WO2008053732A1 - Molding die and method for manufacturing the same - Google Patents

Molding die and method for manufacturing the same Download PDF

Info

Publication number
WO2008053732A1
WO2008053732A1 PCT/JP2007/070540 JP2007070540W WO2008053732A1 WO 2008053732 A1 WO2008053732 A1 WO 2008053732A1 JP 2007070540 W JP2007070540 W JP 2007070540W WO 2008053732 A1 WO2008053732 A1 WO 2008053732A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding die
mold
molding
layer
heat insulating
Prior art date
Application number
PCT/JP2007/070540
Other languages
French (fr)
Japanese (ja)
Inventor
Kanji Sekihara
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2008542049A priority Critical patent/JPWO2008053732A1/en
Publication of WO2008053732A1 publication Critical patent/WO2008053732A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning

Definitions

  • the present invention relates to a molding die used for forming a resin molded product and a method for manufacturing the same.
  • the width and depth are 1 to; 1000 m, which has a very fine flow path, has a microchip used for analysis of organic compounds and biological samples, and a fine step structure on the order of several tens of nm
  • a diffractive optical element or the like may be formed of a resin molded product formed by injection molding of a resin, and a mold is used for the molding (see Patent Documents 1 and 2).
  • a temperature adjusting medium passage (6) for allowing a temperature adjusting medium to pass therethrough is provided inside the mold (1), and the temperature adjusting medium flows into the mold.
  • a coil (4) for electromagnetic induction heating that rapidly heats the temperature adjustment medium is provided near the outlet, and the temperature adjustment medium is heated and cooled by the action of the coil, so that the molding cycle time in heat cycle molding can be controlled. Shortening is made (see paragraph numbers 0008 to 0014, FIG. 1 and FIG. 2).
  • the temperature controller (2), the accompanying members (such as hoses 3, 18), and the controller (19) are essential and large. If the system configuration is simple, forced heating / cooling is performed within a molding cycle that uses force, and there is a limit to shortening the molding cycle time.
  • Patent Document 2 forms a heat insulating layer (1) made of zirconia or the like inside the mold to keep the temperature of the resin in contact with the mold at a high temperature. (Refer to paragraphs 0022 to 0034, 0046 and FIGS. 1 to 4). By optimizing the configuration, the molding cycle time is shortened and the fineness from the mold to the resin is reduced. The shape transferability can be improved.
  • Patent Document 1 JP-A-8-103931
  • Patent Document 2 JP 2002-96335 A
  • the fine shape formed on the mold is transferred to the resin with high accuracy, but the mold is directly cut into the mold itself.
  • the surface processed layer (2) is provided by processing, for example, it is a mold (multi-cavity mold) that can mold a large number of resin molded products at the same time.
  • a mold multi-cavity mold
  • processing variations will occur in each forming process when a plurality of identical fine shapes are formed in one mold.
  • An object of the present invention is to prevent variations in processing in forming a fine shape on a mold while simultaneously reducing the molding cycle time and improving transferability from the mold to the resin.
  • the first invention is:
  • the surface layer is formed by transfer processing.
  • the transfer process is an electroplating process! /.
  • the surface layer is preferably made of nickel, nickel cobalt alloy, nickel cobalt phosphorus alloy or copper.
  • the surface layer is preferably formed on the heat insulating layer with a thickness in the range of 0.05-1 Omm!
  • the heat insulating layer is preferably formed on the surface layer by a thermal spraying method.
  • the thickness of the heat insulation layer is preferably 0.;! ⁇ 2.Omm. That's right.
  • the heat conductivity of the heat insulating layer is preferably 10 W / m'K or less.
  • the heat insulating layer is preferably made of a ceramic material, a titanium alloy or cermet.
  • an intermediate layer made of a nickel-chromium-based material is preferably provided between the heat insulating layer and the surface layer! /.
  • the surface layer has a width and a depth, or a width and a height of 0.1.
  • Hm ⁇ It is preferable to have a fine shape in the range of 1mm! /
  • the surface layer is provided with a convex portion corresponding to a fine channel having a width and depth of 1 to 1000 m formed on the microchip. Is preferred.
  • the second invention is:
  • a molding die for molding a member having a microstructure made of a resin material by injection molding, the mold body, a heat insulating layer formed on the mold body, and a microstructure In a manufacturing method of a layer that is substantially formed and has a surface layer formed on the mold body through the heat insulating layer,
  • a first step of cutting the microstructure element shape on the transfer master is
  • a second step of forming the surface layer on the transfer master by a transfer process a third step of forming the heat insulating layer on the surface layer;
  • the surface of the transfer master is subjected to electroless nickel plating and then cut.
  • an oxidized skin is formed on the transfer-type master. It is preferable to include a step of forming a film.
  • a blast treatment is performed on the surface layer.
  • an intermediate layer made of a nickel-chromium-based material is formed between the second step and the third step.
  • an aluminum alloy, a cobalt alloy, a nickel alloy, a molybdenum alloy, a copper alloy, a titanium alloy it is preferable to provide a metal layer made of tungsten alloy or cermet.
  • the heat insulating layer is formed by masking a part of the surface layer.
  • FIG. 1 is a cross-sectional view of a molding die 1.
  • FIG. 2 is a drawing (cross-sectional view) for explaining a manufacturing method of the molding die 1.
  • FIG. 3 is a cross-sectional view of a molding die 30.
  • FIG. 4 is a drawing (cross-sectional view) for explaining a method of manufacturing the molding die 30.
  • FIG. 5 is a view showing a modified example of the molding die 30.
  • Mold 1 is a mold for molding a resin-molded member (resin molded product) by injection molding, and forms resin molded products such as microchips and optical elements. It is used suitably when doing.
  • the molding die 1 has a die body 2 (base die) that has a substantially rectangular parallelepiped appearance and is made of a metal material such as steel. A surface layer is formed on the die body 2. 3 and a heat insulating layer 4 are formed.
  • the surface layer 3 is a layer for substantially forming the shape of the fine structure, and is formed by transfer processing described later.
  • the surface layer 3 is formed on the mold body 2 via the heat insulating layer 4 and is formed on the heat insulating layer 4 with a thickness in the range of 0.05-0. 1 Omm.
  • the surface layer 3 is made of nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, copper, or the like, and a convex portion 3a is formed on the surface layer 3.
  • the convex portion 3a corresponds to a concave portion of a fine structure formed in the resin molded product, and has a fine shape in the range of width and depth, or width and height of 0.;! To lmm. .
  • the protrusion 3a may have a fine channel shape with a width and height of 1 to 1000 m.
  • a micro-channel having a width and depth of 1 to 1000 m can be formed in a resin molded product such as a microchip or an optical element formed from the molding die 1.
  • the heat insulating layer 4 has a function of preventing the heat of the resin injected to the surface of the surface layer 3 from being transferred to the entire mold body 2, and the portion that has received the resin injection and its portion Heat is kept in the vicinity.
  • the heat insulating layer 4 is made of a material such as a ceramic material, a titanium alloy, or cermet, and has a thermal conductivity of 10 W / m'K or less.
  • the heat insulating layer 4 is formed on the surface layer 3 by a spraying method to be described later, and has a thickness of 0.;! ⁇ 2.Omm.
  • a master 10 shown in FIG. 2 is used as a premise for manufacturing the molding die 1.
  • the master 10 as the transfer mold master is the base of the mold 1 and the master blank 11 having grooves along the outer periphery thereof is subjected to Ni-P plating to form the mesh layer 12. Is.
  • the top surface of the plating layer 12 is subjected to cutting of the fine structure element shape, and the fine flow path of the resin molded product, etc.
  • the flow path portion 13 corresponding to the concave portion is formed (first step).
  • the plating layer 12 is not necessarily essential, but it is preferable that the plating layer 12 is formed particularly from the viewpoint of the homogeneity of the material.
  • electroless Ni plating may be performed on the master blank 11 (without forming the plating layer 12), and then cutting may be performed. preferable.
  • an oxide film (not shown) is formed on the upper surface of the master 10, and then the upper part of the oxide film is electroplated to form nickel, A thick first electroplated body 20 made of nickel cobalt alloy, nickel cobalt phosphorus alloy, copper, or the like is formed.
