WO2008053662A1 - Process for the production of laminate-type soft magnetic sheets - Google Patents

Process for the production of laminate-type soft magnetic sheets Download PDF

Info

Publication number
WO2008053662A1
WO2008053662A1 PCT/JP2007/069435 JP2007069435W WO2008053662A1 WO 2008053662 A1 WO2008053662 A1 WO 2008053662A1 JP 2007069435 W JP2007069435 W JP 2007069435W WO 2008053662 A1 WO2008053662 A1 WO 2008053662A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft magnetic
laminate
sheet
magnetic sheet
temperature
Prior art date
Application number
PCT/JP2007/069435
Other languages
French (fr)
Japanese (ja)
Inventor
Keisuke Aramaki
Junichiro Sugita
Morio Sekiguchi
Original Assignee
Sony Chemical & Information Device Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical & Information Device Corporation filed Critical Sony Chemical & Information Device Corporation
Priority to KR1020087031478A priority Critical patent/KR101119446B1/en
Priority to CN2007800406600A priority patent/CN101536125B/en
Priority to US12/227,360 priority patent/US8864929B2/en
Publication of WO2008053662A1 publication Critical patent/WO2008053662A1/en
Priority to HK09111536.9A priority patent/HK1133949A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • H01F1/375Flexible bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Definitions

  • the present invention relates to a method for producing a soft magnetic sheet having excellent magnetic characteristics and small thickness change.
  • Soft magnetic sheets used in various electronic devices are generally manufactured by a kneading and rolling method.
  • a kneading and rolling method flat soft magnetic powder, rubber, and a binder such as chlorinated polyethylene are kneaded at a predetermined ratio with a kneader, and the resulting kneaded product is rolled to a predetermined thickness with an apparatus such as a calender roll, and further required. Accordingly, a single layer soft magnetic sheet is obtained by heat-crosslinking the binder.
  • This method has the advantage that the soft magnetic powder can be filled at a high density, the soft magnetic powder can be oriented in the in-plane direction by rolling, and the sheet thickness can be easily adjusted.
  • a soft magnetic sheet is manufactured by a coating method in which the soft magnetic powder is less likely to be distorted (Patent Document 1).
  • a liquid composition for forming a soft magnetic sheet composed of flat soft magnetic powder, rubber, resin and solvent is applied on a release substrate and dried to obtain a sheet thickness at high temperature and high temperature and high humidity. A soft magnetic sheet with little change is obtained.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-243615
  • the coating method is suitable for producing a soft magnetic sheet having a relatively thin sheet thickness, but is not suitable for producing a relatively thick soft magnetic sheet. This is thick This is because when applied, uneven coating thickness occurs and drying becomes difficult immediately.
  • the present inventors blended a curable resin and a curing agent thereof with a liquid composition for forming a soft magnetic sheet, and prepared a curable thin / soft magnetic sheet by a coating method. An attempt was made to make the soft magnetic sheet into a laminated type by temporarily pressing the sheet at a relatively low temperature and then pressing the sheet at a relatively high temperature.
  • the laminated soft magnetic sheet made by laminating thin soft magnetic sheets made by the coating method is relatively thick manufactured by the kneading and rolling method, although the thickness change of each thin soft magnetic sheet is small. Similar to the single-layer soft magnetic sheet, there is a problem in that the sheet thickness increases in a high temperature or high temperature and high humidity environment, and the magnetic permeability decreases.
  • the present invention is intended to solve the above-described problems of the prior art, in which a plurality of thin / soft magnetic sheets prepared by a coating method are laminated, and the sheet thickness change is suppressed and transparent. It is an object of the present invention to provide a method capable of producing a laminated soft magnetic sheet having a small variation in magnetic susceptibility. Means for solving the problem
  • the present inventor relates to a laminated soft magnetic sheet prepared by laminating thin soft magnetic sheets prepared by a coating method, and changes in a direction in which the sheet thickness increases in a high temperature or high temperature and high humidity environment.
  • Two reasons were considered as the reasons why the permeability decreased.
  • air is taken in between the thin soft magnetic sheets constituting the laminated soft magnetic sheet, and the sheet thickness may increase due to the expansion of the air due to the high temperature.
  • the distortion generated in the flat soft magnetic powder is relaxed by the high temperature, and the sheet thickness is increased by shrinking the resin portion constituting the sheet.
  • the present inventors have assumed that the former is the main factor, and when a relatively high pressure and pressure are applied during temporary thermocompression bonding of a plurality of soft magnetic sheets, the sheet thickness cannot be ignored. I got the knowledge that it will change. In addition, assuming that the latter is the main factor, when applying relatively low pressure and pressure during temporary thermal bonding of multiple soft magnetic sheets, the knowledge that the sheet thickness will still change at a level that cannot be ignored. Obtained.
  • the present inventors have not been able to simply apply a relatively high pressure or a low pressure at the time of temporary thermocompression bonding.
  • a specific soft magnetic composition we studied in detail the heating pattern and pressure application pattern for the laminate of thin soft magnetic sheets formed from it.
  • the above-mentioned purpose can be achieved by pre-bonding at three stages of linear pressure, low, medium, and high, at a temperature at which thermosetting does not proceed, and then finally pressing with surface pressure at a temperature at which thermosetting proceeds.
  • the present invention has been completed.
  • the present invention is a method for producing a laminated soft magnetic sheet, which comprises the following steps (A) to (D):
  • a soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is formed on a release substrate. And substantially free of curing reaction of the soft magnetic composition! /, Drying at a temperature T1, removing the release substrate! /, Obtaining a curable soft magnetic sheet;
  • a specific soft magnetic composition for forming a soft magnetic sheet is used, and the heating pattern and pressure application pattern for the laminate of thin soft magnetic sheets formed therefrom are used for thermosetting.
  • FIG. 1 is an electron micrograph of a cross section of a laminated soft magnetic sheet of Example 1.
  • FIG. 2 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 1.
  • FIG. 3 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 2.
  • FIG. 4 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 3.
  • FIG. 5 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 4.
  • the method for producing a laminated soft magnetic sheet of the present invention has at least the following steps (A) to (D). It demonstrates for every process.
  • a soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is applied onto a release substrate, The soft magnetic composition is dried at a temperature T1 at which the curing reaction does not substantially occur, and the release substrate is removed to obtain a curable soft magnetic sheet.
  • the soft magnetic composition onto the release substrate As a method for applying the soft magnetic composition onto the release substrate, a known method such as a doctor blade coating method or a comma coater coating method can be used.
  • the coating thickness is a force that can be appropriately determined according to the use of the curable soft magnetic sheet and the number of laminated layers. Usually, the coating thickness is applied so that the dry thickness is 50 to 200 Hm.
  • the soft magnetic composition is applied to the release substrate and then dried, and then the release substrate is removed.
  • the force S to obtain a curable soft magnetic sheet S, and the drying is caused by the curing reaction of the soft magnetic composition. Dry at a temperature T1 that does not substantially occur.
  • the reason for drying at a temperature T1 at which the curing reaction of the soft magnetic composition does not substantially occur is that the compressibility deteriorates as the curing reaction progresses, and the one that does not rise and the curing reaction progresses is compressed. Then, it is because the thickness change in a high temperature and high humidity environment becomes large.
  • substantially no curing reaction means not only when no curing reaction occurs at all, but also within a range that does not impair the effects of the invention. This means that the crosslinking reaction is uniformly performed in the final step.
  • An example of a specific means for substantially preventing the curing reaction is to set the temperature T1 to a temperature lower by 5 ° C or more than the curing reaction start temperature.
  • the specific temperature T1 varies depending on the composition of the soft magnetic composition, and is usually 130 ° C or lower.
  • a specific method of drying a known method using a hot air drying furnace, an electric heating furnace, an infrared heating furnace or the like can be employed.
  • a soft magnetic powder having a flat shape (flat soft magnetic powder) is used. To do. By arranging the flat soft magnetic powder in a two-dimensional in-plane direction, high magnetic permeability and large specific gravity can be realized.
  • any soft magnetic alloy can be used, for example, magnetic stainless steel ⁇ 6-—8-31 alloy), Sendust ⁇ 6-31-8-1 alloy), Permalloy (Fe—Ni alloy), Key copper (Fe—Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, Fe—Si—Cr—Ni alloy, Fe— Examples include Si—Cr alloys, Fe—Si—Al—Ni—Cr alloys, and ferrites. Among these, Fe—Si—A1 alloy or Fe—Si—Cr—Ni alloy can be preferably used from the viewpoint of magnetic properties.
  • the real part of the complex relative permeability (permeability) and the imaginary part of the complex relative permeability with a relatively large value of i '(magnetic Loss), 1 is preferable to use a relatively small value. This prevents the magnetic field emitted from the antenna coil for RFID communication from being converted into eddy currents in the metal body, thereby improving the communication performance. Improved.
  • the flat soft magnetic alloy in order to reduce the value of "for the purpose of reducing eddy current loss", it is preferable to use one having a relatively large resistance.
  • the composition of the soft magnetic alloy For example, in the case of an Fe—Si—Cr alloy, the Si ratio is preferably 9 to 15% by weight.
  • the flat soft magnetic powder a soft magnetic powder having a flat shape is used.
  • the average particle diameter is 3.5 to 90 111, and the average thickness is 0.3 to 3 ⁇ O ⁇ m.
  • the average particle diameter is preferably 10 to 50 111 and the average thickness is 0.5 to 2.5 m. Therefore, the flatness is preferably set to 8 to 80, more preferably 15 to 65.
  • classification may be performed using a sieve or the like as necessary.
  • the particle size of the flat soft magnetic powder is increased to reduce the spacing between the particles, and the aspect ratio of the flat soft magnetic powder is increased to increase the aspect ratio of the soft magnetic sheet. It is effective to reduce the influence of the demagnetizing field.
  • the tap density and the specific surface area (BET method) of the flat soft magnetic powder are in inverse proportion to each other.
  • the tap density or 0 ⁇ 55-1. 45g / ml, more preferably (or 0 ⁇ 65-1. 40g / mU to this setting, while preferably it surface area (or 0. 40- 1. 20m 2 / g, more preferably (set to 0.65 to 1.00 m 2 / g.
  • the flat soft magnetic powder for example, a soft magnetic powder subjected to a coupling treatment using a coupling agent such as a silane coupling agent may be used.
  • a coupling agent such as a silane coupling agent
  • the soft magnetic powder subjected to the coupling treatment it is possible to enhance the reinforcing effect at the interface between the flat soft magnetic powder and the binder resin, and to improve the specific gravity and corrosion resistance.
  • the coupling agent for example, silane, ⁇ -glycidoxypropinoremethinolegetoxysilane, etc. can be used.
  • the above-described coupling treatment may be performed on the soft magnetic powder in advance, or when the flat soft magnetic powder and the binder resin are mixed, they are mixed at the same time, so that the force coupling treatment is performed. You may do it.
  • the amount of the flat soft magnetic powder used in the soft magnetic composition is too small, the intended magnetic properties cannot be obtained, and if it is too large, the amount of the binder resin is relatively reduced and the moldability is lowered.
  • it is 70 to 90% by weight, more preferably 80 to 85% by weight in the soft magnetic composition excluding the solvent.
  • the soft magnetic composition uses acrylic rubber as a rubber component in order to impart good flexibility and heat resistance to the laminated soft magnetic sheet.
  • This acrylic rubber always has one or more glycidyl groups in order to improve compatibility with the epoxy resin. Specific examples include ⁇ - ⁇ , ⁇ - ⁇ - ⁇ , ⁇ - ⁇ , ⁇ - ⁇ , and the like.
  • the amount of the acrylic rubber used in the soft magnetic composition is too small, sufficient heat processability cannot be obtained, and if it is too large, the rubber elasticity becomes too large and the heat processability deteriorates. 9 to 16% by weight, more preferably 12 to 14% by weight.
  • the soft magnetic composition uses an epoxy resin in order to impart good heat processability and dimensional stability to the laminated soft magnetic sheet.
  • Specific examples include phenol nopolac, tetraglycidyl phenol, o-cresol novolak, tetraglycidylamine, bisphenol 8, bisphenol F, bisphenol A glycidyl ether, and the like.
  • the soft magnetic composition excluding the solvent is preferable. 1.0 to 6.0 wt 0/0 in, more preferably from 1.5 to 4. 0 weight 0/0.
  • the latent curing agent for epoxy resin to cure the epoxy resin include amine imidazole and polyamide phenolic anhydride.
  • the amount of the latent curing agent for epoxy resin in the soft magnetic composition is preferably 3 to 100 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of the epoxy resin.
  • an ordinary general-purpose solvent can be used.
  • alcohols such as ethanol, n-propanol, isopropyl alcohol (IPA), n-butyl alcohol, ethyl acetate, n-butyl acetate, etc.
  • Esters acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), ketones such as cyclohexanone, ethers such as tetrahydrofuran (THF), ethyl acetate sorb, n-butyl sorb sorb, cellosolve acete
  • General-purpose solvents such as cellosolves such as carbonates and aromatic hydrocarbons such as toluene, xylene, and benzene can be used.
  • the amount used can be appropriately selected according to the type of composition of the soft magnetic composition, the coating method, and the like.
  • a normal release substrate can be used.
  • a polyester sheet whose surface has been subjected to a silicone peeling treatment can be used.
  • the soft magnetic composition can be prepared by uniformly mixing the above-described components by a conventional method.
  • Step (C) Prepare two or more curable soft magnetic sheets obtained in step (A) and laminate them to obtain a laminate.
  • the number of layers is determined by the use of the laminated soft magnetic sheet. Further, when stacking, it is preferable to dispose release sheets on both sides of the laminate of soft magnetic sheets.
  • the release sheet in this case, a polyester sheet or the like whose surface has been subjected to silicone release treatment can be used.
  • the laminate obtained in the step (B) is subjected to a line pressure Pl, a line pressure P2 and a line pressure P3 (provided that P1 ⁇ P2 ⁇ P3) Sequential compression and temporary pressure bonding.
  • the reason why the soft magnetic sheet is pressurized at a temperature T2 at which a curing reaction does not substantially occur is to cause a uniform crosslinking reaction in a state where a surface pressure is applied.
  • substantially no curing reaction means that, as in the case of step (A), it is insignificant if it does not impair the effects of the invention only when no curing reaction occurs. This means that a curing reaction may occur and means that the crosslinking reaction is uniformly performed in the final step.
  • An example of a specific means for substantially preventing the curing reaction is to set the temperature T2 to a temperature 5 ° C or more lower than the curing reaction start temperature.
  • the specific temperature T2 varies depending on the composition of the soft magnetic composition constituting the soft magnetic sheet, but is usually 70 to 130 ° C, preferably 70 to 100 ° C.
  • a specific heating method a known method using a hot air drying furnace, an electric heating furnace, an infrared heating furnace, or the like can be employed.
  • the reason why the linear pressure is applied by the laminator that applies the linear pressure is to prevent air entrainment.
  • the reason for applying gradually from low linear pressure to high linear pressure in three stages is to effectively vent the sheet according to the softness, density and density of the sheet, and not to cause sheet misalignment. Because.
  • Specific examples of the laminator include a metal roll, a rubber roll, and a combination of a metal roll and a rubber roll.
  • P 1 is preferably 2 to 10 kgf / cm, more preferably 3 to 8 kgf / cm
  • P2 Preferably, it is 10-20 kgf / cm, more preferably 12-; 18 kgf / cm, P3 force, preferably 20-50 kgf / cm, more preferably 25-45 kgf / cm.
  • the compressed laminate obtained in the step (C) is subjected to main pressure bonding while being compressed and cured by a press machine applying a surface pressure at a temperature T3 at which a curing reaction occurs, and then the laminated soft magnetic material of the present invention. Get a sheet.
  • the change in sheet thickness is suppressed even under a high temperature or high temperature and high humidity environment, and as a result, the magnetic permeability does not decrease.
  • the reason why the compressed laminate is pressurized at the temperature T3 at which the curing reaction occurs is to advance the crosslinking reaction in a state where the magnetic powders are arranged in the plane.
  • the specific temperature T3 varies depending on the composition of the soft magnetic composition, and is usually 140 to 200 ° C., preferably 150 to 180 ° C.
  • the reason for applying the pressure by the surface pressure is to perform crosslinking in a state where the surface is uniformly pressurized.
  • the surface pressure value varies depending on the soft magnetic sheet material, the number of laminated layers, etc. (preferably 10 to 60 kgf / cm 2 , more preferably 15 to 40 kgf / cm 2 ).
  • the laminated soft magnetic sheet obtained by the above manufacturing method is one in which the change in sheet thickness is suppressed and the variation in magnetic permeability is small.
  • composition was applied on a release polyester (PET) substrate with a coater, dried at a temperature of less than 80 ° C, then further dried at 100 ° C, and 100 m on the release PET substrate. Thickness of soft A magnetic sheet was obtained.
  • the PET base material was peeled off to obtain a single-layer soft magnetic sheet.
  • Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
  • the resulting laminate is applied once to a laminator (manufactured by Sony Chemical & Information Device Co., Ltd.) with a roll temperature of 70 ° C at a line speed of 0.5 m / min and a linear pressure of 3.3 kgf / cm. Then, it was passed twice with a linear pressure of 14.8 kgf / cm, and then further passed twice with a linear pressure of 29 ⁇ 54 kg / cm to perform temporary pressure bonding.
  • a laminator manufactured by Sony Chemical & Information Device Co., Ltd.
  • FIG. 1 shows a cross-sectional view of this laminated soft magnetic sheet. From Fig. 1, magnetic powder is packed in high density and aligned in the plane direction!
  • Example 2 In the same manner as in Example 1, a soft magnetic sheet having a thickness of 100 m was obtained on a peeled PET substrate.
  • the PET base material was peeled off to obtain a single-layer soft magnetic sheet.
  • Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
  • the obtained laminate was applied to a laminator (manufactured by Sony Chemical & Information Device Co., Ltd.) set at a roll temperature of 70 ° C at a line speed of 0.5 m / min and a linear pressure of 3.3 kgf / cm 5 times. A temporary pressure bonding was performed.
  • Example 2 In the same manner as in Example 1, a soft magnetic sheet having a thickness of 100 m was obtained on a peeled PET substrate.
  • the PET base material was peeled off to obtain a single-layer soft magnetic sheet.
  • Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
  • the obtained laminate was applied to a laminator (manufactured by Sony Chemical & Infomation Device Co., Ltd.) with a roll temperature set at 70 ° C at a line speed of 0.5m / min and a linear pressure of 29 / 5kgf / cm. A temporary pressure bonding was performed.
  • Figure 3 shows a cross-sectional view of this laminated soft magnetic sheet. Figure 3 shows that there are places with high density and high orientation and places with low density and poor orientation.
  • Example 2 In the same manner as in Example 1, a soft magnetic sheet having a thickness of 100 m was obtained on a peeled PET substrate.
  • the laminate was compressed at a pressure of 24 ⁇ 9 kgf / cm 2 with a vacuum press (manufactured by Kitagawa Seiki) without being temporarily crimped to obtain a laminate type soft magnetic sheet of Comparative Example 3.
  • the PET base material was peeled off to obtain a single-layer soft magnetic sheet.
  • Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
  • the thickness (tl) and the permeability ⁇ ′ were measured on the obtained laminated soft magnetic sheet.
  • the magnetic permeability is preferably 38 or more practically.
  • the thickness (t2) of the soft magnetic sheet after being held for 240 hours (hr) in a high-temperature and high-humidity environment at 85 ° C and 60% Rh was measured, and the thickness change rate [(tl -t2) X 100 / t2] (%) was calculated.
  • the rate of change in thickness is close to 0! /, More preferred! / ⁇ (In Table 1, G is indicated when the rate of change in thickness is less than 2.0, and NG is indicated otherwise).
  • the occurrence rate (%) of sheet misalignment the number of sheets causing misalignment was calculated from the number of sheets prepared. The results obtained are shown in Table 1.
  • the permeability was obtained by passing the laminate of the soft magnetic sheet through a laminator under three-stage pressure conditions before the vacuum press.
  • the thickness change at 85 ° C, 60Rh%, 240hr was less than 2% / J, and ft]. Even when the cross section of the soft magnetic sheet was observed, it was found that air entered! /, !, and the lamination interface was not confirmed.
  • the incidence of defective products due to sheet misalignment was 0%.
  • the magnetic permeability can be increased by passing the soft magnetic sheet through a laminator before vacuum pressing, and the sheet at 85 ° C, 60Rh%, 240hr.
  • the change in thickness was 3% or more, and the change in thickness was larger than that in Example 1.
  • the sheet deviation was 0 sheets, and the incidence of defective products was 0%.
  • the magnetic permeability can be increased by passing the soft magnetic sheet through a laminator before vacuum pressing.
  • the thickness at 85 ° C, 60Rh%, 240hr The change in thickness was 2% or more, and the change in thickness was larger than that in Example 1.
  • the sheet shift was 12 sheets, and the incidence of defective products was high.
  • each soft layer of the single layer constituting the laminated soft magnetic sheet was used. It can be seen that there is a gap at the interface of the magnetic sheet. Further, the change in thickness at 85 ° C., 60 Rh%, and 240 hr was 2% or more, and the change in thickness was larger than that in Example 1. When 50 sheets were produced, the defective product generation rate due to misalignment of the sheets was 0%.
  • a specific soft magnetic composition for forming a soft magnetic sheet is used, and a heating pattern and a pressure application pattern for a laminate of thin soft magnetic sheets formed therefrom are used. Temporarily press-bond at low, medium, and high linear pressures at temperatures where curing does not proceed, and then perform final pressure bonding at surface pressure at temperatures where thermosetting proceeds. For this reason, high temperature Or, the change in the thickness of the laminated soft magnetic sheet can be suppressed even in a high temperature and high humidity environment, and as a result, the magnetic permeability can be prevented from decreasing.
  • the soft magnetic sheet is useful as a magnetic flux converging body in RFID systems such as non-contact type IC cards and IC tags, or as a general electromagnetic wave absorber. In other words, it is useful as a noise electromagnetic wave absorber for electronic devices such as RFID flexible shield materials and portable digital cameras.

