WO2008056445A1 - Bearing device for wheel - Google Patents

Bearing device for wheel Download PDF

Info

Publication number
WO2008056445A1
WO2008056445A1 PCT/JP2007/001214 JP2007001214W WO2008056445A1 WO 2008056445 A1 WO2008056445 A1 WO 2008056445A1 JP 2007001214 W JP2007001214 W JP 2007001214W WO 2008056445 A1 WO2008056445 A1 WO 2008056445A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
bearing device
rolling
rolling surface
hub
Prior art date
Application number
PCT/JP2007/001214
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Hirai
Takayasu Takubo
Kiyotake Shibata
Syougo Suzuki
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006299838A external-priority patent/JP2008115949A/en
Priority claimed from JP2006308301A external-priority patent/JP2008121840A/en
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2008056445A1 publication Critical patent/WO2008056445A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • F16C2240/34Contact angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a wheel bearing device that rotatably supports a wheel of an automobile or the like, in particular, while increasing the rigidity of the bearing while reducing the weight and reducing the cost by reducing the material size.
  • the present invention relates to a wheel bearing device.
  • wheel bearing devices for supporting wheels of automobiles and the like support a hub wheel for mounting a wheel rotatably via a rolling bearing, and there are a drive wheel and a driven wheel.
  • the inner ring rotation method is generally used for driving wheels, and both the inner ring rotation method and outer ring rotation method are used for driven wheels.
  • a double-row angular contact ball bearing that has a desired bearing rigidity, exhibits durability against misalignment, and has a low rotational torque from the viewpoint of improving fuel efficiency is often used.
  • a double-row anguilla ball bearing a plurality of poles are interposed between the fixed ring and the rotating ring, and a predetermined contact angle is given to the pole to contact the fixed and rotating rings.
  • the wheel bearing device has a structure called a first generation in which a wheel bearing composed of a double-row anguilla ball bearing or the like is fitted between a knuckle and a hub wheel constituting a suspension device.
  • Second generation structure with body mounting flange or wheel mounting flange formed directly on the outer periphery of the outer member, or third generation structure with one inner raceway formed directly on the outer periphery of the hub wheel, or hub It is roughly divided into the 4th generation structure in which the inner rolling surface is directly formed on the outer circumference of the outer joint member of the wheel and constant velocity universal joint.
  • the side closer to the outer side of the vehicle in the state assembled to the vehicle is referred to as the outer side (left side in the drawing), and the side closer to the center is referred to as the inner side (right side in the drawing).
  • a wheel bearing device composed of such double-row rolling bearings
  • the left and right rows of bearings have the same specifications, so that they have sufficient rigidity when stationary.
  • the optimal rigidity is not always obtained when turning.
  • the position of the vehicle at rest is determined so that it acts on the approximate center of the double-row rolling bearings, but when turning, the opposite side of the turning direction (when turning right, the vehicle Larger radial load or axial load is applied to the left axle. Therefore, during turning, it is effective to increase the rigidity of the outer bearing row rather than the inner one. Therefore, a wheel bearing device shown in FIG. 10 is known as a wheel bearing device that is highly rigid without increasing the size of the device.
  • This wheel bearing device 50 has a vehicle body mounting flange 5 1 c integrally attached to a knuckle (not shown) on the outer periphery, and a double row outer rolling surface 5 1 on the inner periphery.
  • the outer member 5 1 formed with a and 5 1 b and the wheel mounting flange 5 3 for attaching a wheel (not shown) at one end are integrally formed, and the outer rolling surface 5 1 is provided on the outer periphery.
  • a hub wheel 5 2 formed with one inner rolling surface 5 2 a opposite to a, a small-diameter step portion 5 2 b extending in the axial direction from the inner rolling surface 5 2 a, and the hub wheel 52
  • An inner member 5 5 composed of an inner ring 5 4 that is externally fitted to the small diameter step portion 5 2 b and has the other inner rolling surface 5 4 a opposite to the outer rolling surface 5 1 b, and both of these rolling Double-row annulus ball bearings with double-row poles 5 6 and 5 7 accommodated between the surfaces, and cages 5 8 and 5 9 that hold these double-row poles 5 6 and 5 7 in a rotatable manner Consists of That.
  • the inner ring 54 is fixed in the axial direction by a caulking portion 52c formed by plastically deforming the small-diameter stepped portion 52b of the hub wheel 52 in the radially outward direction.
  • Seals 60 and 61 are attached to the opening of the annular space formed between the outer member 51 and the inner member 55, and leakage of the lubricating grease sealed inside the bearing Prevents rainwater and dust from entering the bearing.
  • the pitch circle diameter D 1 of the poles 56 on the one side of the counter is set to be larger than the pitch circle diameter D 2 of the poles 57 on the one side.
  • the inner raceway surface 5 2 a of the hub wheel 52 is expanded in diameter than the inner raceway surface 5 4 a of the inner race 54, and the outer raceway surface 5 on the outer side of the outer member 51 is also added.
  • 1 a is larger in diameter than the outer rolling surface 5 1 b on the inner side.
  • the outer pole 5 6 is accommodated more than the pole 5 7 on the inner side.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 4 _ 1 0 8 4 4 9
  • the outer member 51 and the hub wheel 52 are manufactured from a bar material as a raw material through forging, turning, heat treatment, grinding, superfinishing process, and the like.
  • the outer member 51 includes a side wall on the inner side of the vehicle body mounting flange 51 that contacts the knuckle, an outer peripheral surface on the inner side, and an inner peripheral surface from both end surfaces.
  • the outer shape is formed with a predetermined turning allowance left by forging (indicated by a two-dot chain line in the figure).
  • the groove shoulder 6 2 when a moment load is applied.
  • the corner (boundary) between the outer rolling surface 5 1 b on the inner side and the shoulder 6 3 of the groove is smaller than the outer rolling surface 5 1 a on the outer side.
  • the size of the groove shoulder 63 is strictly regulated because it has a large impact and may cause an edge load when riding on the shoulder.
  • edge load is an excessive stress concentration that occurs at corners, etc., and is an event that is one of the factors of early delamination.
  • the turning of the groove shoulders 6 2 and 6 3 etc. in the outer member 5 1 not only causes material loss but also increases the number of processing steps, which is an impediment to cost reduction. It was.
  • the problem is how to reduce the material loss of materials by reducing the number of turning processes as well as the forging shapes of the outer member 51 and the hub wheel 52 in the wheel bearing device. Has become It was.
  • the present invention has been made in view of such circumstances, and is a lightweight and compact wheel bearing that increases the rigidity of the bearing while achieving compactness and reduces the cost by reducing material loss.
  • the object is to provide a device.
  • Another object of the present invention is to reduce the number of processing steps and reduce the cost, and to improve the lubricity and prolong the life of the bearing.
  • the present invention is an outer member that integrally has a vehicle body mounting flange for mounting to the vehicle body on the outer periphery, and has a double row outer rolling surface formed on the inner periphery. And a wheel mounting flange for mounting the wheel at one end, and one inner rolling surface facing the outer rolling surface of the double row on the outer circumference, and from the inner rolling surface in the axial direction.
  • a hub wheel having a small-diameter step portion formed through an extending shaft-like portion, and a small-diameter step portion of the hub wheel that is press-fitted through a predetermined squeeze opening, and faces the outer rolling surface of the double row on the outer periphery.
  • the wheel mounting flange is integrally formed at one end portion, one inner rolling surface of the double row inner rolling surfaces on the outer periphery, and an axial shape extending in the axial direction from the inner rolling surface.
  • at least the shaft part of the hub ring is left as the forging surface, so the parts to be deleted by turning can be reduced as much as possible to reduce material loss and to reduce costs. Can do.
  • the scale attached to the surface of the shaft-shaped portion is removed and the burrs at the respective corner portions are removed. Etc. are also removed at the same time and are smoothly rounded to reliably prevent abnormal noise during operation, abnormal vibration, and rotation failure due to scale loss. Improvements can be made. In addition, a compressive residual stress is formed on the surface of the shaft-like portion, and it is possible to improve the strength and durability against the moment load applied to the hub wheel. ⁇ ⁇ ⁇ Claim 2
  • shoulder portions adjacent to the outer rolling surfaces of the double rows of the outer members are respectively formed, and these shoulder portions are formed at a predetermined groove depth by turning.
  • the groove depth of the outer rolling surface is severely restricted, and the edge load is prevented from occurring due to the shoulder ride. It is possible to reduce material loss by reducing the number of parts to be deleted by turning as much as possible.
  • the pitch circle diameter of the outer rolling element group of the double row rolling elements is set to be larger than the pitch circle diameter of the inner rolling element group. If the shaft-shaped portion of the hub wheel is formed in a taper shape having a predetermined inclination angle between the force counter portion formed on the groove bottom portion of the inner rolling surface and the small-diameter step portion, the strength and rigidity It is possible to reduce the material loss without reducing the material loss and reduce material loss by reducing the number of parts to be deleted by turning as much as possible. ⁇ ⁇ ⁇ Claim 4
  • a mortar-shaped recess is formed at the outer end of the hub wheel, and the depth of the recess is at least a groove bottom of the inner rolling surface of the hub wheel. If the outer shape of the hub ring is formed to have a substantially uniform thickness corresponding to the recess, the material loss of the hub ring is reduced without reducing the rigidity and rigidity. In addition, the plastic fluidity of the material in the forging process can be increased, and the machining accuracy can be improved. ⁇ ⁇ ⁇ Claim 5
  • annular notch portions are formed by cutting at both ends of the shoulder portion, the number of processing steps can be reduced and the cost can be reduced, and lubricity can be improved. It is possible to provide a wheel bearing device that has been improved to extend the life of the bearing.
  • the notch portion may be formed on a tapered surface having a predetermined inclination angle from the shoulder portion, and the notch portion may be the shoulder portion.
  • the cross section may be formed in a substantially rectangular shape.
  • the crossing angle with the outer rolling surface becomes large, so the edge of the outer rolling surface Edge loading occurs at the edge, and the contact ellipse of the rolling element can be prevented from climbing over the shoulder, which is disengaged from the outer rolling surface.
  • a wheel bearing device has an outer member integrally including a vehicle body mounting flange for mounting to the vehicle body on the outer periphery, and a double row outer rolling surface formed on the inner periphery.
  • a wheel mounting flange for attaching the wheel to the unit, and an inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and an axial shape extending in an axial direction from the inner rolling surface
  • a hub wheel having a small-diameter step portion formed through the portion, and the other inner side that is press-fitted into the small-diameter step portion of the hub wheel through a predetermined shim opening and faces the outer surface of the double row on the outer periphery.
  • An inner member formed of an inner ring formed with a rolling surface, and a double row rolling element that is slidably accommodated between the inner member and the outer member, and at least the hub. Since the shaft part of the ring is left as the forged skin, the part to be deleted by turning Can help reduce the Materia Rurosu and brought as much as possible reduced, it is possible to reduce the cost.
  • a flange is integrated, and one outer rolling surface facing the outer rolling surface of the double row on the outer periphery, and a te / -shaped shaft portion extending in the axial direction from the inner rolling surface
  • a hub ring having a small-diameter step portion, and an inner ring that is press-fitted into the small-diameter step portion of the hub ring and has the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery.
  • the pitch circle diameter of the rolling element group is the pitch circle diameter of the inner rolling element group.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention
  • FIG. 2 (a) is a longitudinal sectional view showing a single outer member of FIG. 1
  • FIG. Fig. 3 (a) is an explanatory diagram showing shot blasting of the outer member in Fig. 1, and (b) is shot blasting of the hub wheel in Fig. 1.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention
  • FIG. 2 (a) is a longitudinal sectional view showing a single outer member of FIG. 1
  • FIG. Fig. 3 (a) is an explanatory diagram showing shot blasting of the outer member in Fig. 1
  • (b) is shot blasting of the hub wheel in Fig. 1.
  • the wheel bearing device is for a driven wheel called a third generation, and is an inner member.
  • the inner member 1 includes a hub ring 4 and an inner ring 5 press-fitted into the hub ring 4 through a predetermined shim opening.
  • the hub wheel 4 integrally has a wheel mounting flange 6 for mounting a wheel (not shown) at an end portion on the outer side, and an inner rolling surface 4a on one (outer side) on the outer periphery.
  • a small-diameter step portion 4b is formed through a shaft-like portion 7 extending in the axial direction from the inner rolling surface 4a.
  • hub ports 6 a for fixing the wheels in the circumferential direction of the wheel mounting flange 6 are planted.
  • the inner ring 5 is formed with the other (inner one side) inner rolling surface 5a on the outer periphery, and is press-fitted into the small-diameter stepped portion 4b of the hub ring 4 to form a back-to-back type double-row angular bearing.
  • the end of the small-diameter step 4b is fixed in the axial direction by a caulking portion 8 formed by plastic deformation.
  • the inner ring 5 and the rolling element 3 are made of high carbon chrome steel such as S U J 2 and hardened in the range of 58 to 64 HRC up to the core part by quenching.
  • the hub wheel 4 is formed of medium and high carbon steel containing 0.44 to 0.80 wt% of carbon such as S53C, and the inner ring surface 4a and the inner ring of the wheel mounting flange 6 are formed.
  • the surface hardness is hardened to a range of 58 to 64 HRC by induction hardening from the base 6b on the side to the small diameter step 4b.
  • the caulking part 8 is the table after forging. It is said that the surface hardness remains. This provides sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange 6, improves the fretting resistance of the small-diameter stepped portion 4b that becomes the fitting portion of the inner ring 5, and makes it minute. The plastic working of the caulking portion 8 can be performed smoothly without generating any cracks.
  • the outer member 2 integrally has a vehicle body mounting flange 2c to be attached to a knuckle (not shown) on the outer periphery, and faces the inner rolling surface 4a of the hub wheel 4 on the inner periphery.
  • An outer rolling surface 2 a on one side of the outer ring and an outer rolling surface 2 b on the inner side facing the inner rolling surface 5 a of the inner ring 5 are formed in a body. Double-row rolling elements 3 and 3 are accommodated between these rolling surfaces and are held by the cages 9 and 10 so as to be freely rollable.
  • This outer member 2 is formed of medium and high carbon steel containing carbon 0.40 to 0.80 wt% such as S 53 C, and the double row outer rolling surfaces 2a and 2b have high frequency.
  • the surface hardness is hardened to a range of 58 to 64 HRC by quenching.
  • Seals 11 and 12 are attached to the opening of the annular space formed between the outer member 2 and the inner member 1, and leakage of grease sealed inside the bearing to the outside Prevents rainwater and dust from entering the bearing.
  • a double-row angular ball bearing using a pole as the rolling element 3 is illustrated, but the present invention is not limited to this, and a double-row tapered roller bearing using a tapered roller as the rolling element 3 may be used.
  • the pitch circle diameter P CDo of the three rolling elements on the one side is set larger than the pitch circle diameter P CD i of the three rolling elements on the inner side.
  • the size of the rolling elements 3 and 3 in the double row is the same, but due to the difference in the pitch circle diameters PCD o and PCD i, the number of rolling elements in the outer rolling element 3 group is the rolling element 3 in the inner side. More than the number of rolling elements in the group.
  • the outer shape of the hub wheel 4 is that the counter part 13 from the groove bottom part of the inner rolling surface 4a, the tapered shaft part 7 extending in the axial direction from the counter part 13 and the inner ring 5 project. It continues to the small diameter step 4b via the mated shoulder 7a.
  • a mortar-shaped recess 14 is formed at the outer end of the hub wheel 4. The depth of this recess 14 is the depth to the groove bottom of the inner rolling surface 4 a. Uta one side is formed in a substantially uniform thickness.
