WO2008056797A1 - Rubber composition and pneumatic tire using the same - Google Patents

Rubber composition and pneumatic tire using the same Download PDF

Info

Publication number
WO2008056797A1
WO2008056797A1 PCT/JP2007/071852 JP2007071852W WO2008056797A1 WO 2008056797 A1 WO2008056797 A1 WO 2008056797A1 JP 2007071852 W JP2007071852 W JP 2007071852W WO 2008056797 A1 WO2008056797 A1 WO 2008056797A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
rubber
weight
silk
parts
Prior art date
Application number
PCT/JP2007/071852
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Kameda
Hitoshi Hashidume
Tomoari Muramatsu
Original Assignee
The Yokohama Rubber Co., Ltd.
Shinano Kenshi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006301507A external-priority patent/JP4137966B2/en
Priority claimed from JP2006342889A external-priority patent/JP4180093B2/en
Priority claimed from JP2007135803A external-priority patent/JP4229969B2/en
Application filed by The Yokohama Rubber Co., Ltd., Shinano Kenshi Kabushiki Kaisha filed Critical The Yokohama Rubber Co., Ltd.
Publication of WO2008056797A1 publication Critical patent/WO2008056797A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof

Definitions

  • the present invention relates to a rubber composition and a pneumatic tire using the rubber composition. More specifically, the dispersibility of the filler, the elastic modulus at high temperature, and the temperature dependence of the elastic modulus, which are blended with embrittled silk powder.
  • the present invention relates to a rubber composition having excellent wear resistance and a pneumatic tire using the rubber composition. Background art
  • Japanese Patent No. 2 8 3 2 0 1 a predetermined amount of silk powder with a predetermined particle size is blended into a resin or rubber to achieve high production efficiency and moisture permeability, moisture absorption and appearance comparable to natural products.
  • Japanese Patent Application Laid-Open No. 9 1 4 4 8 15 discloses that a predetermined amount of silk short fiber or the like is blended in the adhesive rubber layer of the transmission belt. It is disclosed that a power transmission belt with improved durability can be obtained.
  • No technology has been proposed for blending silk powder in order to improve the mixing and processability of the silica-containing rubber composition and to improve the physical properties. Conventionally, in the rubber industry, carbon black or silica is compounded as a reinforcing filler to reinforce rubber.
  • the resulting rubber is obtained.
  • a pneumatic tire is formed using, for example, a tire composition as a tire member
  • the resulting pneumatic tire generally has higher hysteresis loss as the amount of carbon black increases, and becomes more exothermic.
  • silica is compounded as a reinforcing filler, but silica is generally aggregated due to the formation of hydrogen bonds due to silanol groups present on the particle surface. As a result, it is known that mixability or processability is reduced.
  • Japanese Patent Application Laid-Open No. 7-484.76 discloses an ASTM standard for resin or rubber. By blending silk powder with a particle size of 2 0 0 mesh under sieve (75 m or less), good appearance, high moisture permeability and moisture absorption / release properties
  • the present invention improves rubber composition mixing / workability (dispersibility of filler) and has good physical properties (for example, elastic modulus at high temperature, temperature dependence of elastic modulus, wear resistance, reinforcement) It is an object of the present invention to provide a rubber composition capable of achieving the above.
  • the gen-based rubber is embrittled together with force-flac and cocoon or silica, and then pulverized to a maximum particle size of 6 3 m with a 2500 mesh sieve based on Tyler-sieve standards.
  • Nen rubber used in the rubber composition of the present invention examples include:
  • Natural rubber Various butadiene rubber (BR), Various styrene-butadiene copolymer rubber (SBR), Polyisoprene rubber (IR)
  • NBR Acrylonitrile-butadiene polymer rubber
  • ethylene-propylene copolymer rubber styrene-isoprene copolymer rubber
  • styrene-isoprene copolymer polymer rubber styrene-isoprene copolymer polymer rubber ⁇ Isoprene rubber copolymer rubber etc.
  • These Gen rubbers may be used alone or as two or more blend rubbers.
  • NR, IR, SBR and BR, and NR, IR, SBR and BR modified with the above functional groups are particularly preferred.
  • silk material refers to silkworms, silk thread, swarf waste, raw silk thread, raw silk thread, etc., as known (for example, as described in Japanese Patent Publication No. Sho 6 1-3 6 8 40).
  • silk yarn and silk yarn waste obtained by scouring using the above method
  • silk fibroin-containing materials such as silk fabric and silk fabric waste.
  • Examples of the embrittled silk powder used in the rubber composition of the present invention include those having a maximum particle size of less than 6 3 m, preferably 5 Those of 0 zm or less, more preferably 35 m or less, are effectively used. As the embrittled silk powder, the smaller the particle size, the better the reinforcing performance.
  • embrittlement treatment examples include alkali treatment, dry heat treatment, and water vapor treatment.
  • the alkali-treated silk powder used in the first embodiment of the present invention is, for example, after embrittlement of silk with a suitable alkali (for example, sodium hydroxide, hydroxylated lithium, sodium carbonate, etc.)
  • a suitable alkali for example, sodium hydroxide, hydroxylated lithium, sodium carbonate, etc.
  • Conditions for example, heat treatment of 90 to less than 100 hours for 1 to 24 hours, neutralization with acids such as hydrochloric acid, acetic acid, tartaric acid, citrate, and sulfuric acid, followed by washing and drying,
  • pulverize with a general pulverizer such as ball mill pulverizer, jet mill pulverizer, chopper mill pulverizer, artemizer pulverizer, jaw crusher pulverizer, etc.
  • a powder with a maximum particle size of 63m Can be easily obtained.
  • the dry heat treatment of the silk powder used in the second and third aspects of the present invention is carried out, for example, by placing the silk raw material on each stage of a hermetic dryer such as a hot air dryer, for example, 200 g, for a total of 6 stages.
  • a hermetic dryer such as a hot air dryer, for example, 200 g
  • brittleness can be achieved by performing hot air drying at 2 1 0 for 60 minutes.
  • the powder cake should be used for a suitable time (for example, 30 to 4800 minutes, preferably 3 minutes) using a general powder mill such as ball mill powder, jet mill powder, chopper mill powder, artemizer powder powder, and jaw crusher powder. (0 to 300 minutes, more preferably 3 hours) It can be made into powder by grinding.
  • the temperature condition in the dry heat treatment is not preferable in terms of time efficiency if the temperature is low, and conversely, if the temperature is high, there is a high possibility that the silk will burn. Therefore, the temperature condition is preferably 180 to 300, and more preferably 200 to 220.
  • the silk powder used in the fourth embodiment of the present invention comprises treating a silk material with water vapor at a temperature of 100 to 230, preferably water steam at a temperature of 160 to 230, and pulverizing the silk material. Is obtained.
  • Silk powder treats and pulverizes the silk material with water vapor, for example at a temperature of 100 to ⁇ 30, preferably from 160 to 30, more preferably from 180 to 200. Can be obtained.
  • the strength of the silk material can be reduced (ie, embrittled).
  • the silk fiber mouth-in is exposed to water vapor and the silk fiber becomes brittle.
  • the treatment of the silk material with water vapor is preferably performed uniformly on the silk material to be treated, preferably using a pressure vessel.
  • the treatment with water vapor is preferably under a pressure of from 6 40 k Pa to 3, 1 00 k Pa, more preferably from 1, 0 50 k Pa to l, 6 50 k Pa, preferably It is preferable that the time is 10 to 120 minutes.
  • the temperature, pressure and time of the treatment with water vapor are below the above ranges, embrittlement becomes insufficient and subsequent pulverization cannot be performed easily. If the temperature, pressure and time of treatment with water vapor exceed the above ranges, the silk fiber mouth-in may be melted.
  • Silk materials can be pulverized by direct pressure pulverization, roller pulverization, impact pulverization, cylinder pulverization, jet pulverization and other pulverization methods. Cylinder crushing means such as a ball mill and jet mill crushing such as a jet mill are preferred.
  • the silk powder is blended with the gen rubber in an amount of 0.1 to 30 parts by weight with respect to 100 parts by weight of the gen rubber.
  • the silk powder exceeds 30 parts by weight with respect to 100 parts by weight of the gen-based rubber, the mixing property is lowered and the rubber composition becomes difficult to collect.
  • the pulverized product is sieved and classified by classification methods such as gravity classification, inertia classification, centrifugal classification, sedimentation classification, mechanical classification, and hydraulic classification.
  • Silk powder with desired particle size You can get a powder.
  • a predetermined amount of silk powder having an average particle size of 10 m or less among the silk powder obtained by the above-described series of steps is blended with gen-based rubber together with a predetermined amount of carbon black. It was found that the resulting gen-based rubber composition exhibited a lower storage modulus temperature dependency and a better wear resistance after vulcanization.
  • the average particle diameter means the median diameter D 50 in the volume-based cumulative distribution of the particle diameter.
  • the embrittled silk powder having a specific particle diameter is 0.1 to 30 parts by weight, preferably 1 to 30 parts by weight with respect to 100 parts by weight of the gen-based rubber. 1 Blend in an amount of 5 parts by weight. If the blending amount is small, the desired effect is not obtained. On the contrary, if the blending amount is large, the elongation at break, strength, and wear resistance of the rubber composition are remarkably lowered.
  • the reinforcing filler blended in the Gen rubber composition of the present invention can be appropriately selected from those generally used in the rubber industry.
  • Specific examples of the reinforcing filler include carbon black, silica, evening milk, calcium carbonate, aluminum hydroxide, magnesium carbonate and the like.
  • Forces that can be used in the gen-based rubber composition of the present invention examples include SAF, ISAF, HA F, FEF, and GPF grades.
  • Kiichi Bon Black has a nitrogen adsorption specific surface area (N 2 SA) of 70 to 1550 m 2 Zg. When N 2 SA is less than 70 m 2 Z g, the filling amount can be increased, but the reinforcing effect is poor.
  • Carbon black N 2 SA is more than 1 5 0 m 2 Roh g are difficult cause distributed in the rubber component because of its high cohesive. If the blending amount of the reinforcing filler is too small, a sufficient reinforcing effect cannot be obtained, and if too large, the processability during blending and the moldability of the rubber composition are lowered.
  • a preferable rubber composition of the present invention includes 100 parts by weight of a gen rubber.
  • the total amount of carbon black and / or silica is 10 to 100 parts by weight, preferably 20 to 90 parts by weight. If the blending amount is small, the rubber reinforceability is low, which is not preferable. On the other hand, if the blending amount is large, the rubber moldability is deteriorated and the heat generation of the rubber becomes too high.
  • the amount of silica used in the rubber composition of the present invention is 10 to 100 parts by weight, preferably 40 to 100 parts by weight with respect to 100 parts by weight of the above-mentioned gen-based rubber. More preferably, the amount is 40 to 80 parts by weight. If the amount of silica is small, effects specific to silica (for example, the degree of reinforcement and the elastic modulus at low temperature are balanced in a high dimension) may not be obtained. On the other hand, if the amount is too large, the mixing and processing properties of the rubber composition deteriorate, and the hardness becomes too high, which may make it difficult to mold.