Abstract

The invention provides a process which comprises laminating thin soft magnetic sheets prepared by coating method and which makes it possible to produce a laminate-type soft magnetic sheet reduced both in the variation of sheet thickness and in the variation of magnetic permeability. The process comprises the step (A) of applying a soft magnetic composition comprising as the essential components a flaky soft magnetic powder, an acrylic rubber having glycidyl groups, an epoxy resin, a latent curing agent for epoxy resin, and a solvent to a release substrate, drying the composition at a temperature (T1) at which substantially no curing reaction of the composition occurs, and removing the release substrate to obtain a curable soft magnetic sheet; the step (B) of laminating two or more curable soft magnetic sheets prepared by the step (A) to form a laminate; the step (C) of compressing the laminate at a temperature (T2) at which substantially no curing reaction occurs with a linear-load laminator under linear loads P1, P2 and P3 (P1<P2<P3) successively; and the step (D) of compressing the resulting laminate at a temperature (T3) at which curing reaction occurs with a planar-load press to cure the laminate properly and thus form a laminate-type soft magnetic sheet.

Description

明 細 書  Specification
積層型軟磁性シートの製造方法  Method for producing laminated soft magnetic sheet
技術分野  Technical field
[0001] 本発明は、磁気特性に優れ、厚み変化が小さいという特性を有する軟磁性シートの 製造方法に関する。  [0001] The present invention relates to a method for producing a soft magnetic sheet having excellent magnetic characteristics and small thickness change.
背景技術  Background art
[0002] 様々な電子機器に使用されている軟磁性シートの製造は、一般に混練圧延法によ り行われている。この方法では、扁平軟磁性粉末とゴムと塩素化ポリエチレンなどの 結合剤とを所定の割合でニーダ一で混練し、得られた混練物をカレンダーロールな どの装置で所定厚みに圧延し、更に必要に応じて結合剤を加熱架橋させることにより 単層の軟磁性シートを得ている。この方法は、高密度に軟磁性粉末を充填でき、圧 延により軟磁性粉末を面内方向に配向でき、シート厚の調整が容易であるという利点 を有する。  [0002] Soft magnetic sheets used in various electronic devices are generally manufactured by a kneading and rolling method. In this method, flat soft magnetic powder, rubber, and a binder such as chlorinated polyethylene are kneaded at a predetermined ratio with a kneader, and the resulting kneaded product is rolled to a predetermined thickness with an apparatus such as a calender roll, and further required. Accordingly, a single layer soft magnetic sheet is obtained by heat-crosslinking the binder. This method has the advantage that the soft magnetic powder can be filled at a high density, the soft magnetic powder can be oriented in the in-plane direction by rolling, and the sheet thickness can be easily adjusted.
[0003] しかし、混練圧延法の場合、混練時に軟磁性粉末に歪みが生ずるために、軟磁性 粉末自体の磁気特性が低下し、軟磁性シートの透磁率を大きくすることができなレ、と いう問題がある。また、高温あるいは高温高湿環境下においてシート厚が厚くなる方 向に変化し、透磁率が低下するという問題があった。  [0003] However, in the case of the kneading and rolling method, since the soft magnetic powder is distorted during kneading, the magnetic properties of the soft magnetic powder itself are reduced, and the magnetic permeability of the soft magnetic sheet cannot be increased. There is a problem. Further, there has been a problem that the magnetic permeability is lowered due to a change in the sheet thickness in a high temperature or high temperature and high humidity environment.
[0004] そこで、混練圧延法に代えて、軟磁性粉末に歪みが生じにくい塗布法により軟磁性 シートを製造することが行われるようになつている(特許文献 1)。この方法では、扁平 軟磁性粉末とゴムと樹脂と溶剤とからなる軟磁性シート形成用液状組成物を、剥離基 材上に塗布し、乾燥することにより、高温、高温高湿下でのシート厚変化が小さい軟 磁性シートを得ている。  [0004] Therefore, instead of the kneading and rolling method, a soft magnetic sheet is manufactured by a coating method in which the soft magnetic powder is less likely to be distorted (Patent Document 1). In this method, a liquid composition for forming a soft magnetic sheet composed of flat soft magnetic powder, rubber, resin and solvent is applied on a release substrate and dried to obtain a sheet thickness at high temperature and high temperature and high humidity. A soft magnetic sheet with little change is obtained.
特許文献 1 :特開 2000— 243615号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2000-243615
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、塗布法は、シート厚が比較的薄!/、軟磁性シートを作成する場合に適 しているが、比較的厚い軟磁性シートを製造するには適してはいない。これは、厚く 塗布すると塗布厚ムラが生じやすぐ乾燥も困難となるからである。このため、本発明 者等は、軟磁性シート形成用液状組成物に硬化性樹脂とその硬化剤とを配合し、塗 布法で硬化性の薄!/、軟磁性シートを作成し、その複数枚を比較的低温で仮圧着し、 次いで比較的高温で本圧着することにより軟磁性シートを積層型とすることを試みた 。しかし、塗布法で作成された薄い軟磁性シートを積層して作成された積層型軟磁 性シートは、個々の薄い軟磁性シートのシート厚変化は小さいものの、混練圧延法で 製造された比較的厚い単層の軟磁性シートと同様に、高温あるいは高温高湿環境下 においてシート厚が厚くなる方向に変化し、透磁率が低下するという問題があった。 [0005] However, the coating method is suitable for producing a soft magnetic sheet having a relatively thin sheet thickness, but is not suitable for producing a relatively thick soft magnetic sheet. This is thick This is because when applied, uneven coating thickness occurs and drying becomes difficult immediately. For this reason, the present inventors blended a curable resin and a curing agent thereof with a liquid composition for forming a soft magnetic sheet, and prepared a curable thin / soft magnetic sheet by a coating method. An attempt was made to make the soft magnetic sheet into a laminated type by temporarily pressing the sheet at a relatively low temperature and then pressing the sheet at a relatively high temperature. However, the laminated soft magnetic sheet made by laminating thin soft magnetic sheets made by the coating method is relatively thick manufactured by the kneading and rolling method, although the thickness change of each thin soft magnetic sheet is small. Similar to the single-layer soft magnetic sheet, there is a problem in that the sheet thickness increases in a high temperature or high temperature and high humidity environment, and the magnetic permeability decreases.
[0006] 本発明は、以上説明した従来技術の問題点を解決しょうとするものであり、塗布法 で作成した複数の薄!/、軟磁性シートを積層し、シート厚変化が抑制され且つ透磁率 の変動も小さい積層型軟磁性シートを製造できる方法を提供することを目的とする。 課題を解決するための手段  [0006] The present invention is intended to solve the above-described problems of the prior art, in which a plurality of thin / soft magnetic sheets prepared by a coating method are laminated, and the sheet thickness change is suppressed and transparent. It is an object of the present invention to provide a method capable of producing a laminated soft magnetic sheet having a small variation in magnetic susceptibility. Means for solving the problem
[0007] 本発明者は、塗布法で作成された薄い軟磁性シートを積層して作成された積層型 軟磁性シートに関し、高温あるいは高温高湿環境下においてシート厚が厚くなる方 向に変化し、透磁率が低下する理由として、二つの可能性を考慮した。一方は、積層 型軟磁性シートを構成する薄い軟磁性シートの間に空気が取り込まれ、高温によりそ の空気が膨張することによりシート厚が増大するという可能性、他方は、熱圧着する 際に扁平軟磁性粉末に生じた歪みが高温により緩和され、シートを構成する樹脂部 分が収縮することによりシート厚が増大するという可能性である。  [0007] The present inventor relates to a laminated soft magnetic sheet prepared by laminating thin soft magnetic sheets prepared by a coating method, and changes in a direction in which the sheet thickness increases in a high temperature or high temperature and high humidity environment. Two reasons were considered as the reasons why the permeability decreased. On the one hand, air is taken in between the thin soft magnetic sheets constituting the laminated soft magnetic sheet, and the sheet thickness may increase due to the expansion of the air due to the high temperature. There is a possibility that the distortion generated in the flat soft magnetic powder is relaxed by the high temperature, and the sheet thickness is increased by shrinking the resin portion constituting the sheet.
[0008] 本発明者らは、前者が主要因であると仮定し、複数の軟磁性シートの仮熱圧着時 に比較的高レ、圧力を印加したところ、シート厚が無視できなレ、レベルで変化してしま うという知見を得た。また、後者を主要因として仮定し、複数の軟磁性シートの仮熱圧 着時に比較的低レ、圧力を印加したところ、やはりシート厚が無視できなレ、レベルで変 化してしまうという知見を得た。 [0008] The present inventors have assumed that the former is the main factor, and when a relatively high pressure and pressure are applied during temporary thermocompression bonding of a plurality of soft magnetic sheets, the sheet thickness cannot be ignored. I got the knowledge that it will change. In addition, assuming that the latter is the main factor, when applying relatively low pressure and pressure during temporary thermal bonding of multiple soft magnetic sheets, the knowledge that the sheet thickness will still change at a level that cannot be ignored. Obtained.
[0009] 本発明者らは、本願発明の目的を達成するためには、仮熱圧着時に相対的に高い 圧力もしくは低い圧力を単純に印加するだけではできないということに鑑み、軟磁性 シート形成用の軟磁性組成物として特定のものを使用し、それから形成された薄い 軟磁性シートの積層物に対する加熱パターンと圧力印加パターンとを詳細に研究し たところ、熱硬化が進行しない温度で低、中、高と 3段階の線圧力で仮圧着し、続い て熱硬化が進行する温度で面圧力で本圧着することにより、上述の目的を達成でき ることを見出し、本発明を完成させるに至った。 [0009] In order to achieve the object of the present invention, the present inventors have not been able to simply apply a relatively high pressure or a low pressure at the time of temporary thermocompression bonding. Using a specific soft magnetic composition, we studied in detail the heating pattern and pressure application pattern for the laminate of thin soft magnetic sheets formed from it. As a result, the above-mentioned purpose can be achieved by pre-bonding at three stages of linear pressure, low, medium, and high, at a temperature at which thermosetting does not proceed, and then finally pressing with surface pressure at a temperature at which thermosetting proceeds. As a result, the present invention has been completed.
[0010] 即ち、本発明は、積層型軟磁性シートの製造方法であって、以下の工程 (A)〜(D ): That is, the present invention is a method for producing a laminated soft magnetic sheet, which comprises the following steps (A) to (D):