  • other transfer processing such as electroless Ni plating may be performed without performing electroplating.
  • electroplating means that a metal such as nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, or copper is deposited on the surface of the master 10 by electroplating, and then the metal is peeled off from the master 10.
  • a metal such as nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, or copper is deposited on the surface of the master 10 by electroplating, and then the metal is peeled off from the master 10.
  • the first electric machined body 20 is ground, so that the thickness of the first electric carousel body 20 is about 0.05 to 1.0 mm. Make the top surface flat while thinning.
  • the first electroplating body 20 corresponds to the surface layer 3, and the step of forming the first electroplating body 20 corresponds to the second step.
  • the mask member 21 is masked on the portion other than the portion where the heat insulating layer 4 is to be formed on the upper part of the first electroplated body 20, and the mask Thermal insulation layer 4 is formed by spraying a ceramic material, titanium alloy, cermet, or other material to the part surrounded by member 21 to a certain thickness (third step).
  • the formation of the heat insulating layer 4 is not limited to thermal spraying, but a material such as a ceramic material, a titanium alloy, or cermet is adhered on the first electrode body 20 or the like. You can go.
  • the masking of the mask member 21 is not necessarily required.
  • the masking range of the mask member 21 is arranged on the inner side within the range of 0.;! To 2 mm with respect to the outer shape of the final molding die 1. Is preferred. This range assumes the subsequent formation of the second electro-processed body 22 (re-electro-plating process, holding by thick-walled electro-magnet), Masking the inner side of 0.1 mm means that the thickness of the side electrode layer is synonymous with 0.1 mm. Below this, there is a possibility of breakage, and the upper limit is the heat insulating layer 4 This is to make the effect work effectively.
  • the conductive film may be formed by Ni—P plating! /, Or it may be formed by spraying a metal material.
  • the upper part of the heat insulating layer 4 and the first electro-processed body 20 is subjected to electro-process again, and the first electro-processed body 20 is insulated.
  • a thick second electroplating body 22 is formed so as to wrap around the layer 4, and these are integrated.
  • the second electric machined body 22 corresponds to the mold main body 2.
  • the external shape of the integrated body is shown as indicated by an arrow A in FIG.
  • the side of the monolith is removed until the side surface matches the side surface of the master 10 (mesh layer 12). That As a result, the mold body 2 and the surface layer 3 can be formed.
  • the mold body 2 the surface layer 3 and the thermal insulation layer 4 are released from the master 10 (fourth step), and the lower surface of the surface layer 3 (transfer) Surface) and the upper surface of the plating layer 12 of the master 10 are removed.
  • the force S can be used to manufacture the molding die 1 having the surface layer 3 and the heat insulating layer 4 on which the convex portions 3a corresponding to the flow path portions 13 of the master 10 are formed.
  • the heat insulating layer 4 is formed inside the mold main body 2, it is not necessary to greatly change the temperature of the molding mold 1 at the time of resin injection molding.
  • the molding cycle time can be shortened by that amount.
  • the temperature between the convex portion 3a and the vicinity thereof is also maintained at a high temperature, and the transferability from the molding die 1 to the resin can be improved.
  • the convex portion 3a of the mold body 2 is formed by performing transfer processing on the master 10 instead of cutting, so that one master 10 force also includes a plurality of forces. It is possible to prevent variations in processing when forming a fine shape on the surface layer 3 when producing one molding die 1 that forms the same fine shape, and the same shape can be obtained from one master 10. Even in the case of producing a plurality of molding dies 1 presented, it is possible to prevent processing variations from occurring among the molding dies 1. From the above, it is possible to prevent variations in processing when forming a fine shape on the mold while simultaneously reducing the molding cycle time and improving the transferability from the mold to the resin.
  • the molding die 1 (including the molding die 30 according to the second embodiment) and the manufacturing method thereof according to the present invention are very effective.
  • the molding die (30) according to the second embodiment and the manufacturing method thereof are different from the first embodiment in the following points, and are otherwise the same as those in the first embodiment.
  • the heat insulating layer 4 is formed flush with the mold body 2 and covers the upper part of the mold body 2. [0051] In the method of manufacturing the molding die 30, first, as shown in FIGS. 4 (a) and 4 (b), each of the first step and the second step is performed, and the surface layer 3 is applied to the master 10. The first electric caroe body 20 corresponding to is formed.
  • a material such as ceramic material, titanium alloy, cermet, etc. is simply sprayed (without masking) to a certain thickness to form the heat insulating layer 4.
  • the corresponding thermal spray 23 is formed.
  • the integrated body of the first electroplated body 20 and the thermal spray body 23 and the master 10 are not released from each other.
  • the side of the integral object is removed until the side surface of the outer surface is aligned with the side surface of the master 10 (mesh layer 12).
  • the surface layer 3 and the heat insulating layer 4 can be formed.
  • the surface layer 3, the heat insulating layer 4 and the mold body 2 are joined with an adhesive.
  • the surface layer 3, the heat insulating layer 4 and the mold body 2 may be joined by screwing or by clamping.
  • the molding die 30 can be manufactured.
  • the surface layer 3, the heat insulating layer 4 and the mold body 2 can be joined with a mechanical fixing member 31 as shown in FIG.
  • blasting may be performed on the first electric heating element 20 corresponding to the surface layer 3! / ,.
  • a step of forming an intermediate layer between the second step and the third step is provided, and a nickel chrome-based material is formed between the surface layer 3 and the heat insulating layer 4.
  • An intermediate layer may be provided.
  • an aluminum alloy is formed between the heat insulating layer 4 and the mold body 2 by providing a process for forming a metal layer on the heat insulating layer 4.
  • a metal layer made of cobalt alloy, nickel alloy, molybdenum alloy, copper alloy, titanium alloy, tungsten alloy, cermet, etc. may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Process fluctuation is eliminated for forming a fine shape of a molding die while shortening a molding cycle time and improving transfer characteristics from the die to a resin at the same time. A molding die (1) is provided for forming a member, which is composed of a resin material and has a fine structure, by injection molding. The molding die is provided with a die main body (2); an insulating layer (4) formed on the die main body (2); and a surface layer (3), which is a layer for substantially forming a shape of the fine structure and is formed on the main body (2) through the insulating layer (4). The surface layer (3) is formed by transfer process.

Description

明 細 書  Specification
成形用金型及びその製造方法  Mold for molding and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は樹脂成型品を形成するのに用いる成形用金型及びその製造方法に関する TECHNICAL FIELD [0001] The present invention relates to a molding die used for forming a resin molded product and a method for manufacturing the same.
Yes
背景技術  Background art
[0002] 幅及び深さが 1〜; 1000 mと非常に微細な流路を有する、有機化合物や生体試 料の分析等に用いられるマイクロチップや、数十 nmオーダーの微細な段差構造を 有する回折光学素子等は、樹脂を射出成形して形成された樹脂成型品で構成され ることがあり、その成形には金型が使用されている(特許文献 1 , 2参照)。  [0002] The width and depth are 1 to; 1000 m, which has a very fine flow path, has a microchip used for analysis of organic compounds and biological samples, and a fine step structure on the order of several tens of nm A diffractive optical element or the like may be formed of a resin molded product formed by injection molding of a resin, and a mold is used for the molding (see Patent Documents 1 and 2).