  • the compounding amount of the force pump rack used in the rubber composition of the present invention is 10 to 100 parts by weight, preferably 40 to 100 parts by weight with respect to 100 parts by weight of the gen rubber. It can be a weight part. If the amount is too small, the heat generation of the rubber composition is increased, and there is a possibility that the rolling resistance is increased, which is not preferable. In the first embodiment of the present invention, it is preferable to mix 5 to 50 parts by weight of bonbon black and 10 to 100 parts by weight of siri-force with respect to 100 parts by weight of gen rubber.
  • the silica-containing rubber composition of the present invention contains 3 to 20% by weight, preferably 5 to 20% by weight, more preferably 5 to 12% by weight, of the silane coupling agent based on the compounded silica. Is done. It is preferable to add such a predetermined amount of the silane coupling agent because the reaction efficiency between the silica coupling agent and the rubber is good and the rubber reinforcing property is excellent.
  • the silane coupling agent a sulfur-containing silane coupling agent is preferably used.
  • silica when silica is compounded as a reinforcing filler in the Gen rubber composition, the silica is 10 to 10% of the total amount of the reinforcing filler.
  • the compounding amount of the reinforcing filler is a compounding amount of the reinforcing filler.
  • the rubber composition according to the present invention further includes a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various waxes, oils, anti-aging agents, fillers, plasticizers and the like for tires.
  • a vulcanization or crosslinking agent e.g., a vulcanization or crosslinking accelerator
  • various waxes, oils, anti-aging agents, fillers, plasticizers and the like for tires.
  • Various compounding agents compounded for other rubber compositions can be compounded, and these compounding agents can be kneaded by a general method to obtain a rubber composition, which can be vulcanized or crosslinked.
  • the compounding amounts of these compounding agents can be set to conventional general compounding amounts as long as the object of the present invention is not violated.
  • the gen-based rubber composition of the present invention may optionally contain any compounding agent commonly used in the technical field, such as vulcanization.
  • Accelerators, vulcanizing agents, processing aids, anti-aging agents, and the like can be added as appropriate in general amounts.
  • a mixing method used for blending the additive a general method can be used. Generally, a lump, pellet, or powder compound is added to an appropriate mixer such as a kneader, an It can be mixed using an internal mixer, a banbury mixer, a roll or the like.
  • a desired rubber product for example, a member of a pneumatic tire can be formed by a general pressure molding or vulcanization method.
  • Example EXAMPLES The present invention will be further described below with reference to examples and comparative examples, but it goes without saying that the scope of the present invention is not limited to these examples.
  • each compounding component such as rubber, silica, and alkali-treated silk powder excluding sulfur and vulcanization accelerator is loaded into a 1.7 liter sealed banbury mixer. Then, the master batch that has been mixed for 5 minutes, discharged to the outside of the mixer and cooled to room temperature, is put into the Banbury mixer again, and this is combined with sulfur and a vulcanization accelerator. A rubber composition was obtained. A part of this unvulcanized rubber composition was subjected to the following sample for viscosity test. Then, the remaining rubber composition was press vulcanized at 160 for 20 minutes in a 15 cm X 15 cm X O. 2 cm mold to produce a test sample (rubber sheet). The following tensile test and viscoelasticity test were used.
  • Mooney Viscosity In accordance with JISK 6300- 1, preheating time using Moon type viscometer (3 8. l mm diameter, 5.5 mm thickness) with Mooney viscometer The measurement was performed under the conditions of 1 minute, mouth rotation time of 4 minutes, 10:00: 2 rpm. The results are shown as an index with Comparative Example I-1 as 1 0 0. The smaller the index, the better the workability.
  • M 3 0 0 According to JISK 6 2 5 1, a 2 mm rubber sheet is punched out with a No. 3 dumbbell, and M 3 0 0 (3 0 0% modulus) at a tensile speed of 5 0 0 mm ) was measured. The results are shown as an index with Comparative Example I 1 1 as 1 0 0. The larger the index, the better the reinforcement performance.
  • Nipol 1220 (Nippon Zeon) 1) Si 69 (Dedasa)
  • each compounding component such as rubber, silica, and dry-heat treated silk powder, excluding sulfur and vulcanization accelerators
  • Abrasion resistance Using a Lambourn Abrasion Tester (Iwamoto Seisakusho), measured under conditions of load 1.5 kg, slip rate 50%, time 10 minutes, and room temperature. Comparative Example II 1 was expressed as an index with 1 0 as 1 0 0. The larger the index, the better the wear resistance.
  • Example II was formulated by blending a predetermined amount of dry-heat treated silk powder into a silica compounded rubber composition. It can be seen that ⁇ II-16 has a rubber composition that is excellent in elastic modulus at high temperature and excellent in wear resistance.
  • each compounding component such as rubber, silica, and dry-heat treated silk powder, excluding sulfur and vulcanization accelerator
  • each compounding component such as rubber, silica, and dry-heat treated silk powder, excluding sulfur and vulcanization accelerator
  • the master batch was re-introduced into the Banbury mixer, and this was compounded with sulfur and a vulcanization accelerator, and mixed into a rubber composition. I got a thing.
  • this rubber composition was press-vulcanized in a 15 cm ⁇ 15 cm ⁇ 0.2 cm mold at 160 for 20 minutes to prepare a test sample (rubber sheet). The method was evaluated for 100% modulus (M 1 0 0) and storage modulus.
  • Table III-1 as an index
  • Comparative Example III-1 as 100.
  • Carbon Black Tokai Carbon Co., Ltd.
  • S P—1 Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd.
  • S P—2 Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd.
  • Stearic acid Nippon Oil & Fat Co., Ltd. Bead stearic acid
  • Zinc Hana Zinc Oxide manufactured by Shodo Chemical Co.
  • Example III-11 compared with Comparative Example III-11 of the carbon black compound system (this value is indicated as an index), a predetermined amount of carbon black compound system Dry heat treated silk powder In Example III-11, in which the powder (SP-2) was blended, a rubber composition excellent in 100% modulus (Ml 0 0) and Z or storage elastic modulus was obtained.
  • each compounding component such as rubber, silica and dry-heat treated silk powder, excluding sulfur and vulcanization accelerators
  • each compounding component such as rubber, silica and dry-heat treated silk powder, excluding sulfur and vulcanization accelerators
  • a rubber composition was obtained.
  • this rubber composition was press-vulcanized in a 15 cm ⁇ 15 cm ⁇ 0.2 cm mold at 160 for 20 minutes to prepare a test sample (rubber sheet).
  • E ′ high temperature storage modulus
  • SP-3 Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd.
  • SP-4 Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd.
  • SP-5 Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd.
  • Stearic acid Beads manufactured by Nippon Oil & Fats Co., Ltd. stearic acid
  • Zinc Hana Zinc Oxide manufactured by Shodo Chemical Co., Ltd.
  • each composition of rubber, silica, alkali-treated silk powder, etc., excluding sulfur and vulcanization accelerators is mixed into a 1.7-liter sealed banbury mixer. Loaded, mixed for 5 minutes, discharged to the outside of the mixer and cooled to room temperature, the mass batch was put into the Banbury mixer again, and sulfur and vulcanization accelerator were mixed and mixed into rubber. A composition was obtained.
  • a test sample (rubber sheet) was prepared by press vulcanization of this rubber composition in a mold of 15 cm ⁇ 15 cm ⁇ 0.2 cm for 160 minutes at 160: 20.
  • the high-temperature storage modulus and its temperature dependence of the sulfide were evaluated by the method described above, and the results are shown in Table III-3 as an index with the value of Comparative Example III-5 as 100.
  • Zinc Hana Zinc Oxide manufactured by Shodo Chemical Co., Ltd.
  • Silk waste was placed in a wet heat treatment apparatus and treated with steam at 180 ° under high pressure of 1100 kPa for 30 minutes. After that, it was completely dried by hot air at 100, and then pulverized by a pole mill for 12 hours, and then impurities were removed using an i 00 / m sieve.
  • the median diameter D 50 in the volume-based cumulative distribution of the particle diameter is obtained using a flow particle image analyzer FPIA-3100 manufactured by Sysmex. D 50 was 7.1 2 4 m.
  • Excluding sulfur and vulcanization accelerators according to the formulation shown in Table IV-1 below.
  • the compounding agents such as lime and carbon black were loaded into a 1.7-liter sealed banbury mixer and mixed for about 5 minutes. The resulting mixture was discharged from the mixer at 150 and then cooled to room temperature. Next, sulfur and a vulcanization accelerator were blended into this cooled mixture using a roll and mixed for about 3 minutes, and then each of the unvulcanized rubber compositions of Comparative Example IV-1 and Example IV-1 Got. Next, each unvulcanized rubber composition was press vulcanized at 16 ° C. for 20 minutes in a 15 cm m ⁇ l 5 cm x O. 2 cm mold to produce a vulcanized rubber specimen. It used for the following test.
  • the storage elastic modulus (hereinafter referred to as “ ⁇ ′ (in 20)”) was determined using the same test equipment and test conditions as in the above “(1) Storage elastic modulus” except that the test temperature was set at 20. Next, the difference between the storage elastic modulus at the temperature 20 and the storage elastic modulus at the temperature 100, that is, E '(at 20)- ⁇ ' (lOOt :) is obtained. The temperature dependence of the storage modulus up to 100 was assumed. The test results were expressed as an index with the temperature dependence of the storage elastic modulus of Comparative Example IV-1 as 100. The smaller this index is, the comparative example IV-1 and Compared to this, the temperature dependence of the storage modulus is smaller. The result is a table
  • the storage elastic modulus at 100 is increased and the temperature dependence of the storage elastic modulus is reduced. Since the storage elastic modulus at a high temperature of 100 is high and the temperature dependence of the storage elastic modulus is small, the geno rubber composition of the present invention is used for, for example, a tire member to form a pneumatic tire. Then, there is an advantage that it is not influenced by the use temperature or the ambient temperature. Industrial applicability
  • the rubber composition of the present invention is excellent in high-temperature elastic modulus, temperature dependency of elastic modulus, and wear resistance. It is extremely useful for use in pneumatic tires as side treads, force caskets, belt cords, bead filler parts and rim cushions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a rubber composition which comprises: (A) 100 parts by weight of a diene rubber; (B) 0.1 to 30 parts by weight of a silk powder which has been embrittled and then milled so that the maximum particle diameter becomes 63 μm as measured on a sieve having a 250 mesh in accordance with a Tyler mesh scale; and (C) 10 to 100 parts by weight of a carbon-black and/or silica reinforcing filler, and which has excellent filler dispersibility, elastic modulus at a high temperature, abrasion resistance and reinforcing ability. Also disclosed is a pneumatic tire having the rubber composition as a tire member.

