WO2008053518A1 - Semiconductor inspection equipment and semiconductor inspection method - Google Patents

Semiconductor inspection equipment and semiconductor inspection method Download PDF

Info

Publication number
WO2008053518A1
WO2008053518A1 PCT/JP2006/321666 JP2006321666W WO2008053518A1 WO 2008053518 A1 WO2008053518 A1 WO 2008053518A1 JP 2006321666 W JP2006321666 W JP 2006321666W WO 2008053518 A1 WO2008053518 A1 WO 2008053518A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor
electrodes
current detection
electrode
Prior art date
Application number
PCT/JP2006/321666
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Yamada
Original Assignee
Topcon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corporation filed Critical Topcon Corporation
Priority to PCT/JP2006/321666 priority Critical patent/WO2008053518A1/en
Publication of WO2008053518A1 publication Critical patent/WO2008053518A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits

Definitions

  • the present invention relates to a semiconductor inspection apparatus using an electron beam, and more particularly to a semiconductor inspection apparatus and a semiconductor inspection method suitable for evaluating a semiconductor device manufacturing process.
  • This apparatus includes an electron gun for generating an electron beam, a tray for holding a measurement target wafer, an XY stage for determining an irradiation position of the electron beam, and a substrate current detection electrode for measuring a substrate current And so on.
  • FIG. 20 is a diagram showing the main part.
  • 1 is a circular electrode
  • 2 is a support substrate for supporting the electrode 1
  • 3 is a semiconductor wafer to be measured placed on the electrode 1 . Then, an electron beam is irradiated onto the electrode 1, thereby measuring a substrate current induced in the wafer 3 through the electrode 1 and the support substrate 2, and detecting a process defect based on the measurement result.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-026449
  • the present invention is capable of checking the electrical characteristics of a device in the course of a process, and a semiconductor inspection apparatus capable of detecting a force and even a relatively small characteristic change (for example, a small change in resistance value) and To provide a semiconductor inspection method! Means for solving the problem
  • a semiconductor inspection apparatus causes a semiconductor substrate to abut an electrode, irradiates the semiconductor substrate with an electron beam, and is induced on the semiconductor substrate by the electron beam.
  • the electrodes are electrically connected to each other.
  • a plurality of substrate current detection electrodes insulated from each other.
  • a minute change in electrical characteristics such as a change in electrical resistance value of several ohms, not just a large resistance change such as mega ohms, can be measured immediately after each process in the wafer state.
  • the electrical characteristics can be known without having to complete the semiconductor device manufacturing process, the correlation between the process result and the electrical characteristics can be known immediately.
  • a plurality of current measuring means are provided which measure currents detected by the plurality of substrate current detection electrodes, respectively, and are independent from each other.
  • the plurality of substrate current detection electrodes are formed on the same plane.
  • each of the plurality of substrate current detection electrodes is formed by electrodes having the same shape. To do.
  • the plurality of substrate current detection electrodes are constituted by a circular electrode at the center and a concentric annular electrode force surrounding the circular electrode.
  • the plurality of substrate current detection electrodes are formed of a plurality of strip-shaped electrodes.
  • the plurality of substrate current detection electrodes are constituted by a plurality of dot-like electrodes.
  • some or all of the plurality of substrate current detection electrodes are brought into contact with the upper surface of the semiconductor substrate.
  • some or all of the plurality of substrate current detection electrodes are brought into contact with the side surface of the semiconductor substrate.
  • the plurality of substrate current detection electrodes are constituted by mesh electrodes.
  • the electrode for the electrostatic chuck is provided on the same support substrate as the plurality of substrate current detection electrodes.
  • an insulating film is provided to cover the plurality of substrate current detection electrodes.
  • a semiconductor inspection method is configured such that a semiconductor substrate is brought into contact with a plurality of substrate current detection electrodes, and the semiconductor substrate is irradiated with an electron beam.
  • a semiconductor configured to measure a substrate current induced in the semiconductor substrate by the plurality of substrate current detection electrodes and obtain an evaluation value of a microstructure formed on the semiconductor substrate as a result of the measurement
  • the inspection apparatus in the first step of irradiating the semiconductor substrate with the electron beam, the second step of simultaneously measuring the current values generated in the plurality of substrate current detection electrodes, and the second step, And a third step of obtaining an evaluation value of the semiconductor substrate using each of the measured current values.
  • an evaluation value of the semiconductor substrate is obtained by using the plurality of substrate current detection electrodes having different impedances.
  • the electron beam is modulated into an AC signal having a desired frequency.
  • the electrical characteristics of the semiconductor substrate are defined as unknowns, the simultaneous equations are solved using the equivalent circuit of the entire measurement circuit and the current values measured by the plurality of substrate current detection electrodes, and the electrical characteristics of the semiconductor substrate are determined. Ask for.
  • the present invention it is possible to measure a minute change in electrical characteristics such as a change in electrical resistance value of several ohms, not just a large change in resistance such as mega ohms, immediately after each process in a wafer state.
  • inline evaluations such as the capacitance characteristics, resistance characteristics, channel characteristics, and transient frequency characteristics of active elements such as transistor characteristics based only on resistance values are possible.
  • the electrical characteristics can be known without performing the semiconductor device manufacturing process to the end, so that the correlation between the process result and the electrical characteristics can be known immediately. Since the electrical characteristics can be known on the spot each time a process is performed, the effects of individual processes on the electrical characteristics can be directly measured, and the development of the process can be accelerated.
  • FIG. 1 is a configuration diagram of a semiconductor inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an operation flow of the semiconductor inspection apparatus according to the embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram showing a configuration of a main part of the semiconductor inspection apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing an equivalent circuit and a measurement target part of a measurement example in the same embodiment.
  • FIG. 5 is a flowchart showing a measurement operation in the embodiment.
  • FIG. 6 is a diagram showing an equivalent circuit and a measurement target part of another measurement example in the embodiment.
  • FIG. 7 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a second embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a third embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a fifth embodiment of the present invention.
  • FIG. 11 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a sixth embodiment of the present invention.
  • FIG. 12 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a seventh embodiment of the present invention.
  • FIG. 13 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to an eighth embodiment of the present invention.
  • FIG. 14 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a ninth embodiment of the present invention.
  • FIG. 15 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a tenth embodiment of the present invention.
  • FIG. 16 is a view showing a modification of the same embodiment. 17]
  • FIG. 17 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to an eleventh embodiment of the present invention.
  • FIG. 19 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a twelfth embodiment of the present invention.
  • FIG. 20 is a schematic configuration diagram showing a configuration of a main part of a conventional semiconductor inspection apparatus.
  • FIG. 1 shows the overall configuration of a semiconductor inspection apparatus according to an embodiment of the present invention.
  • This semiconductor inspection apparatus irradiates an object to be measured (hereinafter referred to as a wafer) with an electron beam, measures a substrate current induced in the wafer by the electron beam, and forms the substrate current force on the wafer.
  • the basic principle is to obtain an evaluation value of the fine structure.
  • an electron gun 10 that generates an electron beam EB is attached to a chamber 20 that accommodates a wafer 23, and the electron gun 10 includes an electron beam source 11.
  • a high voltage power source 40 is connected to the source 11.
  • a condenser lens 12, an aperture 13, a deflection lens 14, and an objective lens 15 are arranged in this order along the emission direction of the electron flow from the electron beam source 11.
  • the deflection electrode 100 is connected to the deflection electrode 14 so that the electron beam EB can be deflected with high accuracy. Further, the energy, current amount, and focus state of the electron beam EB of the electron gun 10 can be arbitrarily controlled.
  • An XY stage 21 and a tray 22 for supporting the wafer 23 are accommodated in the chamber 20, and the wafer 23 is placed on the tray 22.
  • the electron beam EB emitted from the electron gun 10 is directed to the surface of the wafer 23 placed on the tray 22, and the electron beam to the wafer 23 is moved by moving the position of the tray 22 by the XY stage 21.
  • the irradiation position of EB can be adjusted.
  • a secondary electron reflected electron detector 24 for detecting secondary electrons and reflected electrons reflected on the wafer 23 is provided inside the chamber 20.
  • the XY stage 21 applies a fixed electron beam EB to the irradiation axis.
  • the position of the wafer 23 is relatively moved.
  • a pulse motor, an ultrasonic motor, a linear motor, or a piezoelectric element is used as the drive device.
  • the positional accuracy of the wafer 23 placed on the XY stage 21 is controlled to about several nm.
  • a current measuring device 30 is connected to the tray 22 on which the wafer 23 is placed, and the substrate current induced in the wafer 23 is measured by the current measuring device 30 via the tray 22. It has become like that.
  • the current measuring device 30 is built in or near the tray 22 and can cut electromagnetic noise caused by external force.
  • various types such as a resistance, a voltage conversion type device, an AC amplifier, and a charge amplifier can be used.
  • the current measuring device 30 includes an AZD converter that converts the measured substrate current value into a digital signal, and outputs the measured value as digital data.
  • the electrostatic chuck power source 50 is a power source that applies a high voltage (about 500 V) to the electrostatic chuck that corrects the warp of the wafer 23.
  • the semiconductor inspection apparatus includes a two-dimensional scanning control apparatus (including a pattern matching engine) 110, a current waveform storage apparatus 120, a waveform shaping apparatus 130, a waveform processing apparatus 140, a display apparatus 150, and a database apparatus 160. These are constructed on an information processing apparatus such as a computer.
  • the two-dimensional scanning control device 110 controls the deflecting device 100 so that the electron beam EB scans the surface of the wafer 23 two-dimensionally and adjusts the irradiation position of the electron beam EB with high accuracy. It is responsible for control of pattern matching.
  • the two-dimensional scanning means that the line-shaped scanning is repeated a plurality of times at a constant interval. For example, it is a concept similar to horizontal scanning and vertical scanning on a television screen.
  • the semiconductor inspection apparatus includes the above-described deflection apparatus 100 with high resolution for accurately scanning the electron beam EB in a straight line. Further, the two-dimensional scanning control device 110 includes an image recognition device and software for performing pattern matching.
  • the current waveform storage device 120 stores the waveform of the substrate current value measured by the current measurement device 30 in association with the irradiation coordinates or time of the electron beam EB at that time.
  • the waveform shaping device 130 shapes the waveform of the substrate current value and removes unnecessary noise components.
  • the waveform processing device 140 calculates an evaluation value related to the shape of the fine structure formed on the wafer 23 by performing waveform processing on the waveform-shaped substrate current waveform.
  • the display device 150 displays the evaluation value.
  • the database device 160 stores the evaluation value.
  • the tray 22 is provided with an electron beam irradiation position measuring device 180 for measuring the electron beam irradiation position, and the electron beam irradiation position measured by the measuring device 180 is output to the electron beam irradiation position storage device 170.
  • the stored irradiation position data is output to the two-dimensional scanning control device 110 and the current waveform storage device 120.
  • the measurement target is a hole.
  • step S1 first specify the position coordinates of the hole to be measured with respect to the control system of the XY stage 21 holding the wafer 23, move the XY stage 21, and center the holes formed on the wafer 23. Perform (alignment) (step S1).
  • the center of the hall is roughly aligned with the position where the electron beam EB can be irradiated by the XY stage 21.
  • the distance between the wafer 23 and the objective lens 15 is measured using the wafer objective lens distance measuring device 16 provided at the lower end of the electron gun 10 (Step S2), and the initial position of the electron beam focus is determined.
  • the electron beam EB is irradiated while scanning two-dimensionally within a predetermined region including the hole, and secondary electrons generated at that time are collected to form a secondary electron image.
  • Autofocus step S3 is performed using the formed secondary electron image, and the strength of the objective lens is automatically adjusted so as to focus on the sample.
  • the secondary electron image obtained by scanning the focused electron beam is compared with the template image stored in advance in the two-dimensional scanning control device 110 to perform pattern matching (step S4), and the amount of deviation between the center of the template image and the center of the hole is calculated. This calculated amount of deviation is input to the deflecting device 100, and the irradiation position of the electron beam EB is shifted, so that the irradiation position of the electron beam EB is accurately aligned with the center of the hole to be measured.
  • the predetermined region on the surface of the wafer 23 is two-dimensionally scanned by the electron beam EB with reference to the hole center (step S5). That is, by controlling the objective lens 15 of the electron gun 10 so that the electron beam EB has a desired tip size and by controlling the control voltage in the deflecting device 100, the electron beam scanning is performed in a line at a constant pitch. repeat. As a result, secondary electrons and reflected electrons are generated from a minute region on the surface of the wafer 23 irradiated with the electron beam EB, and a substrate current is induced in the wafer 23.
  • Secondary electrons, reflected electrons, or substrate currents induced on the wafer 23 are measured by the secondary electron reflected electron detector 24 and the current measuring device 30, and the measured values are digital signals having the necessary resolution. Will be converted immediately. For example, the resolution of this digital signal is 16 bits and its sampling frequency is 400 MHz. This speed can be changed if necessary.
  • the secondary and reflected electrons obtained by two-dimensional scanning of the electron beam EB include hole surface shape information, and the substrate current measurement value includes information about the two-dimensional shape of the bottom surface of the hole.
  • Position) or measurement time is obtained as waveform information with respect to the time axis and is digitally recorded in the current waveform recorder 120 (eg, memory, flash memory, hard disk, magneto-optical disk, etc.) Be done
  • the signal waveform information acquired as described above is waveform-shaped by the waveform shaping device 130 in order to remove unnecessary noise and high-frequency components contained in the waveform.
  • Examples of the waveform processing include moving average filter processing, waveform processing for removing a specific frequency, filter processing for extracting only a signal of a specific frequency, and Fourier filter processing. These waveform shaping processes can be performed in hardware or software. May be.
  • step S6 only useful waveforms are extracted from the waveform-shaped waveforms, and hole bottom area measurement is performed.
  • the electron beam irradiation area does not contain a hole or the waveform is dirty due to the edge of the hole.
  • the accuracy of the edge coordinate value obtained by the processing decreases.
  • a good current waveform useful for hole edge extraction is extracted only for a signal whose absolute value is larger than a certain value using a threshold method or the like.
  • the current waveform is acquired by irradiating the measurement point with the electron beam for a certain period of time. In these cases, waveform processing similar to the above is performed, and necessary information is extracted.
  • the wafer 23 to be measured is recorded with an identification number provided on the wafer 23 or information so that it can be identified by a computer. More generally, there is an equipment operation management system called MES (Manufacturing Execution System) in a semiconductor factory, and it records all of what time each wafer has undergone what processing. By correlating with such information, it is useful for estimating failure classification and its cause.
  • MES Manufacturing Execution System
  • the tray 22 is a table on which the wafer 23 to be measured is placed.
  • the tray 22 has a support substrate 2 made of A1 (aluminum) and two semicircular planar electrodes la and lb in close contact with the support substrate 2. ing.
  • This embodiment is characterized in that it uses two (la, lb) electrodes for substrate current detection that are electrically independent from each other. Electrically insulated electrodes la and lb are provided on the left and right sides of the wafer 23, respectively, and wiring is performed so that current can be taken out to the outside. In Fig. 3, electrodes with exactly the same shape are used to have the same capacitance and resistance.
  • a wafer 23 to be measured is placed on these electrodes.
  • an electric charge is generated in the electron beam irradiation portion, and the electric charge moves through the wafer 23 to generate currents in the electrode la and the electrode lb, respectively.
  • These currents are measured independently by each ammeter connected to the electrode.
  • the ammeter used here measures a very small current (about 1 picoampere or less), so it may be a resistance shunt type, but for more precise measurement, the measurement point is a virtual ground using a current-voltage converter. It is desirable to use an ammeter that In this case, since each electrode is virtually grounded, it is possible to eliminate the influence on each other even if a plurality of ammeters are used.
  • the total current generated in the substrate by electron beam irradiation is the sum of the current values measured through electrode la and electrode lb.
  • Various materials can be used for the electrodes la and lb for detecting the substrate current as long as they are conductive materials. For example, aluminum, copper, nickel, plating film, organic material, conductive rubber, organic material, ceramic, semiconductor, etc. can be used.
  • an insulating film or a conductive film can be coated on the electrode so as not to damage the measurement target substrate.
  • a silicon oxide film, a silicon ticker film, a polyimide organic film, or the like can be used as the insulating film.
  • a conductive film various materials such as conductive polyimide and ITO film can be used. Diamond or glass may be coated. Surface treatment such as ion plating of Ti, etc. Conversely, soft materials such as silicone can be used as cushions.
  • each electrode la, lb should be flattened so that it is in good contact with the silicon wafer 23, kept at the same height, and designed to have the same electrical characteristics. You can use a 3D electrode to place many small electrodes. At this time, the height of each part may be different.
