or higher.
- the solid electrolyte 1 Ionic conductivity can be improved by changing the shape and thickness.
- the solid electrolyte 1 having oxygen ion conductivity described above generally has a force S that increases the oxygen ion conductivity at a high temperature and facilitates the movement of oxygen ions, and conversely becomes difficult at a low temperature.
- the solid electrolyte 1 is heated to keep the temperature of the solid electrolyte 1 at about 330 ° C to 370 ° C, or the gas temperature on the exhaust gas side G is set to about 330 ° C to 370 ° C. It is preferable to keep it configured. Then, by lowering the voltage applied by the applying means 2 to 1 to 10 volts, the solid electrolyte 1 is prevented from deteriorating, and oxygen ions are supplied efficiently and at a sufficient speed.
- the purification structure 30 as a whole can be collected (filtered) on one side with diesel particulates (solid carbonaceous particulate M), and exhaust gas other than this can be collected on one side.
- diesel particulates solid carbonaceous particulate M
- exhaust gas other than this can be collected on one side.
- it is made porous with a network structure made up of numerous continuous pores so that it can permeate to the other side.
- the first electrode 3 serving as a decomposition electrode for diesel particulates has a thickness of 1 ⁇ m or more and 5 mm or less, preferably 5 m or more and 50 m. If the thickness is too thin, the capture rate of the diesel fine particles may be reduced, and if it is too thick, the pressure loss may be increased.
- the average pore diameter of the porous first electrode 3 is 0.5 111 or more and 100 Hm or less, preferably 1 Hm or more and 10 m, and the porosity is 1 It is preferably 0% or more and 80% or less, more preferably 40% or more and 60% or less. If these values are too small, the pressure loss may increase, and if they are too large, the diesel particulate collection rate may decrease.
- the thickness of the solid electrolyte 1 is preferably 1 ⁇ m or more and 5 mm or less, more preferably 10 am or more and 500 am. If this thickness is too thick, the pressure loss may increase.
- the average pore size of the pores (cavities) in the porous solid electrolyte 1 is 0.5 m or more and 100
- the porosity is preferably 1 ⁇ m or more and preferably 30 ⁇ m or more, and the porosity is preferably 10% or more and 80% or less, more preferably 40% or more and 60% or less. If these values are too small, the pressure loss may increase. If it is too large, the ion conductivity per unit area may decrease.
- the thickness of the second electrode 4 serving as a decomposition electrode of nitrogen oxide is preferably 1 ⁇ m or more and 5 mm or less, more preferably 5 m or more and 50 m. If this thickness is too thick, the pressure loss may increase.
- the average pore diameter of the pores (cavities) in the porous second electrode 4 is 0.5 Hm or more and 100 Hm or less, preferably 1 ⁇ m or more and 30 ⁇ m, and the porosity is It is preferably 10% or more and 80% or less, more preferably 40% or more and 60% or less. If these values are too small, the pressure loss may increase.
- both or one of the average pore diameter and the porosity of the first electrode 3 may be smaller than that of the solid electrolyte 1 and the second electrode 4. That is, the pressure loss of the exhaust gas flowing through the solid electrolyte 1 and the second electrode 2 is reduced while maintaining the collection rate of diesel particulates at the first electrode 3.
- the pressure loss in the purification structure 30 is reduced. preferable. This is because a large pressure loss causes a decrease in engine output and fuel consumption.
- the appropriate value of the pressure loss in the purification structure 30 depends on the thickness, the average pore diameter, and the porosity, and the force S and the diesel particulates that differ depending on the diesel particulate deposition state and the exhaust gas flow rate are accumulated. It is preferable that the pressure is 20 kPa or less in the state (new state).
- the diesel particulate collection rate on the first electrode 3 side is preferably porous so that it can be 90% or more.
- a method for producing the porous purification structure 30 will be described.
- a conventionally known method can be applied to the method of making the solid electrolyte 1 and the electrode porous. For example, it is possible to obtain the strength S obtained by firing the solid electrolyte 1 and the electrodes 3 and 4, and there are a method of scattering the fine molten material (pellet) contained during the firing, a method using a foaming agent, and the like. is there.
- the porous material thus obtained is formed by innumerable holes (cavities) that are continuous from one surface side to the other surface side so as to be permeable to exhaust gas excluding diesel particulates.
- Each of the first electrode 3 and the second electrode 4 can contain platinum or silver, or the electrode can be made of platinum or silver. Particularly preferred is silver. This is because, since silver has an oxygen adsorption capacity, there are many active sites that oxidize (decompose) the solid carbonaceous fine particles M at the first electrode 3 especially when the first electrode 3 is made of silver. It becomes. Thereby, oxygen ions can be efficiently used for the oxidation of the solid carbonaceous fine particles M, and a high decomposition rate can be obtained.
- both the first electrode 3 and the second electrode 4, or one of them includes the same material as that of the solid electrolyte 1.
- the reaction active point for oxidation can be increased by mixing the solid electrolyte material with the electrode material, and the oxidation of the solid carbonaceous fine particles M can be promoted.
- the adsorbent 5 that adsorbs nitrogen oxides on the second electrode 4 side which is the reducing part, nitrogen oxides contained in the exhaust gas that has passed through the purification structure 30 are adsorbed on the second electrode 4 side.
- the nitrogen oxide is reduced by the force S by moving (accumulating) oxygen ions in the solid electrolyte 1 from the second electrode 4 side to the first electrode 3 side.
- the bonding state between the electrodes 3 and 4 and the solid electrolyte 1 is improved, and the purification structure The durability of 30 can be improved. This is because if the thermal expansion coefficients of the electrodes 3 and 4 constituting the purification structure 30 and the solid electrolyte 1 are significantly different, the temperature change of the purification structure 30 is large in the usage state. 4 may peel off from the solid electrolyte 1. However, if the electrodes 3 and 4 contain the same material as the solid electrolyte 1 and are fired to obtain the purification structure 30, the solid electrolyte 1 and the electrodes 3 and 4 can be integrated, even if a large temperature change occurs. Can be thermally deformed. For this reason, the electrodes 3 and 4 are peeled from the solid electrolyte 1 and the durability of the purification structure 30 can be improved.
- a material to be included in the electrodes 3 and 4 may be a solid-state battery.
- a material having the same thermal expansion coefficient as that of the solid electrolyte 1 may be included in both or one of the electrodes 3 and 4 that are not exactly the same as the electrolyte 1. From the viewpoint of improving the durability, if the viewpoint of promoting the reaction is included, it is most preferable to include the same material as the solid electrolyte 1 in both the first electrode 3 and the second electrode 4 or one of them.
- the first electrode 3 is a mixture of silver and solid electrolyte 1 (silver cermet), and the adsorbent 5 for adsorbing nitrogen oxides is further provided on the second electrode 4 side which is the reducing portion. It is particularly preferred from the viewpoint of promoting the reaction and improving the durability, and the second electrode 4 is made the same as the first electrode, so that the manufacture is facilitated.
- the adsorbent 5 is preferably an alkaline earth metal or an alkali metal.
- the force capable of obtaining a porous silver electrode by firing silver particles A solid electrolyte material (solid electrolyte particles) is mixed with silver material (silver particles).
- the porous electrodes 3 and 4 made of a mixture of silver and the solid electrolyte 1 can be obtained by baking.
- the particle size of the silver particles and the solid electrolyte particles be 0.01 ⁇ m or more and 10 m or less.
- 1 am silver particles and 0.1 ⁇ 1 am solid electrolyte particles are mixed. That's fine. The finer the particles, the larger the surface area of the electrodes 3 and 4 obtained by firing, resulting in an increase in the number of reaction active sites, which can improve the reaction performance (decomposition performance).
- the mixing ratio of the silver material (electrode material) and the solid electrolyte material will be described.
- the amount of solid electrolyte material is increased, the interface between silver, which is the active site of reaction, and solid electrolyte 1 increases, and the ability to improve the reaction performance at the electrode.
- the conductivity is lowered and the performance as a whole is lowered. Therefore, it is particularly preferable that the solid electrolyte material is 60 vol% or less as a whole.
- the solid electrolyte material should be 20 vol% or more and 40 vol% or less as a whole! /.
- the solid electrolyte material may be 30 vol%, and the silver material may be 70 vol%.
- the mixing ratio of the adsorbent 5 on the second electrode 4 side will be described.
- the volume of the second electrode 4 is 100%, it is preferable that the content of norm is 30 vol% or more and 40 vol% or less. Then, it is preferable to have a state in which the norium is dispersed. Normally, barium is supported on the electrode 4 in the form of barium oxide (BaO) particles, but if there is too much barium, a film of barium oxide is formed, and the solid electrolyte 1 serving as a reaction active site Less interface with second electrode 4 There is a risk that the degradation performance will deteriorate.
- the norm may be set to ⁇ 1%.
- FIG. 15 shows the reduction rate (purification rate) of the solid carbonaceous fine particles M contained in the exhaust gas when a test for purifying the exhaust gas exhausted from the combustor by the purification device of the present invention is performed. It is a graph which shows the relationship with purification time.
- the conditions for this test were as follows: in the purification structure 30 made of porous material, the solid electrolyte 1 was a ceria-based solid electrolyte, the first electrode 3 was a silver electrode, and the second electrode 4 was a mixture of platinum and the solid electrolyte. (Cermet).
- the first electrode 3 has a thickness of 30 m, an average pore diameter of 3 m, and a porosity power of 3 ⁇ 40%.
- the thickness is 0.5 m, the average pore diameter is 5 m, and the porosity is 40%.
- the second electrode 4 has a thickness of 30 m, an average pore diameter of 3 m, and a porosity of 30%. Then, the temperature of the solid electrolyte 1 is set to 350 ° C, the value of the current flowing to the solid electrolyte 1 by the applying means 2 is set to 0.3 A, and the introduction flow rate of the exhaust gas to the purification structure 30 is set to 1.0 liter / min.
- the emission concentration of solid carbonaceous fine particles N is 75 mg / m 3 .
- the amount of the solid carbonaceous fine particles M supplied to the purification structure 30 in 30 minutes is 2.25 g.
- the solid electrolyte 1 is a zirconia-based electrolyte
- the first electrode 3 is a mixture (cermet) of silver and a zirconia-based electrolyte
- the second electrode 4 is platinum and a zirconia-based electrolyte.
- the mixture (cermet) is used and the other conditions are the same as in FIG. 15, a high decomposition rate can be obtained as in FIG.
- the durability of the purification structure 30 can be improved by including the same material as the solid electrolyte 1 in the first electrode 3 and the second electrode 4.
- the first electrode 3 contains 70 vol% silver and 30 vol% zirconia electrolyte.
- FIG. 16 shows the reduction rate of the solid carbonaceous fine particles M contained in the exhaust gas and the purification structure 30 when a test for purifying the exhaust gas discharged from the combustor by the purification device of the present invention is performed. It is a graph which shows the relationship with the electric current sent through.
- the purification structure 30 is the same as that in the test in FIG. 15, and the value of the current flowing through the solid electrolyte 1 by the application means 2 is made constant from zero to 0.3A.
- the reduction rate of the solid carbonaceous fine particles M 30 minutes after the start of purification was measured.
- the amount of the solid carbonaceous fine particles M supplied to the purification structure 30 in 30 minutes is 2.25 g.
- FIG. 17 shows the reduction rate of nitrogen oxides contained in the exhaust gas and the flow to the purification structure when a test for purifying the exhaust gas discharged from the combustor by the purification device of the present invention is performed. It is a graph which shows the relationship with an electric current.
- the test conditions were as follows. In the porous purification structure 30, the solid electrolyte 1 was yttrium stabilized zircoua, the first electrode 3 was a mixture of silver and yttrium stabilized zircoure, and the second electrode 4 was the first. It is the same as electrode 3 and is a mixture of silver and yttrium-stabilized zirconium.
- the first electrode 3 has a thickness of 30 m, an average pore diameter of 2 m, and a porosity of 60%.
- the thickness is 0.5 m, the average pore diameter is 5 m, and the porosity is 40%.
- the second electrode 4 the thickness is 30 m, the average pore diameter is 2 m, and the porosity is 60%. It is.
- barium is supported as the adsorbent 5 in the second electrode 4.
- the two-dot chain line in Fig. 17 (Example 1) 1S When the total volume of the second electrode 4 is 100%, barium is 36 vol%, and the one-dot chain line (Example 2) is 26 vol% of norium. It is.
- the temperature of the solid electrolyte 1 was set to 400 ° C.
- the flow rate of the exhaust gas introduced into the purification structure 30 was set to 1.0 liter / min
- the concentration of nitrogen oxide NOx was set to 450 ppm.
- the solid line (Example 3) in Fig. 17 is for the case where the volume of norium is 36 vol% and the exhaust gas introduction flow rate is 0.5 liter / min.
- Other conditions are the same as the other two. It is. Under each condition, the current value flowing to the solid electrolyte 1 by the application means 2 is made constant while increasing from zero to 0.3 A, and at each current value, the reduction rate of nitrogen oxides NOx 1 minute after the start of purification It was measured.
- Example 17 According to the results shown in FIG. 17, it was confirmed that a high decomposition rate of 80% or more was obtained at a current value of 0.1 A under each condition (Examples;! To 3). Further, in Example 2 and Example 3, it was confirmed that a high decomposition rate of 80% or more was obtained at a low energy of 0.05 mA (4.9 V).
- FIG. 13 is a schematic diagram showing a purification system that purifies exhaust gas from a diesel engine. Similar to the purification system shown in FIG. 5, this purification system is connected to the exhaust port of a diesel engine (diesel engine) 15 to discharge exhaust gas, and a part of this exhaust flow path 7. And an exhaust gas purification device 8 provided.
- the exhaust passage 7 is composed of an exhaust pipe.
- a cylindrical exhaust gas purification chamber 16 provided in the exhaust gas purification device 8 is provided in the middle of the exhaust pipe.
- the purification structure 30 is provided inside the exhaust gas purification chamber 16! /.
- This exhaust gas purification device 8 is the purification device shown in FIG.
- the purification structure 30 provided in the purification device 8 includes a solid electrolyte 1 having ionic conductivity and capable of supplying oxygen ions to one surface 10 side, and one surface 10 side and the other surface 11 side of the solid electrolyte 1.
- Each has a first electrode 3 and a second electrode 4 provided.
- the purification structure 30 can collect diesel particulates in the exhaust gas on the first electrode 3 side by passing the exhaust gas from the exhaust passage 7 from the first electrode 3 side to the second electrode 4 side. It is assumed to be porous.
- the control means 31 is connected to the purification structure 30. Then, as described above, the diesel particulates collected on the first electrode 3 side are oxidized, and the nitrogen oxides contained in the exhaust gas that has passed through the purification structure 30 on the second electrode 4 side are reduced. To do.
- the purification structure 30 interconnects a plurality of cylindrical portions 32 formed in a bottomed cylindrical shape and the openings of the cylindrical portion 32.
- This is a configuration having a plate-like portion 33.
- the plate-like portion 33 is attached as a fixed wall to the inner peripheral surface of the exhaust gas purification chamber 16 so as to face the exhaust gas flowing through the exhaust passage 7.
- the cylindrical portion 32 has the axial direction (exhaust gas flow direction) of the pipe-shaped exhaust gas purification chamber 16 as the axial direction.
- the inner surface (inner peripheral surface and bottom surface) of the cylindrical portion 32 and the surface of the plate-like portion 33 continuous with the inner surface are the first electrode 3 side.
- the outer surface (outer peripheral surface and end surface) of the cylindrical portion 32, which is the opposite surface, and the back surface of the plate-like portion 33 continuous with the outer surface are the second electrode 4 side.
- the exhaust gas flowing into the exhaust gas purification chamber 16 is transmitted from the surface of the plate-like portion 33 and the inner surface of the cylindrical portion 32 to the opposite surface, and to the first electrode 3 side! /, Diesel particulates are collected and solid carbonaceous particulates M are oxidized. Nitrogen oxides are reduced on the second electrode 4 side, and the treated exhaust gas flows downstream of the exhaust gas purification chamber 16. Discharged.
- FIG. 18 is an explanatory view showing a cross section of another embodiment of the purification structure 30 of the present invention.
- the purification structure 30 further has a support 40.
- the support 40 is for increasing the mechanical strength of the purification structure 30.
- the electrodes 3 and 4 and the solid electrolyte 1 which are other members constituting the purification structure 30 can be thinned. That is, it is not necessary to increase the thickness of the electrodes 3 and 4 and the solid electrolyte 1 in order to increase the mechanical strength of the purification structure.
- the electrodes 3 and 4 and the solid electrolyte 1 can be made thinner, the resistance when the exhaust gas permeates the electrodes 3 and 4 and the solid electrolyte 1 can be reduced, and oxygen ions can be conducted with a small applied voltage. Power can be saved and energy can be saved.
- the support 40 will be specifically described.
- the solid electrolyte 1 formed in the bottomed cylindrical shape is provided on the outer peripheral side of the second electrode 4 formed in the bottomed cylindrical shape, and the first electrode 3 formed in the bottomed cylindrical shape is provided on the outer periphery. It has been.
- the support 40 is a tube member formed in a bottomed cylindrical shape (or cylindrical shape), and is provided in a laminated state on the inner peripheral side of the second electrode 4. Thereby, the purification structure 30 is formed in a bottomed cylindrical shape.
- Support 40 Is porous and can transmit exhaust gas permeating from the first electrode 3 side as shown by an arrow.
- the support 40 has an end mounting portion 40c and a main body portion 40d.
- the main body portion 40d is in a laminated state with the second electrode 4, and the attachment portion 40c is in a laminated state with the second electrode 4 in a state where the purification structure 30 is present alone before being attached to the fixed wall 47. It is exposed.
- the material of the support 40 is aluminum oxide (alumina), zirconium oxide, mullite (3A1 O
- the thickness of the support 40 is preferably the minimum thickness that can ensure the rigidity of the purification structure 30.
- the thickness of the support 40 can be set to 1 mm or more and 2 mm or less.
- the average pore diameter of the porous support 40 is preferably larger than the average pore diameter of the solid electrolyte 1 and the electrodes 3 and 4, and the porosity is 40% or more and 50% or less. preferable.
- the purification structure 30 of Fig. 18 will be further described.
- the end of the purification structure 30 on the opening side is exposed to the radially outer side. That is, the second electrode 4 has an exposed surface on the outer peripheral surface of the end portion, and the lead wire of the applying means 2 can be connected to the exposed surface. Thereby, even if the second electrode 4 is thin, the second electrode 4 and the lead wire can be firmly connected.
- first connection portion 45 that is a connection portion between the first electrode 3 and another lead wire
- first connection portion 45 that is a connection portion between the first electrode 3 and another lead wire
- the first connection part 45 and the second connection part 46 are provided separately at both ends in the axial direction of the purification structure 30.
- connection portions 45 and 46 come close to each other, oxygen ion conduction occurs in the purification structure 30 in the vicinity of these connection portions 45 and 46, and effective oxygen ion conduction occurs in a portion away from these. This is because it may not occur. However, this can be prevented by providing both connecting portions 45 and 46 apart as shown in FIG. In FIG. 18, a metal mesh 48 may be provided as a current collector on the outer periphery of the first electrode 3, and the metal mesh 48 and the lead wire may be connected to form the first connection portion 45. As a result, a voltage can be applied to the entire surface of the first electrode 3, and oxygen ions can be conducted in the entire purification structure 30.
- the metal mesh 48 can provide a force S provided on the outer periphery of the first electrode 3 and a force S that allows the exhaust gas to permeate. Further, the solid carbonaceous fine particles in the exhaust gas cannot be retained in the metal mesh 48.
- the mesh is set coarsely.
- the support 40 is made of a conductive material, the support 40 integrated with the second electrode 4 can be made to function as a current collector, like the metal net. In other words, a lead wire may be connected to the support 40 to form the second connection portion 46! / (Not shown).
- the support 40 may be in another form, which is not shown, but for example, the support may be provided on the first electrode side (the outer peripheral side of the first electrode). However, in this case, it is necessary to prevent the solid carbonaceous fine particles in the exhaust gas from staying on the support. For example, the support needs to have a coarse mesh structure.
- a fixed wall 47 for attaching the purification structure 30 is provided as shown in FIG.
- the purification structure 30 can be attached to the exhaust gas purification chamber 16 by fixing the mounting portion 40c that is the exposed shape of the support 40 to the fixed wall 47.
- a plurality of purification structures 30 can be arranged in parallel on the fixed wall 47 by this mounting structure.
- FIG. 19 illustrates the case where the purification structure 30 has a disk shape.
- carbon particles and resin are provided on one surface 40a of the support 40, and masking is performed on the one surface 40a. Then, the one surface 40a side is coated with the electrolyte slurry 41, and this is fired to obtain the solid electrolyte 1 on the support body 40, and the electrode slurry 44 is applied from the other surface 40b side of the porous support body 40.
- the back surface lb of the solid electrolyte 1 is infiltrated, and the surface la of the solid electrolyte 1 is coated with the electrode slurry 43, which is baked to obtain electrodes 3 and 4 on both the front and back surfaces of the solid electrolyte 1. This manufacturing direction will be further described.
- the support 40 is formed as a porous material and can be made of, for example, aluminum oxide as described above.
- the reason for masking the one surface 40a of the support 40 is that when the average pore size of the support 40 is increased (for example, when the average pore size is 30 am), the electrolyte slurry 41 is directly applied on the one surface 40a. Then, there is also a force that the electrolyte slurry 41 enters (permeates) into the support 40. However, this can be prevented by applying the masking. In addition, when the average pore diameter force S of the support 40 is small (for example, 3 m or less), this masking is unnecessary.
- the electrolyte slurry 41 is obtained by adding a fine molten material (pellet) and a binder as a pore former to an electrolyte powder (electrolyte particles) and adjusting the viscosity with a solvent.
- the electrode slurries 43 and 44 for constituting the electrodes 3 and 4 include a metal powder (silver particles) constituting the electrode, for example, silver powder, and a micro molten material (pellet) and a binder as a pore former. The viscosity was adjusted with a solvent.
- the electrolyte slurry 41 is coated on the one surface 40a side of the support 40 and baked to obtain the solid electrolyte 1 on the support 40.
- the firing temperature is set to 1300 ° C to 1400 ° C.
- the porous solid electrolyte 1 can be obtained on the support 40.
- the method for producing the porous support 40 is also obtained by adding a finely melted material (pellet) and a binder to the metal powder constituting the support 40, and firing the material whose viscosity is adjusted with a solvent. It is done.
- an electrode slurry 44 for forming the second electrode 4 is applied to the other surface 40b side of the porous support 40, and the electrode slurry 44 is infiltrated to the back surface lb of the solid electrolyte 1.
- the electrode slurry 43 for forming the first electrode 3 is covered on the surface la of the solid electrolyte 1. Then, this is fired to obtain electrodes 3 and 4 on both the front and back surfaces of solid electrolyte 1.
- the firing temperature is set to 800 ° C to 900 ° C.
- this manufacturing method is a manufacturing method in which the solid electrolyte 1 is first fired and then the first and second electrodes 3 and 4 are fired, the melting points of the materials of the first and second electrodes 3 and 4 are solid. It is effective when it is lower than the firing temperature of the electrolyte 1. That is, the firing temperature of the solid electrolyte 1 is 1400 ° C, whereas the first is made of silver. In the case where the melting point of the second electrodes 3 and 4 is 930 ° C, if the solid electrolyte 1 and the electrodes 3 and 4 are simultaneously fired at 1400 ° C, the silver constituting the electrodes 3 and 4 aggregates. However, this production method can prevent silver from aggregating. Then, it is possible to obtain a porous and integrated purification structure 30.
- the electrode slurry 44 for the second electrode 4 may contain norlium (barium oxide). That's fine.
- an aqueous barium acetate solution is provided on the sintered second electrode 4 May be applied by spraying or brushing and penetrating.
- the diesel particulates in the exhaust gas also contain hydride carbon (HC), and this hydride carbon is water by supplying oxygen from the solid electrolyte 1. And the ability to oxidize to carbon dioxide (CmHn + (m + n / 4) 0 ⁇ mCO + n / 2 HO).
- HC hydride carbon
- the purification device, the purification method, and the purification system according to the present invention can be applied not only to purification of exhaust gas discharged from a diesel engine but also to a wide range such as chemical synthesis and combustion systems. Further, the present invention is not limited to the illustrated form, and other forms may be used within the scope of the present invention. Besides the solid electrolyte 1 having a panel shape, a cylindrical shape or a corrugated shape may be used depending on the part to be installed. Etc.
- the purification devices shown in Figs. 1 to 4, 10, and 18 are not only allowed to function alone, but also added to the conventionally known nitrogen oxide purification devices and particulate purification devices. Can also be granted.
- the purification system of the present invention since the purification system of the present invention has a simple structure and can make the apparatus compact, the conventional apparatus can be added as an auxiliary oxidation system when diesel particulates are insufficiently oxidized.
- the charging device that serves as an electrostatic precipitator by corona discharge or the like is provided, and diesel particulates contained in the exhaust gas are efficiently deposited on the deposition surface 12 of the solid electrolyte 1. You may make it deposit well.