Description

明 細 書 ゴム組成物及びそれを用いた空気入りタイヤ 技術分野  Description Rubber composition and pneumatic tire using the same
本発明は、 ゴム組成物及びそれを用いた空気入りタイヤに関し、 更に詳しくは、 脆化処理したシルク粉末を配合した、 フィ ラーの分 散性、 高温時の弾性率、 弾性率の温度依存性、 耐摩耗性に優れたゴ ム組成物及びそれを用いた空気入りタイヤに関する。 背景技術  The present invention relates to a rubber composition and a pneumatic tire using the rubber composition. More specifically, the dispersibility of the filler, the elastic modulus at high temperature, and the temperature dependence of the elastic modulus, which are blended with embrittled silk powder. The present invention relates to a rubber composition having excellent wear resistance and a pneumatic tire using the rubber composition. Background art
従来、 ゴム工業において、 補強性フイ ラ一としてカーボンブラッ クを配合しゴムを補強する手段が採られていたが、 ゴムの発熱が高 く、 転がり抵抗が大きいという問題があった。 そこで、 近年、 カー ポンプラックに代わるフイ ラ一としてシリカを配合することで上記 問題を解決している。 しかしながら、 シリカには、 そのシリカ表面 の特性上シリカ同士で凝集し易いため、 混合性が悪化することが分 かっている。 そのため、 一般には、 特開平 7 — 4 8 4 7 6号公報に 示されるように、 シランカップリング剤を併用することによってシ リカの分散性を高めることが行われてきたが、 更なるゴム物性の改 善のための新規なフィ ラーの探索が求められている。  Conventionally, in the rubber industry, carbon black has been used as a reinforcing filler to reinforce rubber, but there is a problem in that the heat generated by the rubber is high and the rolling resistance is high. Therefore, in recent years, the above problem has been solved by adding silica as a filler instead of a car pump rack. However, it is known that silica is easy to agglomerate with each other due to the characteristics of the silica surface, so that the mixing property is deteriorated. Therefore, in general, as shown in Japanese Patent Application Laid-Open No. 7-484476, the dispersibility of silica has been improved by using a silane coupling agent together. There is a need to search for new fillers to improve this.
特許第 2 8 3 2 0 1 0号公報には、 所定粒径のシルク粉末を樹脂 やゴムに所定量配合することで、 生産効率が高く、 天然品に匹敵す る透湿性、 吸湿性及び外観を有する成形品が得られることが開示さ れ、 また、 特開平 9 一 1 4 4 8 1 5号公報には、 伝動用ベルトの接 着ゴム層にシルク短繊維などを所定量配合することで、 耐久性を高 めた伝動用ベルトが得られることが開示されている。 しかしながら 、 シリカ含有ゴム組成物の混合 · 加工性を高め、 かつ物性を改善す るためにシルク粉末.を配合する技術は、 未だ提案されていない。 従来、 ゴム工業において、 補強性充填剤としてカーボンブラック やシリカを配合してゴムを補強することが行われているが、 カーボ ンブラックをゴム組成物に配合した場合には、 その結果得られるゴ ム組成物を例えばタイヤ部材に用いて空気入りタイヤを形成すると 、 得られた空気入りタイヤは、 一般的に、 カーボンブラックの配合 量の増加につれてヒステリシス損が増加して発熱性がより高くなり 、 大きな転がり抵抗を示すという問題がある。 この問題を解決する ために、 補強性充填剤としてシリカを配合することが行われている が、 シリカは、 一般的に、 その粒子表面に存在するシラノール基に よる水素結合の形成のために凝集しやす < 、 その結果、 混合性また は加工性が低下することが知られている o In Japanese Patent No. 2 8 3 2 0 1 0, a predetermined amount of silk powder with a predetermined particle size is blended into a resin or rubber to achieve high production efficiency and moisture permeability, moisture absorption and appearance comparable to natural products. In addition, Japanese Patent Application Laid-Open No. 9 1 4 4 8 15 discloses that a predetermined amount of silk short fiber or the like is blended in the adhesive rubber layer of the transmission belt. It is disclosed that a power transmission belt with improved durability can be obtained. However No technology has been proposed for blending silk powder in order to improve the mixing and processability of the silica-containing rubber composition and to improve the physical properties. Conventionally, in the rubber industry, carbon black or silica is compounded as a reinforcing filler to reinforce rubber. However, when carbon black is compounded in a rubber composition, the resulting rubber is obtained. When a pneumatic tire is formed using, for example, a tire composition as a tire member, the resulting pneumatic tire generally has higher hysteresis loss as the amount of carbon black increases, and becomes more exothermic. There is a problem of showing a large rolling resistance. In order to solve this problem, silica is compounded as a reinforcing filler, but silica is generally aggregated due to the formation of hydrogen bonds due to silanol groups present on the particle surface. As a result, it is known that mixability or processability is reduced.
ゴム組成物の物性のより一層の改善のために 、 新規な充填剤が求 められており、 例えば、 特開平 7 — 4 8 4 7 6号公報には、 樹脂ま たはゴムに A S T M式標準篩 2 0 0 メッシュ篩下 ( 7 5 m以下) の粒径を有するシルク粉末を配合することにより、 外観が良好で、 高い透湿性および吸放湿性を有する成形 Π  In order to further improve the physical properties of the rubber composition, a new filler has been demanded. For example, Japanese Patent Application Laid-Open No. 7-484.76 discloses an ASTM standard for resin or rubber. By blending silk powder with a particle size of 2 0 0 mesh under sieve (75 m or less), good appearance, high moisture permeability and moisture absorption / release properties
PPを得ることが提案されて いる。 しかしながら、 シルク粉末を配合してゴム組成物の補強性を 高める技術は未だ提案されていなレ 発明の開示  It has been proposed to obtain a PP. However, no technology has been proposed to improve the reinforcement of rubber compositions by blending silk powder.
本発明は、 ゴム組成物の混合 · 加工性 (フイ ラ一の分散性) を高 め、 かつ良好な物性 (例えば高温時の弾性率、 弾性率の温度依存性 、 耐摩耗性、 補強性) を達成することができるゴム組成物を提供す ることを目的とする。  The present invention improves rubber composition mixing / workability (dispersibility of filler) and has good physical properties (for example, elastic modulus at high temperature, temperature dependence of elastic modulus, wear resistance, reinforcement) It is an object of the present invention to provide a rubber composition capable of achieving the above.
本発明に従えば、 (A ) ジェン系ゴム 1 0 0重量部、 (B) 脆化処理した後、 タイラー篩基準による 2 5 0メッシュの篩 で最大粒径が 6 となるよう粉砕されたシルク粉末 0. 1 3 0重量部並びに According to the present invention, (A) Geno rubber 100 parts by weight, (B) 0.13 0 parts by weight of silk powder after embrittlement and pulverized to a maximum particle size of 6 with a 2500 mesh sieve according to the Tyler sieve standard
( C) カーボンブラック及び Z又はシリカの補強性充填剤 1 0 1 0 0重量部  (C) Carbon black and Z or silica reinforcing filler 1 0 1 0 0 parts by weight
を含んでなるゴム組成物が提供される。 発明を実施するための最良の形態 A rubber composition is provided. BEST MODE FOR CARRYING OUT THE INVENTION
本明細書及び添付した 「特許請求の範囲」 において使用する単数 形 ( " a " " a n " 及び " t h e " ) は、 前後関係からそうでな いことが明白に指示されない限り、 それらの複数の指示対象を含む ものとする。  As used herein and in the appended claims, the singular forms “a”, “an”, and “the” ”are intended to be used in their plural form unless the context clearly dictates otherwise. It shall include the indication object.
本発明によれば、 ジェン系ゴムに、 力ー ンフラック及び Ζ又は シリカと共に、 脆化処理した後 、 タイラ —篩基準による 2 5 0メッ シュの篩で最大粒径が 6 3 mとなるよう粉砕されたシルク粉末を 配合することにより、 ゴム組成物の混 α • 加工性を高め、 かつ物性 According to the present invention, the gen-based rubber is embrittled together with force-flac and cocoon or silica, and then pulverized to a maximum particle size of 6 3 m with a 2500 mesh sieve based on Tyler-sieve standards. Blended rubber powder blended with rubber composition α • Improved processability and physical properties
(例えば高温時の弾性 、 弾性率の温度依存性、 転がり抵抗、 耐摩 耗性) の向上が図れることを見出した。 It has been found that (for example, elasticity at high temperatures, temperature dependence of elastic modulus, rolling resistance, wear resistance) can be improved.
本発明のゴム組成物に用いられるンェン系ゴムとしては 例えば Examples of the Nen rubber used in the rubber composition of the present invention include:
、 天然ゴム (NR) 各種ブ夕ジェンゴム ( B R ) 、 各種スチレン ーブ夕ジェン共重合体ゴム ( S B R ) 、 ポリイソプレンゴム ( I R, Natural rubber (NR) Various butadiene rubber (BR), Various styrene-butadiene copolymer rubber (SBR), Polyisoprene rubber (IR)
) 、 ァク リ ロニトリルーブ夕ジェンせ重合体ゴム (N B R ) ク□ ロプレンゴム、 ェチレンープロピレン一ジェン共重合体ゴム スチ レン一ィソプレン共重合体ゴム、 スチレン一イソプレン一ブ夕ジェ ン共重合体ゴム、 イソプレンーブ夕ンェン共重合体ゴムなどが挙げ られる よた 刖 '記ンェン系ゴムは それぞれがエポキシ基 アル コキシシラン基、 水酸基含有基などで変性されたものであ てもよ い。 これらのジェン系ゴムは、 単独で、 あるいは、 2種以上のブレ ンドゴムとして使用されてもよい。 本発明において、 N R、 I R、 S B Rおよび B R、 並びに上記官能基で変性された N R、 I R、 S B Rおよび B Rが特に好ましい。 ), Acrylonitrile-butadiene polymer rubber (NBR) chloropropylene rubber, ethylene-propylene copolymer rubber, styrene-isoprene copolymer rubber, styrene-isoprene copolymer polymer rubberプ Isoprene rubber copolymer rubber etc. Yes. These Gen rubbers may be used alone or as two or more blend rubbers. In the present invention, NR, IR, SBR and BR, and NR, IR, SBR and BR modified with the above functional groups are particularly preferred.
本明細書において、 「シルク材料」 とは、 繭、 繭糸、 繭屑、 生糸 、 生糸屑等を常法 (例えば特公昭 6 1 — 3 6 8 4 0号公報に記載さ れているような公知の方法) を用いて精練して得られるシルク糸お よびシルク糸屑並びにシルク布、 シルク布屑等のシルクフィ ブロイ ン含有物を意味する。  In this specification, the term “silk material” refers to silkworms, silk thread, swarf waste, raw silk thread, raw silk thread, etc., as known (for example, as described in Japanese Patent Publication No. Sho 6 1-3 6 8 40). Means silk yarn and silk yarn waste obtained by scouring using the above method) and silk fibroin-containing materials such as silk fabric and silk fabric waste.
以下、 シルク粉末の製造法を具体的に説明する。  Hereinafter, the method for producing silk powder will be described in detail.
本発明のゴム組成物に用いられる脆化処理したシルク粉末として は、 例えば、 夕イラ一篩基準による 2 5 0 メッシュの篩を用いて、 最大粒径が 6 3 mより小さいもの、 好ましく は 5 0 z m以下、 更 に好ましくは 3 5 m以下のものが有効に使用される。 当該脆化処 理したシルク粉末としては、 粒度の小さいものほど、 補強性能が向 上するので好ましい。  Examples of the embrittled silk powder used in the rubber composition of the present invention include those having a maximum particle size of less than 6 3 m, preferably 5 Those of 0 zm or less, more preferably 35 m or less, are effectively used. As the embrittled silk powder, the smaller the particle size, the better the reinforcing performance.
前記脆化処理としては、 例えばアルカ リ処理、 乾熱処理又は水蒸 気処理があげられる。  Examples of the embrittlement treatment include alkali treatment, dry heat treatment, and water vapor treatment.
本発明の第一の態様に用いるアルカリ処理したシルク粉末は、 例 えば、 シルクを適当なアルカリ (例えば水酸化ナ ト リウム、 水酸化 力 リゥム、 炭酸ソ一ダ等) で脆化処理後 (処理条件 : 例えば 9 0 以上 1 0 0 未満で 1時間以上 2 4時間以下の熱処理) 、 塩酸、 酢 酸、 酒石酸、 クェン酸、 硫酸などの酸で中和し、 次いで、 洗浄、 乾 燥を行い、 例えばボールミル粉砕、 ジェッ トミル粉砕、 チョ ッパー ミル粉碎、 アルテマィザー粉砕、 ジョークラッシャー粉砕などのよ うな一般的な粉砕機にて粉砕し、 2 5 0 メッシュ (タイ ラー篩基準 、 以下同じ) の篩を通すことによって、 最大粒径が 6 3 mの粉末 を容易に得ることができる。 The alkali-treated silk powder used in the first embodiment of the present invention is, for example, after embrittlement of silk with a suitable alkali (for example, sodium hydroxide, hydroxylated lithium, sodium carbonate, etc.) Conditions: for example, heat treatment of 90 to less than 100 hours for 1 to 24 hours, neutralization with acids such as hydrochloric acid, acetic acid, tartaric acid, citrate, and sulfuric acid, followed by washing and drying, For example, pulverize with a general pulverizer such as ball mill pulverizer, jet mill pulverizer, chopper mill pulverizer, artemizer pulverizer, jaw crusher pulverizer, etc. A powder with a maximum particle size of 63m Can be easily obtained.