  • a metal material, a ceramic, or an organic material can be used for the support substrate 2. Since tray 22 and wafer 23 or the entire device form one electrical circuit, it is very important to know the electrical circuit constants. For example, a capacitance is formed between the tray 22 and the wafer 23, through which the substrate current is measured. In the case of a normal silicon wafer 23 having no deposit on the back surface, the capacity formed is a capacity formed by a natural oxide film and reaches 10000 F. On the other hand, when an insulating film such as an oxide film is thickly deposited on the back surface of the silicon substrate, a capacitance of about several tens of z / zF is formed.
  • the structure closest to the silicon wafer 23 is the objective lens, facing each other with a gap of about 3 mm. This Their capacity is a few pF.
  • the current generated by the electron beam irradiation is distributed through the circuit that constitutes the entire device including the measurement target, and only the current flowing between the tray 22 and the wafer 23 contributes to the measurement current, so it has an appropriate capacity and resistance. It is desirable to design as follows.
  • FIG. 4 shows an example of an electrical equivalent circuit of a device formed on the wafer 23.
  • the substrate current is applied to the ammeters 5a and 5b through the equivalent resistances Rl and R2 existing in the two electrical paths. Flows.
  • the current value measured by the ammeter 5a and the ammeter 5b is determined by the ratio of the equivalent resistance formed by the measurement object related to the absolute value of the measured resistance value.
  • Such circuits are found in via chains and the like.
  • FIG. 5 shows a measurement method when two substrate current detection electrodes are used.
  • Step S3 wiring that reaches the ground in advance is performed so that the size of the resistor R1 is about several ohms.
  • Resistor R2 is the resistor to be measured. Assume that resistance R2 has changed several ohms due to some process failure. Irradiate the measurement target with an electron beam (Step Sl). The currents generated in the two electrodes la and lb are simultaneously measured by the ammeters 5a and 5b (step S2). The current value measured by each ammeter 5a, 5b changes by the ratio of each resistor. If the initial resistance value is several ohms and the resistance value changes several ohms due to a failure, a difference of more than twice the current value is measured in the two current paths (step S3).
  • the resistance R1 was 1 ⁇ and the resistance R2 was flowing ⁇ .
  • the resistance R1 was 2pA and the resistance R If lpA flows to 2, the resistance value changes more than twice.
  • the electric resistance value of the part that caused the failure is calculated from the equivalent circuit (step S4). The calculation is performed automatically using a computer, and the result is stored in a computer recording device (step S5) and displayed on the screen (step S6).
  • FIG. 6 describes another method for measuring electrical characteristics of an electronic device using the electrode of this embodiment.
  • the contact hole made on the silicon wafer 23 can be cited as an object to be measured.
  • the contact hole is filled with W or polysilicon.
  • the difference or ratio of this current value is regarded as the value.
  • the resistance value R2 to be measured is the ratio of the measured current value. It can be obtained by multiplying the reference resistance value R1.
  • the resistance value estimated in this way is stored in a computer and displayed on a display.
  • FIG. 7 shows the electrode for measuring the substrate current used in this embodiment.
  • This embodiment is characterized in that the electrode is divided into four parts. Electrodes 6a to 6d that are electrically isolated from each other on the front, rear, left, and right sides of the wafer are provided, and wiring is provided so that current can be taken out to the outside. A wafer is placed on these electrodes 6a-6d. Electron beam force A force that generates a substrate current when the S wafer is irradiated. The current passes through all of the electrodes 6a to 6d and the current value is measured independently. The total current generated in the substrate is the sum of the current values measured through electrodes 6a-6d.
  • the electrodes 6a to 6d can be any conductive material.
  • aluminum, copper, nickel, conductive rubber, etc. can be used.
  • an insulating film can be coated on the electrode.
  • An oxide film, a ticker film, a polyimide organic film, or the like can be used.
  • the gaps between the individual electrodes 6a to 6d may be left as they are, or an insulator may be disposed in the groove portion. It is desirable to leave a gap between them without strong capacitive coupling.
  • the distance between the wafer and the electrode may be controlled by changing the height of the insulator.
  • the substrate current is measured using the two electrodes corresponding to the measurement points as in the case described in FIGS. Obtain the electrical characteristics of
  • FIG. 8 shows the configuration of the electrodes used in the third embodiment of the present invention.
  • the third embodiment is characterized in that eight independent substrate current detection electrodes 7 a to 7 h are arranged on the support substrate 2. Electrodes 7a to 7h that are electrically insulated from each other are provided on the front, back, left, and right of the wafer, and wiring is performed on each of the electrodes 7a to 7h so that a current can be taken out to the outside. The wafer is placed on these electrodes 7a-7h. When the electron beam is irradiated onto the wafer, a substrate current is generated, and the current passes through all of the electrodes 7a to 7h, and the current value is measured independently. The total current generated in the substrate is the sum of the current values measured through electrodes 7a-7h.
  • the electrodes 7a to 7h can be any inorganic or organic conductive material, and any semiconductor material can be used. It is not necessary to use the divided electrodes 7a to 7h at the same time. Select two electrodes that are necessary according to the location to be measured. Unused electrodes can be floating, grounded, or virtually grounded with respect to ground. They can be realized by turning on or off the switch of the current detection device.
  • the electrodes 7a to 7h for example, aluminum, copper, nickel, conductive rubber, conductive polymer, or the like can be used. If necessary, an insulating film can be coated on the electrode. For example, a silicon oxide film, a silicon ticker film, a polyimide organic film, a fluorine resin, or the like can be used.
  • FIG. 9 shows the configuration of the electrodes used in the fourth embodiment of the present invention.
  • an electrode is constituted by a circular electrode 8a at the center and concentric annular electrodes 8b to 8d surrounding the circular electrode 8a.
  • electrodes 8a to 8d that are concentrically separated from the center of the wafer and are electrically insulated from each other, Wiring is performed from each of the electrodes 8a to 8d so that a current can be taken out to the outside.
  • the wafer is placed on these electrodes 8a-8d.
  • the force that generates the substrate current when the wafer is irradiated with the electron beam.
  • the current passes through all of the electrodes 8a to 8d, and the current value is measured independently.
  • the total current generated in the substrate is the sum of the current values measured through electrodes 8a-8d.
  • the electrodes 8a to 8d can be any conductive material. For example, aluminum, copper, nickel, conductive rubber, etc. can be used. If necessary, an insulating film can be coated on the electrode. For example, an oxide film, a ticker film, a polyimide organic film, or the like can be used. It is not necessary to use the divided electrodes 8a to 8h at the same time. Select the two electrodes that are necessary according to the location to be measured. Unused electrodes can be floating with respect to ground, grounded, or virtually grounded.
  • FIG. 10 shows the configuration of the electrodes used in the fifth embodiment of the present invention.
  • the fifth embodiment is characterized in that a plurality of electrodes 9a to 91 are provided in a strip shape. Wafer central force Electromagnetically insulated electrodes 9a to 91, which are arranged symmetrically on the left and right, are provided, and wiring is provided so that current can be taken out to the outside. A wafer is placed on these electrodes 9a-91. The force that generates the substrate current when the wafer is irradiated with the electron beam. The current passes through all of the electrodes 9a to 91 and the current value is measured independently. The total current generated in the substrate is the sum of the current values measured through electrodes 9a-91.
  • the electrodes 9a to 91 can be any conductive material. For example, aluminum, copper, nickel, conductive rubber or the like can be used. If necessary, an insulating film can be coated on the electrode. For example, an oxide film, a ticker film, a polyimide organic film, or the like can be used.
  • the divided electrodes 9a to 9h do not need to be used at the same time, and two necessary electrodes are selected and used according to the measurement target location. Unused electrodes can be floating with respect to ground, grounded, or virtually grounded.
  • FIG. 11 shows the configuration of an electrode used in the sixth embodiment of the present invention! / Speak.
  • the rectangular dot electrodes 16, 16... are arranged in a matrix on the support substrate 2. Wafer center force is also symmetrically arranged in the front, rear, left and right The electrodes 16, 16..., which are electrically insulated from each other, are provided, and wiring is provided so that a current can be taken out to the outside. A wafer is placed on these electrodes 16, 16. When the electron beam is applied to the wafer, a substrate current is generated, and the current passes through all the electrodes and is measured independently. The total current generated in the substrate is the sum of the current values measured through all electrodes 16, 16.
  • the electrodes 16, 16,... Can be any conductive material. The electrodes 16, 16,... May be made using etching, or may be made using plating.
  • electrodes 16, 16 aluminum, copper, nickel, conductive rubber, or other conductive materials can be used.
  • an insulating film can be coated on the electrodes 16, 16.
  • a silicon oxide film, a silicon ticker film, a polyimide organic film, or the like can be used.
  • the divided electrodes 16a to 16h do not need to be used at the same time. Select and use the two electrodes that are necessary according to the location to be measured. Unused electrodes can be floating, grounded, or virtually grounded with respect to ground.
  • FIG. 12 shows the configuration of the electrodes used in the seventh embodiment of the present invention.
  • the substrate current detection electrode is provided so as to contact the upper and lower surfaces of the wafer.
  • the electrical resistance or electronic element to be measured may only be on the wafer surface.
  • an element made on an SOI substrate In that case, in general, it is possible to reduce the path resistance by directly measuring the substrate current through the substrate surface rather than performing the current measurement through the back surface of the substrate having a high resistance value. That is, it becomes easier to measure changes in low resistance.
  • reference numerals 17a and 17b denote upper electrodes, which are supported by conductive rubber pads 18a and 18b that are in contact with the peripheral edge of the upper surface of the wafer 23, and a conductor that supports the pads 18a and 18b.
  • the support members 18a and 18b are each attached to the support substrate 2 via an insulator, and are connected to the current measuring device 30 by lead wires.
  • dot-like electrodes similar to those in FIG. 11 are arranged in a matrix form via an insulator, and each electrode is connected to the current measuring device 30, and the back surface of the wafer 23 is these It is in contact with the electrode.
  • the upper electrodes 17a and 17b are integrally formed on a tray that supports the wafer 23, and the above-described 2
  • a plurality of electrodes can be provided without being limited to individual pieces. Measurement may be performed using only the upper electrodes 17a and 17b, or measurement may be performed in combination with the electrodes on the back surface.
  • the upper electrode may be brought into contact with a place such as a pad provided in advance at the end of the wiring to measure the current, or the electrode may be brought into contact with the side surface of the wafer 23 to take out the current. Of course, you may combine them.
  • When taking out the current from the electrode it can be taken out in a direct current, or it can be taken out in an alternating current by forming a capacitor with an insulating film or the like.
  • FIG. 13 shows the configuration of the electrodes used in the eighth embodiment of the present invention.
  • a mesh electrode 25 is used as a surface electrode.
  • the meshes are made at intervals such that they are arranged on the scribe line, it is possible to extract the near force current of each device without damaging the device.
  • Each mesh may be electrically connected, or may be arranged so that they are insulated from each other and can be addressed with multiple wiring forces.
  • the electrodes on the lower surface of the wafer are the same as those in FIG.
  • FIG. 14 shows the configuration of the electrodes used in the ninth embodiment of the present invention.
  • the ninth embodiment is characterized in that the substrate current detection electrodes 26 a to 26 d are arranged on the side surface of the wafer 23. Depending on the device, it may be difficult to measure current from the back or front surface of the wafer 23. In such a case, an electrode is provided on the side surface of the wafer 23 and current measurement is performed.
  • FIG. 15 shows the configuration of electrodes and their peripheral parts used in the tenth embodiment of the present invention.
  • Wafers that are used in semiconductor inspection equipment may be warped because films are deposited by various processes. In such a case, it is better to use an electrostatic chuck.
  • An electrostatic chuck is a device that uses a voltage of about 500V between a wafer and a dielectric to electrically attract each other. Since a high voltage is applied to the electrode 27 for the electrostatic chuck, it is electrically insulated from the electrode 28 for current measurement.
  • an electrode 27 is arranged on the periphery of the wafer so as to be effective in correcting the warpage of the wafer.
  • the electrode 28 for current measurement is provided inside the wafer. In the case of FIG.
  • the electrostatic chuck uses a bipolar type, and the potential of the entire wafer varies as the electrostatic chuck is driven. I am trying not to. Since the electrostatic chuck becomes a noise source during measurement, turn off the power as much as possible so as not to affect it.
  • FIG. 16 shows an example in which an insulating film 29 is provided on the electrode.
  • the electrostatic chuck can be stably applied even to a wafer having no insulating film on the back surface.
  • the measurement electrode 28 is not in direct contact with the silicon wafer, measurement instability due to contact Z non-contact can be avoided, and stable measurement is realized.
  • FIG. 17 shows an eleventh embodiment of the present invention.
  • the electron recovery electrode 35 is provided in a space near the measurement object without directly contacting the substrate.
  • the measurement object is irradiated with an electron beam, secondary electrons and reflected electrons pop out at the same time.
  • the ejected secondary electrons or reflected electrons are converted into current using the electrode 35 provided in the vicinity of the measurement target.
  • the electrodes 36a and 36b are provided on the back surface of the wafer 23 and the electron recovery electrode 35 is provided on the front surface, the current measured by the wafer back electrodes 36a and 36b By comparing the current measured with the electrode 35 on the wafer surface, the electrical characteristics of the object to be measured can be measured.
  • the equivalent resistance value of secondary electrons recovered from the surface of the wafer 23 is R3 and the resistance values measured through the back of the substrate are Rl and R2, respectively, the ratio of the measured current values or By evaluating the difference, the resistance value RX of the element to be measured formed on the substrate surface can be known.
  • the current used for measurement is not limited to direct current, but may be modulated to various frequencies.
  • the electrodes 36a and 36b are capacitively coupled to the wafer 23 to be measured, it is possible to change the constant of the measurement circuit by changing the frequency used for the measurement.
  • the electric resistance and capacitance of the measurement target part can be obtained by calculation. For example, by preparing multiple electrodes for current detection with intentionally changed electrode capacities and comparing the amount of current detected for the same measurement object, the resistance value or capacitor of the measurement object part is compared. Capacitance or impedance can be obtained.
  • it is difficult to create a reference capacitance inside the device it is possible to calculate the resistance or capacitance value of the measurement target by intentionally adding a known capacitance or resistance value to the electrode. Do this. FIG.
  • the electron recovery electrode 35 on the substrate surface side is not necessarily provided separately.
  • the electron recovery electrode can be provided on the surface or inside of the objective lens located closest to the wafer.
  • An electron detector such as a scintillator can also be used as an electron recovery electrode.
  • FIG. 18 shows an equivalent circuit of the above embodiment.
  • the electrode 35 in order to create another path, is arranged in the vicinity of the measurement target. When irradiated with an electron beam, secondary electrons or reflected electrons are generated. When we collected the electrons and measured the current, we created another path.
  • the path for collecting the electrons by placing the electrode 35 has the same effect as connecting a circuit having a certain resistance and capacitance to the object to be measured. These electrical constants are considered to be the same unless the measurement configuration changes, so if the resistance value of the plug being measured changes, the ratio of the substrate current values will change. By measuring this ratio, it is possible to detect a very small resistance difference in the plug portion.
  • FIG. 19 shows a twelfth embodiment of the present invention.
  • This embodiment facilitates the resistance estimation of the above embodiment. For example, prepare four substrate current measurement electrodes to be used for measurement, each with the same known equivalent impedance.
  • the ammeters 1 to 4 connected to the respective electrodes allow the input terminal to be switched to a virtual ground state or an insulation state by an external signal.
  • an ammeter 5 is connected to the electron recovery electrode 35. For the first measurement, make sure that only ammeters 1 and 5 are in virtual ground. In this state, the measurement target is irradiated with an electron beam, the resulting current value is measured with ammeter 1 and ammeter 5, and the measured value is recorded.
  • the current value was measured in a state where the impedance on the substrate side was changed to 1, 1/4 of 1/4, 1/3, and 1/4 of the measurement target force.
  • the resistance value of the contact plug can be estimated.
  • the equivalent circuit constant created by the object to be measured and the electron recovery electrode 35 is unknown, but it can be eliminated by solving the simultaneous equations, and it is not necessary to know in advance the constant of the circuit created by the electron recovery electrode 35. ,.
  • Capacitor capacity can be measured by irradiating the measurement target electronic element with a frequency-modulated electron beam.
  • the actual method is based on various AC impedance measurement methods as described in textbooks.
  • the electron beam used for the measurement can be realized by irradiating a pulsed electron beam that does not need to be continuous.
  • Transient response characteristics can be obtained by measuring the current waveform measured at each electrode that is generated when a pulsed electron beam is irradiated onto the measurement target. By analyzing the transient response waveform, for example, the impedance of the measurement object can be measured by determining the ratio of the time constants.
  • the spacing and size of the electrodes used in the above embodiments be designed so as to match the electrodes of the wafer to be measured. Alternatively, it may be adjustable.
  • the wafer used for the measurement in the above embodiment may be a wafer on which a device as a product is actually made, or a special circuit is provided on the wafer so that the present invention is easy to implement.
  • a wiring that enables a special wiring between the electrode and the electrode may be separately provided on the back surface of the wafer.
  • a TEG wafer devised so that the present invention can be easily implemented may be used.
  • the present invention is useful for a semiconductor device or an apparatus used for analysis, manufacturing, measurement, or evaluation in a manufacturing process thereof.
  • the present invention can be used in the fields of analysis techniques, measurement techniques, evaluation techniques, inspection techniques, and semiconductor device manufacturing apparatuses and methods that use a method of irradiating a semiconductor substrate such as a wafer with an electron beam or ion beam. I'll do it.