(A)少なくとも扁平な軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ 樹脂と、エポキシ樹脂用潜在性硬化剤と、溶剤とを混合してなる軟磁性組成物を、剥 離基材上に塗布し、軟磁性組成物の硬化反応が実質的に生じな!/、温度 T1で乾燥し 、剥離基材を取り除!/、て硬化性軟磁性シートを取得する工程;  (A) A soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is formed on a release substrate. And substantially free of curing reaction of the soft magnetic composition! /, Drying at a temperature T1, removing the release substrate! /, Obtaining a curable soft magnetic sheet;
(B)該硬化性軟磁性シートを 2以上用意し、それらを積層して積層物を取得するェ 程;  (B) preparing two or more curable soft magnetic sheets and laminating them to obtain a laminate;
(C)得られた積層物を、硬化反応が実質的に生じない温度 T2において、線圧を印 加するラミネーターにて線圧力 Pl、線圧力 P2及び線圧力 P3 (但し、 PK P2< P3) で順次圧縮する工程; 及び  (C) At the temperature T2 at which the curing reaction does not substantially occur, the obtained laminate is subjected to line pressure Pl, line pressure P2, and line pressure P3 (where PK P2 <P3) using a laminator that applies line pressure. And sequentially compressing with;
(D)続いて硬化反応が生ずる温度 Τ3において、圧縮された積層物を、面圧を印加 するプレス機で圧縮して積層型軟磁性シートを得る工程  (D) Step of obtaining a laminated soft magnetic sheet by compressing the compressed laminate with a press machine that applies a surface pressure at a temperature Τ3 at which the curing reaction subsequently occurs
を有することを特徴とする製造方法を提供する。  A manufacturing method characterized by comprising:
発明の効果  The invention's effect
[0011] 本発明によれば、軟磁性シート形成用の軟磁性組成物として特定のものを使用し、 それから形成された薄い軟磁性シートの積層物に対する加熱パターンと圧力印加パ ターンに関し、熱硬化が進行しない温度で低、中、高と 3段階の線圧力で仮圧着し、 続いて熱硬化が進行する温度で面圧力で本圧着する。このため、高温あるいは高温 高湿環境下でもシート厚の変化を抑制することができ、結果的に透磁率を低下させ ないようにできる。  [0011] According to the present invention, a specific soft magnetic composition for forming a soft magnetic sheet is used, and the heating pattern and pressure application pattern for the laminate of thin soft magnetic sheets formed therefrom are used for thermosetting. Temporarily press-bond with low, medium and high linear pressures at temperatures that do not progress, and then press-bond with surface pressure at temperatures where thermosetting proceeds. For this reason, the change in the sheet thickness can be suppressed even in a high temperature or high temperature and high humidity environment, and as a result, the magnetic permeability can be prevented from decreasing.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は実施例 1の積層型軟磁性シートの断面の電子顕微鏡写真である。  FIG. 1 is an electron micrograph of a cross section of a laminated soft magnetic sheet of Example 1.
[図 2]図 2は比較例 1の積層型軟磁性シートの断面の電子顕微鏡写真である。  FIG. 2 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 1.
[図 3]図 3は比較例 2の積層型軟磁性シートの断面の電子顕微鏡写真である。 [図 4]図 4は比較例 3の積層型軟磁性シートの断面の電子顕微鏡写真である。 FIG. 3 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 2. FIG. 4 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 3.
[図 5]図 5は比較例 4の積層型軟磁性シートの断面の電子顕微鏡写真である。  FIG. 5 is an electron micrograph of a cross section of the laminated soft magnetic sheet of Comparative Example 4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明の積層型軟磁性シートの製造方法は以下の工程 (A)〜(D)を少なくとも有 する。工程毎に説明する。 [0013] The method for producing a laminated soft magnetic sheet of the present invention has at least the following steps (A) to (D). It demonstrates for every process.
[0014] 工程 (A) [0014] Process (A)
少なくとも扁平な軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ樹脂 と、エポキシ樹脂用潜在性硬化剤と、溶剤とを混合してなる軟磁性組成物を、剥離基 材上に塗布し、軟磁性組成物の硬化反応が実質的に生じない温度 T1で乾燥し、剥 離基材を取り除いて硬化性軟磁性シートを取得する。  A soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is applied onto a release substrate, The soft magnetic composition is dried at a temperature T1 at which the curing reaction does not substantially occur, and the release substrate is removed to obtain a curable soft magnetic sheet.
[0015] 軟磁性組成物を剥離基材上に塗布する手法としては、ドクターブレードコート法、コ ンマコータコート法など公知の手法を利用することができる。塗布厚は、硬化性軟磁 性シートの用途や積層数に応じて適宜決定することができる力 通常、乾燥厚が 50 〜200 H mとなる厚さで塗布する。  [0015] As a method for applying the soft magnetic composition onto the release substrate, a known method such as a doctor blade coating method or a comma coater coating method can be used. The coating thickness is a force that can be appropriately determined according to the use of the curable soft magnetic sheet and the number of laminated layers. Usually, the coating thickness is applied so that the dry thickness is 50 to 200 Hm.
[0016] 軟磁性組成物を剥離基材に塗布した後に乾燥し、剥離基材を取り除!/、て硬化性軟 磁性シートを得る力 S、その乾燥は、軟磁性組成物の硬化反応が実質的に生じない温 度 T1で乾燥する。また、軟磁性組成物の硬化反応が実質的に生じない温度 T1で乾 燥する理由は、硬化反応が進行すると圧縮性が悪くなり、 a ' が上がらず、硬化反 応が進んだものを圧縮すると、高温高湿環境下での厚み変化が大きくなる為である。 ここで、「硬化反応が実質的に生じない」とは、硬化反応が全く生じない場合だけでな ぐ発明の効果を損なわない範囲であれば僅かな硬化反応が生じても力、まわない趣 旨であり、架橋反応を最終工程にて均一に行うことを意味する。硬化反応を実質的 に生じないようにするための具体的手段の例としては、温度 T1を硬化反応開始温度 より 5°C以上低い温度に設定することが挙げられる。具体的な温度 T1は、軟磁性組 成物の組成により異なる力 通常、 130°C以下である。乾燥の具体的な手法としては 、温風乾燥炉、電気加熱炉、赤外線加熱炉などを使用した公知の手法を採用するこ と力 Sできる。  [0016] The soft magnetic composition is applied to the release substrate and then dried, and then the release substrate is removed. The force S to obtain a curable soft magnetic sheet S, and the drying is caused by the curing reaction of the soft magnetic composition. Dry at a temperature T1 that does not substantially occur. In addition, the reason for drying at a temperature T1 at which the curing reaction of the soft magnetic composition does not substantially occur is that the compressibility deteriorates as the curing reaction progresses, and the one that does not rise and the curing reaction progresses is compressed. Then, it is because the thickness change in a high temperature and high humidity environment becomes large. Here, “substantially no curing reaction” means not only when no curing reaction occurs at all, but also within a range that does not impair the effects of the invention. This means that the crosslinking reaction is uniformly performed in the final step. An example of a specific means for substantially preventing the curing reaction is to set the temperature T1 to a temperature lower by 5 ° C or more than the curing reaction start temperature. The specific temperature T1 varies depending on the composition of the soft magnetic composition, and is usually 130 ° C or lower. As a specific method of drying, a known method using a hot air drying furnace, an electric heating furnace, an infrared heating furnace or the like can be employed.
[0017] 軟磁性組成物では、軟磁性粉末として扁平形状のもの (扁平軟磁性粉末)を使用 する。扁平軟磁性粉末を 2次元の面内方向に配列させることにより、高い透磁率と大 きな比重とを実現することができる。 [0017] In the soft magnetic composition, a soft magnetic powder having a flat shape (flat soft magnetic powder) is used. To do. By arranging the flat soft magnetic powder in a two-dimensional in-plane direction, high magnetic permeability and large specific gravity can be realized.
[0018] 扁平軟磁性粉末の原材料としては、任意の軟磁性合金を用いることができ、例えば 、磁性ステンレス^6—じ ー八1ー31合金)、センダスト^6— 31—八1合金)、パーマロ ィ(Fe— Ni合金)、ケィ素銅(Fe— Cu— Si合金)、 Fe— Si合金、 Fe— Si—B (— Cu — Nb)合金、 Fe— Si— Cr—Ni合金、 Fe— Si— Cr合金、 Fe— Si—Al— Ni— Cr合 金、フェライト等が挙げられる。これらの中でも、磁気特性の点から Fe— Si— A1合金 又は Fe— Si— Cr— Ni合金を好ましく使用できる。  [0018] As a raw material of the flat soft magnetic powder, any soft magnetic alloy can be used, for example, magnetic stainless steel ^ 6-—8-31 alloy), Sendust ^ 6-31-8-1 alloy), Permalloy (Fe—Ni alloy), Key copper (Fe—Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, Fe—Si—Cr—Ni alloy, Fe— Examples include Si—Cr alloys, Fe—Si—Al—Ni—Cr alloys, and ferrites. Among these, Fe—Si—A1 alloy or Fe—Si—Cr—Ni alloy can be preferably used from the viewpoint of magnetic properties.
[0019] これらの軟磁性合金に関し、 RFID通信用に用いる場合には、複素比透磁率の実 数部 (透磁率) ,i ' の数値が比較的大きぐ複素比透磁率の虚数部 (磁気損失) ,1 " の数値が比較的小さいものを使用することが好ましい。これにより、 RFID通信用のァ ンテナコイルから放出される磁界が金属体で渦電流に変換されるのが防止され通信 性能が改善される。  [0019] Regarding these soft magnetic alloys, when used for RFID communication, the real part of the complex relative permeability (permeability) and the imaginary part of the complex relative permeability with a relatively large value of i '(magnetic Loss), 1 "is preferable to use a relatively small value. This prevents the magnetic field emitted from the antenna coil for RFID communication from being converted into eddy currents in the metal body, thereby improving the communication performance. Improved.
[0020] また、扁平軟磁性合金としては、渦電流損失の低減を目的に " の値を小さくする ために、比較的抵抗が大きいものを使用することが好ましい。この場合、軟磁性合金 の組成を変えることで抵抗を大きくすることができる。例えば、 Fe— Si— Cr合金の場 合、 Siの割合を 9〜; 15重量%とすることが好ましい。  [0020] Further, as the flat soft magnetic alloy, in order to reduce the value of "for the purpose of reducing eddy current loss", it is preferable to use one having a relatively large resistance. In this case, the composition of the soft magnetic alloy For example, in the case of an Fe—Si—Cr alloy, the Si ratio is preferably 9 to 15% by weight.
[0021] 扁平軟磁性粉末としては、扁平な形状の軟磁性粉末を用いるが、好ましくは平均粒 子径が 3. 5〜90 111、平均厚さが0. 3〜3· O ^ m,より好ましくは平均粒子径が 10 〜50 111、平均厚さが0. 5〜2· 5 mである。従って、扁平率を好ましくは 8〜80、 より好ましくは 15〜65に設定する。なお、扁平軟磁性粉末の大きさを揃えるためには 、必要に応じて、ふるい等を使用して分級すればよい。なお、軟磁性材料の透磁率 を大きくするためには、扁平軟磁性粉末の粒子サイズを大きくして粒子同士の間隔を 小さくし、且つ扁平な軟磁性粉末のアスペクト比を高めて軟磁性シートにおける反磁 場の影響を小さくすることが有効である。  [0021] As the flat soft magnetic powder, a soft magnetic powder having a flat shape is used. Preferably, the average particle diameter is 3.5 to 90 111, and the average thickness is 0.3 to 3 · O ^ m. The average particle diameter is preferably 10 to 50 111 and the average thickness is 0.5 to 2.5 m. Therefore, the flatness is preferably set to 8 to 80, more preferably 15 to 65. In order to make the size of the flat soft magnetic powder uniform, classification may be performed using a sieve or the like as necessary. In order to increase the magnetic permeability of the soft magnetic material, the particle size of the flat soft magnetic powder is increased to reduce the spacing between the particles, and the aspect ratio of the flat soft magnetic powder is increased to increase the aspect ratio of the soft magnetic sheet. It is effective to reduce the influence of the demagnetizing field.