[0003] 特に特許文献 1に開示された技術では、金型(1)の内部に温調媒体を通過させる 温調媒体通路(6)を設けるとともに、当該温調媒体の金型への流入'流出口近傍に 温調媒体を急速に加熱する電磁誘導加熱用のコイル (4)を設け、当該コイルの作用 で温調媒体を加熱'冷却制御することで、ヒートサイクル成形における成形サイクルタ ィムの短縮を図っている(段落番号 0008〜0014,図 1 ,図 2参照)。しかし、この手法 では、熱容量の大きな金型を加熱 '冷却する必要があるため、温調器(2)やそれに 付随する部材(ホース 3, 18等)、コントローラー(19)といった部材が必須で大掛かり なシステム構成となるば力、りでなぐ成形サイクル内で強制加熱/強制冷却を行うた め、成形サイクルタイムの短縮にも限界がある。  [0003] In particular, in the technique disclosed in Patent Document 1, a temperature adjusting medium passage (6) for allowing a temperature adjusting medium to pass therethrough is provided inside the mold (1), and the temperature adjusting medium flows into the mold. A coil (4) for electromagnetic induction heating that rapidly heats the temperature adjustment medium is provided near the outlet, and the temperature adjustment medium is heated and cooled by the action of the coil, so that the molding cycle time in heat cycle molding can be controlled. Shortening is made (see paragraph numbers 0008 to 0014, FIG. 1 and FIG. 2). However, in this method, it is necessary to heat and cool the mold with a large heat capacity. Therefore, the temperature controller (2), the accompanying members (such as hoses 3, 18), and the controller (19) are essential and large. If the system configuration is simple, forced heating / cooling is performed within a molding cycle that uses force, and there is a limit to shortening the molding cycle time.
[0004] これに対し、特許文献 2に開示された技術は、金型の内部にジルコユア等で構成さ れた断熱層(1)を形成して金型に接した樹脂の温度を高温に保つという簡単な構成 となっており(段落番号 0022〜0034, 0046,図 1〜図 4参照)、当該構成の最適化によ り、成形サイクルタイムの短縮を図りながら、金型から樹脂への微細形状の転写性を 向上させることができるようになつている。  [0004] On the other hand, the technique disclosed in Patent Document 2 forms a heat insulating layer (1) made of zirconia or the like inside the mold to keep the temperature of the resin in contact with the mold at a high temperature. (Refer to paragraphs 0022 to 0034, 0046 and FIGS. 1 to 4). By optimizing the configuration, the molding cycle time is shortened and the fineness from the mold to the resin is reduced. The shape transferability can be improved.
特許文献 1 :特開平 8— 103931号公報  Patent Document 1: JP-A-8-103931
特許文献 2:特開 2002— 96335号公報  Patent Document 2: JP 2002-96335 A
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] しかしながら、特許文献 2に開示された金型(断熱構造を有した金型)では、それに 形成された微細形状が高精度で樹脂に転写されるものの、金型そのものに直接的に 切削加工を施して表面加工層(2)を設けるという構成を有しているため、例えば、多 数の樹脂成型品を同時に成形可能な金型(多数個取りの金型)であって複数の同一 微細形状を有するものは、 1つの金型に複数の同一微細形状を形成する際に各形 成過程で加工バラツキを生じる可能性がある。  [0005] However, in the mold disclosed in Patent Document 2 (mold having a heat insulating structure), the fine shape formed on the mold is transferred to the resin with high accuracy, but the mold is directly cut into the mold itself. Since the surface processed layer (2) is provided by processing, for example, it is a mold (multi-cavity mold) that can mold a large number of resin molded products at the same time. For a fine shape, there is a possibility that processing variations will occur in each forming process when a plurality of identical fine shapes are formed in one mold.
[0006] 本発明の目的は、成形サイクルタイムの短縮と金型から樹脂への転写性の向上とを 両立しながらも、金型への微細形状の形成にあたって加工バラツキを防止することで ある。  [0006] An object of the present invention is to prevent variations in processing in forming a fine shape on a mold while simultaneously reducing the molding cycle time and improving transferability from the mold to the resin.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するため第 1の発明は、 [0007] In order to solve the above problems, the first invention is:
樹脂材料からなる微細構造を形成した部材を射出成形で成形するための成形用 金型であって、  A mold for molding a member formed with a fine structure made of a resin material by injection molding,
金型本体と、  Mold body,
前記金型本体上に形成された断熱層と、  A heat insulating layer formed on the mold body;
微細構造の形状を実質的に形成するための層であって前記断熱層を介して前記 金型本体上に形成された表面層とを有し、  A layer for substantially forming the shape of the microstructure, and having a surface layer formed on the mold body via the heat insulating layer,
前記表面層は転写加工によって形成されていることを特徴としている。  The surface layer is formed by transfer processing.
[0008] 上記第 1の発明においては、 [0008] In the first invention,
前記転写加工が電鍀加工であるのが好まし!/、。  It is preferable that the transfer process is an electroplating process! /.
[0009] 上記第 1の発明においては、前記表面層はニッケル、ニッケル コバルト合金、ニッ ケルーコバルト リン合金又は銅で構成されているのが好ましい。 [0009] In the first invention, the surface layer is preferably made of nickel, nickel cobalt alloy, nickel cobalt phosphorus alloy or copper.
[0010] 上記第 1の発明においては、前記表面層は前記断熱層上に 0. 05- 1. Ommの範 囲の厚みで形成されて!/、るのが好ましレ、。  [0010] In the first invention, the surface layer is preferably formed on the heat insulating layer with a thickness in the range of 0.05-1 Omm!
[0011] 上記第 1の発明においては、前記断熱層は前記表面層に対して溶射法により形成 されているのが好ましい。 [0011] In the first invention, the heat insulating layer is preferably formed on the surface layer by a thermal spraying method.
[0012] 上記第 1の発明においては、前記断熱層の厚みが 0.;!〜 2. Ommであるのが好ま しい。 [0012] In the first invention, the thickness of the heat insulation layer is preferably 0.;! ~ 2.Omm. That's right.
[0013] 上記第 1の発明においては、前記断熱層の熱伝導率が 10W/m'K以下であるの が好ましい。  [0013] In the first invention, the heat conductivity of the heat insulating layer is preferably 10 W / m'K or less.
[0014] 上記第 1の発明においては、前記断熱層はセラミック系材料、チタン合金又はサー メットで構成されてレ、るのが好ましレ、。  [0014] In the first invention, the heat insulating layer is preferably made of a ceramic material, a titanium alloy or cermet.
[0015] 上記第 1の発明においては、前記断熱層と前記表面層との間にはニッケル クロム 系材料からなる中間層が設けられて!/、るのが好まし!/、。 [0015] In the first invention, an intermediate layer made of a nickel-chromium-based material is preferably provided between the heat insulating layer and the surface layer! /.
[0016] 上記第 1の発明においては、前記断熱層と前記金型本体との間には、アルミ系合 金、コバルト系合金、ニッケル系合金、モリブデン系合金、銅系合金、チタン系合金、 タングステン系合金又はサーメットからなる金属層が設けられているのが好ましい。 In the first invention, an aluminum alloy, a cobalt alloy, a nickel alloy, a molybdenum alloy, a copper alloy, a titanium alloy, between the heat insulating layer and the mold body, A metal layer made of a tungsten alloy or cermet is preferably provided.
[0017] 上記第 1の発明においては、前記表面層には幅及び深さ、又は幅及び高さが 0. 1 [0017] In the first invention, the surface layer has a width and a depth, or a width and a height of 0.1.
H m〜; 1mmの範囲の微細形状が形成されて!/、るのが好まし!/、。  Hm ~; It is preferable to have a fine shape in the range of 1mm! /
[0018] 上記第 1の発明においては、前記表面層には、マイクロチップに形成される幅及び 深さが 1〜; 1000 mの範囲の微細流路に対応する凸部が形成されているのが好ま しい。 [0018] In the first aspect of the invention, the surface layer is provided with a convex portion corresponding to a fine channel having a width and depth of 1 to 1000 m formed on the microchip. Is preferred.
[0019] 第 2の発明は、  [0019] The second invention is:
樹脂材料からなる微細構造を形成した部材を射出成形で成形するための成形用 金型であって、金型本体と、前記金型本体上に形成された断熱層と、微細構造の形 状を実質的に形成するための層であって前記断熱層を介して前記金型本体上に形 成された表面層とを有するものの製造方法において、  A molding die for molding a member having a microstructure made of a resin material by injection molding, the mold body, a heat insulating layer formed on the mold body, and a microstructure In a manufacturing method of a layer that is substantially formed and has a surface layer formed on the mold body through the heat insulating layer,
転写型マスターに微細構造素子形状を切削加工する第一工程と、  A first step of cutting the microstructure element shape on the transfer master,
前記転写型マスター上に前記表面層を転写加ェで形成する第二工程と、 前記表面層上に前記断熱層を形成する第三工程と、  A second step of forming the surface layer on the transfer master by a transfer process; a third step of forming the heat insulating layer on the surface layer;
前記転写型マスター上から前記表面層及び前記断熱層を離型する第四工程と、 を有することを特 ί毁として!/ヽる。  And a fourth step of releasing the surface layer and the heat insulation layer from the transfer mold master.