Abstract

Semiconductor inspection equipment which can check the electrical characteristics of a device during a process, and can detect even a relatively small variation in characteristics. The semiconductor inspection equipment is constituted such that a semiconductor substrate is abutted against an electrode and irradiated with an electron beam, a substrate current induced in the semiconductor substrate by the electron beam is measured through the electrode, and the evaluation value of a microstructure formed in the semiconductor substrate is obtained from the measurements. The semiconductor inspection equipment is characterized in that the electrode is constituted of a plurality of substrate current detection electrodes electrically insulated from each other.

Description

明 細 書  Specification
半導体検査装置および半導体検査方法  Semiconductor inspection apparatus and semiconductor inspection method
技術分野  Technical field
[0001] 本発明は、電子ビームを利用した半導体検査装置に関し、特に半導体デバイスの 製造工程を評価するのに好適な半導体検査装置および半導体検査方法に関する。 背景技術  The present invention relates to a semiconductor inspection apparatus using an electron beam, and more particularly to a semiconductor inspection apparatus and a semiconductor inspection method suitable for evaluating a semiconductor device manufacturing process. Background art
[0002] 半導体デバイスの出来具合を調べるために電子ビームをサンプルに照射した際に 生じる基板電流を用いる技術が広く使われるようになって来た。この技術を用いると、 従来の二次電子を用いる電子顕微鏡では判別が難し力つたプロセス上の不具合を 非破壊検出することができる (特許文献 1参照)。  [0002] In order to investigate the performance of semiconductor devices, a technique using a substrate current generated when an electron beam is irradiated onto a sample has been widely used. If this technology is used, it is difficult to discriminate with a conventional electron microscope using secondary electrons, and it is possible to detect non-destructive process problems that are difficult (see Patent Document 1).
[0003] この装置には、電子ビームを発生する電子銃、測定対象ウェハーを保持するため のトレイ、電子ビームの照射位置を定めるための XYステージそして、基板電流を測定 するための基板電流検出電極など力もなつている。図 20はその要部を示す図であり 、この図において、 1は円形の電極、 2は電極 1を支持する支持基板、 3は電極 1の上 に載置された測定対象の半導体ウェハーである。そして、電子ビームを電極 1に照射 し、これによつてウェハー 3に誘起される基板電流を電極 1および支持基板 2を介して 測定し、測定結果に基づいてプロセスの不具合を検出する。  This apparatus includes an electron gun for generating an electron beam, a tray for holding a measurement target wafer, an XY stage for determining an irradiation position of the electron beam, and a substrate current detection electrode for measuring a substrate current And so on. FIG. 20 is a diagram showing the main part. In this figure, 1 is a circular electrode, 2 is a support substrate for supporting the electrode 1, and 3 is a semiconductor wafer to be measured placed on the electrode 1 . Then, an electron beam is irradiated onto the electrode 1, thereby measuring a substrate current induced in the wafer 3 through the electrode 1 and the support substrate 2, and detecting a process defect based on the measurement result.
特許文献 1:特開 2005— 026449号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-026449
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、半導体デバイスの不具合には、構造的に容易に判別が付くものと電気特 性の測定によってはじめて判別が付くものがある。従来の技術はプロセスの変動によ る構造的な変化 (例えば、サイズの違いや残膜の違い)を主に検出し、その検出の妨 害となる電気特性の変化は無視できるような構造や測定方法が用いられてきた。  [0004] Meanwhile, there are semiconductor device defects that can be easily determined structurally and those that can be determined only by measuring electrical properties. Conventional technology mainly detects structural changes due to process fluctuations (for example, differences in size and differences in residual film), and changes in electrical characteristics that interfere with the detection can be ignored. Measurement methods have been used.
[0005] 一方、インラインで電気特性を直接測定した 、と 、うニーズもある。例えば、半導体 デバイスを構成する配線やビア、コンタクトホール電気導通部分の微小な電気抵抗 の変化、トランジスタの特性変化などがある。これらの変化は、プロセスステップ毎の 構造の変化の結果として現れるので、本来は測定された構造と電気特性の間には強 い相関があり、同時に検出できることが望ましい。しかし、現在では電気特性を知るた めには、全てのプロセスステップを経由してデバイスを最後まで作り上げて電気テスト を行う方法しかなく、それぞれのステップにおけるプロセス不具合を直接電気特性に 結びつけることが非常に困難であった。 [0005] On the other hand, there is a need to directly measure electrical characteristics in-line. For example, wiring and vias that make up semiconductor devices, minute changes in electrical resistance at contact hole electrical conduction parts, and changes in transistor characteristics. These changes are per process step Since it appears as a result of structural changes, it is desirable that there is a strong correlation between the measured structure and the electrical properties and that it can be detected simultaneously. However, at present, the only way to know the electrical characteristics is to complete the device through all the process steps and conduct an electrical test, and it is very important to directly connect the process failure at each step to the electrical characteristics. It was difficult.
[0006] また、電子ビームを用いてインラインで数オームの抵抗値の変化を検出した ヽと 、う 要求があるが、従来の手法では、メガオームオーダーの高抵抗しか検出することが出 来なカゝつた。トランジスタのチャネル特性なども電気テストを行うまでは、全く不明であ るという課題があり、トランジスタ形成直後に電気特性を知りたいという要望があった。  [0006] Although there is a need to detect a change in resistance value of several ohms in-line using an electron beam, the conventional method can detect only a high resistance on the order of mega-ohms. I got it. There was a problem that the channel characteristics of the transistor were completely unknown until the electrical test was conducted, and there was a request to know the electrical characteristics immediately after the transistor was formed.
[0007] 本発明は、プロセスの過程におけるデバイスの電気特性をチェックすることができ、 し力も、比較的小さな特性変化 (例えば、抵抗値の小さい変化)までも検出することが できる半導体検査装置および半導体検査方法を提供することを目的として!、る。 課題を解決するための手段  The present invention is capable of checking the electrical characteristics of a device in the course of a process, and a semiconductor inspection apparatus capable of detecting a force and even a relatively small characteristic change (for example, a small change in resistance value) and To provide a semiconductor inspection method! Means for solving the problem
[0008] 上記課題を解決するために、本発明に係る半導体検査装置は、半導体基板を電 極に当接し、前記半導体基板へ電子ビームを照射し、該電子ビームによって前記半 導体基板に誘起された基板電流を前記電極を介して測定し、該測定の結果から前 記半導体基板に形成された微細構造の評価値を得るように構成された半導体検査 装置において、前記電極が、お互いに電気的に絶縁された複数の基板電流検出電 極によって構成されている。 [0008] In order to solve the above-described problem, a semiconductor inspection apparatus according to the present invention causes a semiconductor substrate to abut an electrode, irradiates the semiconductor substrate with an electron beam, and is induced on the semiconductor substrate by the electron beam. In the semiconductor inspection apparatus configured to measure the measured substrate current through the electrode and obtain the evaluation value of the microstructure formed on the semiconductor substrate from the measurement result, the electrodes are electrically connected to each other. A plurality of substrate current detection electrodes insulated from each other.
[0009] 上記構成によれば、メガオームのような大きな抵抗変化だけではなぐ数オームの 電気抵抗値変化など、微小な電気特性変化をウェハー状態のままそれぞれのプロセ ス直後に測定することができる。また、半導体デバイス製造工程を最後まで行わなく ても電気特性を知ることができるので、プロセス結果と電気特性の相関を直ぐに知る ことが出来る。 [0009] According to the above configuration, a minute change in electrical characteristics such as a change in electrical resistance value of several ohms, not just a large resistance change such as mega ohms, can be measured immediately after each process in the wafer state. In addition, since the electrical characteristics can be known without having to complete the semiconductor device manufacturing process, the correlation between the process result and the electrical characteristics can be known immediately.
[0010] 上記発明において、複数の基板電流検出電極で各々検出した電流を測定する、 お互いに独立した複数の電流測定手段を設ける。  [0010] In the above invention, a plurality of current measuring means are provided which measure currents detected by the plurality of substrate current detection electrodes, respectively, and are independent from each other.
上記発明において、複数の基板電流検出電極を同一平面上に形成する。 上記発明において、複数の基板電流検出電極を各々同一形状の電極によって形 成する。 In the above invention, the plurality of substrate current detection electrodes are formed on the same plane. In the above invention, each of the plurality of substrate current detection electrodes is formed by electrodes having the same shape. To do.
上記の発明において、複数の基板電流検出電極を、中心部の円状電極と、それを 取り囲む同心円状の環状電極力 構成する。  In the above invention, the plurality of substrate current detection electrodes are constituted by a circular electrode at the center and a concentric annular electrode force surrounding the circular electrode.
上記発明において、前記複数の基板電流検出電極を短冊状の複数の電極から構 成する。  In the above invention, the plurality of substrate current detection electrodes are formed of a plurality of strip-shaped electrodes.
[0011] 上記発明において、複数の基板電流検出電極を、ドット状の複数の電極から構成 する。  [0011] In the above invention, the plurality of substrate current detection electrodes are constituted by a plurality of dot-like electrodes.
上記発明において、複数の基板電流検出電極の一部または全部を、前記半導体 基板の上面に当接する。  In the above invention, some or all of the plurality of substrate current detection electrodes are brought into contact with the upper surface of the semiconductor substrate.
上記発明において、複数の基板電流検出電極の一部または全部を、前記半導体 基板の側面に当接する。  In the above invention, some or all of the plurality of substrate current detection electrodes are brought into contact with the side surface of the semiconductor substrate.
上記発明において、複数の基板電流検出電極を、メッシュ状の電極によって構成 する。  In the above invention, the plurality of substrate current detection electrodes are constituted by mesh electrodes.
上記の発明において、静電チャック用の電極を、前記複数の基板電流検出電極と 同一の支持基板上に設ける。  In the above invention, the electrode for the electrostatic chuck is provided on the same support substrate as the plurality of substrate current detection electrodes.
上記発明にお 、て、複数の基板電流検出電極を覆う絶縁膜を設ける。  In the above invention, an insulating film is provided to cover the plurality of substrate current detection electrodes.
[0012] また、上記の課題を解決するために、本発明に係る半導体検査方法は、半導体基 板を複数の基板電流検出電極に当接し、前記半導体基板へ電子ビームを照射し、 該電子ビームによって前記半導体基板に誘起された基板電流を前記複数の基板電 流検出電極を介して測定し、該測定の結果力 前記半導体基板に形成された微細 構造の評価値を得るように構成された半導体検査装置において、前記電子ビームを 前記半導体基板に照射する第 1のステップと、前記複数の基板電流検出電極に生じ た電流値を同時に測定する第 2のステップと、前記第 2のステップにお 、て測定され たそれぞれの電流値用いて前記半導体基板の評価値を得る第 3のステップとを有す る。  [0012] In order to solve the above-described problem, a semiconductor inspection method according to the present invention is configured such that a semiconductor substrate is brought into contact with a plurality of substrate current detection electrodes, and the semiconductor substrate is irradiated with an electron beam. A semiconductor configured to measure a substrate current induced in the semiconductor substrate by the plurality of substrate current detection electrodes and obtain an evaluation value of a microstructure formed on the semiconductor substrate as a result of the measurement In the inspection apparatus, in the first step of irradiating the semiconductor substrate with the electron beam, the second step of simultaneously measuring the current values generated in the plurality of substrate current detection electrodes, and the second step, And a third step of obtaining an evaluation value of the semiconductor substrate using each of the measured current values.
上記方法によれば、メガオームのような大きな抵抗変化だけではなぐ数オームの 電気抵抗値変化など、微小な電気特性変化をウェハー状態のままそれぞれのプロセ ス直後に測定することができる。また、半導体デバイス製造工程を最後まで行わなく ても電気特性を知ることができるので、プロセス結果と電気特性の相関を直ぐに知る ことが出来る。 According to the above method, it is possible to measure a minute change in electrical characteristics such as a change in electrical resistance value of several ohms, not just a large resistance change such as mega ohms, immediately after each process in the wafer state. Also, do not complete the semiconductor device manufacturing process However, since the electrical characteristics can be known, the correlation between the process results and the electrical characteristics can be known immediately.
[0013] 上記の発明にお 、て、お互いに異なるインピーダンスを有する前記複数の基板電 流検出電極を利用して、前記半導体基板の評価値を得る。  [0013] In the above invention, an evaluation value of the semiconductor substrate is obtained by using the plurality of substrate current detection electrodes having different impedances.
上記発明において、前記電子ビームを、所望の周波数の交流信号状に変調する。 上記発明において、前記半導体基板の電気特性を未知数とし、測定回路全体の 等価回路と前記複数の基板電流検出電極によって測定された電流値を利用して連 立方程式を解き、前記半導体基板の電気特性を求める。  In the above invention, the electron beam is modulated into an AC signal having a desired frequency. In the above invention, the electrical characteristics of the semiconductor substrate are defined as unknowns, the simultaneous equations are solved using the equivalent circuit of the entire measurement circuit and the current values measured by the plurality of substrate current detection electrodes, and the electrical characteristics of the semiconductor substrate are determined. Ask for.
発明の効果  The invention's effect
[0014] 本発明によれば、メガオームのような大きな抵抗変化だけではなぐ数オームの電 気抵抗値変化など、微小な電気特性変化をウェハー状態のままそれぞれのプロセス 直後に測定することができる。また、抵抗値だけでなぐトランジスタ特性などァクティ ブ素子の持つ容量特性、抵抗特性、チャンネル特性、過渡周波数特性などのインラ イン評価も可能となる。従来のプロセス評価装置と組み合わせることで、プロセス毎に 測定されたプロセスの揺らぎ量、プロセス結果評価値と電気特性との相関を取ること が可能となる。  [0014] According to the present invention, it is possible to measure a minute change in electrical characteristics such as a change in electrical resistance value of several ohms, not just a large change in resistance such as mega ohms, immediately after each process in a wafer state. In addition, inline evaluations such as the capacitance characteristics, resistance characteristics, channel characteristics, and transient frequency characteristics of active elements such as transistor characteristics based only on resistance values are possible. By combining with a conventional process evaluation device, it is possible to correlate the amount of process fluctuation measured for each process, the process result evaluation value, and the electrical characteristics.
[0015] また、本発明によれば、半導体デバイス製造工程を最後まで行わなくても電気特性 を知ることができるので、プロセス結果と電気特性の相関を直ぐに知ることが出来る。 プロセスを行うたびに電気特性をその場で知ることが出来るので、個別プロセスが電 機特性に与える影響を直接測定が可能であり、プロセスの開発を加速することが出 来る。  Furthermore, according to the present invention, the electrical characteristics can be known without performing the semiconductor device manufacturing process to the end, so that the correlation between the process result and the electrical characteristics can be known immediately. Since the electrical characteristics can be known on the spot each time a process is performed, the effects of individual processes on the electrical characteristics can be directly measured, and the development of the process can be accelerated.
また、電気特性をデバイス製造途中で知ることが可能なので、電気的不具合が生じ た際には、直ぐにプロセスを停止させたり、プロセスレシピを変更して正しい状態に戻 したりすることが可能となる。その結果歩留まりを向上させることが可能で、デバイスの 製造コストを下げることが出来る。また、微妙な電気特性の変化を測定できるので、よ り良いプロセス管理が可能と成り、同じプロセス世代のテクノロジーを用いて、より高 速、より低消費電力のデバイスを作ることが可能となる。  In addition, it is possible to know the electrical characteristics during device manufacturing, so if an electrical failure occurs, it is possible to immediately stop the process or change the process recipe to return it to the correct state. . As a result, the yield can be improved and the manufacturing cost of the device can be reduced. In addition, subtle changes in electrical characteristics can be measured, enabling better process management, and using the same process generation technology, it is possible to create faster and lower power consumption devices.
図面の簡単な説明 [図 1]本発明の実施形態に係る半導体検査装置の構成図である。 Brief Description of Drawings FIG. 1 is a configuration diagram of a semiconductor inspection apparatus according to an embodiment of the present invention.
[図 2]本発明の実施形態に係る半導体検査装置の動作の流れを示すフローチャート である。  FIG. 2 is a flowchart showing an operation flow of the semiconductor inspection apparatus according to the embodiment of the present invention.
[図 3]本発明の第 1の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 3 is a schematic configuration diagram showing a configuration of a main part of the semiconductor inspection apparatus according to the first embodiment of the present invention.