  • the inner raceway surface 4 a of the hub ring 4 is formed with a diameter larger than that of the inner raceway surface 5 a of the inner ring 5 with the difference between the pitch circle diameters PCD ⁇ and PCD i.
  • the outer rolling surface 2a on one side of the outer side is wider than the outer rolling surface 2b on the inner side due to the difference in pitch circle diameters PCDo and PCDi.
  • the outer rolling surface 2a on the outer side is connected to the cylindrical shoulder portion 16 via the taper-shaped shoulder portion 15 and the inner diameter portion 15a. It is formed in an inner peripheral shape that reaches the outer rolling surface 2b.
  • the pitch circle diameter PCD o of the outer side rolling elements 3 group is formed larger than the pitch circle diameter PCD i of the inner side rolling elements 3 group.
  • the number of rolling elements 3 is also set so that the number of rolling elements in the outer rolling element group 3 is larger than the number of rolling elements in the inner one rolling element group.
  • the bearing rigidity of the outer side can be increased compared to the side, and the life of the bearing can be extended.
  • the recess 14 is formed in the outer end of the hub ring 4 along the outer shape, and the outer side of the hub ring 4 is set to a uniform thickness, so that the weight of the device can be reduced. The conflicting problem of high rigidity can be solved.
  • the outer member 2 is formed into a predetermined forging shape as shown in FIG. 2 (a) by forging from the raw material bar (shown by a two-dot chain line in the figure). ) Specifically, the inner side surface 17 of the vehicle body mounting flange 2 c with which a knuckle (not shown) abuts, the inner side outer peripheral surface 18 on which the knuckle is fitted, and both end surfaces 19, 2 0, seal fitting surface 2 1 and 2 2 to which seals 1 and 1 2 are mounted, double row outer rolling surface 2 a and 2 b, large diameter shoulder 15 and small diameter side The forging process is performed in a state where the shoulder portion 16 is left with a predetermined turning allowance.
  • the shoulder portion 15 on the large diameter side and the shoulder portion 16 on the small diameter side are formed to a predetermined groove depth by turning, and the inner diameter between the shoulder portions 15 and 16 is
  • the part 15 a is formed by a taper surface having a predetermined inclination angle. That is, the inner diameter portion 15 a is left as a forged surface without being turned.
  • the outer rolling surface 2 The groove depths of a and 2b are strictly regulated, preventing edge load from being raised on the shoulder, and reducing material loss by reducing the number of parts removed by turning as much as possible. Cost reduction can be achieved
  • the outer member 2 is hardened by induction hardening after turning, and the inner diameter portion 15a is removed by shot blasting before grinding. Is done. That is, as shown in FIG. 3 (a), steel is directed from the nozzle 27 disposed radially inward of the outer member 2 toward the inner peripheral surface of the outer member 2 that is rotatably set. This is done by jetting media such as beads.
  • the particle size of the steel beads is 20 to 10 0; U m, the injection time is about 90 seconds, the injection pressure is 1 to 3 kg / cm 2 , and the nozzle 27 is indicated by the arrow Shot blasting is performed while moving in the axial direction.
  • the scale attached to the surface of the inner diameter portion 15 a is removed, and burrs and the like at the respective corner portions are removed at the same time and are smoothly rounded. Therefore, it is possible to reliably prevent abnormal noise during operation, abnormal vibration, and rotation failure due to scale dropout and improve product quality. Further, compressive residual stress is formed on the surface of the inner diameter portion 15a, and the strength and durability can be improved.
  • the hub wheel 4 is formed into a predetermined forging shape as shown in FIG. 2 (b) by forging from a bar material as a material, like the outer member 2 described above (FIG. 2). (Indicated by a chain double-dashed line). Specifically, the outer side surface 2 5 of the wheel mounting flange 6 with which the brake rotor (not shown) abuts, including the end surfaces 2 3 and 2 4, the pilot portion 2 6, and the base portion of the wheel mounting flange 6 6 b, the inner rolling surface 4 a, the counter part 13 and the small diameter step part 4 b are forged while leaving a predetermined turning allowance.
  • the base portion 6b which is the land portion of the seal 11 on the outer side, and the inner rolling surface 4a, the counter portion 13 and the small diameter step portion 4b are turned by turning.
  • the shaft-shaped portion 7 is formed with a taper surface having a predetermined inclination angle. That is, the shaft 7 is forged without turning. It is considered to be skin.
  • the groove depth of the inner rolling surface 4a is strictly regulated, and it is possible to prevent the occurrence of edge stagnation by riding on the shoulder, and to reduce the number of parts to be deleted by turning as much as possible. Material loss can be reduced and costs can be reduced.
  • the hub wheel 4 is hardened by induction hardening after turning, as with the outer member 2 described above, and the shaft 7 is scaled by shot blasting before grinding. Removed. That is, as shown in FIG. 3 (b), the medium is ejected from the nozzle 28 disposed radially outward of the hub wheel 4 toward the outer peripheral surface of the hub wheel 4 that is rotatably set. Done. As a result, the scale attached to the surface of the shaft-like portion 7 is removed, and burrs and the like at the respective corner portions are simultaneously removed and smoothly rounded. Therefore, it is possible to reliably prevent abnormal noise during operation, abnormal vibration, and rotation failure due to the drop of the scale, and improve product quality. Further, a compressive residual stress is formed on the surface of the shaft-like portion 7, and the strength and durability against the moment load applied to the hub wheel 4 can be improved.
  • the shot blasting may also be continuously performed on the inner rolling surface 4a and other parts to be ground.
  • FIG. 4 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention
  • FIG. 5 is a longitudinal sectional view showing a single hub wheel of FIG. Note that the same parts and portions having the same functions as those of the first embodiment described above are denoted by the same reference numerals and detailed description thereof is omitted.
  • This wheel bearing device is for a driven wheel called the third generation, and is housed in a freely rollable manner between the inner member 29, the outer member 30, and both members 29, 30. Double-row rolling elements (poles) 3 and 3 are provided.
  • the inner member 29 includes a hub ring 3 1 and an inner ring 5 press-fitted into the hub ring 31 through a predetermined shim opening.
  • the hub wheel 31 is integrally provided with a wheel mounting flange 6 at an end portion on the outer side, and one (outer side) inner rolling surface 4a and an inner rolling surface 4a on the outer periphery.
  • a small-diameter step portion 4 b is formed via a shaft-like portion 3 2 extending straight in the axial direction.
  • the hub wheel 3 1 is formed of medium and high carbon steel containing carbon 0.40 to 0.80 wt% such as S 53 C, and includes the inner rolling surface 4 a and the base 6 b of the wheel mounting flange 6.
  • the surface hardness is hardened to a range of 58 to 64 HRC by induction hardening over the small diameter step 4b.
  • the outer member 30 is integrally formed with a vehicle body mounting flange 2c on the outer periphery, and a double-row inner rolling surface 4a, 5a of the inner member 29 on the inner periphery.
  • the outer rolling surfaces 2 a and 2 a are integrally formed. Double-row rolling elements 3 and 3 are accommodated between these rolling surfaces, and are held by the cages 9 and 9 so that they can roll freely.
  • This outer member 30 is formed of medium and high carbon steel containing carbon 0.40 to 0.8 O wt% such as S 53 C, and double row outer rolling surfaces 2 a and 2 a are induction hardened. The surface hardness is hardened in the range of 58 to 64 HRC.
  • the hub ring 31 is formed into a predetermined forging shape as shown in FIG. 5 by forging from a bar material as a raw material (indicated by a two-dot chain line in the figure). Specifically, including the end faces 2 3 and 2 4, at least the side face 2 5 on the outer side of the wheel mounting flange 6 with which the brake rotor (not shown) abuts, the pi opening part 2 6, and the wheel mounting flange 6 The base 6b, the inner rolling surface 4a, the counter 13 and the small diameter step 4b are forged with a predetermined turning allowance remaining.
  • the base portion 6 b that becomes the land portion of the seal 11 on the outer side, the inner rolling surface 4 a, the counter portion 13, and the small diameter step portion 4 b are formed to predetermined dimensions by turning, and
  • the shaft-like part 3 2 is left as a forged surface without being turned.
  • the groove depth of the inner rolling surface 4a is strictly regulated, and it is possible to prevent edge load from being generated by climbing the shoulder, and to reduce the material loss by reducing the number of parts to be deleted by turning as much as possible. It can be reduced and the cost can be reduced.
  • the hub wheel 31 is subjected to a hardening process by induction hardening after the turning process, and before the grinding process, the scale of the shaft-like part 3 2 is removed by the shot blasting process. Is done.
  • the scale adhering to the surface of the shaft-shaped part 32 is removed, and burrs at each corner part are simultaneously removed. Removed and rounded smoothly. Therefore, abnormal noise during operation, abnormal vibration, and rotation failure due to scale dropout are reliably prevented, and compressive residual stress is formed on the surface of the shaft 3 2 and is applied to the hub ring 31. It can improve the strength against the moment load.
  • FIG. 6 is a longitudinal sectional view showing a third embodiment of the wheel bearing device according to the present invention
  • FIG. 7 (a) is an enlarged sectional view showing a single outer member of FIG. 6, and
  • Fig. 6 is an enlarged view of the main part of Fig. 6. It should be noted that parts having the same parts or the same functions as those of the above-described embodiment are given the same reference numerals and detailed description thereof is omitted.
  • This wheel bearing device is called the third generation on the driven wheel side, and is composed of a plurality of inner members 33, outer members 34, and a plurality of rolling members accommodated between both members 33, 34.
  • the rolling elements (poles) 3 and 3 are provided.
  • the inner member 33 includes a hub ring 35 and an inner ring 36 that is press-fitted into the hub ring 35 through a predetermined shim opening.
  • the hub wheel 3 5 has a wheel mounting flange 6 integrally at the outer end, and a hub port 6 a for fixing the wheel at a circumferentially equidistant position of the wheel mounting flange 6 is implanted.
  • a hub port 6 a for fixing the wheel at a circumferentially equidistant position of the wheel mounting flange 6 is implanted.
  • one (outer side) inner rolling surface 35a is directly formed on the outer periphery of the hub wheel 35, and a small-diameter step portion 35b extending in the axial direction from the inner rolling surface 35a is formed.
  • a small-diameter step portion 35b extending in the axial direction from the inner rolling surface 35a is formed.
  • the inner ring 36 having the outer (inner one) inner raceway surface 36a formed on the outer periphery is press-fitted into the small-diameter step portion 35b, and the end of the small-diameter step portion 35b
  • the inner ring 36 is fixed in the axial direction by a caulking portion 8 formed by plastically deforming the portion radially outward to constitute a back-to-back type double-row anguillar ball bearing.
  • the hub wheel 3 5 is formed of medium and high carbon steel containing carbon of 0.45 to 0.80% by weight, such as S 53 C, and includes an inner side rolling surface 3 5 a on the outer side and an outer side.
  • the base 6b which is the seal land where the seal 11 contacts, and the small-diameter step 35b are wound with induction hardening to a surface hardness of 58-64 HRC.
  • the inner ring 3 6 is made of high carbon chrome bearing steel such as SUJ 2 and hardened in the range of 58 to 64 HRC to the core part by quenching. .
  • the outer member 3 4 integrally has a vehicle body mounting flange 2c on the outer periphery, and faces the double row inner rolling surfaces 3 5a, 3 6a of the inner member 3 3 on the inner periphery.
  • Double row outer rolling surfaces 3 4 a and 3 4 a are integrally formed.
  • This outer member 3 4 is formed of medium and high carbon steel containing carbon 0.40 to 0.80 wt% such as 3 5 30 as in the case of the hub wheel 3 5, and at least a double row outer rolling surface.
  • 3 4 a and 3 4 a are hardened by induction hardening to a surface hardness range of 58 to 64 HRC. Then, double-row rolling elements 3 and 3 are accommodated between the respective rolling surfaces 3 4 a and 3 5 a and 3 4 a and 3 6 a.
  • the moving bodies 3 and 3 are held so as to freely roll.
  • a double-row anguilla ball bearing using the rolling elements 3 and 3 as poles is shown as an example, but the present invention is not limited to this, and is a double-row tapered roller bearing using a tapered roller for the rolling element 3. Also good.
  • the outer member 3 4 has a cylindrical shoulder 3 7 between the double-row outer rolling surfaces 3 4 a and 3 4 a as shown in an enlarged view in FIG. 7 (a).
  • annular notches 3 8 and 3 8 are formed at both ends of the shoulder 37, that is, at the edge of the double row outer rolling surface 34 a.
  • the notch portion 38 is formed on a taper surface having a predetermined inclination angle from the shoulder portion 37 by cutting. The inclination angle is set in the range of 20 to 45 ° in consideration of the yield of the material and the shoulder climbing described later.
  • the shoulder 3 7 is formed by forging, and only the notches 3 8 and 3 8 at the edges of the double row outer rolling surfaces 3 4 a and 3 4 a Since the cutting process is performed, the cutting range of the shoulder 37 is narrowed, and the cost can be reduced by reducing the number of processing steps.
  • the notch portion 3 8 increases the crossing angle with the outer rolling surface 3 4 a, an edge is generated at the edge of the outer rolling surface 3 4 a, and the rolling element 3, contact It is possible to prevent the ellipse from climbing over the shoulder 3 4 a.
  • the notch 3 8 functions as a grease pocket, and the grease enclosed in the bearing is applied to the notch 3 8 by gravity and centrifugal force. It moves along and smoothly flows into the double row outer rolling surfaces 3 4 a and 3 4 a, so grease can effectively contribute to lubrication with a minimum amount of filling, and the lubrication environment is in good condition. Can be maintained. Furthermore, since the notches 3 8 and 3 8 are formed at the edges of the double row outer rolling surfaces 3 4 a and 3 4 a, interference with the cage 9 can be prevented, and Design flexibility is expanded.
  • FIG. 8 is a longitudinal sectional view showing a fourth embodiment of the wheel bearing device according to the present invention
  • Fig. 9 (a) is an enlarged sectional view showing the outer member alone of Fig. 8,
  • Fig. 9 is an enlarged view of the main part of Fig. 8. Note that this embodiment is basically different from the third embodiment (FIG. 6) described above except that the configuration of the outer member is different, and other parts and parts having the same function or the same function are used. Are denoted by the same reference numerals and detailed description thereof is omitted.
  • the wheel bearing device includes an inner member 3 3, an outer member 39, and double row rolling elements 3, 3 accommodated between the members 3 3, 39 so as to be freely rollable.
  • the outer member 3 9 has a cylindrical shoulder portion 3 7 formed by forging between the double row outer rolling surfaces 3 4a and 3 4a.
  • the annular notches 40, 40 are formed by cutting at both ends of the shoulder 37.
  • This notch 40 is formed to have a predetermined step from shoulder portion 37 (a substantially rectangular cross section consisting of 5. This step (5 is 0.5 in consideration of the yield of the material and the shoulder climbing, etc.). It is set in the range of 5 to 1. O mm.
  • the shoulder portion 3 7 is formed by forging, and the outer row rolling surfaces 3 4 a and 3 4 a of the double row are notched at the edges. Since only parts 40 and 40 are cut, the number of machining steps can be reduced to reduce costs, and the notch 40 can function as a grease pocket to improve lubricity. it can. [0060]
  • the embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment in any way and is merely an example and does not depart from the gist of the present invention. Of course, the present invention can be implemented in various forms, and the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims, Includes all changes.
  • the wheel bearing device according to the present invention can be applied to a third-generation wheel bearing device regardless of whether it is for a driving wheel or a driven wheel.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention.
  • FIG. 2 (a) is a longitudinal sectional view showing a single outer member in FIG. (B) is a longitudinal sectional view showing a single hub wheel of FIG.
  • FIG. 3 (a) is an explanatory view showing shot blasting of the outer member in FIG. (B) is an explanatory view showing shot blasting of the hub wheel of FIG.
  • FIG. 4 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention.
  • FIG. 5 is a longitudinal sectional view showing a single hub wheel of FIG.
  • FIG. 6 is a longitudinal sectional view showing a third embodiment of the wheel bearing device according to the present invention.
  • FIG. 7 (a) is an enlarged cross-sectional view showing a single outer member in FIG. (B) is an enlarged view of the main part of FIG.
  • FIG. 8 is a longitudinal sectional view showing a fourth embodiment of a wheel bearing device according to the present invention.
  • FIG. 9 (a) is an enlarged cross-sectional view showing a single outer member in FIG. (B) is an enlarged view of the main part of FIG.
  • FIG. 10 is a longitudinal sectional view showing a conventional wheel bearing device.
  • FIG. 11 is an explanatory view showing the forged shape of the outer member.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