[0020] 上記第 2の発明においては、前記第一工程では、前記転写型マスターの表面に無 電解ニッケルメツキ加工を施した後に切削加工するのが好ましい。 [0020] In the second invention, preferably, in the first step, the surface of the transfer master is subjected to electroless nickel plating and then cut.
[0021] 上記第 2の発明においては、前記第二工程では、前記転写型マスター上に酸化皮 膜を形成する工程を含むのが好ましレ、。 [0021] In the second invention, in the second step, an oxidized skin is formed on the transfer-type master. It is preferable to include a step of forming a film.
[0022] 上記第 2の発明においては、前記第二工程では、前記表面層上にブラスト処理を 施すのが好ましい。 [0022] In the second aspect of the invention, it is preferable that in the second step, a blast treatment is performed on the surface layer.
[0023] 上記第 2の発明においては、前記第二工程と前記第三工程との間で、ニッケルーク ロム系材料からなる中間層を形成するのが好ましい。  [0023] In the second invention, it is preferable that an intermediate layer made of a nickel-chromium-based material is formed between the second step and the third step.
[0024] 上記第 2の発明においては、前記第三工程では、前記断熱層を形成した後に、ァ ルミ系合金、コバルト系合金、ニッケル系合金、モリブデン系合金、銅系合金、チタン 系合金、タングステン系合金又はサーメットからなる金属層を設けるのが好ましレ、。 [0024] In the second invention, in the third step, after forming the heat insulating layer, an aluminum alloy, a cobalt alloy, a nickel alloy, a molybdenum alloy, a copper alloy, a titanium alloy, It is preferable to provide a metal layer made of tungsten alloy or cermet.
[0025] 上記第 2の発明においては、前記第三工程では、前記表面層の一部をマスクして 前記断熱層を形成するのが好ましレ、。 [0025] In the second invention, preferably, in the third step, the heat insulating layer is formed by masking a part of the surface layer.
発明の効果  The invention's effect
[0026] 第 1 ,第 2の発明によれば、成形サイクルタイムの短縮と金型から樹脂への転写性 の向上とを両立しながらも、金型への微細形状の形成にあたって加工バラツキを防 止すること力 Sでさる。  [0026] According to the first and second inventions, while reducing both the molding cycle time and the transferability from the mold to the resin, it is possible to prevent variations in processing when forming a fine shape on the mold. Stop with force S
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]成形用金型 1の断面図である。  FIG. 1 is a cross-sectional view of a molding die 1.
[図 2]成形用金型 1の製造方法を説明するための図面(断面図)である。  FIG. 2 is a drawing (cross-sectional view) for explaining a manufacturing method of the molding die 1.
[図 3]成形用金型 30の断面図である。  FIG. 3 is a cross-sectional view of a molding die 30.
[図 4]成形用金型 30の製造方法を説明するための図面(断面図)である。  FIG. 4 is a drawing (cross-sectional view) for explaining a method of manufacturing the molding die 30.
[図 5]成形用金型 30の変形例を示す図面である。  FIG. 5 is a view showing a modified example of the molding die 30.
符号の説明  Explanation of symbols
[0028] 1 , 30 成形用金型 [0028] 1, 30 Mold for molding
2 金型本体  2 Mold body
3 表面層  3 Surface layer
3a 凸部  3a Convex
4 断熱層  4 Thermal insulation layer
10 マスター  10 Master
11 マスターブランク 12 メツキ層 11 Master blank 12 Metsuki layer
13 流路部  13 Channel section
20 第 1の電鍀加工体  20 1st electric machined body
21 マスク部材  21 Mask material
22 第 2の電鍀加工体  22 Second electroplated body
23 溶射体  23 Thermal spray
31 固定部材  31 Fixing member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、図面を参照しながら本発明を実施するための最良の形態について説明する 。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい 種々の限定が付されている力 発明の範囲は以下の実施形態及び図示例に限定さ れるものではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. However, the embodiments described below have various technically preferable limitations for carrying out the present invention. The scope of the invention is not limited to the following embodiments and illustrated examples.
[第 1の実施形態]  [First embodiment]
始めに、図 1を参照しながら本発明に係る「成形用金型(1)」の概略構成につ!/、て 説明する。  First, a schematic configuration of the “molding die (1)” according to the present invention will be described with reference to FIG.
[0030] 成形用金型 1は樹脂材料からなる微細構造を形成した部材 (樹脂成型品)を射出 成形で成形するための金型であり、マイクロチップや光学素子等の樹脂成型品を形 成する際に好適に用いられるものである。成形用金型 1は、外観が略直方体状を呈 しかつ鋼等の金属材料で構成された金型本体 2 (ベース金型)を有しており、金型本 体 2上には表面層 3と断熱層 4とが形成されている。  [0030] Mold 1 is a mold for molding a resin-molded member (resin molded product) by injection molding, and forms resin molded products such as microchips and optical elements. It is used suitably when doing. The molding die 1 has a die body 2 (base die) that has a substantially rectangular parallelepiped appearance and is made of a metal material such as steel. A surface layer is formed on the die body 2. 3 and a heat insulating layer 4 are formed.
[0031] 表面層 3は微細構造の形状を実質的に形成するための層であり、後述の転写加工 により形成されている。表面層 3は、断熱層 4を介して金型本体 2上に形成されており 、断熱層 4上に 0. 05- 1. Ommの範囲の厚みで形成されている。表面層 3はニッケ ル,ニッケル コバルト合金,ニッケル コバルト リン合金,銅等で構成されており 、表面層 3上には凸部 3aが形成されている。  [0031] The surface layer 3 is a layer for substantially forming the shape of the fine structure, and is formed by transfer processing described later. The surface layer 3 is formed on the mold body 2 via the heat insulating layer 4 and is formed on the heat insulating layer 4 with a thickness in the range of 0.05-0. 1 Omm. The surface layer 3 is made of nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, copper, or the like, and a convex portion 3a is formed on the surface layer 3.
[0032] 凸部 3aは樹脂成型品に形成される微細構造の凹部に対応するもので、幅及び深 さ、又は幅及び高さが 0. ;!〜 lmmの範囲の微細形状を呈している。凸部 3aは幅及 び高さが 1〜; 1000 mの範囲の微細流路状を呈していてもよぐこの場合、当該成 形用金型 1から成形されるマイクロチップや光学素子等の樹脂成型品には幅及び深 さが 1〜; 1000 mの範囲の微細流路を形成することができる。 [0032] The convex portion 3a corresponds to a concave portion of a fine structure formed in the resin molded product, and has a fine shape in the range of width and depth, or width and height of 0.;! To lmm. . The protrusion 3a may have a fine channel shape with a width and height of 1 to 1000 m. A micro-channel having a width and depth of 1 to 1000 m can be formed in a resin molded product such as a microchip or an optical element formed from the molding die 1.
[0033] 断熱層 4は表面層 3の表面に射出された樹脂の熱が金型本体 2の全体にゆきわた るのを防止する機能を有しており、樹脂の射出を受けた部位とその近傍とに熱を保持 するようになつている。断熱層 4はセラミック系材料,チタン合金,サーメット等の材料 で構成されており、 10W/m'K以下の熱伝導率を有している。断熱層 4は表面層 3 に対して後述の溶射法により形成されており、厚みが 0. ;!〜 2. Ommとなっている。  [0033] The heat insulating layer 4 has a function of preventing the heat of the resin injected to the surface of the surface layer 3 from being transferred to the entire mold body 2, and the portion that has received the resin injection and its portion Heat is kept in the vicinity. The heat insulating layer 4 is made of a material such as a ceramic material, a titanium alloy, or cermet, and has a thermal conductivity of 10 W / m'K or less. The heat insulating layer 4 is formed on the surface layer 3 by a spraying method to be described later, and has a thickness of 0.;! ~ 2.Omm.