[図 4]同実施形態における測定例の等価回路および測定対象部分を示す図である。  FIG. 4 is a diagram showing an equivalent circuit and a measurement target part of a measurement example in the same embodiment.
[図 5]同実施形態における測定動作を示すフローチャートである。  FIG. 5 is a flowchart showing a measurement operation in the embodiment.
[図 6]同実施形態における他の測定例の等価回路および測定対象部分を示す図で ある。  FIG. 6 is a diagram showing an equivalent circuit and a measurement target part of another measurement example in the embodiment.
[図 7]本発明の第 2の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 7 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a second embodiment of the present invention.
[図 8]本発明の第 3の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 8 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a third embodiment of the present invention.
[図 9]本発明の第 4の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 9 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a fourth embodiment of the present invention.
[図 10]本発明の第 5の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 10 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a fifth embodiment of the present invention.
[図 11]本発明の第 6の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 11 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a sixth embodiment of the present invention.
[図 12]本発明の第 7の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 12 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a seventh embodiment of the present invention.
[図 13]本発明の第 8の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 13 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to an eighth embodiment of the present invention.
[図 14]本発明の第 9の実施形態に係る半導体検査装置の要部の構成を示す概略構 成図である。  FIG. 14 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a ninth embodiment of the present invention.
[図 15]本発明の第 10の実施形態に係る半導体検査装置の要部の構成を示す概略 構成図である。  FIG. 15 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a tenth embodiment of the present invention.
[図 16]同実施形態の変形例を示す図である。 圆 17]本発明の第 11の実施形態に係る半導体検査装置の要部の構成を示す概略 構成図である。 FIG. 16 is a view showing a modification of the same embodiment. 17] FIG. 17 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to an eleventh embodiment of the present invention.
圆 18]同実施形態における測定例の等価回路および測定対象部分を示す図である 圆 19]本発明の第 12の実施形態に係る半導体検査装置の要部の構成を示す概略 構成図である。 18] A diagram showing an equivalent circuit and a measurement target portion of a measurement example in the same embodiment. [19] FIG. 19 is a schematic configuration diagram showing a configuration of a main part of a semiconductor inspection apparatus according to a twelfth embodiment of the present invention.
[図 20]従来の半導体検査装置の要部の構成を示す概略構成図である。  FIG. 20 is a schematic configuration diagram showing a configuration of a main part of a conventional semiconductor inspection apparatus.
符号の説明 Explanation of symbols
1、 la、 lb、 6a〜6d、 7a〜7h、 8a〜8d、 9a〜91、 16、 26a〜26d、 28、 36a、 36b 電極  1, la, lb, 6a-6d, 7a-7h, 8a-8d, 9a-91, 16, 26a-26d, 28, 36a, 36b
2 支持基板  2 Support substrate
5a、 5b 電流計  5a, 5b ammeter
10 電子銃  10 electron gun
11 電子ビーム源  11 Electron beam source
12 コンデンサレンズ  12 condenser lens
13 ァパチヤ一  13 Apachiya
14 偏向レンズ  14 Deflection lens
15 対物レンズ  15 Objective lens
17a, 17b 上部電極  17a, 17b Upper electrode
18aゝ 18b パッド  18a ゝ 18b pad
19aゝ 19b 支持部材  19a ゝ 19b Support member
20 ウェハー識別装置  20 Wafer identification device
21 XYステージ  21 XY stage
22 トレイ  22 trays
23 ウェハー  23 wafers
24 二次電子反射電子検出装置  24 Secondary electron backscattered electron detector
25 メッシュ状電極  25 Mesh electrode
27 静電チャック用電極 30 電流測定装置 27 Electrostatic chuck electrode 30 Current measuring device
35 電子回収電極  35 Electron recovery electrode
50 静電チャック電源  50 Electrostatic chuck power supply
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 次に本発明を実施するための最良の形態について、図面を参照して説明する。  Next, the best mode for carrying out the present invention will be described with reference to the drawings.
図 1に、本発明の実施形態による半導体検査装置の全体構成を示す。この半導体 検査装置は、測定対象物(以下、ウェハーという)に電子ビームを照射し、該電子ビ ームによって上記ウェハーに誘起された基板電流を測定し、該基板電流力 上記ゥ ェハーに形成された微細構造の評価値を得ることを基本原理として 、る。  FIG. 1 shows the overall configuration of a semiconductor inspection apparatus according to an embodiment of the present invention. This semiconductor inspection apparatus irradiates an object to be measured (hereinafter referred to as a wafer) with an electron beam, measures a substrate current induced in the wafer by the electron beam, and forms the substrate current force on the wafer. The basic principle is to obtain an evaluation value of the fine structure.
[0019] 同図に示すように、ウェハー 23を収容するチャンバ一 20には、電子ビーム EBを発 生する電子銃 10が取り付けられ、この電子銃 10は電子ビーム源 11を備え、この電子 ビーム源 11には高圧電源 40が接続されている。電子銃 10の内部には、上記電子ビ ーム源 11からの電子流の放出方向に沿って、コンデンサレンズ 12、ァパチヤ一 13、 偏向レンズ 14、対物レンズ 15がこの順に配置されている。このうち、偏向電極 14に は偏向装置 100が接続され、電子ビーム EBを高精度で偏向可能となっている。また 、この電子銃 10の電子ビーム EBのエネルギー、電流量、フォーカス状態も任意に制 御可能となっている。  As shown in FIG. 1, an electron gun 10 that generates an electron beam EB is attached to a chamber 20 that accommodates a wafer 23, and the electron gun 10 includes an electron beam source 11. A high voltage power source 40 is connected to the source 11. Inside the electron gun 10, a condenser lens 12, an aperture 13, a deflection lens 14, and an objective lens 15 are arranged in this order along the emission direction of the electron flow from the electron beam source 11. Among them, the deflection electrode 100 is connected to the deflection electrode 14 so that the electron beam EB can be deflected with high accuracy. Further, the energy, current amount, and focus state of the electron beam EB of the electron gun 10 can be arbitrarily controlled.
[0020] チャンバ一 20の内部には、ウェハー 23を支持するための XYステージ 21とトレイ 22 とが収容され、トレイ 22にウェハー 23が載置されている。上記電子銃 10から放出さ れる電子ビーム EBは、トレイ 22に載置されたウェハー 23の表面に向けられており、 XYステージ 21によりトレイ 22の位置を移動させることにより、ウェハー 23に対する電 子ビーム EBの照射位置を調整することが可能となっている。また、チャンバ一 20の 内部には、ウェハー 23において反射された二次電子、反射電子を検出する二次電 子反射電子検出装置 24が設けられている。  An XY stage 21 and a tray 22 for supporting the wafer 23 are accommodated in the chamber 20, and the wafer 23 is placed on the tray 22. The electron beam EB emitted from the electron gun 10 is directed to the surface of the wafer 23 placed on the tray 22, and the electron beam to the wafer 23 is moved by moving the position of the tray 22 by the XY stage 21. The irradiation position of EB can be adjusted. Further, a secondary electron reflected electron detector 24 for detecting secondary electrons and reflected electrons reflected on the wafer 23 is provided inside the chamber 20.
[0021] ここで、電子銃 10から照射された電子ビーム EBを nmオーダーの位置精度でゥェ ハー 23に照射するために、 XYステージ 21により、固定された電子ビーム EBの照射 軸に対して相対的にウェハー 23の位置を移動するようになっている。 XYステージ 21 の駆動装置としてはパルスモーターや超音波モーター、リニアモーターある 、は圧電 素子などが利用される。レーザー測長器やレーザースケール等高精度測定技術を 併用することにより、 XYステージ 21上に載置されたウェハー 23の位置精度は数 nm 程度に制御される。 [0021] Here, in order to irradiate the wafer 23 with the electron beam EB irradiated from the electron gun 10 with a position accuracy of the order of nm, the XY stage 21 applies a fixed electron beam EB to the irradiation axis. The position of the wafer 23 is relatively moved. XY stage 21 As the drive device, a pulse motor, an ultrasonic motor, a linear motor, or a piezoelectric element is used. By using high-precision measurement technology such as a laser length meter and laser scale, the positional accuracy of the wafer 23 placed on the XY stage 21 is controlled to about several nm.
[0022] また、ウェハー 23を載置するトレイ 22には、電流測定装置 30が接続されており、上 記ウェハー 23に誘起された基板電流がトレイ 22を介して電流測定装置 30により測 定されるようになつている。電流測定装置 30は、トレイ 22に内蔵あるいは近傍に配置 されており、外部力もの電磁波ノイズをカットできる様に成っている。電流測定装置 30 としては、抵抗、電圧変換型の装置や交流アンプ、チャージアンプなど種々の形式を 用いることが出来る。この電流測定装置 30は、測定した基板電流値をデジタル信号 に AZD変換する AZD変 を備えており、測定値をデジタルデータとして出力す る。  In addition, a current measuring device 30 is connected to the tray 22 on which the wafer 23 is placed, and the substrate current induced in the wafer 23 is measured by the current measuring device 30 via the tray 22. It has become like that. The current measuring device 30 is built in or near the tray 22 and can cut electromagnetic noise caused by external force. As the current measuring device 30, various types such as a resistance, a voltage conversion type device, an AC amplifier, and a charge amplifier can be used. The current measuring device 30 includes an AZD converter that converts the measured substrate current value into a digital signal, and outputs the measured value as digital data.
また、静電チャック電源 50は、ウェハー 23のそりを修正する静電チャックへ高電圧 (約 500V)を加える電源である。  The electrostatic chuck power source 50 is a power source that applies a high voltage (about 500 V) to the electrostatic chuck that corrects the warp of the wafer 23.
[0023] また、本半導体検査装置は、 2次元走査制御装置 (パターンマッチングエンジンを 含む) 110、電流波形記憶装置 120、波形整形装置 130、波形処理装置 140、表示 装置 150、データベース装置 160を備え、これらは、コンピュータ等の情報処理装置 上に構築されている。このうち、 2次元走査制御装置 110は、電子ビーム EBがウェハ 一 23の表面を 2次元的に走査するように偏向装置 100を制御すると共に、電子ビー ム EBの照射位置を高精度に合わせるためのパターンマッチングに関する制御を担う ものである。なお、本実施形態では、 2次元的に走査するとは、ライン状の走査を一 定の間隔で複数回にわたって繰り返すことを意味している。例えるならば、テレビ画 面における水平走査および垂直走査と同様の概念である。  In addition, the semiconductor inspection apparatus includes a two-dimensional scanning control apparatus (including a pattern matching engine) 110, a current waveform storage apparatus 120, a waveform shaping apparatus 130, a waveform processing apparatus 140, a display apparatus 150, and a database apparatus 160. These are constructed on an information processing apparatus such as a computer. Among them, the two-dimensional scanning control device 110 controls the deflecting device 100 so that the electron beam EB scans the surface of the wafer 23 two-dimensionally and adjusts the irradiation position of the electron beam EB with high accuracy. It is responsible for control of pattern matching. In the present embodiment, the two-dimensional scanning means that the line-shaped scanning is repeated a plurality of times at a constant interval. For example, it is a concept similar to horizontal scanning and vertical scanning on a television screen.
[0024] ここで、パターンマッチングについて補足すると、ウェハー 23上に形成されたホー ル等のパターンの位置は、同一ロットであってもウェハー毎にわずかに異なる。この ため、 XYステージ 21による位置合わせと併用して、ウェハーごとに実際のパターンと 基準パターンとを比較するパターンマッチングを実施し、これにより、ウェハー毎とに 数 nmの精度で電子ビームの照射位置を正確に調整する。このパターンマッチングで は、電子ビーム照射位置を精度よくシフトさせる必要上、本半導体検査装置は、電子 ビーム EBを正確に直線走査するための高分解能の上述の偏向装置 100を備えてい る。また、 2次元走査制御装置 110は、パターンマッチングを実施するための画像認 識装置およびソフトウェア等を備えている。 Here, supplementing pattern matching, the position of a pattern such as a hole formed on the wafer 23 is slightly different for each wafer even in the same lot. For this reason, in combination with alignment using the XY stage 21, pattern matching is performed for each wafer to compare the actual pattern with the reference pattern. This enables the irradiation position of the electron beam with a precision of several nanometers for each wafer. Adjust accurately. With this pattern matching In order to accurately shift the electron beam irradiation position, the semiconductor inspection apparatus includes the above-described deflection apparatus 100 with high resolution for accurately scanning the electron beam EB in a straight line. Further, the two-dimensional scanning control device 110 includes an image recognition device and software for performing pattern matching.
[0025] 電流波形記憶装置 120は、上記電流測定装置 30によって測定された基板電流値 の波形を、そのときの電子ビーム EBの照射座標あるいは時間と対応づけて記憶する ものである。波形整形装置 130は、上記基板電流値の波形を波形整形して不要なノ ィズ成分を除去するものである。波形処理装置 140は、波形整形された基板電流波 形を波形処理することにより、ウェハー 23上に形成された微細構造の形状に関する 評価値を演算するものである。表示装置 150は、上記評価値を表示するものである。 データベース装置 160は、上記評価値を格納しておくものである。  The current waveform storage device 120 stores the waveform of the substrate current value measured by the current measurement device 30 in association with the irradiation coordinates or time of the electron beam EB at that time. The waveform shaping device 130 shapes the waveform of the substrate current value and removes unnecessary noise components. The waveform processing device 140 calculates an evaluation value related to the shape of the fine structure formed on the wafer 23 by performing waveform processing on the waveform-shaped substrate current waveform. The display device 150 displays the evaluation value. The database device 160 stores the evaluation value.
また、トレイ 22には、電子ビームの照射位置を測定する電子ビーム照射位置測定 装置 180が設けられ、この測定装置 180によって測定された電子ビームの照射位置 は電子ビーム照射位置記憶装置 170に出力されて記憶され、記憶された照射位置 データが 2次元走査制御装置 110および電流波形記憶装置 120へ出力される。  Further, the tray 22 is provided with an electron beam irradiation position measuring device 180 for measuring the electron beam irradiation position, and the electron beam irradiation position measured by the measuring device 180 is output to the electron beam irradiation position storage device 170. The stored irradiation position data is output to the two-dimensional scanning control device 110 and the current waveform storage device 120.
[0026] 次に、図 2に示すフローに沿って、本半導体検査装置の動作の概略を説明する。こ の例では、ホールを測定対象とする。  Next, the outline of the operation of the semiconductor inspection apparatus will be described along the flow shown in FIG. In this example, the measurement target is a hole.
測定時には、最初に、ウェハー 23を保持している XYステージ 21の制御系に対し て測定対象のホールの位置座標を指定して XYステージ 21を移動させ、ウェハー 23 に形成されたホールの中心出し (位置合わせ)を行う(ステップ S1)。  During measurement, first specify the position coordinates of the hole to be measured with respect to the control system of the XY stage 21 holding the wafer 23, move the XY stage 21, and center the holes formed on the wafer 23. Perform (alignment) (step S1).
[0027] 具体的には、 XYステージ 21により、電子ビーム EBの照射可能な範囲の位置にホ ール中心を大まかに合わせる。続いて、電子銃 10の下端に設けられたウェハー対物 レンズ間距離測定装置 16を用いてウェハー 23と対物レンズ 15の距離を測定し (ステ ップ S 2)、電子ビームフォーカスの初期位置を決定する。次いで電子ビーム EBを、ホ ールを含む所定領域内で二次元走査しながら照射し、そのときに発生する二次電子 を集めて二次電子像を形成する。この形成された二次電子像を用いてオートフォー カス (ステップ S3)を行 、、試料上に焦点を結ぶように対物レンズの強さを自動調節 する。次に、フォーカスされた電子ビームを走査する事によって得られる二次電子画 像と予め 2次元走査制御装置 110内に記憶されているテンプレート画像とを比較して パターンマッチングを行い(ステップ S4)、テンプレート画像の中心とホール中心との ずれ量を算出する。この算出されたずれ量を偏向装置 100に入力し、電子ビーム EB の照射位置をシフトさせ、これにより、電子ビーム EBの照射位置を測定対象のホー ル中心に正確に合わせる。 [0027] Specifically, the center of the hall is roughly aligned with the position where the electron beam EB can be irradiated by the XY stage 21. Subsequently, the distance between the wafer 23 and the objective lens 15 is measured using the wafer objective lens distance measuring device 16 provided at the lower end of the electron gun 10 (Step S2), and the initial position of the electron beam focus is determined. To do. Next, the electron beam EB is irradiated while scanning two-dimensionally within a predetermined region including the hole, and secondary electrons generated at that time are collected to form a secondary electron image. Autofocus (step S3) is performed using the formed secondary electron image, and the strength of the objective lens is automatically adjusted so as to focus on the sample. Next, the secondary electron image obtained by scanning the focused electron beam. The image is compared with the template image stored in advance in the two-dimensional scanning control device 110 to perform pattern matching (step S4), and the amount of deviation between the center of the template image and the center of the hole is calculated. This calculated amount of deviation is input to the deflecting device 100, and the irradiation position of the electron beam EB is shifted, so that the irradiation position of the electron beam EB is accurately aligned with the center of the hole to be measured.