[PROBLEMS] A bearing device for a wheel, reduced in weight and size, having increased bearing rigidity, and reduced in cost by a reduction in material losses. [MEANS FOR SOLVING PROBLEMS] The bearing device is of a third generation structure and has a hub ring (4) and an inner ring (5). The hub ring (4) integrally has at one end a wheel installation flange (6), has on its outer periphery one inner rolling surface (4a) of double-row inner rolling surfaces, and further has a small-diameter step section (4b) with a shaft-like section (7) in between, the shaft-like section (7) axially extending from the inner rolling surface (4a). The inner ring (5) is press-fitted on the small-diameter section (4b) of the hub ring (4) and has the other inner rolling surface (5a) formed on the outer periphery of the inner ring (5). The pitch circle diameter PCDo of outer-side rolling bodies (3) of double-row rolling bodies (3) is set greater than the pitch circle diameter PCDi of the inner-side rolling bodies (3). The shaft-like section (7) of the hub ring (4) is left as molded, and the surface of the shaft-like section (7) is shot-blasted.

Description

明 細 書  Specification
車輪用軸受装置  Wheel bearing device
技術分野  Technical field
[0001 ] 本発明は、 自動車等の車輪を回転自在に支承する車輪用軸受装置、 特に、 軽量 ' コンパク ト化を図りつつ軸受剛性を増大させると共に、 マテリアル口 スの削減による低コスト化を図った車輪用軸受装置に関するものである。 背景技術  [0001] The present invention relates to a wheel bearing device that rotatably supports a wheel of an automobile or the like, in particular, while increasing the rigidity of the bearing while reducing the weight and reducing the cost by reducing the material size. The present invention relates to a wheel bearing device. Background art
[0002] 従来から自動車等の車輪を支持する車輪用軸受装置は、 車輪を取り付ける ためのハブ輪を転がり軸受を介して回転自在に支承するもので、 駆動輪用と 従動輪用とがある。 構造上の理由から、 駆動輪用では内輪回転方式が、 従動 輪用では内輪回転と外輪回転の両方式が一般的に採用されている。 この車輪 用軸受装置には、 所望の軸受剛性を有し、 ミスァライメントに対しても耐久 性を発揮すると共に、 燃費向上の観点から回転トルクが小さい複列アンギュ ラ玉軸受が多用されている。 この複列アンギユラ玉軸受は、 固定輪と回転輪 との間に複数のポールを介在させ、 このポールに所定の接触角を付与して固 定輪および回転輪に接触させている。  [0002] Conventionally, wheel bearing devices for supporting wheels of automobiles and the like support a hub wheel for mounting a wheel rotatably via a rolling bearing, and there are a drive wheel and a driven wheel. For structural reasons, the inner ring rotation method is generally used for driving wheels, and both the inner ring rotation method and outer ring rotation method are used for driven wheels. In this wheel bearing device, a double-row angular contact ball bearing that has a desired bearing rigidity, exhibits durability against misalignment, and has a low rotational torque from the viewpoint of improving fuel efficiency is often used. . In this double-row anguilla ball bearing, a plurality of poles are interposed between the fixed ring and the rotating ring, and a predetermined contact angle is given to the pole to contact the fixed and rotating rings.
[0003] また、 車輪用軸受装置には、 懸架装置を構成するナックルとハブ輪との間 に複列アンギユラ玉軸受等からなる車輪用軸受を嵌合させた第 1世代と称さ れる構造から、 外方部材の外周に直接車体取付フランジまたは車輪取付フラ ンジが形成された第 2世代構造、 また、 ハブ輪の外周に一方の内側転走面が 直接形成された第 3世代構造、 あるいは、 ハブ輪と等速自在継手の外側継手 部材の外周にそれぞれ内側転走面が直接形成された第 4世代構造とに大別さ れている。 なお、 以下の説明では、 車両に組み付けた状態で車両の外側寄り となる側をアウター側 (図面左側) 、 中央寄り側をインナー側 (図面右側) という。  [0003] In addition, the wheel bearing device has a structure called a first generation in which a wheel bearing composed of a double-row anguilla ball bearing or the like is fitted between a knuckle and a hub wheel constituting a suspension device. Second generation structure with body mounting flange or wheel mounting flange formed directly on the outer periphery of the outer member, or third generation structure with one inner raceway formed directly on the outer periphery of the hub wheel, or hub It is roughly divided into the 4th generation structure in which the inner rolling surface is directly formed on the outer circumference of the outer joint member of the wheel and constant velocity universal joint. In the following description, the side closer to the outer side of the vehicle in the state assembled to the vehicle is referred to as the outer side (left side in the drawing), and the side closer to the center is referred to as the inner side (right side in the drawing).
[0004] こうした複列の転がり軸受で構成された車輪用軸受装置において、 従来は 左右両列の軸受が同一仕様のため、 静止時には充分な剛性を有するが、 車両 の旋回時には必ずしも最適な剛性が得られていない。 すなわち、 静止時の車 重は複列の転がり軸受の略中央に作用するように車輪との位置関係が決めら れているが、 旋回時には、 旋回方向の反対側 (右旋回の場合は車両の左側) の車軸に、 より大きなラジアル荷重やアキシアル荷重が負荷される。 したが つて、 旋回時には、 インナ一側の軸受列よりもアウター側の軸受列の剛性を 高めることが有効とされている。 そこで、 装置を大型化させることなく高剛 性化を図った車輪用軸受装置として、 図 1 0に示すものが知られている。 [0004] In a wheel bearing device composed of such double-row rolling bearings, the left and right rows of bearings have the same specifications, so that they have sufficient rigidity when stationary. The optimal rigidity is not always obtained when turning. In other words, the position of the vehicle at rest is determined so that it acts on the approximate center of the double-row rolling bearings, but when turning, the opposite side of the turning direction (when turning right, the vehicle Larger radial load or axial load is applied to the left axle. Therefore, during turning, it is effective to increase the rigidity of the outer bearing row rather than the inner one. Therefore, a wheel bearing device shown in FIG. 10 is known as a wheel bearing device that is highly rigid without increasing the size of the device.
[0005] この車輪用軸受装置 5 0は、 外周にナックル (図示せず) に取り付けられ るための車体取付フランジ 5 1 cを一体に有し、 内周に複列の外側転走面 5 1 a、 5 1 bが形成された外方部材 5 1 と、 一端部に車輪 (図示せず) を取 り付けるための車輪取付フランジ 5 3を一体に有し、 外周に外側転走面 5 1 aに対向する一方の内側転走面 5 2 aと、 この内側転走面 5 2 aから軸方向 に延びる小径段部 5 2 bが形成されたハブ輪 5 2、 およびこのハブ輪 5 2の 小径段部 5 2 bに外嵌され、 外側転走面 5 1 bに対向する他方の内側転走面 5 4 aが形成された内輪 5 4からなる内方部材 5 5と、 これら両転走面間に 収容された複列のポール 5 6、 5 7と、 これら複列のポール 5 6、 5 7を転 動自在に保持する保持器 5 8、 5 9とを備えた複列アンギユラ玉軸受で構成 されている。 [0005] This wheel bearing device 50 has a vehicle body mounting flange 5 1 c integrally attached to a knuckle (not shown) on the outer periphery, and a double row outer rolling surface 5 1 on the inner periphery. The outer member 5 1 formed with a and 5 1 b and the wheel mounting flange 5 3 for attaching a wheel (not shown) at one end are integrally formed, and the outer rolling surface 5 1 is provided on the outer periphery. a hub wheel 5 2 formed with one inner rolling surface 5 2 a opposite to a, a small-diameter step portion 5 2 b extending in the axial direction from the inner rolling surface 5 2 a, and the hub wheel 52 An inner member 5 5 composed of an inner ring 5 4 that is externally fitted to the small diameter step portion 5 2 b and has the other inner rolling surface 5 4 a opposite to the outer rolling surface 5 1 b, and both of these rolling Double-row annulus ball bearings with double-row poles 5 6 and 5 7 accommodated between the surfaces, and cages 5 8 and 5 9 that hold these double-row poles 5 6 and 5 7 in a rotatable manner Consists of That.
[0006] 内輪 5 4は、 ハブ輪 5 2の小径段部 5 2 bを径方向外方に塑性変形させて 形成した加締部 5 2 cによって軸方向に固定されている。 そして、 外方部材 5 1 と内方部材 5 5との間に形成される環状空間の開口部にシール 6 0、 6 1が装着され、 軸受内部に封入された潤滑グリースの漏洩と、 外部から軸受 内部に雨水やダスト等が侵入するのを防止している。  [0006] The inner ring 54 is fixed in the axial direction by a caulking portion 52c formed by plastically deforming the small-diameter stepped portion 52b of the hub wheel 52 in the radially outward direction. Seals 60 and 61 are attached to the opening of the annular space formed between the outer member 51 and the inner member 55, and leakage of the lubricating grease sealed inside the bearing Prevents rainwater and dust from entering the bearing.
[0007] ここで、 ァウタ一側のポール 5 6群のピッチ円直径 D 1が、 ィンナ一側の ポール 5 7群のピッチ円直径 D 2よりも大径に設定されている。 これに伴い 、 ハブ輪 5 2の内側転走面 5 2 aが内輪 5 4の内側転走面 5 4 aよりも拡径 され、 あわせて外方部材 5 1のアウター側の外側転走面 5 1 aがインナー側 の外側転走面 5 1 bよりも拡径されている。 そして、 アウター側のポール 5 6がインナ一側のポール 5 7よりも多数収容されている。 このように、 各ピ ツチ円直径 D 1、 D 2を D 1 > D 2に設定することにより、 車両の静止時だ けでなく旋回時においても剛性が向上し、 車輪用軸受装置 5 0の長寿命化を 図ることができる。 Here, the pitch circle diameter D 1 of the poles 56 on the one side of the counter is set to be larger than the pitch circle diameter D 2 of the poles 57 on the one side. Accordingly, the inner raceway surface 5 2 a of the hub wheel 52 is expanded in diameter than the inner raceway surface 5 4 a of the inner race 54, and the outer raceway surface 5 on the outer side of the outer member 51 is also added. 1 a is larger in diameter than the outer rolling surface 5 1 b on the inner side. And the outer pole 5 6 is accommodated more than the pole 5 7 on the inner side. Thus, by setting the pitch circle diameters D 1 and D 2 to D 1> D 2, the rigidity is improved not only when the vehicle is stationary but also when turning, and the wheel bearing device 50 Long service life can be achieved.
特許文献 1 :特開 2 0 0 4 _ 1 0 8 4 4 9号公報  Patent Document 1: Japanese Patent Laid-Open No. 2 0 0 4 _ 1 0 8 4 4 9
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] こうした従来の車輪用軸受装置 5 0は、 外方部材 5 1およびハブ輪 5 2は 、 素材となるバー材から鍛造■旋削■熱処理■研削■超仕上げ工程等を経て 製造されている。 例えば、 外方部材 5 1は、 図 1 1に示すように、 ナックル に当接する車体取付フランジ 5 1 cのィンナ一側の側面およびィンナ一側の 外周面をはじめ、 両端面から内周面に亙って鍛造加工により所定の旋削取代 を残した状態で外郭形状が成形されている (図中二点鎖線にて示す) 。  [0008] In such a conventional wheel bearing device 50, the outer member 51 and the hub wheel 52 are manufactured from a bar material as a raw material through forging, turning, heat treatment, grinding, superfinishing process, and the like. . For example, as shown in FIG. 11, the outer member 51 includes a side wall on the inner side of the vehicle body mounting flange 51 that contacts the knuckle, an outer peripheral surface on the inner side, and an inner peripheral surface from both end surfaces. As a result, the outer shape is formed with a predetermined turning allowance left by forging (indicated by a two-dot chain line in the figure).
[0009] また、 このような複列の外側転走面 5 1 a、 5 1 bの溝径が異なる外方部 材 5 1においては、 モーメント荷重が負荷された際に、 溝肩部 6 2、 6 3に おいてはポール 5 6、 5 7の接触楕円が乗り上げて外側転走面 5 1 a、 5 1 bから外れる、 所謂肩乗り上げが発生するのを防止するため、 旋削加工によ り所定の寸法に形成されている。 特に、 インナ一側の外側転走面 5 1 bと溝 肩部 6 3との角部 (境界) は、 アウター側の外側転走面 5 1 aに比べ溝径が 小さい分モ一メント荷重の影響が大きく、 肩乗り上げによってエッジロード が発生する恐れがあるため、 溝肩部 6 3の寸法が厳しく規制されている。 こ こで、 エッジロードとは、 角部等に発生する過大な応力集中のことで、 早期 剥離の要因の一つとなる事象を言う。  [0009] Further, in the outer member 5 1 having different groove diameters of the double row outer rolling surfaces 5 1 a and 5 1 b, the groove shoulder 6 2 when a moment load is applied. In order to prevent the so-called shoulder climbing in which the contact ellipse of the poles 5 6 and 5 7 rides up and disengages from the outer rolling surfaces 5 1 a and 5 1 b, It is formed in a predetermined dimension. In particular, the corner (boundary) between the outer rolling surface 5 1 b on the inner side and the shoulder 6 3 of the groove is smaller than the outer rolling surface 5 1 a on the outer side. The size of the groove shoulder 63 is strictly regulated because it has a large impact and may cause an edge load when riding on the shoulder. Here, edge load is an excessive stress concentration that occurs at corners, etc., and is an event that is one of the factors of early delamination.
[0010] 然しながら、 こうした外方部材 5 1における溝肩部 6 2、 6 3等の旋削加 ェはマテリアルロスとなるだけでなく加工工数の増大を招来し、 低コスト化 を図る上で阻害要因となっていた。 このように、 車輪用軸受装置における外 方部材 5 1をはじめハブ輪 5 2等の部品の鍛造形状と共に、 旋削加工の工数 を抑え、 如何にして素材のマテリアルロスの削減を図るかが課題となってい た。 [0010] However, the turning of the groove shoulders 6 2 and 6 3 etc. in the outer member 5 1 not only causes material loss but also increases the number of processing steps, which is an impediment to cost reduction. It was. As described above, the problem is how to reduce the material loss of materials by reducing the number of turning processes as well as the forging shapes of the outer member 51 and the hub wheel 52 in the wheel bearing device. Has become It was.
[001 1 ] 本発明は、 このような事情に鑑みてなされたもので、 軽量■ コンパク ト化 を図りつつ軸受剛性を増大させると共に、 マテリアルロスの削減による低コ スト化を図った車輪用軸受装置を提供することを目的としている。  [001 1] The present invention has been made in view of such circumstances, and is a lightweight and compact wheel bearing that increases the rigidity of the bearing while achieving compactness and reduces the cost by reducing material loss. The object is to provide a device.