本発明の第二及び第三の態様に用いるシルク粉末の乾熱処理は、 例えばシルク原料を熱風乾燥機などのような密閉乾燥機の各段に、 例えば 2 0 0 gずつ、 計 6段に敷き並べ、 例えば 2 1 0でで 6 0分 間熱風乾燥を行う ことで脆化が可能になる。 粉碎は、 例えばボール ミル粉碎、 ジェッ トミル粉砕、 チョ ッパーミル粉碎、 アルテマィザ 一粉碎、 ジョークラッシャー粉砕などのような一般的な粉碎機を用 いて適当時間 (例えば 3 0〜 4 8 0分、 好ましくは 3 0〜 3 0 0分 間、 より好ましくは 3時間) 粉砕することで粉末状にすることがで きる。 なお、 前記乾熱処理における温度条件は、 温度が低いと時間 効率の面で好ましくなく、 逆に温度が高いとシルクが燃えてしまう 可能性が高くなる。 従って、 当該温度条件は、 1 8 0〜 3 0 0でで あることが好ましく、 より好ましくは 2 0 0〜 2 2 0 である。 本発明の第四の態様に用いるシルク粉末は、 シルク材料を温度 1 0 0〜 2 3 0での水蒸気、 好ましくは温度 1 6 0〜 2 3 0での水蒸 気により処理し、 粉碎することにより得られるものである。  The dry heat treatment of the silk powder used in the second and third aspects of the present invention is carried out, for example, by placing the silk raw material on each stage of a hermetic dryer such as a hot air dryer, for example, 200 g, for a total of 6 stages. For example, brittleness can be achieved by performing hot air drying at 2 1 0 for 60 minutes. For example, the powder cake should be used for a suitable time (for example, 30 to 4800 minutes, preferably 3 minutes) using a general powder mill such as ball mill powder, jet mill powder, chopper mill powder, artemizer powder powder, and jaw crusher powder. (0 to 300 minutes, more preferably 3 hours) It can be made into powder by grinding. The temperature condition in the dry heat treatment is not preferable in terms of time efficiency if the temperature is low, and conversely, if the temperature is high, there is a high possibility that the silk will burn. Therefore, the temperature condition is preferably 180 to 300, and more preferably 200 to 220. The silk powder used in the fourth embodiment of the present invention comprises treating a silk material with water vapor at a temperature of 100 to 230, preferably water steam at a temperature of 160 to 230, and pulverizing the silk material. Is obtained.
シルク粉末は、 シルク材料を、 例えば温度 1 0 0で〜 2 3 0で、 好ましくは 1 6 0〜 2 3 0で、 より好ましく は 1 8 0〜 2 0 0での 水蒸気により処理し、 粉砕することにより得られる。 上記温度の水 蒸気により処理することによってシルク材料の強度を低下 (即ち脆 化) させることができる。 シルク材料は、 水蒸気で処理することに よって、 シルクフイ ブ口インが水蒸気に曝され、 シルクフイ ブロイ ンが脆化する。 シルク材料の水蒸気による処理は、 好ましくは耐圧 容器を用いて、 処理すべきシルク材料に対して均一に行う ことが好 ましい。 水蒸気による処理は、 好ましくは 6 4 0 k P a〜 3, 1 0 0 k P a、 より好ましく は 1, 0 5 0 k P a〜 l, 6 5 0 k P aの 加圧下で、 好ましくは 1 0〜 1 2 0分間の時間行うのが好ましい。 水蒸気による処理の温度、 圧力及び時間が上記の範囲を下回ると、 脆化が不十分となり、 その後の粉砕を容易に行う ことができない。 水蒸気による処理の温度、 圧力および時間が上記の範囲を超えると 、 シルクフイ ブ口インが溶融するおそれがある。 Silk powder treats and pulverizes the silk material with water vapor, for example at a temperature of 100 to ˜30, preferably from 160 to 30, more preferably from 180 to 200. Can be obtained. By treating with water vapor at the above temperature, the strength of the silk material can be reduced (ie, embrittled). When silk material is treated with water vapor, the silk fiber mouth-in is exposed to water vapor and the silk fiber becomes brittle. The treatment of the silk material with water vapor is preferably performed uniformly on the silk material to be treated, preferably using a pressure vessel. The treatment with water vapor is preferably under a pressure of from 6 40 k Pa to 3, 1 00 k Pa, more preferably from 1, 0 50 k Pa to l, 6 50 k Pa, preferably It is preferable that the time is 10 to 120 minutes. When the temperature, pressure and time of the treatment with water vapor are below the above ranges, embrittlement becomes insufficient and subsequent pulverization cannot be performed easily. If the temperature, pressure and time of treatment with water vapor exceed the above ranges, the silk fiber mouth-in may be melted.
水蒸気により処理した後、 シルク粉末を得るために、 粉砕を例え ば乾式粉砕法により行う場合には、 粉砕処理を迅速かつ均一に行う ために、 水蒸気により処理されたシルク材料を乾燥することが好ま しい。 乾燥により、 粉碎中及び粉砕後の、 粒子相互の付着が抑えら れ、 粉砕及び分級を短時間に行って、 均一な粒径のシルク粉末を得 ることができる。 乾燥は、 水蒸気により処理されたシルク材料を、 風乾、 加熱乾燥、 減圧乾燥、 凍結乾燥、 熱風受熱乾燥、 伝導受熱乾 燥、 赤外線乾燥、 高周波乾燥などの乾燥法により行う ことができる 次に、 上記のように水蒸気により処理したシルク材料、 又は水蒸 気により処理し、 必要に応じて乾燥させたシルク材料を粉砕して、 シルク粉末を得る。 シルク材料の粉砕は、 直圧粉砕、 ローラ一粉砕 、 衝撃粉砕、 シリ ンダー粉砕、 ジェッ ト粉砕などの粉砕方式により 行なう ことができるが、 シルク材料を迅速に粉碎してシルク粉末を 得られるため、 ボールミルなどのシリ ンダー粉砕手段およびジエツ トミルなどのジエツ 卜粉砕が好ましい。  In order to obtain silk powder after treatment with steam, for example, when pulverization is performed by a dry pulverization method, it is preferable to dry the silk material treated with steam in order to perform the pulverization processing quickly and uniformly. That's right. By drying, adhesion between particles in the powder cake and after pulverization is suppressed, and pulverization and classification can be performed in a short time to obtain silk powder having a uniform particle size. Drying can be performed on the silk material treated with water vapor by drying methods such as air drying, heat drying, vacuum drying, freeze drying, hot air heat drying, conductive heat heat drying, infrared drying, and high frequency drying. The silk material treated with water vapor as described above, or the silk material treated with water vapor and dried as necessary is crushed to obtain a silk powder. Silk materials can be pulverized by direct pressure pulverization, roller pulverization, impact pulverization, cylinder pulverization, jet pulverization and other pulverization methods. Cylinder crushing means such as a ball mill and jet mill crushing such as a jet mill are preferred.
シルク粉末は、 1 0 0重量部のジェン系ゴムに対して 0 . 1〜 3 0重量部の量でジェン系ゴムに配合される。 シルク粉末が、 1 0 0 重量部のジェン系ゴムに対して 3 0重量部を超えると、 混合性が低 下し、 ゴム組成物をまとめにく くなる。  The silk powder is blended with the gen rubber in an amount of 0.1 to 30 parts by weight with respect to 100 parts by weight of the gen rubber. When the silk powder exceeds 30 parts by weight with respect to 100 parts by weight of the gen-based rubber, the mixing property is lowered and the rubber composition becomes difficult to collect.
シルク材料を上記のように粉砕して粉砕物を得た後、 粉砕物を篩 分け、 重力分級、 慣性分級、 遠心分級、 沈降分級、 機械的分級、 水 力分級などの分級法により分級して、 所望の粒径を有するシルク粉 末を得ることができる。 本発明においては、 上記の一連の工程によ り得られたシルク粉末のうち、 1 0 m以下の平均粒径を有する所 定量のシルク粉末を所定量のカーボンブラックと共にジェン系ゴム に配合して得られるジェン系ゴム組成物が、 加硫後に、 より小さい 貯蔵弾性率の温度依存性を示すとともに、 より優れた耐摩耗性を示 すことを見出した。 こ こで、 平均粒径とは、 粒子径の体積基準の累 積分布におけるメディ アン径 D 5 0を意味する。 After the silk material is pulverized as described above to obtain a pulverized product, the pulverized product is sieved and classified by classification methods such as gravity classification, inertia classification, centrifugal classification, sedimentation classification, mechanical classification, and hydraulic classification. Silk powder with desired particle size You can get a powder. In the present invention, a predetermined amount of silk powder having an average particle size of 10 m or less among the silk powder obtained by the above-described series of steps is blended with gen-based rubber together with a predetermined amount of carbon black. It was found that the resulting gen-based rubber composition exhibited a lower storage modulus temperature dependency and a better wear resistance after vulcanization. Here, the average particle diameter means the median diameter D 50 in the volume-based cumulative distribution of the particle diameter.
本発明のゴム組成物には、 前記脆化処理した特定の粒径のシルク 粉末を、 前記ジェン系ゴム 1 0 0重量部に対して、 0. 1〜 3 0重 量部、 好ましくは 1〜 1 5重量部の量で配合する。 この配合量が少 ないと所望の効果がなく、 逆に多いと当該ゴム組成物の破断伸び、 強度、 耐摩耗性が著しく低下するので好ましくない。  In the rubber composition of the present invention, the embrittled silk powder having a specific particle diameter is 0.1 to 30 parts by weight, preferably 1 to 30 parts by weight with respect to 100 parts by weight of the gen-based rubber. 1 Blend in an amount of 5 parts by weight. If the blending amount is small, the desired effect is not obtained. On the contrary, if the blending amount is large, the elongation at break, strength, and wear resistance of the rubber composition are remarkably lowered.
本発明のジェン系ゴム組成物に配合される補強性充填剤は、 ゴム 業界で一般的に使用されているものから適宜選択することができる 。 補強性充填剤の具体例としては、 カーボンブラック、 シリカ、 夕 ルク、 炭酸カルシウム、 水酸化アルミニウム、 炭酸マグネシウム等 が挙げられる。 本発明のジェン系ゴム組成物において使用できる力 一ボンブラックの例としては、 例えば S A F、 I S A F、 HA F、 F E F、 G P Fグレードのものが挙げられる。 力一ボンブラックは 、 7 0〜 1 5 0 m2Zgの窒素吸着比表面積 (N2 S A) を有するこ とが好ましい。 N2 S Aが 7 0 m2Z g未満では、 充填量を高めるこ とができるが、 補強性向上効果は乏しい。 N2 S Aが 1 5 0 m2ノ g を超えるカーボンブラックは、 凝集性が高いことからゴム成分に分 散させるのが困難である。 補強性充填剤の配合量が、 少ないと、 十 分な補強効果が得られず、 多過ぎると配合時の加工性およびゴム組 成物の成形性が低下する。 The reinforcing filler blended in the Gen rubber composition of the present invention can be appropriately selected from those generally used in the rubber industry. Specific examples of the reinforcing filler include carbon black, silica, evening milk, calcium carbonate, aluminum hydroxide, magnesium carbonate and the like. Forces that can be used in the gen-based rubber composition of the present invention Examples of the bon black include SAF, ISAF, HA F, FEF, and GPF grades. It is preferable that Kiichi Bon Black has a nitrogen adsorption specific surface area (N 2 SA) of 70 to 1550 m 2 Zg. When N 2 SA is less than 70 m 2 Z g, the filling amount can be increased, but the reinforcing effect is poor. Carbon black N 2 SA is more than 1 5 0 m 2 Roh g are difficult cause distributed in the rubber component because of its high cohesive. If the blending amount of the reinforcing filler is too small, a sufficient reinforcing effect cannot be obtained, and if too large, the processability during blending and the moldability of the rubber composition are lowered.
本発明の好ましいゴム組成物には、 ジェン系ゴム 1 0 0重量部に 対して、 カーボンブラック及び 又はシリカを合計量で 1 0 〜 1 0 0重量部、 好ましくは 2 0 〜 9 0重量部配合する。 この配合量が少 ないとゴムの補強性が低いので好ましくなく、 逆に多いとゴムの加 ェ成形性が悪化したり、 ゴムの発熱が高くなりすぎるので好ましく ない。 A preferable rubber composition of the present invention includes 100 parts by weight of a gen rubber. On the other hand, the total amount of carbon black and / or silica is 10 to 100 parts by weight, preferably 20 to 90 parts by weight. If the blending amount is small, the rubber reinforceability is low, which is not preferable. On the other hand, if the blending amount is large, the rubber moldability is deteriorated and the heat generation of the rubber becomes too high.