[0028] 続いて、 2次元走査制御装置 110の制御の下に、ホール中心を基準として電子ビ ーム EBによりウェハー 23の表面上の上記所定領域を 2次元的に走査する(ステップ S5)。即ち、電子ビーム EBを所望の先端サイズになるように電子銃 10の対物レンズ 15を制御すると共に、偏向装置 100に制御電圧をカ卩えることにより、ライン状に電子 ビーム走査を一定のピッチで繰り返す。これにより、電子ビーム EBが照射されたゥェ ハー 23の表面上の微小領域から二次電子、反射電子が生じると共に、ウェハー 23 に基板電流が誘起される。  Subsequently, under the control of the two-dimensional scanning control device 110, the predetermined region on the surface of the wafer 23 is two-dimensionally scanned by the electron beam EB with reference to the hole center (step S5). That is, by controlling the objective lens 15 of the electron gun 10 so that the electron beam EB has a desired tip size and by controlling the control voltage in the deflecting device 100, the electron beam scanning is performed in a line at a constant pitch. repeat. As a result, secondary electrons and reflected electrons are generated from a minute region on the surface of the wafer 23 irradiated with the electron beam EB, and a substrate current is induced in the wafer 23.
[0029] ウェハー 23に誘起された、二次電子、反射電子あるいは基板電流は、二次電子反 射電子検出装置 24および電流測定装置 30によって測定され、その測定値は必要な 分解能を持つデジタル信号に即座に変換される。例えば、このデジタル信号の分解 能は 16ビットであり、そのサンプリング周波数は 400MHzである。この速度は必要に よって変更することも可能である。  [0029] Secondary electrons, reflected electrons, or substrate currents induced on the wafer 23 are measured by the secondary electron reflected electron detector 24 and the current measuring device 30, and the measured values are digital signals having the necessary resolution. Will be converted immediately. For example, the resolution of this digital signal is 16 bits and its sampling frequency is 400 MHz. This speed can be changed if necessary.
電子ビーム EBの 2次元的な走査により得られた二次電子、反射電子はホール表面 形状情報、基板電流測定値は、ホール底面の 2次元的形状に関する情報を含み、 測定座標 (電子ビームの照射位置)又は測定時間 (電子ビーム EBの照射時刻)の関 数である時間軸に対する波形情報として取得され、電流波形記録装置 120 (例えば 、メモリー、フラッシュメモリ、ハードディスク、光磁気ディスク等)にデジタル記録される  The secondary and reflected electrons obtained by two-dimensional scanning of the electron beam EB include hole surface shape information, and the substrate current measurement value includes information about the two-dimensional shape of the bottom surface of the hole. Position) or measurement time (electron beam EB irradiation time) is obtained as waveform information with respect to the time axis and is digitally recorded in the current waveform recorder 120 (eg, memory, flash memory, hard disk, magneto-optical disk, etc.) Be done
[0030] 以上のようにして取得された信号波形情報は、波形整形装置 130において、波形 に含まれる不要なノイズや高周波成分を除去するために波形整形される。上記波形 処理の例としては、移動平均フィルター処理、特定の周波数を取り除く波形処理、あ るいは特定の周波数の信号だけを取り出すフィルター処理、フーリエフィルター処理 等がある。これらの波形整形処理はハードウェアで行われても、ソフトウェアで行われ ても良い。 [0030] The signal waveform information acquired as described above is waveform-shaped by the waveform shaping device 130 in order to remove unnecessary noise and high-frequency components contained in the waveform. Examples of the waveform processing include moving average filter processing, waveform processing for removing a specific frequency, filter processing for extracting only a signal of a specific frequency, and Fourier filter processing. These waveform shaping processes can be performed in hardware or software. May be.
[0031] 続いて、波形整形された波形の中から、有用な波形のみを抽出し、ホールボトム面 積測定を行う(ステップ S6)。この場合、電子ビーム照射領域にはホールが含まれて いない場所や、ホールのエッジに掛カつていて波形が汚い場合もあるので、そのよう な波形を含んだ状態でエッジ抽出処理を行うと、その処理によって得られるエッジ座 標値の精度が低下する。このため、ホールエッジ抽出に有用な良好な電流波形は、 閾値法などを用いてある一定の値よりも絶対値が大きな信号の場合だけ抽出する。 電子ビームはライン状にスキャンされるだけではなぐ測定点に一定時間電子ビーム を照射して電流波形を取得することも行われる。これらの場合も上記と同様の波形処 理が行われ、必要な情報が抽出される。  [0031] Next, only useful waveforms are extracted from the waveform-shaped waveforms, and hole bottom area measurement is performed (step S6). In this case, there are cases where the electron beam irradiation area does not contain a hole or the waveform is dirty due to the edge of the hole. As a result, the accuracy of the edge coordinate value obtained by the processing decreases. For this reason, a good current waveform useful for hole edge extraction is extracted only for a signal whose absolute value is larger than a certain value using a threshold method or the like. In addition to scanning the electron beam in a line, the current waveform is acquired by irradiating the measurement point with the electron beam for a certain period of time. In these cases, waveform processing similar to the above is performed, and necessary information is extracted.
[0032] 測定に供せられるウェハー 23は、ウェハー 23上に設けられた識別番号、あるいは コンピュータによって識別可能なように情報が記録されている。より一般的には半導 体工場には MES (Manufacturing Execution System)と呼ばれる装置運用管理システ ムが存在して、各ウェハーがどの装置で何時、どのような処理を受けたのか全て記録 しており、それらの情報と相関を取る事により、不具合分類およびその原因を推定す る事に役立てる。  [0032] The wafer 23 to be measured is recorded with an identification number provided on the wafer 23 or information so that it can be identified by a computer. More generally, there is an equipment operation management system called MES (Manufacturing Execution System) in a semiconductor factory, and it records all of what time each wafer has undergone what processing. By correlating with such information, it is useful for estimating failure classification and its cause.
[0033] 次に、図 3を参照しトレイ 22に設置される電極について詳述する。  Next, the electrodes placed on the tray 22 will be described in detail with reference to FIG.
トレイ 22は、測定対象ウェハー 23を載せる台であり、例えば A1 (アルミニウム)による 支持基板 2と、この支持基板 2上に密着された 2個の半円状の平面電極 la、 lbとを有 している。本実施形態は、お互いに電気的に独立した基板電流検出用の電極を 2つ (la、 lb)利用していることに特徴がある。ウェハー 23の左右に分かれたそれぞれ電 気絶縁された電極 la、 lbが設けられており、外部に電流が取り出せるように配線が 行われている。図 3では、同じ容量、抵抗を持つように全く同じ形状の電極を用いて いる。  The tray 22 is a table on which the wafer 23 to be measured is placed. For example, the tray 22 has a support substrate 2 made of A1 (aluminum) and two semicircular planar electrodes la and lb in close contact with the support substrate 2. ing. This embodiment is characterized in that it uses two (la, lb) electrodes for substrate current detection that are electrically independent from each other. Electrically insulated electrodes la and lb are provided on the left and right sides of the wafer 23, respectively, and wiring is performed so that current can be taken out to the outside. In Fig. 3, electrodes with exactly the same shape are used to have the same capacitance and resistance.
[0034] 測定対象のウェハー 23はこれら電極の上に載せられる。電子ビームがウェハー 23 に照射されると電子ビーム照射部分に電荷が生じ、その電荷はウェハー 23の中を移 動して電極 laおよび電極 lbにそれぞれ電流を生じさせる。それらの電流は電極に 接続されたそれぞれの電流計によって独立に電流値を測定される。 ここで用いられる電流計は非常に微小な電流 (ピコアンペア一程度以下)を測定す るので、抵抗シャント型でもよいが、より精密に測定するため電流電圧変換器などを 用いて測定点がバーチャルグランドになるような電流計を利用することが望ましい。こ の場合、それぞれの電極は仮想接地されているので、複数の電流計を用いてもお互 Vヽに影響を無くす事ができる。 [0034] A wafer 23 to be measured is placed on these electrodes. When the electron beam is irradiated onto the wafer 23, an electric charge is generated in the electron beam irradiation portion, and the electric charge moves through the wafer 23 to generate currents in the electrode la and the electrode lb, respectively. These currents are measured independently by each ammeter connected to the electrode. The ammeter used here measures a very small current (about 1 picoampere or less), so it may be a resistance shunt type, but for more precise measurement, the measurement point is a virtual ground using a current-voltage converter. It is desirable to use an ammeter that In this case, since each electrode is virtually grounded, it is possible to eliminate the influence on each other even if a plurality of ammeters are used.
[0035] 電子ビーム照射によって基板に生じた全電流は電極 laおよび電極 lbを通じて測 定された電流値の合計になる。基板電流を検出するための電極 la、 lbには導電性 材料であれば種々の材料を利用出来る。例えば、アルミ、銅、ニッケル、めっき皮膜、 有機材料、導電性ゴム、有機材料、セラミック、半導体などを利用することが出来る。 また、測定対象基板に傷を付けないように、必要によっては、電極の上に絶縁膜や 導電性の膜をコーティングすることも出来る。  [0035] The total current generated in the substrate by electron beam irradiation is the sum of the current values measured through electrode la and electrode lb. Various materials can be used for the electrodes la and lb for detecting the substrate current as long as they are conductive materials. For example, aluminum, copper, nickel, plating film, organic material, conductive rubber, organic material, ceramic, semiconductor, etc. can be used. In addition, if necessary, an insulating film or a conductive film can be coated on the electrode so as not to damage the measurement target substrate.
[0036] 例えば、絶縁性の膜としてはシリコン酸ィ匕膜、シリコンチッカ膜、ポリイミド有機膜な どを利用する事ができる。導電性の膜としては、導電性ポリイミドゃ ITO膜など種々の 物が利用できる。ダイヤモンドやガラスをコーティングしても良い。 Tiなどをイオンプレ 一ティングするなど表面処理を行ってもょ 、。逆にシリコーンなどやわら力 、材料をク ッシヨンとして利用することも出来る。  For example, as the insulating film, a silicon oxide film, a silicon ticker film, a polyimide organic film, or the like can be used. As the conductive film, various materials such as conductive polyimide and ITO film can be used. Diamond or glass may be coated. Surface treatment such as ion plating of Ti, etc. Conversely, soft materials such as silicone can be used as cushions.
それぞれの電極 la、 lbは目的によってはシリコンウェハー 23と良く接触するように 平坦化され、同じ高さに保持され、同じ電気特性になるように設計されていることが望 まし 、。沢山の小さな電極を配置するために 3次元構造をした電極を用いても良 、。 このときには、それぞれの部分の高さが異なることもありうる。  Depending on the purpose, each electrode la, lb should be flattened so that it is in good contact with the silicon wafer 23, kept at the same height, and designed to have the same electrical characteristics. You can use a 3D electrode to place many small electrodes. At this time, the height of each part may be different.
[0037] 支持基板 2には金属材料、セラミックあるいは、有機材料を用いることが出来る。トレ ィ 22とウェハー 23あるいは装置全体は 1つの電気回路を形成するため、それぞれの 電気回路定数を把握しておくことは非常に重要である。例えば、トレイ 22とウェハー 2 3の間には容量が形成され、それを通じて基板電流は測定される。形成される容量は 、裏面に堆積物の無い通常のシリコンウェハー 23の場合は、自然酸化膜が形成する 容量であり、 10000 Fにも達する。一方、シリコン基板裏面に酸化膜等の絶縁膜が 厚く堆積されていると、数 10 /z F程度の容量を形成する。シリコンウェハー 23に最も 近い構造物は対物レンズであり、約 3mmのギャップを介して向かい合つている。これ らの作る容量は、数 pFである。電子ビーム照射によって生じた電流は測定対象を含 めた装置全体の構成する回路を通じて分配され、トレイ 22とウェハー 23間に流れる 電流のみが測定電流に寄与するので、適切な容量や抵抗値を持つように設計するこ とが望ましい。 [0037] For the support substrate 2, a metal material, a ceramic, or an organic material can be used. Since tray 22 and wafer 23 or the entire device form one electrical circuit, it is very important to know the electrical circuit constants. For example, a capacitance is formed between the tray 22 and the wafer 23, through which the substrate current is measured. In the case of a normal silicon wafer 23 having no deposit on the back surface, the capacity formed is a capacity formed by a natural oxide film and reaches 10000 F. On the other hand, when an insulating film such as an oxide film is thickly deposited on the back surface of the silicon substrate, a capacitance of about several tens of z / zF is formed. The structure closest to the silicon wafer 23 is the objective lens, facing each other with a gap of about 3 mm. this Their capacity is a few pF. The current generated by the electron beam irradiation is distributed through the circuit that constitutes the entire device including the measurement target, and only the current flowing between the tray 22 and the wafer 23 contributes to the measurement current, so it has an appropriate capacity and resistance. It is desirable to design as follows.
[0038] 図 4はウェハー 23上に形成されたデバイスの電気的等価回路の 1例を示している。  FIG. 4 shows an example of an electrical equivalent circuit of a device formed on the wafer 23.
ウェハー 23上に作られた電子素子 4に電子ビームを照射すると、 2つの電極で電流 を同時測定した場合、 2つの電気経路に存在する等価抵抗 Rl、 R2を通じて電流計 5 a、 5bに基板電流が流れる。測定される抵抗値の絶対値に関係なぐ測定対象が形 成する等価抵抗の比率で電流計 5a、電流計 5bによって測定される電流値が決定さ れる。このような回路はビアチェーンなどに見られる。  When the electron beam 4 is irradiated onto the electronic device 4 formed on the wafer 23, when the current is measured simultaneously with two electrodes, the substrate current is applied to the ammeters 5a and 5b through the equivalent resistances Rl and R2 existing in the two electrical paths. Flows. The current value measured by the ammeter 5a and the ammeter 5b is determined by the ratio of the equivalent resistance formed by the measurement object related to the absolute value of the measured resistance value. Such circuits are found in via chains and the like.
[0039] 従来のもの(図 20)のように、 2つの電極を使わず、単一の電流経路で電流を測定 した場合、電流経路に小さな抵抗変化が生じても、電流値の絶対値は殆ど変化せず 、小さな抵抗値の変化を検出することは困難である。しかし電流測定経路が 2つある 場合、どちらかの経路の抵抗値が極く僅かでも変化すると、全電流値がその抵抗値 の比によって分配されるので、抵抗値変化の絶対値が小さくても 2つの電極で測定さ れる電流の比は測定できる程度に大きく変化する。そのため、本実施形態のように電 流の比率が測定できるように回路を構成すると、測定対象に生じた数オームの電気 抵抗変化を測定で出来るようになる。  [0039] When the current is measured with a single current path without using two electrodes as in the conventional case (Fig. 20), the absolute value of the current value is the same even if a small resistance change occurs in the current path. It is difficult to detect a small change in resistance value with little change. However, when there are two current measurement paths, if the resistance value of either path changes even slightly, the total current value is distributed according to the ratio of the resistance values, so even if the absolute value of the resistance change is small. The ratio of the current measured at the two electrodes varies greatly to the extent that it can be measured. Therefore, if the circuit is configured so that the current ratio can be measured as in the present embodiment, a change in electrical resistance of several ohms generated in the measurement object can be measured.
[0040] 図 5は 2個の基板電流検出電極を用いた場合の、測定方法について示している。  FIG. 5 shows a measurement method when two substrate current detection electrodes are used.
例えば、抵抗 R1の大きさが数オーム程度になるようにグランドに行きつくような配線を 予め行っておく。抵抗 R2は測定対象の抵抗体である。抵抗 R2が何らかのプロセス不 具合で抵抗値が数オーム変化したとする。測定対象箇所に電子ビームを照射する( ステップ Sl)。 2つの電極 la、 lbに生じる電流を電流計 5a、 5bによって同時に測定 する(ステップ S 2)。それぞれの電流計 5a、 5bにて計測される電流値はそれぞれの 抵抗体の比率だけ変化する。初期抵抗値が数オームで不具合により数オームの抵 抗値変化をすれば、 2つの電流経路には 2倍以上の電流値の差が測定される (ステツ プ S3)。  For example, wiring that reaches the ground in advance is performed so that the size of the resistor R1 is about several ohms. Resistor R2 is the resistor to be measured. Assume that resistance R2 has changed several ohms due to some process failure. Irradiate the measurement target with an electron beam (Step Sl). The currents generated in the two electrodes la and lb are simultaneously measured by the ammeters 5a and 5b (step S2). The current value measured by each ammeter 5a, 5b changes by the ratio of each resistor. If the initial resistance value is several ohms and the resistance value changes several ohms due to a failure, a difference of more than twice the current value is measured in the two current paths (step S3).
[0041] 例えば、抵抗 R1に 1ρΑ、抵抗 R2に ΙρΑ流れていたの力 抵抗 R1に 2pA、抵抗 R 2に lpA流れたとすれば、抵抗値が 2倍以上変化したことが分かる。次に、この比率を 用いて、等価回路から不具合を起こした部分の電気抵抗値を計算する (ステップ S4) 。計算はコンピュータを用いて自動的に行われ、その結果はコンピュータの記録デバ イスに保存 (ステップ S5)、および画面上に表示される(ステップ S6)。 [0041] For example, the resistance R1 was 1ρΑ and the resistance R2 was flowing ΙρΑ. The resistance R1 was 2pA and the resistance R If lpA flows to 2, the resistance value changes more than twice. Next, using this ratio, the electric resistance value of the part that caused the failure is calculated from the equivalent circuit (step S4). The calculation is performed automatically using a computer, and the result is stored in a computer recording device (step S5) and displayed on the screen (step S6).