[0012] また、 本発明の他の目的は、 加工工数を削減して低コスト化を図ると共に 、 潤滑性を向上させて軸受の長寿命化を図ることである。  [0012] Another object of the present invention is to reduce the number of processing steps and reduce the cost, and to improve the lubricity and prolong the life of the bearing.
課題を解決するための手段  Means for solving the problem
[0013] 係る目的を達成すべく、 本発明は、 外周に車体に取り付けられるための車 体取付フランジを一体に有し、 内周に複列の外側転走面が形成された外方部 材と、 一端部に車輪を取り付けるための車輪取付フランジを一体に有し、 外 周に前記複列の外側転走面に対向する一方の内側転走面と、 この内側転走面 から軸方向に延びる軸状部を介して小径段部が形成されたハブ輪、 およびこ のハブ輪の小径段部に所定のシメシ口を介して圧入され、 外周に前記複列の 外側転走面に対向する他方の内側転走面が形成された内輪からなる内方部材 と、 この内方部材と前記外方部材の両転走面間に転動自在に収容された複列 の転動体とを備え、 少なくとも前記ハブ輪の軸状部が鍛造肌のままとされて いる。 ■ ■ ■請求項 1  [0013] In order to achieve such an object, the present invention is an outer member that integrally has a vehicle body mounting flange for mounting to the vehicle body on the outer periphery, and has a double row outer rolling surface formed on the inner periphery. And a wheel mounting flange for mounting the wheel at one end, and one inner rolling surface facing the outer rolling surface of the double row on the outer circumference, and from the inner rolling surface in the axial direction. A hub wheel having a small-diameter step portion formed through an extending shaft-like portion, and a small-diameter step portion of the hub wheel that is press-fitted through a predetermined squeeze opening, and faces the outer rolling surface of the double row on the outer periphery. An inner member formed of an inner ring on which the other inner rolling surface is formed, and a double row rolling element that is rotatably accommodated between the inner member and both rolling surfaces of the outer member, At least the shaft-like portion of the hub wheel is left as forged skin. ■ ■ ■ Claim 1
[0014] このように、 一端部に車輪取付フランジを一体に有し、 外周に複列の内側 転走面のうち一方の内側転走面と、 この内側転走面から軸方向に延びる軸状 部を介して小径段部が形成されたハブ輪、 およびこのハブ輪の小径段部に圧 入され、 外周に他方の内側転走面が形成された内輪を備えた第 3世代構造の 車輪用軸受装置において、 少なくともハブ輪の軸状部が鍛造肌のままとされ ているので、 旋削加工によって削除される部位を可及的に減少せしめてマテ リアルロスの削減ができ、 低コスト化を図ることができる。  As described above, the wheel mounting flange is integrally formed at one end portion, one inner rolling surface of the double row inner rolling surfaces on the outer periphery, and an axial shape extending in the axial direction from the inner rolling surface. Hub wheel with a small-diameter stepped portion formed through the part, and a third-generation wheel equipped with an inner ring that is press-fitted into the small-diameter stepped portion of this hub ring and has the other inner rolling surface formed on the outer periphery In the bearing device, at least the shaft part of the hub ring is left as the forging surface, so the parts to be deleted by turning can be reduced as much as possible to reduce material loss and to reduce costs. Can do.
[0015] 好ましくは、 本発明のように、 前記軸状部の表面がショットブラスト加工 されていれば、 軸状部の表面に付着したスケールが除去されると共に、 それ ぞれの角部のバリ等も同時に除去されて滑らかに丸められ、 スケールの脱落 に起因する運転時の異音、 異常振動、 回転不調を確実に防止し、 製品品質の 向上を図ることができる。 また、 軸状部の表面に圧縮残留応力が形成され、 ハブ輪に負荷されるモーメント荷重等に対して強度■耐久性を向上させるこ とができる。 ■ ■ ■請求項 2 [0015] Preferably, as in the present invention, if the surface of the shaft-shaped portion is shot blasted, the scale attached to the surface of the shaft-shaped portion is removed and the burrs at the respective corner portions are removed. Etc. are also removed at the same time and are smoothly rounded to reliably prevent abnormal noise during operation, abnormal vibration, and rotation failure due to scale loss. Improvements can be made. In addition, a compressive residual stress is formed on the surface of the shaft-like portion, and it is possible to improve the strength and durability against the moment load applied to the hub wheel. ■ ■ ■ Claim 2
[001 6] また、 本発明のように、 前記外方部材の複列の外側転走面に各々隣接した 肩部が形成され、 これら肩部が旋削加ェによって所定の溝深さに形成される と共に、 両肩部間の内径部が旋削加工されずに鍛造肌のままとされていれば 、 外側転走面の溝深さが厳しく規制され、 肩乗り上げによってエッジロード が発生するのが防止できると共に、 旋削加工によって削除される部位を可及 的に減少せしめてマテリアルロスの削減ができる。 ■ ■ ■請求項 3  [001 6] Further, as in the present invention, shoulder portions adjacent to the outer rolling surfaces of the double rows of the outer members are respectively formed, and these shoulder portions are formed at a predetermined groove depth by turning. In addition, if the inner diameter between the shoulders is not turned and the forged skin is left as it is, the groove depth of the outer rolling surface is severely restricted, and the edge load is prevented from occurring due to the shoulder ride. It is possible to reduce material loss by reducing the number of parts to be deleted by turning as much as possible. ■ ■ ■ Claim 3
[001 7] また、 本発明のように、 前記複列の転動体のうちアウター側の転動体群の ピッチ円直径がィンナー側の転動体群のピッチ円直径よりも大径に設定され ると共に、 前記ハブ輪の軸状部が、 前記内側転走面の溝底部に形成された力 ゥンタ部と前記小径段部間に所定の傾斜角を有するテーパ状に形成されてい れば、 強度■剛性を低下させることなく軽量■ コンパク ト化を図ることがで きると共に、 旋削加工によって削除される部位を可及的に減少せしめてマテ リアルロスの削減することができる。 ■ ■ ■請求項 4  [001 7] Also, as in the present invention, the pitch circle diameter of the outer rolling element group of the double row rolling elements is set to be larger than the pitch circle diameter of the inner rolling element group. If the shaft-shaped portion of the hub wheel is formed in a taper shape having a predetermined inclination angle between the force counter portion formed on the groove bottom portion of the inner rolling surface and the small-diameter step portion, the strength and rigidity It is possible to reduce the material loss without reducing the material loss and reduce material loss by reducing the number of parts to be deleted by turning as much as possible. ■ ■ ■ Claim 4
[0018] また、 本発明のように、 前記ハブ輪のアウター側の端部にすり鉢状の凹所 が形成され、 この凹所の深さが少なくとも前記ハブ輪の内側転走面の溝底付 近とされ、 前記ハブ輪の外郭形状が当該凹所に対応して略均一な肉厚となる ように形成されていれば、 ハブ輪の強度■剛性を低下させることなくマテリ アルロスの削減を図ることができると共に、 鍛造加工における素材の塑性流 動性を高め、 加工精度を向上させることができる。 ■ ■ ■請求項 5  [0018] Further, as in the present invention, a mortar-shaped recess is formed at the outer end of the hub wheel, and the depth of the recess is at least a groove bottom of the inner rolling surface of the hub wheel. If the outer shape of the hub ring is formed to have a substantially uniform thickness corresponding to the recess, the material loss of the hub ring is reduced without reducing the rigidity and rigidity. In addition, the plastic fluidity of the material in the forging process can be increased, and the machining accuracy can be improved. ■ ■ ■ Claim 5
[001 9] また、 本発明のように、 前記肩部の両端部に切削加工により環状の切欠き 部が形成されていれば、 加工工数を削減して低コスト化を図ると共に、 潤滑 性を向上させて軸受の長寿命化を図った車輪用軸受装置を提供することがで きる。 ■ ■ ■請求項 6  [001 9] Also, as in the present invention, if annular notch portions are formed by cutting at both ends of the shoulder portion, the number of processing steps can be reduced and the cost can be reduced, and lubricity can be improved. It is possible to provide a wheel bearing device that has been improved to extend the life of the bearing. ■ ■ ■ Claim 6
[0020] また、 本発明のように、 前記切欠き部が、 前記肩部から所定の傾斜角から なるテーパ面に形成されていても良いし、 また、 前記切欠き部が、 前記肩部 から所定の段差からなる断面略矩形状に形成されていても良い。 ■ ■ ■請求 項 7、 8 [0020] Further, as in the present invention, the notch portion may be formed on a tapered surface having a predetermined inclination angle from the shoulder portion, and the notch portion may be the shoulder portion. To a predetermined step, the cross section may be formed in a substantially rectangular shape. ■ ■ ■ Claims 7 and 8
[0021 ] また、 本発明のように、 前記傾斜角が 2 0〜4 5 ° の範囲に設定されてい れば、 外側転走面との交差角が大きくなるので、 外側転走面の縁部にエッジ ロードが発生し、 転動体の接触楕円が外側転走面から外れる肩乗り上げを防 止することができる。 ■ ■ ■請求項 9  [0021] Further, as in the present invention, if the inclination angle is set in the range of 20 to 45 °, the crossing angle with the outer rolling surface becomes large, so the edge of the outer rolling surface Edge loading occurs at the edge, and the contact ellipse of the rolling element can be prevented from climbing over the shoulder, which is disengaged from the outer rolling surface. ■ ■ ■ Claim 9
発明の効果  The invention's effect
[0022] 本発明に係る車輪用軸受装置は、 外周に車体に取り付けられるための車体 取付フランジを一体に有し、 内周に複列の外側転走面が形成された外方部材 と、 一端部に車輪を取り付けるための車輪取付フランジを一体に有し、 外周 に前記複列の外側転走面に対向する一方の内側転走面と、 この内側転走面か ら軸方向に延びる軸状部を介して小径段部が形成されたハブ輪、 およびこの ハブ輪の小径段部に所定のシメシ口を介して圧入され、 外周に前記複列の外 側転走面に対向する他方の内側転走面が形成された内輪からなる内方部材と 、 この内方部材と前記外方部材の両転走面間に転動自在に収容された複列の 転動体とを備え、 少なくとも前記ハブ輪の軸状部が鍛造肌のままとされてい るので、 旋削加ェによって削除される部位を可及的に減少せしめてマテリア ルロスの削減ができ、 低コスト化を図ることができる。  [0022] A wheel bearing device according to the present invention has an outer member integrally including a vehicle body mounting flange for mounting to the vehicle body on the outer periphery, and a double row outer rolling surface formed on the inner periphery. A wheel mounting flange for attaching the wheel to the unit, and an inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and an axial shape extending in an axial direction from the inner rolling surface A hub wheel having a small-diameter step portion formed through the portion, and the other inner side that is press-fitted into the small-diameter step portion of the hub wheel through a predetermined shim opening and faces the outer surface of the double row on the outer periphery. An inner member formed of an inner ring formed with a rolling surface, and a double row rolling element that is slidably accommodated between the inner member and the outer member, and at least the hub. Since the shaft part of the ring is left as the forged skin, the part to be deleted by turning Can help reduce the Materia Rurosu and brought as much as possible reduced, it is possible to reduce the cost.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 外周に車体に取り付けられるための車体取付フランジを一体に有し、 内周 に複列の外側転走面が形成された外方部材と、 一端部に車輪を取り付けるた めの車輪取付フランジを一体に有し、 外周に前記複列の外側転走面に対向す る一方の内側転走面と、 この内側転走面から軸方向に延びるテ一/ 状の軸状 部を介して小径段部が形成されたハブ輪、 およびこのハブ輪の小径段部に圧 入され、 外周に前記複列の外側転走面に対向する他方の内側転走面が形成さ れた内輪からなる内方部材と、 この内方部材と前記外方部材の両転走面間に 転動自在に収容された複列の転動体とを備え、 前記複列の転動体のうちァゥ タ一側の転動体群のピッチ円直径がィンナー側の転動体群のピッチ円直径よ りも大径に設定されると共に、 前記ハブ輪の軸状部が鍛造肌のままとされ、 表面がショットブラスト加工されている。 [0023] An outer member integrally having a vehicle body mounting flange to be attached to the vehicle body on the outer periphery, a double row outer rolling surface formed on the inner periphery, and a wheel attachment for attaching a wheel to one end A flange is integrated, and one outer rolling surface facing the outer rolling surface of the double row on the outer periphery, and a te / -shaped shaft portion extending in the axial direction from the inner rolling surface A hub ring having a small-diameter step portion, and an inner ring that is press-fitted into the small-diameter step portion of the hub ring and has the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery. An inner member; and a double row rolling element that is rotatably accommodated between both rolling surfaces of the inner member and the outer member, and one side of the double row rolling element is on the outer side. The pitch circle diameter of the rolling element group is the pitch circle diameter of the inner rolling element group. In addition to being set to a large diameter, the shaft portion of the hub wheel is left forged and the surface is shot blasted.
実施例 1  Example 1
[0024] 以下、 本発明の実施の形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1は、 本発明に係る車輪用軸受装置の第 1の実施形態を示す縦断面図、 図 2 ( a ) は、 図 1の外方部材単体を示す縦断面図、 (b ) は、 図 1のハブ 輪単体を示す縦断面図、 図 3 ( a ) は、 図 1の外方部材のショットブラスト 加工を示す説明図、 (b ) は、 図 1のハブ輪のショットブラスト加工を示す 説明図である。  1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention, FIG. 2 (a) is a longitudinal sectional view showing a single outer member of FIG. 1, and FIG. Fig. 3 (a) is an explanatory diagram showing shot blasting of the outer member in Fig. 1, and (b) is shot blasting of the hub wheel in Fig. 1. FIG.
[0025] この車輪用軸受装置は第 3世代と呼称される従動輪用であって、 内方部材  [0025] The wheel bearing device is for a driven wheel called a third generation, and is an inner member.