本発明のゴム組成物に用いられるシリカの配合量としては、 前記 ジェン系ゴム 1 0 0重量部に対して、 1 0 〜 1 0 0重量部、 好まし くは 4 0 〜 1 0 0重量部、 更に好ましく は 4 0 〜 8 0重量部であり 、 このシリカの配合量が少ないと、 シリカ特有の効果 (例えば補強 度と低温時の弾性率が高次元にバランス化する) が得られなくなる おそれがあるので好ましくなく、 逆に多いと、 当該ゴム組成物の混 合 · 加工性が悪化し、 また硬さが高くなり過ぎて成形しにく くなる おそれがあるので好ましくない。  The amount of silica used in the rubber composition of the present invention is 10 to 100 parts by weight, preferably 40 to 100 parts by weight with respect to 100 parts by weight of the above-mentioned gen-based rubber. More preferably, the amount is 40 to 80 parts by weight. If the amount of silica is small, effects specific to silica (for example, the degree of reinforcement and the elastic modulus at low temperature are balanced in a high dimension) may not be obtained. On the other hand, if the amount is too large, the mixing and processing properties of the rubber composition deteriorate, and the hardness becomes too high, which may make it difficult to mold.
本発明のゴム組成物に用いられる力一ポンプラックの配合量は、 前記ジェン系ゴム 1 0 0重量部に対して、 1 0 〜 1 0 0重量部、 好 ましく は 4 0 〜 1 0 0重量部とすることができる。 この配合量が少 ないと、 ゴム組成物の発熱が高くなり、 転がり抵抗が大きくなるお それがあるので好ましくない。 本発明の第一の態様ではジェン系ゴ ム 1 0 0重量部に対し、 力一ボンブラック 5〜 5 0重量部及びシリ 力 1 0 〜 1 0 0重量部を配合するのが好ましい。  The compounding amount of the force pump rack used in the rubber composition of the present invention is 10 to 100 parts by weight, preferably 40 to 100 parts by weight with respect to 100 parts by weight of the gen rubber. It can be a weight part. If the amount is too small, the heat generation of the rubber composition is increased, and there is a possibility that the rolling resistance is increased, which is not preferable. In the first embodiment of the present invention, it is preferable to mix 5 to 50 parts by weight of bonbon black and 10 to 100 parts by weight of siri-force with respect to 100 parts by weight of gen rubber.
更に本発明のシリカ含有ゴム組成物には、 配合シリカに対して、 3 〜 2 0重量%、 好ましくは 5 〜 2 0重量%、 更に好ましくは 5 〜 1 2重量%のシランカップリ ング剤が配合される。 かかる所定量の シランカップリ ング剤を配合すると、 シリカ一カップリ ング剤ーゴ ム間の反応効率がよく、 ゴム補強性に優れるので好ましい。 当該シ ランカップリ ング剤としては、 含硫黄シランカップリ ング剤の使用 が好ましく、 例えば、 特に、 3 , 3 ' —ビス (トリメ トキシ又はトリ エトキシシリルプロピル)ジスルフィ ドが好ましく、 3 , 3 '一ビス (トリエトキシシリルプロピル)テトラスルフイ ドが最も好ましい。 本発明の第二の態様でジェン系ゴム組成物に補強性充填剤として シリカを配合する場合に、 シリカは、 補強性充填剤の総量の 1 0〜Furthermore, the silica-containing rubber composition of the present invention contains 3 to 20% by weight, preferably 5 to 20% by weight, more preferably 5 to 12% by weight, of the silane coupling agent based on the compounded silica. Is done. It is preferable to add such a predetermined amount of the silane coupling agent because the reaction efficiency between the silica coupling agent and the rubber is good and the rubber reinforcing property is excellent. As the silane coupling agent, a sulfur-containing silane coupling agent is preferably used. For example, in particular, 3, 3′-bis (trimethoxy or trimethoxy Ethoxysilylpropyl) disulfide is preferred, and 3,3′-bis (triethoxysilylpropyl) tetrasulfide is most preferred. In the second aspect of the present invention, when silica is compounded as a reinforcing filler in the Gen rubber composition, the silica is 10 to 10% of the total amount of the reinforcing filler.
9 5重量%を構成することが好ましい。 補強性充填剤の配合量は、Preferably it constitutes 95% by weight. The compounding amount of the reinforcing filler is
1 0 0重量部のジェン系ゴムに対して 4 0〜 1 0 0重量部、 好まし くは 4 0〜 9 0重量部である。 It is 40 to 100 parts by weight, preferably 40 to 90 parts by weight, based on 100 parts by weight of gen rubber.
本発明に係るゴム組成物には、 前記成分に加えて、 更に、 加硫又 は架橋剤、 加硫又は架橋促進剤、 各種ワックス、 オイル、 老化防止 剤、 充填材、 可塑剤などのタイヤ用、 その他のゴム組成物用に配合 されている各種配合剤を配合することができ、 かかる配合剤は、 一 般的な方法で混練してゴム組成物とし、 加硫または架橋することが できる。 これら配合剤の配合量も、 本発明の目的に反しない限り、 従来の一般的な配合量とすることができる。  In addition to the above components, the rubber composition according to the present invention further includes a vulcanization or crosslinking agent, a vulcanization or crosslinking accelerator, various waxes, oils, anti-aging agents, fillers, plasticizers and the like for tires. Various compounding agents compounded for other rubber compositions can be compounded, and these compounding agents can be kneaded by a general method to obtain a rubber composition, which can be vulcanized or crosslinked. The compounding amounts of these compounding agents can be set to conventional general compounding amounts as long as the object of the present invention is not violated.
本発明のジェン系ゴム組成物には、 上記の補強性充填剤およびシ ルク粉末に加えて、 必要に応じて、 当該技術分野で一般的に使用さ れている任意の配合剤、 例えば加硫促進剤、 加硫剤、 加工助剤、 老 化防止剤等を一般的な配合量で適宜添加することができる。 添加剤 の配合に際して用いられる混合方法としては、 一般的な方法を用い ることができ、 一般的には塊状、 ペレッ ト状または粉体状の配合剤 を適切な混合機、 例えばニーダ一、 イ ンターナルミキサー、 バンバ リーミキサー、 ロール等を用いて混合することができる。 各種配合 剤を混合してゴム組成物を調製した後、 一般的な加圧成形または加 硫方法により所望のゴム製品、 例えば空気入りタイヤの部材を形成 することができる。 実施例 以下、 実施例及び比較例によって本発明を更に説明するが、 本発 明の範囲をこれらの実施例に限定するものでないことは言うまでも ない。 In addition to the reinforcing filler and silk powder described above, the gen-based rubber composition of the present invention may optionally contain any compounding agent commonly used in the technical field, such as vulcanization. Accelerators, vulcanizing agents, processing aids, anti-aging agents, and the like can be added as appropriate in general amounts. As a mixing method used for blending the additive, a general method can be used. Generally, a lump, pellet, or powder compound is added to an appropriate mixer such as a kneader, an It can be mixed using an internal mixer, a banbury mixer, a roll or the like. After mixing various compounding agents to prepare a rubber composition, a desired rubber product, for example, a member of a pneumatic tire can be formed by a general pressure molding or vulcanization method. Example EXAMPLES The present invention will be further described below with reference to examples and comparative examples, but it goes without saying that the scope of the present invention is not limited to these examples.
実施例 I 一 1〜 I _ 5及び比較例 I 一 :!〜 I 一 4  Example I 1 1 to I_5 and Comparative Example I 1:! ~ I one 4
試験サンプルの調製  Test sample preparation
表 I 一 1 に示す配合 (重量部) に従って、 硫黄及び加硫促進剤を 除くゴム、 シリカ、 アルカリ処理したシルク粉末などの各配合成分 を 1. 7 リ ツ トルの密閉式バンバリ一ミキサーに装填して 5分間混 合し、 当該ゴムを混合機外に放出して室温まで冷却したマスターバ ツチを、 再度同バンバリ一ミキサーに投入し、 これに硫黄と加硫促 進剤を配合、 混合してゴム組成物を得た。 この未加硫ゴム組成物の 一部を以下のム一二一粘度試験のサンプルに供した。 次いで、 この 残部のゴム組成物を 1 5 c m X 1 5 c mX O . 2 c mの金型中で、 1 6 0で、 2 0分間プレス加硫して試験サンプル (ゴムシート) を 作製し、 以下の引張試験及び粘弾性試験に供した。  In accordance with the formulation (parts by weight) shown in Table I 1-1, each compounding component such as rubber, silica, and alkali-treated silk powder excluding sulfur and vulcanization accelerator is loaded into a 1.7 liter sealed banbury mixer. Then, the master batch that has been mixed for 5 minutes, discharged to the outside of the mixer and cooled to room temperature, is put into the Banbury mixer again, and this is combined with sulfur and a vulcanization accelerator. A rubber composition was obtained. A part of this unvulcanized rubber composition was subjected to the following sample for viscosity test. Then, the remaining rubber composition was press vulcanized at 160 for 20 minutes in a 15 cm X 15 cm X O. 2 cm mold to produce a test sample (rubber sheet). The following tensile test and viscoelasticity test were used.
試験方法  Test method
1 ) ム一ニー粘度 : J I S K 6 3 0 0— 1 に準拠して、 ム一 ニー粘度計にて L型ロー夕 ( 3 8. l mm径、 5. 5 mm厚) を使用 し、 予熱時間 1分、 口一夕の回転時間 4分、 1 0 0 :、 2 r p mの 条件で測定した。 結果は、 比較例 I — 1 を 1 0 0 として指数で示し た。 指数が小さい程、 加工性が優れていることを示す。  1) Mooney Viscosity: In accordance with JISK 6300- 1, preheating time using Moon type viscometer (3 8. l mm diameter, 5.5 mm thickness) with Mooney viscometer The measurement was performed under the conditions of 1 minute, mouth rotation time of 4 minutes, 10:00: 2 rpm. The results are shown as an index with Comparative Example I-1 as 1 0 0. The smaller the index, the better the workability.
2 ) M 3 0 0 : J I S K 6 2 5 1 に準拠して、 3号ダンベル にて 2 mmのゴムシートを打ち抜き、 5 0 0 mm 分の引張速度に て M 3 0 0 ( 3 0 0 %モジュラス) を測定した。 結果は、 比較例 I 一 1 を 1 0 0 として指数で示した。 指数が大きい程、 補強性能に優 れていることを示す。  2) M 3 0 0: According to JISK 6 2 5 1, a 2 mm rubber sheet is punched out with a No. 3 dumbbell, and M 3 0 0 (3 0 0% modulus) at a tensile speed of 5 0 0 mm ) Was measured. The results are shown as an index with Comparative Example I 1 1 as 1 0 0. The larger the index, the better the reinforcement performance.
3 ) E ' ( 6 0 ) : J I S K 6 3 9 4に準拠して、 (株) 東洋精機製作所製の粘弾性スぺク トロメータ一を用いて、 静的歪-3) E '(60): Conforms to JISK 6 3 9 4 Static strain using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho
1 0 %、 動的歪 = ± 2 %、 周波数 = 2 0 H z の条件下で E ' ( 6 0 で) を測定した。 結果は、 比較例 I 一 1 を 1 0 0 として指数で示し た。 指数が大きい程、 高温時の弾性率が高く、 優れていることを示 す。 E '(at 60) was measured under the conditions of 10%, dynamic strain = ± 2%, and frequency = 20 Hz. The results are shown as an index with Comparative Example I 1 1 as 1 0 0. The larger the index, the higher the elastic modulus at high temperature, which is superior.
結果を、 以下の表 I 一 1 に示す。 The results are shown in Table I 1-1 below.
表 I 一 1 Table I 1 1
Figure imgf000013_0001
Figure imgf000013_0001
 note
) RSS#3 9 ) SANTOFLEX 6PPD (フレキシス製) ) RSS # 3 9) SANTOFLEX 6PPD (made by Flexis)
NS 440 (日本ゼオン製) 0 ) サン クス (大内新興化学工業製) NS 440 (Nippon Zeon) 0) Sunkus (Ouchi Shinsei Chemical Industry)
Nipol 1220 (日本ゼオン製) 1 ) Si 69 (デダサ製)  Nipol 1220 (Nippon Zeon) 1) Si 69 (Dedasa)
Zeosil 165MP (ローディ ア製) 2 ) フ。 αセス X- 140 (ジャパンェナジ一製) シ-スト M (東海力一ボン製) 3 ) ノクセラ- NS-G (大内新興化学工業製) アルカリ処理したシルク粉末 (シナノケンシ製) 4 ) ノクセラ- D-G (大内新興化学工業製) ビ -ス'ステアリン酸 ( 日本油脂製) 5 ) 油処理硫黄 (鶴見化学工業製) Zeosil 165MP (Rodia) 2) F. α Seth X-140 (manufactured by Japan Enagi Co., Ltd.) Sisto M (manufactured by Tokai Rikiichi Bonn) 3) Noxera NS-G (manufactured by Ouchi Shinsei Chemical Co., Ltd.) Alkali-treated silk powder (manufactured by Shinano Kenshi) 4) Noxera-DG (Ouchi Shinsei Chemical Industry Co., Ltd.) Bis' stearic acid (manufactured by Nippon Oil & Fats) 5) Oil-treated sulfur (manufactured by Tsurumi Chemical Industry Co., Ltd.)
8 ) 酸化亜鉛 3種 (正同化学工業製) 8) 3 types of zinc oxide (manufactured by Shodo Chemical Industry)
表 I 一 1の結果から、 シリカ配合系ゴム組成物に所定配合量のァ ルカリ処理したシルク粉末を配合した実施例 I 一 1〜 I 一 5では、 加工性能が向上し、 補強性能も向上し、 更に粘弾性を改善している ことが分かる。 From the results of Table I 1-1, in Examples I 1-11-I 1.5, in which a silica compounded rubber composition was blended with a predetermined amount of alkali-treated silk powder, the processing performance was improved and the reinforcement performance was also improved. It can be seen that the viscoelasticity is further improved.
実施例 II— 1〜 II— 6及び比較例 II一 :! 〜 II一 2  Examples II-1 to II-6 and Comparative Example II ~ II 1 2