[0022] 扁平軟磁性粉末のタップ密度と比表面積 (BET法)とは互いに反比例する関係に ある力 S、非表面積が大きくなると ' の値だけでなぐ大きくしたくない 〃 の値も大 きくなる傾向があるため、それらの数値範囲を好ましい範囲に設定する。具体的には タップ密度を好ましく (ま 0· 55—1. 45g/ml、より好ましく (ま 0· 65—1. 40g/mUこ 設定し、一方、 it表面積を好ましく (ま 0. 40- 1. 20m2/g、より好ましく (ま 0. 65〜1 . 00m2/gに設定する。 [0022] The tap density and the specific surface area (BET method) of the flat soft magnetic powder are in inverse proportion to each other. When the non-surface area increases, the value of 'does not need to be increased. Since there is a tendency, those numerical ranges are set to a preferable range. In particular Preferably the tap density (or 0 · 55-1. 45g / ml, more preferably (or 0 · 65-1. 40g / mU to this setting, while preferably it surface area (or 0. 40- 1. 20m 2 / g, more preferably (set to 0.65 to 1.00 m 2 / g.
[0023] また、扁平軟磁性粉末として、例えばシランカップリング剤等のカップリング剤を用 V、てカップリング処理した軟磁性粉末を用いるようにしてもよ!/、。カップリング処理した 軟磁性粉末を用いることによって、扁平軟磁性粉末とバインダー樹脂との界面の補 強効果を高め、比重や耐食性を向上させることができる。カップリング剤としては、例 シシラン、 γ—グリシドキシプロピノレメチノレジェトキシシラン等を用いることができる。 なお、前述したカップリング処理は、予め軟磁性粉末に対して施しておいてもよいし、 扁平軟磁性粉末とバインダー樹脂とを混合する際に同時に混合し、その結果前記力 ップリング処理が行われるようにしてもよい。 [0023] Further, as the flat soft magnetic powder, for example, a soft magnetic powder subjected to a coupling treatment using a coupling agent such as a silane coupling agent may be used. By using the soft magnetic powder subjected to the coupling treatment, it is possible to enhance the reinforcing effect at the interface between the flat soft magnetic powder and the binder resin, and to improve the specific gravity and corrosion resistance. As the coupling agent, for example, silane, γ-glycidoxypropinoremethinolegetoxysilane, etc. can be used. The above-described coupling treatment may be performed on the soft magnetic powder in advance, or when the flat soft magnetic powder and the binder resin are mixed, they are mixed at the same time, so that the force coupling treatment is performed. You may do it.
[0024] 軟磁性組成物における扁平軟磁性粉末の使用量は、少なすぎると意図した磁気特 性が得られず、多すぎると相対的にバインダー樹脂量が少なくなり、成形性が低下す るので、好ましくは、溶剤を除いた軟磁性組成物中の 70〜90重量%、より好ましくは 80〜85重量%である。 [0024] If the amount of the flat soft magnetic powder used in the soft magnetic composition is too small, the intended magnetic properties cannot be obtained, and if it is too large, the amount of the binder resin is relatively reduced and the moldability is lowered. Preferably, it is 70 to 90% by weight, more preferably 80 to 85% by weight in the soft magnetic composition excluding the solvent.
[0025] 軟磁性組成物は、積層型軟磁性シートに良好な柔軟性と耐熱性とを付与するため に、ゴム成分としてアクリルゴムを使用する。このアクリルゴムは、エポキシ樹脂との相 溶性を向上させるために必ず 1以上のグリシジル基を有する。具体例としては、 ΕΑ- ΑΝ、 ΒΑ— ΕΑ— ΑΝ、 ΒΑ— ΑΝ、 ΒΑ— ΜΜΑ等が挙げられる。  [0025] The soft magnetic composition uses acrylic rubber as a rubber component in order to impart good flexibility and heat resistance to the laminated soft magnetic sheet. This acrylic rubber always has one or more glycidyl groups in order to improve compatibility with the epoxy resin. Specific examples include ΕΑ-ΑΝ, ΒΑ-ΕΑ-ΑΝ, ΒΑ-ΑΝ, ΒΑ-ΜΜΑ, and the like.
[0026] 軟磁性組成物におけるアクリルゴムの使用量は、少なすぎると十分な熱加工性が 得られず、多すぎるとゴム弾性が大きくなり過ぎて熱加工性が悪くなるので、好ましく は、溶剤を除いた軟磁性組成物中の 9〜; 16重量%、より好ましくは 12〜; 14重量%で ある。  [0026] If the amount of the acrylic rubber used in the soft magnetic composition is too small, sufficient heat processability cannot be obtained, and if it is too large, the rubber elasticity becomes too large and the heat processability deteriorates. 9 to 16% by weight, more preferably 12 to 14% by weight.
[0027] 軟磁性組成物は、積層型軟磁性シートに良好な加熱加工性と寸法安定性とを付与 するために、エポキシ樹脂を使用する。具体例としては、フエノールノポラック、テトラ グリシジルフエノール、 ο—クレゾ一ルノボラック、テトラグリシジルァミン、ビスフエノー ル八、ビスフエノール F、ビスフエノーノレ Aグリシジルエーテル等が挙げられる。 [0028] 軟磁性組成物におけるエポキシ樹脂の使用量は、少なすぎると十分な熱加工性が 得られず、多すぎると柔軟性が損なわれるので、好ましくは、溶剤を除いた軟磁性組 成物中の 1. 0〜6. 0重量0 /0、より好ましくは 1. 5〜4. 0重量0 /0である。 [0027] The soft magnetic composition uses an epoxy resin in order to impart good heat processability and dimensional stability to the laminated soft magnetic sheet. Specific examples include phenol nopolac, tetraglycidyl phenol, o-cresol novolak, tetraglycidylamine, bisphenol 8, bisphenol F, bisphenol A glycidyl ether, and the like. [0028] If the amount of the epoxy resin used in the soft magnetic composition is too small, sufficient heat processability cannot be obtained, and if it is too large, flexibility is impaired. Therefore, the soft magnetic composition excluding the solvent is preferable. 1.0 to 6.0 wt 0/0 in, more preferably from 1.5 to 4. 0 weight 0/0.
[0029] また、軟磁性組成物は、エポキシ樹脂を硬化させるためにエポキシ樹脂用潜在性 硬化剤を使用する具体例としては、アミン類イミダゾール、ポリアミドフエノール酸無水 物等が挙げられる。  [0029] In the soft magnetic composition, specific examples of using the latent curing agent for epoxy resin to cure the epoxy resin include amine imidazole and polyamide phenolic anhydride.
[0030] 軟磁性組成物におけるエポキシ樹脂用潜在性硬化剤の使用量は、少なすぎると製 品の信頼性が低下し (保存特性低下)、多すぎると塗料のライフの低下やシートのラ ィフの低下が生じ、コストアップもするので、好ましくは、エポキシ樹脂 100重量部に 対し 3〜; 100重量部、より好ましくは 10〜40重量部である。  [0030] If the use amount of the latent curing agent for epoxy resin in the soft magnetic composition is too small, the reliability of the product is lowered (decrease in storage characteristics), and if it is too much, the life of the paint is lowered and the sheet line is reduced. Therefore, the amount is preferably 3 to 100 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of the epoxy resin.
[0031] 溶剤としては、通常の汎用溶媒を使用することができ、例えば、エタノール、 n-プロ パノール、イソプロピルアルコール(IPA)、 n-ブチルアルコール等のアルコール類、 酢酸ェチル、酢酸 n-ブチル等のエステル類、アセトン、メチルェチルケトン(MEK)、 メチルイソブチルケトン(MIBK)、シクロへキサノン等のケトン類、テトラヒドロフラン (T HF)等のエーテル類、ェチルセ口ソルブ、 n—ブチルセ口ソルブ、セロソルブァセテ ート等のセロソルブ類、トルエン、キシレン、ベンゼン等の芳香族系炭化水素類など の汎用溶媒を使用することができる。その使用量は、軟磁性組成物の組成の種類や 塗布法等に応じて適宜選択することができる。  [0031] As the solvent, an ordinary general-purpose solvent can be used. For example, alcohols such as ethanol, n-propanol, isopropyl alcohol (IPA), n-butyl alcohol, ethyl acetate, n-butyl acetate, etc. Esters, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), ketones such as cyclohexanone, ethers such as tetrahydrofuran (THF), ethyl acetate sorb, n-butyl sorb sorb, cellosolve acete General-purpose solvents such as cellosolves such as carbonates and aromatic hydrocarbons such as toluene, xylene, and benzene can be used. The amount used can be appropriately selected according to the type of composition of the soft magnetic composition, the coating method, and the like.
[0032] 剥離基材としては、通常の剥離基材を使用することができる。例えば、表面をシリコ ーン剥離処理したポリエステルシート等が挙げられる。  [0032] As the release substrate, a normal release substrate can be used. For example, a polyester sheet whose surface has been subjected to a silicone peeling treatment can be used.
[0033] 軟磁性組成物は、上述の各成分を常法により均一に混合することで調製することが 出来る。  [0033] The soft magnetic composition can be prepared by uniformly mixing the above-described components by a conventional method.
[0034] 工程(B)  [0034] Step (B)
工程 (A)で得られる硬化性軟磁性シートを 2以上用意し、それらを積層して積層物 を取得する。積層数は、積層型軟磁性シートの用途等によって決定される。また、積 層する際に、軟磁性シートの積層物の両側に剥離シートを配置することが好ましい。 この場合の剥離シートとしては、前述の表面をシリコーン剥離処理したポリエステルシ 一ト等を使用できる。 [0035] 工程(C) Prepare two or more curable soft magnetic sheets obtained in step (A) and laminate them to obtain a laminate. The number of layers is determined by the use of the laminated soft magnetic sheet. Further, when stacking, it is preferable to dispose release sheets on both sides of the laminate of soft magnetic sheets. As the release sheet in this case, a polyester sheet or the like whose surface has been subjected to silicone release treatment can be used. [0035] Step (C)
次に、工程 (B)で得られる積層物を、硬化反応が実質的に生じない温度 T2におい て、線圧を印加するラミネーターにて線圧力 Pl、線圧力 P2及び線圧力 P3 (但し、 P1 < P2< P3)で順次圧縮して仮圧着する。このように仮圧着を行うことにより、シートの ずれによる不良品が発生することを防止し、エアー抜きによる信頼性を向上させ、延 伸防止が可能となるという効果が得られる。  Next, the laminate obtained in the step (B) is subjected to a line pressure Pl, a line pressure P2 and a line pressure P3 (provided that P1 <P2 <P3) Sequential compression and temporary pressure bonding. By performing the temporary pressure bonding in this way, it is possible to prevent the occurrence of defective products due to sheet displacement, to improve the reliability by air bleeding, and to prevent stretching.
[0036] この工程において、軟磁性シートに硬化反応が実質的に生じない温度 T2で加圧 する理由は、面圧をかけた状態で均一に架橋反応させるためである。ここで、「硬化 反応が実質的に生じない」とは、工程 (A)の場合と同様に、硬化反応が全く生じない 場合だけでなぐ発明の効果を損なわない範囲であれば僅力、な硬化反応が生じても かまわない趣旨であり、架橋反応を最終工程にて均一に行うことを意味する。硬化反 応を実質的に生じないようにするための具体的手段の例としては、温度 T2を硬化反 応開始温度より 5°C以上低い温度に設定することが挙げられる。具体的な温度 T2は 、軟磁性シートを構成する軟磁性組成物の組成により異なるが、通常、 70〜; 130°C、 好ましくは 70〜100°Cである。加熱の具体的な手法としては、温風乾燥炉、電気加 熱炉、赤外線加熱炉などを使用した公知の手法を採用することができる。  [0036] In this step, the reason why the soft magnetic sheet is pressurized at a temperature T2 at which a curing reaction does not substantially occur is to cause a uniform crosslinking reaction in a state where a surface pressure is applied. Here, “substantially no curing reaction” means that, as in the case of step (A), it is insignificant if it does not impair the effects of the invention only when no curing reaction occurs. This means that a curing reaction may occur and means that the crosslinking reaction is uniformly performed in the final step. An example of a specific means for substantially preventing the curing reaction is to set the temperature T2 to a temperature 5 ° C or more lower than the curing reaction start temperature. The specific temperature T2 varies depending on the composition of the soft magnetic composition constituting the soft magnetic sheet, but is usually 70 to 130 ° C, preferably 70 to 100 ° C. As a specific heating method, a known method using a hot air drying furnace, an electric heating furnace, an infrared heating furnace, or the like can be employed.