[0042] 図 6は本実施形態の電極を用いた電子素子の別の電気特性測定法につ ヽて記載 している。図にあるように、測定対象としてシリコンウェハー 23上に作られたコンタクト ホールを挙げることが出来る。この場合は、コンタクトホールは Wやポリシリコンなどで 埋められている。その場合に、埋められている場所の下の部分の抵抗値を測定した い場合がある。例えば、ある加速電圧で加速された電子ビームをコンタクトホールの プラグ部分に照射すると、電子は照射部分に注入あるいは二次電子放出される。例 えば、プラグに電子が注入されたとすると、プラグ力 仮想接地状態に置かれた電極 la、 lb (図 3)に向かって電子が流れる。それぞれの電流計 5a、 5bでそれぞれの電 極 la、 lbに集まった電子が作る電流量を測定し、記録する。例えば、第 1の電極 la では 1ρΑ、第 2の電極 lbでは 2pAと記録される。この電流値の差あるいは比率を評 価値とする。例えば、 2つある電流計 5a、 5bへの電流回路の内 1つの等価抵抗が R1 であることが予め知られて ヽる場合、測定対象の抵抗値 R2は測定された電流値の比 率に基準抵抗値 R1を掛ける事によって得る事が出来る。このように推定された抵抗 値はコンピュータに記憶され、ディスプレイ上に表示される。  FIG. 6 describes another method for measuring electrical characteristics of an electronic device using the electrode of this embodiment. As shown in the figure, the contact hole made on the silicon wafer 23 can be cited as an object to be measured. In this case, the contact hole is filled with W or polysilicon. In that case, you may want to measure the resistance in the lower part of the buried area. For example, when an electron beam accelerated at a certain accelerating voltage is irradiated onto the plug portion of the contact hole, electrons are injected into the irradiated portion or secondary electrons are emitted. For example, if electrons are injected into the plug, the electrons flow toward the electrodes la and lb (Fig. 3) placed in the plug force virtual ground state. Measure and record the amount of current generated by the electrons collected at the respective electrodes la and lb with the respective ammeters 5a and 5b. For example, 1ρΑ is recorded for the first electrode la and 2pA is recorded for the second electrode lb. The difference or ratio of this current value is regarded as the value. For example, if it is known in advance that the equivalent resistance of one of the current circuits to the two ammeters 5a and 5b is R1, the resistance value R2 to be measured is the ratio of the measured current value. It can be obtained by multiplying the reference resistance value R1. The resistance value estimated in this way is stored in a computer and displayed on a display.
[0043] 次に、この発明の第 2の実施形態について図 7を参照し説明する。図 7は本実施形 態において使用される基板電流測定用の電極を示している。本実施形態では、電極 を 4分割して 、ることに特徴がある。ウェハーの前後左右に分かれたそれぞれお互!ヽ に電気的絶縁された電極 6a〜6dが設けられており、外部に電流が取り出せるように 配線が行われている。ウェハーはこれら電極 6a〜6dの上に載せられる。電子ビーム 力 Sウェハーに照射されると基板電流が生じる力 その電流は電極 6a〜6dの全てを通 過してそれぞれ独立に電流値を測定される。基板に生じた全電流は電極 6a〜6dを 通じて測定された電流値の合計になる。電極 6a〜6dは導電性材料であれば何でも 利用出来る。例えば、アルミ、銅、ニッケル、導電性ゴムなどを利用することが出来る 。また、必要によっては、電極の上に絶縁膜をコーティングすることも出来る。例えば 、酸化膜、チッカ膜、ポリイミド有機膜などを利用する事ができる。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 shows the electrode for measuring the substrate current used in this embodiment. This embodiment is characterized in that the electrode is divided into four parts. Electrodes 6a to 6d that are electrically isolated from each other on the front, rear, left, and right sides of the wafer are provided, and wiring is provided so that current can be taken out to the outside. A wafer is placed on these electrodes 6a-6d. Electron beam force A force that generates a substrate current when the S wafer is irradiated. The current passes through all of the electrodes 6a to 6d and the current value is measured independently. The total current generated in the substrate is the sum of the current values measured through electrodes 6a-6d. The electrodes 6a to 6d can be any conductive material. For example, aluminum, copper, nickel, conductive rubber, etc. can be used. If necessary, an insulating film can be coated on the electrode. For example An oxide film, a ticker film, a polyimide organic film, or the like can be used.
[0044] それぞれの独立電極 6a〜6dの隙間はそのまま空けても良いし、溝部分に絶縁体 を配置しても良 、。ぉ互 ヽに強く容量結合しな 、程度に間隔を空けることが望ま 、 。絶縁体の高さを変える事で、ウェハーと電極の距離を制御出来るようにしてもよい。 また、ウェハーの特性測定においては、前述した図 4〜図 6において説明した場合 と同様に、測定箇所に対応する 2個の電極を使用して基板電流の測定を行い、その 測定結果力 測定箇所の電気特性を求める。  [0044] The gaps between the individual electrodes 6a to 6d may be left as they are, or an insulator may be disposed in the groove portion. It is desirable to leave a gap between them without strong capacitive coupling. The distance between the wafer and the electrode may be controlled by changing the height of the insulator. In the wafer characteristic measurement, the substrate current is measured using the two electrodes corresponding to the measurement points as in the case described in FIGS. Obtain the electrical characteristics of
[0045] 図 8は本発明の第 3の実施形態において使用される電極の構成を示している。  FIG. 8 shows the configuration of the electrodes used in the third embodiment of the present invention.
この第 3の実施形態においては、支持基板 2の上に 8つの独立した基板電流検出 電極 7a〜7hを配置して 、ることに特徴がある。ウェハーの前後左右にそれぞれお互 いに電気的絶縁された電極 7a〜7hが設けられ、それぞれの電極 7a〜7hには外部 に電流が取り出せるように配線が行われて 、る。ウェハーはこれら電極 7a〜7hの上 に載せられる。電子ビームがウェハーに照射されると基板電流が生じ、その電流は電 極 7a〜7hの全てを通過してそれぞれ独立に電流値を測定される。基板に生じた全 電流は電極 7a〜7hを通じて測定された電流値の合計になる。  The third embodiment is characterized in that eight independent substrate current detection electrodes 7 a to 7 h are arranged on the support substrate 2. Electrodes 7a to 7h that are electrically insulated from each other are provided on the front, back, left, and right of the wafer, and wiring is performed on each of the electrodes 7a to 7h so that a current can be taken out to the outside. The wafer is placed on these electrodes 7a-7h. When the electron beam is irradiated onto the wafer, a substrate current is generated, and the current passes through all of the electrodes 7a to 7h, and the current value is measured independently. The total current generated in the substrate is the sum of the current values measured through electrodes 7a-7h.
[0046] 電極 7a〜7hは無機、有機導電性材料、ある!/、は半導体材料であれば何でも利用 出来る。分割され電極 7a〜7hは同時に使用する必要は無ぐ測定対象箇所に応じ て必要な 2つの電極を選択して使用する。使用しない電極はグランドに対してフロー ティング状態にしたり、接地状態にしたり、仮想接地状態にしたりできる。それらは、電 流検出装置のスィッチをオンにしたり、オフにしたりすることで実現できる。電極 7a〜 7hには、例えば、アルミ、銅、ニッケル、導電性ゴム、導電性高分子などを利用するこ とが出来る。また、必要によっては、電極の上に絶縁膜をコーティングすることも出来 る。例えば、シリコン酸ィ匕膜、シリコンチッカ膜、ポリイミド有機膜、フッ素榭脂などを利 用する事ができる。  [0046] The electrodes 7a to 7h can be any inorganic or organic conductive material, and any semiconductor material can be used. It is not necessary to use the divided electrodes 7a to 7h at the same time. Select two electrodes that are necessary according to the location to be measured. Unused electrodes can be floating, grounded, or virtually grounded with respect to ground. They can be realized by turning on or off the switch of the current detection device. For the electrodes 7a to 7h, for example, aluminum, copper, nickel, conductive rubber, conductive polymer, or the like can be used. If necessary, an insulating film can be coated on the electrode. For example, a silicon oxide film, a silicon ticker film, a polyimide organic film, a fluorine resin, or the like can be used.
[0047] 図 9は本発明の第 4の実施形態において使用される電極の構成を示している。  FIG. 9 shows the configuration of the electrodes used in the fourth embodiment of the present invention.
この第 4の実施形態においては、中心部の円状電極 8aと、それを取り囲む同心円 状の環状電極 8b〜8dによって電極が構成されている。ウェハーの中心から同心円 状に分かれたそれぞれお互いに電気的絶縁された電極 8a〜8dが設けられており、 外部に電流が取り出せるようにそれぞれの電極 8a〜8dから配線が行われて 、る。ゥ ェハ一はこれら電極 8a〜8dの上に載せられる。電子ビームがウェハーに照射される と基板電流が生じる力 その電流は電極 8a〜8dの全てを通過してそれぞれ独立に 電流値を測定される。基板に生じた全電流は電極 8a〜8dを通じて測定された電流 値の合計になる。電極 8a〜8dは導電性材料であれば何でも利用出来る。例えば、 アルミ、銅、ニッケル、導電性ゴムなどを利用することが出来る。また、必要によっては 、電極の上に絶縁膜をコーティングすることも出来る。例えば、酸化膜、チッカ膜、ポ リイミド有機膜などを利用することができる。分割された電極 8a〜8hは同時に使用す る必要は無ぐ測定対象箇所に応じて必要な 2つの電極を選択して使用する。使用し ない電極はグランドに対してフローティング状態にしたり、接地状態にしたり、仮想接 地状態にしたりできる。 In the fourth embodiment, an electrode is constituted by a circular electrode 8a at the center and concentric annular electrodes 8b to 8d surrounding the circular electrode 8a. There are provided electrodes 8a to 8d that are concentrically separated from the center of the wafer and are electrically insulated from each other, Wiring is performed from each of the electrodes 8a to 8d so that a current can be taken out to the outside. The wafer is placed on these electrodes 8a-8d. The force that generates the substrate current when the wafer is irradiated with the electron beam. The current passes through all of the electrodes 8a to 8d, and the current value is measured independently. The total current generated in the substrate is the sum of the current values measured through electrodes 8a-8d. The electrodes 8a to 8d can be any conductive material. For example, aluminum, copper, nickel, conductive rubber, etc. can be used. If necessary, an insulating film can be coated on the electrode. For example, an oxide film, a ticker film, a polyimide organic film, or the like can be used. It is not necessary to use the divided electrodes 8a to 8h at the same time. Select the two electrodes that are necessary according to the location to be measured. Unused electrodes can be floating with respect to ground, grounded, or virtually grounded.
[0048] 図 10は本発明の第 5の実施形態において使用される電極の構成を示している。  FIG. 10 shows the configuration of the electrodes used in the fifth embodiment of the present invention.
この第 5の実施形態にぉ 、ては、短冊状に複数の電極 9a〜91が設けられて 、るこ とに特徴がある。ウェハーの中心力 左右に対称に配置されたそれぞれお互いに電 気的絶縁された電極 9a〜91が設けられており、外部に電流が取り出せるように配線 が行われている。ウェハーはこれら電極 9a〜91の上に載せられる。電子ビームがゥェ ハーに照射されると基板電流が生じる力 その電流は電極 9a〜91の全てを通過して それぞれ独立に電流値を測定される。基板に生じた全電流は電極 9a〜91を通じて 測定された電流値の合計になる。電極 9a〜91は導電性材料であれば何でも利用出 来る。例えば、アルミ、銅、ニッケル、導電性ゴムなどを利用することが出来る。また、 必要によっては、電極の上に絶縁膜をコーティングすることも出来る。例えば、酸ィ匕 膜、チッカ膜、ポリイミド有機膜などを利用する事ができる。  The fifth embodiment is characterized in that a plurality of electrodes 9a to 91 are provided in a strip shape. Wafer central force Electromagnetically insulated electrodes 9a to 91, which are arranged symmetrically on the left and right, are provided, and wiring is provided so that current can be taken out to the outside. A wafer is placed on these electrodes 9a-91. The force that generates the substrate current when the wafer is irradiated with the electron beam. The current passes through all of the electrodes 9a to 91 and the current value is measured independently. The total current generated in the substrate is the sum of the current values measured through electrodes 9a-91. The electrodes 9a to 91 can be any conductive material. For example, aluminum, copper, nickel, conductive rubber or the like can be used. If necessary, an insulating film can be coated on the electrode. For example, an oxide film, a ticker film, a polyimide organic film, or the like can be used.
[0049] 分割され電極 9a〜9hは同時に使用する必要は無ぐ測定対象箇所に応じて必要 な 2つの電極を選択して使用する。使用しない電極はグランドに対してフローティング 状態にしたり、接地状態にしたり、仮想接地状態にしたりできる。  [0049] The divided electrodes 9a to 9h do not need to be used at the same time, and two necessary electrodes are selected and used according to the measurement target location. Unused electrodes can be floating with respect to ground, grounded, or virtually grounded.
[0050] 図 11は本発明の第 6の実施形態にぉ ヽて使用される電極の構成を示して!/ヽる。  [0050] FIG. 11 shows the configuration of an electrode used in the sixth embodiment of the present invention! / Speak.
この第 6の実施形態においては、四角形状のドット状電極 16、 16 · · ·が支持基板 2 の上にマトリックス状に配置されている。ウェハーの中心力も前後左右に対称に配置 された、それぞれお互いに電気的絶縁された電極 16、 16…が設けられており、外 部に電流が取り出せるように配線が行われている。ウェハーはこれら電極 16、 16 · · · の上に載せられる。電子ビームがウェハーに照射されると基板電流が生じ、その電流 はそれぞれの電極全てを通過してそれぞれ独立に電流値を測定される。基板に生じ た全電流は全ての電極 16、 16 · · ·を通じて測定された電流値の合計になる。電極 1 6、 16 · · ·は導電性材料であれば何でも利用出来る。電極 16、 16 · · ·はエッチングを 利用して作製しても良いし、めっきを用いて作っても良い。例えば、アルミ、銅、 -ッケ ル、導電性ゴム、あるいはその他の導電性材料などを利用することが出来る。また、 必要によっては、電極 16、 16 · · ·の上に絶縁膜をコーティングすることも出来る。例 えば、シリコン酸ィ匕膜、シリコンチッカ膜、ポリイミド有機膜などを利用する事ができる。 分割され電極 16a〜 16hは同時に使用する必要は無く、測定対象箇所に応じて必 要な 2つの電極を選択して使用する。使用しない電極はグランドに対してフローティ ング状態にしたり、接地状態にしたり、仮想接地状態にしたりできる。 In the sixth embodiment, the rectangular dot electrodes 16, 16... Are arranged in a matrix on the support substrate 2. Wafer center force is also symmetrically arranged in the front, rear, left and right The electrodes 16, 16..., Which are electrically insulated from each other, are provided, and wiring is provided so that a current can be taken out to the outside. A wafer is placed on these electrodes 16, 16. When the electron beam is applied to the wafer, a substrate current is generated, and the current passes through all the electrodes and is measured independently. The total current generated in the substrate is the sum of the current values measured through all electrodes 16, 16. The electrodes 16, 16,... Can be any conductive material. The electrodes 16, 16,... May be made using etching, or may be made using plating. For example, aluminum, copper, nickel, conductive rubber, or other conductive materials can be used. If necessary, an insulating film can be coated on the electrodes 16, 16. For example, a silicon oxide film, a silicon ticker film, a polyimide organic film, or the like can be used. The divided electrodes 16a to 16h do not need to be used at the same time. Select and use the two electrodes that are necessary according to the location to be measured. Unused electrodes can be floating, grounded, or virtually grounded with respect to ground.
[0051] 図 12は本発明の第 7の実施形態において使用される電極の構成を示している。  FIG. 12 shows the configuration of the electrodes used in the seventh embodiment of the present invention.
この第 7の実施形態においては、基板電流検出電極がウェハーの上面および下面 に当接するように設けられている。測定対象となる電気抵抗、あるいは電子素子はゥ ェハーの表面だけにある場合がある。例えば SOI基板に作られた素子などである。 そのときには、一般に、高抵抗値を有する基板の裏面を通じて電流測定を行うよりも 基板表面を通じて直接基板電流測定を行ったほうが、経路抵抗を小さく出来る。つま り、低抵抗の変化を測定するのが容易になる。  In the seventh embodiment, the substrate current detection electrode is provided so as to contact the upper and lower surfaces of the wafer. The electrical resistance or electronic element to be measured may only be on the wafer surface. For example, an element made on an SOI substrate. In that case, in general, it is possible to reduce the path resistance by directly measuring the substrate current through the substrate surface rather than performing the current measurement through the back surface of the substrate having a high resistance value. That is, it becomes easier to measure changes in low resistance.
[0052] 図において、 17a, 17bはそれぞれ上部電極であり、ウェハー 23の上面の周縁部 に当接される導電ゴム製のパッド 18a、 18bと、パッド 18a、 18bを支持する導電体に よる支持部材 19a、 19bから構成され、支持部材 18a、 18bがそれぞれ絶縁体を介し て支持基板 2に取り付けられていると共に、リード線によって電流測定装置 30に接続 されている。また、支持基板 2の上面には絶縁体を介して、図 11と同様のドット状の 電極がマトリックス状に配置され、各電極が電流測定装置 30に接続され、ウェハー 2 3の裏面がこれらの電極に当接している。  In the figure, reference numerals 17a and 17b denote upper electrodes, which are supported by conductive rubber pads 18a and 18b that are in contact with the peripheral edge of the upper surface of the wafer 23, and a conductor that supports the pads 18a and 18b. The support members 18a and 18b are each attached to the support substrate 2 via an insulator, and are connected to the current measuring device 30 by lead wires. In addition, on the upper surface of the support substrate 2, dot-like electrodes similar to those in FIG. 11 are arranged in a matrix form via an insulator, and each electrode is connected to the current measuring device 30, and the back surface of the wafer 23 is these It is in contact with the electrode.
[0053] 上部電極 17a、 17bはウェハー 23を支持するトレイに一体と成っており、上述した 2 個に限らず、複数の電極を設けることが出来る。上部電極 17a、 17bだけを用いて測 定を行っても良いし、裏面の電極と組み合わせて測定を行っても良い。上部電極は 配線の端に予め設けたパッドのような場所に電極を接触させて電流を測定しても良 いし、ウェハー 23の側面に対して電極を接触させて電流を取り出しても良い。もちろ んそれぞれを組み合わせても良い。電極から電流を取り出す場合は、直流的に取り 出しても良 、し、絶縁膜などでコンデンサーを形成して交流的に取り出しても良 、。 [0053] The upper electrodes 17a and 17b are integrally formed on a tray that supports the wafer 23, and the above-described 2 A plurality of electrodes can be provided without being limited to individual pieces. Measurement may be performed using only the upper electrodes 17a and 17b, or measurement may be performed in combination with the electrodes on the back surface. The upper electrode may be brought into contact with a place such as a pad provided in advance at the end of the wiring to measure the current, or the electrode may be brought into contact with the side surface of the wafer 23 to take out the current. Of course, you may combine them. When taking out the current from the electrode, it can be taken out in a direct current, or it can be taken out in an alternating current by forming a capacitor with an insulating film or the like.
[0054] 図 13は本発明の第 8の実施形態において使用される電極の構成を示している。  FIG. 13 shows the configuration of the electrodes used in the eighth embodiment of the present invention.
この第 8の実施形態にお!、ては、表面電極としてメッシュ状の電極 25を用いて!/、る 。例えば、メッシュをスクライブライン上に配置されるような間隔に作製すれば、デバイ スに傷を付けることなぐそれぞれのデバイスの近傍力 電流を取り出すことが可能と 成る。それぞれのメッシュは、電気的に接続されていても良いし、お互いに絶縁され て 、て複数の配線力もなるアドレッシングができるように配置されて ヽても良 、。なお 、ウェハー下面の電極は図 11のものと同様である。  In this eighth embodiment, a mesh electrode 25 is used as a surface electrode. For example, if the meshes are made at intervals such that they are arranged on the scribe line, it is possible to extract the near force current of each device without damaging the device. Each mesh may be electrically connected, or may be arranged so that they are insulated from each other and can be addressed with multiple wiring forces. The electrodes on the lower surface of the wafer are the same as those in FIG.