1 と外方部材 2、 および両部材 1、 2間に転動自在に収容された複列の転動 体 (ポール) 3、 3を備えている。 内方部材 1は、 ハブ輪 4と、 このハブ輪 4に所定のシメシ口を介して圧入された内輪 5とからなる。  1 and an outer member 2, and double row rolling elements (poles) 3, 3 accommodated between the members 1, 2 so as to roll freely. The inner member 1 includes a hub ring 4 and an inner ring 5 press-fitted into the hub ring 4 through a predetermined shim opening.
[0026] ハブ輪 4は、 アウター側の端部に車輪 (図示せず) を取り付けるための車 輪取付フランジ 6を一体に有し、 外周に一方 (アウター側) の内側転走面 4 aと、 この内側転走面 4 aから軸方向に延びる軸状部 7を介して小径段部 4 bが形成されている。 また、 車輪取付フランジ 6の周方向等配に車輪を固定 するハブポルト 6 aが植設されている。  [0026] The hub wheel 4 integrally has a wheel mounting flange 6 for mounting a wheel (not shown) at an end portion on the outer side, and an inner rolling surface 4a on one (outer side) on the outer periphery. A small-diameter step portion 4b is formed through a shaft-like portion 7 extending in the axial direction from the inner rolling surface 4a. In addition, hub ports 6 a for fixing the wheels in the circumferential direction of the wheel mounting flange 6 are planted.
[0027] 内輪 5は、 外周に他方 (インナ一側) の内側転走面 5 aが形成され、 ハブ 輪 4の小径段部 4 bに圧入されて背面合せタイプの複列アンギユラ玉軸受を 構成すると共に、 小径段部 4 bの端部を塑性変形させて形成した加締部 8に よって軸方向に固定されている。 なお、 内輪 5および転動体 3は S U J 2等 の高炭素クロム鋼で形成され、 ズブ焼入れによって芯部まで 5 8〜6 4 H R Cの範囲に硬化処理されている。  [0027] The inner ring 5 is formed with the other (inner one side) inner rolling surface 5a on the outer periphery, and is press-fitted into the small-diameter stepped portion 4b of the hub ring 4 to form a back-to-back type double-row angular bearing. At the same time, the end of the small-diameter step 4b is fixed in the axial direction by a caulking portion 8 formed by plastic deformation. The inner ring 5 and the rolling element 3 are made of high carbon chrome steel such as S U J 2 and hardened in the range of 58 to 64 HRC up to the core part by quenching.
[0028] ハブ輪 4は S 5 3 C等の炭素 0 . 4 0〜0 . 8 0 w t %を含む中高炭素鋼 で形成され、 内側転走面 4 aをはじめ、 車輪取付フランジ 6のインナ一側の 基部 6 bから小径段部 4 bに亙って高周波焼入れによって表面硬さを 5 8〜 6 4 H R Cの範囲に硬化処理されている。 なお、 加締部 8は鍛造加工後の表 面硬さのままとされている。 これにより、 車輪取付フランジ 6に負荷される 回転曲げ荷重に対して充分な機械的強度を有し、 内輪 5の嵌合部となる小径 段部 4 bの耐フレツティング性が向上すると共に、 微小なクラック等の発生 がなく加締部 8の塑性加工をスムーズに行うことができる。 [0028] The hub wheel 4 is formed of medium and high carbon steel containing 0.44 to 0.80 wt% of carbon such as S53C, and the inner ring surface 4a and the inner ring of the wheel mounting flange 6 are formed. The surface hardness is hardened to a range of 58 to 64 HRC by induction hardening from the base 6b on the side to the small diameter step 4b. The caulking part 8 is the table after forging. It is said that the surface hardness remains. This provides sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange 6, improves the fretting resistance of the small-diameter stepped portion 4b that becomes the fitting portion of the inner ring 5, and makes it minute. The plastic working of the caulking portion 8 can be performed smoothly without generating any cracks.
[0029] 外方部材 2は、 外周にナックル (図示せず) に取り付けられるための車体 取付フランジ 2 cを一体に有し、 内周にハブ輪 4の内側転走面 4 aに対向す るァウタ一側の外側転走面 2 aと、 内輪 5の内側転走面 5 aに対向するイン ナ一側の外側転走面 2 bがー体に形成されている。 これら両転走面間に複列 の転動体 3、 3が収容され、 保持器 9、 1 0によって転動自在に保持されて いる。 [0029] The outer member 2 integrally has a vehicle body mounting flange 2c to be attached to a knuckle (not shown) on the outer periphery, and faces the inner rolling surface 4a of the hub wheel 4 on the inner periphery. An outer rolling surface 2 a on one side of the outer ring and an outer rolling surface 2 b on the inner side facing the inner rolling surface 5 a of the inner ring 5 are formed in a body. Double-row rolling elements 3 and 3 are accommodated between these rolling surfaces and are held by the cages 9 and 10 so as to be freely rollable.
[0030] この外方部材 2は S 5 3 C等の炭素 0 . 4 0〜0 . 8 0 w t %を含む中高 炭素鋼で形成され、 複列の外側転走面 2 a、 2 bが高周波焼入れによって表 面硬さを 5 8〜6 4 H R Cの範囲に硬化処理されている。 そして、 外方部材 2と内方部材 1 との間に形成される環状空間の開口部にはシール 1 1、 1 2 が装着され、 軸受内部に封入されたグリースの外部への漏洩と、 外部から雨 水やダスト等が軸受内部に侵入するのを防止している。 なお、 ここでは、 転 動体 3にポールを使用した複列アンギユラ玉軸受を例示したが、 これに限ら ず、 転動体 3に円錐ころを使用した複列円錐ころ軸受であっても良い。  [0030] This outer member 2 is formed of medium and high carbon steel containing carbon 0.40 to 0.80 wt% such as S 53 C, and the double row outer rolling surfaces 2a and 2b have high frequency. The surface hardness is hardened to a range of 58 to 64 HRC by quenching. Seals 11 and 12 are attached to the opening of the annular space formed between the outer member 2 and the inner member 1, and leakage of grease sealed inside the bearing to the outside Prevents rainwater and dust from entering the bearing. Here, a double-row angular ball bearing using a pole as the rolling element 3 is illustrated, but the present invention is not limited to this, and a double-row tapered roller bearing using a tapered roller as the rolling element 3 may be used.
[0031 ] 本実施形態では、 ァウタ一側の転動体 3群のピッチ円直径 P C D oがィン ナ一側の転動体 3群のピッチ円直径 P C D i よりも大径に設定されている。 そして、 複列の転動体 3、 3のサイズは同じであるが、 このピッチ円直径 P C D o、 P C D iの違いにより、 アウター側の転動体 3群の転動体個数がィ ンナー側の転動体 3群の転動体個数よりも多く設定されている。  [0031] In this embodiment, the pitch circle diameter P CDo of the three rolling elements on the one side is set larger than the pitch circle diameter P CD i of the three rolling elements on the inner side. The size of the rolling elements 3 and 3 in the double row is the same, but due to the difference in the pitch circle diameters PCD o and PCD i, the number of rolling elements in the outer rolling element 3 group is the rolling element 3 in the inner side. More than the number of rolling elements in the group.
[0032] ハブ輪 4の外郭形状は、 内側転走面 4 aの溝底部からカウンタ部 1 3と、 このカウンタ部 1 3から軸方向に延びるテーパ状の軸状部 7、 および内輪 5 が突き合わされる肩部 7 aを介して小径段部 4 bに続いている。 また、 ハブ 輪 4のアウター側の端部にはすり鉢状の凹所 1 4が形成されている。 この凹 所 1 4の深さは内側転走面 4 aの溝底付近までの深さとされ、 ハブ輪 4のァ ウタ一側が略均一な肉厚に形成されている。 そして、 ピッチ円直径 P C D ο 、 P C D iの違いに伴い、 ハブ輪 4の内側転走面 4 aは内輪 5の内側転走面 5 aよりも拡径して形成されている。 [0032] The outer shape of the hub wheel 4 is that the counter part 13 from the groove bottom part of the inner rolling surface 4a, the tapered shaft part 7 extending in the axial direction from the counter part 13 and the inner ring 5 project. It continues to the small diameter step 4b via the mated shoulder 7a. A mortar-shaped recess 14 is formed at the outer end of the hub wheel 4. The depth of this recess 14 is the depth to the groove bottom of the inner rolling surface 4 a. Uta one side is formed in a substantially uniform thickness. The inner raceway surface 4 a of the hub ring 4 is formed with a diameter larger than that of the inner raceway surface 5 a of the inner ring 5 with the difference between the pitch circle diameters PCDο and PCD i.
[0033] —方、 外方部材 2において、 ピッチ円直径 P C D o、 P C D iの違いに伴 し、、 ァウタ一側の外側転走面 2 aがィンナー側の外側転走面 2 bよりも拡径 して形成されると共に、 アウター側の外側転走面 2 aからテ一パ状の肩部 1 5、 内径部 1 5 aを介して円筒状の肩部 1 6に続き、 ィンナ一側の外側転走 面 2 bに到る内周形状に形成されている。  [0033] On the other hand, in the outer member 2, the outer rolling surface 2a on one side of the outer side is wider than the outer rolling surface 2b on the inner side due to the difference in pitch circle diameters PCDo and PCDi. The outer rolling surface 2a on the outer side is connected to the cylindrical shoulder portion 16 via the taper-shaped shoulder portion 15 and the inner diameter portion 15a. It is formed in an inner peripheral shape that reaches the outer rolling surface 2b.
[0034] こうした構成の車輪用軸受装置では、 アウター側の転動体 3群のピッチ円 直径 P C D oをィンナ一側の転動体 3群のピッチ円直径 P C D i よりも大径 に形成され、 その分、 転動体 3の個数もアウター側の転動体 3群の転動体個 数がインナ一側の転動体 3群の転動体個数よりも多く設定されているため、 有効に軸受スペースを活用してィンナー側に比べアウター側部分の軸受剛性 を増大させることができ、 軸受の長寿命化を図ることができる。 さらに、 ハ ブ輪 4のアウター側端部に凹所 1 4が外郭形状に沿って形成され、 ハブ輪 4 のアウター側が均一な肉厚に設定されているので、 装置の軽量■ コンパク ト 化と高剛性化という相反する課題を解決することができる。  [0034] In the wheel bearing device configured as described above, the pitch circle diameter PCD o of the outer side rolling elements 3 group is formed larger than the pitch circle diameter PCD i of the inner side rolling elements 3 group. The number of rolling elements 3 is also set so that the number of rolling elements in the outer rolling element group 3 is larger than the number of rolling elements in the inner one rolling element group. The bearing rigidity of the outer side can be increased compared to the side, and the life of the bearing can be extended. In addition, the recess 14 is formed in the outer end of the hub ring 4 along the outer shape, and the outer side of the hub ring 4 is set to a uniform thickness, so that the weight of the device can be reduced. The conflicting problem of high rigidity can be solved.
[0035] ここで、 外方部材 2は、 素材となるバ一材から鍛造加工により、 図 2 ( a ) に示すような所定の鍛造形状に形成されている (図中二点鎖線にて示す) 。 具体的には、 ナックル (図示せず) が当接する車体取付フランジ 2 cのィ ンナー側の側面 1 7と、 ナックルが外嵌されるインナ一側の外周面 1 8と、 両端面 1 9、 2 0と、 シール 1 1、 1 2が装着されるシール嵌合面 2 1、 2 2と、 複列の外側転走面 2 a、 2 bと、 大径側の肩部 1 5と小径側の肩部 1 6が所定の旋削取代を残した状態で鍛造加工されている。  Here, the outer member 2 is formed into a predetermined forging shape as shown in FIG. 2 (a) by forging from the raw material bar (shown by a two-dot chain line in the figure). ) Specifically, the inner side surface 17 of the vehicle body mounting flange 2 c with which a knuckle (not shown) abuts, the inner side outer peripheral surface 18 on which the knuckle is fitted, and both end surfaces 19, 2 0, seal fitting surface 2 1 and 2 2 to which seals 1 and 1 2 are mounted, double row outer rolling surface 2 a and 2 b, large diameter shoulder 15 and small diameter side The forging process is performed in a state where the shoulder portion 16 is left with a predetermined turning allowance.
[0036] このように、 大径側の肩部 1 5と小径側の肩部 1 6が旋削加工によって所 定の溝深さに形成されると共に、 両肩部 1 5、 1 6間の内径部 1 5 aが所定 の傾斜角からなるテ一パ面で形成されている。 すなわち、 この内径部 1 5 a は旋削加工されずに鍛造肌のままとされている。 これにより、 外側転走面 2 a、 2 bの溝深さが厳しく規制され、 肩乗り上げによってエッジロードが発 生するのが防止できると共に、 旋削加工によって削除される部位を可及的に 減少せしめてマテリアルロスの削減ができ、 低コスト化を図ることができる [0036] In this way, the shoulder portion 15 on the large diameter side and the shoulder portion 16 on the small diameter side are formed to a predetermined groove depth by turning, and the inner diameter between the shoulder portions 15 and 16 is The part 15 a is formed by a taper surface having a predetermined inclination angle. That is, the inner diameter portion 15 a is left as a forged surface without being turned. As a result, the outer rolling surface 2 The groove depths of a and 2b are strictly regulated, preventing edge load from being raised on the shoulder, and reducing material loss by reducing the number of parts removed by turning as much as possible. Cost reduction can be achieved
[0037] さらに、 本実施形態では、 外方部材 2は旋削加工後に高周波焼入れによつ て硬化処理が施され、 研削加工の前に、 内径部 1 5 aがショットブラスト加 ェによってスケールが除去される。 すなわち、 図 3 ( a ) に示すように、 外 方部材 2の径方向内方に配置されたノズル 2 7から、 回転自在にセッ卜され た外方部材 2の内周面に向けて、 スチールビーズ等のメディアを噴射させて 行われる。 ここで、 スチールビーズの粒径は 2 0〜 1 0 0 ;U m、 噴射時間は 約 9 0秒、 噴射圧は 1〜3 k g / c m 2の条件でノズル 2 7を矢印にて示すよ うに、 軸方向に移動させながらショットブラスト加工が施される。 これによ り、 内径部 1 5 aの表面に付着したスケールが除去されると共に、 それぞれ の角部のバリ等も同時に除去されて滑らかに丸められる。 したがって、 スケ ールの脱落に起因する運転時の異音、 異常振動、 回転不調を確実に防止し、 製品品質の向上を図ることができる。 また、 内径部 1 5 aの表面に圧縮残留 応力が形成され、 強度■耐久性を向上させることができる。 [0037] Further, in this embodiment, the outer member 2 is hardened by induction hardening after turning, and the inner diameter portion 15a is removed by shot blasting before grinding. Is done. That is, as shown in FIG. 3 (a), steel is directed from the nozzle 27 disposed radially inward of the outer member 2 toward the inner peripheral surface of the outer member 2 that is rotatably set. This is done by jetting media such as beads. Here, the particle size of the steel beads is 20 to 10 0; U m, the injection time is about 90 seconds, the injection pressure is 1 to 3 kg / cm 2 , and the nozzle 27 is indicated by the arrow Shot blasting is performed while moving in the axial direction. As a result, the scale attached to the surface of the inner diameter portion 15 a is removed, and burrs and the like at the respective corner portions are removed at the same time and are smoothly rounded. Therefore, it is possible to reliably prevent abnormal noise during operation, abnormal vibration, and rotation failure due to scale dropout and improve product quality. Further, compressive residual stress is formed on the surface of the inner diameter portion 15a, and the strength and durability can be improved.