- each of the above-described purification device, purification method, and exhaust gas purification system has been described as purifying exhaust gas from which diesel engine power is also exhausted.
- exhaust gas is not limited to that exhausted from diesel engine power.
- the present invention can also be applied to a gasoline engine (direct-injection gasoline engine), a boiler and an industrial furnace that have also been discharged.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Electrostatic Separation (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
Abstract
Disclosed is a purifying apparatus comprising a purifying structure (30) having an ion-conductive solid electrolyte (1), and a first electrode (3) and a second electrode (4) respectively formed on one side and the other side of the solid electrolyte (1). The purifying structure (30) is porous and collects unburned particles at the first electrode (3) side by passing an exhaust gas containing the unburned particles from the first electrode (3) side to the second electrode (4) side. The first electrode (3) side serves as an oxidizing unit for oxidizing the collected particles with oxygen ions which are supplied to the first electrode (3) side by the solid electrolyte (1). The purifying structure (30) further comprises a support (40) for increasing the mechanical strength.
Description
明 細 書 Specification
浄化装置、浄化方法、排出ガス浄化システム、及び浄化構造体の製造方 法 Purification device, purification method, exhaust gas purification system, and purification structure manufacturing method
技術分野 Technical field
[0001] この発明は、燃焼器から排出される未燃焼微粒子 (ディーゼル微粒子)や窒素酸化 物の浄化を行う浄化装置、浄化方法、ディーゼル微粒子及び窒素酸化物を含む排 出ガスを浄化する排出ガス浄化システム、及び浄化構造体の製造方法に関する。 背景技術 The present invention relates to a purification device, a purification method for purifying unburned particulates (diesel particulates) and nitrogen oxides discharged from a combustor, and an exhaust gas for purifying exhaust gas containing diesel particulates and nitrogen oxides. The present invention relates to a purification system and a method for manufacturing a purification structure. Background art
[0002] 現在、国民の生活や企業活動を支えている物流の主役は、トラックによる輸送であ り、トラックは経済活動にとって不可欠なものとなっている。トラックの動力となるディー ゼルエンジンは、他の熱機関に比べて熱効率が高ぐ省エネルギーや地球温暖化に 有効である。しかし、ディーゼルエンジンは、窒素酸化物(NOx)や微粒子状物質 (P M)といった大気汚染物質を大量に排出する。このため、環境問題においてトラック が少なからず影響を与えている。そこで、環境負荷の小さいディーゼルエンジン及び その周辺機器を普及させ、経済活動を維持し、さらに発展させていく取り組みが必要 とされている。 [0002] Currently, the main role of logistics that supports people's lives and corporate activities is transportation by truck, which is indispensable for economic activities. The diesel engine that powers the truck is effective for energy conservation and global warming, which has higher thermal efficiency than other heat engines. However, diesel engines emit large amounts of air pollutants such as nitrogen oxides (NOx) and particulate matter (PM). For this reason, trucks have a considerable impact on environmental issues. Therefore, there is a need for efforts to disseminate diesel engines with low environmental impact and peripheral equipment, maintain economic activities, and further develop them.
[0003] 現在、ディーゼルエンジンから排出される NOxや PMを浄化する浄化方法として知 られるものに、フィルターを用いる PM浄化方法や触媒による NOx浄化方法がある。 また、特開平 9— 299748号公報に記載されているように、固体電解質を用いた排 出ガス浄化システムとして、固体電解質の両面に触媒を含む電極を積層し、その固 体電解質の力ソード側に窒素酸化物を含む燃焼ガスを供給し、窒素酸化物の分解 過程で生じる活性酸素を、固体電解質を通して強制的に排除することにより、窒素酸 化物の分解除去を可能とする方法がある。しかし、これは PMを浄化するものではな い。 [0003] Currently, there are a PM purification method using a filter and a NOx purification method using a catalyst, which are known as purification methods for purifying NOx and PM discharged from a diesel engine. In addition, as described in JP-A-9-299748, as an exhaust gas purification system using a solid electrolyte, electrodes including a catalyst are laminated on both sides of the solid electrolyte, and the solid electrolyte side of the power sword There is a method that makes it possible to decompose and remove nitrogen oxides by supplying combustion gas containing nitrogen oxides to forcibly removing active oxygen generated during the decomposition process of nitrogen oxides through a solid electrolyte. However, this does not purify PM.
[0004] 従来の PM浄化方法は、フィルターに堆積した微粒子をいかにして除去し、再生さ せるかが課題である。連続再生型システムの 1つである連続再生式トラップは、排出 ガス中の NOを NOに酸化させ、フィルターに捕集した微粒子をこの NOによって酸
化させるもの力 Sある。しかし、排出ガス温度が 250°Cに達しない場合は微粒子の酸化 が起こらないほか、別途 NOの浄化装置が必要となる。また、 DPNR (Diesel Partic ulate-NOx Reduction system)は、多孔質セラミックフィルターに NOx吸蔵還 元触媒を担持させたものである。 NOx吸蔵時に生成する酸素ラジカルにより PMを酸 化させ、定期的かつ瞬間的に燃料噴射量を増加させ、その際に排出される CO、 HC により吸着させた NOxを還元する方法がある。しかし、この方法は繊細かつ正確な燃 料噴射制御が求められ、耐久性悪化、コスト高、燃費の悪化等の問題点を有してい さらに、今後制定されるディーゼルエンジンの排出ガス基準を満たすためには、従 来知られている浄化方法では不十分である。 [0004] The conventional PM purification method has a problem of how to remove and regenerate the fine particles accumulated on the filter. A continuous regeneration trap, one of the continuous regeneration systems, oxidizes NO in the exhaust gas to NO, and particulates collected on the filter are oxidized by this NO. There is S power to make it. However, if the exhaust gas temperature does not reach 250 ° C, particulate oxidation will not occur and a separate NO purification device will be required. DPNR (Diesel Particulate-NOx Reduction system) is a porous ceramic filter that supports NOx storage reduction catalyst. There is a method in which PM is oxidized by oxygen radicals generated during NOx occlusion, and the fuel injection amount is increased periodically and instantaneously, and NOx adsorbed by CO and HC emitted at that time is reduced. However, this method requires delicate and accurate fuel injection control, and has problems such as deterioration of durability, high cost, and deterioration of fuel consumption. For this reason, conventionally known purification methods are not sufficient.
発明の開示 Disclosure of the invention
[0005] この発明は、排出ガスの浄化が可能であり、効率良く浄化が行われる浄化装置、浄 化方法、排出ガス浄化システムを提供し、さらに、この浄化装置及び排出ガス浄化シ ステムに利用する浄化構造体の製造方法を提供することを目的とする。 [0005] The present invention provides a purification device, a purification method, and an exhaust gas purification system that are capable of purifying exhaust gas and efficiently purify, and are further used in the purification device and the exhaust gas purification system. An object of the present invention is to provide a method for producing a purification structure.
[0006] 前記目的を達成するためのこの発明の浄化装置は、イオン導電性を有して一面側 に酸素イオンを与え得る固体電解質と、この固体電解質の一面側と他面側とにそれ ぞれ設けられた第 1電極と第 2電極とを有する浄化構造体を備え、この浄化構造体は 、燃焼器力 排出される未燃焼微粒子を含む排出ガスを前記第 1電極側から前記第 2電極側へ通すことによって当該微粒子を当該第 1電極側に捕集することができる多 孔質であり、前記第 1電極側は、捕集した前記微粒子を、前記固体電解質によって 当該第 1電極側へ与えられた酸素イオンにより酸化させる酸化部であり、前記浄化構 造体は、当該浄化構造体の機械的強度を高めるための支持体を更に有している。 [0006] In order to achieve the above object, a purification apparatus of the present invention includes a solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side, and one side and the other side of the solid electrolyte. Provided with a purification structure having a first electrode and a second electrode provided, and the purification structure emits exhaust gas containing unburned fine particles discharged from the combustor force from the first electrode side to the second electrode. The fine particles can be collected on the first electrode side by passing to the side, and the first electrode side is configured to collect the collected fine particles to the first electrode side by the solid electrolyte. It is an oxidation part that is oxidized by given oxygen ions, and the purification structure further includes a support for increasing the mechanical strength of the purification structure.
[0007] この構成によれば、浄化構造体が多孔質であるため、未燃焼微粒子を含む排出ガ スをこの浄化構造体に通すことによって、当該微粒子を第 1電極側に捕集することが できる(フィルタリングすることができる)。そして、第 1電極側において、捕集した前記 微粒子中の固形炭素質微粒子を、固体電解質によって与えられた酸素イオンにより 酸化させ、炭素酸化物とすることができる。 [0007] According to this configuration, since the purification structure is porous, it is possible to collect the fine particles on the first electrode side by passing exhaust gas containing unburned fine particles through the purification structure. Yes (can be filtered). Then, on the first electrode side, the solid carbonaceous fine particles in the collected fine particles can be oxidized with oxygen ions given by the solid electrolyte to form a carbon oxide.
また、支持体により浄化構造体の機械的強度を高めることができるため、浄化構造
体を構成する他の部材である電極や固体電解質の厚さを薄くできる。すなわち、浄 化構造体の機械的強度を高めるために電極や固体電解質を厚くする必要がない。こ のため、排出ガスが電極や固体電解質を透過する際の抵抗を低減でき、また、固体 電解質を薄くすることから、小さレ、印加電圧により酸素イオンを導電することができる なお、燃焼器から排出される未燃焼微粒子は、例えば、ディーゼル機関、ガソリン 機関(直噴式のガソリン機関)、ボイラーや工業炉力 排出されるものがある。 Moreover, since the mechanical strength of the purification structure can be increased by the support, the purification structure It is possible to reduce the thickness of electrodes and solid electrolytes, which are other members constituting the body. That is, it is not necessary to increase the thickness of the electrode or the solid electrolyte in order to increase the mechanical strength of the purification structure. For this reason, it is possible to reduce the resistance when the exhaust gas permeates through the electrode and the solid electrolyte, and since the solid electrolyte is thinned, oxygen ions can be conducted with a small amount of applied voltage. Unburned particulates discharged include, for example, diesel engines, gasoline engines (direct injection gasoline engines), boilers, and industrial furnace power.
[0008] また、前記支持体は、前記第 1電極又は前記第 2電極と積層した状態で設けられて おり、前記支持体は、前記排出ガスを通すことができる網構造又は多孔質構造であ るのが好ましい。 [0008] Further, the support is provided in a state of being laminated with the first electrode or the second electrode, and the support has a network structure or a porous structure through which the exhaust gas can pass. It is preferable.
これにより、浄化構造体に支持体を一体として含めることができ、浄化構造体の機 械的強度が高まる。そして、支持体は網構造又は多孔質構造であるため、排出ガス を透過させること力 Sできる。このため、支持体の存在によって排出ガス中の固形炭素 質微粒子と窒素酸化物との同時浄化を妨げることがない。 Thereby, a support body can be included in the purification structure as an integral body, and the mechanical strength of the purification structure is increased. Further, since the support has a net structure or a porous structure, it is possible to transmit the exhaust gas. For this reason, the presence of the support does not prevent simultaneous purification of the solid carbonaceous fine particles and the nitrogen oxides in the exhaust gas.
[0009] また、前記浄化装置において、前記第 1電極と第 2電極との内の少なくとも一方は 前記固体電解質と同じ素材を含んでいるのが好ましい。これによれば、分解反応は 電極と固体電解質との界面で生じるため、電極材料に固体電解質材料を混合させる ことで反応活性点を増やすことができる。これにより、排出ガス中の成分の分解を促 進できる。 [0009] In the purification device, it is preferable that at least one of the first electrode and the second electrode includes the same material as the solid electrolyte. According to this, since the decomposition reaction occurs at the interface between the electrode and the solid electrolyte, the reaction active point can be increased by mixing the solid electrolyte material with the electrode material. This can promote the decomposition of the components in the exhaust gas.
[0010] さらに、前記第 1電極は銀を含んでいるのが好ましい。これによれば、銀は酸素吸 着能を有する。このため、第 1電極において固形炭素質微粒子を酸化させる(分解す る)活性点が多数存在する。これにより、固形炭素質微粒子の酸化に、酸素イオンを 効率よく用いることができ、高い分解率を得ることができる。 [0010] Furthermore, it is preferable that the first electrode contains silver. According to this, silver has the ability to adsorb oxygen. For this reason, there are many active sites that oxidize (decompose) the solid carbonaceous fine particles in the first electrode. Thereby, oxygen ions can be efficiently used for the oxidation of the solid carbonaceous fine particles, and a high decomposition rate can be obtained.
[0011] また、この発明の浄化方法は、イオン導電性を有して一面側に酸素イオンを与え得 る多孔質からなる固体電解質と、この固体電解質の一面側と他面側とにそれぞれ設 けられた第 1電極と第 2電極と、機械的強度を高めるための支持体とを有する浄化構 造体を用いた浄化方法であって、多孔質からなる前記固体電解質の前記一面側か ら他面側へ未燃焼微粒子を含む排出ガスを通すことにより、当該微粒子を当該一面
側に捕集し、捕集したこの微粒子を、前記固体電解質によって前記一面側に与えら れた前記酸素イオンにより酸化させる。 [0011] Further, the purification method of the present invention is provided with a porous solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side, and one side and the other side of the solid electrolyte. A purification method using a purification structure having a first electrode and a second electrode, and a support for increasing mechanical strength, from the one surface side of the porous solid electrolyte By passing the exhaust gas containing unburned particulates to the other side, the particulates The fine particles collected on the side are oxidized by the oxygen ions given to the one surface side by the solid electrolyte.
[0012] この方法によれば、未燃焼微粒子を含む排出ガスを、多孔質である固体電解質に 通すことによって、当該微粒子をその一面側に捕集することができる。そして、捕集し た微粒子中の固形炭素質微粒子を一面側において酸化させて炭素酸化物とするこ と力 Sできる。 [0012] According to this method, the exhaust gas containing the unburned fine particles is passed through the porous solid electrolyte, whereby the fine particles can be collected on the one surface side. In addition, the solid carbonaceous fine particles in the collected fine particles can be oxidized on one side to form carbon oxides.
また、支持体により浄化構造体の機械的強度を高めることができるため、浄化構造 体を構成する他の部材である電極や固体電解質の厚さを薄くできる。すなわち、浄 化構造体の機械的強度を高めるために電極や固体電解質を厚くする必要がない。こ のため、排出ガスが電極や固体電解質を透過する際の抵抗を低減でき、また、固体 電解質を薄くすることから、小さレ、印加電圧により酸素イオンを導電することができる Further, since the mechanical strength of the purification structure can be increased by the support, it is possible to reduce the thickness of electrodes and solid electrolytes that are other members constituting the purification structure. That is, it is not necessary to increase the thickness of the electrode or the solid electrolyte in order to increase the mechanical strength of the purification structure. For this reason, it is possible to reduce the resistance when the exhaust gas permeates the electrode and the solid electrolyte, and since the solid electrolyte is made thin, oxygen ions can be conducted with a small amount of applied voltage.
[0013] また、この発明の排出ガス浄化システムは、燃焼器から排出される未燃焼微粒子及 び窒素酸化物を含む排出ガスを通過させる排気流路と、この排気流路の一部に設け られている排出ガス浄化装置と、を備えた排出ガス浄化システムであって、前記排出 ガス浄化装置は、イオン導電性を有して一面側に酸素イオンを与え得る固体電解質 と、この固体電解質の一面側と他面側にそれぞれ設けられた第 1電極と第 2電極と、 を有する浄化構造体を備え、この浄化構造体は、前記排気流路からの排出ガスを前 記第 1電極側から前記第 2電極側へ通すことによって前記微粒子を当該第 1電極側 に捕集することができる多孔質であり、前記第 1電極側は、捕集された当該微粒子を 、前記固体電解質によって当該第 1電極側へ与えられた酸素イオンにより酸化させる 酸化部であり、かつ、前記第 2電極側は、前記浄化構造体を透過した排出ガスに含 まれる窒素酸化物を還元する還元部であり、前記浄化構造体は、当該浄化構造体の 機械的強度を高めるための支持体を更に有している。 [0013] Further, the exhaust gas purification system of the present invention is provided in an exhaust passage through which exhaust gas containing unburned particulates and nitrogen oxides discharged from the combustor passes, and in a part of the exhaust passage. An exhaust gas purification system comprising: a solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side; and one side of the solid electrolyte. A purification structure having a first electrode and a second electrode respectively provided on the side and the other surface side. The purification structure allows the exhaust gas from the exhaust passage to be discharged from the first electrode side. The fine particles can be collected on the first electrode side by passing to the second electrode side, and the first electrode side uses the solid electrolyte to collect the collected fine particles. Oxygen ions given to the electrode side And the second electrode side is a reducing unit that reduces nitrogen oxides contained in the exhaust gas that has permeated the purification structure, and the purification structure includes the purification structure. It further has a support for increasing the mechanical strength of the body.
[0014] この構成によれば、排気流路を流れる排出ガス中に含まれる未燃焼微粒子と窒素 酸化物との両者をそれぞれ、浄化構造体の一面側と他面側とにおいて同時に浄化 すること力 Sできる。そして、これらの低減が可能となる。排出ガス浄化装置に流れてく る排出ガスを、多孔質からなる浄化構造体を通すことで、未燃焼微粒子を浄化構造
体の第 1電極側において自動的に捕集することができる。つまり、流れてくる排出ガス を浄化構造体においてフィルタリングすることで、未燃焼微粒子を捕集できる。このた め、微粒子を捕集するための別のエネルギー源を不要とできる。そして、浄化構造体 の第 1電極側において、捕集した未燃焼微粒子中に含まれる固形炭素質微粒子を 酸化させ二酸化炭素とすることができる。さらに、第 2電極側において、浄化構造体を 透過した排出ガス中に含まれる窒素酸化物を窒素ガスに還元できる。 [0014] According to this configuration, it is possible to simultaneously purify both the unburned fine particles and the nitrogen oxides contained in the exhaust gas flowing through the exhaust passage on one side and the other side of the purification structure. S can. These can be reduced. The exhaust gas flowing into the exhaust gas purification device is passed through a porous purification structure to remove unburned particulates. It can be collected automatically on the first electrode side of the body. That is, unburned particulates can be collected by filtering the flowing exhaust gas in the purification structure. This eliminates the need for a separate energy source for collecting particulates. Then, on the first electrode side of the purification structure, the solid carbonaceous fine particles contained in the collected unburned fine particles can be oxidized to carbon dioxide. Furthermore, on the second electrode side, nitrogen oxides contained in the exhaust gas that has permeated through the purification structure can be reduced to nitrogen gas.
また、支持体により浄化構造体の機械的強度を高めることができるため、浄化構造 体を構成する他の部材である電極や固体電解質の厚さを薄くできる。すなわち、浄 化構造体の機械的強度を高めるために電極や固体電解質を厚くする必要がない。こ のため、排出ガスが電極や固体電解質を透過する際の抵抗を低減でき、また、固体 電解質を薄くすることから、小さレ、印加電圧により酸素イオンを導電することができる Further, since the mechanical strength of the purification structure can be increased by the support, it is possible to reduce the thickness of electrodes and solid electrolytes that are other members constituting the purification structure. That is, it is not necessary to increase the thickness of the electrode or the solid electrolyte in order to increase the mechanical strength of the purification structure. For this reason, it is possible to reduce the resistance when the exhaust gas permeates the electrode and the solid electrolyte, and since the solid electrolyte is made thin, oxygen ions can be conducted with a small amount of applied voltage.
[0015] また、この発明の浄化構造体の製造方法は、イオン導電性を有して一面側に酸素 イオンを与え得る固体電解質と、この固体電解質の一面側と他面側にそれぞれ設け られた第 1電極と第 2電極と、機械的強度を高めるための多孔質からなる支持体と、 を有する浄化構造体の製造方法であって、前記支持体の一面側に電解質スラリーを 被覆し、これを焼成して前記支持体上に固体電解質を得て、多孔質である前記支持 体の他面側から電極スラリーを前記固体電解質の裏面まで浸透させ、かつ、当該固 体電解質の表面に電極スラリーを被覆し、これを焼成して前記固体電解質の両面に 電極を得る。 [0015] The purification structure manufacturing method of the present invention is provided with a solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side, and one side and the other side of the solid electrolyte. A purification structure having a first electrode, a second electrode, and a porous support for increasing mechanical strength, wherein one surface side of the support is coated with an electrolyte slurry, Is fired to obtain a solid electrolyte on the support, and the electrode slurry is infiltrated from the other side of the porous support to the back of the solid electrolyte, and the electrode slurry is applied to the surface of the solid electrolyte. And is fired to obtain electrodes on both sides of the solid electrolyte.
これによれば、先に固体電解質を焼成してから、電極を焼成する製造方法であるた め、電極の材料の融点が固体電解質の焼成温度よりも低い場合に効果的である。つ まり、固体電解質を焼成するための高い温度で、当該固体電解質と電極とを同時に 焼成すると、電極を構成する金属が凝集してしまうおそれがある力 この製造方法に よればこれを防止できる。 According to this, since the electrode is fired after firing the solid electrolyte first, it is effective when the melting point of the electrode material is lower than the firing temperature of the solid electrolyte. That is, if the solid electrolyte and the electrode are simultaneously fired at a high temperature for firing the solid electrolyte, there is a possibility that the metal constituting the electrode may be aggregated. This manufacturing method can prevent this.
図面の簡単な説明 Brief Description of Drawings
[0016] [図 1]浄化装置の実施の一形態を示すモデル図である。 FIG. 1 is a model diagram showing an embodiment of a purification device.
[図 2]別の浄化装置を示すモデル図である。
[図 3]さらに別の浄化装置を示すモデル図である。 FIG. 2 is a model diagram showing another purification device. FIG. 3 is a model diagram showing still another purification device.
[図 4]印加手段が有する印加電圧の極性を反転させる切り換え手段の作用を説明す るモデル図である。 FIG. 4 is a model diagram for explaining the action of switching means for reversing the polarity of the applied voltage of the applying means.
[図 5]排出ガス浄化システムの概略を示す模式図である。 FIG. 5 is a schematic diagram showing an outline of an exhaust gas purification system.
[図 6]排出ガス浄化装置の要部構成図である。 [Fig. 6] Fig. 6 is a configuration diagram of a main part of an exhaust gas purification device.
[図 7]排出ガス浄化装置の変形例を示す要部構成図である。 [Fig. 7] Fig. 7 is a main part configuration diagram showing a modified example of the exhaust gas purification device.
[図 8]他の排出ガス浄化システムの概略を示す模式図である。 FIG. 8 is a schematic diagram showing an outline of another exhaust gas purification system.
[図 9]図 8の浄化システムが有する排出ガス浄化装置を示す要部構成図である。 9 is a main part configuration diagram showing an exhaust gas purifying device included in the purification system of FIG.
[図 10]さらに別の浄化装置を示すモデル図である。 FIG. 10 is a model diagram showing still another purification device.
[図 11]窒素酸化物の還元のメカニズムを説明する説明図である。 FIG. 11 is an explanatory diagram for explaining the mechanism of reduction of nitrogen oxides.
[図 12]窒素酸化物の還元の他のメカニズムを説明する説明図である。 FIG. 12 is an explanatory diagram for explaining another mechanism of reduction of nitrogen oxides.
[図 13]他の排出ガス浄化システムの概略を示す模式図である。 FIG. 13 is a schematic diagram showing an outline of another exhaust gas purification system.
[図 14]図 13の浄化システムが有する排出ガス浄化装置を示す要部構成図である。 14 is a main part configuration diagram showing an exhaust gas purifying device included in the purification system of FIG.
[図 15]固形炭素質微粒子の減少率と浄化時間との関係を示すグラフである。 FIG. 15 is a graph showing the relationship between the reduction rate of solid carbonaceous fine particles and the purification time.
[図 16]固形炭素質微粒子の減少率と浄化構造体に流す電流との関係を示すグラフ である。 FIG. 16 is a graph showing the relationship between the reduction rate of solid carbonaceous fine particles and the current flowing through the purification structure.
[図 17]窒素酸化物の減少率と浄化構造体に流す電流との関係を示すグラフである。 FIG. 17 is a graph showing the relationship between the reduction rate of nitrogen oxides and the current flowing through the purification structure.
[図 18]支持体を備えた浄化構造体の説明図である。 FIG. 18 is an explanatory view of a purification structure provided with a support.
[図 19]支持体を備えた浄化構造体の製造方法を説明する説明図である。 FIG. 19 is an explanatory view for explaining a method for producing a purification structure provided with a support.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、この発明の実施形態を図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図 1は浄化装置の実施の一形態を示すモデル図である。この浄化装置は、例えば 排出ガスに含まれるディーゼル微粒子を浄化するためのものである。この浄化装置 は、ディーゼル微粒子中の固形炭素質微粒子(微粒子状物質: Particulate Matt er) PMを浄化することができる。具体的には、この装置は、固形炭素質微粒子 Mに 含まれる炭素を酸化させて浄化を行う装置である。さらにこの装置は、このディーゼル 微粒子中の炭化水素質微粒子の処理も行える。図 1に示している装置は、酸素ィォ ン導電性を有する固体電解質 1と、この固体電解質 1の両面間に電圧を印加させる
印加手段 2とを備えている。 FIG. 1 is a model diagram showing an embodiment of a purification device. This purification device is for purifying diesel particulates contained in, for example, exhaust gas. This purification device can purify solid carbonaceous fine particles (particulate matter) PM in diesel fine particles. Specifically, this apparatus is an apparatus for purifying by oxidizing carbon contained in the solid carbonaceous fine particles M. In addition, the equipment can also process hydrocarbon particulates in the diesel particulates. The apparatus shown in FIG. 1 applies a voltage between the solid electrolyte 1 having oxygen ion conductivity and both sides of the solid electrolyte 1. Application means 2 is provided.