[0037] また、線圧を印加するラミネーターにて線圧力を付加する理由は、空気の巻き込み を防止するためである。 3段階で徐々に低い線圧力から高い線圧力で印加する理由 は、シートの軟ら力、さ及び密度に合わせて効果的にエアー抜きをし、また、シートの 積層ずれを起こさないようにするためである。ラミネーターの具体例としては、上下が 金属ロール、ゴムロール、金属ロールとゴムロールの組み合わせ等が挙げられる。  [0037] The reason why the linear pressure is applied by the laminator that applies the linear pressure is to prevent air entrainment. The reason for applying gradually from low linear pressure to high linear pressure in three stages is to effectively vent the sheet according to the softness, density and density of the sheet, and not to cause sheet misalignment. Because. Specific examples of the laminator include a metal roll, a rubber roll, and a combination of a metal roll and a rubber roll.
[0038] Pl、 P2、 P3の具体的な数値は、軟磁性シートの素材、積層数等により異なる力 P 1が好ましくは 2〜; 10kgf/cm、より好ましくは 3〜8kgf/cm、 P2が好ましくは 10〜 20kgf/cm、より好ましくは 12〜; 18kgf/cm、 P3力 ましくは 20〜50kgf/cm、よ り好ましくは 25〜45kgf/cmである。  [0038] The specific values of Pl, P2, and P3 are different forces depending on the soft magnetic sheet material, the number of laminated layers, etc. P 1 is preferably 2 to 10 kgf / cm, more preferably 3 to 8 kgf / cm, P2 Preferably, it is 10-20 kgf / cm, more preferably 12-; 18 kgf / cm, P3 force, preferably 20-50 kgf / cm, more preferably 25-45 kgf / cm.
[0039] また、本工程におけるラミネーターのラインスピードは、早すぎると熱が伝わらず圧 縮が進まず、貼り合わせ不良等のトラブルが生じ、遅すぎると生産効率悪化、コストア ップとなるので、好ましくは 0. ;!〜 5. Om/分、より好ましくは 0. 5〜3. Om/分であ [0040] 工程(D) [0039] Also, if the line speed of the laminator in this process is too fast, heat will not be transmitted and compression will not proceed, causing problems such as poor bonding, and if it is too slow, production efficiency will deteriorate and cost will increase. Preferably 0.;! To 5. Om / min, more preferably 0.5 to 3. Om / min [0040] Process (D)
続いて工程 (C)で得られた圧縮された積層物を硬化反応が生ずる温度 T3におい て、面圧を印加するプレス機で圧縮して硬化させつつ本圧着して本発明の積層型軟 磁性シートを得る。得られた積層型軟磁性シートは、高温あるいは高温高湿環境下 でもシート厚の変化が抑制され、結果的に透磁率が低下しない。  Subsequently, the compressed laminate obtained in the step (C) is subjected to main pressure bonding while being compressed and cured by a press machine applying a surface pressure at a temperature T3 at which a curing reaction occurs, and then the laminated soft magnetic material of the present invention. Get a sheet. In the obtained laminated soft magnetic sheet, the change in sheet thickness is suppressed even under a high temperature or high temperature and high humidity environment, and as a result, the magnetic permeability does not decrease.
[0041] 本工程において、圧縮された積層物を硬化反応が生ずる温度 T3で加圧する理由 は、磁性粉を面内に配列させた状態で架橋反応を進めるためである。具体的な温度 T3は、軟磁性組成物の組成により異なる力 通常 140〜200°C、好ましくは 150〜1 80°Cである。また、加圧を面圧で行う理由は、面内を均一に加圧した状態で架橋さ せるためである。面圧の値は、軟磁性シートの素材、積層数等により異なる力 好まし く (ま 10〜60kgf/cm2、より好ましく (ま 15〜40kgf/cm2である。 In this step, the reason why the compressed laminate is pressurized at the temperature T3 at which the curing reaction occurs is to advance the crosslinking reaction in a state where the magnetic powders are arranged in the plane. The specific temperature T3 varies depending on the composition of the soft magnetic composition, and is usually 140 to 200 ° C., preferably 150 to 180 ° C. Further, the reason for applying the pressure by the surface pressure is to perform crosslinking in a state where the surface is uniformly pressurized. The surface pressure value varies depending on the soft magnetic sheet material, the number of laminated layers, etc. (preferably 10 to 60 kgf / cm 2 , more preferably 15 to 40 kgf / cm 2 ).
[0042] 以上の製造方法により得られる積層型軟磁性シートは、シート厚変化が抑制され且 つ透磁率の変動も小さ!/、ものである。  [0042] The laminated soft magnetic sheet obtained by the above manufacturing method is one in which the change in sheet thickness is suppressed and the variation in magnetic permeability is small.
実施例  Example
[0043] 以下、本発明を実施例により具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to examples.
[0044] 実施例 1  [0044] Example 1
(軟磁性シートの作成)  (Creation of soft magnetic sheet)
扁平軟磁性粉末? ^ 株式会社メィト製) 550重量部と、グリシジル基を 有するアクリルゴム (SG80H' 3、ナガセケムテックス株式会社製) 83重量部と、ェポ キシ樹脂(ェピコート 1031S、ジャパンエポキシレジン株式会社製) 23. 1重量部と、 エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製) 6. 9重量 部と、トルエン 270重量部と、酢酸ェチル 120重量部とを混合してなる軟磁性組成物 を調製した。なお、使用した扁平軟磁性粉末の累積粒径 D m)に関し、 D10は 9. 4〃111であり、 D50は 23. 9〃 mであり、 D90は 49. 1〃 mであった。また、力、さ密度は 0. 6g/ccであり、タップ密度は、 1. 30g/ccであった。  Flat soft magnetic powder? ^ 550 parts by weight, acrylic rubber with glycidyl group (SG80H'3, Nagase ChemteX Corporation) 83 parts by weight, epoxy resin (Epicoat 1031S, Japan Epoxy Resin Co., Ltd.) 23 A soft magnetic composition comprising 1 part by weight, a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 6.9 parts by weight, 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate. Was prepared. Regarding the cumulative particle size D m) of the flat soft magnetic powder used, D10 was 9.4 to 111, D50 was 23.9 to m, and D90 was 49.1 to m. The force and bulk density were 0.6 g / cc, and the tap density was 1.30 g / cc.
[0045] その組成物をコーターで剥離ポリエステル (PET)基材上に塗布し、 80°C未満の温 度で乾燥し、その後に更に 100°Cで乾燥し、剥離 PET基材上に 100 mの厚さの軟 磁性シートを得た。 [0045] The composition was applied on a release polyester (PET) substrate with a coater, dried at a temperature of less than 80 ° C, then further dried at 100 ° C, and 100 m on the release PET substrate. Thickness of soft A magnetic sheet was obtained.
[0046] (軟磁性シートの積層物の作成) [0046] (Preparation of laminate of soft magnetic sheets)
上述の軟磁性シートから剥離 PET基材を剥離し、単層の軟磁性シートを取得した。 この単層の軟磁性シートを 4枚用意し、それらを積層して積層物を得た。  Peeling from the above-mentioned soft magnetic sheet The PET base material was peeled off to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
[0047] (軟磁性シートの積層物の仮圧着) [0047] (Temporary pressure bonding of laminate of soft magnetic sheets)
得られた積層物を、ロール温度を 70°Cに設定したラミネーター(ソニーケミカル &ィ ンフオメーシヨンデバイス株式会社製)に、ラインスピード 0· 5m/分で線圧 3· 3kgf /cmで 1回通し、次に線圧 14· 8kgf/cmで 2回通し、更に、線圧 29· 54kg/cm で 2回通して仮圧着を行った。  The resulting laminate is applied once to a laminator (manufactured by Sony Chemical & Information Device Co., Ltd.) with a roll temperature of 70 ° C at a line speed of 0.5 m / min and a linear pressure of 3.3 kgf / cm. Then, it was passed twice with a linear pressure of 14.8 kgf / cm, and then further passed twice with a linear pressure of 29 · 54 kg / cm to perform temporary pressure bonding.
[0048] (積層型軟磁性シートの作成) [0048] (Preparation of laminated soft magnetic sheet)
次に、仮圧着した積層物を、真空プレス装置 (北川精機製)で、 165°C、 10分間、 2 4. 9kgf/cm2の圧力で圧縮し、実施例 1の積層型軟磁性シートを得た。この積層型 軟磁性シートの断面図を図 1に示す。図 1からは、磁性粉が高密度に充填され、面方 向に整列して!/、ること力 Sわ力、る。 Next, the temporarily press-bonded laminate was compressed with a vacuum press device (manufactured by Kitagawa Seiki) at 165 ° C for 10 minutes at a pressure of 24.9 kgf / cm 2 to obtain the laminated soft magnetic sheet of Example 1. Obtained. Figure 1 shows a cross-sectional view of this laminated soft magnetic sheet. From Fig. 1, magnetic powder is packed in high density and aligned in the plane direction!
[0049] 比較例 1 [0049] Comparative Example 1
(軟磁性シートの作成)  (Creation of soft magnetic sheet)
実施例 1と同様に、剥離 PET基材上に 100 mの厚さの軟磁性シートを得た。  In the same manner as in Example 1, a soft magnetic sheet having a thickness of 100 m was obtained on a peeled PET substrate.
[0050] (軟磁性シートの積層物の作成) [0050] (Creation of soft magnetic sheet laminate)
上述の軟磁性シートから剥離 PET基材を剥離し、単層の軟磁性シートを取得した。 この単層の軟磁性シートを 4枚用意し、それらを積層して積層物を得た。  Peeling from the above-mentioned soft magnetic sheet The PET base material was peeled off to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
[0051] (軟磁性シートの積層物の仮圧着) [0051] (Temporary pressure bonding of laminate of soft magnetic sheets)
得られた積層物を、ロール温度を 70°Cに設定したラミネーター(ソニーケミカル &ィ ンフオメーシヨンデバイス株式会社製)に、ラインスピード 0· 5m/分で線圧 3· 3kgf /cmで 5回通して仮圧着を行った。  The obtained laminate was applied to a laminator (manufactured by Sony Chemical & Information Device Co., Ltd.) set at a roll temperature of 70 ° C at a line speed of 0.5 m / min and a linear pressure of 3.3 kgf / cm 5 times. A temporary pressure bonding was performed.
[0052] (積層型軟磁性シートの作成) [0052] (Preparation of laminated soft magnetic sheet)
次に、仮圧着した積層物を、真空プレス装置(北川精機製)で 24. 9kgf/cm2の圧 力で圧縮し、積層型軟磁性シートを得た。この積層型軟磁性シートの断面図を図 2に 示す。図 2からは、積層界面に空隙がやや多いことがわかる。 [0053] 比較例 2 Next, the temporarily bonded laminate was compressed with a vacuum press (made by Kitagawa Seiki) at a pressure of 24.9 kgf / cm 2 to obtain a laminated soft magnetic sheet. Figure 2 shows a cross-sectional view of this laminated soft magnetic sheet. Figure 2 shows that there are slightly more voids at the stack interface. [0053] Comparative Example 2
(軟磁性シートの作成)  (Creation of soft magnetic sheet)
実施例 1と同様に、剥離 PET基材上に 100 mの厚さの軟磁性シートを得た。  In the same manner as in Example 1, a soft magnetic sheet having a thickness of 100 m was obtained on a peeled PET substrate.
[0054] (軟磁性シートの積層物の作成) [0054] (Preparation of laminate of soft magnetic sheets)
上述の軟磁性シートから剥離 PET基材を剥離し、単層の軟磁性シートを取得した。 この単層の軟磁性シートを 4枚用意し、それらを積層して積層物を得た。  Peeling from the above-mentioned soft magnetic sheet The PET base material was peeled off to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
[0055] (軟磁性シートの積層物の仮圧着) [0055] (Temporary pressure bonding of laminate of soft magnetic sheets)
得られた積層物を、ロール温度を 70°Cに設定したラミネーター(ソニーケミカル &ィ ンフオメーシヨンデバイス株式会社製)に、ラインスピード 0· 5m/分で線圧 29· 5kgf /cmで 5回通して仮圧着を行った。  The obtained laminate was applied to a laminator (manufactured by Sony Chemical & Infomation Device Co., Ltd.) with a roll temperature set at 70 ° C at a line speed of 0.5m / min and a linear pressure of 29 / 5kgf / cm. A temporary pressure bonding was performed.
[0056] (積層型軟磁性シートの作成) [0056] (Preparation of laminated soft magnetic sheet)