[0038] 一方、 ハブ輪 4は、 前述した外方部材 2と同様、 素材となるバー材から鍛 造加工により、 図 2 ( b ) に示すような所定の鍛造形状に形成されている ( 図中二点鎖線にて示す) 。 具体的には、 端面 2 3、 2 4をはじめ、 少なくと もブレーキロータ (図示せず) が当接する車輪取付フランジ 6のアウター側 の側面 2 5とパイロット部 2 6、 車輪取付フランジ 6の基部 6 b、 内側転走 面 4 a、 カウンタ部 1 3、 および小径段部 4 bが所定の旋削取代を残した状 態で鍛造加工されている。  On the other hand, the hub wheel 4 is formed into a predetermined forging shape as shown in FIG. 2 (b) by forging from a bar material as a material, like the outer member 2 described above (FIG. 2). (Indicated by a chain double-dashed line). Specifically, the outer side surface 2 5 of the wheel mounting flange 6 with which the brake rotor (not shown) abuts, including the end surfaces 2 3 and 2 4, the pilot portion 2 6, and the base portion of the wheel mounting flange 6 6 b, the inner rolling surface 4 a, the counter part 13 and the small diameter step part 4 b are forged while leaving a predetermined turning allowance.
[0039] 本実施形態では、 アウター側のシール 1 1のランド部となる基部 6 bをは じめ、 内側転走面 4 aとカウンタ部 1 3、 および小径段部 4 bが旋削加工に よって所定の寸法に形成されると共に、 軸状部 7が所定の傾斜角からなるテ ーパ面で形成されている。 すなわち、 この軸状部 7は旋削加工されずに鍛造 肌のままとされている。 これにより、 内側転走面 4 aの溝深さが厳しく規制 され、 肩乗り上げによってエッジ口一ドが発生するのが防止できると共に、 旋削加ェによって削除される部位を可及的に減少せしめてマテリアルロスの 削減ができ、 低コスト化を図ることができる。 [0039] In this embodiment, the base portion 6b, which is the land portion of the seal 11 on the outer side, and the inner rolling surface 4a, the counter portion 13 and the small diameter step portion 4b are turned by turning. The shaft-shaped portion 7 is formed with a taper surface having a predetermined inclination angle. That is, the shaft 7 is forged without turning. It is considered to be skin. As a result, the groove depth of the inner rolling surface 4a is strictly regulated, and it is possible to prevent the occurrence of edge stagnation by riding on the shoulder, and to reduce the number of parts to be deleted by turning as much as possible. Material loss can be reduced and costs can be reduced.
[0040] さらに、 ハブ輪 4は、 前述した外方部材 2と同様、 旋削加工後に高周波焼 入れによって硬化処理が施され、 研削加工の前に、 軸状部 7がショットブラ スト加工によってスケールが除去される。 すなわち、 図 3 ( b ) に示すよう に、 ハブ輪 4の径方向外方に配置されたノズル 2 8から、 回転自在にセット されたハブ輪 4の外周面に向けて、 メディアを噴射させて行われる。 これに より、 軸状部 7の表面に付着したスケールが除去されると共に、 それぞれの 角部のバリ等も同時に除去されて滑らかに丸められる。 したがって、 スケ一 ルの脱落に起因する運転時の異音、 異常振動、 回転不調を確実に防止し、 製 品品質の向上を図ることができる。 また、 軸状部 7の表面に圧縮残留応力が 形成され、 ハブ輪 4に負荷されるモーメント荷重等に対して強度■耐久性を 向上させることができる。 なお、 内側転走面 4 aをはじめ研削加工される部 位もこのショットブラスト加工を連続して施すようにしても良い。 [0040] Further, the hub wheel 4 is hardened by induction hardening after turning, as with the outer member 2 described above, and the shaft 7 is scaled by shot blasting before grinding. Removed. That is, as shown in FIG. 3 (b), the medium is ejected from the nozzle 28 disposed radially outward of the hub wheel 4 toward the outer peripheral surface of the hub wheel 4 that is rotatably set. Done. As a result, the scale attached to the surface of the shaft-like portion 7 is removed, and burrs and the like at the respective corner portions are simultaneously removed and smoothly rounded. Therefore, it is possible to reliably prevent abnormal noise during operation, abnormal vibration, and rotation failure due to the drop of the scale, and improve product quality. Further, a compressive residual stress is formed on the surface of the shaft-like portion 7, and the strength and durability against the moment load applied to the hub wheel 4 can be improved. The shot blasting may also be continuously performed on the inner rolling surface 4a and other parts to be ground.
実施例 1  Example 1
[0041 ] 図 4は、 本発明に係る車輪用軸受装置の第 2の実施形態を示す縦断面図、 図 5は、 図 4のハブ輪単体を示す縦断面図である。 なお、 前述した第 1の実 施形態と同一部品同一部位あるいは同一機能を有する部位には同じ符号を付 して詳細な説明を省略する。  FIG. 4 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention, and FIG. 5 is a longitudinal sectional view showing a single hub wheel of FIG. Note that the same parts and portions having the same functions as those of the first embodiment described above are denoted by the same reference numerals and detailed description thereof is omitted.
[0042] この車輪用軸受装置は第 3世代と呼称される従動輪用であって、 内方部材 2 9と外方部材 3 0、 および両部材 2 9、 3 0間に転動自在に収容された複 列の転動体 (ポール) 3、 3を備えている。 内方部材 2 9は、 ハブ輪 3 1 と 、 このハブ輪 3 1に所定のシメシ口を介して圧入された内輪 5とからなる。  [0042] This wheel bearing device is for a driven wheel called the third generation, and is housed in a freely rollable manner between the inner member 29, the outer member 30, and both members 29, 30. Double-row rolling elements (poles) 3 and 3 are provided. The inner member 29 includes a hub ring 3 1 and an inner ring 5 press-fitted into the hub ring 31 through a predetermined shim opening.
[0043] ハブ輪 3 1は、 アウター側の端部に車輪取付フランジ 6を一体に有し、 外 周に一方 (アウター側) の内側転走面 4 aと、 この内側転走面 4 aから軸方 向にストレートに延びる軸状部 3 2を介して小径段部 4 bが形成されている 。 ハブ輪 3 1は S 5 3 C等の炭素 0 . 4 0〜0 . 8 0 w t %を含む中高炭素 鋼で形成され、 内側転走面 4 aをはじめ、 車輪取付フランジ 6の基部 6 bか ら小径段部 4 bに亙って高周波焼入れによって表面硬さを 5 8〜6 4 H R C の範囲に硬化処理されている。 [0043] The hub wheel 31 is integrally provided with a wheel mounting flange 6 at an end portion on the outer side, and one (outer side) inner rolling surface 4a and an inner rolling surface 4a on the outer periphery. A small-diameter step portion 4 b is formed via a shaft-like portion 3 2 extending straight in the axial direction. . The hub wheel 3 1 is formed of medium and high carbon steel containing carbon 0.40 to 0.80 wt% such as S 53 C, and includes the inner rolling surface 4 a and the base 6 b of the wheel mounting flange 6. The surface hardness is hardened to a range of 58 to 64 HRC by induction hardening over the small diameter step 4b.
[0044] 外方部材 3 0は、 外周に車体取付フランジ 2 cを一体に有し、 内周に内方 部材 2 9の複列の内側転走面 4 a、 5 aに対向する複列の外側転走面 2 a、 2 aが一体に形成されている。 これら両転走面間に複列の転動体 3、 3が収 容され、 保持器 9、 9によって転動自在に保持されている。 この外方部材 3 0は S 5 3 C等の炭素 0 . 4 0〜0 . 8 O w t %を含む中高炭素鋼で形成さ れ、 複列の外側転走面 2 a、 2 aが高周波焼入れによって表面硬さを 5 8〜 6 4 H R Cの範囲に硬化処理されている。  [0044] The outer member 30 is integrally formed with a vehicle body mounting flange 2c on the outer periphery, and a double-row inner rolling surface 4a, 5a of the inner member 29 on the inner periphery. The outer rolling surfaces 2 a and 2 a are integrally formed. Double-row rolling elements 3 and 3 are accommodated between these rolling surfaces, and are held by the cages 9 and 9 so that they can roll freely. This outer member 30 is formed of medium and high carbon steel containing carbon 0.40 to 0.8 O wt% such as S 53 C, and double row outer rolling surfaces 2 a and 2 a are induction hardened. The surface hardness is hardened in the range of 58 to 64 HRC.
[0045] ここで、 ハブ輪 3 1は、 素材となるバ一材から鍛造加工により、 図 5に示 すような所定の鍛造形状に形成されている (図中二点鎖線にて示す) 。 具体 的には、 端面 2 3、 2 4をはじめ、 少なくともブレーキロータ (図示せず) が当接する車輪取付フランジ 6のアウター側の側面 2 5とパイ口ット部 2 6 、 車輪取付フランジ 6の基部 6 b、 内側転走面 4 a、 カウンタ部 1 3、 およ び小径段部 4 bが所定の旋削取代を残した状態で鍛造加工される。 すなわち 、 アウター側のシール 1 1のランド部となる基部 6 bをはじめ、 内側転走面 4 aとカウンタ部 1 3、 および小径段部 4 bが旋削加工によって所定の寸法 に形成されると共に、 軸状部 3 2は旋削加工されずに鍛造肌のままとされて いる。 これにより、 内側転走面 4 aの溝深さが厳しく規制され、 肩乗り上げ によってエッジロードが発生するのが防止できると共に、 旋削加工によって 削除される部位を可及的に減少せしめてマテリアルロスの削減ができ、 低コ スト化を図ることができる。  Here, the hub ring 31 is formed into a predetermined forging shape as shown in FIG. 5 by forging from a bar material as a raw material (indicated by a two-dot chain line in the figure). Specifically, including the end faces 2 3 and 2 4, at least the side face 2 5 on the outer side of the wheel mounting flange 6 with which the brake rotor (not shown) abuts, the pi opening part 2 6, and the wheel mounting flange 6 The base 6b, the inner rolling surface 4a, the counter 13 and the small diameter step 4b are forged with a predetermined turning allowance remaining. That is, the base portion 6 b that becomes the land portion of the seal 11 on the outer side, the inner rolling surface 4 a, the counter portion 13, and the small diameter step portion 4 b are formed to predetermined dimensions by turning, and The shaft-like part 3 2 is left as a forged surface without being turned. As a result, the groove depth of the inner rolling surface 4a is strictly regulated, and it is possible to prevent edge load from being generated by climbing the shoulder, and to reduce the material loss by reducing the number of parts to be deleted by turning as much as possible. It can be reduced and the cost can be reduced.
[0046] さらに、 ハブ輪 3 1は、 前述した実施形態と同様、 旋削加工後に高周波焼 入れによって硬化処理が施され、 研削加工の前に、 軸状部 3 2がショットブ ラスト加工によってスケールが除去される。 これにより、 軸状部 3 2の表面 に付着したスケールが除去されると共に、 それぞれの角部のバリ等も同時に 除去されて滑らかに丸められる。 したがって、 スケールの脱落に起因する運 転時の異音、 異常振動、 回転不調を確実に防止すると共に、 軸状部 3 2の表 面に圧縮残留応力が形成され、 ハブ輪 3 1に負荷されるモーメント荷重等に 対して強度■耐久性を向上させることができる。 [0046] Further, as in the above-described embodiment, the hub wheel 31 is subjected to a hardening process by induction hardening after the turning process, and before the grinding process, the scale of the shaft-like part 3 2 is removed by the shot blasting process. Is done. As a result, the scale adhering to the surface of the shaft-shaped part 32 is removed, and burrs at each corner part are simultaneously removed. Removed and rounded smoothly. Therefore, abnormal noise during operation, abnormal vibration, and rotation failure due to scale dropout are reliably prevented, and compressive residual stress is formed on the surface of the shaft 3 2 and is applied to the hub ring 31. It can improve the strength against the moment load.
実施例 3  Example 3
[0047] 図 6は、 本発明に係る車輪用軸受装置の第 3の実施形態を示す縦断面図、 図 7 ( a ) は、 図 6の外方部材単体を示す拡大断面図、 (b ) は、 図 6の要 部拡大図である。 なお、 前述した実施形態と同一部品同一部位あるいは同一 機能を有する部位には同じ符号を付して詳細な説明を省略する。  FIG. 6 is a longitudinal sectional view showing a third embodiment of the wheel bearing device according to the present invention, FIG. 7 (a) is an enlarged sectional view showing a single outer member of FIG. 6, and (b). Fig. 6 is an enlarged view of the main part of Fig. 6. It should be noted that parts having the same parts or the same functions as those of the above-described embodiment are given the same reference numerals and detailed description thereof is omitted.
[0048] この車輪用軸受装置は従動輪側の第 3世代と称され、 内方部材 3 3と外方 部材 3 4、 および両部材 3 3、 3 4間に転動自在に収容された複列の転動体 (ポール) 3、 3を備えている。 内方部材 3 3は、 ハブ輪 3 5と、 このハブ 輪 3 5に所定のシメシ口を介して圧入された内輪 3 6とからなる。  [0048] This wheel bearing device is called the third generation on the driven wheel side, and is composed of a plurality of inner members 33, outer members 34, and a plurality of rolling members accommodated between both members 33, 34. The rolling elements (poles) 3 and 3 are provided. The inner member 33 includes a hub ring 35 and an inner ring 36 that is press-fitted into the hub ring 35 through a predetermined shim opening.
[0049] ハブ輪 3 5は、 アウター側の端部に車輪取付フランジ 6を一体に有し、 こ の車輪取付フランジ 6の円周等配位置に車輪を固定するためのハブポルト 6 aが植設されている。 また、 ハブ輪 3 5の外周には一方 (アウター側) の内 側転走面 3 5 aが直接形成され、 この内側転走面 3 5 aから軸方向に延びる 小径段部 3 5 bが形成されている。 そして、 外周に他方 (インナ一側) の内 側転走面 3 6 aが形成された内輪 3 6がこの小径段部 3 5 bに圧入され、 さ らに、 小径段部 3 5 bの端部を径方向外方に塑性変形させて形成した加締部 8により内輪 3 6が軸方向に固定され、 背面合せタイプの複列アンギユラ玉 軸受を構成している。  [0049] The hub wheel 3 5 has a wheel mounting flange 6 integrally at the outer end, and a hub port 6 a for fixing the wheel at a circumferentially equidistant position of the wheel mounting flange 6 is implanted. Has been. Further, one (outer side) inner rolling surface 35a is directly formed on the outer periphery of the hub wheel 35, and a small-diameter step portion 35b extending in the axial direction from the inner rolling surface 35a is formed. Has been. Then, the inner ring 36 having the outer (inner one) inner raceway surface 36a formed on the outer periphery is press-fitted into the small-diameter step portion 35b, and the end of the small-diameter step portion 35b The inner ring 36 is fixed in the axial direction by a caulking portion 8 formed by plastically deforming the portion radially outward to constitute a back-to-back type double-row anguillar ball bearing.