[0018] 図 1に示す固体電解質 1はパネル状であり、その一面 10に第 1電極 3を積層させ、 その他面 11に第 2電極 4を積層させて!/、る。固体電解質 1は例えば燃料電池に用い られているものが適用でき、固体電解質 1の両端側に電位差を与えることで酸素ィォ ンを移動させること力できる。また、第 1電極 3と第 2電極 4とは通常、電極として用いら れる材質が利用される。第 1電極 3と第 2電極 4とは、板状であるが、第 1電極 3および 第 2の電極 4の!/、ずれも、気体(酸素)の透過性を有するよう多孔質電極となって!/、る The solid electrolyte 1 shown in FIG. 1 has a panel shape, and the first electrode 3 is laminated on one surface 10 and the second electrode 4 is laminated on the other surface 11. As the solid electrolyte 1, for example, one used in a fuel cell can be applied, and an oxygen ion can be moved by applying a potential difference to both ends of the solid electrolyte 1. The first electrode 3 and the second electrode 4 are usually made of materials used as electrodes. The first electrode 3 and the second electrode 4 are plate-like, but the first electrode 3 and the second electrode 4 are porous electrodes so that the! /!
[0019] 印加手段 2は通常、用いられている直流電源とすることができ、電圧を可変とするも のが好ましい。印加手段 2は、固体電解質 1の一面 10側に設けた第 1電極 3がァノー ドとなり、他面 11側に設けた第 2電極 4が力ソードとなるよう固体電解質 1の両面間に 電圧を印加させる。印加手段 2により印加される電圧は固体電解質 1の電気特性、及 び雰囲気温度により設定される。例えば固体電解質 1がイットリウム安定化ジルコユア である場合、雰囲気温度 350°Cのもとで 10ボルト以下である。 [0019] The application means 2 can be a DC power supply that is usually used, and preferably has a variable voltage. The application means 2 applies a voltage between both surfaces of the solid electrolyte 1 so that the first electrode 3 provided on one side 10 of the solid electrolyte 1 serves as a canon and the second electrode 4 provided on the other side 11 serves as a force sword. Apply. The voltage applied by the applying means 2 is set according to the electrical characteristics of the solid electrolyte 1 and the ambient temperature. For example, when the solid electrolyte 1 is yttrium-stabilized zirconium, it is 10 volts or less at an ambient temperature of 350 ° C.
[0020] この浄化装置は例えばディーゼル機関から排出される排出ガスを流すための排気 流路(図示せず)に設けられる。そして、固体電解質 1の一面 10側がこの排気流路内 に面するよう設けられ、この一面 10側が排出ガス側 Gとなる。固体電解質 1の他面 11 側が大気側(大気開放側) Aに面するよう固体電解質 1は設けられる。固体電解質 1 のアノード側となる一面 10側には、ディーゼル微粒子を堆積させる堆積面 12が形成 されており、図 1においては第 1電極 3の外面が堆積面 12となる。なお、第 1電極 3の 外面とは固体電解質 1との接面の反対側の面である。 [0020] This purification device is provided, for example, in an exhaust passage (not shown) for flowing exhaust gas discharged from a diesel engine. The one surface 10 side of the solid electrolyte 1 is provided so as to face the exhaust passage, and the one surface 10 side becomes the exhaust gas side G. The solid electrolyte 1 is provided so that the other surface 11 side of the solid electrolyte 1 faces the atmosphere side (atmosphere release side) A. A deposition surface 12 on which diesel particulates are deposited is formed on the surface 10 side, which is the anode side of the solid electrolyte 1, and the outer surface of the first electrode 3 is the deposition surface 12 in FIG. The outer surface of the first electrode 3 is the surface opposite to the contact surface with the solid electrolyte 1.
[0021] そして、この浄化装置による浄化方法は、固体電解質 1の一面 10側の堆積面 12に ディーゼル微粒子を堆積させ、印加手段 2により所定の電圧を固体電解質 1の両面 間に印加させることにより、力ソード側からアノード側へ酸素イオンを供給させる。そし て、この酸素イオンによりアノード側の堆積面 12に存在するディーゼル微粒子を酸化 させる。つまり、力ソード側である大気側 Aに含まれる酸素をアノード側である排出ガ ス側 Gへ酸素イオンとして供給する。これにより、ディーゼル微粒子中の固形炭素質 微粒子 Mに含まれる炭素が一酸化炭素、二酸化炭素に連続的に酸化(C + O→C
〇2、 2C +〇2→2CO)され、固形炭素質微粒子 Mが浄化(分解)される。なお、図 1に おいて固体電解質 1中の矢印は酸素イオンの移動方向を示している。 In the purification method using this purification device, diesel particulates are deposited on the deposition surface 12 on the one surface 10 side of the solid electrolyte 1, and a predetermined voltage is applied between both surfaces of the solid electrolyte 1 by the application means 2. Then, oxygen ions are supplied from the force sword side to the anode side. The oxygen ions oxidize diesel particulates present on the deposition surface 12 on the anode side. That is, oxygen contained in the atmosphere side A that is the force sword side is supplied as oxygen ions to the exhaust gas side G that is the anode side. As a result, the carbon contained in the solid carbonaceous fine particles M in the diesel particulates is continuously oxidized to carbon monoxide and carbon dioxide (C + O → C ○ 2 , 2C + ○ 2 → 2CO), and solid carbonaceous fine particles M are purified (decomposed). In FIG. 1, the arrows in solid electrolyte 1 indicate the direction of oxygen ion movement.
[0022] 以上のように、酸素イオン導電性を有する固体電解質 1と、この固体電解質 1のうち ディーゼル微粒子が堆積される一面側がアノード側となるよう当該固体電解質 1の両 面間に電圧を印加させる印加手段 2とを備えた浄化装置によれば、固体電解質 1の 両面間に印加手段 2により電圧を印加させることで、酸素イオンを力ソード側からァノ ード側へ固体電解質 1を通して供給させることができ、アノード側に堆積させたディー ゼル微粒子中の固形炭素質微粒子 Mを酸化させて炭素酸化物とすることができる。 例えば、固体電解質 1の力ソード側の面を大気側(大気開放側)とし、アノード側の固 体電解質 1の面を、ディーゼル微粒子を含む排出ガス側とすることにより排出ガスの 浄化を行うことができる。 [0022] As described above, a voltage is applied between both surfaces of the solid electrolyte 1 having oxygen ion conductivity and the solid electrolyte 1 so that one side of the solid electrolyte 1 on which diesel particulates are deposited is the anode side. According to the purifying apparatus having the application means 2 to be applied, oxygen ions are supplied from the force sword side to the anode side through the solid electrolyte 1 by applying a voltage between both surfaces of the solid electrolyte 1 by the application means 2. The solid carbonaceous fine particles M in the diesel fine particles deposited on the anode side can be oxidized to form carbon oxides. For example, exhaust gas purification is performed by setting the surface of the solid electrolyte 1 on the power sword side to the atmosphere side (atmosphere release side) and the surface of the solid electrolyte 1 on the anode side to the exhaust gas side containing diesel particulates. Can do.
[0023] 図 2に示す浄化装置は、図 1の浄化装置の第 1電極 3を省略したものであり、その他 の構成は同様である。つまり、固体電解質 1の他面 11側にのみ力ソード側となる電極 4が設けられている。この浄化装置はディーゼル微粒子中の固形炭素質微粒子 Mが 導電性を有することを利用したものである。固体電解質 1の一面 10を直接、ディーゼ ノレ微粒子に含まれる固形炭素質微粒子 Mの堆積面 12としたものである。一定量の ディーゼル微粒子(固形炭素質微粒子 M)が固体電解質 1の一面 10に堆積し印加 手段 2により通電が開始されることにより、大気側 Aの力ソード側から排出ガス側 Gの アノード側へ酸素イオンの供給が行われる。 The purification device shown in FIG. 2 is obtained by omitting the first electrode 3 of the purification device of FIG. 1, and the other configurations are the same. That is, the electrode 4 on the force sword side is provided only on the other surface 11 side of the solid electrolyte 1. This purification device utilizes the fact that the solid carbonaceous fine particles M in the diesel fine particles have electrical conductivity. The surface 10 of the solid electrolyte 1 is directly used as the deposition surface 12 of the solid carbonaceous fine particles M contained in the diesel fine particles. When a certain amount of diesel particulate (solid carbonaceous particulate M) is deposited on one side 10 of the solid electrolyte 1 and energization is started by the application means 2, from the power sword side on the atmosphere side A to the anode side on the exhaust gas side G Oxygen ions are supplied.
[0024] つまり、この浄化装置では、印加手段 2と接続されるリード線 13が固体電解質 1の 一面 10側に接続されている。そして、固体電解質 1の一面 10側にディーゼル微粒子 が堆積し、堆積したディーゼル微粒子中の固形炭素質微粒子 Mとリード線 13とが接 触すると、印加手段 2により電圧の印加が開始されて、固形炭素質微粒子 M自体を アノードとし、通電がされる。これにより固体電解質 1の両面間に所定の電位差を生じ させ酸素イオンの供給が行われる。つまり、一定量のディーゼル微粒子が堆積面 12 に堆積すると、その浄化が自動的に開始される。そして、前記リード線 13は固体電解 質 1の一面 10側にリング状や網目状等に設けられている。これにより固体電解質 1の 一面 10側の堆積面 12に部分的に堆積したディーゼル微粒子中の固形炭素質微粒
子 Mが、このリード線 13に接触すると、浄化される。 That is, in this purification device, the lead wire 13 connected to the applying means 2 is connected to the one surface 10 side of the solid electrolyte 1. When diesel particulates are deposited on one side 10 of the solid electrolyte 1 and the solid carbonaceous particulates M in the deposited diesel particulates come into contact with the lead wires 13, application of voltage is started by the application means 2 and The carbonaceous fine particle M itself is used as an anode and energized. As a result, a predetermined potential difference is generated between both surfaces of the solid electrolyte 1 to supply oxygen ions. That is, when a certain amount of diesel particulates accumulates on the deposition surface 12, the purification is automatically started. The lead wire 13 is provided in a ring shape or a mesh shape on the one surface 10 side of the solid electrolyte 1. As a result, solid carbonaceous fine particles in diesel particulates partially deposited on one side 10 of the solid electrolyte 1 and on the side 12 of the deposit When the child M contacts the lead wire 13, it is purified.
[0025] このように、固体電解質 1の他面側に力ソード側となる電極が設けられ、固体電解質 1の一面側にディーゼル微粒子が堆積すると、当該ディーゼル微粒子に印加手段 2 により通電がされて当該ディーゼル微粒子中の固形炭素質微粒子 M自体がアノード となる構成となる。これにより、固体電解質 1の一面側に一定量のディーゼル微粒子 が堆積すると、ディーゼル微粒子中の固形炭素質微粒子 Mは導電性を有するため、 通電が開始されて力ソード側から酸素イオンの供給が開始される。これにより、固体 電解質 1の一面側の固形炭素質微粒子 Mを含むディーゼル微粒子の浄化が自動的 に開始される。従って、固体電解質 1のアノード側となる面に電極を不要とでき、コスト ダウンが可能となる。さらに、ディーゼル微粒子が一定量堆積した状態となって浄化 が必要な際に、 自動的に通電がされるため、ランニングコストの低減が図れる。 [0025] In this manner, when the electrode on the force sword side is provided on the other surface side of the solid electrolyte 1, and diesel particulates are deposited on one surface side of the solid electrolyte 1, the diesel particulates are energized by the application means 2. The solid carbonaceous fine particles M in the diesel fine particles themselves constitute the anode. As a result, when a certain amount of diesel particulates accumulates on one side of the solid electrolyte 1, the solid carbonaceous particulates M in the diesel particulates are conductive, so energization is started and supply of oxygen ions from the force sword side begins. Is done. Thereby, purification of diesel particulates including solid carbonaceous particulates M on one side of the solid electrolyte 1 is automatically started. Therefore, no electrode is required on the surface of the solid electrolyte 1 on the anode side, and the cost can be reduced. In addition, when a certain amount of diesel particulate is deposited and purification is required, power is automatically applied, reducing running costs.
[0026] 図 3に示す浄化装置は、図 1 (図 2)に示した浄化装置によるディーゼル微粒子の処 理と、酸化触媒を用いた窒素酸化物の処理とを同時に連続して行うものである。処理 する窒素酸化物はディーゼル微粒子と共に排出ガスに含まれている。この浄化装置 は、図 1に示す浄化装置の固体電解質 1の一面 10側に吸着材 5と酸化触媒 6とを設 けたものである。つまり、この装置は、酸素イオン導電性を有する固体電解質 1と、固 体電解質 1の両面間に電圧を印加させる印加手段 2と、固体電解質 1の一面 10側に 設けられて窒素酸化物を吸着させる吸着材 5と、固体電解質 1の一面 10側に設けら れる酸化触媒 6とを備えて!/、る。 [0026] The purification device shown in FIG. 3 performs the simultaneous treatment of diesel particulates by the purification device shown in FIG. 1 (FIG. 2) and nitrogen oxide treatment using an oxidation catalyst simultaneously. . The nitrogen oxides to be treated are contained in the exhaust gas along with diesel particulates. In this purification device, an adsorbent 5 and an oxidation catalyst 6 are provided on one surface 10 side of the solid electrolyte 1 of the purification device shown in FIG. In other words, this apparatus is provided on the solid electrolyte 1 having oxygen ion conductivity, the application means 2 for applying a voltage between both surfaces of the solid electrolyte 1, and the one surface 10 side of the solid electrolyte 1, and adsorbs nitrogen oxides. An adsorbent 5 to be formed and an oxidation catalyst 6 provided on one side 10 of the solid electrolyte 1.
[0027] 固体電解質 1は図 1に示すものと同様である。印加手段 2は、固体電解質 1のうちデ イーゼル微粒子が堆積される一面 10側がアノード側となるよう電圧を印加させるもの である。この装置において、固体電解質 1の一面 10側に設けられる第 1電極 3を、酸 化触媒 6を含む多孔質電極により構成するのがよい。例えば第 1電極 3を多孔質とし た白金や銀とする。つまり、第 1電極 3を酸化触媒 6として併用している。そして、図 3 において、この第 1電極 3 (酸化触媒 6)の上に網状に窒素化合物の吸着材 5を積層 させている。なお、吸着材 5としてはアルカリ土類金属やアルカリ金属とでき、例えば ノ リウムを含むものとできる。図 3に示す吸着材 5は層状に形成されている。 [0027] The solid electrolyte 1 is the same as that shown in FIG. The applying means 2 applies a voltage so that the side 10 of the solid electrolyte 1 on which the diesel particulates are deposited becomes the anode side. In this apparatus, the first electrode 3 provided on the one surface 10 side of the solid electrolyte 1 is preferably constituted by a porous electrode including the oxidation catalyst 6. For example, the first electrode 3 is made of porous platinum or silver. That is, the first electrode 3 is used together as the oxidation catalyst 6. In FIG. 3, a nitrogen compound adsorbent 5 is laminated on the first electrode 3 (oxidation catalyst 6) in a net shape. The adsorbent 5 can be an alkaline earth metal or an alkali metal, and can include, for example, norium. The adsorbent 5 shown in FIG. 3 is formed in layers.
[0028] 図 3に示すこの浄化装置による浄化方法は次のとおりである。まず、図 1 (図 2)と同
様に、固体電解質 1の両面間に印加手段 2により電圧を印加させ、力ソード側からァ ノード側へ酸素イオンを供給する。そして、この酸化イオンにより、固体電解質 1のァ ノード側の堆積面 12に存在するディーゼル微粒子中の固形炭素質微粒子 Mを酸化 (2C + 0→2CO)させて一酸化炭素を含む炭素酸化物とする(矢印 a)。この固形炭 素質微粒子 Mを有するディーゼル微粒子は排出ガス中に含まれるものであり、固体 電解質 1の一面 10側の堆積面 12に堆積されている。なお、この堆積面 12は酸化触 媒 6を有する第 1電極 3の外面及び吸着材 5の外面となる。 [0028] A purification method using this purification apparatus shown in FIG. 3 is as follows. First, the same as Fig. 1 (Fig. 2) Similarly, a voltage is applied between both surfaces of the solid electrolyte 1 by the applying means 2 to supply oxygen ions from the force sword side to the anode side. The oxidized ions oxidize (2C + 0 → 2CO) the solid carbonaceous fine particles M in the diesel fine particles present on the deposition surface 12 on the anode side of the solid electrolyte 1 to obtain carbon oxides containing carbon monoxide. (Arrow a). The diesel particulates having the solid carbon particulates M are contained in the exhaust gas, and are deposited on the deposition surface 12 on the one side 10 side of the solid electrolyte 1. The deposition surface 12 becomes the outer surface of the first electrode 3 having the oxidation catalyst 6 and the outer surface of the adsorbent 5.
[0029] そして、ディーゼル微粒子と共に排出ガス中に含まれる一酸化窒素を固体電解質 1 のアノード側において酸化触媒 6により酸化(NO + O→NO +〇*)させて二酸化窒 素とする(矢印 b- 1と矢印 b- 2)。この酸化の際に利用される酸素は主に排出ガス中 に含まれる酸素である。そして、この二酸化窒素を吸着材 5に吸着させる。さらに、吸 着した二酸化窒素を、固形炭素質微粒子 Mを酸化させて得た一酸化炭素によって 還元(2NO +4CO→N +4CO )し、二酸化窒素を窒素としかつ一酸化炭素を二 酸化炭素とする(矢印 c)。以上のように、排出ガス中に含まれるディーゼル微粒子( 固形炭素質微粒子 M)と窒素酸化物 (一酸化窒素)が窒素と二酸化炭素とに連続的 に浄化される。 [0029] Then, nitric oxide contained in the exhaust gas together with diesel particulates is oxidized (NO + O → NO + ○ *) by the oxidation catalyst 6 on the anode side of the solid electrolyte 1 to form nitrogen dioxide (arrow b). -1 and arrow b-2). The oxygen used in this oxidation is mainly oxygen contained in the exhaust gas. Then, the nitrogen dioxide is adsorbed on the adsorbent 5. Further, the adsorbed nitrogen dioxide is reduced (2NO + 4CO → N + 4CO) with carbon monoxide obtained by oxidizing the solid carbonaceous fine particles M, using nitrogen dioxide as nitrogen and carbon monoxide as carbon dioxide. (Arrow c). As described above, diesel particulates (solid carbonaceous particulates M) and nitrogen oxides (nitrogen monoxide) contained in the exhaust gas are continuously purified into nitrogen and carbon dioxide.
[0030] また、ディーゼル微粒子の堆積面 12に存在する酸化触媒 6によりディーゼル微粒 子中の固形炭素質微粒子 Mの酸化が促進される。また、一酸化窒素が二酸化窒素 へ酸化(NO + O→NO + O*)する際に(矢印 b- 1)生成される活性酸素(〇*)により 固形炭素質微粒子 Mの酸化が促進される。 [0030] The oxidation of the solid carbonaceous fine particles M in the diesel fine particles is promoted by the oxidation catalyst 6 present on the deposition surface 12 of the diesel fine particles. In addition, when nitric oxide is oxidized to nitrogen dioxide (NO + O → NO + O *) (arrow b-1), the oxidation of solid carbonaceous fine particles M is promoted by the active oxygen (○ *) generated. .
[0031] このように、酸素イオン導電性を有する固体電解質 1と、この固体電解質 1のうちデ イーゼル微粒子が堆積される一面側がアノード側となるよう固体電解質 1の両面間に 電圧を印加させる印加手段 2と、固体電解質 1の一面側に設けられて窒素酸化物を 吸着させる吸着材 5と、固体電解質 1の一面側に設けられた酸化触媒 6とを備えた構 成によれば、固体電解質 1の両面間に印加手段 2により電圧を印加することにより、 酸素イオンを力ソード側からアノード側へ固体電解質 1を通して供給させることができ る。これにより、アノード側に堆積させたディーゼル微粒子中の固形炭素質微粒子 M を酸化させ、一酸化炭素を含む炭素酸化物とすることができる。さらに、酸化触媒 6に
より排出ガスに含まれる一酸化窒素を酸化させて二酸化窒素とすることができる。さら に、この二酸化窒素を吸着材 5に吸着させることができる。そして、吸着材 5に吸着し た二酸化窒素を、前記ディーゼル微粒子中の固形炭素質微粒子 Mを酸化させて得 た一酸化炭素により還元して窒素ガスとし、その一酸化炭素を二酸化炭素とすること ができる。従って、ディーゼル微粒子中の固形炭素質微粒子 Mと窒素酸化物との両 者を同時に浄化することが可能となる。例えば、固体電解質 1の力ソード側の面を大 気側(大気開放側)とし、アノード側の固体電解質 1の面を、ディーゼル微粒子を含む 排出ガス側とすることにより排出ガスの浄化を行うことができる。 [0031] In this way, the solid electrolyte 1 having oxygen ion conductivity and the application of applying a voltage between both surfaces of the solid electrolyte 1 such that one side of the solid electrolyte 1 on which the diesel particulates are deposited becomes the anode side. According to the configuration comprising the means 2, the adsorbent 5 provided on one side of the solid electrolyte 1 for adsorbing nitrogen oxides, and the oxidation catalyst 6 provided on the one side of the solid electrolyte 1, the solid electrolyte Oxygen ions can be supplied from the force sword side to the anode side through the solid electrolyte 1 by applying a voltage between the both surfaces of 1 by applying means 2. Thereby, the solid carbonaceous fine particles M in the diesel fine particles deposited on the anode side can be oxidized to form carbon oxides containing carbon monoxide. Furthermore, oxidation catalyst 6 Nitric oxide contained in the exhaust gas can be oxidized to nitrogen dioxide. Further, the nitrogen dioxide can be adsorbed on the adsorbent 5. Then, the nitrogen dioxide adsorbed on the adsorbent 5 is reduced with carbon monoxide obtained by oxidizing the solid carbonaceous fine particles M in the diesel fine particles into nitrogen gas, and the carbon monoxide is converted into carbon dioxide. Can do. Therefore, it is possible to simultaneously purify both the solid carbonaceous fine particles M and the nitrogen oxides in the diesel fine particles. For example, the exhaust gas purification is performed by setting the surface of the solid electrolyte 1 on the power sword side to the atmospheric side (atmosphere release side) and the surface of the solid electrolyte 1 on the anode side to the exhaust gas side containing diesel particulates. Can do.
[0032] さらに、この浄化装置の印加手段 2は、印加電圧の極性を周期的に反転させる切り 換え手段を有している。つまり、アノード側であった第 1電極 3を力ソード側とし、カソ ード側であった第 2電極 4をアノード側に切り換え、この切り換えを連続して行わせて いる。図 4は、第 1電極 3が力ソード側とされ第 2電極 4がアノード側とされた状態であ る。これにより、排出ガス側 Gである固体電解質 1の一面 10側で発生した活性酸素( 〇*)を強制的に大気側 Aである固体電解質 1の他面 11側へ戻すよう作用させる。 [0032] Further, the applying means 2 of this purification device has switching means for periodically inverting the polarity of the applied voltage. That is, the first electrode 3 on the anode side is set to the force sword side, and the second electrode 4 on the cathode side is switched to the anode side, and this switching is performed continuously. FIG. 4 shows a state in which the first electrode 3 is on the force sword side and the second electrode 4 is on the anode side. As a result, the active oxygen (O *) generated on the surface 10 side of the solid electrolyte 1 that is the exhaust gas side G is forced to return to the other surface 11 side of the solid electrolyte 1 that is the atmosphere side A.
[0033] これは、活性酸素により窒素、一酸化窒素が再合成(N + 20*→2NO、 NO + O* →NO )されるのを抑制するためである。これによりディーゼル微粒子と一酸化窒素 の同時浄化をバランスよく行わせることができる。つまり、吸着材 5に吸着させた二酸 化窒素を還元して窒素に生成したにもかかわらず、この窒素を再度活性酸素により 酸化させて窒素酸化物となることを抑制して!/、る。この印加手段 2が有する切り換え 手段は電気的な手段により構成することができ、排出ガス側 Gの活性酸素量に応じて その周波数及び切り換え時間を変更可能とすることができる。 [0033] This is to suppress the resynthesis of nitrogen and nitric oxide (N + 20 * → 2NO, NO + O * → NO) by active oxygen. As a result, simultaneous purification of diesel particulates and nitric oxide can be performed in a well-balanced manner. In other words, even though nitrogen dioxide adsorbed on the adsorbent 5 is reduced to produce nitrogen, it is suppressed from being oxidized again with active oxygen to form nitrogen oxide! . The switching means of the application means 2 can be constituted by electrical means, and the frequency and switching time can be changed according to the amount of active oxygen on the exhaust gas side G.