試験サンプルの調製  Test sample preparation
表 II一 1 に示す配合 (重量部) に従って、 硫黄及び加硫促進剤を 除く ゴム、 シリカ、 乾熱処理されたシルク粉末などの各配合成分を In accordance with the formulation (parts by weight) shown in Table II-11, each compounding component such as rubber, silica, and dry-heat treated silk powder, excluding sulfur and vulcanization accelerators
1. 7 リ ツ トルの密閉式バンバリ一ミキサーに装填して 5分間混合 し、 当該ゴムを混合機外に放出して室温まで冷却したマス夕一バッ チを、 再度同バンバリ一ミキサーに投入し、 これに硫黄と加硫促進 剤を配合、 混合してゴム組成物を得た。 次いで、 このゴム組成物を1. Loaded into 7 liter closed Banbury mixer, mixed for 5 minutes, discharged the rubber out of the mixer and cooled to room temperature, and put it again into the Banbury mixer. A rubber composition was obtained by mixing and mixing sulfur and a vulcanization accelerator. Next, this rubber composition
1 5 c mX l 5 c mX 0. 2 c mの金型中で、 1 6 0 :、 2 0分間 プレス加硫して試験サンプル (ゴムシー ト) を作製し、 以下の E '1 5 c mX l 5 c mX In a 0.2 cm mold, 1600: 20 minutes, press vulcanized to prepare a test sample (rubber sheet).
(貯蔵弾性率) 及び耐摩耗性試験に供した。 (Storage modulus) and wear resistance test.
試験方法  Test method
1 ) E ' ( t a η δ ( 6 0で) ) : J I S K 6 3 9 4に準拠 して、 (株) 東洋精機製作所製の粘弾性スぺク トロメータ一を用い て、 静的歪 = 1 0 %、 動的歪 = ± 2 %、 周波数 = 2 0 H z の条件下 で E ' ( t a n <5 ( 6 0 X ) ) を測定した。 結果は、 比較例 II一 1 を 1 0 0 として指数で示した。 指数が大きい程、 高温時の弾性率が 高く、 優れていることを示す。  1) E '(ta η δ (in 60)): Static strain = 1 0 using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd. according to JISK 6 3 94 E ′ (tan <5 (60 × X)) was measured under the conditions of%, dynamic strain = ± 2%, and frequency = 20 Hz. The results are shown as an index with Comparative Example II 1 as 1 0 0. The larger the index, the higher the elastic modulus at high temperature, which is superior.
2 ) 耐摩耗性 : ランボーン摩耗試験機 (岩本製作所製) を用い て、 荷重 1. 5 k g、 スリ ップ率 5 0 %、 時間 1 0分、 室温の条件 下で測定し、 摩耗減量を、 比較例 II一 1 を 1 0 0 として指数で表示 した。 指数が大きい程、 耐摩耗性が優れていることを示す。  2) Abrasion resistance: Using a Lambourn Abrasion Tester (Iwamoto Seisakusho), measured under conditions of load 1.5 kg, slip rate 50%, time 10 minutes, and room temperature. Comparative Example II 1 was expressed as an index with 1 0 as 1 0 0. The larger the index, the better the wear resistance.
結果は、 以下の表 II一 1 に示す。 表 II— 1 The results are shown in Table II 1-1 below. Table II— 1
Figure imgf000015_0001
Figure imgf000015_0001
(注) 1 ) : RSS#3 8 ) : 6PPD (フレキシス製)  (Note) 1): RSS # 3 8): 6PPD (manufactured by Flexis)
2 ) : Zeosi 1 1165MP (口一ディ ァ製) 9 ) : パラフィ ンワックス 「サンノ ックス」  2): Zeosi 1 1165MP (Made by Koichi Dya) 9): Paraffin wax “Sannox”
(大内新興化学工業製)  (Ouchi Shinsei Chemical Industry)
3 ) : シース ト M (東海カーボン製) 1 0 ) : S169 (デダサ製)  3): Sheath M (Tokai Carbon) 10): S169 (Dedasa)
4 ) : 粉末シルク粉末 (シナノケンシ製) 1 1 ) : プロセス X- 140 (ジャパンェナジ一製) 4): Powdered silk powder (manufactured by Shinano Kenshi) 1 1): Process X-140 (manufactured by Japan Enaji)
5 ) : 乾熱処理シルク粉末 (シナノケンシ製) 1 2 ) : ノ クセラー NS-G (大内新興化学工業製)5): Dry heat treated silk powder (manufactured by Shinano Kenshi) 1 2): Noxeller NS-G (manufactured by Ouchi Shinsei Chemical Industry)
6 ) : ビーズステアリ ン酸 (日本油脂製) 1 3 ) : ノ クセラ一 D-G (大内新興化学工業製)6): Bead stearic acid (manufactured by Nippon Oil & Fats)
7 ) : 酸化亜鉛 3種 (正同化学工業製) 1 4 ) : 油処理硫黄 (鶴見化学工業製) 7): Zinc oxide 3 types (manufactured by Shodo Chemical Co., Ltd.)
表 II一 1の結果から、 シリカ配合系ゴム組成物に所定配合量の乾 熱処理されたシルク粉末を配合した実施例 II一 :!〜 II一 6では、 高 温時での弾性率に優れ、 かつ耐摩耗性にも優れたゴム組成物が得ら れていることが分かる。 From the results shown in Table II-11, Example II was formulated by blending a predetermined amount of dry-heat treated silk powder into a silica compounded rubber composition. It can be seen that ˜II-16 has a rubber composition that is excellent in elastic modulus at high temperature and excellent in wear resistance.
実施例 III一 1及び比較例 III—:!〜 III一 2  Example III 1 1 and Comparative Example III — :! ~ III 1 2
試験サンプルの調製  Test sample preparation
表 III一 1に示す配合 (重量部) に従って、 硫黄及び加硫促進剤 を除く ゴム、 シリカ、 乾熱処理されたシルク粉末などの各配合成分 を 1. 7 リ ッ トルの密閉式バンバリ一ミキサーに装填して 5分間混 合し、 混合機外に放出して室温まで冷却したマスターバッチを、 再 度同バンバリ一ミキサーに投入し、 これに硫黄と加硫促進剤を配合 、 混合してゴム組成物を得た。 次いで、 このゴム組成物を 1 5 c m X 1 5 c mX 0. 2 c mの金型中で、 1 6 0で、 2 0分間プレス加 硫して試験サンプル (ゴムシー ト) を作製し、 以下の方法で 1 0 0 %モジュラス (M 1 0 0) 及び貯蔵弾性率を評価した。 結果は比較 例 III— 1を 1 0 0として指数表示して、 表 III— 1に示す。  In accordance with the formulation (parts by weight) shown in Table III-11, each compounding component such as rubber, silica, and dry-heat treated silk powder, excluding sulfur and vulcanization accelerator, was added to a 1.7-liter sealed banbury mixer. Loaded, mixed for 5 minutes, discharged to the outside of the mixer and cooled to room temperature, the master batch was re-introduced into the Banbury mixer, and this was compounded with sulfur and a vulcanization accelerator, and mixed into a rubber composition. I got a thing. Next, this rubber composition was press-vulcanized in a 15 cm × 15 cm × 0.2 cm mold at 160 for 20 minutes to prepare a test sample (rubber sheet). The method was evaluated for 100% modulus (M 1 0 0) and storage modulus. The results are shown in Table III-1 as an index, with Comparative Example III-1 as 100.
試験方法  Test method
M 1 0 0 : J I S K 6 2 5 1によって、 1 0 0 %伸長時のモ ジュラスを測定した。  M 100: Modulus at 100% elongation was measured by JI S K 6 2 5 1.
貯蔵弾性率 : 東洋精機製作所製粘弾性スぺク トロメータを用い、 静的歪み 1 0 %、 動的歪み ± 2 %、 周波数 2 0 H zの条件下で測定 した。 測定温度は 2 0でである。 表 III一 1 Storage elastic modulus: Measured using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho under the conditions of static strain 10%, dynamic strain ± 2%, and frequency 20 Hz. The measurement temperature is 20 °. Table III 1 1
Figure imgf000017_0001
表 III一 1脚注
Figure imgf000017_0001
Table III-1 Footnote
天然ゴム : R S S # 3  Natural rubber: R S S # 3
カーボンブラック : 東海カーボン (株) 製 シ一ス ト M  Carbon Black: Tokai Carbon Co., Ltd.
S P— 1 : シナノケンシ (株) 製 乾熱処理シルクパウダー S P— 2 : シナノケンシ (株) 製 乾熱処理シルクパウダー ステアリ ン酸 : 日本油脂 (株) 製ビーズステアリ ン酸  S P—1: Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd. S P—2: Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd. Stearic acid: Nippon Oil & Fat Co., Ltd. Bead stearic acid
亜鉛華 : 正同化学 (株) 製 酸化亜鉛 3種  Zinc Hana: Zinc Oxide manufactured by Shodo Chemical Co.
オイル : (株) ジャパンエナジー製 プロセス X— 1 4 0 加硫促進剤 : 大内新興化学 (株) 製 ノクセラー N S— P 硫黄 : 細井化学工業 (株) 製 油処理ィォゥ  Oil: Japan Energy Co., Ltd. Process X— 1 40 0 Vulcanization accelerator: Ouchi Shinsei Chemical Co., Ltd. Noxeller N S— P Sulfur: Hosoi Chemical Industry Co., Ltd.
表 III一 1 に示した通り、 カーボンブラック配合系の比較例 III一 1 (この値を 1 0 0 として指数表示した) に比較してカーボンブラ ック配合系ジェン系ゴム組成物に所定量の乾熱処理されたシルク粉 末 ( S P— 2 ) を配合した実施例 III一 1 では、 1 0 0 %モジュラ ス (M l 0 0 ) 及び Z又は貯蔵弾性率に優れたゴム組成物が得られ る。 As shown in Table III-11, compared with Comparative Example III-11 of the carbon black compound system (this value is indicated as an index), a predetermined amount of carbon black compound system Dry heat treated silk powder In Example III-11, in which the powder (SP-2) was blended, a rubber composition excellent in 100% modulus (Ml 0 0) and Z or storage elastic modulus was obtained.
実施例 III一 2〜 III— 5及び比較例 III— 3〜 III— 4  Example III 1 2 to III-5 and Comparative Example III-3 to III-4
試験サンプルの調製  Test sample preparation
表 III一 2 に示す配合 (重量部) に従って、 硫黄及び加硫促進剤 を除く ゴム、 シリカ、 乾熱処理されたシルク粉末などの各配合成分 を 1. Ί リ ツ トルの密閉式バンバリ一ミキサーに装填して 5分間混 合し、 混合機外に放出して室温まで冷却したマス夕一バッチを、 再 度同バンバリ一ミキサーに投入し、 これに硫黄と加硫促進剤を配合 、 混合してゴム組成物を得た。 次いで、 このゴム組成物を 1 5 c m X 1 5 c m X 0. 2 c mの金型中で、 1 6 0で、 2 0分間プレス加 硫して試験サンプル (ゴムシー ト) を作製し、 以下の E ' (高温貯 蔵弾性率) 及びその温度依存性を評価した。 結果は表 III一 2 に示 す。  In accordance with the formulation (parts by weight) shown in Table III-12, each compounding component such as rubber, silica and dry-heat treated silk powder, excluding sulfur and vulcanization accelerators, was added to 1. Loaded, mixed for 5 minutes, discharged to the outside of the mixer and cooled to room temperature, the mass batch was put into the Banbury mixer again, and this was mixed with sulfur and a vulcanization accelerator. A rubber composition was obtained. Next, this rubber composition was press-vulcanized in a 15 cm × 15 cm × 0.2 cm mold at 160 for 20 minutes to prepare a test sample (rubber sheet). E ′ (high temperature storage modulus) and its temperature dependence were evaluated. The results are shown in Table III-12.
試験方法  Test method
1 ) 高温貯蔵弾性率 E ' ( 6 0で) : J I S K 6 3 9 4に準 拠して、 (株) 東洋精機製作所製の粘弾性スぺク トロメ一夕一を用 いて、 静的歪 = 1 0 %、 動的歪 = ± 2 %、 周波数 = 2 0 H z の条件 下で E ' ( 6 0で) を測定した。 結果は比較例 III— 3の値を 1 0 1) High-temperature storage elastic modulus E '(in 60): Static strain = in accordance with JISK 6 3 94, using a viscoelastic spectrum made by Toyo Seiki Seisakusho Co., Ltd. E '(at 60) was measured under the conditions of 10%, dynamic strain = ± 2%, and frequency = 20Hz. The result is the value of Comparative Example III-3 3 1 0
0 として指数で示した。 この指数が大きい程、 高温時の弾性率が高 く、 優れていることを示す。 Expressed as an index as 0. The larger this index is, the higher the elastic modulus at high temperature is.
2 ) 弾性率の温度依存性 : E 'の測定法を用いて、 [ ( 2 0での 時の Ε ' ) — ( 1 0 0での時の £ ' ) ] を計算した。 結果は比較例 III一 3の値を 1 0 0 として指数で表示した。 この指数が小さい程 2) Temperature dependence of elastic modulus: Using the measurement method of E ', [(Ε' at 2 0) — (£ 'at 1 0 0)] was calculated. The results were expressed as an index with the value of Comparative Example III 1-3 as 1 0 0. The smaller this index,
、 温度依存性に優れることを示す。 表 II卜 2 Shows excellent temperature dependence. Table II 卜 2
Figure imgf000019_0001
表 III一 2脚注
Figure imgf000019_0001
Table III
天然ゴム : R S S # 3  Natural rubber: R S S # 3
力一ポンプラック : 東海カーボン (株) 製 シース 卜 M  Rikiichi Pump Rack: Tokai Carbon Co., Ltd. sheath 卜 M
S P— 3 : シナノケンシ (株) 製 乾熱処理シルクパウダー S P - 4 : シナノケンシ (株) 製 乾熱処理シルクパウダー S P— 5 : シナノケンシ (株) 製 乾熱処理シルクパウダー ステアリ ン酸 : 日本油脂 (株) 製ビーズステアリ ン酸  SP-3: Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd. SP-4: Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd. SP-5: Dry heat treated silk powder manufactured by Shinano Kenshi Co., Ltd. Stearic acid: Beads manufactured by Nippon Oil & Fats Co., Ltd. stearic acid
亜鉛華 : 正同化学 (株) 製 酸化亜鉛 3種  Zinc Hana: Zinc Oxide manufactured by Shodo Chemical Co., Ltd.
オイル : (株) ジャパンエナジー製 プロセス X— 1 4 0 加硫促進剤 : 大内新興化学 (株) 製 ノクセラー N S— P 硫黄 : 細井化学工業 (株) 製 油処理ィォゥ  Oil: Japan Energy Co., Ltd. Process X— 1 40 0 Vulcanization accelerator: Ouchi Shinsei Chemical Co., Ltd. Noxeller N S— P Sulfur: Hosoi Chemical Industry Co., Ltd.