[0034] 続いて、図 2を参照しながら本発明に係る「成形用金型の製造方法」について説明 する。  [0034] Next, a "method for manufacturing a molding die" according to the present invention will be described with reference to FIG.
[0035] 成形用金型 1の製造の前提として、図 2に示すマスター 10を使用するようになって いる。転写型マスターとしてのマスター 10は成形用金型 1の母体となるもので、その 外周に沿って溝を有するマスターブランク 11に対し Ni— Pメツキ加工が施されてメッ キ層 12が形成されたものである。  [0035] As a premise for manufacturing the molding die 1, a master 10 shown in FIG. 2 is used. The master 10 as the transfer mold master is the base of the mold 1 and the master blank 11 having grooves along the outer periphery thereof is subjected to Ni-P plating to form the mesh layer 12. Is.
[0036] 実際の成形用金型 1の製造では、始めに、図 2 (a)に示す通りにメツキ層 12の上面 に微細構造素子形状の切削加工を施し、樹脂成型品の微細流路等の凹部に相当 する流路部 13を形成する(第一工程)。  [0036] In the actual manufacturing of the molding die 1, first, as shown in Fig. 2 (a), the top surface of the plating layer 12 is subjected to cutting of the fine structure element shape, and the fine flow path of the resin molded product, etc. The flow path portion 13 corresponding to the concave portion is formed (first step).
[0037] なお、マスター 10においては、メツキ層 12は必ずしも必須ではないが、特に材質の 均質性の観点では当該メツキ層 12が形成されているのが好ましい。上記第一工程で は、マスターブランク 11上に(メツキ層 12を形成せずに)無電解 Niメツキ加工を施し てその後に切削加工を行ってもよぐこの場合切削性、硬度の観点で更に好ましい。  [0037] In the master 10, the plating layer 12 is not necessarily essential, but it is preferable that the plating layer 12 is formed particularly from the viewpoint of the homogeneity of the material. In the first step, electroless Ni plating may be performed on the master blank 11 (without forming the plating layer 12), and then cutting may be performed. preferable.
[0038] その後、金型本体 2との離型性を向上させるため、マスター 10の上面に酸化皮膜( 図示略)を形成し、その後に当該酸化皮膜の上部に電鍀加工を施してニッケル,ニッ ケルーコバルト合金,ニッケル コバルト リン合金,銅等で構成された肉厚の第 1の 電铸加工体 20を形成する。第 1の電铸加工体 20の形成では、電铸加工を施さなくて もよぐ例えば無電解 Niメツキ加工等の他の転写加工を施してもよい。  [0038] After that, in order to improve the releasability from the mold body 2, an oxide film (not shown) is formed on the upper surface of the master 10, and then the upper part of the oxide film is electroplated to form nickel, A thick first electroplated body 20 made of nickel cobalt alloy, nickel cobalt phosphorus alloy, copper, or the like is formed. In the formation of the first electroplated body 20, other transfer processing such as electroless Ni plating may be performed without performing electroplating.
[0039] ここで電铸加工とは、マスター 10の表面に電気メツキ法によりニッケル,ニッケル コバルト合金,ニッケル コバルト リン合金,銅等の金属を析出させた後、この金属 をマスター 10から剥離して製品とする技術であり、当該電鍀加工ではマスター 10の 形状を忠実かつ正確に転写することができる。 [0039] Here, electroplating means that a metal such as nickel, nickel-cobalt alloy, nickel-cobalt-phosphorus alloy, or copper is deposited on the surface of the master 10 by electroplating, and then the metal is peeled off from the master 10. This is a product technology that is The shape can be transferred faithfully and accurately.
[0040] その後、図 2 (b)に示す通り、第 1の電鍀加工体 20を研削加工して、第 1の電鍀カロ ェ体 20の肉厚を 0. 05—1. 0mm程度まで薄くしながらその上面を平面にする。当 該第 1の電鍀加工体 20は表面層 3に相当するもので、当該第 1の電鍀加工体 20を 形成する工程が第二工程に相当する。  [0040] After that, as shown in FIG. 2 (b), the first electric machined body 20 is ground, so that the thickness of the first electric carousel body 20 is about 0.05 to 1.0 mm. Make the top surface flat while thinning. The first electroplating body 20 corresponds to the surface layer 3, and the step of forming the first electroplating body 20 corresponds to the second step.
[0041] その後、図 2 (c)に示す通り、第 1の電鍀加工体 20の上部であって断熱層 4を形成 しょうとする部位以外の部位に対しマスク部材 21をマスキングし、そのマスク部材 21 で囲まれた部位にセラミック系材料,チタン合金,サーメット等の材料を一定の厚み になるまで溶射して断熱層 4を形成する(第三工程)。  [0041] After that, as shown in FIG. 2 (c), the mask member 21 is masked on the portion other than the portion where the heat insulating layer 4 is to be formed on the upper part of the first electroplated body 20, and the mask Thermal insulation layer 4 is formed by spraying a ceramic material, titanium alloy, cermet, or other material to the part surrounded by member 21 to a certain thickness (third step).
[0042] なお、当該第三工程では、断熱層 4の形成は溶射に限らず、セラミック系材料,チタ ン合金,サーメット等の材料を第 1の電鍀加工体 20上に接着等することで行ってもよ い。また、マスク部材 21のマスキングは必ずしも必須ではなぐマスク部材 21の当該 マスキング範囲は、最終的な成形用金型 1の外形に対して 0.;!〜 2mmの範囲内で 内側に配置されるのが好ましい。係る範囲はその後の第 2の電鍀加工体 22の形成( 再電鍀加工,厚肉電铸での抱え込み)を想定してのものであり、最終的な成形用金 型 1の外形に対して 0. 1mm内側にマスキングをするということは、側面の電铸層厚 みが 0. 1mmと同義となる力 これを下回ると破損の可能性があり、上限は断熱層 4と しての断熱効果を効果的に作用させるためのものである。  [0042] In the third step, the formation of the heat insulating layer 4 is not limited to thermal spraying, but a material such as a ceramic material, a titanium alloy, or cermet is adhered on the first electrode body 20 or the like. You can go. In addition, the masking of the mask member 21 is not necessarily required. The masking range of the mask member 21 is arranged on the inner side within the range of 0.;! To 2 mm with respect to the outer shape of the final molding die 1. Is preferred. This range assumes the subsequent formation of the second electro-processed body 22 (re-electro-plating process, holding by thick-walled electro-magnet), Masking the inner side of 0.1 mm means that the thickness of the side electrode layer is synonymous with 0.1 mm. Below this, there is a possibility of breakage, and the upper limit is the heat insulating layer 4 This is to make the effect work effectively.
[0043] その後、マスク部材 21を除去するとともに、断熱層 4の上面に導電膜(図示略)を形 成して導電性を付与する。当該導電膜は Ni— Pメツキ加工を施して形成したものであ つてもよ!/、し、金属材料を溶射して形成したものであってもよレ、。  Thereafter, the mask member 21 is removed, and a conductive film (not shown) is formed on the upper surface of the heat insulating layer 4 to impart conductivity. The conductive film may be formed by Ni—P plating! /, Or it may be formed by spraying a metal material.
[0044] その後、図 2 (d)に示す通り、断熱層 4と第 1の電鍀加工体 20との上部に再度電铸 加工を施し、第 1の電鍀加工体 20との間に断熱層 4を包み込むようにして肉厚の第 2 の電鍀加工体 22を形成し、これらを一体とする。当該第 2の電鍀加工体 22は金型本 体 2に相当するものである。  [0044] After that, as shown in FIG. 2 (d), the upper part of the heat insulating layer 4 and the first electro-processed body 20 is subjected to electro-process again, and the first electro-processed body 20 is insulated. A thick second electroplating body 22 is formed so as to wrap around the layer 4, and these are integrated. The second electric machined body 22 corresponds to the mold main body 2.