[0034] このように、印加手段 1が、印加電圧の極性を周期的に反転させる切り換え手段を 有して!/、る構成によれば、極性を反転させて固体電解質 1の他面側(大気側)をァノ ード側とすることにより、排出ガスに含まれる一酸化窒素を吸着材 5に吸着させる際に 生ずる活性酸素のうち過剰な活性酸素を力ソード側へ移動させることができる。これ により、浄化を意図する側となる固体電解質 1の一面側において、吸着材 5に吸着さ せた二酸化窒素を還元して得た前記窒素ガスを、再度活性酸素により窒素酸化物と なることを抑えることが可能となる。
[0035] 次に、図 5はディーゼル機関からの排出ガスの浄化を行う浄化システムを示す模式 図である。この排出ガスにはディーゼル微粒子(固形炭素質微粒子 M)及び窒素酸 化物(一酸化窒素)が含まれる。この浄化システムは、ディーゼル機関(ディーゼルェ ンジン) 15の排気口と接続されて排出ガスを排出させる排気流路 7と、この排気流路 7の一部に設けられる排出ガス浄化装置 8とを備えている。また図 5に示す排気流路 7は、排気管により構成されている。この排気管の途中に排出ガス浄化装置 8が有す る排出ガス浄化室 16が設けられている。そして、この排出ガス浄化室 16の内部に複 数の固体電解質 1が設けられている。固体電解質 1は図 3に示すものと同様である。 [0034] Thus, according to the configuration in which the applying means 1 has the switching means for periodically reversing the polarity of the applied voltage! /, The polarity is reversed so that the other surface side of the solid electrolyte 1 ( By setting the atmosphere side to the anode side, excess active oxygen can be moved to the force sword side out of the active oxygen generated when adsorbing the nitrogen monoxide contained in the exhaust gas to the adsorbent 5. . As a result, the nitrogen gas obtained by reducing the nitrogen dioxide adsorbed on the adsorbent 5 on one side of the solid electrolyte 1 that is the side intended for purification is converted into nitrogen oxides again by active oxygen. It becomes possible to suppress. Next, FIG. 5 is a schematic diagram showing a purification system that purifies exhaust gas from a diesel engine. This exhaust gas contains diesel particulates (solid carbonaceous particulates M) and nitrogen oxides (nitrogen monoxide). This purification system includes an exhaust passage 7 connected to an exhaust port of a diesel engine (diesel engine) 15 and exhausting exhaust gas, and an exhaust gas purification device 8 provided in a part of the exhaust passage 7. ing. Further, the exhaust passage 7 shown in FIG. 5 is constituted by an exhaust pipe. An exhaust gas purification chamber 16 having an exhaust gas purification device 8 is provided in the middle of the exhaust pipe. A plurality of solid electrolytes 1 are provided in the exhaust gas purification chamber 16. The solid electrolyte 1 is the same as that shown in FIG.
[0036] 排出ガス浄化装置 8は制御装置 17と接続される。制御装置 17は印加手段 2及び 印加手段 2の印加電圧の極性を周期的に反転させる前記切り換え手段が設けられて おり、浄化装置 8の動作を制御している。さらに浄化装置 8は帯電装置 18を有してい る。帯電装置 18は排出ガス中に含まれるディーゼル微粒子を帯電させ、ディーゼノレ 微粒子を固体電解質 1の堆積面 12 (図 3参照)に堆積させる。 The exhaust gas purification device 8 is connected to the control device 17. The control device 17 is provided with the switching means for periodically reversing the polarity of the applied voltage of the application means 2 and the application means 2, and controls the operation of the purification device 8. Further, the purification device 8 has a charging device 18. The charging device 18 charges the diesel particulates contained in the exhaust gas and deposits the diesel fine particles on the deposition surface 12 (see FIG. 3) of the solid electrolyte 1.
[0037] この排出ガス浄化装置 8は、複数の固体電解質 1を備えている。各固体電解質 1に おいて、図 3に示す浄化装置と同様に、固定電解質 1の一面 10側に設けられて窒素 酸化物を吸着させる吸着材 5と、固体電解質 1の一面 10側に設けられた酸化触媒 6 と、固体電解質 1の両面間に電圧を印加させる印加手段 2とを備えている。なお、印 加手段 2は複数の固体電解質 1に対して共通化させている。各固体電解質 1は酸素 イオン導電性を有しており、一面 10側が排気流路 7からの排出ガスと接触するよう設 けられ、かつ、他面 11側が大気中の酸素と接触するよう設けられる。印加手段 2は、 固体電解質 1の一面 10側に設けた第 1電極 3をアノード側として、かつ、他面 11側に 設けた第 2電極 4を力ソード側とするように固体電解質 1の両面間に電圧を印加させ ている。なお、排出ガス浄化装置 8が有する固体電解質 1、吸着材 5、酸化触媒 6、印 加手段 2は図 1〜図 4により説明したものと同様である。例えば、印加手段 2は印加電 圧の極性を周期的に反転させる切り換え手段を有している。 The exhaust gas purification device 8 includes a plurality of solid electrolytes 1. In each solid electrolyte 1, as in the purification device shown in FIG. 3, an adsorbent 5 that is provided on the first surface 10 side of the stationary electrolyte 1 and adsorbs nitrogen oxides, and is provided on the first surface 10 side of the solid electrolyte 1. The oxidation catalyst 6 and the application means 2 for applying a voltage between both surfaces of the solid electrolyte 1 are provided. The applying means 2 is shared by a plurality of solid electrolytes 1. Each solid electrolyte 1 has oxygen ion conductivity, and is provided so that one side 10 is in contact with exhaust gas from the exhaust flow path 7 and the other side 11 is in contact with oxygen in the atmosphere. . The application means 2 is provided on both sides of the solid electrolyte 1 so that the first electrode 3 provided on the first surface 10 side of the solid electrolyte 1 is the anode side and the second electrode 4 provided on the other surface 11 side is the force sword side. A voltage is applied between them. Note that the solid electrolyte 1, the adsorbent 5, the oxidation catalyst 6, and the applying means 2 included in the exhaust gas purification device 8 are the same as those described with reference to FIGS. For example, the applying means 2 has switching means for periodically inverting the polarity of the applied voltage.
[0038] 図 6は図 5の浄化システムが備えている排出ガス浄化装置 8の要部構成図である。 FIG. 6 is a configuration diagram of a main part of the exhaust gas purification device 8 provided in the purification system of FIG.
この浄化装置 8は複数の固体電解質 1を有する。図 5と図 6において、排気流路 7に 接続させた排出ガス浄化室 16内に、複数枚(図 6では 7枚)の平板パネル状の固体
電解質 1が相互隙間を持って対面状となるよう重ねられて配設されている。なお、固 体電解質 1は交互に裏返されて積層状となり、隣り合う固体電解質 1 , 1の一面 10, 1 0同士又は他面 11 , 11同士が対面するよう配設される。そして、各隙間には棒状の スぺーサ部材 19が設けられている。これら複数枚の固体電解質 1により固体電解質 層 20が形成されている。この固体電解質層 20が排出ガス浄化室 16内に設けられて いる。 This purification device 8 has a plurality of solid electrolytes 1. In FIGS. 5 and 6, a plurality of (seven in FIG. 6) flat panel-shaped solids are disposed in the exhaust gas purification chamber 16 connected to the exhaust flow path 7. The electrolytes 1 are arranged so as to face each other with a gap between them. The solid electrolytes 1 are alternately turned over to form a laminated structure, and are arranged so that the one surfaces 10, 10 of the adjacent solid electrolytes 1, 1 or the other surfaces 11, 11 face each other. A rod-like spacer member 19 is provided in each gap. A solid electrolyte layer 20 is formed by the plurality of solid electrolytes 1. This solid electrolyte layer 20 is provided in the exhaust gas purification chamber 16.
[0039] そして複数枚の固体電解質 20の各隙間でかつスぺーサ部材 19, 19間に排出ガス 用流路 21又は空気用流路 22が形成される。つまり、固体電解質層 20の積層方向の 一方側(図 6の下部)から順に、排出ガス用流路 21と、空気用流路 22とが交互に形 成される。なお、隣り合う固体電解質 1 , 1の一面 10, 10間が排出ガス用流路 21とな り、隣り合う固体電解質 1 , 1の他面 11 , 11間が空気用流路 22となる。 [0039] An exhaust gas flow path 21 or an air flow path 22 is formed in each gap between the plurality of solid electrolytes 20 and between the spacer members 19 and 19. That is, the exhaust gas flow paths 21 and the air flow paths 22 are alternately formed in order from one side of the solid electrolyte layer 20 in the stacking direction (the lower part in FIG. 6). Note that the exhaust gas flow path 21 is formed between the surfaces 10 and 10 of the adjacent solid electrolytes 1 and 1, and the air flow path 22 is formed between the other surfaces 11 and 11 of the adjacent solid electrolytes 1 and 1.
また、排出ガス用流路 21を構成する隙間のスぺーサ部材 19の向きと、空気用流路 22を構成する隙間のスぺーサ部材 19の向きとを、同方向としたり(図示せず)又は所 定の角度で向きを変えたりすることができる。図 6においては、空気用流路 22を構成 する隙間のスぺーサ部材 19が排出ガス用流路 21のスぺーサ部材 19に対して 90° 向きを変えて設けられている。これにより、排出ガスの流れ方向(矢印 g方向)に貫通 する排出ガス用流路 21と、排出ガスの流れ方向に直交する方向(矢印 a方向)に貫 通する空気用流路 22とが交互に形成される。そして、排気流路 7から流れてきた排 出ガスはそのまま直線的に排出ガス用流路 21に送られ、空気用流路 22を排出ガス 浄化室 16の外部の大気側 Aと連通させ、空気が空気用流路 22に送られる。これによ り、排出ガス用流路 21を排出ガスが通過することにより、排出ガス中に含まれるディ ーゼル微粒子が排出ガス用流路 21に面する固体電解質 1の一面 10側の堆積面 12 に堆積されて酸化され、かつ排出ガス中の窒素酸化物が還元される。 The direction of the spacer member 19 in the gap constituting the exhaust gas flow path 21 and the direction of the spacer member 19 in the gap constituting the air flow path 22 may be the same direction (not shown). ) Or change direction at a certain angle. In FIG. 6, the spacer member 19 in the gap constituting the air flow path 22 is provided with a 90 ° orientation changed with respect to the spacer member 19 of the exhaust gas flow path 21. As a result, the exhaust gas flow path 21 penetrating in the exhaust gas flow direction (arrow g direction) and the air flow path 22 penetrating in the direction orthogonal to the exhaust gas flow direction (arrow a direction) alternate. Formed. Then, the exhaust gas flowing from the exhaust flow path 7 is directly sent to the exhaust gas flow path 21 as it is, and the air flow path 22 is communicated with the atmosphere side A outside the exhaust gas purification chamber 16 so that the air Is sent to the air flow path 22. As a result, when the exhaust gas passes through the exhaust gas passage 21, the diesel particulates contained in the exhaust gas face the exhaust gas passage 21. Is deposited and oxidized, and nitrogen oxides in the exhaust gas are reduced.
[0040] 図 7は排出ガス浄化装置 8の変形例である。排気流路 7内を流れてきた排出ガスの 流れ方向(矢印 g方向)に貫通する断面矩形の筒状の排出ガス浄化室 16内に、筒状 とした固体電解質 1が複数設けられている。固体電解質 1は大気側 Aとなる他面 11 側が内側面となるよう筒状として構成されている。筒状とされた固体電解質 1の外周 面が排出ガス側 Gとする一面 10側となり、かつ、堆積面 12となる。そして、筒状の固
体電解質 1の軸方向が排出ガスの流れ方向(矢印 g方向)に直交する方向(矢印 a方 向)となる。これら固体電解質 1は相互隙間を有するようにして排出ガス浄化室 16内 に設けられている。 FIG. 7 shows a modification of the exhaust gas purification device 8. A plurality of cylindrical solid electrolytes 1 are provided in a cylindrical exhaust gas purification chamber 16 having a rectangular cross section penetrating in the flow direction of the exhaust gas flowing in the exhaust flow path 7 (arrow g direction). The solid electrolyte 1 is formed in a cylindrical shape so that the other surface 11 side that is the atmosphere side A is the inner surface. The outer peripheral surface of the solid electrolyte 1 in the form of a cylinder is the exhaust gas side G on one side 10 side and the deposition surface 12. And cylindrical solid The axial direction of the body electrolyte 1 is the direction (arrow a direction) perpendicular to the flow direction of the exhaust gas (arrow g direction). These solid electrolytes 1 are provided in the exhaust gas purification chamber 16 so as to have a mutual gap.
これにより、筒状の固体電解質 1の内部が大気側 Aと連通し、筒状の固体電解質 1 の内部に空気が通過可能となる。そして、排気流路 7から流れてきた排出ガスが筒状 の固体電解質 1 , 1間の隙間を流れ、この隙間を通過する排出ガスに含まれるディー ゼル微粒子力 筒状の固体電解質 1の外周面側の堆積面 12に堆積されて酸化され 、かつ排出ガス中の窒素酸化物が還元される。 Thereby, the inside of the cylindrical solid electrolyte 1 communicates with the atmosphere side A, and air can pass through the inside of the cylindrical solid electrolyte 1. The exhaust gas flowing from the exhaust passage 7 flows through the gap between the cylindrical solid electrolytes 1, 1, and the diesel particulate force contained in the exhaust gas passing through the gap is the outer peripheral surface of the cylindrical solid electrolyte 1. It is deposited on the side deposition surface 12 and oxidized, and nitrogen oxides in the exhaust gas are reduced.
[0041] 図 6と図 7に示す排出ガス浄化装置 8において、排出ガス浄化室 16内に導入され た排出ガス中のディーゼル微粒子を帯電装置 18 (図 5参照)により帯電させ、固体電 解質 1の堆積面 12にディーゼル微粒子を積極的に捕集させている。つまり、排出ガ スが排出ガス浄化装置 8に流入する上流部に帯電電極を設ける。そして、固体電解 質 1の堆積面 12側の電極 3 (図 3参照)をグランドレベルとすることにより電界が形成さ れてディーゼル微粒子を帯電させ、帯電させたディーゼル微粒子を効率よく固体電 解質 1の堆積面 12に集塵させている。 [0041] In the exhaust gas purification device 8 shown in Figs. 6 and 7, the diesel particulates in the exhaust gas introduced into the exhaust gas purification chamber 16 are charged by the charging device 18 (see Fig. 5) to obtain a solid electrolyte. Diesel particulates are actively collected on the deposition surface 12 of 1. That is, the charging electrode is provided in the upstream portion where the exhaust gas flows into the exhaust gas purification device 8. Then, by setting the electrode 3 (see Fig. 3) on the deposition surface 12 side of the solid electrolyte 1 to the ground level, an electric field is formed and the diesel particulates are charged, and the charged diesel particulates are efficiently converted into the solid electrolyte. Dust is collected on 1 accumulation surface 12.
[0042] また、図 7に示す排出ガス浄化装置 8は、筒状の固体電解質 1の堆積面 12となる外 周面が排出ガスを部分的に遮断するよう配設されている。このため、外周面に排出ガ スが直接的に吹き付けられ、排出ガス中のディーゼル微粒子はその慣性力により固 体電解質 1の外周面に効率よく捕集される。さらに、排出ガス浄化室 16内に排出ガス を浄化可能とする固体電解質 1しか存在しないため、ディーゼル微粒子が他の部分 に堆積して流路を塞ぐおそれがなぐ排出ガス中のディーゼル微粒子の濃度が高い 場合に効果的である。 In addition, the exhaust gas purification device 8 shown in FIG. 7 is arranged such that the outer peripheral surface serving as the deposition surface 12 of the cylindrical solid electrolyte 1 partially blocks the exhaust gas. For this reason, exhaust gas is sprayed directly on the outer peripheral surface, and diesel particulates in the exhaust gas are efficiently collected on the outer peripheral surface of the solid electrolyte 1 by its inertial force. Furthermore, since there is only the solid electrolyte 1 that can purify the exhaust gas in the exhaust gas purification chamber 16, the concentration of diesel particulates in the exhaust gas, where there is no risk of diesel particulates accumulating on other parts and blocking the flow path, It is effective when it is high.
[0043] 図 8と図 9は排出ガス浄化装置 8のさらに別の変形例である。この浄化装置 8の固体 電解質 1は断面 U字形に成形されている。固体電解質 1は開口部から奥部へ伸びる 側壁 23と、奥部の突き当たり状の奥壁 24とから構成されている。そして、側壁 23が 排気流路 7から流れてきた排出ガスの流れ方向(矢印 g方向)と平行となる向きとなる 。奥壁 24が排出ガスの流れ方向に直交する面を有するよう、複数の固体電解質 1が 排出ガス浄化室 16内に設けられている。そして、断面 U字形とされた固体電解質 1
はその内側面が図 3に示した一面 10側の堆積面 12であり、固体電解質 1の外側面 が大気側 Aとなる。なお、断面 U字形の固体電解質 1は周状の側壁 23と奥壁 24とを 有する有底円筒状に形成したものとできる。さらに、断面 U字形とした固体電解質 1 は隣り合う固体電解質 1と連結壁部材 25により連結されており、連結させた固体電解 質 1により、排出ガス浄化室 16を、排出ガス側 Gの空間と大気側 Aの空間とに区画し ている。 FIG. 8 and FIG. 9 show still another modification of the exhaust gas purification device 8. The solid electrolyte 1 of the purification device 8 is formed in a U-shaped cross section. The solid electrolyte 1 is composed of a side wall 23 extending from the opening to the back and a back wall 24 having a butting shape at the back. The side wall 23 is in a direction parallel to the flow direction of the exhaust gas flowing from the exhaust passage 7 (arrow g direction). A plurality of solid electrolytes 1 are provided in the exhaust gas purification chamber 16 so that the back wall 24 has a surface orthogonal to the flow direction of the exhaust gas. And a solid electrolyte with a U-shaped cross section 1 The inner surface is the deposition surface 12 on the side 10 shown in FIG. 3, and the outer surface of the solid electrolyte 1 is the atmosphere side A. The U-shaped solid electrolyte 1 can be formed into a bottomed cylindrical shape having a circumferential side wall 23 and a back wall 24. Furthermore, the solid electrolyte 1 having a U-shaped cross section is connected to the adjacent solid electrolyte 1 by a connecting wall member 25, and the connected solid electrolyte 1 allows the exhaust gas purification chamber 16 to be connected to the exhaust gas side G space. It is divided into the atmosphere side A space.
[0044] さらに、断面 U字形とした固体電解質 1の内側にパイプ状の排気導管 26を固体電 解質 1の内側面と隙間をもって揷入する。排気流路 7から流れてきた排出ガスは排気 導管 26により固体電解質 1の奥壁 24側へ誘導される。誘導された排出ガスは固体 電解質 1の奥壁 24に衝突し、その後、排気導管 26の外周面と固体電解質 1の側壁 2 3内面との間を流れ、固体電解質 1により浄化された排出ガスは排出ガス浄化室 16 の外部へと排出される。なお、連結させた複数の固体電解質 1により区画した排出ガ ス浄化室 16の大気側 Aの部分に、空気の吸入口 27及びその排出口 28が設けられ ている。 Furthermore, a pipe-like exhaust conduit 26 is inserted inside the solid electrolyte 1 having a U-shaped cross section with a gap from the inner side surface of the solid electrolyte 1. The exhaust gas flowing from the exhaust passage 7 is guided to the back wall 24 side of the solid electrolyte 1 by the exhaust conduit 26. The induced exhaust gas collides with the back wall 24 of the solid electrolyte 1, and then flows between the outer peripheral surface of the exhaust conduit 26 and the side wall 2 3 of the solid electrolyte 1, and the exhaust gas purified by the solid electrolyte 1 is It is discharged outside the exhaust gas purification chamber 16. Note that an air inlet 27 and its outlet 28 are provided in the portion on the atmosphere side A of the exhaust gas purification chamber 16 partitioned by a plurality of connected solid electrolytes 1.
[0045] さらにこの排出ガス浄化装置 8においても図 8に示すように、帯電装置 18によりディ ーゼル微粒子を帯電させ、固体電解質 1の堆積面 12にディーゼル微粒子を捕集さ せている。この場合前記排気導管 26を帯電電極とし、固体電解質 1の堆積面 12側 の電極 3 (図 3参照)をグランドレベルとする。これにより、排気導管 26の外周面と固体 電解質 1の内側面との間に電解を形成する。そして、この間を排出ガスが通過する際 に、排出ガス中のディーゼル微粒子が帯電され、帯電したディーゼル微粒子は固体 電解質 1の堆積面 12に効率よく集塵される。そして、堆積面 12に堆積したディーゼ ノレ微粒子が浄化される。 Further, in the exhaust gas purification device 8, as shown in FIG. 8, the diesel particulates are charged by the charging device 18 and the diesel particulates are collected on the deposition surface 12 of the solid electrolyte 1. In this case, the exhaust conduit 26 is used as a charging electrode, and the electrode 3 (see FIG. 3) on the deposition surface 12 side of the solid electrolyte 1 is set to the ground level. As a result, electrolysis is formed between the outer peripheral surface of the exhaust conduit 26 and the inner surface of the solid electrolyte 1. When the exhaust gas passes through this period, diesel particulates in the exhaust gas are charged, and the charged diesel particulates are efficiently collected on the deposition surface 12 of the solid electrolyte 1. Then, the diesel particles deposited on the deposition surface 12 are purified.
[0046] 図 9に示す排出ガス浄化装置 8による浄化方法について説明する。排気流路 7から 流れてきた排出ガスはまず排気導管 26内を流れる。排気導管 26を通過した排出ガ ス中のディーゼル微粒子はその慣性力により固体電解質 1の奥壁 24における堆積 面 12に捕捉される。排出ガスはさらに排出導管 26と固体電解質 1との間を流れ、こ れらの間において帯電装置 18により帯電したディーゼル微粒子は、帯電装置 18に より形成された電界により、固体電解質 1の側壁 23における堆積面 12に捕集される。
つまり、この排出ガス浄化装置 8は、排出ガスの慣性力による固体電解質 1の奥壁 24 における慣性捕集作用と、帯電装置 18による電気捕集作用とを有している。そして、 粒子径の大きなディーゼル微粒子は慣性捕集が効果的であり、粒子径が小さいもの に対しては電気捕集が効果的となり、この 2つの作用により様々な粒子径のディーゼ ノレ微粒子を効率よく捕集することができる。 A purification method using the exhaust gas purification device 8 shown in FIG. 9 will be described. The exhaust gas flowing from the exhaust passage 7 first flows in the exhaust conduit 26. Diesel particulates in the exhaust gas that has passed through the exhaust pipe 26 are trapped on the deposition surface 12 of the back wall 24 of the solid electrolyte 1 by its inertial force. The exhaust gas further flows between the exhaust pipe 26 and the solid electrolyte 1, and diesel particulates charged by the charging device 18 between them are separated from the side wall 23 of the solid electrolyte 1 by the electric field formed by the charging device 18. Collected on the deposition surface 12 at That is, the exhaust gas purifying device 8 has an inertia collecting action at the back wall 24 of the solid electrolyte 1 due to the inertia force of the exhaust gas and an electric collecting action by the charging device 18. Diesel particulates with large particle diameters are effective for inertial collection, and those with small particle diameters are effective for electric collection. These two actions make diesel particulates with various particle sizes more efficient. It can be collected well.
[0047] 次に、浄化装置のさらに別の実施形態について、図 10により説明する。この浄化装 置は図 1〜図 4に示した浄化装置の変形例である。 Next, still another embodiment of the purification device will be described with reference to FIG. This purification apparatus is a modification of the purification apparatus shown in FIGS.
図 10は浄化装置を示すモデル図である。この装置においてもディーゼルエンジン 力、ら排出された排出ガスを浄化することができるものであり、排出ガスに含まれるディ ーゼル微粒子中の固形炭素質微粒子 M、及び、窒素酸化物を浄化することができる この浄化装置は、イオン導電性を有して一面側に酸素イオンを与え得る固体電解 質 1と、この固体電解質 1の一面 10側と他面 11側にそれぞれ設けられた第 1電極 3と 第 2電極 4とを有する浄化構造体 30を備えて!/、る。 FIG. 10 is a model diagram showing the purification device. This device can also purify exhaust gas exhausted from diesel engine power, and can purify solid carbonaceous particulates M and nitrogen oxides in diesel particulates contained in the exhaust gas. The purifying device includes a solid electrolyte 1 having ionic conductivity and capable of supplying oxygen ions to one side, and a first electrode 3 provided on one side 10 and the other side 11 of the solid electrolyte 1, respectively. A purification structure 30 having a second electrode 4 is provided.