表 III— 2に示した通り、 比較例 III— 3及び III— 4の力一ボン ブラック配合系ジェン系ゴム組成物に、 所定量の乾熱処理されたシ ルク粉末を配合した実施例 III一 2〜 III一 5では、 高温時での弾性 率に優れ、 その温度依存性にも優れたゴム組成物が得られる。 As shown in Table III-2, a predetermined amount of dry heat-treated shim was added to the bonbon black blended Gen rubber composition of Comparative Examples III-3 and III-4. In Examples III-1 to III-15, in which the liquefied powder was blended, a rubber composition having excellent elastic modulus at high temperature and excellent temperature dependency was obtained.
実施例 III一 6〜 III一 8及び比較例 III一 5  Example III 1 6-III 1 8 and Comparative Example III 1 5
試験サンプルの調製  Test sample preparation
表 III一 3に示す配合 (重量部) に従って、 硫黄及び加硫促進剤 を除く ゴム、 シリカ、 アルカリ処理したシルク粉末などの各配合成 分を 1. 7 リ ツ トルの密閉式バンバリ一ミキサーに装填して 5分間 混合し、 混合機外に放出して室温まで冷却したマス夕一バッチを、 再度同バンバリ一ミキサーに投入し、 これに硫黄と加硫促進剤を配 合、 混合してゴム組成物を得た。 このゴム組成物を 1 5 c m X 1 5 c mX 0. 2 c mの金型中で、 1 6 0 :、 2 0分間プレス加硫して 試験サンプル (ゴムシー ト) を作製し、 得られた加硫物の高温貯蔵 弾性率及びその温度依存性を前述の方法で評価し、 結果は、 比較例 III— 5の値を 1 0 0として指数表示し、 表 III— 3に示した。  In accordance with the composition (parts by weight) shown in Table III-13, each composition of rubber, silica, alkali-treated silk powder, etc., excluding sulfur and vulcanization accelerators, is mixed into a 1.7-liter sealed banbury mixer. Loaded, mixed for 5 minutes, discharged to the outside of the mixer and cooled to room temperature, the mass batch was put into the Banbury mixer again, and sulfur and vulcanization accelerator were mixed and mixed into rubber. A composition was obtained. A test sample (rubber sheet) was prepared by press vulcanization of this rubber composition in a mold of 15 cm × 15 cm × 0.2 cm for 160 minutes at 160: 20. The high-temperature storage modulus and its temperature dependence of the sulfide were evaluated by the method described above, and the results are shown in Table III-3 as an index with the value of Comparative Example III-5 as 100.
表 III一 3  Table III 1 3
Figure imgf000020_0001
表 III一 3脚注
Figure imgf000020_0001
Table III-1 3 footnotes
天然ゴム : R S S # 3  Natural rubber: R S S # 3
力一ポンプラック : 東海カーボン (株) 製 シース ト M  Rikiichi Pump Rack: Tokai Carbon Co., Ltd. Sheath M
S P— 6 : シナノケンシ (株) 製 アル力リ処理シルクパウダー SP-6: Shinano Kenshi Co., Ltd. Al force re-treated silk powder
S P— 7 : シナノケンシ (株) 製 アルカ リ処理シルクパウダー ステアリ ン酸 : 日本油脂 (株) 製ビーズステアリ ン酸 S P—7: Shinano Kenshi Co., Ltd. Alkali-treated silk powder Stearic acid: Nippon Oil & Fats Co., Ltd. Bead stearic acid
亜鉛華 : 正同化学 (株) 製 酸化亜鉛 3種  Zinc Hana: Zinc Oxide manufactured by Shodo Chemical Co., Ltd.
オイル : (株) ジャパンエナジー製 プロセス X— 1 4 0 促進剤 : 大内新興化学 (株) 製 ノクセラー N S— P  Oil: Process X— 1 40 manufactured by Japan Energy Co., Ltd. Accelerator: Noxeller N S— P manufactured by Ouchi Shinsei Chemical Co., Ltd.
硫黄 : 細井化学工業 (株) 製 油処理ィォゥ  Sulfur: Hosoi Chemical Co., Ltd.
表 III一 3の結果から、 比較例 III— 5のカーボンブラック配合ジ ェン系ゴム組成物に、 所定配合量のアルカリ処理したシルク粉末を 配合した実施例 III一 6〜III一 8では、 高温貯蔵弾性率に優れ、 そ の温度依存性にも優れたゴム組成物が得られることは明らかである 実施例 IV— 1及び比較例 IV— 1  From the results in Table III-13, the high temperature was obtained in Examples III-1-6 to III-8, in which the carbon black compounded gen-based rubber composition of Comparative Example III-5 was formulated with a predetermined amount of alkali-treated silk powder It is clear that a rubber composition having excellent storage modulus and excellent temperature dependency can be obtained. Example IV-1 and Comparative Example IV-1
シルク粉末の調製 Preparation of silk powder
絹糸屑 (シルクノィル) 2 0 0 gを湿熱処理装置に投入し、 1 1 0 0 k P aの高圧下、 1 8 0 の水蒸気で 3 0分間処理した。 その 後、 1 0 0でで熱風により完全に乾燥させた後、 ポールミルで 1 2 時間粉砕後、 i 0 0 //mの篩を用いて夾雑物を除去した。 このよう にして得られたシルク粉末について、 S y s m e x社製のフロ一式 粒子像分析装置 F P I A— 3 0 0 0を使用して粒子径の体積基準の 累積分布におけるメディ アン径 D 5 0を求めると、 D 5 0は 7. 1 2 4 mであった。  Silk waste was placed in a wet heat treatment apparatus and treated with steam at 180 ° under high pressure of 1100 kPa for 30 minutes. After that, it was completely dried by hot air at 100, and then pulverized by a pole mill for 12 hours, and then impurities were removed using an i 00 / m sieve. For the silk powder obtained in this way, the median diameter D 50 in the volume-based cumulative distribution of the particle diameter is obtained using a flow particle image analyzer FPIA-3100 manufactured by Sysmex. D 50 was 7.1 2 4 m.
実施例及び比較例のゴム組成物の作製 Production of rubber compositions of Examples and Comparative Examples
下記表 IV— 1 に示す配合に従って、 硫黄及び加硫促進剤を除く ゴ ム及びカーボンブラックなどの配合剤を 1. 7 リ ツ トル密閉式バン バリ一ミキサーに装填して約 5分間混合し、 得られた混合物を 1 5 0 でミキサーから放出後、 室温まで冷却した。 次に、 この冷却さ れた混合物に、 ロールを用いて硫黄および加硫促進剤を配合し、 約 3分間混合し、 比較例 IV— 1及び実施例 IV— 1の各未加硫ゴム組成 物を得た。 次に、 各未加硫ゴム組成物を 1 5 c mX l 5 c mX O . 2 c mの金型中で 1 6 0でで 2 0分間プレス加硫して加硫ゴム試験 片を作製し、 下記の試験に供した。 Excluding sulfur and vulcanization accelerators according to the formulation shown in Table IV-1 below. The compounding agents such as lime and carbon black were loaded into a 1.7-liter sealed banbury mixer and mixed for about 5 minutes. The resulting mixture was discharged from the mixer at 150 and then cooled to room temperature. Next, sulfur and a vulcanization accelerator were blended into this cooled mixture using a roll and mixed for about 3 minutes, and then each of the unvulcanized rubber compositions of Comparative Example IV-1 and Example IV-1 Got. Next, each unvulcanized rubber composition was press vulcanized at 16 ° C. for 20 minutes in a 15 cm m × l 5 cm x O. 2 cm mold to produce a vulcanized rubber specimen. It used for the following test.
表 IV— 1 ゴム組成物の配合 (重量部) 及び試験結果  Table IV-1 Composition of rubber composition (parts by weight) and test results
Figure imgf000022_0001
表 IV— 1脚注
Figure imgf000022_0001
Table IV—One footnote
(1) R S S # 3  (1) R S S # 3
(2) キヤポッ トジャパン (株) 製のショ ウブラック N 2 2 0 (N2SA = 115m2/g) (2) Show Black N 2 2 0 (N 2 SA = 115m 2 / g) manufactured by Capot Japan Co., Ltd.
(3) デグッサ製の VN— 3 (CTAB= 182m2 /g) (3) Degussa VN-3 (CTAB = 182m 2 / g)
(4) 上記のシルク粉末  (4) Silk powder
(5) デグッサ社製の S I 6 9 [化学名 : ビス (3-トリエトキシシリ ルプロピル) テトラスルフイ ド) ] (5) SI 6 9 manufactured by Degussa [Chemical name: Bis (3-triethoxysilyl Rupropyl) Tetrasulfide)]
(6) 日本油脂 (株) 製のビーズステアリ ン酸  (6) Bead stearic acid manufactured by Nippon Oil & Fats Co., Ltd.
(7) 正同化学 (株) 製の酸化亜鉛 3種  (7) Three types of zinc oxide manufactured by Shodo Chemical Co., Ltd.
(8) (株) ジャパンエナジー製のプロセス X— 1 4 0  (8) Japan Energy Process X— 1 4 0
(9) 大内新興化学 (株) 製のノクセラー N S— P [化学名 : N— te r t—ブチルー 2 —ベンゾチアゾリルスルフェンアミ ド]  (9) Nouchira N S-P [Chemical name: N-ter t-butyl-2 -benzothiazolylsulfenamide] manufactured by Ouchi Shinsei Chemical Co., Ltd.
(10) 細井化学工業 (株) 製の油処理ィォゥ  (10) Oil treatment made by Hosoi Chemical Co., Ltd.
試験法 Test method
比較例 IV— 1及び実施例 IV— 1のゴム組成物の性能は、 以下に示 す各試験法により求めた。 各試験の結果は、 表 IV— 1 に示したとお りである。  The performances of the rubber compositions of Comparative Example IV-1 and Example IV-1 were determined by the following test methods. The results of each test are shown in Table IV-1.
( 1 ) 貯蔵弾性率  (1) Storage modulus
J I S K 6 3 9 4に準拠して、 (株) 東洋精機製作所製の粘弾 性スぺク トロメータ一を用いて、 静的歪 1 0 %、 動的歪 ± 2 %、 周 波数 2 0 Η ζおよび温度 1 0 0での条件下で、 貯蔵弾性率 (以下、 In accordance with JISK 6 3 94, using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho Co., Ltd., static strain 10%, dynamic strain ± 2%, frequency 20 0 ζ ζ And storage modulus (hereinafter,
「Ε ' (100で) 」 と表す) を求めた。 試験結果は、 比較例 IV— 1の 結果を 1 0 0 として指数で表わした。 この指数が大きいほど、 弾性 率が高く、 1 0 0 という高温で優れた動的性質を有することを示 す。 "Represented as ')' (in 100)"). The test results were expressed as an index with the result of Comparative Example IV-1 as 100. The larger this index is, the higher the modulus of elasticity is, indicating that it has excellent dynamic properties at a high temperature of 100.
( 2 ) 貯蔵弾性率の温度依存性  (2) Temperature dependence of storage modulus
試験温度を 2 0でにしたことを除いて上記 「 ( 1 ) 貯蔵弾性率」 と同じ試験装置および試験条件で貯蔵弾性率 (以下、 「Ε ' (20で ) 」 と表す) を求めた。 次に、 温度 2 0 での貯蔵弾性率と温度 1 0 0ででの貯蔵弾性率の差、 即ち E ' (20で) - Ε ' (lOOt:) を求 め、 この差を 2 0でから 1 0 0 までの貯蔵弾性率の温度依存性と した。 試験結果は、 比較例 IV— 1の貯蔵弾性率の温度依存性を 1 0 0 として指数で表わした。 この指数が小さいほど、 比較例 IV— 1 と 比べて貯蔵弾性率の温度依存性がより小さいことを示す。 結果は表The storage elastic modulus (hereinafter referred to as “Ε ′ (in 20)”) was determined using the same test equipment and test conditions as in the above “(1) Storage elastic modulus” except that the test temperature was set at 20. Next, the difference between the storage elastic modulus at the temperature 20 and the storage elastic modulus at the temperature 100, that is, E '(at 20)-Ε' (lOOt :) is obtained. The temperature dependence of the storage modulus up to 100 was assumed. The test results were expressed as an index with the temperature dependence of the storage elastic modulus of Comparative Example IV-1 as 100. The smaller this index is, the comparative example IV-1 and Compared to this, the temperature dependence of the storage modulus is smaller. The result is a table
IV— 1 に示したとおりである。 IV—As shown in 1.
上記表 I V— 1の結果から、 ジェン系ゴムに、 所定量の補強性充填 剤とともに上記のとおり得られたシルク粉末を所定量配合すると、 From the results of Table I V-1 above, when a predetermined amount of silk powder obtained as described above together with a predetermined amount of reinforcing filler is added to Gen-based rubber,
1 0 0ででの貯蔵弾性率が高くなり、 しかも、 貯蔵弾性率の温度依 存性が小さくなることが判る。 1 0 0 という高温での貯蔵弾性率 が高く、 かつ、 貯蔵弾性率の温度依存性が小さいために、 本発明の ジェン系ゴム組成物を、 例えばタイヤ部材に使用して空気入りタイ ャを形成すると、 使用温度や雰囲気温度に左右されないという利点 がある。 産業上の利用可能性 It can be seen that the storage elastic modulus at 100 is increased and the temperature dependence of the storage elastic modulus is reduced. Since the storage elastic modulus at a high temperature of 100 is high and the temperature dependence of the storage elastic modulus is small, the geno rubber composition of the present invention is used for, for example, a tire member to form a pneumatic tire. Then, there is an advantage that it is not influenced by the use temperature or the ambient temperature. Industrial applicability
以上の通り、 本発明のゴム組成物は、 高温弾性率、 弾性率の温度 依存性、 耐摩耗性に優れるので、 特に、 タイヤ部材、 特に トレッ ド 部、 特にキャップトレッ ド、 ァ一ダートレッ ド、 サイ ド トレッ ドや 力一カスコート、 ベルトコード、 ビードフイ ラ一部及びリムクッシ ヨン部などとして、 空気入りタイヤに利用するのに極めて有用であ る。  As described above, the rubber composition of the present invention is excellent in high-temperature elastic modulus, temperature dependency of elastic modulus, and wear resistance. It is extremely useful for use in pneumatic tires as side treads, force caskets, belt cords, bead filler parts and rim cushions.