次に、仮圧着した積層物を、真空プレス装置(北川精機製)で 24. 9kgf/cm2の圧 力で圧縮し、比較例 2の積層型軟磁性シートを得た。この積層型軟磁性シートの断 面図を図 3に示す。図 3からは、高密度に高配向している場所と低密度で配向不足 の場所が存在してレ、ること力 Sわ力、る。 Next, the temporarily bonded laminate was compressed with a pressure of 24.9 kgf / cm 2 using a vacuum press (made by Kitagawa Seiki) to obtain a laminate type soft magnetic sheet of Comparative Example 2. Figure 3 shows a cross-sectional view of this laminated soft magnetic sheet. Figure 3 shows that there are places with high density and high orientation and places with low density and poor orientation.
[0057] 比較例 3 [0057] Comparative Example 3
(軟磁性シートの作成)  (Creation of soft magnetic sheet)
実施例 1と同様に、剥離 PET基材上に 100 mの厚さの軟磁性シートを得た。  In the same manner as in Example 1, a soft magnetic sheet having a thickness of 100 m was obtained on a peeled PET substrate.
[0058] (軟磁性シートの積層物の作成) [0058] (Preparation of laminate of soft magnetic sheets)
上述の軟磁性シートから剥離 PET基材を剥離し、単層の軟磁性シートを取得した。 この単層の軟磁性シートを 4枚用意し、それらを積層して積層物を得た。この積層型 軟磁性シートの断面図を図 4に示す。図 4からは、空隙(エアー)が多く残っていること 力 sわ力、る。 Peeling from the above-mentioned soft magnetic sheet The PET substrate was peeled off to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate. Figure 4 shows a cross-sectional view of this laminated soft magnetic sheet. From Figure 4, it forces s I force voids (air) remains large, Ru.
[0059] (積層型軟磁性シートの作成)  [0059] (Preparation of laminated soft magnetic sheet)
次に、積層物を、仮圧着せずに、真空プレス装置(北川精機製)で 24· 9kgf/cm2 の圧力で圧縮し、比較例 3の積層型軟磁性シートを得た。 Next, the laminate was compressed at a pressure of 24 · 9 kgf / cm 2 with a vacuum press (manufactured by Kitagawa Seiki) without being temporarily crimped to obtain a laminate type soft magnetic sheet of Comparative Example 3.
[0060] 比較例 4 [0060] Comparative Example 4
(軟磁性シートの作成) 実施例 1と同様に、剥離 PET基材上に 100 mの厚さの軟磁性シートを得た。 (Creation of soft magnetic sheet) In the same manner as in Example 1, a soft magnetic sheet having a thickness of 100 m was obtained on a peeled PET substrate.
[0061] (軟磁性シートの積層物の作成) [0061] (Preparation of laminate of soft magnetic sheets)
上述の軟磁性シートから剥離 PET基材を剥離し、単層の軟磁性シートを取得した。 この単層の軟磁性シートを 4枚用意し、それらを積層して積層物を得た。  Peeling from the above-mentioned soft magnetic sheet The PET base material was peeled off to obtain a single-layer soft magnetic sheet. Four single-layer soft magnetic sheets were prepared and laminated to obtain a laminate.
[0062] (積層型軟磁性シートの作成) [0062] (Preparation of laminated soft magnetic sheet)
次に、積層物を、仮圧着せずに、真空プレス装置(北川精機製)で 37. 4kgf/cm2 の圧力で圧縮し、比較例 4の積層型軟磁性シートを得た。この積層型軟磁性シートの 断面図を図 5に示す。図 5からは、高密度領域と空隙(エアー)領域の部分とがはっき りと分かれて!/、ること力 Sわ力、る。 Next, the laminate was compressed with a pressure of 37.4 kgf / cm 2 with a vacuum press (manufactured by Kitagawa Seiki) without provisional pressure bonding, and a laminated soft magnetic sheet of Comparative Example 4 was obtained. Figure 5 shows a cross-sectional view of this laminated soft magnetic sheet. From Fig. 5, the high density area and the air (air) area are clearly separated!
[0063] (評価) [0063] (Evaluation)
得られた積層型軟磁性シートにつ!/、て、まず厚さ (tl)と透磁率 μ ' とを測定した。 透磁率は実用的には 38以上であることが好ましい。また、 85°C、 60%Rhの高温高 湿環境下に 240時間(hr)保持した後の軟磁性シートの厚さ(t2)を測定し、厚み変 化率 [(tl -t2) X 100/t2] (%)を算出した。厚み変化率は 0に近!/、ほど好まし!/ヽ (表 1中、厚み変化率が 2. 0未満である場合を G、それ以外を NGとした)。更に、シート のずれの発生率(%)について、シート作成枚数からシート積層ずれを起こした枚数 を算出した。得られた結果を表 1に示す。  First, the thickness (tl) and the permeability μ ′ were measured on the obtained laminated soft magnetic sheet. The magnetic permeability is preferably 38 or more practically. In addition, the thickness (t2) of the soft magnetic sheet after being held for 240 hours (hr) in a high-temperature and high-humidity environment at 85 ° C and 60% Rh was measured, and the thickness change rate [(tl -t2) X 100 / t2] (%) was calculated. The rate of change in thickness is close to 0! /, More preferred! / ヽ (In Table 1, G is indicated when the rate of change in thickness is less than 2.0, and NG is indicated otherwise). Furthermore, regarding the occurrence rate (%) of sheet misalignment, the number of sheets causing misalignment was calculated from the number of sheets prepared. The results obtained are shown in Table 1.
[0064] [表 1] [0064] [Table 1]
Figure imgf000014_0001
表 1から解るように、実施例 1の積層型軟磁性シートの場合、真空プレスの前に軟 磁性シートの積層物を 3段階の圧力条件でラミネーターに通すことによって透磁率 ' を大きくでき、また、 85°C、 60Rh%、 240hrでの厚さの変ィ匕も 2%以下と/ J、さく ft] えられてレ、た。軟磁性シートの断面観察を行っても空気が入って!/、な!/、ことがわかり 、積層界面は確認されなかった。なお、積層型軟磁性シートを 50枚作製した時のシ 一トの積層ずれによる不良品発生率は 0%であった。
Figure imgf000014_0001
As can be seen from Table 1, in the case of the laminated soft magnetic sheet of Example 1, the permeability was obtained by passing the laminate of the soft magnetic sheet through a laminator under three-stage pressure conditions before the vacuum press. The thickness change at 85 ° C, 60Rh%, 240hr was less than 2% / J, and ft]. Even when the cross section of the soft magnetic sheet was observed, it was found that air entered! /, !!, and the lamination interface was not confirmed. When 50 laminated soft magnetic sheets were produced, the incidence of defective products due to sheet misalignment was 0%.
[0066] 比較例 1の積層型軟磁性シートの場合、真空プレスの前に軟磁性シートをラミネ一 ターに通すことによって透磁率 を大きくできすこが、 85°C、 60Rh%、 240hrでの シート厚さの変化が 3%以上であり、実施例 1と比較して厚みの変化が大きくなつた。 50枚作製した時にシートのずれは 0枚であり、不良品の発生率は 0%であった。  [0066] In the case of the laminated soft magnetic sheet of Comparative Example 1, the magnetic permeability can be increased by passing the soft magnetic sheet through a laminator before vacuum pressing, and the sheet at 85 ° C, 60Rh%, 240hr. The change in thickness was 3% or more, and the change in thickness was larger than that in Example 1. When 50 sheets were produced, the sheet deviation was 0 sheets, and the incidence of defective products was 0%.
[0067] 比較例 2の積層型軟磁性シートの場合、真空プレスの前に軟磁性シートをラミネ一 ターに通すことによって透磁率 を大きくできすこが、 85°C、 60Rh%、 240hrでの 厚さの変化が 2%以上であり、実施例 1と比較して厚みの変化が大きくなつた。 50枚 作製した時にシートのずれは 12枚であり、不良品の発生率が高かった。  [0067] In the case of the laminated soft magnetic sheet of Comparative Example 2, the magnetic permeability can be increased by passing the soft magnetic sheet through a laminator before vacuum pressing. The thickness at 85 ° C, 60Rh%, 240hr The change in thickness was 2% or more, and the change in thickness was larger than that in Example 1. When 50 sheets were produced, the sheet shift was 12 sheets, and the incidence of defective products was high.
[0068] 比較例 3の積層型軟磁性シートの場合、真空プレスで圧縮する前にラミネーターに 通していないので、図 4に示されるように、積層型軟磁性シートを構成する単層の各 軟磁性シートの界面に隙間が生じていることがわかる。また、 85°C、 60Rh%、 240hr での厚さの変化が 2%以上であり、実施例 1と比較して厚みの変化が大きくなつた。な お、 50枚作製した時のシートの積層ずれによる不良品発生率は 0%であった。  [0068] In the case of the laminated soft magnetic sheet of Comparative Example 3, since it was not passed through a laminator before being compressed by a vacuum press, as shown in FIG. 4, each soft layer of the single layer constituting the laminated soft magnetic sheet was used. It can be seen that there is a gap at the interface of the magnetic sheet. Further, the change in thickness at 85 ° C., 60 Rh%, and 240 hr was 2% or more, and the change in thickness was larger than that in Example 1. When 50 sheets were produced, the defective product generation rate due to misalignment of the sheets was 0%.
[0069] 比較例 4の積層型軟磁性シートの場合、真空プレスの圧力を大きくすることによって 実施例 1と同等の透磁率 を得ること力 Sでき、積層界面での隙間が小さくなつてい る力 過剰な圧力で圧縮しているので内部に歪が残り、高温高湿環境下で厚みが変 化する一要因になっていると考えられる。 85°C、 60Rh%、 240hrでの厚さの変化が 2%以上であり、実施例 1と比較して大きくなつた。なお、 50枚作製した時のシートの 積層ずれによる不良品発生率は 0%であった。  [0069] In the case of the laminated soft magnetic sheet of Comparative Example 4, it is possible to obtain the same magnetic permeability S as Example 1 by increasing the pressure of the vacuum press S, and the force that reduces the gap at the laminated interface. Since it is compressed with excessive pressure, internal strain remains, which is considered to be one factor that causes the thickness to change in a high-temperature and high-humidity environment. The thickness change at 85 ° C., 60 Rh%, and 240 hr was 2% or more, which was larger than that in Example 1. When 50 sheets were produced, the defective product generation rate due to misalignment of the sheets was 0%.
産業上の利用可能性  Industrial applicability
[0070] 本発明の製造方法では、軟磁性シート形成用の軟磁性組成物として特定のものを 使用し、それから形成された薄い軟磁性シートの積層物に対する加熱パターンと圧 力印加パターンに関し、熱硬化が進行しない温度で低、中、高と 3段階の線圧力で 仮圧着し、続いて熱硬化が進行する温度で面圧力で本圧着する。このため、高温あ るいは高温高湿環境下でも積層型軟磁性シート厚の変化を抑制することができ、結 果的に透磁率を低下させないようにできる。また、この軟磁性シートは、非接触式 IC カードや ICタグなどの RFIDシステム等における磁束収束体として、あるいは一般の 電波吸収体として有用である。即ち、 RFID用フレキシブルシールド材、携帯用デジ タルカメラ等の電子機器のノイズ電磁波吸収体として有用である。 [0070] In the production method of the present invention, a specific soft magnetic composition for forming a soft magnetic sheet is used, and a heating pattern and a pressure application pattern for a laminate of thin soft magnetic sheets formed therefrom are used. Temporarily press-bond at low, medium, and high linear pressures at temperatures where curing does not proceed, and then perform final pressure bonding at surface pressure at temperatures where thermosetting proceeds. For this reason, high temperature Or, the change in the thickness of the laminated soft magnetic sheet can be suppressed even in a high temperature and high humidity environment, and as a result, the magnetic permeability can be prevented from decreasing. The soft magnetic sheet is useful as a magnetic flux converging body in RFID systems such as non-contact type IC cards and IC tags, or as a general electromagnetic wave absorber. In other words, it is useful as a noise electromagnetic wave absorber for electronic devices such as RFID flexible shield materials and portable digital cameras.