[0048] 固体電解質 1はパネル状であり、その一面 10に第 1電極 3を積層させ、他面 11に 第 2電極 4を積層させて、浄化構造体 30を構成している。固体電解質 1は例えば燃 料電池に用いられているものを適用でき、固体電解質 1の両端側に電位差が生じる ことによってイオンを移動させること力 Sできる。なお、この固体電解質 1は、結果として 第 1電極 3側へ酸素イオンを与えることができるものであれば、固体電解質 1中を移動 するイオンは酸素イオンに限らなレ、。 The solid electrolyte 1 has a panel shape, and the purification structure 30 is configured by laminating the first electrode 3 on one surface 10 and the second electrode 4 on the other surface 11. As the solid electrolyte 1, for example, one used in a fuel cell can be applied, and a force S can be moved by causing a potential difference between both ends of the solid electrolyte 1. As long as this solid electrolyte 1 can give oxygen ions to the first electrode 3 as a result, the ions that move through the solid electrolyte 1 are not limited to oxygen ions.
[0049] そして、この浄化構造体 30は、浄化を行う排出ガスのうちディーゼル微粒子(固形 炭素質微粒子 M)を除き窒素酸化物を含むガスを透過させることができるように、多 孔質としている。つまり、浄化構造体 30のうちの固体電解質 1が多孔質であり、かつ、 第 1電極 3と第 2の電極 4が多孔質電極である。浄化構造体 30を多孔質とすることに より、ディーゼル微粒子を含む排出ガスを第 1電極 3側から第 2電極 4側へ通す(矢印 F)ことによって、ディーゼル微粒子を第 1電極 3側に捕集する(フィルタリングする)こ と力 Sできる。 [0049] The purification structure 30 is made porous so that gas containing nitrogen oxide can be permeated except for diesel particulates (solid carbonaceous particulates M) from the exhaust gas to be purified. . That is, the solid electrolyte 1 in the purification structure 30 is porous, and the first electrode 3 and the second electrode 4 are porous electrodes. By making the purification structure 30 porous, exhaust gas containing diesel particulates is passed from the first electrode 3 side to the second electrode 4 side (arrow F), thereby capturing diesel particulates on the first electrode 3 side. It is possible to collect (filter).
[0050] そして、図 1に示した浄化装置と同様に、電位差が生じている固体電解質 1によつ
て第 1電極 3側へ与えられた酸素イオンにより、捕集したディーゼル微粒子の固形炭 素質微粒子 Mを酸化させる。 [0050] Similarly to the purification apparatus shown in FIG. 1, the solid electrolyte 1 in which a potential difference is generated is used. Then, the trapped diesel particulate solid carbonaceous particles M are oxidized by oxygen ions applied to the first electrode 3 side.
また、浄化構造体 30を透過した排出ガスには窒素酸化物が含まれている。この窒 素酸化物は後述するが第 2電極 4側において還元される。つまり、この浄化構造体 3 0において、第 1電極 3側が、固形炭素質微粒子 Mを酸化させる酸化部となり、固体 電解質 1を挟んで反対側 (裏面側)である第 2電極 4側が、浄化構造体 30を透過した 排出ガスに含まれる窒素酸化物を還元する還元部となる。つまりこの浄化装置は、浄 化構造体 30の一面側において固形炭素質微粒子 Mの浄化が可能であり、同時に 他面側において窒素酸化物の浄化が可能となる。 Further, the exhaust gas that has passed through the purification structure 30 contains nitrogen oxides. This nitrogen oxide is reduced on the second electrode 4 side as will be described later. In other words, in the purification structure 30, the first electrode 3 side is an oxidation part that oxidizes the solid carbonaceous fine particles M, and the second electrode 4 side that is the opposite side (back side) across the solid electrolyte 1 is the purification structure. It becomes a reducing part that reduces nitrogen oxides contained in the exhaust gas that has permeated through the body 30. In other words, this purification device can purify the solid carbonaceous fine particles M on one surface side of the purification structure 30 and simultaneously purify nitrogen oxides on the other surface side.
この場合、固体電解質 1中において酸素イオンを移動させることにより、第 1電極 3 側である酸化部においては、未燃焼微粒子中の固形炭素質微粒子 Mを酸化させて 炭素酸化物とすることができる。これと同時に、第 2電極 4側である還元部において、 固体電解質 1により酸素イオンを第 2電極 4側から第 1電極 3側へ移動させることによ つて、浄化構造体 30を透過した排出ガスに含まれる窒素酸化物を還元して窒素ガス とすること力 Sできる。このように、排出ガス中の固形炭素質微粒子 Mと窒素酸化物との 同時浄化(同時分解)が可能となる。 In this case, by moving oxygen ions in the solid electrolyte 1, the solid carbonaceous fine particles M in the unburned fine particles can be oxidized into carbon oxides in the oxidation part on the first electrode 3 side. . At the same time, in the reducing part on the second electrode 4 side, the solid electrolyte 1 moves oxygen ions from the second electrode 4 side to the first electrode 3 side, thereby passing the exhaust gas that has permeated the purification structure 30. Nitrogen oxides contained in can be reduced to nitrogen gas. Thus, simultaneous purification (simultaneous decomposition) of solid carbonaceous fine particles M and nitrogen oxides in the exhaust gas becomes possible.
[0051] この浄化構造体 30には、このような浄化処理を行わせるために設けられている制御 手段 31が接続されている。制御手段 31は、図 1の浄化装置に示したものと同様であ る印加手段 2を有している。さらに説明すると、制御手段 31は、第 1電極 3側がァノー ド側となるよう電圧を印加させることができる前記印加手段 2と、これと並歹 IJとなるよう に抵抗器が設けられて全体として閉回路を構成することができるバイパス回路部 34と を備えている。さらに、制御手段 31は、印加手段 2により両電極 3, 4間に電圧を印加 させている状態と、両電極 3, 4間において印加を止めて前記閉回路を構成している 状態とに切り換え可能とする切換制御部 35とを備えている。 [0051] The purification structure 30 is connected to a control means 31 provided for performing such a purification process. The control means 31 has an application means 2 similar to that shown in the purification device of FIG. More specifically, the control means 31 is provided with the application means 2 that can apply a voltage so that the first electrode 3 side becomes the anode side, and a resistor provided in parallel with the application means 2, and the control means 31 as a whole. And a bypass circuit section 34 capable of forming a closed circuit. Further, the control means 31 switches between the state where the voltage is applied between the electrodes 3 and 4 by the applying means 2 and the state where the application is stopped between the electrodes 3 and 4 and the closed circuit is configured. And a switching control unit 35 that can be used.
[0052] つまり、ディーゼルエンジンの運転条件によって排出ガスの温度が異なる力、排出 ガス温度が低い場合、印加手段 2により第 1電極 3側がアノード側となるよう両電極 3, 4間に電圧を印加させることで、固体電解質 1中においてイオンの移動を可能とし、 前記同時浄化を可能としている。
しかし、エンジンの負荷などが大きくなつて排出ガス温度が高くなる場合、浄化構造 体 30の第 1電極 3側において固形炭素質微粒子 Mの酸化が行われやすくなり、固体 電解質 1を燃料電池として動作させることができる。これにより、外部から(印加手段 2 により)電気エネルギーを供給することなぐ固体電解質 1内においてイオンの移動が 可能となって前記同時浄化が行われる。つまり、排出ガス温度が高くなつて固体電解 質 1内のイオン導電率が高い場合、前記切換制御部 35が両電極 3, 4間をバイパス 回路部 34でつないだ状態として、固体電解質 1を含み外部電圧を作用させていない 閉回路を構成させることで、固体電解質 1内においてイオンの移動を可能としている That is, when the exhaust gas temperature varies depending on the operating conditions of the diesel engine and the exhaust gas temperature is low, a voltage is applied between the electrodes 3 and 4 by the application means 2 so that the first electrode 3 side becomes the anode side. By doing so, it is possible to move ions in the solid electrolyte 1 and to perform the simultaneous purification. However, when the exhaust gas temperature rises due to a large engine load, etc., the solid carbonaceous fine particles M are easily oxidized on the first electrode 3 side of the purification structure 30 and the solid electrolyte 1 operates as a fuel cell. Can be made. As a result, the ions can move in the solid electrolyte 1 without supplying electric energy from the outside (by the applying means 2), and the simultaneous purification is performed. That is, when the exhaust gas temperature is high and the ionic conductivity in the solid electrolyte 1 is high, the switching control unit 35 includes the solid electrolyte 1 as a state where the electrodes 3 and 4 are connected by the bypass circuit unit 34. By configuring a closed circuit that does not act on external voltage, it is possible to move ions within the solid electrolyte 1.
[0053] そして制御手段 31は、排出ガスの温度を測定する温度センサ(図示せず)と接続さ れている。そして、温度センサの出力に応じて切換制御部 35が切り換え動作するよう 構成されている。つまり、排出ガスの温度が低い場合に両電極 3, 4間に電圧を印加 させて!/、る状態とし、温度が高レ、場合に閉回路を構成して!/、る状態となるように自動 的に切り換えている。これにより電力消費を抑えエネルギー効率を高めることができる 。また、これら状態の切り換えは、温度センサによって排出ガスの温度を検出する手 段によるもの以外であってもよぐ固体電解質 1が前記同時浄化を行わせることがで きる程度にイオン導電機能を有する燃料電池として作動できるか否かの検出によつ てネ亍えばよい。 [0053] The control means 31 is connected to a temperature sensor (not shown) for measuring the temperature of the exhaust gas. The switching control unit 35 is configured to perform switching operation according to the output of the temperature sensor. In other words, when the temperature of the exhaust gas is low, a voltage is applied between the electrodes 3 and 4 so that it is in a state of! /, And when the temperature is high, a closed circuit is formed! The mode is automatically switched to. This can reduce power consumption and increase energy efficiency. In addition, the switching of these states may be other than by means of detecting the temperature of the exhaust gas by a temperature sensor, and the solid electrolyte 1 has an ion conductive function to such an extent that the simultaneous purification can be performed. It may be determined by detecting whether or not the fuel cell can be operated.
[0054] そして、この浄化装置により行われる排出ガスの浄化方法は、多孔質からなる固体 電解質 1の一面 10側から他面 11側へディーゼル微粒子を含む排出ガスを通すこと により、ディーゼル微粒子をその一面 10側に捕集させる。そして、固体電解質 1の両 面間に所定の電位差を生じさせる。これによつて、一面 10側に酸素イオンを与えるよ うに、固体電解質 1の他面 11側から一面 10側へイオンを移動させ、一面 10側にお いて捕集したディーゼル微粒子を、このイオンにより酸化させる。図 10においては、 固体電解質 1の他面 11側に存在する酸素あるいは窒素酸化物中の酸素原子を、酸 素イオンとして固体電解質 1内で移動させ、この酸素イオンを一面 10側である第 1電 極 3側に供給している。これにより、捕集したディーゼル微粒子中の固形炭素質微粒 子 Mに含まれる炭素が二酸化炭素に連続的に酸化(C + O→CO )され、固形炭素
質微粒子 Mが浄化(分解)される。そして、得られた二酸化炭素は、上流側から流れ てくる排出ガスと共に浄化構造体 30を透過して、下流側である第 2電極 4側へ流れ、 浄化構造体 30よりもさらに下流側へと排出される。 [0054] The exhaust gas purifying method performed by this purifying device is such that the exhaust gas containing diesel particulates is passed from one side 10 side to the other side 11 side of the solid electrolyte 1 made of porous material. Collect on the 10th side. Then, a predetermined potential difference is generated between both surfaces of the solid electrolyte 1. As a result, the ions are moved from the other surface 11 side of the solid electrolyte 1 to the first surface 10 side so as to give oxygen ions to the first surface 10 side, and the diesel particulates collected on the first surface 10 side are collected by this ion. Oxidize. In FIG. 10, oxygen present in the other surface 11 side of the solid electrolyte 1 or oxygen atoms in the nitrogen oxide are moved as oxygen ions in the solid electrolyte 1, and the oxygen ions are moved to the first surface 10 side. Supplying to electrode 3 side. As a result, carbon contained in the solid carbonaceous fine particles M in the collected diesel particulates is continuously oxidized to carbon dioxide (C + O → CO), and solid carbon The fine particles M are purified (decomposed). The obtained carbon dioxide passes through the purification structure 30 together with the exhaust gas flowing from the upstream side, flows to the second electrode 4 side, which is the downstream side, and further further downstream than the purification structure 30. Discharged.
[0055] さらに、浄化構造体 30を透過した排出ガスに含まれている窒素酸化物は、第 2電 極 4側(還元部)にお!/、て浄化処理される。 [0055] Further, nitrogen oxides contained in the exhaust gas that has passed through the purification structure 30 are purified on the second electrode 4 side (reduction part).
図 11は、第 2電極 4側において窒素酸化物が浄化されるメカニズムを説明する図で あり、浄化構造体 30の第 2電極 4側(力ソード側)にセリア又はセリア酸化物が担持さ れている。 FIG. 11 is a diagram for explaining the mechanism by which nitrogen oxides are purified on the second electrode 4 side. Ceria or ceria oxide is supported on the second electrode 4 side (force sword side) of the purification structure 30. ing.
この還元部において行われる浄化方法は次のとおりである。セリア(セリア酸化物) は希薄運転状態では CeOが安定した状態となる(Ce O + 1/20→2CeO:セリア による酸素吸蔵効果)。しかし、印加手段 2によって電圧を印加させることにより、第 2 電極 4側では酸素を放出し希薄運転状態で Ce Oを安定状態で保つことができる(2 The purification method performed in this reduction unit is as follows. Ceria (ceria oxide) is a stable state of CeO in dilute operation (CeO + 1/20 → 2CeO: oxygen storage effect by ceria). However, when voltage is applied by the application means 2, oxygen is released on the second electrode 4 side, and Ce 2 O can be kept stable in the lean operation state (2
CeO + 2e—→Ce O +〇2 )。この際に酸素イオンが発生しており、この酸素イオンを 固体電解質 1によって第 1電極 3側へ移動させ、この酸素イオンは固形炭素質微粒 子 Mの酸化に用いられる。そして、セリアがこの状態で窒素酸化物(NO)を還元する ことカできる(Ce O +NO→2CeO + 1/2N )。 CeO + 2e— → Ce O + 〇 2 ). At this time, oxygen ions are generated, and the oxygen ions are moved to the first electrode 3 side by the solid electrolyte 1, and the oxygen ions are used for oxidation of the solid carbonaceous fine particles M. And ceria can reduce nitrogen oxide (NO) in this state (Ce 2 O + NO 2CeO + 1 / 2N).
[0056] 図 12は、第 2電極 4側において窒素酸化物が浄化される別のメカニズムを説明する 図である。浄化構造体 30の第 2電極 4 (力ソード側)に、窒素酸化物を吸着させる吸 着材 5が担持されている。吸着材 5は図 3の浄化装置におけるものと同様でありアル カリ土類金属又はアルカリ金属である。具体的には、カルシウム、ストロンチウム、バリ ゥム、ラジウム、リチウム、ナトリウム、カリウム、ノレビジゥム、セシウム、フランシウムがあ る。このうち安定性などの性質やコスト面で好ましいのは、カルシウム、ストロンチウム 、 ノ リウム、カリウムである。さらに、第 2電極 4には、図 3と同様に酸化触媒 6が担持さ れている。酸化触媒 6としては白金や銀がある。また、多孔質からなる第 2電極 4自身 を白金や銀を含むものや、多孔質からなる第 2電極 4自身を白金や銀で構成し、酸 ィ匕角虫媒 6とすること力 Sでさる。 FIG. 12 is a diagram illustrating another mechanism for purifying nitrogen oxides on the second electrode 4 side. An adsorbent 5 for adsorbing nitrogen oxide is supported on the second electrode 4 (force sword side) of the purification structure 30. The adsorbent 5 is the same as that in the purification apparatus of FIG. 3, and is an alkaline earth metal or an alkali metal. Specific examples include calcium, strontium, barium, radium, lithium, sodium, potassium, norevidium, cesium, and francium. Of these, calcium, strontium, norlium and potassium are preferred in terms of stability and other properties and costs. Further, an oxidation catalyst 6 is supported on the second electrode 4 as in FIG. The oxidation catalyst 6 includes platinum and silver. The porous second electrode 4 itself contains platinum or silver, or the porous second electrode 4 itself is made of platinum or silver to form an acid hornworm medium 6 with a force S. Monkey.
そして、吸着材 5としての酸化バリウムは第 2電極 4側にある二酸化炭素との反応に より安定した状態(炭酸バリウム)となる(BaO + CO→BaCO )。
[0057] この還元部において行われる浄化方法は次のとおりである。浄化構造体 30を透過 した排出ガスには一酸化窒素と酸素が含まれており、第 2電極 4側において、一酸化 窒素は酸化触媒 6により酸化(NO + 0→NO + 02—)されて二酸化窒素となる。この 際に酸素イオンが発生しており、この酸素イオンを固体電解質 1によって第 1電極 3側 へ移動させ、この酸素イオンは固形炭素質微粒子 Mの酸化に用いられる。 Then, barium oxide as the adsorbent 5 becomes a stable state (barium carbonate) by reaction with carbon dioxide on the second electrode 4 side (BaO + CO → BaCO 3). [0057] The purification method performed in the reduction unit is as follows. The exhaust gas that has passed through the purification structure 30 contains nitrogen monoxide and oxygen. On the second electrode 4 side, the nitric oxide is oxidized (NO + 0 → NO + 0 2 —) by the oxidation catalyst 6. It becomes nitrogen dioxide. At this time, oxygen ions are generated. The oxygen ions are moved to the first electrode 3 side by the solid electrolyte 1, and the oxygen ions are used for oxidation of the solid carbonaceous fine particles M.
そして、この二酸化窒素及び排出ガス中に含まれていた二酸化窒素を吸着材 5に 吸着させ(BaCO + 2NO + 0→Ba (NO ) + CO )、印加手段 2によって電圧を印 The nitrogen dioxide and nitrogen dioxide contained in the exhaust gas are adsorbed on the adsorbent 5 (BaCO + 2NO + 0 → Ba (NO) + CO), and the voltage is applied by the application means 2.
3 2 3 2 2 3 2 3 2 2
カロさせることにより、二酸化窒素の還元が行われる(Ba (NO ) + 2e—→BaO + N + 2 o + o2 )。 Nitrogen dioxide is reduced by carrying out calorie (Ba (NO) + 2e— → BaO + N + 2 o + o 2 ).
なお、図 11と図 12の形態において、第 2電極 4側で生じた酸素イオンを固体電解 質 1によって第 1電極 3側へ強制的に移動させることができる。このため、還元して得 た窒素が窒素酸化物へ再合成されるのを抑制することができる。 11 and FIG. 12, oxygen ions generated on the second electrode 4 side can be forcibly moved to the first electrode 3 side by the solid electrolyte 1. For this reason, it can suppress that the nitrogen obtained by reduction | restoration is re-synthesize | combined to a nitrogen oxide.
以上のようにこの浄化方法は、一酸化炭素などの還元物質を用いる方法ではなぐ 電気化学的に還元する方法である。 As described above, this purification method is an electrochemical reduction method rather than a method using a reducing substance such as carbon monoxide.
[0058] また、それぞれの実施形態において、印加手段 2による電圧の印加を常時一定電 圧として作用させてもよいが、制御手段 31の働きによって、電圧の印加状態を周期 的に変化又は変動させてもよい。例えば、電圧を印加させている状態と印加させてい ない状態とに周期的に変化させることができる。つまり、浄化構造体 30の第 1電極側 3にある程度の量の固形炭素質微粒子 Mが堆積してから、所定時間だけ電圧を印加 させて前記浄化処理を間欠的に行わせるようにしてもよい。 In each embodiment, the voltage application by the application unit 2 may always be applied as a constant voltage, but the application state of the voltage is changed or varied periodically by the action of the control unit 31. May be. For example, it can be periodically changed between a state where a voltage is applied and a state where a voltage is not applied. That is, after a certain amount of solid carbonaceous fine particles M is deposited on the first electrode side 3 of the purification structure 30, the purification treatment may be performed intermittently by applying a voltage for a predetermined time. .
[0059] 以上のような浄化装置によれば、排出ガスの圧力により排出ガスを強制的に第 1電 極 3側から流入させ第 2電極 4側へ排出させる。浄化構造体 30は多孔質であるため に排出ガス中のディーゼル微粒子などの粒子状物質(固形炭素質微粒子 M)は第 1 電極 3側に捕集される。つまり、浄化構造体 30のフィルタリング効果によって排出ガス 中の微粒子は第 1電極 3側に自動的に捕集される。これにより、電気集塵機を用いて 電極表面にディーゼル微粒子を集塵させる必要がなくなり、装置の低コスト化、小型 化が図れる。そして、第 1電極 3側において微粒子が捕集除去された排出ガスは、浄 化構造体 30を透過し第 2電極 4側へ流出する。そして、例えば図 12に示したようにァ
ルカリ土類金属による窒素酸化物の吸蔵および、第 2電極 4での反応による窒素酸 化物還元作用によって、排出ガスに含まれている窒素酸化物は吸蔵されて分解され この際に生じた酸素イオン (活性酸素)は、電圧が印加された固体電解質 1を介して 第 1電極 3側へ強制的に排除される。これにより、第 2電極 4側において NOxの再合 成が抑制されると共に、第 1電極 3側に捕集した微粒子の酸化を促進させ、窒素酸化 物と固形炭素質微粒子 Mの同時浄化が可能となる。 [0059] According to the purification device as described above, the exhaust gas is forced to flow in from the first electrode 3 side and discharged to the second electrode 4 side by the pressure of the exhaust gas. Since the purification structure 30 is porous, particulate matter such as diesel particulates (solid carbonaceous particulate M) in the exhaust gas is collected on the first electrode 3 side. That is, the particulate matter in the exhaust gas is automatically collected on the first electrode 3 side by the filtering effect of the purification structure 30. This eliminates the need to collect diesel particulates on the electrode surface using an electrostatic precipitator, thereby reducing the cost and size of the device. The exhaust gas from which the fine particles are collected and removed on the first electrode 3 side passes through the purification structure 30 and flows out to the second electrode 4 side. For example, as shown in FIG. Nitrogen oxides are occluded and decomposed by occlusion of nitrogen oxides by the alkali earth metal and nitrogen oxide reduction action by the reaction at the second electrode 4, and the oxygen ions generated at this time are decomposed. (Active oxygen) is forcibly removed to the first electrode 3 side through the solid electrolyte 1 to which a voltage is applied. This suppresses NOx recombination on the second electrode 4 side, promotes oxidation of the fine particles collected on the first electrode 3 side, and allows simultaneous purification of nitrogen oxides and solid carbonaceous fine particles M. It becomes.
[0060] なお、従来浄化装置として知られている DPNRは、セラミックフィルターに NOx吸蔵 還元触媒を担持させたものである力 S、通常 NOxの排出量に対して固形炭素質微粒 子 Mの排出量が多くなる。そのため、還元剤を排出ガス中に添加させる必要があり、 その添加装置を排気系に設けるなどの構成が別途必要となる。しかし、この浄化装置 によれば、固形炭素質微粒子 Mと NOxの浄化は、浄化構造体 30の一面と他面のそ れぞれにおいて独立して行わせる。このため、排出ガス中の固形炭素質微粒子 Mと NOxのバランスに依存せず、両者独立して処理することが可能であり、還元剤の添 加は不要となる。従って、この浄化装置は構成を簡素化かつコンパクトにできるため、 既存の自動車への後付けも可能となる。 [0060] DPNR, which has been known as a conventional purification device, has a force S, which is a NOx occlusion reduction catalyst supported on a ceramic filter, and the amount of solid carbonaceous fine particles M emitted relative to the amount of NOx normally emitted. Will increase. Therefore, it is necessary to add the reducing agent to the exhaust gas, and a configuration such as providing the addition device in the exhaust system is separately required. However, according to this purification device, the purification of the solid carbonaceous fine particles M and NOx is performed independently on each of the one side and the other side of the purification structure 30. For this reason, it can be processed independently without depending on the balance between the solid carbonaceous fine particles M and NOx in the exhaust gas, and the addition of a reducing agent is unnecessary. Therefore, since this purification device can be simplified and made compact, it can be retrofitted to existing automobiles.
[0061] さらに、排出ガス中には硫黄が含まれている力 S、この硫黄は窒素酸化物の還元処 理において悪影響を及ばすおそれがある。しかし、ディーゼル微粒子中にこの硫黄 が含まれている場合、この浄化装置は、硫黄を含んだディーゼル微粒子を浄化構造 体 30の第 1電極 3側に捕集し、その裏面側である第 2電極 4側において窒素酸化物 の還元が行われるため、窒素酸化物の還元電極上には硫黄を含んだ微粒子が堆積 することがなぐそのため硫黄による影響を抑えることができる。 [0061] Further, the force S containing sulfur in the exhaust gas, this sulfur may adversely affect the reduction treatment of nitrogen oxides. However, when this sulfur is contained in the diesel particulates, this purification device collects the diesel particulates containing sulfur on the first electrode 3 side of the purification structure 30 and the second electrode on the back side thereof. Since nitrogen oxide is reduced on the 4th side, fine particles containing sulfur are not deposited on the nitrogen oxide reduction electrode, so that the influence of sulfur can be suppressed.