[0050] ハブ輪 3 5は S 5 3 C等の炭素 0 . 4 0〜0 . 8 0重量%を含む中高炭素 鋼で形成され、 アウター側の内側転走面 3 5 aをはじめ、 アウター側のシ一 ル 1 1が摺接するシールランド部となる基部 6 b、 および小径段部 3 5 bに 亙り高周波焼入れによって表面硬さを 5 8〜6 4 H R Cの範囲に硬化処理が 施されている。 一方、 内輪 3 6は S U J 2等の高炭素クロム軸受鋼からなり 、 ズブ焼入れにより芯部まで 5 8〜6 4 H R Cの範囲で硬化処理されている 。 これにより、 シールランド部の耐摩耗性が向上するだけでなくハブ輪 3 5 の強度が向上すると共に、 内輪 3 6の嵌合面におけるフレツティング摩耗が 抑制されて耐久性が向上する。 [0050] The hub wheel 3 5 is formed of medium and high carbon steel containing carbon of 0.45 to 0.80% by weight, such as S 53 C, and includes an inner side rolling surface 3 5 a on the outer side and an outer side. The base 6b, which is the seal land where the seal 11 contacts, and the small-diameter step 35b are wound with induction hardening to a surface hardness of 58-64 HRC. . On the other hand, the inner ring 3 6 is made of high carbon chrome bearing steel such as SUJ 2 and hardened in the range of 58 to 64 HRC to the core part by quenching. . As a result, not only the wear resistance of the seal land portion is improved, but also the strength of the hub ring 35 is improved, and fretting wear on the fitting surface of the inner ring 36 is suppressed, thereby improving durability.
[0051 ] 外方部材 3 4は、 外周に車体取付フランジ 2 cを一体に有し、 内周に前記 内方部材 3 3の複列の内側転走面 3 5 a、 3 6 aに対向する複列の外側転走 面 3 4 a、 3 4 aが一体に形成されている。 この外方部材 3 4は、 ハブ輪 3 5と同様、 3 5 3〇等の炭素0 . 4 0〜0 . 8 0重量%を含む中高炭素鋼で 形成され、 少なくとも複列の外側転走面 3 4 a、 3 4 aが高周波焼入れによ つて表面硬さを 5 8〜6 4 H R Cの範囲に硬化処理されている。 そして、 そ れぞれの転走面 3 4 a、 3 5 aと 3 4 a、 3 6 a間に複列の転動体 3、 3が 収容され、 保持器 9、 9によりこれら複列の転動体 3、 3が転動自在に保持 されている。 [0051] The outer member 3 4 integrally has a vehicle body mounting flange 2c on the outer periphery, and faces the double row inner rolling surfaces 3 5a, 3 6a of the inner member 3 3 on the inner periphery. Double row outer rolling surfaces 3 4 a and 3 4 a are integrally formed. This outer member 3 4 is formed of medium and high carbon steel containing carbon 0.40 to 0.80 wt% such as 3 5 30 as in the case of the hub wheel 3 5, and at least a double row outer rolling surface. 3 4 a and 3 4 a are hardened by induction hardening to a surface hardness range of 58 to 64 HRC. Then, double-row rolling elements 3 and 3 are accommodated between the respective rolling surfaces 3 4 a and 3 5 a and 3 4 a and 3 6 a. The moving bodies 3 and 3 are held so as to freely roll.
[0052] なお、 ここでは、 転動体 3、 3をポールとした複列アンギユラ玉軸受を例 示したが、 これに限らず転動体 3に円すいころを使用した複列円すいころ軸 受であっても良い。  [0052] Here, a double-row anguilla ball bearing using the rolling elements 3 and 3 as poles is shown as an example, but the present invention is not limited to this, and is a double-row tapered roller bearing using a tapered roller for the rolling element 3. Also good.
[0053] ここで、 外方部材 3 4は、 図 7 ( a ) に拡大して示すように、 複列の外側 転走面 3 4 a、 3 4 a間に円筒状の肩部 3 7が鍛造加工により形成され、 こ の肩部 3 7の両端部、 すなわち、 複列の外側転走面 3 4 aの縁部に環状の切 欠き部 3 8、 3 8がそれぞれ形成されている。 この切欠き部 3 8は、 切削加 ェにより肩部 3 7から所定の傾斜角ひからなるテ一パ面に形成されている。 傾斜角ひは、 素材の歩留まりおよび後述する肩乗り上げ等を考慮して 2 0〜 4 5 ° の範囲に設定されている。  [0053] Here, the outer member 3 4 has a cylindrical shoulder 3 7 between the double-row outer rolling surfaces 3 4 a and 3 4 a as shown in an enlarged view in FIG. 7 (a). Formed by forging, annular notches 3 8 and 3 8 are formed at both ends of the shoulder 37, that is, at the edge of the double row outer rolling surface 34 a. The notch portion 38 is formed on a taper surface having a predetermined inclination angle from the shoulder portion 37 by cutting. The inclination angle is set in the range of 20 to 45 ° in consideration of the yield of the material and the shoulder climbing described later.
[0054] このように、 本実施形態では、 肩部 3 7が鍛造加工によって形成され、 複 列の外側転走面 3 4 a、 3 4 aの縁部の切欠き部 3 8、 3 8のみが切削加工 されているので、 肩部 3 7の切削加工範囲が狭くなり、 加工工数の削減によ る低コスト化を図ることができる。  Thus, in the present embodiment, the shoulder 3 7 is formed by forging, and only the notches 3 8 and 3 8 at the edges of the double row outer rolling surfaces 3 4 a and 3 4 a Since the cutting process is performed, the cutting range of the shoulder 37 is narrowed, and the cost can be reduced by reducing the number of processing steps.
[0055] また、 この切欠き部 3 8によって外側転走面 3 4 aとの交差角が大きくな るので、 外側転走面 3 4 aの縁部にエツジ口一ドが発生し、 転動体 3の接触 楕円が外側転走面 3 4 aから外れる肩乗り上げを防止することができる。 [0055] Further, since the notch portion 3 8 increases the crossing angle with the outer rolling surface 3 4 a, an edge is generated at the edge of the outer rolling surface 3 4 a, and the rolling element 3, contact It is possible to prevent the ellipse from climbing over the shoulder 3 4 a.
[0056] また、 図 7 ( b ) に示すように、 この切欠き部 3 8がグリースポケットの 機能を発揮し、 軸受内部に封入されたグリースが重力および遠心力でこの切 欠き部 3 8に沿って移動し、 スムーズに複列の外側転走面 3 4 a、 3 4 aに 流入するため、 最小限の封入量でグリースを有効に潤滑に寄与させることが でき、 潤滑環境を良好な状態に維持することができる。 さらに、 複列の外側 転走面 3 4 a、 3 4 aの縁部に切欠き部 3 8、 3 8が形成されているので、 保持器 9との干渉が防止でき、 保持器 9等の設計自由度が拡がる。 [0056] Further, as shown in FIG. 7 (b), the notch 3 8 functions as a grease pocket, and the grease enclosed in the bearing is applied to the notch 3 8 by gravity and centrifugal force. It moves along and smoothly flows into the double row outer rolling surfaces 3 4 a and 3 4 a, so grease can effectively contribute to lubrication with a minimum amount of filling, and the lubrication environment is in good condition. Can be maintained. Furthermore, since the notches 3 8 and 3 8 are formed at the edges of the double row outer rolling surfaces 3 4 a and 3 4 a, interference with the cage 9 can be prevented, and Design flexibility is expanded.
実施例 4  Example 4
[0057] 図 8は、 本発明に係る車輪用軸受装置の第 4の実施形態を示す縦断面図、 図 9 ( a ) は、 図 8の外方部材単体を示す拡大断面図、 (b ) は、 図 8の要 部拡大図である。 なお、 この実施形態は、 前述した第 3の実施形態 (図 6 ) と基本的には外方部材の構成が異なるだけで、 その他同一部品同一部位ある いは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略 する。  [0057] Fig. 8 is a longitudinal sectional view showing a fourth embodiment of the wheel bearing device according to the present invention, Fig. 9 (a) is an enlarged sectional view showing the outer member alone of Fig. 8, (b) Fig. 9 is an enlarged view of the main part of Fig. 8. Note that this embodiment is basically different from the third embodiment (FIG. 6) described above except that the configuration of the outer member is different, and other parts and parts having the same function or the same function are used. Are denoted by the same reference numerals and detailed description thereof is omitted.
[0058] この車輪用軸受装置は、 内方部材 3 3と外方部材 3 9、 および両部材 3 3 、 3 9間に転動自在に収容された複列の転動体 3、 3を備えている。 ここで 、 外方部材 3 9は、 図 9 ( a ) に拡大して示すように、 複列の外側転走面 3 4 a、 3 4 a間に円筒状の肩部 3 7が鍛造加工により形成され、 この肩部 3 7の両端部に環状の切欠き部 4 0、 4 0が切削加工により形成されている。 この切欠き部 4 0は、 肩部 3 7から所定の段差 (5からなる断面略矩形状に形 成されている。 この段差 (5は、 素材の歩留まりおよび肩乗り上げ等を考慮し て 0 . 5〜1 . O m mの範囲に設定されている。  The wheel bearing device includes an inner member 3 3, an outer member 39, and double row rolling elements 3, 3 accommodated between the members 3 3, 39 so as to be freely rollable. Yes. Here, as shown in the enlarged view of FIG. 9 (a), the outer member 3 9 has a cylindrical shoulder portion 3 7 formed by forging between the double row outer rolling surfaces 3 4a and 3 4a. The annular notches 40, 40 are formed by cutting at both ends of the shoulder 37. This notch 40 is formed to have a predetermined step from shoulder portion 37 (a substantially rectangular cross section consisting of 5. This step (5 is 0.5 in consideration of the yield of the material and the shoulder climbing, etc.). It is set in the range of 5 to 1. O mm.
[0059] このように、 本実施形態では、 前述した実施形態と同様、 肩部 3 7が鍛造 加工によって形成され、 複列の外側転走面 3 4 a、 3 4 aの縁部の切欠き部 4 0、 4 0のみが切削加工されているので、 加工工数を削減して低コスト化 を図ると共に、 この切欠き部 4 0がグリースポケッ卜の機能をして潤滑性を 向上させることができる。 [0060] 以上、 本発明の実施の形態について説明を行ったが、 本発明はこうした実 施の形態に何等限定されるものではなく、 あくまで例示であって、 本発明の 要旨を逸脱しない範囲内において、 さらに種々なる形態で実施し得ることは 勿論のことであり、 本発明の範囲は、 特許請求の範囲の記載によって示され 、 さらに特許請求の範囲に記載の均等の意味、 および範囲内のすべての変更 を含む。 [0059] Thus, in the present embodiment, as in the above-described embodiment, the shoulder portion 3 7 is formed by forging, and the outer row rolling surfaces 3 4 a and 3 4 a of the double row are notched at the edges. Since only parts 40 and 40 are cut, the number of machining steps can be reduced to reduce costs, and the notch 40 can function as a grease pocket to improve lubricity. it can. [0060] The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment in any way and is merely an example and does not depart from the gist of the present invention. Of course, the present invention can be implemented in various forms, and the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims, Includes all changes.
産業上の利用可能性  Industrial applicability
[0061] 本発明に係る車輪用軸受装置は、 駆動輪用、 従動輪用に拘わらず、 第 3世 代構造の車輪用軸受装置に適用することができる。  The wheel bearing device according to the present invention can be applied to a third-generation wheel bearing device regardless of whether it is for a driving wheel or a driven wheel.
図面の簡単な説明  Brief Description of Drawings
[0062] [図 1]本発明に係る車輪用軸受装置の第 1の実施形態を示す縦断面図である。  FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention.
[図 2] (a) は、 図 1の外方部材単体を示す縦断面図である。 (b) は、 図 1のハブ輪単体を示す縦断面図である。  FIG. 2 (a) is a longitudinal sectional view showing a single outer member in FIG. (B) is a longitudinal sectional view showing a single hub wheel of FIG.
[図 3] (a) は、 図 1の外方部材のショットブラスト加工を示す説明図である 。 (b) は、 図 1のハブ輪のショットブラスト加工を示す説明図である。  FIG. 3 (a) is an explanatory view showing shot blasting of the outer member in FIG. (B) is an explanatory view showing shot blasting of the hub wheel of FIG.
[図 4]本発明に係る車輪用軸受装置の第 2の実施形態を示す縦断面図である。  FIG. 4 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention.
[図 5]図 4のハブ輪単体を示す縦断面図である。  5 is a longitudinal sectional view showing a single hub wheel of FIG.
[図 6]本発明に係る車輪用軸受装置の第 3の実施形態を示す縦断面図である。  FIG. 6 is a longitudinal sectional view showing a third embodiment of the wheel bearing device according to the present invention.
[図 7] (a) は、 図 6の外方部材単体を示す拡大断面図である。 (b) は、 図 6の要部拡大図である。  FIG. 7 (a) is an enlarged cross-sectional view showing a single outer member in FIG. (B) is an enlarged view of the main part of FIG.
[図 8]本発明に係る車輪用軸受装置の第 4の実施形態を示す縦断面図である。  FIG. 8 is a longitudinal sectional view showing a fourth embodiment of a wheel bearing device according to the present invention.
[図 9] (a) は、 図 8の外方部材単体を示す拡大断面図である。 (b) は、 図 8の要部拡大図である。  FIG. 9 (a) is an enlarged cross-sectional view showing a single outer member in FIG. (B) is an enlarged view of the main part of FIG.
[図 10]従来の車輪用軸受装置を示す縦断面図である。  FIG. 10 is a longitudinal sectional view showing a conventional wheel bearing device.
[図 11 ]同上、 外方部材の鍛造形状を示す説明図である。  FIG. 11 is an explanatory view showing the forged shape of the outer member.
符号の説明  Explanation of symbols
[0063] 1、 29、 33 内方部材  [0063] 1, 29, 33 Inner member
2、 30、 34、 39 外方部材 外側転走面 2, 30, 34, 39 Outer member Outer rolling surface
車体取付フランジ Body mounting flange
転動体 Rolling element
ハブ輪 Hub wheel
内側転走面 Inner rolling surface
小径段部 Small diameter step
内輪 Inner ring
車輪取付フランジ Wheel mounting flange
ハブポルト Have Porto
基部 Base
軸状部 Shaft
肩部 Shoulder
加締部 Caulking section
保持器 Cage
シール sticker
カウンタ部 Counter section
凹所 Recess
大径側の肩部 Large diameter shoulder
内径部 Inner diameter
小径側の肩部 Small diameter shoulder
車体取付フランジのィンナ一側の側面 外方部材のィンナー側の外周面 外方部材の端面 Side surface on the inner side of the vehicle mounting flange Outer surface of the outer member on the inner side End surface of the outer member
シール嵌合面 Seal mating surface
ハブ輪の端面 End face of hub ring
車輪取付フランジのァウタ一側の側面 パイロット部 Side surface of wheel mounting flange on one side of pilot
ノズル 切欠き部 nozzle Notch
車輪用軸受装置 Wheel bearing device
外方部材 Outer member
アウター側の外側転走面 Outer rolling surface on the outer side
ィンナー側の外側転走面 Outer rolling surface on the inner side
車体取付フランジ Body mounting flange
ハブ輪 Hub wheel
内側転走面 Inner rolling surface
小径段部 Small diameter step
加締部 Caulking section
車輪取付フランジ Wheel mounting flange
内輪 Inner ring
内方部材 Inner member
ポール Pole
保持器 Cage
シール sticker
溝肩部 Groove shoulder
ァウタ一側のポール群のピッチ円直径 ィンナー側のポール群のピッチ円直径 ィンナー側の転動体群のピッチ円直径 ァウタ一側の転動体群のピッチ円直径 切欠き部の傾斜角 Pitch circle diameter of the pole group on the one side Pitch circle diameter of the pole group on the inner side Pitch circle diameter of the rolling element group on the inner side Pitch circle diameter of the rolling element group on the one side The inclination angle of the notch
切欠き部の段差 Notch level difference