Claims

請求の範囲 The scope of the claims
[1] 積層型軟磁性シートの製造方法であって、以下の工程 (A)〜(D):  [1] A method for producing a laminated soft magnetic sheet, comprising the following steps (A) to (D):
(A)少なくとも扁平な軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ 樹脂と、エポキシ樹脂用潜在性硬化剤と、溶剤とを混合してなる軟磁性組成物を、剥 離基材上に塗布し、軟磁性組成物の硬化反応が実質的に生じな!/、温度 T1で乾燥し 、剥離基材を取り除!/、て硬化性軟磁性シートを取得する工程;  (A) A soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a latent curing agent for epoxy resin, and a solvent is formed on a release substrate. And substantially free of curing reaction of the soft magnetic composition! /, Drying at a temperature T1, removing the release substrate! /, Obtaining a curable soft magnetic sheet;
(B)該硬化性軟磁性シートを 2以上用意し、それらを積層して積層物を取得するェ 程;  (B) preparing two or more curable soft magnetic sheets and laminating them to obtain a laminate;
(C)得られた積層物を、硬化反応が実質的に生じない温度 T2において、線圧を印 加するラミネーターにて線圧力 Pl、線圧力 P2及び線圧力 P3 (但し、 PK P2< P3) で順次圧縮する工程; 及び  (C) Line temperature Pl, line pressure P2 and line pressure P3 (where PK P2 <P3) are applied to the obtained laminate with a laminator that applies line pressure at temperature T2 at which curing reaction does not substantially occur. And sequentially compressing with; and
(D)続いて硬化反応が生ずる温度 Τ3において、圧縮された積層物を、面圧を印加 するプレス機で圧縮して積層型軟磁性シートを得る工程  (D) Step of obtaining a laminated soft magnetic sheet by compressing the compressed laminate with a press machine that applies a surface pressure at a temperature Τ3 at which the curing reaction subsequently occurs
を有することを特徴とする製造方法。  The manufacturing method characterized by having.
[2] P1力 2〜; 10kgf/cmであり、 P2力 10〜20kgf/cmであり、 P3力 20〜50kgf/c mであり、面圧が 10〜60kgf/cm2である請求項 1記載の製造方法。 [2] The P1 force is 2 to 10 kgf / cm, the P2 force is 10 to 20 kgf / cm, the P3 force is 20 to 50 kgf / cm, and the surface pressure is 10 to 60 kgf / cm 2 Production method.
[3] T1が 50〜90°Cであり、 T2力 S70〜; 130°Cであり、 T3が 140〜200°Cである請求項[3] T1 is 50-90 ° C, T2 force S70-; 130 ° C, T3 is 140-200 ° C
1または 2記載の製造方法。 The production method according to 1 or 2.
[4] 工程(C)におけるラミネーターのラインスピードが 0·;!〜 5m/分である請求項 1〜[4] The line speed of the laminator in step (C) is 0 · !! ~ 5m / min.
3の!/、ずれかに記載の製造方法。 The manufacturing method described in 3! /.
[5] 工程 (C)及び (D)において、積層物の両面のそれぞれに剥離シートを配置し、剥 離シートを解して圧縮を行う請求項 1〜4のいずれかに記載の製造方法。 [5] The production method according to any one of claims 1 to 4, wherein, in the steps (C) and (D), a release sheet is disposed on each side of the laminate, and the release sheet is released and compressed.
PCT/JP2007/069435 2006-10-31 2007-10-04 Process for the production of laminate-type soft magnetic sheets WO2008053662A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020087031478A KR101119446B1 (en) 2006-10-31 2007-10-04 Process for the production of laminate-type soft magnetic sheets
CN2007800406600A CN101536125B (en) 2006-10-31 2007-10-04 Process for the production of laminate-type soft magnetic sheets
US12/227,360 US8864929B2 (en) 2006-10-31 2007-10-04 Method for manufacturing laminated soft-magnetic sheet
HK09111536.9A HK1133949A1 (en) 2006-10-31 2009-12-09 Process for the production of laminate-type soft magnetic sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006295289 2006-10-31
JP2006-295289 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008053662A1 true WO2008053662A1 (en) 2008-05-08