[0062] 以上図 1〜図 4に示した浄化装置に用いられている固体電解質 1、及び、図 10に 示した浄化装置に用いられている多孔質からなる浄化構造体 30についてさらに説明 する。使用する固体電解質 1としては、従来知られているイットリウム安定化ジルコ二 ァ(ジルコニァ系電解質 YSZ)、セリア系固体電解質(SDC)、又は溶融炭酸塩型の もの等がある。ジルコユア系電解質の場合 350°C以上の高い排気温度においては十 分な酸素イオンの供給が可能となる。そして、排気温度が高温 (例えば 350°C)の場
合だけではなぐ低い場合(例えば 250°C〜300°C)や、 250°C以下においても効果 的に酸素イオンの供給によるディーゼル微粒子の酸化 (燃焼)を行わせるために、固 体電解質 1の形状、厚さを変更することでイオン伝導度を向上させることができる。 なお、以上において説明した酸素イオン導電性を有する固体電解質 1は、一般に 高温で酸素イオン伝導度が高くなり酸素イオンの移動が容易となる力 S、逆に低温で は困難となる。仮に低温の固体電解質 1に強制的に高い印加電圧をかけると、固体 電解質 1中を構成する酸素が強制的に移動するため電解質 1の劣化が生じてしまう。 そこで、固体電解質 1を加熱して固体電解質 1の温度を 330°C〜370°C程度に保 つように構成したり、又は排出ガス側 Gのガス温度を 330°C〜370°C程度に保つよう 構成したりするのが好ましい。そして、印加手段 2による印加電圧を 1ボルト〜 10ボル トと低くすることにより固体電解質 1が劣化するのを防ぎ、かつ効率良く十分な速度で 酸素イオンの供給を行う。 The solid electrolyte 1 used in the purification device shown in FIGS. 1 to 4 and the porous purification structure 30 used in the purification device shown in FIG. 10 will be further described. Examples of the solid electrolyte 1 to be used include conventionally known yttrium-stabilized zirconia (zirconia-based electrolyte YSZ), ceria-based solid electrolyte (SDC), or molten carbonate type. In the case of a zirconium oxide electrolyte, sufficient oxygen ions can be supplied at a high exhaust temperature of 350 ° C or higher. And if the exhaust temperature is high (eg 350 ° C) In order to cause oxidation (combustion) of diesel particulates by supplying oxygen ions effectively even when the temperature is too low (for example, 250 ° C to 300 ° C) or below 250 ° C, the solid electrolyte 1 Ionic conductivity can be improved by changing the shape and thickness. Note that the solid electrolyte 1 having oxygen ion conductivity described above generally has a force S that increases the oxygen ion conductivity at a high temperature and facilitates the movement of oxygen ions, and conversely becomes difficult at a low temperature. If a high applied voltage is forcibly applied to the low-temperature solid electrolyte 1, the oxygen constituting the solid electrolyte 1 is forced to move, resulting in deterioration of the electrolyte 1. Therefore, the solid electrolyte 1 is heated to keep the temperature of the solid electrolyte 1 at about 330 ° C to 370 ° C, or the gas temperature on the exhaust gas side G is set to about 330 ° C to 370 ° C. It is preferable to keep it configured. Then, by lowering the voltage applied by the applying means 2 to 1 to 10 volts, the solid electrolyte 1 is prevented from deteriorating, and oxygen ions are supplied efficiently and at a sufficient speed.
次に、図 10で示した浄化構造体 30の具体的な仕様について説明する。浄化構造 体 30は全体として、ディーゼル微粒子(固形炭素質微粒子 M)を通さなレ、でその一 面側に捕集する(フィルタリングする)ことができ、かつ、これを除く排出ガスを一面側 力、ら他面側へ透過させることができるように連続状の無数の孔からなる網目状組織の 多孔質としている。 Next, specific specifications of the purification structure 30 shown in FIG. 10 will be described. The purification structure 30 as a whole can be collected (filtered) on one side with diesel particulates (solid carbonaceous particulate M), and exhaust gas other than this can be collected on one side. However, it is made porous with a network structure made up of numerous continuous pores so that it can permeate to the other side.
ディーゼル微粒子の分解極となる第 1電極 3は、その厚さが 1 μ m以上で 5mm以下 とするの力 く、好ましくは 5 m以上で 50 mである。この厚さが薄すぎるとディーゼ ノレ微粒子の捕集率が低下するおそれがあり、また、厚すぎると圧力損失が大きくなる おそれがある。多孔質である第 1電極 3における孔(空洞)の平均孔径は 0. 5 111以 上で 100 H m以下とするのがよぐ好ましくは 1 H m以上で 10 mであり、気孔率は 1 0%以上で 80%以下とするのがよぐ好ましくは 40%以上で 60%以下である。これら の値が小さすぎると圧力損失が大きくなるおそれがあり、大きすぎるとディーゼル微粒 子の捕集率が低下するおそれがある。 The first electrode 3 serving as a decomposition electrode for diesel particulates has a thickness of 1 μm or more and 5 mm or less, preferably 5 m or more and 50 m. If the thickness is too thin, the capture rate of the diesel fine particles may be reduced, and if it is too thick, the pressure loss may be increased. The average pore diameter of the porous first electrode 3 is 0.5 111 or more and 100 Hm or less, preferably 1 Hm or more and 10 m, and the porosity is 1 It is preferably 0% or more and 80% or less, more preferably 40% or more and 60% or less. If these values are too small, the pressure loss may increase, and if they are too large, the diesel particulate collection rate may decrease.
固体電解質 1は、その厚さが 1 μ m以上で 5mm以下とするのがよぐ好ましくは 10 a m以上で 500 a mである。この厚さが厚すぎると圧力損失が大きくなるおそれがあ る。多孔質である固体電解質 1における孔(空洞)の平均孔径は 0. 5 m以上で 100
μ m以下とするのがよぐ好ましくは 1 m以上で 30 μ mであり、気孔率は 10%以上 で 80%以下とするのがよぐ好ましくは 40%以上で 60%以下である。これらの値が 小さすぎると圧力損失が大きくなるおそれがあり、大きすぎると単位面積あたりのィォ ン導電率が小さくなるおそれがある。 The thickness of the solid electrolyte 1 is preferably 1 μm or more and 5 mm or less, more preferably 10 am or more and 500 am. If this thickness is too thick, the pressure loss may increase. The average pore size of the pores (cavities) in the porous solid electrolyte 1 is 0.5 m or more and 100 The porosity is preferably 1 μm or more and preferably 30 μm or more, and the porosity is preferably 10% or more and 80% or less, more preferably 40% or more and 60% or less. If these values are too small, the pressure loss may increase. If it is too large, the ion conductivity per unit area may decrease.
窒素酸化物の分解極となる第 2電極 4は、その厚さが 1 μ m以上で 5mm以下とする のがよぐ好ましくは 5 m以上で 50 mである。この厚さが厚すぎると圧力損失が大 きくなるおそれがある。多孔質である第 2電極 4における孔(空洞)の平均孔径は 0. 5 H m以上で 100 H m以下とするのがよぐ好ましくは 1 μ m以上で 30 μ mであり、気孔 率は 10%以上で 80%以下とするのがよぐ好ましくは 40%以上で 60%以下である。 これらの値が小さすぎると圧力損失が大きくなるおそれがある。 The thickness of the second electrode 4 serving as a decomposition electrode of nitrogen oxide is preferably 1 μm or more and 5 mm or less, more preferably 5 m or more and 50 m. If this thickness is too thick, the pressure loss may increase. The average pore diameter of the pores (cavities) in the porous second electrode 4 is 0.5 Hm or more and 100 Hm or less, preferably 1 μm or more and 30 μm, and the porosity is It is preferably 10% or more and 80% or less, more preferably 40% or more and 60% or less. If these values are too small, the pressure loss may increase.
また、第 1電極 3における平均孔径と気孔率の双方又は一方は、固体電解質 1及び 第 2電極 4よりも小さくなるようにしてもよい。つまり、第 1電極 3におけるディーゼル微 粒子の捕集率を維持しつつ、固体電解質 1と第 2電極 2において流れる排出ガスの 圧力損失を小さくしている。 In addition, both or one of the average pore diameter and the porosity of the first electrode 3 may be smaller than that of the solid electrolyte 1 and the second electrode 4. That is, the pressure loss of the exhaust gas flowing through the solid electrolyte 1 and the second electrode 2 is reduced while maintaining the collection rate of diesel particulates at the first electrode 3.
[0064] 浄化構造体 30にお!/、て、第 1電極 3側でディーゼル微粒子が捕集された排出ガス を効率よく透過させるために、当該浄化構造体 30における圧力損失を小さくするの が好ましい。これは、圧力損失が大きいとエンジン出力の低下や燃費の悪化の原因 となるからである。そして、この浄化構造体 30における圧力損失の適正値は、前記厚 さ、平均孔径及び気孔率に依存する他、ディーゼル微粒子の堆積状態及び排出ガ スの流量によって異なる力 S、ディーゼル微粒子が堆積して!/、な!/、状態(新品の状態) で 20kPa以下であるのが好ましい。また、圧力損失を小さくするために前記気孔率等 を大きくしすぎて第 1電極 3側でのディーゼル微粒子の捕集率を低下させることのな い程度の多孔質とする必要がある。第 1電極 3側におけるディーゼル微粒子の捕集 率は 90%以上とすることができる多孔質とするのが好ましい。 [0064] In order to efficiently transmit the exhaust gas in which diesel particulates are collected on the first electrode 3 side to the purification structure 30, the pressure loss in the purification structure 30 is reduced. preferable. This is because a large pressure loss causes a decrease in engine output and fuel consumption. The appropriate value of the pressure loss in the purification structure 30 depends on the thickness, the average pore diameter, and the porosity, and the force S and the diesel particulates that differ depending on the diesel particulate deposition state and the exhaust gas flow rate are accumulated. It is preferable that the pressure is 20 kPa or less in the state (new state). Further, in order to reduce the pressure loss, it is necessary to make the porosity so as not to decrease the trapping rate of diesel particulates on the first electrode 3 side by excessively increasing the porosity. The diesel particulate collection rate on the first electrode 3 side is preferably porous so that it can be 90% or more.
[0065] この多孔質からなる浄化構造体 30の製法について説明する。固体電解質 1及び電 極を多孔質とする方法は従来知られている方法が適用できる。例えば、固体電解質 1及び電極 3, 4を焼成することにより得ること力 Sでき、その焼成の際に含有させてお いた微小溶融材料 (ペレット)を飛散させる方法や、発泡剤を用いる方法などがある。
これにより得られる多孔質は、ディーゼル微粒子を除く排出ガスに対して透過性を有 するように一面側から他面側へ連続している無数の孔(空洞)によって形成される。 [0065] A method for producing the porous purification structure 30 will be described. A conventionally known method can be applied to the method of making the solid electrolyte 1 and the electrode porous. For example, it is possible to obtain the strength S obtained by firing the solid electrolyte 1 and the electrodes 3 and 4, and there are a method of scattering the fine molten material (pellet) contained during the firing, a method using a foaming agent, and the like. is there. The porous material thus obtained is formed by innumerable holes (cavities) that are continuous from one surface side to the other surface side so as to be permeable to exhaust gas excluding diesel particulates.
[0066] 浄化構造体 30についてより好ましい形態について説明する。第 1電極 3及び第 2電 極 4はそれぞれ、白金や銀を含むものや、電極を白金や銀で構成するものとできる。 特に好ましいのは銀とした場合である。これは、銀は酸素吸着能を有するため、特に 第 1電極 3を銀とすることで、当該第 1電極 3において固形炭素質微粒子 Mを酸化さ せる(分解する)活性点が多数存在することとなる。これにより、固形炭素質微粒子 M の酸化に、酸素イオンを効率よく用いることができ、高い分解率を得ることができる。 [0066] A more preferable form of the purification structure 30 will be described. Each of the first electrode 3 and the second electrode 4 can contain platinum or silver, or the electrode can be made of platinum or silver. Particularly preferred is silver. This is because, since silver has an oxygen adsorption capacity, there are many active sites that oxidize (decompose) the solid carbonaceous fine particles M at the first electrode 3 especially when the first electrode 3 is made of silver. It becomes. Thereby, oxygen ions can be efficiently used for the oxidation of the solid carbonaceous fine particles M, and a high decomposition rate can be obtained.
[0067] また、電極 3, 4のさらに好ましい形態としては、第 1電極 3と第 2電極 4との両者、ま たは、片方は固体電解質 1と同じ素材を含んでいるのが好ましい。特に、第 1電極 3 に固体電解質 1を含ませて焼成した場合、固形炭素質微粒子 Mの酸化反応(分解反 応)は第 1電極 3と固体電解質 1との界面で生じる。このため、電極材料に固体電解 質材料を混合させることで酸化のための反応活性点を増やすことができ、固形炭素 質微粒子 Mの酸化を促進できる。さらに、還元部である第 2電極 4側に窒素酸化物を 吸着させる吸着材 5を設けることで、浄化構造体 30を通過した排出ガスに含まれる窒 素酸化物を第 2電極 4側に吸着させ(吸蔵し)、固体電解質 1において酸素イオンを 第 2電極 4側から第 1電極 3側へ移動させることによって、この窒素酸化物を還元する こと力 Sでさる。 Further, as a more preferable form of the electrodes 3 and 4, it is preferable that both the first electrode 3 and the second electrode 4, or one of them includes the same material as that of the solid electrolyte 1. In particular, when the first electrode 3 is fired with the solid electrolyte 1, the oxidation reaction (decomposition reaction) of the solid carbonaceous fine particles M occurs at the interface between the first electrode 3 and the solid electrolyte 1. For this reason, the reaction active point for oxidation can be increased by mixing the solid electrolyte material with the electrode material, and the oxidation of the solid carbonaceous fine particles M can be promoted. Furthermore, by providing the adsorbent 5 that adsorbs nitrogen oxides on the second electrode 4 side, which is the reducing part, nitrogen oxides contained in the exhaust gas that has passed through the purification structure 30 are adsorbed on the second electrode 4 side. The nitrogen oxide is reduced by the force S by moving (accumulating) oxygen ions in the solid electrolyte 1 from the second electrode 4 side to the first electrode 3 side.
さらに、第 1電極 3と第 2電極 4との両者、または、片方に固体電解質 1と同じ素材を 含ませることにより、電極 3, 4と固体電解質 1との接合状態が良くなり、浄化構造体 3 0の耐久性を向上させることができる。これは、浄化構造体 30を構成する電極 3, 4と 固体電解質 1との熱膨張率が大きく異なると、この浄化構造体 30は使用状態で温度 変化が大きいため、この温度変化により電極 3, 4が固体電解質 1から剥がれてしまう おそれがある。しかし、電極 3, 4に固体電解質 1と同じ素材を含ませ焼成し浄化構造 体 30を得ることで、固体電解質 1と電極 3, 4とを一体化でき、大きな温度変化が生じ ても一体的に熱変形することができる。このため、電極 3, 4は固体電解質 1から剥が れに《なり、浄化構造体 30の耐久性を向上させることができる。 Further, by including the same material as the solid electrolyte 1 in both the first electrode 3 and the second electrode 4 or one of them, the bonding state between the electrodes 3 and 4 and the solid electrolyte 1 is improved, and the purification structure The durability of 30 can be improved. This is because if the thermal expansion coefficients of the electrodes 3 and 4 constituting the purification structure 30 and the solid electrolyte 1 are significantly different, the temperature change of the purification structure 30 is large in the usage state. 4 may peel off from the solid electrolyte 1. However, if the electrodes 3 and 4 contain the same material as the solid electrolyte 1 and are fired to obtain the purification structure 30, the solid electrolyte 1 and the electrodes 3 and 4 can be integrated, even if a large temperature change occurs. Can be thermally deformed. For this reason, the electrodes 3 and 4 are peeled from the solid electrolyte 1 and the durability of the purification structure 30 can be improved.
[0068] また、浄化構造体 30の耐久性の向上のために、電極 3, 4に含ませる素材を固体電
解質 1と全く同一ではなぐ電極 3, 4の両者又は一方に、固体電解質 1と同程度の熱 膨張率を有する素材を含ませたものであってもよい。そして、この耐久性向上という観 点に、反応促進の観点を含めると、第 1電極 3と第 2電極 4との両者、または、片方に 固体電解質 1と同じ素材を含ませるのが最も好ましい。 [0068] In addition, in order to improve the durability of the purification structure 30, a material to be included in the electrodes 3 and 4 may be a solid-state battery. A material having the same thermal expansion coefficient as that of the solid electrolyte 1 may be included in both or one of the electrodes 3 and 4 that are not exactly the same as the electrolyte 1. From the viewpoint of improving the durability, if the viewpoint of promoting the reaction is included, it is most preferable to include the same material as the solid electrolyte 1 in both the first electrode 3 and the second electrode 4 or one of them.
このように、第 1電極 3を、銀と固体電解質 1との混合体 (銀サーメット)とし、さらに還 元部である第 2電極 4側に窒素酸化物を吸着させる吸着材 5を設ける構成が、反応 促進の観点及び耐久性向上の観点で特に好ましぐまた第 2電極 4を第 1電極と同じ とすることで製造も容易となる。そして、吸着材 5としては、既に説明したように、アル カリ土類金属又はアルカリ金属であるのが好ましい。 As described above, the first electrode 3 is a mixture of silver and solid electrolyte 1 (silver cermet), and the adsorbent 5 for adsorbing nitrogen oxides is further provided on the second electrode 4 side which is the reducing portion. It is particularly preferred from the viewpoint of promoting the reaction and improving the durability, and the second electrode 4 is made the same as the first electrode, so that the manufacture is facilitated. As described above, the adsorbent 5 is preferably an alkaline earth metal or an alkali metal.
[0069] また、電極 3, 4の製造において銀粒子を焼成することで多孔質の銀電極を得ること ができる力 銀材料 (銀粒子)に固体電解質材料(固体電解質粒子)を混合し、これを 焼成することで、銀と固体電解質 1との混合体による多孔質の電極 3, 4を得ることが できる。この際、銀粒子の粒径及び固体電解質粒子を 0. 01 μ m以上で 10 m以下 とするのが好ましぐ例えば 1 a mの銀粒子と 0· 1 a mの固体電解質粒子とを混合す ればよい。これらの粒子が細かいほど焼成して得た電極 3, 4の表面積が大きくなり、 反応活性点が多くなり、反応性能(分解性能)を向上させることができる。 [0069] Further, in the production of electrodes 3 and 4, the force capable of obtaining a porous silver electrode by firing silver particles. A solid electrolyte material (solid electrolyte particles) is mixed with silver material (silver particles). The porous electrodes 3 and 4 made of a mixture of silver and the solid electrolyte 1 can be obtained by baking. At this time, it is preferable that the particle size of the silver particles and the solid electrolyte particles be 0.01 μm or more and 10 m or less. For example, 1 am silver particles and 0.1 · 1 am solid electrolyte particles are mixed. That's fine. The finer the particles, the larger the surface area of the electrodes 3 and 4 obtained by firing, resulting in an increase in the number of reaction active sites, which can improve the reaction performance (decomposition performance).
[0070] また、銀材料 (電極材料)と固体電解質材料との混合比について説明する。固体電 解質材料を多くすると、反応活性点となる銀と固体電解質 1との界面が増え、電極に おける反応性能を向上させることができる力 固体電解質材料を多くし過ぎると、電 極としての導電性が低下し、全体としての性能が低下するおそれがある。そこで、固 体電解質材料を全体において 60vol%以下とするのが好ましぐ特に好ましいのは、 固体電解質材料を全体におレ、て 20vol%以上 40vol%以下とすればよ!/、。具体的 には、固体電解質材料を 30vol%とし、銀材料を 70vol%とすればよい。 [0070] The mixing ratio of the silver material (electrode material) and the solid electrolyte material will be described. When the amount of solid electrolyte material is increased, the interface between silver, which is the active site of reaction, and solid electrolyte 1 increases, and the ability to improve the reaction performance at the electrode. There is a possibility that the conductivity is lowered and the performance as a whole is lowered. Therefore, it is particularly preferable that the solid electrolyte material is 60 vol% or less as a whole. The solid electrolyte material should be 20 vol% or more and 40 vol% or less as a whole! /. Specifically, the solid electrolyte material may be 30 vol%, and the silver material may be 70 vol%.
[0071] 次に第 2電極 4側における吸着材 5の混合比について説明する。第 2電極 4の体積 を 100%とした場合、ノ リウムを 30vol%以上で 40vol%以下とするのが好ましい。そ して、ノ リウムを分散させた状態とするのが好ましい。これは、通常バリウムは酸化バリ ゥム(BaO)粒子の状態で電極 4上に担持されているが、バリウムが多すぎると酸化バ リウムによる膜が形成され、反応活性点となる固体電解質 1と第 2電極 4との界面が少
なくなり、分解性能が低下するおそれがある。なお、ノ リウムを第 2電極 4全体に分散 させた形態とする場合では、第 2電極 4の体積を 100%とした場合、ノ リウムを ΙΟΟνο 1%とすることも考えられる。 Next, the mixing ratio of the adsorbent 5 on the second electrode 4 side will be described. When the volume of the second electrode 4 is 100%, it is preferable that the content of norm is 30 vol% or more and 40 vol% or less. Then, it is preferable to have a state in which the norium is dispersed. Normally, barium is supported on the electrode 4 in the form of barium oxide (BaO) particles, but if there is too much barium, a film of barium oxide is formed, and the solid electrolyte 1 serving as a reaction active site Less interface with second electrode 4 There is a risk that the degradation performance will deteriorate. In addition, in the case where the form in which norium is dispersed throughout the second electrode 4 is considered, when the volume of the second electrode 4 is set to 100%, the norm may be set to ΙΟΟνο 1%.
[0072] 図 15は、この発明の浄化装置によって燃焼機から排出された排出ガスを浄化する 試験を行った場合における、当該排出ガスに含まれる固形炭素質微粒子 Mの減少 率 (浄化率)と浄化時間との関係を示すグラフである。この試験の条件は、多孔質か らなる浄化構造体 30において、固体電解質 1をセリア系固体電解質とし、第 1電極 3 を銀電極とし、第 2電極 4を白金と前記固体電解質との混合体(サーメット)としたもの である。第 1電極 3において、厚さが 30 mであり、平均孔径が 3 mであり、気孔率 力 ¾0%である。固体電解質 1において、厚さが 0. 5mであり、平均孔径が 5 mであ り、気孔率が 40%である。また、第 2電極 4において、厚さが 30 mであり、平均孔径 が 3 mであり、気孔率が 30%である。そして、固体電解質 1の温度を 350°Cとし、印 加手段 2による固体電解質 1へ流す電流値を 0. 3Aとし、浄化構造体 30への排出ガ スの導入流量を 1. 0リットル/ minとし、固形炭素質微粒子 Nの排出濃度を 75mg/ m3としている。なお、 30分間で浄化構造体 30に供給される固形炭素質微粒子 Mの 量は 2. 25gとなる。 FIG. 15 shows the reduction rate (purification rate) of the solid carbonaceous fine particles M contained in the exhaust gas when a test for purifying the exhaust gas exhausted from the combustor by the purification device of the present invention is performed. It is a graph which shows the relationship with purification time. The conditions for this test were as follows: in the purification structure 30 made of porous material, the solid electrolyte 1 was a ceria-based solid electrolyte, the first electrode 3 was a silver electrode, and the second electrode 4 was a mixture of platinum and the solid electrolyte. (Cermet). The first electrode 3 has a thickness of 30 m, an average pore diameter of 3 m, and a porosity power of ¾0%. In the solid electrolyte 1, the thickness is 0.5 m, the average pore diameter is 5 m, and the porosity is 40%. The second electrode 4 has a thickness of 30 m, an average pore diameter of 3 m, and a porosity of 30%. Then, the temperature of the solid electrolyte 1 is set to 350 ° C, the value of the current flowing to the solid electrolyte 1 by the applying means 2 is set to 0.3 A, and the introduction flow rate of the exhaust gas to the purification structure 30 is set to 1.0 liter / min. The emission concentration of solid carbonaceous fine particles N is 75 mg / m 3 . The amount of the solid carbonaceous fine particles M supplied to the purification structure 30 in 30 minutes is 2.25 g.
[0073] この図 15に示している結果によれば、浄化開始から 4時間経過時点で 94%以上の 高い固形炭素質微粒子 Mの分解率を得ることができ、さらに 7時間経過時点で 90% 以上の高レ、分解率を得ることが確認された。 According to the results shown in FIG. 15, a high decomposition rate of the solid carbonaceous fine particles M of 94% or more can be obtained after 4 hours from the start of purification, and further 90% after 7 hours. It was confirmed that the above high level and decomposition rate were obtained.