[0045] その後、第 1 ,第 2の電鍀加工体 20, 22の一体物とマスター 10とを離型しない状態 で、図 2 (e)中矢印 Aに示す通り、当該一体物の外形を追込み加工してその側面が マスター 10 (メツキ層 12)の側面に一致するまで当該一体物の側部を除去する。その 結果、金型本体 2と表面層 3とを形成することができる。 [0045] After that, in a state where the integrated body of the first and second electroplated bodies 20 and 22 and the master 10 are not released, the external shape of the integrated body is shown as indicated by an arrow A in FIG. The side of the monolith is removed until the side surface matches the side surface of the master 10 (mesh layer 12). That As a result, the mold body 2 and the surface layer 3 can be formed.
[0046] その後、図 2 (e)中矢印 Bに示す通り、マスター 10から金型本体 2、表面層 3及び断 熱層 4を離型し(第四工程)、表面層 3の下面(転写面)とマスター 10のメツキ層 12の 上面とに介在させた上記酸化皮膜を除去する。その結果、マスター 10の流路部 13 に対応した凸部 3aが形成された表面層 3と断熱層 4とを具備した成形用金型 1を製 造すること力 Sでさる。 [0046] After that, as indicated by arrow B in FIG. 2 (e), the mold body 2, the surface layer 3 and the thermal insulation layer 4 are released from the master 10 (fourth step), and the lower surface of the surface layer 3 (transfer) Surface) and the upper surface of the plating layer 12 of the master 10 are removed. As a result, the force S can be used to manufacture the molding die 1 having the surface layer 3 and the heat insulating layer 4 on which the convex portions 3a corresponding to the flow path portions 13 of the master 10 are formed.
[0047] 以上の本実施形態では、金型本体 2の内部に断熱層 4が形成されているから、樹 脂の射出成型時において成形用金型 1の温度を大幅に変動させる必要がなぐその 分だけ成形サイクルタイムの短縮を図ることができる。その一方で、凸部 3aとその近 傍との温度も高温に保持され、成形用金型 1から樹脂への転写性の向上を図ること ができる。  [0047] In the present embodiment described above, since the heat insulating layer 4 is formed inside the mold main body 2, it is not necessary to greatly change the temperature of the molding mold 1 at the time of resin injection molding. The molding cycle time can be shortened by that amount. On the other hand, the temperature between the convex portion 3a and the vicinity thereof is also maintained at a high temperature, and the transferability from the molding die 1 to the resin can be improved.
[0048] 更に、金型本体 2の凸部 3aの形成に際して、当該凸部 3aが切削加工ではなくマス ター 10に対し転写加工が施されて形成されているから、 1つのマスター 10力も複数 の同一微細形状を形成する 1つの成形用金型 1を作製する場合に表面層 3への微細 形状の形成にあたって加工バラツキが生じるのを防止することができるし、 1つのマス ター 10から同一形状を呈した複数の成形用金型 1を作製する場合も各成形用金型 1 同士で加工バラツキが生じるのを防止することができる。以上から、成形サイクルタイ ムの短縮と金型から樹脂への転写性の向上とを両立しながらも、金型への微細形状 の形成にあたって加工バラツキを防止することができる。  [0048] Furthermore, when forming the convex portion 3a of the mold body 2, the convex portion 3a is formed by performing transfer processing on the master 10 instead of cutting, so that one master 10 force also includes a plurality of forces. It is possible to prevent variations in processing when forming a fine shape on the surface layer 3 when producing one molding die 1 that forms the same fine shape, and the same shape can be obtained from one master 10. Even in the case of producing a plurality of molding dies 1 presented, it is possible to prevent processing variations from occurring among the molding dies 1. From the above, it is possible to prevent variations in processing when forming a fine shape on the mold while simultaneously reducing the molding cycle time and improving the transferability from the mold to the resin.
[0049] なお、微細流路を有するマイクロチップや微細構造を有するレンズ,プリズム等の光 学素子においては、微細形状の転写性もさることながら、各部品間の形状バラツキを 抑えることが必須となるため、本発明に係る成形用金型 1 (第 2の実施形態に係る成 形用金型 30を含む。)及びその製造方法は非常に有効である。  [0049] In addition, in an optical element such as a microchip having a fine flow path, a lens having a fine structure, or a prism, it is indispensable to suppress the shape variation between components as well as transfer the fine shape. Therefore, the molding die 1 (including the molding die 30 according to the second embodiment) and the manufacturing method thereof according to the present invention are very effective.
[第 2の実施形態]  [Second Embodiment]
第 2の実施形態に係る成形用金型(30)及びその製造方法は下記の点で第 1の実 施形態と異なっており、それ以外は第 1の実施形態と同様となっている。  The molding die (30) according to the second embodiment and the manufacturing method thereof are different from the first embodiment in the following points, and are otherwise the same as those in the first embodiment.
[0050] 図 3に示す通り、成形用金型 30では、断熱層 4が金型本体 2上で面一に形成され ており、金型本体 2の上部を覆っている。 [0051] 当該成形用金型 30の製造方法では、始めに、図 4 (a) , (b)に示す通りに第一工程 ,第二工程の各処理を施してマスター 10に対し表面層 3に相当する第 1の電鍀カロェ 体 20を形成する。 As shown in FIG. 3, in the molding die 30, the heat insulating layer 4 is formed flush with the mold body 2 and covers the upper part of the mold body 2. [0051] In the method of manufacturing the molding die 30, first, as shown in FIGS. 4 (a) and 4 (b), each of the first step and the second step is performed, and the surface layer 3 is applied to the master 10. The first electric caroe body 20 corresponding to is formed.
[0052] 第三工程では、図 4 (c)に示す通り、単に(マスキングせずに)セラミック系材料,チ タン合金,サーメット等の材料を一定の厚みになるまで溶射し、断熱層 4に相当する 溶射体 23を形成する。  [0052] In the third step, as shown in FIG. 4 (c), a material such as ceramic material, titanium alloy, cermet, etc. is simply sprayed (without masking) to a certain thickness to form the heat insulating layer 4. The corresponding thermal spray 23 is formed.
[0053] 第四工程では、第 1の電鍀加工体 20と溶射体 23の一体物とマスター 10とを離型し ない状態で、図 4 (d)中矢印 Aに示す通り、当該一体物の外形を追込み加工してそ の側面がマスター 10 (メツキ層 12)の側面に一致するまで当該一体物の側部を除去 する。その結果、表面層 3と断熱層 4とを形成することができる。  [0053] In the fourth step, as shown by an arrow A in FIG. 4 (d), the integrated body of the first electroplated body 20 and the thermal spray body 23 and the master 10 are not released from each other. The side of the integral object is removed until the side surface of the outer surface is aligned with the side surface of the master 10 (mesh layer 12). As a result, the surface layer 3 and the heat insulating layer 4 can be formed.
[0054] その後、図 4 (d)中矢印 Bに示す通り、マスター 10から表面層 3及び断熱層 4を離型 する。  Thereafter, as indicated by arrow B in FIG. 4D, the surface layer 3 and the heat insulating layer 4 are released from the master 10.
[0055] その後、図 4 (e)に示す通り、表面層 3,断熱層 4と金型本体 2とを接着剤で接合す る。表面層 3,断熱層 4と金型本体 2との接合は、ネジ止めで行ってもよいし、クランプ 固定で行ってもよい。その結果、成形用金型 30を製造することができる。表面層 3, 断熱層 4と金型本体 2との接合を、図 5に示す通りに機械的な固定部材 31で行ってこ れを成形用金型 30としてもよ!/ヽ。  [0055] After that, as shown in FIG. 4 (e), the surface layer 3, the heat insulating layer 4 and the mold body 2 are joined with an adhesive. The surface layer 3, the heat insulating layer 4 and the mold body 2 may be joined by screwing or by clamping. As a result, the molding die 30 can be manufactured. The surface layer 3, the heat insulating layer 4 and the mold body 2 can be joined with a mechanical fixing member 31 as shown in FIG.