Family

ID=39344011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069435 WO2008053662A1 (en) 2006-10-31 2007-10-04 Process for the production of laminate-type soft magnetic sheets

Country Status (5)

Country Link
US (1) US8864929B2 (en)
KR (1) KR101119446B1 (en)
CN (1) CN101536125B (en)
HK (1) HK1133949A1 (en)
WO (1) WO2008053662A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926011B2 (en) * 2011-07-19 2016-05-25 太陽誘電株式会社 Magnetic material and coil component using the same
CN103426585B (en) * 2012-05-24 2016-03-02 比亚迪股份有限公司 A kind of NFC magnetic sheet slurry and preparation method thereof and a kind of NFC magnetic sheet
JP6103191B2 (en) * 2012-12-26 2017-03-29 スミダコーポレーション株式会社 A method for producing granulated powder using magnetic powder as a raw material.
WO2014132880A1 (en) * 2013-02-26 2014-09-04 日東電工株式会社 Soft magnetic film
JP6297260B2 (en) * 2013-02-26 2018-03-20 日東電工株式会社 Soft magnetic thermosetting adhesive film, soft magnetic film laminated circuit board, and position detection device
EP2963658A4 (en) * 2013-02-26 2016-11-09 Nitto Denko Corp Soft magnetic thermosetting film and soft magnetic film
JP6125328B2 (en) * 2013-05-27 2017-05-10 日東電工株式会社 Method for manufacturing soft magnetic film laminated circuit board
JP6567259B2 (en) * 2013-10-01 2019-08-28 日東電工株式会社 Soft magnetic resin composition, soft magnetic film, soft magnetic film laminated circuit board, and position detection device
JP6514462B2 (en) * 2013-10-01 2019-05-15 日東電工株式会社 Soft magnetic resin composition and soft magnetic film
US9552912B2 (en) * 2014-03-03 2017-01-24 Uchiyama Manufacturing Corp. Magnetic rubber composition, magnetic rubber molded article obtained by crosslinking the same, and magnetic encoder
JP6812091B2 (en) * 2014-05-29 2021-01-13 日東電工株式会社 Soft magnetic resin composition and soft magnetic film
US9719159B2 (en) * 2014-09-24 2017-08-01 Cyntec Co., Ltd. Mixed magnetic powders and the electronic device using the same
JP6757117B2 (en) * 2014-10-02 2020-09-16 山陽特殊製鋼株式会社 Soft magnetic flat powder and its manufacturing method
KR20160057246A (en) * 2014-11-13 2016-05-23 엘지이노텍 주식회사 Soft magnetic alloy and shielding sheet for antenna comprising the same
CN110942908B (en) * 2019-08-14 2022-07-15 福建省长汀金龙稀土有限公司 Manufacturing method of low-eddy-current-heating combined magnet and clamping tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101284A (en) * 1998-09-24 2000-04-07 Sony Corp Electromagnetic wave absorbing body and manufacture thereof
JP2003229694A (en) * 2002-02-05 2003-08-15 Sony Corp Electromagnetic wave absorbent and its manufacturing method
JP2004140322A (en) * 2002-08-20 2004-05-13 Alps Electric Co Ltd Electric wave absorber and manufacturing method of the same
JP2006073949A (en) * 2004-09-06 2006-03-16 Showa Denko Kk Electromagnetic wave absorber
JP2006128649A (en) * 2004-09-30 2006-05-18 Nitta Ind Corp Electromagnetic compatibility suppressor and method of manufacturing the same
WO2006059771A1 (en) * 2004-12-03 2006-06-08 Nitta Corporation Electromagnetic interference inhibitor, antenna device and electronic communication apparatus
JP2006202266A (en) * 2004-12-20 2006-08-03 Toppan Forms Co Ltd Contactless data receiver/transmitter

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2523966A (en) * 1943-06-25 1950-09-26 British Artificial Resin Compa Process and apparatus for manufacturing multiply sheet material
JPS62238732A (en) * 1986-04-10 1987-10-19 Gunze Ltd Film for printed laminate and its hot press bonding method
JP2799893B2 (en) * 1989-12-28 1998-09-21 株式会社トーキン Shape anisotropic soft magnetic alloy powder
US5213903A (en) * 1990-06-22 1993-05-25 Toyo Kohan Co., Ltd. Tin-plated steel sheet with a chromium bilayer and a copolyester resin laminate and method
US6143409A (en) * 1996-06-14 2000-11-07 Shin-Etsu Chemical Co., Ltd. Polycarbodiimide resin-containing adhesive and flexible printed circuit board
US5916515A (en) * 1997-02-27 1999-06-29 Valence Technology, Inc. Two-stage lamination process
JP2000243615A (en) * 1998-12-17 2000-09-08 Tokin Corp Composite magnetic body and manufacture thereof
US6537463B2 (en) * 1999-03-12 2003-03-25 Hitachi Metals, Ltd. Resin-bonded magnet, its product, and ferrite magnet powder and compound used therefor
EP1133780B1 (en) * 1999-09-28 2003-05-02 NEC TOKIN Corporation Composite magnetic sheet and method of producing the same
KR100533097B1 (en) * 2000-04-27 2005-12-02 티디케이가부시기가이샤 Composite Magnetic Material and Magnetic Molding Material, Magnetic Powder Compression Molding Material, and Magnetic Paint using the Composite Magnetic Material, Composite Dielectric Material and Molding Material, Powder Compression Molding Material, Paint, Prepreg, and Substrate using the Composite Dielectric Material, and Electronic Part
US20030108710A1 (en) * 2001-12-07 2003-06-12 General Electric Company Articles bearing patterned microstructures and method of making
JP4537712B2 (en) * 2002-01-16 2010-09-08 中川特殊鋼株式会社 Magnetic substrate, laminate of magnetic substrate, and method for producing laminate
EP1362682A1 (en) * 2002-05-13 2003-11-19 ZBD Displays Ltd, Method and apparatus for liquid crystal alignment
US20040041121A1 (en) * 2002-08-30 2004-03-04 Shigeyoshi Yoshida Magnetic loss material and method of producing the same
US20050003079A1 (en) * 2003-03-17 2005-01-06 Tdk Corporation Production method of laminated soft magnetic member, production method of soft magnetic sheet, and method for heat treating laminated soft magnetic member
US20060237864A1 (en) * 2003-04-10 2006-10-26 Yoshikuni Morita Method for producing optical film
US20060214132A1 (en) * 2003-08-18 2006-09-28 Motoyuki Hirata Electromagnetic wave absorber
JP2005286195A (en) * 2004-03-30 2005-10-13 Geltec Co Ltd Extrudable crosslinked grease-like electromagnetic wave absorber, container packing and encapsulating absorber, method of manufacturing cotnainer, and method for electromagnetic wave absorption utilizing them
JP4482382B2 (en) * 2004-07-02 2010-06-16 株式会社リコー Fixing device
JP2006278433A (en) * 2005-03-28 2006-10-12 Hitachi Metals Ltd Compound electromagnetic noise suppression sheet
EP1920005B1 (en) * 2005-08-24 2011-11-23 Henkel AG & Co. KGaA Epoxy compositions having improved impact resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101284A (en) * 1998-09-24 2000-04-07 Sony Corp Electromagnetic wave absorbing body and manufacture thereof
JP2003229694A (en) * 2002-02-05 2003-08-15 Sony Corp Electromagnetic wave absorbent and its manufacturing method
JP2004140322A (en) * 2002-08-20 2004-05-13 Alps Electric Co Ltd Electric wave absorber and manufacturing method of the same
JP2006073949A (en) * 2004-09-06 2006-03-16 Showa Denko Kk Electromagnetic wave absorber
JP2006128649A (en) * 2004-09-30 2006-05-18 Nitta Ind Corp Electromagnetic compatibility suppressor and method of manufacturing the same
WO2006059771A1 (en) * 2004-12-03 2006-06-08 Nitta Corporation Electromagnetic interference inhibitor, antenna device and electronic communication apparatus
JP2006202266A (en) * 2004-12-20 2006-08-03 Toppan Forms Co Ltd Contactless data receiver/transmitter

Also Published As

Publication number Publication date
KR20090023413A (en) 2009-03-04
HK1133949A1 (en) 2010-04-09
CN101536125B (en) 2011-12-14
US20090110587A1 (en) 2009-04-30
CN101536125A (en) 2009-09-16
KR101119446B1 (en) 2012-03-15
US8864929B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
WO2008053662A1 (en) Process for the production of laminate-type soft magnetic sheets
WO2008053737A1 (en) Sheet-form soft-magnetic material and process for producing the same
JP4773479B2 (en) Magnetic sheet, method for manufacturing magnetic sheet, antenna, and portable communication device
JP4854690B2 (en) Magnetic sheet and manufacturing method thereof
KR20160126188A (en) Electro magnetic shielding sheet and manufacturing method of the same
JP4811607B2 (en) Soft magnetic material
JP6297281B2 (en) Soft magnetic resin composition, soft magnetic adhesive film, soft magnetic film laminated circuit board, and position detection device
JP2008060395A (en) Magnetic sheet, and method of manufacturing the same
JP2016006822A (en) Composite magnetic substance
JP4968481B2 (en) Method for producing laminated soft magnetic sheet
JP4775593B2 (en) Method for producing laminated soft magnetic sheet
WO2016088826A1 (en) Composite-type electromagnetic wave suppression body
KR20180062790A (en) Composition for complex sheet with emi shields and absorbing and thermal dissipation, and complex sheet comprising the same
JP2009295671A (en) Magnetic sheet and method for manufacturing the same
JP2008183779A (en) Manufacturing method of magnetic sheet and magnetic sheet
KR101384250B1 (en) Magnetic flexible sheet with dual materials and the method for manufacturing the same
JP5282921B2 (en) Method for producing laminated soft magnetic sheet
JP5102704B2 (en) Magnetic sheet and method for producing magnetic sheet
KR102417443B1 (en) Method for manufacturing magnetic field shielding sheet, and antenna module comprising magnetic field shielding sheet manufactured therefrom
JP6297314B2 (en) Soft magnetic thermosetting film and soft magnetic film
JP7404927B2 (en) magnetic sheet
KR101922165B1 (en) Composite sheet, preparation method thereof, and multilayer sheet comprising same
JP2006135137A (en) Electromagnetic wave absorption sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040660.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12227360

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087031478

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829173

Country of ref document: EP

Kind code of ref document: A1