また、他の試験の条件として、固体電解質 1をジルコユア系電解質とし、第 1電極 3 を銀とジルコユア系電解質との混合体(サーメット)とし、第 2電極 4を白金とジルコ二 ァ系電解質との混合体(サーメット)とし、その他条件を図 15と同様とした場合であつ ても、図 15の場合と同様に高い分解率を得ることができる。そして、第 1電極 3と第 2 電極 4とに、固体電解質 1と同じ素材を含ませていることにより、浄化構造体 30の耐 久性を向上させることができる。この場合の第 1電極 3は、銀を 70vol%とし、ジルコ二 ァ系電解質を 30vol%としている。 As other test conditions, the solid electrolyte 1 is a zirconia-based electrolyte, the first electrode 3 is a mixture (cermet) of silver and a zirconia-based electrolyte, and the second electrode 4 is platinum and a zirconia-based electrolyte. Even when the mixture (cermet) is used and the other conditions are the same as in FIG. 15, a high decomposition rate can be obtained as in FIG. The durability of the purification structure 30 can be improved by including the same material as the solid electrolyte 1 in the first electrode 3 and the second electrode 4. In this case, the first electrode 3 contains 70 vol% silver and 30 vol% zirconia electrolyte.
[0074] このように、第 1電極 3に銀電極を含ませることにより、銀は酸素吸着能を有するた め、第 1電極 3において固形炭素質微粒子 Mを酸化させる(分解する)活性点が多数
存在することとなる。したがって、酸素イオンを効率よく固形炭素質微粒子 Mの酸化 に用いることができ、高い分解率を得ることができる。また、浄化構造体 30における 固形炭素質微粒子 Mの捕集率を測定するために、浄化構造体 30を通過した排出ガ スを排出する流路側にフィルター(図示せず)を設けた。つまり、このフィルタ一にお いて捕集した固形炭素質微粒子 Mによる当該フィルターの質量増加から、浄化構造 体 30での捕集率を測定した。し力、し、この試験において、フィルターでの質量増加は 確認できず、浄化構造体 30における固形炭素質微粒子 Mの捕集率は 100%である ことが確認された。 [0074] As described above, by including a silver electrode in the first electrode 3, since silver has an oxygen adsorption ability, there is an active site that oxidizes (decomposes) the solid carbonaceous fine particles M in the first electrode 3. Many Will exist. Therefore, oxygen ions can be efficiently used for the oxidation of the solid carbonaceous fine particles M, and a high decomposition rate can be obtained. In order to measure the collection rate of the solid carbonaceous fine particles M in the purification structure 30, a filter (not shown) was provided on the flow path side for discharging the exhaust gas that passed through the purification structure 30. That is, the collection rate in the purification structure 30 was measured from the increase in mass of the filter due to the solid carbonaceous fine particles M collected in this filter. In this test, no increase in mass was confirmed with the filter, and it was confirmed that the collection rate of the solid carbonaceous fine particles M in the purification structure 30 was 100%.
[0075] 図 16は、この発明の浄化装置によって燃焼機から排出された排出ガスを浄化する 試験を行った場合における、当該排出ガスに含まれる固形炭素質微粒子 Mの減少 率と浄化構造体 30に流す電流との関係を示すグラフである。この試験の条件として、 浄化構造体 30は図 15における試験のものと同じであり、印加手段 2による固体電解 質 1へ流す電流値をゼロから 0. 3Aまで増加させつつ一定とした。そして、浄化開始 30分後における固形炭素質微粒子 Mの減少率を測定した。なお、この試験におい ても、 30分間で浄化構造体 30に供給される固形炭素質微粒子 Mの量は 2. 25gで ある。 FIG. 16 shows the reduction rate of the solid carbonaceous fine particles M contained in the exhaust gas and the purification structure 30 when a test for purifying the exhaust gas discharged from the combustor by the purification device of the present invention is performed. It is a graph which shows the relationship with the electric current sent through. As conditions for this test, the purification structure 30 is the same as that in the test in FIG. 15, and the value of the current flowing through the solid electrolyte 1 by the application means 2 is made constant from zero to 0.3A. Then, the reduction rate of the solid carbonaceous fine particles M 30 minutes after the start of purification was measured. In this test, the amount of the solid carbonaceous fine particles M supplied to the purification structure 30 in 30 minutes is 2.25 g.
この図 16に示して!/、る結果によれば、銀による触媒作用により電圧印加を行わな!/ヽ 場合(電流値がゼロ)であっても、約 30%の分解率を得ることができ、 0. 3Aの電流の 印加により 97%の高い分解率を得ることが確認された。 According to the results shown in FIG. 16, it is possible to obtain a decomposition rate of about 30% even when no voltage is applied due to the catalytic action of silver (current value is zero). It was confirmed that a high decomposition rate of 97% was obtained by applying a current of 0.3A.
[0076] 図 17は、この発明の浄化装置によって燃焼機から排出された排出ガスを浄化する 試験を行った場合における、当該排出ガスに含まれる窒素酸化物の減少率と浄化構 造体に流す電流との関係を示すグラフである。この試験の条件は、多孔質からなる浄 化構造体 30において、固体電解質 1をイットリウム安定化ジルコユアとし、第 1電極 3 を銀とイットリウム安定化ジルコユアの混合体とし、第 2電極 4を第 1電極 3と同じである 銀とイットリウム安定化ジルコユアの混合体としたものである。第 1電極 3において、厚 さが 30 mであり、平均孔径が 2 mであり、気孔率が 60%である。固体電解質 1に おいて、厚さが 0. 5mであり、平均孔径が 5 mであり、気孔率が 40%である。また、 第 2電極 4において、厚さが 30 mであり、平均孔径が 2 mであり、気孔率が 60%
である。さらに、第 2電極 4において吸着材 5としてバリウムを担持させている。図 17の 二点鎖線 (実施例 1) 1S 第 2電極 4の全体積を 100%としてバリウムを 36vol%とした 場合であり、一点鎖線 (実施例 2)が、ノ リウムを 26vol%とした場合である。そして、 固体電解質 1の温度を 400°Cとし、浄化構造体 30への排出ガスの導入流量を 1. 0リ ットル/ minとし、窒素酸化物 NOxの濃度を 450ppmとした。なお、図 17の実線(実 施例 3)は、ノ リウムを 36vol%とし、かつ、排出ガスの導入流量を 0. 5リットル/ min とした場合であり、その他の条件は他の 2つと同じである。そして、各条件において、 印加手段 2による固体電解質 1へ流す電流値をゼロから 0. 3Aまで増加させつつ一 定とし、各電流値において、浄化開始 1分後における窒素酸化物 NOxの減少率を測 定した。 FIG. 17 shows the reduction rate of nitrogen oxides contained in the exhaust gas and the flow to the purification structure when a test for purifying the exhaust gas discharged from the combustor by the purification device of the present invention is performed. It is a graph which shows the relationship with an electric current. The test conditions were as follows. In the porous purification structure 30, the solid electrolyte 1 was yttrium stabilized zircoua, the first electrode 3 was a mixture of silver and yttrium stabilized zircoure, and the second electrode 4 was the first. It is the same as electrode 3 and is a mixture of silver and yttrium-stabilized zirconium. The first electrode 3 has a thickness of 30 m, an average pore diameter of 2 m, and a porosity of 60%. In the solid electrolyte 1, the thickness is 0.5 m, the average pore diameter is 5 m, and the porosity is 40%. In the second electrode 4, the thickness is 30 m, the average pore diameter is 2 m, and the porosity is 60%. It is. Further, barium is supported as the adsorbent 5 in the second electrode 4. The two-dot chain line in Fig. 17 (Example 1) 1S When the total volume of the second electrode 4 is 100%, barium is 36 vol%, and the one-dot chain line (Example 2) is 26 vol% of norium. It is. The temperature of the solid electrolyte 1 was set to 400 ° C., the flow rate of the exhaust gas introduced into the purification structure 30 was set to 1.0 liter / min, and the concentration of nitrogen oxide NOx was set to 450 ppm. The solid line (Example 3) in Fig. 17 is for the case where the volume of norium is 36 vol% and the exhaust gas introduction flow rate is 0.5 liter / min. Other conditions are the same as the other two. It is. Under each condition, the current value flowing to the solid electrolyte 1 by the application means 2 is made constant while increasing from zero to 0.3 A, and at each current value, the reduction rate of nitrogen oxides NOx 1 minute after the start of purification It was measured.
この図 17に示している結果によれば、各条件(実施例;!〜 3)とも 0. 1Aの電流値で 80%以上の高い分解率を得ることが確認された。また、実施例 2と実施例 3とでは、 0 . 05mA (4. 9V)の低エネルギーで 80%以上の高い分解率を得ることが確認された According to the results shown in FIG. 17, it was confirmed that a high decomposition rate of 80% or more was obtained at a current value of 0.1 A under each condition (Examples;! To 3). Further, in Example 2 and Example 3, it was confirmed that a high decomposition rate of 80% or more was obtained at a low energy of 0.05 mA (4.9 V).
[0077] 図 13は、ディーゼル機関からの排出ガスの浄化を行う浄化システムを示す模式図 である。図 5に示した浄化システムと同様に、この浄化システムは、ディーゼル機関( ディーゼルエンジン) 15の排気口と接続されて排出ガスを排出させる排気流路 7と、 この排気流路 7の一部に設けられる排出ガス浄化装置 8とを備えている。排気流路 7 は排気管により構成されている。この排気管の途中に排出ガス浄化装置 8が有する 筒状の排出ガス浄化室 16が設けられている。この排出ガス浄化室 16の内部に前記 浄化構造体 30が設けられて!/、る。 FIG. 13 is a schematic diagram showing a purification system that purifies exhaust gas from a diesel engine. Similar to the purification system shown in FIG. 5, this purification system is connected to the exhaust port of a diesel engine (diesel engine) 15 to discharge exhaust gas, and a part of this exhaust flow path 7. And an exhaust gas purification device 8 provided. The exhaust passage 7 is composed of an exhaust pipe. A cylindrical exhaust gas purification chamber 16 provided in the exhaust gas purification device 8 is provided in the middle of the exhaust pipe. The purification structure 30 is provided inside the exhaust gas purification chamber 16! /.
[0078] この排出ガス浄化装置 8は図 10に示した浄化装置である。この浄化装置 8が備えて いる浄化構造体 30は、イオン導電性を有して一面 10側に酸素イオンを与え得る固 体電解質 1と、この固体電解質 1の一面 10側と他面 11側にそれぞれ設けられた第 1 電極 3と第 2電極 4とを有している。浄化構造体 30は、排気流路 7からの排出ガスを 第 1電極 3側から第 2電極 4側へ通すことによって排出ガス中のディーゼル微粒子を 当該第 1電極 3側に捕集することができる多孔質とされている。浄化構造体 30には、 前記制御手段 31が接続されている。
そして、前記説明したように、第 1電極 3側において捕集されたディーゼル微粒子を 酸化させ、かつ、第 2電極 4側において浄化構造体 30を透過した排出ガスに含まれ る窒素酸化物を還元する。 This exhaust gas purification device 8 is the purification device shown in FIG. The purification structure 30 provided in the purification device 8 includes a solid electrolyte 1 having ionic conductivity and capable of supplying oxygen ions to one surface 10 side, and one surface 10 side and the other surface 11 side of the solid electrolyte 1. Each has a first electrode 3 and a second electrode 4 provided. The purification structure 30 can collect diesel particulates in the exhaust gas on the first electrode 3 side by passing the exhaust gas from the exhaust passage 7 from the first electrode 3 side to the second electrode 4 side. It is assumed to be porous. The control means 31 is connected to the purification structure 30. Then, as described above, the diesel particulates collected on the first electrode 3 side are oxidized, and the nitrogen oxides contained in the exhaust gas that has passed through the purification structure 30 on the second electrode 4 side are reduced. To do.
[0079] 浄化構造体 30は、図 14に示しているように、有底筒状に形成されている複数本の 筒状部 32と、この筒状部 32の開口部を相互連結している板状部 33とを有する構成 である。板状部 33は、排気流路 7を流れてきた排出ガスに対して対面状となるように 排出ガス浄化室 16の内周面に固定壁として取り付けられている。筒状部 32は、パイ プ状の排出ガス浄化室 16の軸方向(排出ガスの流れ方向)を軸方向としている。そし て、筒状部 32の内面(内周面と底面)と、この内面と連続している板状部 33の表面と を第 1電極 3側としている。その反対側の面である筒状部 32の外面(外周面と端面)と この外面と連続している板状部 33の裏面とを第 2電極 4側としている。これにより、排 出ガス浄化室 16に流入した排出ガスは、板状部 33の表面及び筒状部 32の内面か らその反対側の面へ透過し、第 1電極 3側にお!/、てディーゼル微粒子が捕集されて 固形炭素質微粒子 Mの酸化が行われ、第 2電極 4側において窒素酸化物の還元が 行われ、処理された排出ガスは、排出ガス浄化室 16の下流側へ排出される。 As shown in FIG. 14, the purification structure 30 interconnects a plurality of cylindrical portions 32 formed in a bottomed cylindrical shape and the openings of the cylindrical portion 32. This is a configuration having a plate-like portion 33. The plate-like portion 33 is attached as a fixed wall to the inner peripheral surface of the exhaust gas purification chamber 16 so as to face the exhaust gas flowing through the exhaust passage 7. The cylindrical portion 32 has the axial direction (exhaust gas flow direction) of the pipe-shaped exhaust gas purification chamber 16 as the axial direction. The inner surface (inner peripheral surface and bottom surface) of the cylindrical portion 32 and the surface of the plate-like portion 33 continuous with the inner surface are the first electrode 3 side. The outer surface (outer peripheral surface and end surface) of the cylindrical portion 32, which is the opposite surface, and the back surface of the plate-like portion 33 continuous with the outer surface are the second electrode 4 side. As a result, the exhaust gas flowing into the exhaust gas purification chamber 16 is transmitted from the surface of the plate-like portion 33 and the inner surface of the cylindrical portion 32 to the opposite surface, and to the first electrode 3 side! /, Diesel particulates are collected and solid carbonaceous particulates M are oxidized. Nitrogen oxides are reduced on the second electrode 4 side, and the treated exhaust gas flows downstream of the exhaust gas purification chamber 16. Discharged.
[0080] また、図 18はこの発明の浄化構造体 30の他の実施形態の断面を示している説明 図である。この浄化構造体 30は、支持体 40を更に有している。支持体 40は浄化構 造体 30の機械的強度を高めるためのものである。これにより、浄化構造体 30を構成 する他の部材である電極 3, 4や固体電解質 1を薄くできる。すなわち、浄化構造体の 機械的強度を高めるために、電極 3, 4や固体電解質 1を厚くする必要がない。電極 3, 4や固体電解質 1を薄くすることができるため、排出ガスが電極 3, 4や固体電解質 1を透過する際の抵抗を低減でき、また、小さい印加電圧により酸素イオンを導電さ せること力 Sでき、省エネルギー化が図れる。 FIG. 18 is an explanatory view showing a cross section of another embodiment of the purification structure 30 of the present invention. The purification structure 30 further has a support 40. The support 40 is for increasing the mechanical strength of the purification structure 30. As a result, the electrodes 3 and 4 and the solid electrolyte 1 which are other members constituting the purification structure 30 can be thinned. That is, it is not necessary to increase the thickness of the electrodes 3 and 4 and the solid electrolyte 1 in order to increase the mechanical strength of the purification structure. Since the electrodes 3 and 4 and the solid electrolyte 1 can be made thinner, the resistance when the exhaust gas permeates the electrodes 3 and 4 and the solid electrolyte 1 can be reduced, and oxygen ions can be conducted with a small applied voltage. Power can be saved and energy can be saved.
[0081] 支持体 40について具体的に説明する。図 18において、有底円筒状に形成した第 2電極 4の外周側に、有底円筒状に形成した固体電解質 1が設けられ、この外周に 有底円筒状に形成した第 1電極 3が設けられている。そして、支持体 40は有底円筒 状(乃至円筒状)に形成した管部材であり、第 2電極 4の内周側に積層状態として設 けられている。これにより、浄化構造体 30は、有底筒状に形成されている。支持体 40
は多孔質であり、第 1電極 3側から透過してくる排出ガスを矢印で示しているように透 過させること力できる。この支持体 40は、端部の取付部 40cと、本体部 40dとを有して いる。本体部 40dは第 2電極 4と積層状態にあり、浄化構造体 30が固定壁 47に取り 付けられる前に単独で存在している状態で、取付部 40cは第 2電極 4と積層状態にな く露出状態である。 [0081] The support 40 will be specifically described. In FIG. 18, the solid electrolyte 1 formed in the bottomed cylindrical shape is provided on the outer peripheral side of the second electrode 4 formed in the bottomed cylindrical shape, and the first electrode 3 formed in the bottomed cylindrical shape is provided on the outer periphery. It has been. The support 40 is a tube member formed in a bottomed cylindrical shape (or cylindrical shape), and is provided in a laminated state on the inner peripheral side of the second electrode 4. Thereby, the purification structure 30 is formed in a bottomed cylindrical shape. Support 40 Is porous and can transmit exhaust gas permeating from the first electrode 3 side as shown by an arrow. The support 40 has an end mounting portion 40c and a main body portion 40d. The main body portion 40d is in a laminated state with the second electrode 4, and the attachment portion 40c is in a laminated state with the second electrode 4 in a state where the purification structure 30 is present alone before being attached to the fixed wall 47. It is exposed.
[0082] 支持体 40の材質は、酸化アルミニウム(アルミナ)、ジルコユア、ムライト(3A1 O [0082] The material of the support 40 is aluminum oxide (alumina), zirconium oxide, mullite (3A1 O
2SiO系の化合物)、ステンレス鋼等とすることができる。その中でも熱膨張係数が固 体電解質 1に近レ、ジルコニァとした場合、温度変化が大きレ、浄化構造体 30にとつて 構造的に好ましぐまた、熱膨張係数及びコスト面で酸化アルミニウムとするのが好ま しい。また、支持体 40の厚さは浄化構造体 30の剛性を確保できる最小厚さが好まし い。例えば、浄化構造体 30の軸方向長さを 130mm以上で 170mm以下とし、外径 を 8mm以上で 12mm以下とした場合、支持体 40の厚さを lmm以上で 2mm以下と 設定すること力 Sできる。また、多孔質である支持体 40の孔(空洞)の平均孔径は固体 電解質 1及び電極 3, 4の平均孔径以上が好ましぐまた、気孔率を 40%以上で 50 %以下とするのが好ましい。 2SiO compounds), stainless steel, and the like. Among them, when the thermal expansion coefficient is close to that of the solid electrolyte 1 and zirconia is used, the temperature change is large, and the purification structure 30 is structurally preferable. It is preferable to do. Further, the thickness of the support 40 is preferably the minimum thickness that can ensure the rigidity of the purification structure 30. For example, when the axial length of the purification structure 30 is 130 mm or more and 170 mm or less, and the outer diameter is 8 mm or more and 12 mm or less, the thickness of the support 40 can be set to 1 mm or more and 2 mm or less. . Also, the average pore diameter of the porous support 40 is preferably larger than the average pore diameter of the solid electrolyte 1 and the electrodes 3 and 4, and the porosity is 40% or more and 50% or less. preferable.
[0083] 図 18の浄化構造体 30についてさらに説明する。固体電解質 1の内径側にある第 2 電極 4において、浄化構造体 30の開口側の端部が径方向外側に対して露出してい る。つまり、第 2電極 4はその端部の外周面に露出面を有しており、この露出面に印 加手段 2のリード線を繋げることができる。これにより、第 2電極 4が薄くても、第 2電極 4とリード線とを強固に繋げることができる。また、この第 2電極 4とリード線との接続部 である第 2接続部 46と、第 1電極 3と別のリード線との接続部である第 1接続部 45とは 、一つ(一本)の浄化構造体 30において、距離を離して設けるのが好ましい。具体的 には、第 1接続部 45と第 2接続部 46とを浄化構造体 30の軸方向両端部にそれぞれ 離して設けるのが好ましい。さらに、第 1接続部 45と第 2接続部 46とを 180° 位相を 離して設けるのがさらに好ましい。これは、両接続部 45, 46が接近すると、浄化構造 体 30においてこれら接続部 45, 46の近傍で酸素イオンの導電が生じ、これらから離 れた部分では、効果的な酸素イオンの導電が生じないおそれがあるためである。しか し、図 18のように両接続部 45, 46を離して設けることでこれを防止できる。
[0084] また、図 18において、第 1電極 3の外周に集電体として金属網 48を設け、この金属 網 48とリード線とを繋げて第 1接続部 45としてもよい。これにより、第 1電極 3の全面 に対して電圧を付与することができ、浄化構造体 30の全体において酸素イオンの導 電が可能となる。金属網 48は、第 1電極 3の外周に設けられている力 S、排出ガスを透 過させること力 Sでき、さらに、その排出ガス中の固形炭素質微粒子を金属網 48に滞 留させないように網の目が粗く設定されている。さらに、支持体 40を導電性のある材 質としていることで、第 2電極 4と一体状となる支持体 40を、前記金属網と同様に集電 体として機能させること力できる。つまり、この支持体 40にリード線を繋げて第 2接続 部 46としてもよ!/、(図示せず)。 [0083] The purification structure 30 of Fig. 18 will be further described. In the second electrode 4 on the inner diameter side of the solid electrolyte 1, the end of the purification structure 30 on the opening side is exposed to the radially outer side. That is, the second electrode 4 has an exposed surface on the outer peripheral surface of the end portion, and the lead wire of the applying means 2 can be connected to the exposed surface. Thereby, even if the second electrode 4 is thin, the second electrode 4 and the lead wire can be firmly connected. In addition, there is one second connection portion 46 that is a connection portion between the second electrode 4 and the lead wire, and one first connection portion 45 that is a connection portion between the first electrode 3 and another lead wire (one In the purification structure 30 of this), it is preferable to provide the purification structure 30 at a distance. Specifically, it is preferable that the first connection part 45 and the second connection part 46 are provided separately at both ends in the axial direction of the purification structure 30. Furthermore, it is more preferable to provide the first connecting portion 45 and the second connecting portion 46 with a 180 ° phase separation. This is because, when the two connection portions 45 and 46 come close to each other, oxygen ion conduction occurs in the purification structure 30 in the vicinity of these connection portions 45 and 46, and effective oxygen ion conduction occurs in a portion away from these. This is because it may not occur. However, this can be prevented by providing both connecting portions 45 and 46 apart as shown in FIG. In FIG. 18, a metal mesh 48 may be provided as a current collector on the outer periphery of the first electrode 3, and the metal mesh 48 and the lead wire may be connected to form the first connection portion 45. As a result, a voltage can be applied to the entire surface of the first electrode 3, and oxygen ions can be conducted in the entire purification structure 30. The metal mesh 48 can provide a force S provided on the outer periphery of the first electrode 3 and a force S that allows the exhaust gas to permeate. Further, the solid carbonaceous fine particles in the exhaust gas cannot be retained in the metal mesh 48. The mesh is set coarsely. Furthermore, since the support 40 is made of a conductive material, the support 40 integrated with the second electrode 4 can be made to function as a current collector, like the metal net. In other words, a lead wire may be connected to the support 40 to form the second connection portion 46! / (Not shown).
[0085] なお、支持体 40は他の形態であってもよぐ図示しないが、例えば支持体を第 1電 極側(第 1電極の外周側)に設けてもよい。しかし、この場合、排出ガス中の固形炭素 質微粒子が支持体に滞留しないようにすることが必要であり、例えば支持体を目の粗 い網構造とする必要がある。 [0085] Note that the support 40 may be in another form, which is not shown, but for example, the support may be provided on the first electrode side (the outer peripheral side of the first electrode). However, in this case, it is necessary to prevent the solid carbonaceous fine particles in the exhaust gas from staying on the support. For example, the support needs to have a coarse mesh structure.
そして、図 13で示した排出ガス浄化装置 8の排出ガス浄化室 16内において、図 18 に示すように浄化構造体 30を取り付けるための固定壁 47が設けられている。この固 定壁 47に、支持体 40の露出状であった取付部 40cを固定することで、浄化構造体 3 0を排出ガス浄化室 16に取り付けることができる。そして、図示しないが、この取り付 け構造により、固定壁 47に複数の浄化構造体 30を平行に配設することができる。 Further, in the exhaust gas purification chamber 16 of the exhaust gas purification device 8 shown in FIG. 13, a fixed wall 47 for attaching the purification structure 30 is provided as shown in FIG. The purification structure 30 can be attached to the exhaust gas purification chamber 16 by fixing the mounting portion 40c that is the exposed shape of the support 40 to the fixed wall 47. Although not shown, a plurality of purification structures 30 can be arranged in parallel on the fixed wall 47 by this mounting structure.
[0086] そして、このような多孔質からなる支持体 40と、固体電解質 1と、この固体電解質 1 の一面側と他面側にそれぞれ設けられた第 1電極 3と第 2電極 4とを有する浄化構造 体 30の製造方法について、図 19により説明する。なお、図 19では、浄化構造体 30 を円板形状とした場合を例示している。 [0086] And, it has such a porous support 40, a solid electrolyte 1, and a first electrode 3 and a second electrode 4 provided on one side and the other side of the solid electrolyte 1, respectively. A method for manufacturing the purification structure 30 will be described with reference to FIG. FIG. 19 illustrates the case where the purification structure 30 has a disk shape.