[0056] なお、本発明は上記第 1 ,第 2の実施形態に限定されることなぐ本発明の主旨を 逸脱しなレ、範囲にお!/、て種々の改良及び設計変更をおこなってもよ!/、。  [0056] It should be noted that the present invention is not limited to the first and second embodiments described above, and various modifications and design changes can be made without departing from the scope of the present invention. Yo! /
[0057] 一の改良'設計変更事項として、第二工程では、表面層 3に相当する第 1の電鍀加 ェ体 20上にブラスト処理を施してもよ!/、。  [0057] As one of the improvements and design changes, in the second step, blasting may be performed on the first electric heating element 20 corresponding to the surface layer 3! / ,.
[0058] 他の改良'設計変更事項として、第二工程と第三工程との間に中間層を形成する 工程を設けて、表面層 3と断熱層 4との間に、ニッケル クロム系材料からなる中間層 を設けてもよい。  [0058] As another improvement and design change, a step of forming an intermediate layer between the second step and the third step is provided, and a nickel chrome-based material is formed between the surface layer 3 and the heat insulating layer 4. An intermediate layer may be provided.
[0059] 他の改良'設計変更事項として、第三工程では、断熱層 4上に金属層を形成するェ 程を設けて、断熱層 4と金型本体 2との間に、アルミ系合金,コバルト系合金,ニッケ ル系合金,モリブデン系合金,銅系合金,チタン系合金,タングステン系合金,サー メット等からなる金属層を設けてもょレ、。  [0059] As another improvement 'design change, in the third step, an aluminum alloy is formed between the heat insulating layer 4 and the mold body 2 by providing a process for forming a metal layer on the heat insulating layer 4. A metal layer made of cobalt alloy, nickel alloy, molybdenum alloy, copper alloy, titanium alloy, tungsten alloy, cermet, etc. may be provided.

Claims

請求の範囲 The scope of the claims
[1] 樹脂材料からなる微細構造を形成した部材を射出成形で成形するための成形用 金型であって、  [1] A molding die for molding a member having a fine structure made of a resin material by injection molding,
金型本体と、  Mold body,
前記金型本体上に形成された断熱層と、  A heat insulating layer formed on the mold body;
微細構造の形状を実質的に形成するための層であって前記断熱層を介して前記 金型本体上に形成された表面層とを有し、  A layer for substantially forming the shape of the microstructure, and having a surface layer formed on the mold body via the heat insulating layer,
前記表面層は転写加工によって形成されていることを特徴とする成形用金型。  The molding die, wherein the surface layer is formed by transfer processing.
[2] 請求の範囲第 1項に記載の成形用金型において、  [2] In the molding die according to claim 1,
前記転写加工が電鍀加工であることを特徴とする成形用金型。  A mold for molding, wherein the transfer process is an electroplating process.
[3] 請求の範囲第 1項又は第 2項に記載の成形用金型において、 [3] In the molding die according to claim 1 or 2,
前記表面層はニッケル、ニッケル コバルト合金、ニッケル コバルト リン合金又 は銅で構成されていることを特徴とする成形用金型。  The molding die according to claim 1, wherein the surface layer is made of nickel, nickel cobalt alloy, nickel cobalt phosphorus alloy or copper.
[4] 請求の範囲第 1項乃至第 3項のいずれか一項に記載の成形用金型において、 前記表面層は前記断熱層上に 0. 05- 1. 0mmの範囲の厚みで形成されているこ とを特徴とする成形用金型。 [4] The molding die according to any one of claims 1 to 3, wherein the surface layer is formed on the heat insulating layer with a thickness in the range of 0.05 to 1.0 mm. Mold for molding, characterized by
[5] 請求の範囲第 1項乃至第 4項のいずれか一項に記載の成形用金型において、 前記断熱層は前記表面層に対して溶射法により形成されていることを特徴とする成 形用金型。 [5] The molding die according to any one of claims 1 to 4, wherein the heat insulating layer is formed on the surface layer by a thermal spraying method. Mold for molding.
[6] 請求の範囲第 1項乃至第 5項のいずれか一項に記載の成形用金型において、 前記断熱層の厚みが 0. ;!〜 2. 0mmであることを特徴とする成形用金型。  [6] The molding die according to any one of claims 1 to 5, wherein the heat-insulating layer has a thickness of 0 .;! To 2.0mm. Mold.
[7] 請求の範囲第 1項乃至第 6項のいずれか一項に記載の成形用金型において、 前記断熱層の熱伝導率が 10W/m'K以下であることを特徴とする成形用金型。 [7] The molding die according to any one of claims 1 to 6, wherein the thermal conductivity of the heat insulating layer is 10 W / m'K or less. Mold.
[8] 請求の範囲第 1乃至第 7項のいずれか一項に記載の成形用金型において、 [8] In the molding die according to any one of claims 1 to 7,
前記断熱層はセラミック系材料、チタン合金又はサーメットで構成されていることを 特徴とする成形用金型。  The mold for molding, wherein the heat insulating layer is made of a ceramic material, a titanium alloy, or cermet.
[9] 請求の範囲第 1項乃至第 8項のいずれか一項に記載の成形用金型において、 前記断熱層と前記表面層との間にはニッケル クロム系材料からなる中間層が設 けられて!/、ることを特徴とする成形用金型。 [9] The molding die according to any one of claims 1 to 8, wherein an intermediate layer made of a nickel chromium-based material is provided between the heat insulating layer and the surface layer. Mold for molding, characterized by being!
[10] 請求の範囲第 1項乃至第 9項のいずれか一項に記載の成形用金型において、 前記断熱層と前記金型本体との間には、アルミ系合金、コバルト系合金、エッケノレ 系合金、モリブデン系合金、銅系合金、チタン系合金、タングステン系合金又はサー メットからなる金属層が設けられていることを特徴とする成形用金型。 [10] The molding die according to any one of claims 1 to 9, wherein an aluminum alloy, a cobalt alloy, an Eckenole is interposed between the heat insulating layer and the die body. A metal mold comprising a metal layer made of an alloy of molybdenum, molybdenum, copper, titanium, tungsten, or cermet is provided.
[11] 請求の範囲第 1項乃至第 10項のいずれか一項に記載の成形用金型において、 前記表面層には 0. 1 m〜lmmの範囲の微細形状が形成されていることを特徴 とする成形用金型。 [11] The molding die according to any one of claims 1 to 10, wherein a fine shape in a range of 0.1 m to lmm is formed on the surface layer. Mold for molding.
[12] 請求の範囲第 1項乃至第 10項のいずれか一項に記載の成形用金型において、 前記表面層には、マイクロチップに形成される幅及び深さが 1〜; 1000 11 mの範囲 の微細流路に対応する凸部が形成されていることを特徴とする成形用金型。  [12] The molding die according to any one of claims 1 to 10, wherein the surface layer has a width and a depth of 1 to 1000 mm formed on the microchip. A molding die characterized in that a convex portion corresponding to a fine flow path in the range of is formed.
[13] 樹脂材料からなる微細構造を形成した部材を射出成形で成形するための成形用 金型であって、金型本体と、前記金型本体上に形成された断熱層と、微細構造の形 状を実質的に形成するための層であって前記断熱層を介して前記金型本体上に形 成された表面層とを有するものの製造方法において、 [13] A molding die for molding a member having a microstructure made of a resin material by injection molding, the mold body, a heat insulating layer formed on the mold body, and a microstructure In a manufacturing method of a layer for substantially forming a shape and having a surface layer formed on the mold body through the heat insulating layer,
転写型マスターに微細構造素子形状を切削加工する第一工程と、  A first step of cutting the microstructure element shape on the transfer master,
前記転写型マスター上に前記表面層を転写加ェで形成する第二工程と、 前記表面層上に前記断熱層を形成する第三工程と、  A second step of forming the surface layer on the transfer master by a transfer process; a third step of forming the heat insulating layer on the surface layer;
前記転写型マスター上から前記表面層及び前記断熱層を離型する第四工程と、 を有することを特徴とする成形用金型の製造方法。  And a fourth step of releasing the surface layer and the heat insulation layer from the transfer mold master.
[14] 請求の範囲第 13項に記載の成形用金型の製造方法において、 [14] In the method for manufacturing a molding die according to claim 13,
前記第一工程では、前記転写型マスターの表面に無電解ニッケルメツキ加工を施 した後に切削加工することを特徴とする成形用金型の製造方法。  In the first step, the surface of the transfer mold master is subjected to electroless nickel plating, followed by cutting.