[0055] 図 14は本発明の第 9の実施形態において使用される電極の構成を示している。  FIG. 14 shows the configuration of the electrodes used in the ninth embodiment of the present invention.
この第 9の実施形態においては、基板電流検出電極 26a〜26dをウェハー 23の側 面に配置していることに特徴がある。デバイスによっては、ウェハー 23の裏面あるい は表面からは電流測定が行いにくい場合がある。そのような場合は、ウェハー 23の 側面に電極を設けて電流測定を実施する。  The ninth embodiment is characterized in that the substrate current detection electrodes 26 a to 26 d are arranged on the side surface of the wafer 23. Depending on the device, it may be difficult to measure current from the back or front surface of the wafer 23. In such a case, an electrode is provided on the side surface of the wafer 23 and current measurement is performed.
[0056] 図 15は本発明の第 10の実施形態において使用される電極およびその周辺部の構 成を示している。  FIG. 15 shows the configuration of electrodes and their peripheral parts used in the tenth embodiment of the present invention.
半導体検査装置に供せられるウェハーは種々のプロセスを行うことによって膜が堆 積しており、反っている場合がある。このような場合は静電チャックを利用するのが良 い。静電チャックはウェハーと誘電体の間に 500V程度の電圧を掛けることで、お互 Vヽに電気的に引き付けあうことを利用した装置である。静電チャック用の電極 27には 高電圧を掛けるので、電流測定用の電極 28とは電気的に絶縁する。図 15では、ゥェ ハーの反りを直すのに有効なように、ウェハー周辺部に電極 27を配置する。電流測 定用の電極 28はウェハー内部に設ける。図 15の場合、静電チャックは双極型を用い ており、ウェハー全体としては、静電チャックを駆動することによって、電位が変動し ないようにしている。静電チャックは測定時にはノイズ源になるので、出来るだけ、電 源を切り影響が及ばな 、ようにする。 Wafers that are used in semiconductor inspection equipment may be warped because films are deposited by various processes. In such a case, it is better to use an electrostatic chuck. An electrostatic chuck is a device that uses a voltage of about 500V between a wafer and a dielectric to electrically attract each other. Since a high voltage is applied to the electrode 27 for the electrostatic chuck, it is electrically insulated from the electrode 28 for current measurement. In FIG. 15, an electrode 27 is arranged on the periphery of the wafer so as to be effective in correcting the warpage of the wafer. The electrode 28 for current measurement is provided inside the wafer. In the case of FIG. 15, the electrostatic chuck uses a bipolar type, and the potential of the entire wafer varies as the electrostatic chuck is driven. I am trying not to. Since the electrostatic chuck becomes a noise source during measurement, turn off the power as much as possible so as not to affect it.
[0057] 図 16は電極の上に絶縁膜 29を設けた例である。このようにすれば、裏面に絶縁膜 が無いウェハーに対しても安定して静電チャックを効かせる事が可能と成る。また、 測定電極 28もシリコンウェハーと直接接触しな 、ので、接触 Z非接触による測定の 不安定性を回避することが可能と成り、安定な測定が実現する。  FIG. 16 shows an example in which an insulating film 29 is provided on the electrode. In this way, the electrostatic chuck can be stably applied even to a wafer having no insulating film on the back surface. In addition, since the measurement electrode 28 is not in direct contact with the silicon wafer, measurement instability due to contact Z non-contact can be avoided, and stable measurement is realized.
[0058] 図 17は本発明の第 11の実施形態を示して 、る。  FIG. 17 shows an eleventh embodiment of the present invention.
本実施形態は、基板電流検出電極として、基板に直に接触させないで、測定対象 の近傍の空間に電子回収電極 35を設けている。電子ビームを測定対象に照射する と二次電子や反射電子などが同時に飛び出る。この飛び出した二次電子あるいは反 射電子などを測定対象近傍に設けた電極 35を用いて電流に変換する。例えば、図 1 7に示したように、ウェハー 23の裏面に電極 36a、 36bが設けられており、かつ、表面 に電子回収電極 35がある場合、ウェハー裏面電極 36a、 36bで測定された電流とゥ ェハー表面の電極 35で測定された電流を比較することにより測定対象の電気特性 を測定できる。いま、例えば、ウェハー 23の表面から回収される二次電子の等価抵 抗値を R3、基板裏面を通して測定される抵抗値をそれぞれ Rl、 R2とおけば、それ ぞれの測定電流値の比あるいは差を評価することにより、基板表面に形成された測 定対象素子の抵抗値 RXを知ることが出来る。  In the present embodiment, as the substrate current detection electrode, the electron recovery electrode 35 is provided in a space near the measurement object without directly contacting the substrate. When the measurement object is irradiated with an electron beam, secondary electrons and reflected electrons pop out at the same time. The ejected secondary electrons or reflected electrons are converted into current using the electrode 35 provided in the vicinity of the measurement target. For example, as shown in FIG. 17, when the electrodes 36a and 36b are provided on the back surface of the wafer 23 and the electron recovery electrode 35 is provided on the front surface, the current measured by the wafer back electrodes 36a and 36b By comparing the current measured with the electrode 35 on the wafer surface, the electrical characteristics of the object to be measured can be measured. For example, if the equivalent resistance value of secondary electrons recovered from the surface of the wafer 23 is R3 and the resistance values measured through the back of the substrate are Rl and R2, respectively, the ratio of the measured current values or By evaluating the difference, the resistance value RX of the element to be measured formed on the substrate surface can be known.
[0059] 測定に利用される電流は直流に限らず、種々の周波数に変調されていてもよい。  [0059] The current used for measurement is not limited to direct current, but may be modulated to various frequencies.
例えば、電極 36a、 36bが測定対象ウェハー 23に容量的に結合している場合には、 測定に用いる周波数を変える事で、測定回路の定数を変化させることが可能であり、 それを利用して、測定対象部分の電気抵抗や容量を計算により求めることが出来る。 例えば、意図的に電極の容量を変えた複数の電流検出用の電極を用意して、同じ 測定対象に対して検出される電流量を比較する事で、測定対象部分の抵抗値ある いはコンデンサー容量あるいはインピーダンスを求めることが出来る。特に、基準抵 抗ゃ基準容量をデバイス内部に作ることが困難な場合に電極の方に意図的に値の 既知の容量や抵抗値を付加して、測定対象の抵抗値や容量値が計算できるようにす る。 [0060] 図 17では、裏面に複数の基板電流検出電極 36a、 36bが配置されている場合を示 したが、用途によっては 1つでも構わない。基板表面側にある、電子回収電極 35も必 ずしも、別途設ける必要はなぐ例えば、ウェハーに最も近い位置に存在する対物レ ンズの表面や内部に電子回収電極を設けることが出来る。シンチレ一ター等の電子 検出装置も電子回収電極として利用できる。 For example, when the electrodes 36a and 36b are capacitively coupled to the wafer 23 to be measured, it is possible to change the constant of the measurement circuit by changing the frequency used for the measurement. The electric resistance and capacitance of the measurement target part can be obtained by calculation. For example, by preparing multiple electrodes for current detection with intentionally changed electrode capacities and comparing the amount of current detected for the same measurement object, the resistance value or capacitor of the measurement object part is compared. Capacitance or impedance can be obtained. In particular, when it is difficult to create a reference capacitance inside the device, it is possible to calculate the resistance or capacitance value of the measurement target by intentionally adding a known capacitance or resistance value to the electrode. Do this. FIG. 17 shows the case where a plurality of substrate current detection electrodes 36a and 36b are arranged on the back surface, but one may be used depending on the application. The electron recovery electrode 35 on the substrate surface side is not necessarily provided separately. For example, the electron recovery electrode can be provided on the surface or inside of the objective lens located closest to the wafer. An electron detector such as a scintillator can also be used as an electron recovery electrode.
[0061] 図 18は上記実施形態の等価回路を示している。例えば、コンタクトホールを埋めて いるプラグ部分の抵抗値 Rxを知りたい場合がある。その場合には、プラグによって形 成される電流経路とは別の電流経路を作り、その経路に流れる電流とプラグを経由し て流れる電流値の比を測定することで実行できる。本実施形態では、別の経路を作 るために、測定対象近傍に電極 35を配置している。電子ビームを照射すると二次電 子あるいは反射電子等が生じる。その電子を回収して電流測定を行うと、別の経路を 作ったことになる。電極 35を置いて電子を回収する経路は、ある一定の抵抗および 容量を持った回路を測定対象に接続したのと同じ効果がある。これらの電気定数は 測定のコンフィギュレーションが変化しない限り同じと考えられるので、測定対象のプ ラグの抵抗値が変化すれば、基板電流値の比率に変化が生じる。この比率を測定す ることによってプラグ部分の非常に小さな抵抗値の差を検出することが出来る。  FIG. 18 shows an equivalent circuit of the above embodiment. For example, you may want to know the resistance value Rx of the plug that fills the contact hole. In that case, it can be executed by creating a current path different from the current path formed by the plug and measuring the ratio of the current flowing through the path to the current value flowing through the plug. In the present embodiment, in order to create another path, the electrode 35 is arranged in the vicinity of the measurement target. When irradiated with an electron beam, secondary electrons or reflected electrons are generated. When we collected the electrons and measured the current, we created another path. The path for collecting the electrons by placing the electrode 35 has the same effect as connecting a circuit having a certain resistance and capacitance to the object to be measured. These electrical constants are considered to be the same unless the measurement configuration changes, so if the resistance value of the plug being measured changes, the ratio of the substrate current values will change. By measuring this ratio, it is possible to detect a very small resistance difference in the plug portion.
[0062] 図 19は本発明の第 12の実施形態を示して 、る。  FIG. 19 shows a twelfth embodiment of the present invention.
本実施形態は、上記実施形態の抵抗推定を容易にするものである。例えば、測定 に使用する基板電流測定電極を 4つ用意し、それぞれ同じ既知の等価インピーダン スを持つようにしておく。それぞれの電極に接続された電流計 1〜4は外部からの信 号により入力端子が仮想接地状態あるいは絶縁状態に切り変えることが出来るように する。また、電子回収電極 35に電流計 5を接続する。最初の測定では、電流計 1、 5 のみが仮想接地状態になるようにする。この状態で、電子ビームを測定対象に照射し 、生じる電流値を電流計 1と電流計 5で測定し、測定値を記録する。次に、電流計 1と 電流計 2および 5のみが仮想接地状態になるようにして、測定対象に電子ビームを照 射しそれぞれの電流計 1, 2, 5で電流値を測定し測定値を記録する。同様に、電流 計 1, 2, 3および 5のみが仮想接地状態になるようにして、測定対象電子ビームを照 射しそれぞれの電流計 1, 2, 3, 5で電流値を測定し測定値を記録する。最後に全て の電流計を仮想接地状態にして測定対象に電子ビームを照射し、それぞれの電流 計で電流値を測定し記録する。 This embodiment facilitates the resistance estimation of the above embodiment. For example, prepare four substrate current measurement electrodes to be used for measurement, each with the same known equivalent impedance. The ammeters 1 to 4 connected to the respective electrodes allow the input terminal to be switched to a virtual ground state or an insulation state by an external signal. In addition, an ammeter 5 is connected to the electron recovery electrode 35. For the first measurement, make sure that only ammeters 1 and 5 are in virtual ground. In this state, the measurement target is irradiated with an electron beam, the resulting current value is measured with ammeter 1 and ammeter 5, and the measured value is recorded. Next, with only ammeter 1 and ammeters 2 and 5 in a virtual ground state, irradiate the measurement object with an electron beam and measure the current value with each of ammeters 1, 2, and 5. Record. Similarly, with only the ammeters 1, 2, 3 and 5 in the virtual ground state, irradiate the target electron beam and measure the current values with the respective ammeters 1, 2, 3, and 5. Record. Finally everything Set the current meter to a virtual ground state, irradiate the object to be measured with an electron beam, and measure and record the current value with each ammeter.
[0063] 以上のようにすると、測定対象力 みて基板側のインピーダンスが 1, 2分の 1, 3分 の 1, 4分の 1と変化させた状態で電流値を測定したことになる。これらの状態で測定し た電流値を連立方程式を解いて解析することにより、コンタクトプラグの抵抗値を推定 することが出来る。特に、測定対象と電子回収電極 35が作る等価回路定数は未知数 であるが、連立方程式を解くことによって、消去可能であり、電子回収電極 35の作る 回路の定数を予め測定して知る必要はな 、。  As described above, the current value was measured in a state where the impedance on the substrate side was changed to 1, 1/4 of 1/4, 1/3, and 1/4 of the measurement target force. By analyzing the current values measured in these conditions by solving simultaneous equations, the resistance value of the contact plug can be estimated. In particular, the equivalent circuit constant created by the object to be measured and the electron recovery electrode 35 is unknown, but it can be eliminated by solving the simultaneous equations, and it is not necessary to know in advance the constant of the circuit created by the electron recovery electrode 35. ,.
[0064] 以上の実施形態では、抵抗値の推定を主に取り上げた力 測定できるのは直流抵 抗だけではなぐコンデンサー容量やリアクタンスなどインピーダンスを測定すること 出来る。コンデンサー容量の測定は周波数変調された電子ビームを測定対象電子 素子に照射することによって測定することが出来る。  [0064] In the above embodiment, it is possible to measure the impedance such as the capacitor capacity and reactance as well as the direct current resistance that can measure the force mainly focusing on the estimation of the resistance value. Capacitor capacity can be measured by irradiating the measurement target electronic element with a frequency-modulated electron beam.
[0065] 実際の方法は、教科書にも書かれて 、るように、種々の交流インピーダンス測定法 に準ずる。測定に用いる電子ビームは、連続である必要は無ぐパルス状の電子ビー ムを照射することでも実現できる。測定対象にパルス状の電子ビームを照射した際に 生じるそれぞれの電極で測定される電流波形を測定する事によって、過渡応答特性 を得ることが出来る。この過渡応答波形を解析する事により、例えば、時定数の比率 をもとめることで、測定対象のインピーダンスを測定することが出来る。  [0065] The actual method is based on various AC impedance measurement methods as described in textbooks. The electron beam used for the measurement can be realized by irradiating a pulsed electron beam that does not need to be continuous. Transient response characteristics can be obtained by measuring the current waveform measured at each electrode that is generated when a pulsed electron beam is irradiated onto the measurement target. By analyzing the transient response waveform, for example, the impedance of the measurement object can be measured by determining the ratio of the time constants.
[0066] 以上示した実施形態の電極の数や組み合わせは必要に応じて、適切なものを利用 する。複数の電極を配置した場合には、時間的に順次利用することも可能であり、そ れぞれの組み合わせを時間軸に対して可変としてもよい。  [0066] Appropriate numbers and combinations of the electrodes of the embodiment described above are used as necessary. When a plurality of electrodes are arranged, they can be used sequentially in time, and each combination may be variable with respect to the time axis.
[0067] 上記実施例で利用される電極の間隔、大きさは測定対象のウェハーの持つ電極に 対して一致するように設計することが望ましい。もしくは、調節可能としても良い。 以上の実施例で測定に供せられるウェハーは実際に製品と成るデバイスが作られ たウェハーをそのまま利用することもあるし、本発明が実施い易いように、ウェハーに 特別な回路を設ける、あるいは、ウェハー裏面に電極との間の特別な配線を可能に するような配線を別途設けても良い。本発明を実施し易いように工夫された TEGゥェ ハーであっても良い。 [0068] 特に、最近の製品ウェハーは裏面を薄く削って、電極を裏面に設け、別のウェハー 力もできた半導体基板上に製造された半導体素子との電気的な接続を取る積層構 造を持つものも多い。(フラッシュメモリースタック)その場合のように、本発明の実施を 行う際に、ウェハーの裏面を削って薄くするあるいは、ウェハー裏面と表面とを結ぶ 配線あるいは拡散層を設けて、本発明の複数の電極と容易に接続できるように工夫 を行っても一向に差し支えな ヽ。 [0067] It is desirable that the spacing and size of the electrodes used in the above embodiments be designed so as to match the electrodes of the wafer to be measured. Alternatively, it may be adjustable. The wafer used for the measurement in the above embodiment may be a wafer on which a device as a product is actually made, or a special circuit is provided on the wafer so that the present invention is easy to implement. In addition, a wiring that enables a special wiring between the electrode and the electrode may be separately provided on the back surface of the wafer. A TEG wafer devised so that the present invention can be easily implemented may be used. [0068] In particular, recent product wafers have a laminated structure in which the back surface is thinned, electrodes are provided on the back surface, and electrical connection is made with a semiconductor device manufactured on a semiconductor substrate that also has another wafer force. There are many things. (Flash memory stack) As in that case, when the present invention is carried out, the back surface of the wafer is thinned or thinned, or a wiring or a diffusion layer connecting the back surface of the wafer and the front surface is provided. Even if it is devised so that it can be easily connected to the electrode, there is no problem.
産業上の利用可能性  Industrial applicability
[0069] 本発明は、半導体デバイス又はその製造工程での分析、製造、測定又は評価など に用いられる装置に有用である。例えば、ウェハーなどの半導体基板に電子ビーム 又はイオンビームを照射する手法を用いる分析技術、測定技術、評価技術、検査技 術、および半導体デバイス製造装置および方法の分野において本発明を利用するこ とがでさる。  [0069] The present invention is useful for a semiconductor device or an apparatus used for analysis, manufacturing, measurement, or evaluation in a manufacturing process thereof. For example, the present invention can be used in the fields of analysis techniques, measurement techniques, evaluation techniques, inspection techniques, and semiconductor device manufacturing apparatuses and methods that use a method of irradiating a semiconductor substrate such as a wafer with an electron beam or ion beam. I'll do it.