Claims

請 求 の 範 囲 The scope of the claims
1. (A) ジェン系ゴム 1 0 0重量部、 1. (A) Geno rubber 100 parts by weight,
(B) 脆化処理した後、 タイ ラー篩基準による 2 5 0メッシュの篩 で最大粒径が 6 となるよう粉砕されたシルク粉末 0. 1〜 3 0重量部並びに  (B) 0.1 to 30 parts by weight of silk powder ground after embrittlement and pulverized to a maximum particle size of 6 with a 25.0 mesh sieve according to the Tyler sieve standard
( C ) カーボンブラック及び Z又はシリカの補強性充填剤 1 0〜 1 0 0重量部  (C) Carbon black and Z or silica reinforcing filler 10 to 100 parts by weight
を含んでなるゴム組成物。 A rubber composition comprising
2. 前記脆化処理がアルカリ処理、 乾熱処理又は水蒸気処理であ る請求項 1 に記載のゴム組成物。  2. The rubber composition according to claim 1, wherein the embrittlement treatment is alkali treatment, dry heat treatment or steam treatment.
3. 前記アルカリ処理がアルカリ を用いて 9 0で以上 1 0 O t:未 満で 1時間以上 2 4時間以下の熱処理である請求項 2に記載のゴム 組成物。  3. The rubber composition according to claim 2, wherein the alkali treatment is a heat treatment using alkali at 90 to 10 Ot: less than 1 hour to 24 hours.
4. 前記乾熱処理が密閉乾燥機中で、 シルク原料を 1 8 0〜 3 0 0での温度条件下に 3 0〜 4 8 0分間熱処理されて得られたシルク 粉末である請求項 2に記載のゴム組成物。  4. The silk powder obtained by heat-treating the silk raw material for 30 to 48 minutes under a temperature condition of 180 to 300 in a closed dryer in the dry heat treatment. Rubber composition.
5. 前記水蒸気処理の処理条件が温度 1 0 0〜 2 3 及び圧力 6 4 0〜 3 1 0 0 k P aである請求項 2に記載のゴム組成物。  5. The rubber composition according to claim 2, wherein the treatment conditions of the steam treatment are a temperature of 100 to 2 3 and a pressure of 6 40 to 3 100 kPa.
6. 前記シルク粉末の平均粒径が 5 0 /z m以下である請求項 1〜 5のいずれか 1項に記載のゴム組成物。  6. The rubber composition according to any one of claims 1 to 5, wherein the silk powder has an average particle size of 50 / z m or less.
7. 前記補強性充填剤が、 当該補強性充填剤の総量を基準として 、 シリカを 1 0〜 9 5重量%の含有量で含み、 前記ゴム組成物が、 前記シリカと前記シルク粉末との総量を基準として、 1〜 2 0重量 %のシランカップリ ング剤を更に含む請求項 1〜 6のいずれか 1項 に記載のゴム組成物。  7. The reinforcing filler contains 10 to 95% by weight of silica based on the total amount of the reinforcing filler, and the rubber composition contains the total amount of the silica and the silk powder. The rubber composition according to any one of claims 1 to 6, further comprising 1 to 20% by weight of a silane coupling agent based on the above.
8. 請求項 1〜 7のいずれか 1項に記載のゴム組成物をタイヤ部 材に用いた空気入りタイヤ 8. The rubber composition according to any one of claims 1 to 7 is applied to a tire portion. Pneumatic tire used as material
PCT/JP2007/071852 2006-11-07 2007-11-05 Rubber composition and pneumatic tire using the same WO2008056797A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-301507 2006-11-07
JP2006301507A JP4137966B2 (en) 2006-11-07 2006-11-07 Rubber composition
JP2006342889A JP4180093B2 (en) 2006-12-20 2006-12-20 Rubber composition
JP2006-342889 2006-12-20
JP2007135803A JP4229969B2 (en) 2007-05-22 2007-05-22 Diene rubber composition
JP2007-135803 2007-05-22
JP2007-181311 2007-07-10
JP2007181311 2007-07-10

Publications (1)

Publication Number Publication Date
WO2008056797A1 true WO2008056797A1 (en) 2008-05-15

Family

ID=39364607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071852 WO2008056797A1 (en) 2006-11-07 2007-11-05 Rubber composition and pneumatic tire using the same

Country Status (1)

Country Link
WO (1) WO2008056797A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124793A (en) * 1979-03-22 1980-09-26 Kanebo Ltd Preparation of aqueous solution of silk fibroin peptide
JPS5845232A (en) * 1981-09-14 1983-03-16 Kikkoman Corp Preparation of silk fibroin powder
JPH0335024A (en) * 1989-06-30 1991-02-15 Hosokawa Micron Corp Production of silk powder
JPH05247855A (en) * 1992-03-06 1993-09-24 Nippon Valqua Ind Ltd Composition for artificial leather and artificial leather therefrom
JPH0670702A (en) * 1992-08-27 1994-03-15 Shinano Kenshi Kk Production of silk powder
JPH08332818A (en) * 1995-06-09 1996-12-17 Suzuki Sogyo Co Ltd Snow chain substitute
JPH09279043A (en) * 1996-04-15 1997-10-28 Yokohama Rubber Co Ltd:The Rubber composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124793A (en) * 1979-03-22 1980-09-26 Kanebo Ltd Preparation of aqueous solution of silk fibroin peptide
JPS5845232A (en) * 1981-09-14 1983-03-16 Kikkoman Corp Preparation of silk fibroin powder
JPH0335024A (en) * 1989-06-30 1991-02-15 Hosokawa Micron Corp Production of silk powder
JPH05247855A (en) * 1992-03-06 1993-09-24 Nippon Valqua Ind Ltd Composition for artificial leather and artificial leather therefrom
JPH0670702A (en) * 1992-08-27 1994-03-15 Shinano Kenshi Kk Production of silk powder
JPH08332818A (en) * 1995-06-09 1996-12-17 Suzuki Sogyo Co Ltd Snow chain substitute
JPH09279043A (en) * 1996-04-15 1997-10-28 Yokohama Rubber Co Ltd:The Rubber composition

Similar Documents

Publication Publication Date Title
JP4783356B2 (en) Rubber composition
JP5639121B2 (en) Rubber composition for tire and pneumatic tire
JP5321751B2 (en) Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire
JP2011144324A (en) Rubber composition for tire and pneumatic tire
JP2008169314A (en) Pneumatic tire
JP6434585B1 (en) Pneumatic tire
JP4278212B2 (en) Heavy duty tire or tread rubber composition for retreaded tire
JP2007145898A (en) Rubber composition for coating carcass cord and tire having carcass using the same
JP2011057796A (en) Rubber composition for tire and pneumatic tire
JP2009029961A (en) Masterbatch for rubber composition and its manufacturing method
JP5654410B2 (en) Rubber composition for tire and pneumatic tire
JP2009114252A (en) Rubber composition for tire tread
JP5038040B2 (en) Rubber composition for tire tread and tire
JP5654409B2 (en) Rubber composition for tire and pneumatic tire
JP5615746B2 (en) Rubber composition and pneumatic tire
JP2007099896A (en) Rubber composition
WO2008056797A1 (en) Rubber composition and pneumatic tire using the same
JP2017075265A (en) Tire rubber composition
JP4137966B2 (en) Rubber composition
JP5418142B2 (en) Rubber composition for tire
JP4229969B2 (en) Diene rubber composition
JP2009114253A (en) Rubber composition for tire tread
JP4180093B2 (en) Rubber composition
JP6701664B2 (en) Rubber composition for tires
JP5937443B2 (en) Rubber composition for tire and pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831583

Country of ref document: EP

Kind code of ref document: A1