Claims

請求の範囲 The scope of the claims
[1 ] 外周に車体に取り付けられるための車体取付フランジを一体に有し、 内周 に複列の外側転走面が形成された外方部材と、  [1] An outer member integrally having a vehicle body mounting flange for mounting to the vehicle body on the outer periphery, and having a double row outer rolling surface formed on the inner periphery;
—端部に車輪を取り付けるための車輪取付フランジを一体に有し、 外周に 前記複列の外側転走面に対向する一方の内側転走面と、 この内側転走面から 軸方向に延びる軸状部を介して小径段部が形成されたハブ輪、 およびこのハ ブ輪の小径段部に所定のシメシ口を介して圧入され、 外周に前記複列の外側 転走面に対向する他方の内側転走面が形成された内輪からなる内方部材と、 この内方部材と前記外方部材の両転走面間に転動自在に収容された複列の 転動体とを備え、  -A wheel mounting flange for mounting the wheel at the end is integrally formed, one inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and an axis extending in the axial direction from the inner rolling surface A hub wheel having a small-diameter step portion formed through the ring-shaped portion, and the other diameter of the hub wheel that is press-fitted into the small-diameter step portion of the hub ring through a predetermined squeeze port and that faces the outer rolling surface of the double row on the outer periphery. An inner member formed of an inner ring formed with an inner rolling surface, and a double row rolling element that is slidably accommodated between the inner member and both rolling surfaces of the outer member,
少なくとも前記ハブ輪の軸状部が鍛造肌のままとされていることを特徴と する車輪用軸受装置。  A wheel bearing device, characterized in that at least the shaft portion of the hub wheel is left as a forged surface.
[2] 前記軸状部の表面がショットブラスト加工されている請求項 1に記載の車 輪用軸受装置。  [2] The wheel bearing device according to claim 1, wherein the surface of the shaft-shaped portion is shot blasted.
[3] 前記外方部材の複列の外側転走面に各々隣接した肩部が形成され、 これら 肩部が旋削加ェによって所定の溝深さに形成されると共に、 両肩部間の内径 部が旋削加工されずに鍛造肌のままとされている請求項 1または 2に記載の 車輪用軸受装置。  [3] Shoulders that are adjacent to the double row outer rolling surfaces of the outer member are formed, and the shoulders are formed to a predetermined groove depth by turning, and an inner diameter between the shoulders. The wheel bearing device according to claim 1 or 2, wherein the portion is not turned and remains forged.
[4] 前記複列の転動体のうちアウター側の転動体群のピッチ円直径がィンナー 側の転動体群のピッチ円直径よりも大径に設定されると共に、 前記ハブ輪の 軸状部が、 前記内側転走面の溝底部に形成された力ゥンタ部と前記小径段部 間に所定の傾斜角を有するテーパ状に形成されている請求項 1乃至 3いずれ かに記載の車輪用軸受装置。  [4] The pitch circle diameter of the outer side rolling element group of the double row rolling elements is set to be larger than the pitch circle diameter of the inner side rolling element group, and the shaft portion of the hub wheel is 4. The wheel bearing device according to claim 1, wherein the wheel bearing device is formed in a tapered shape having a predetermined inclination angle between a force counter portion formed at a groove bottom portion of the inner rolling surface and the small diameter step portion. .
[5] 前記ハブ輪のアウター側の端部にすり鉢状の凹所が形成され、 この凹所の 深さが少なくとも前記ハブ輪の内側転走面の溝底付近とされ、 前記ハブ輪の 外郭形状が当該凹所に対応して略均一な肉厚となるように形成されている請 求項 1乃至 4いずれかに記載の車輪用軸受装置。  [5] A mortar-shaped recess is formed at the outer end of the hub wheel, and the depth of the recess is at least near the groove bottom of the inner raceway surface of the hub wheel. The wheel bearing device according to any one of claims 1 to 4, wherein the wheel bearing device is formed so as to have a substantially uniform thickness corresponding to the recess.
[6] 前記肩部の両端部に切削加工により環状の切欠き部が形成されている請求 項 3に記載の車輪用軸受装置。 [6] The annular notch is formed by cutting at both ends of the shoulder. Item 4. The wheel bearing device according to Item 3.
[7] 前記切欠き部が、 前記肩部から所定の傾斜角からなるテーパ面に形成され ている請求項 6に記載の車輪用軸受装置。 7. The wheel bearing device according to claim 6, wherein the notch is formed in a tapered surface having a predetermined inclination angle from the shoulder.
[8] 前記切欠き部が、 前記肩部から所定の段差からなる断面略矩形状に形成さ れている請求項 6に記載の車輪用軸受装置。 8. The wheel bearing device according to claim 6, wherein the notch is formed in a substantially rectangular cross section having a predetermined step from the shoulder.
[9] 前記傾斜角が 2 0〜4 5 ° の範囲に設定されている請求項 7に記載の車輪 用軸受装置。 9. The wheel bearing device according to claim 7, wherein the inclination angle is set in a range of 20 to 45 °.
PCT/JP2007/001214 2006-11-06 2007-11-06 Bearing device for wheel WO2008056445A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-299838 2006-11-06
JP2006299838A JP2008115949A (en) 2006-11-06 2006-11-06 Bearing device for wheel
JP2006308301A JP2008121840A (en) 2006-11-14 2006-11-14 Bearing device for wheel
JP2006-308301 2006-11-14

Publications (1)

Publication Number Publication Date
WO2008056445A1 true WO2008056445A1 (en) 2008-05-15

Family

ID=39364272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001214 WO2008056445A1 (en) 2006-11-06 2007-11-06 Bearing device for wheel

Country Status (1)

Country Link
WO (1) WO2008056445A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219855A (en) * 2011-04-05 2012-11-12 Ntn Corp Bearing device for wheel
US8591115B2 (en) 2008-12-04 2013-11-26 Jtekt Corporation Rolling bearing device
CN104047961A (en) * 2014-06-20 2014-09-17 德清恒丰机械有限公司 Bearing outer ring for automobiles
CN104047962A (en) * 2014-06-21 2014-09-17 德清恒丰机械有限公司 Novel bearing outer ring forging for automobiles
CN104265773A (en) * 2014-10-21 2015-01-07 德清恒丰机械有限公司 Novel vehicle bearing outer ring forged piece
CN104265774A (en) * 2014-10-24 2015-01-07 德清恒丰机械有限公司 Improved automobile hub bearing outer ring forging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108449A (en) * 2002-09-17 2004-04-08 Koyo Seiko Co Ltd Rolling bearing device
WO2006011438A1 (en) * 2004-07-29 2006-02-02 Ntn Corporation Wheel bearing device and its quality management method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108449A (en) * 2002-09-17 2004-04-08 Koyo Seiko Co Ltd Rolling bearing device
WO2006011438A1 (en) * 2004-07-29 2006-02-02 Ntn Corporation Wheel bearing device and its quality management method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591115B2 (en) 2008-12-04 2013-11-26 Jtekt Corporation Rolling bearing device
JP2012219855A (en) * 2011-04-05 2012-11-12 Ntn Corp Bearing device for wheel
CN104047961A (en) * 2014-06-20 2014-09-17 德清恒丰机械有限公司 Bearing outer ring for automobiles
CN104047961B (en) * 2014-06-20 2016-06-01 德清恒丰机械有限公司 Automobile-used bearing outer ring
CN104047962A (en) * 2014-06-21 2014-09-17 德清恒丰机械有限公司 Novel bearing outer ring forging for automobiles
CN104047962B (en) * 2014-06-21 2016-04-20 德清恒丰机械有限公司 Novel automobile bearing outer ring forging
CN104265773A (en) * 2014-10-21 2015-01-07 德清恒丰机械有限公司 Novel vehicle bearing outer ring forged piece
CN104265773B (en) * 2014-10-21 2016-06-01 德清恒丰机械有限公司 Bearing outer ring forging
CN104265774A (en) * 2014-10-24 2015-01-07 德清恒丰机械有限公司 Improved automobile hub bearing outer ring forging

Similar Documents

Publication Publication Date Title
JP5242957B2 (en) Wheel bearing device
JP4489672B2 (en) Wheel bearing device
WO2008059615A1 (en) Bearing device for vehicle
WO2007037477A1 (en) Bearing device for wheel
JP2008115949A (en) Bearing device for wheel
WO2007049437A1 (en) Bearing device for wheel
WO2008056445A1 (en) Bearing device for wheel
JP4693752B2 (en) Manufacturing method of wheel bearing device
JP2008173995A (en) Bearing device for wheel
JP2008101685A (en) Bearing device for wheel and its manufacturing method
JP5906021B2 (en) Wheel bearing device
JP5099875B2 (en) Wheel bearing device
JP2007147064A (en) Bearing device for wheel
JP5415999B2 (en) Wheel bearing device
JP2007100715A (en) Bearing device for vehicle
JP5147100B2 (en) Wheel bearing device
JP2008284960A (en) Wheel bearing system
JP5030187B2 (en) Grease filling method for wheel bearing device
JP2008296621A (en) Wheel bearing device
JP5024850B2 (en) Wheel bearing device
JP6054124B2 (en) Wheel bearing device
JP2008051165A (en) Bearing device for wheel
JP6429441B2 (en) Wheel bearing device, intermediate body, and manufacturing method thereof
JP2007120594A (en) Wheel bearing device
JP5236097B2 (en) Wheel bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07827992

Country of ref document: EP

Kind code of ref document: A1