まず、支持体 40の一面 40a上にカーボン粒子や樹脂を設け、一面 40aにマスキン グを施す。そして、この一面 40a側に電解質スラリー 41を被覆し、これを焼成して支 持体 40上に固体電解質 1を得て、多孔質である支持体 40の他面 40b側から電極ス ラリー 44を固体電解質 1の裏面 lbまで浸透させ、かつ、当該固体電解質 1の表面 la に電極スラリー 43を被覆し、これを焼成して固体電解質 1の表裏両面に電極 3, 4を 得る。
[0087] この製造方向についてさらに説明する。支持体 40は多孔質として形成されたもの であり、前記のとおり例えば酸化アルミニウムとできる。そして、この支持体 40の一面 40a上にマスキングを施す理由は、支持体 40の平均孔径を大きくした場合 (例えば、 平均孔径 30 a mとした場合)、この一面 40a上に電解質スラリー 41を直接塗布すると 、電解質スラリー 41が支持体 40の中へ入り込んでしまう(浸透してしまう)力もである。 しかし、前記マスキングを施すことでこれを防止できる。なお、支持体 40の平均孔径 力 S小さい場合 (例えば 3 m以下の場合)、このマスキングは不要である。 First, carbon particles and resin are provided on one surface 40a of the support 40, and masking is performed on the one surface 40a. Then, the one surface 40a side is coated with the electrolyte slurry 41, and this is fired to obtain the solid electrolyte 1 on the support body 40, and the electrode slurry 44 is applied from the other surface 40b side of the porous support body 40. The back surface lb of the solid electrolyte 1 is infiltrated, and the surface la of the solid electrolyte 1 is coated with the electrode slurry 43, which is baked to obtain electrodes 3 and 4 on both the front and back surfaces of the solid electrolyte 1. This manufacturing direction will be further described. The support 40 is formed as a porous material and can be made of, for example, aluminum oxide as described above. The reason for masking the one surface 40a of the support 40 is that when the average pore size of the support 40 is increased (for example, when the average pore size is 30 am), the electrolyte slurry 41 is directly applied on the one surface 40a. Then, there is also a force that the electrolyte slurry 41 enters (permeates) into the support 40. However, this can be prevented by applying the masking. In addition, when the average pore diameter force S of the support 40 is small (for example, 3 m or less), this masking is unnecessary.
固体電解質 1を構成するために電解質スラリー 41は、電解質粉末(電解質粒子)に 、造孔材としての微小溶融材料 (ペレット)及びバインダを加え、溶剤により粘度調整 を行ったものである。また、電極 3, 4を構成するための電極スラリー 43, 44は、電極 を構成する金属粉末 (銀粒子)、例えば銀粉末に、造孔材としての微小溶融材料 (ぺ レット)及びバインダを加え、溶剤により粘度調整を行ったものである。なお、電極 3, 4に固体電解質 1と同じ素材を含ませるためには、電極スラリー 43, 44に、電解質粉 末(電解質粒子)を加えればよ!/、。 In order to constitute the solid electrolyte 1, the electrolyte slurry 41 is obtained by adding a fine molten material (pellet) and a binder as a pore former to an electrolyte powder (electrolyte particles) and adjusting the viscosity with a solvent. The electrode slurries 43 and 44 for constituting the electrodes 3 and 4 include a metal powder (silver particles) constituting the electrode, for example, silver powder, and a micro molten material (pellet) and a binder as a pore former. The viscosity was adjusted with a solvent. In order to make the electrodes 3 and 4 contain the same material as the solid electrolyte 1, add electrolyte powder (electrolyte particles) to the electrode slurries 43 and 44! /.
[0088] 支持体 40の一面 40a側に電解質スラリー 41を被覆し、焼成して支持体 40上に固 体電解質 1を得る。ジルコユア系電解質の場合、焼成温度を 1300°C〜; 1400°Cとし ている。これにより、支持体 40の上に多孔質の固体電解質 1を得ることができる。なお 、多孔質である支持体 40の製造方法についても、支持体 40を構成する金属粉末に 、微小溶融材料 (ペレット)及びバインダを加え、溶剤により粘度調整を行ったものを 焼成することで得られる。 [0088] The electrolyte slurry 41 is coated on the one surface 40a side of the support 40 and baked to obtain the solid electrolyte 1 on the support 40. In the case of a zirconium oxide electrolyte, the firing temperature is set to 1300 ° C to 1400 ° C. Thereby, the porous solid electrolyte 1 can be obtained on the support 40. In addition, the method for producing the porous support 40 is also obtained by adding a finely melted material (pellet) and a binder to the metal powder constituting the support 40, and firing the material whose viscosity is adjusted with a solvent. It is done.
[0089] そして、多孔質である支持体 40の他面 40b側に、第 2電極 4を構成するための電極 スラリー 44を塗布して、当該電極スラリー 44を固体電解質 1の裏面 lbまで浸透させ る。また、固体電解質 1の表面 laに第 1電極 3を構成するための電極スラリー 43を被 覆する。そして、これを焼成して固体電解質 1の表裏両面に電極 3, 4を得る。電極 3 , 4を銀とした場合、焼成温度を 800°C〜900°Cとしている。この製造方法は、先に固 体電解質 1を焼成してから、第 1、第 2電極 3, 4を焼成する製造方法であるため、第 1 、第 2電極 3, 4の材料の融点が固体電解質 1の焼成温度よりも低い場合に効果的で ある。つまり、固体電解質 1の焼成温度が 1400°Cであるのに対して、銀からなる第 1
、第 2電極 3, 4の融点が 930°Cである場合において、 1400°Cで固体電解質 1と電極 3, 4とを同時に焼成すると、電極 3, 4を構成する銀が凝集してしまう。しかし、この製 造方法によれば銀が凝集することを防止できる。そして、多孔質で一体状の浄化構 造体 30を得ること力 Sできる。 Then, an electrode slurry 44 for forming the second electrode 4 is applied to the other surface 40b side of the porous support 40, and the electrode slurry 44 is infiltrated to the back surface lb of the solid electrolyte 1. The Further, the electrode slurry 43 for forming the first electrode 3 is covered on the surface la of the solid electrolyte 1. Then, this is fired to obtain electrodes 3 and 4 on both the front and back surfaces of solid electrolyte 1. When the electrodes 3 and 4 are made of silver, the firing temperature is set to 800 ° C to 900 ° C. Since this manufacturing method is a manufacturing method in which the solid electrolyte 1 is first fired and then the first and second electrodes 3 and 4 are fired, the melting points of the materials of the first and second electrodes 3 and 4 are solid. It is effective when it is lower than the firing temperature of the electrolyte 1. That is, the firing temperature of the solid electrolyte 1 is 1400 ° C, whereas the first is made of silver. In the case where the melting point of the second electrodes 3 and 4 is 930 ° C, if the solid electrolyte 1 and the electrodes 3 and 4 are simultaneously fired at 1400 ° C, the silver constituting the electrodes 3 and 4 aggregates. However, this production method can prevent silver from aggregating. Then, it is possible to obtain a porous and integrated purification structure 30.
[0090] また、この浄化構造体 30の第 2電極 4側に吸着材 5としてノ リウムを設けるためには 、第 2電極 4のための電極スラリー 44に、ノ リウム(酸化バリウム)を含ませればよい。 また、支持体 40を有していない浄化構造体 30において、第 2電極 4側に吸着材とし てノ リウムを設けるためには、焼成した多孔質である第 2電極 4に、酢酸バリウム水溶 液をスプレーや刷毛により塗布し、浸透させればよい。 [0090] Further, in order to provide the adsorbent 5 as the adsorbent 5 on the second electrode 4 side of the purification structure 30, the electrode slurry 44 for the second electrode 4 may contain norlium (barium oxide). That's fine. In addition, in the purification structure 30 that does not have the support 40, in order to provide normodium as an adsorbent on the second electrode 4 side, an aqueous barium acetate solution is provided on the sintered second electrode 4 May be applied by spraying or brushing and penetrating.
[0091] 以上の各実施の形態の浄化装置によれば、排出ガス中のディーゼル微粒子には ハイド口カーボン(HC)も含まれており、このハイド口カーボンは固体電解質 1による 酸素の供給により水と二酸化炭素に酸化(CmHn+ (m+n/4) 0→mCO +n/2 H O)させること力 Sできる。 [0091] According to the purification apparatus of each of the embodiments described above, the diesel particulates in the exhaust gas also contain hydride carbon (HC), and this hydride carbon is water by supplying oxygen from the solid electrolyte 1. And the ability to oxidize to carbon dioxide (CmHn + (m + n / 4) 0 → mCO + n / 2 HO).
さらに、この発明における浄化装置、浄化方法及び浄化システムは、ディーゼル機 関から排出される排出ガスの浄化に留まらず化学合成や燃焼システム等広範囲にわ たって適用すること力できる。また、この発明は図示する形態に限らずこの発明の範 囲内において他の形態のものであっても良ぐ固体電解質 1をパネル形状とする以外 にも設置する部位に応じて円筒形状や波型等とすることができる。 Furthermore, the purification device, the purification method, and the purification system according to the present invention can be applied not only to purification of exhaust gas discharged from a diesel engine but also to a wide range such as chemical synthesis and combustion systems. Further, the present invention is not limited to the illustrated form, and other forms may be used within the scope of the present invention. Besides the solid electrolyte 1 having a panel shape, a cylindrical shape or a corrugated shape may be used depending on the part to be installed. Etc.
[0092] そして、図 1〜図 4、図 10、及び図 18に示す浄化装置はこれ単独により機能させる ことはもちろん、従来知られている窒素酸化物の浄化装置や、微粒子浄化装置に追 加的に付与することもできる。つまり、この発明の浄化システムは構造が簡単で装置 をコンパクトにすることができるため、従来の装置ではディーゼル微粒子の酸化が不 十分である場合に補助酸化システムとして付加することができる。 [0092] The purification devices shown in Figs. 1 to 4, 10, and 18 are not only allowed to function alone, but also added to the conventionally known nitrogen oxide purification devices and particulate purification devices. Can also be granted. In other words, since the purification system of the present invention has a simple structure and can make the apparatus compact, the conventional apparatus can be added as an auxiliary oxidation system when diesel particulates are insufficiently oxidized.
さらに、図 1〜図 4に示した前記浄化装置において、コロナ放電等による電気集塵 機となる前記帯電装置を設け、排出ガス中に含まれるディーゼル微粒子を固体電解 質 1の堆積面 12に効率よく堆積させるようしてもよい。 Furthermore, in the purification apparatus shown in FIGS. 1 to 4, the charging device that serves as an electrostatic precipitator by corona discharge or the like is provided, and diesel particulates contained in the exhaust gas are efficiently deposited on the deposition surface 12 of the solid electrolyte 1. You may make it deposit well.
[0093] 以上のようにこの発明によれば、微小なエネルギーの注入により効率的にディーゼ ル微粒子の酸化、窒素酸化物の還元、これら同時の処理を行うことが可能であり、高
いレベルでの排出ガスの浄化を達成できる。従って、この浄化装置、浄化方法、排出 ガス浄化システムをディーゼル機関の排出ガスの浄化に適用すれば、ディーゼル機 関の高い熱効率を維持させたまま排気の浄化が可能となり、環境保護に役立つこと ができる。 [0093] As described above, according to the present invention, it is possible to efficiently perform the oxidation of diesel fine particles, the reduction of nitrogen oxides, and the simultaneous treatment thereof by the injection of minute energy. It is possible to achieve exhaust gas purification at a high level. Therefore, if this purification device, purification method, and exhaust gas purification system are applied to the purification of exhaust gas from diesel engines, it is possible to purify exhaust gas while maintaining high thermal efficiency of diesel engines, which may be useful for environmental protection. it can.
以上の浄化装置、浄化方法、及び、排出ガス浄化システムのそれぞれは、ディーゼ ルエンジン力も排出された排出ガスを浄化するものとして説明したが、排出ガスはデ イーゼルエンジン力 排出されたものに限らず、ガソリン機関(直噴式ガソリン機関)、 ボイラーや工業炉カも排出されたものについても、この発明を適用することができる。
Each of the above-described purification device, purification method, and exhaust gas purification system has been described as purifying exhaust gas from which diesel engine power is also exhausted. However, exhaust gas is not limited to that exhausted from diesel engine power. The present invention can also be applied to a gasoline engine (direct-injection gasoline engine), a boiler and an industrial furnace that have also been discharged.
Claims
[1] イオン導電性を有して一面側に酸素イオンを与え得る固体電解質と、この固体電解 質の一面側と他面側とにそれぞれ設けられた第 1電極と第 2電極と、を有する浄化構 造体を備え、 [1] A solid electrolyte having ionic conductivity and capable of supplying oxygen ions to one side, and a first electrode and a second electrode provided on one side and the other side of the solid electrolyte, respectively. It has a purification structure,
この浄化構造体は、燃焼器から排出される未燃焼微粒子を含む排出ガスを前記第 1電極側から前記第 2電極側へ通すことによって当該微粒子を当該第 1電極側に捕 集することができる多孔質であり、前記第 1電極側は、捕集した前記微粒子を、前記 固体電解質によって当該第 1電極側へ与えられた酸素イオンにより酸化させる酸化 部であり、 The purification structure can collect the fine particles on the first electrode side by passing exhaust gas containing unburned fine particles discharged from the combustor from the first electrode side to the second electrode side. It is porous, and the first electrode side is an oxidation part that oxidizes the collected fine particles with oxygen ions given to the first electrode side by the solid electrolyte,
前記浄化構造体は、当該浄化構造体の機械的強度を高めるための支持体を更に 有して!/、ることを特徴とする浄化装置。 The purification apparatus according to claim 1, further comprising a support for increasing the mechanical strength of the purification structure.
[2] 前記支持体は、前記第 1電極又は前記第 2電極と積層した状態で設けられており、 前記支持体は、前記排出ガスを通すことができる網構造又は多孔質構造である請求 項 1に記載の浄化装置。 [2] The support is provided in a state of being laminated with the first electrode or the second electrode, and the support has a network structure or a porous structure through which the exhaust gas can pass. 1. The purification device according to 1.
[3] 前記第 1電極と第 2電極との内の少なくとも一方は前記固体電解質と同じ素材を含 んでいる請求項 1又は 2に記載の浄化装置。 [3] The purification device according to claim 1 or 2, wherein at least one of the first electrode and the second electrode contains the same material as the solid electrolyte.
[4] 前記第 1電極は銀を含んでいる請求項 1又は 2に記載の浄化装置。 4. The purification device according to claim 1 or 2, wherein the first electrode contains silver.
[5] イオン導電性を有して一面側に酸素イオンを与え得る多孔質からなる固体電解質 と、この固体電解質の一面側と他面側とにそれぞれ設けられた第 1電極と第 2電極と[5] A porous solid electrolyte having ionic conductivity and capable of giving oxygen ions to one side, and a first electrode and a second electrode provided on one side and the other side of the solid electrolyte, respectively
、機械的強度を高めるための支持体とを有する浄化構造体を用いた浄化方法であつ て、 A purification method using a purification structure having a support for increasing mechanical strength,
多孔質からなる前記固体電解質の前記一面側から他面側へ未燃焼微粒子を含む 排出ガスを通すことにより、当該微粒子を当該一面側に捕集し、捕集したこの微粒子 を、前記固体電解質によって前記一面側に与えられた前記酸素イオンにより酸化さ せることを特徴とする浄化方法。 By passing an exhaust gas containing unburned fine particles from the one surface side to the other surface side of the solid electrolyte made of a porous material, the fine particles are collected on the one surface side, and the collected fine particles are collected by the solid electrolyte. A purification method comprising oxidizing with the oxygen ions given to the one surface side.
[6] 燃焼器力 排出される未燃焼微粒子及び窒素酸化物を含む排出ガスを通過させる 排気流路と、この排気流路の一部に設けられている排出ガス浄化装置と、を備えた 排出ガス浄化システムであって、
前記排出ガス浄化装置は、イオン導電性を有して一面側に酸素イオンを与え得る 固体電解質と、この固体電解質の一面側と他面側にそれぞれ設けられた第 1電極と 第 2電極と、を有する浄化構造体を備え、 [6] Combustor power Emission provided with an exhaust passage for passing exhaust gas containing unburned particulates and nitrogen oxides, and an exhaust gas purification device provided in a part of the exhaust passage A gas purification system, The exhaust gas purifying device has a solid electrolyte that has ionic conductivity and can provide oxygen ions on one side, a first electrode and a second electrode provided on one side and the other side of the solid electrolyte, respectively. A purification structure having
この浄化構造体は、前記排気流路からの排出ガスを前記第 1電極側から前記第 2 電極側へ通すことによって前記微粒子を当該第 1電極側に捕集することができる多 孔質であり、前記第 1電極側は、捕集された当該微粒子を、前記固体電解質によつ て当該第 1電極側へ与えられた酸素イオンにより酸化させる酸化部であり、かつ、前 記第 2電極側は、前記浄化構造体を透過した排出ガスに含まれる窒素酸化物を還元 する還元部であり、 This purification structure is porous so that the fine particles can be collected on the first electrode side by passing the exhaust gas from the exhaust passage from the first electrode side to the second electrode side. The first electrode side is an oxidation part that oxidizes the collected fine particles by oxygen ions given to the first electrode side by the solid electrolyte, and the second electrode side Is a reducing section that reduces nitrogen oxides contained in the exhaust gas that has passed through the purification structure,
前記浄化構造体は、当該浄化構造体の機械的強度を高めるための支持体を更に 有していることを特徴とする排出ガス浄化システム。 The exhaust gas purification system, wherein the purification structure further includes a support for increasing the mechanical strength of the purification structure.
イオン導電性を有して一面側に酸素イオンを与え得る固体電解質と、この固体電解 質の一面側と他面側にそれぞれ設けられた第 1電極と第 2電極と、機械的強度を高 めるための多孔質からなる支持体と、を有する浄化構造体の製造方法であって、 前記支持体の一面側に電解質スラリーを被覆し、これを焼成して前記支持体上に 固体電解質を得て、多孔質である前記支持体の他面側から電極スラリーを前記固体 電解質の裏面まで浸透させ、かつ、当該固体電解質の表面に電極スラリーを被覆し 、これを焼成して前記固体電解質の両面に電極を得ることを特徴とする浄化構造体 の製造方法。
A solid electrolyte that has ionic conductivity and can provide oxygen ions on one side, and the first and second electrodes provided on one side and the other side of the solid electrolyte, respectively, increase mechanical strength. A purification structure having a porous support for forming a solid electrolyte on the support by coating an electrolyte slurry on one side of the support and firing the slurry. Then, the electrode slurry is infiltrated from the other surface side of the porous support to the back surface of the solid electrolyte, and the electrode slurry is coated on the surface of the solid electrolyte, and this is fired to form both surfaces of the solid electrolyte. A method for producing a purification structure, comprising obtaining an electrode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-307372 | 2006-11-14 | ||
JP2006307372A JP2008119618A (en) | 2006-11-14 | 2006-11-14 | Purification device and method, exhaust gas purification system and manufacturing method of purification structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008059888A1 true WO2008059888A1 (en) | 2008-05-22 |
Family
ID=39401692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/072114 WO2008059888A1 (en) | 2006-11-14 | 2007-11-14 | Purifying apparatus, purifying method, exhaust gas purifying system, and method for producing purifying structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008119618A (en) |
WO (1) | WO2008059888A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2062638A1 (en) * | 2007-11-20 | 2009-05-27 | Kabushiki Kaisha Toyota Jidoshokki | Exhaust gas purification apparatus |
WO2010049586A1 (en) * | 2008-10-30 | 2010-05-06 | Wärtsilä Finland Oy | Measurement arrangement |
CN102639833A (en) * | 2010-06-10 | 2012-08-15 | 丰田自动车株式会社 | Particulate matter amount detection system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5892311B2 (en) * | 2011-11-07 | 2016-03-23 | 三菱自動車工業株式会社 | Knock control device for internal combustion engine |
FR3039079B1 (en) * | 2015-07-23 | 2020-04-03 | Psa Automobiles Sa. | CATALYSIS PARTICLE FILTER |
EP3384992B1 (en) * | 2016-06-15 | 2021-02-17 | Fuji Electric Co., Ltd. | Particulate matter combustion device |
JP7156111B2 (en) * | 2019-03-13 | 2022-10-19 | トヨタ自動車株式会社 | HONEYCOMB FILTER AND METHOD FOR MANUFACTURING HONEYCOMB FILTER |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06288235A (en) * | 1993-04-05 | 1994-10-11 | Mitsubishi Electric Corp | Exhaust emission control device of ceramic exhaust pipe for exhaust emission control and engine |
JP2000514344A (en) * | 1996-05-20 | 2000-10-31 | ダイネックス・アクティーゼルスカブ | Method and reactor for the electrochemical conversion of substances which are insoluble in a fluid, for example soot particles |
JP2003033646A (en) * | 2001-07-25 | 2003-02-04 | National Institute Of Advanced Industrial & Technology | Chemical reactor |
JP2006200520A (en) * | 2004-12-21 | 2006-08-03 | Ritsumeikan | Purifying device, purifying method and exhaust emission control system |
JP2006198563A (en) * | 2005-01-24 | 2006-08-03 | National Institute Of Advanced Industrial & Technology | Solid carbon decomposition type ceramic chemical reaction device |
JP2006299857A (en) * | 2005-04-18 | 2006-11-02 | Nissan Motor Co Ltd | Exhaust emission control system for internal combustion engine |
-
2006
- 2006-11-14 JP JP2006307372A patent/JP2008119618A/en active Pending
-
2007
- 2007-11-14 WO PCT/JP2007/072114 patent/WO2008059888A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06288235A (en) * | 1993-04-05 | 1994-10-11 | Mitsubishi Electric Corp | Exhaust emission control device of ceramic exhaust pipe for exhaust emission control and engine |
JP2000514344A (en) * | 1996-05-20 | 2000-10-31 | ダイネックス・アクティーゼルスカブ | Method and reactor for the electrochemical conversion of substances which are insoluble in a fluid, for example soot particles |
JP2003033646A (en) * | 2001-07-25 | 2003-02-04 | National Institute Of Advanced Industrial & Technology | Chemical reactor |
JP2006200520A (en) * | 2004-12-21 | 2006-08-03 | Ritsumeikan | Purifying device, purifying method and exhaust emission control system |
JP2006198563A (en) * | 2005-01-24 | 2006-08-03 | National Institute Of Advanced Industrial & Technology | Solid carbon decomposition type ceramic chemical reaction device |
JP2006299857A (en) * | 2005-04-18 | 2006-11-02 | Nissan Motor Co Ltd | Exhaust emission control system for internal combustion engine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2062638A1 (en) * | 2007-11-20 | 2009-05-27 | Kabushiki Kaisha Toyota Jidoshokki | Exhaust gas purification apparatus |
WO2010049586A1 (en) * | 2008-10-30 | 2010-05-06 | Wärtsilä Finland Oy | Measurement arrangement |
CN102639833A (en) * | 2010-06-10 | 2012-08-15 | 丰田自动车株式会社 | Particulate matter amount detection system |
Also Published As
Publication number | Publication date |
---|---|
JP2008119618A (en) | 2008-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4660724B2 (en) | Purification device, purification method, and exhaust gas purification system | |
WO2008059888A1 (en) | Purifying apparatus, purifying method, exhaust gas purifying system, and method for producing purifying structure | |
JP5460597B2 (en) | Removal of particles from exhaust gas of internal combustion engines operated mainly with stoichiometric mixtures | |
US7510600B2 (en) | Gas purifying apparatus | |
US8465631B2 (en) | Purification structure incorporating a biased electrochemical catalyst system | |
JP2008119618A5 (en) | ||
WO2007046519A1 (en) | Exhaust cleaner for internal combustion engine | |
JP2000514344A (en) | Method and reactor for the electrochemical conversion of substances which are insoluble in a fluid, for example soot particles | |
JP2007054713A (en) | Diesel particulate filter | |
JP4887888B2 (en) | Exhaust gas purification device for internal combustion engine | |
EP1277928A1 (en) | Exhaust gas purifying apparatus for internal combustion engines | |
JP2008221204A (en) | Catalytic material and catalyst for purifying exhaust gas component | |
JP2005291071A (en) | Exhaust emission control system and exhaust emission control method | |
JP4736724B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3357281B2 (en) | Apparatus for removing nitrogen oxides from exhaust gas of an internal combustion engine | |
JP5957284B2 (en) | Exhaust gas purification device | |
KR101086595B1 (en) | Exhaust gas purification device for internal combustion engine | |
JP3874246B2 (en) | Filter type catalyst for diesel exhaust gas purification | |
JP2009208025A (en) | Diesel engine exhaust gas cleaning filter | |
JP2009208025A5 (en) | ||
JP5070173B2 (en) | Exhaust gas purification filter and manufacturing method thereof | |
JP2002159859A (en) | Catalyst for cleaning exhaust gas | |
KR101223418B1 (en) | Particulate Matter Sensor | |
JP2005224682A (en) | Exhaust gas purifier for internal engine and method of purfying exhaust gas | |
JP4851974B2 (en) | Purification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07831844 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07831844 Country of ref document: EP Kind code of ref document: A1 |