[15] 請求の範囲第 13項又は第 14項に記載の成形用金型の製造方法において、 前記第二工程では、前記転写型マスター上に酸化皮膜を形成する工程を含むこと を特徴とする成形用金型の製造方法。 [15] The method for manufacturing a molding die according to claim 13 or 14, wherein the second step includes a step of forming an oxide film on the transfer mold master. A method for manufacturing a molding die.
[16] 請求の範囲第 13項乃至第 15項のいずれか一項に記載の成形用金型の製造方法 において、 前記第二工程では、前記表面層上にブラスト処理を施すことを特徴とする成形用 金型の製造方法。 [16] In the method for manufacturing a molding die according to any one of claims 13 to 15, In the second step, a method for producing a molding die, wherein a blast treatment is performed on the surface layer.
[17] 請求の範囲第 13項乃至第 16項のいずれか一項に記載の成形用金型の製造方法 において、  [17] In the method for manufacturing a molding die according to any one of claims 13 to 16,
前記第二工程と前記第三工程との間で、ニッケル クロム系材料からなる中間層を 形成することを特徴とする成形用金型の製造方法。  An intermediate layer made of a nickel-chromium-based material is formed between the second step and the third step.
[18] 請求の範囲第 13項乃至第 17項のいずれか一項に記載の成形用金型の製造方法 において、 [18] In the method for manufacturing a molding die according to any one of claims 13 to 17,
前記第三工程では、前記断熱層を形成した後に、アルミ系合金、コバルト系合金、 ニッケル系合金、モリブデン系合金、銅系合金、チタン系合金、タングステン系合金 又はサーメットからなる金属層を設けることを特徴とする成形用金型の製造方法。  In the third step, after the heat insulation layer is formed, a metal layer made of an aluminum alloy, cobalt alloy, nickel alloy, molybdenum alloy, copper alloy, titanium alloy, tungsten alloy or cermet is provided. A method for producing a mold for molding.
[19] 請求の範囲第 13項乃至第 17項のいずれか一項に記載の成形用金型の製造方法 において、 [19] In the method for manufacturing a molding die according to any one of claims 13 to 17,
前記第三工程では、前記表面層の一部をマスクして前記断熱層を形成することを 特徴とする成形用金型の製造方法。  In the third step, the heat insulating layer is formed by masking a part of the surface layer.
PCT/JP2007/070540 2006-10-31 2007-10-22 Molding die and method for manufacturing the same WO2008053732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542049A JPWO2008053732A1 (en) 2006-10-31 2007-10-22 Mold for molding and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006296400 2006-10-31
JP2006-296400 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008053732A1 true WO2008053732A1 (en) 2008-05-08

Family

ID=39344075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070540 WO2008053732A1 (en) 2006-10-31 2007-10-22 Molding die and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JPWO2008053732A1 (en)
WO (1) WO2008053732A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122215A1 (en) * 2010-03-31 2011-10-06 コニカミノルタオプト株式会社 Method for producing microchip, and microchip
JP5725155B2 (en) * 2011-03-17 2015-05-27 コニカミノルタ株式会社 Manufacturing method of injection mold, injection mold, injection mold set, manufacturing method of microchip substrate, and microchip manufacturing method using this mold
JPWO2013146985A1 (en) * 2012-03-30 2015-12-14 コニカミノルタ株式会社 Mold for molding and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200755A (en) * 1992-01-24 1993-08-10 Olympus Optical Co Ltd Production of electroformed mold
JP2000192529A (en) * 1998-10-20 2000-07-11 Toto Ltd Scale adhesion preventing method for flush toilet bowl surface, scale adhesion preventive flush toilet bowl and coating composition for scale adhesion preventive flush toilet bowl
JP2001030306A (en) * 1999-07-27 2001-02-06 Nippon Sheet Glass Co Ltd Resin erect lens array and its manufacture
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element
JP2004175112A (en) * 2002-11-13 2004-06-24 Maxell Hi Tec Ltd Molding die and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155875A (en) * 1995-12-04 1997-06-17 Asahi Chem Ind Co Ltd Mold for molding resin light guide plate and molding method therefor
JP2001273685A (en) * 2000-03-28 2001-10-05 Ricoh Co Ltd Device and method for manufacturing stamper for molding optical disk substrate
JP3901437B2 (en) * 2000-09-07 2007-04-04 株式会社リコー Insulating stamper for resin molding and manufacturing method thereof
JP2005077239A (en) * 2003-08-29 2005-03-24 Sumitomo Bakelite Co Ltd Joining method of microchip substrates and microchip
JP4815898B2 (en) * 2004-06-29 2011-11-16 コニカミノルタオプト株式会社 Injection mold and injection molding method
JP4877640B2 (en) * 2004-08-12 2012-02-15 コニカミノルタオプト株式会社 Manufacturing method of molding die for optical element, molding die for optical element, and optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200755A (en) * 1992-01-24 1993-08-10 Olympus Optical Co Ltd Production of electroformed mold
JP2000192529A (en) * 1998-10-20 2000-07-11 Toto Ltd Scale adhesion preventing method for flush toilet bowl surface, scale adhesion preventive flush toilet bowl and coating composition for scale adhesion preventive flush toilet bowl
JP2001030306A (en) * 1999-07-27 2001-02-06 Nippon Sheet Glass Co Ltd Resin erect lens array and its manufacture
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element
JP2004175112A (en) * 2002-11-13 2004-06-24 Maxell Hi Tec Ltd Molding die and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122215A1 (en) * 2010-03-31 2011-10-06 コニカミノルタオプト株式会社 Method for producing microchip, and microchip
JP5725155B2 (en) * 2011-03-17 2015-05-27 コニカミノルタ株式会社 Manufacturing method of injection mold, injection mold, injection mold set, manufacturing method of microchip substrate, and microchip manufacturing method using this mold
JPWO2013146985A1 (en) * 2012-03-30 2015-12-14 コニカミノルタ株式会社 Mold for molding and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2008053732A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US20040041303A1 (en) Method and apparatus for rapid mold heating and cooling
US20150054199A1 (en) Die insert with layer heating, moulding plate with such a die insert and method for operating such a die insert
US20110229595A1 (en) Casting, molding or pressing tool with temperature control medium channels
EP2492080B1 (en) Preform cavity insert cooling
KR20140094021A (en) Method and forming tool for hot forming and press hardening work pieces made of sheet steel, in particular galvanized sheet steel
WO2003011550A2 (en) Method for molding a product and a mold used therein
CN103328137B (en) Manufacture method with temperature adjustment channel die parts and the mold component of the method manufacture
AU2002355701A1 (en) Method for molding a product and a mold used therein
US20130306686A1 (en) Hot Runner Nozzle
US9067348B2 (en) Method for manufacturing blow molds
WO2008053732A1 (en) Molding die and method for manufacturing the same
CN101946558B (en) Heater, resin molding apparatus, resin molding method and resin molded body
WO2018023168A1 (en) A multi material laminated tool having improved thermal coupling
JP2008238720A (en) Electroforming mold and its manufacturing method
JP2013226810A (en) Resin molding manufacturing method using electromagnetic induction heating type mold apparatus
JP2012000986A (en) Preliminary molding method for decorative film and heating device used for the same
JP6124023B2 (en) Mold for molding and manufacturing method thereof
JP6556239B2 (en) System and apparatus for heating a mold
US20040046281A1 (en) Localized compression molding process for fabricating microstructures on thermoplastic substrates
US8322397B2 (en) Mold for injection molding and method of manufacturing thereof
US20200147846A1 (en) Tool for plastic injection molding and method for manufacturing the tool
CN109414845B (en) Sprue bush and method for producing same
CN113799328B (en) Injection mold and method for manufacturing the same
JP2014218026A (en) Mold for manufacturing cone-shaped projection forming mold, and manufacturing method of cone-shaped resin projection forming mold
CN101941141A (en) Injection molding mold and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542049

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830274

Country of ref document: EP

Kind code of ref document: A1