Claims

請求の範囲 The scope of the claims
[I] 半導体基板を電極に当接し、前記半導体基板へ電子ビームを照射し、該電子ビー ムによって前記半導体基板に誘起された基板電流を前記電極を介して測定し、該測 定の結果から前記半導体基板に形成された微細構造の評価値を得るように構成され た半導体検査装置において、  [I] A semiconductor substrate is brought into contact with an electrode, the semiconductor substrate is irradiated with an electron beam, a substrate current induced in the semiconductor substrate by the electron beam is measured through the electrode, and a result of the measurement In a semiconductor inspection apparatus configured to obtain an evaluation value of a microstructure formed on the semiconductor substrate,
前記電極が、お互いに電気的に絶縁された複数の基板電流検出電極によって構 成されて!/ゝることを特徴とする半導体検査装置。  The electrode is composed of a plurality of substrate current detection electrodes electrically insulated from each other! / Semiconductor inspection equipment characterized by squeezing.
[2] 前記複数の基板電流検出電極において各々検出した電流を測定する、お互いに 独立した複数の電流測定手段を有することを特徴とする請求項 1に記載の半導体検 查装置。 [2] The semiconductor detection device according to [1], further comprising a plurality of independent current measuring means for measuring currents detected at the plurality of substrate current detection electrodes.
[3] 前記複数の基板電流検出電極が同一平面上に形成されていることを特徴とする請 求項 1または請求項 2に記載の半導体検査装置。  [3] The semiconductor inspection apparatus according to claim 1 or 2, wherein the plurality of substrate current detection electrodes are formed on the same plane.
[4] 前記複数の基板電流検出電極が各々同一形状の電極によって形成されていること を特徴とする請求項 1〜請求項 3のいずれかの項に記載の半導体検査装置。 [4] The semiconductor inspection apparatus according to any one of [1] to [3], wherein each of the plurality of substrate current detection electrodes is formed of an electrode having the same shape.
[5] 前記複数の基板電流検出電極が、中心部の円状電極と、それを取り囲む同心円状 の環状電極力 構成されていることを特徴とする請求項 1〜請求項 3のいずれかの項 に記載の半導体検査装置。 [5] The plurality of substrate current detection electrodes are configured by a circular electrode in a central portion and a concentric annular electrode force surrounding the circular electrode. The semiconductor inspection apparatus described in 1.
[6] 前記複数の基板電流検出電極が、短冊状の複数の電極から構成されていることを 特徴とする請求項 1〜請求項 3のいずれかの項に記載の半導体検査装置。 [6] The semiconductor inspection apparatus according to any one of [1] to [3], wherein the plurality of substrate current detection electrodes include a plurality of strip-shaped electrodes.
[7] 前記複数の基板電流検出電極が、ドット状の複数の電極から構成されていることを 特徴とする請求項 1〜請求項 3のいずれかの項に記載の半導体検査装置。 [7] The semiconductor inspection apparatus according to any one of [1] to [3], wherein each of the plurality of substrate current detection electrodes includes a plurality of dot-shaped electrodes.
[8] 前記複数の基板電流検出電極の一部または全部が、前記半導体基板の上面に当 接されることを特徴とする請求項 1または請求項 2に記載の半導体検査装置。 [8] The semiconductor inspection apparatus according to [1] or [2], wherein some or all of the plurality of substrate current detection electrodes are in contact with an upper surface of the semiconductor substrate.
[9] 前記複数の基板電流検出電極の一部または全部が、前記半導体基板の側面に当 接されることを特徴とする請求項 1または請求項 2に記載の半導体検査装置。 [9] The semiconductor inspection apparatus according to [1] or [2], wherein some or all of the plurality of substrate current detection electrodes are in contact with a side surface of the semiconductor substrate.
[10] 前記複数の基板電流検出電極が、メッシュ状の電極であることを特徴とする請求項10. The plurality of substrate current detection electrodes are mesh electrodes.
1〜請求項 3のいずれかの項に記載の半導体検査装置。 The semiconductor inspection apparatus according to any one of claims 1 to 3.
[II] 静電チャック用の電極を、前記複数の基板電流検出電極と同一の支持基板上に設 けたことを特徴とする請求項 1〜請求項 10のいずれかの項に記載の半導体検査装 置。 [II] An electrode for an electrostatic chuck is provided on the same support substrate as the plurality of substrate current detection electrodes. The semiconductor inspection device according to claim 1, wherein the semiconductor inspection device is a semiconductor device.
[12] 前記複数の基板電流検出電極を覆う絶縁膜を設けたことを特徴とする請求項 1〜 請求項 11の!、ずれかの項に記載の半導体検査装置。  12. The semiconductor inspection apparatus according to any one of claims 1 to 11, wherein an insulating film is provided to cover the plurality of substrate current detection electrodes.
[13] 半導体基板を複数の基板電流検出電極に当接し、前記半導体基板へ電子ビーム を照射し、該電子ビームによって前記半導体基板に誘起された基板電流を前記複数 の基板電流検出電極を介して測定し、該測定の結果から前記半導体基板に形成さ れた微細構造の評価値を得るように構成された半導体検査装置にぉ ヽて、 [13] The semiconductor substrate is brought into contact with the plurality of substrate current detection electrodes, the semiconductor substrate is irradiated with an electron beam, and the substrate current induced in the semiconductor substrate by the electron beam is passed through the plurality of substrate current detection electrodes. Measured and applied to a semiconductor inspection apparatus configured to obtain an evaluation value of a microstructure formed on the semiconductor substrate from the result of the measurement,
前記電子ビームを前記半導体基板に照射する第 1のステップと、  A first step of irradiating the semiconductor substrate with the electron beam;
前記複数の基板電流検出電極に生じた電流値を同時に測定する第 2のステップと 前記第 2のステップにお 、て測定されたそれぞれの電流値用いて前記半導体基板 の評価値を得る第 3のステップと、  A second step of simultaneously measuring current values generated in the plurality of substrate current detection electrodes; and a third step of obtaining an evaluation value of the semiconductor substrate using the respective current values measured in the second step. Steps,
を有することを特徴とする半導体検査方法。  A semiconductor inspection method characterized by comprising:
[14] お互いに異なるインピーダンスを有する前記複数の基板電流検出電極を利用して 、前記半導体基板の評価値を得ることを特徴とする請求項 13に記載の半導体検査 方法。 14. The semiconductor inspection method according to claim 13, wherein an evaluation value of the semiconductor substrate is obtained by using the plurality of substrate current detection electrodes having different impedances.
[15] 前記電子ビームが、所望の周波数の交流信号状に変調されていることを特徴とす る請求項 13または請求項 14に記載の半導体検査方法。  15. The semiconductor inspection method according to claim 13, wherein the electron beam is modulated into an AC signal having a desired frequency.
[16] 前記半導体基板の電気特性を未知数とし、測定回路全体の等価回路と前記複数 の基板電流検出電極によって測定された電流値を利用して連立方程式を解き、前記 半導体基板の電気特性を求めることを特徴とする請求項 13に記載の半導体検査方 法。 [16] The electrical characteristics of the semiconductor substrate are obtained by solving the simultaneous equations using the equivalent circuit of the entire measurement circuit and the current values measured by the plurality of substrate current detection electrodes, with the electrical characteristics of the semiconductor substrate being unknown. The semiconductor inspection method according to claim 13.
PCT/JP2006/321666 2006-10-30 2006-10-30 Semiconductor inspection equipment and semiconductor inspection method WO2008053518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321666 WO2008053518A1 (en) 2006-10-30 2006-10-30 Semiconductor inspection equipment and semiconductor inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321666 WO2008053518A1 (en) 2006-10-30 2006-10-30 Semiconductor inspection equipment and semiconductor inspection method

Publications (1)

Publication Number Publication Date
WO2008053518A1 true WO2008053518A1 (en) 2008-05-08

Family

ID=39343878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321666 WO2008053518A1 (en) 2006-10-30 2006-10-30 Semiconductor inspection equipment and semiconductor inspection method

Country Status (1)

Country Link
WO (1) WO2008053518A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024015795A1 (en) * 2022-07-12 2024-01-18 Femtometrix, Inc. Method and apparatus for non-invasive semiconductor technique for measuring dielectric/semiconductor interface trap density using scanning electron microscope charging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892232A (en) * 1981-11-27 1983-06-01 Nec Home Electronics Ltd Wafer inspection device
JP2000055991A (en) * 1998-08-07 2000-02-25 Okano Hightech Kk Sensor probe for substrate inspection and its production method
JP2001345370A (en) * 2000-06-01 2001-12-14 Ibiden Co Ltd Semiconductor manufacturing and inspecting apparatus
WO2002013227A1 (en) * 2000-07-27 2002-02-14 Ebara Corporation Sheet beam test apparatus
JP2002083849A (en) * 1999-11-05 2002-03-22 Nec Corp Semiconductor device inspecting device
JP2006128351A (en) * 2004-10-28 2006-05-18 Tokyo Seimitsu Co Ltd System and method for measuring capacity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892232A (en) * 1981-11-27 1983-06-01 Nec Home Electronics Ltd Wafer inspection device
JP2000055991A (en) * 1998-08-07 2000-02-25 Okano Hightech Kk Sensor probe for substrate inspection and its production method
JP2002083849A (en) * 1999-11-05 2002-03-22 Nec Corp Semiconductor device inspecting device
JP2001345370A (en) * 2000-06-01 2001-12-14 Ibiden Co Ltd Semiconductor manufacturing and inspecting apparatus
WO2002013227A1 (en) * 2000-07-27 2002-02-14 Ebara Corporation Sheet beam test apparatus
JP2006128351A (en) * 2004-10-28 2006-05-18 Tokyo Seimitsu Co Ltd System and method for measuring capacity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024015795A1 (en) * 2022-07-12 2024-01-18 Femtometrix, Inc. Method and apparatus for non-invasive semiconductor technique for measuring dielectric/semiconductor interface trap density using scanning electron microscope charging

Similar Documents

Publication Publication Date Title
US20160299103A1 (en) Application of electron-beam induced plasma probes to inspection, test, debug and surface modifications
JP5057572B2 (en) Manufacturing method of micro condenser microphone
US7372050B2 (en) Method of preventing charging, and apparatus for charged particle beam using the same
US7602197B2 (en) High current electron beam inspection
CN103649764B (en) Non-mechanical activation signal measurement apparatus and its signal measurement method
JP2002083849A (en) Semiconductor device inspecting device
US20170294291A1 (en) APPLICATION OF eBIP TO INSPECTION, TEST, DEBUG AND SURFACE MODIFICATIONS
JPH0562700B2 (en)
JP2013187510A (en) Semiconductor inspection device and semiconductor inspection method
JP4767650B2 (en) Semiconductor device inspection equipment
US7358491B2 (en) Method and apparatus for the depth-resolved characterization of a layer of a carrier
WO2008053518A1 (en) Semiconductor inspection equipment and semiconductor inspection method
JP2008004569A (en) Electrostatic charge neutralization control method and charged particle beam device using it
US4745360A (en) Electron-beam probe system utilizing test device having interdigitated conductive pattern and associated method of using the test device
CN113495081B (en) Method for measuring secondary electron emission coefficient
JP2014025815A (en) Pattern measurement device
CN113495082B (en) Secondary electron emission coefficient measuring device
WO2008053512A1 (en) Semiconductor inspecting apparatus
US20230028337A1 (en) Method and apparatus for detecting discharge site
JP5005551B2 (en) Semiconductor measuring apparatus and semiconductor measuring method
US20230341438A1 (en) Detection unit, semiconductor film layer inspection apparatus including the same, and semiconductor film layer inspection method using the same
JP5042282B2 (en) Ion beam equipment
TW202414488A (en) Charged-particle beam apparatus with fast focus correction and methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06812175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP