JP5042282B2 - Ion beam equipment - Google Patents

Ion beam equipment Download PDF

Info

Publication number
JP5042282B2
JP5042282B2 JP2009174083A JP2009174083A JP5042282B2 JP 5042282 B2 JP5042282 B2 JP 5042282B2 JP 2009174083 A JP2009174083 A JP 2009174083A JP 2009174083 A JP2009174083 A JP 2009174083A JP 5042282 B2 JP5042282 B2 JP 5042282B2
Authority
JP
Japan
Prior art keywords
sample
electrode
ion beam
charged particle
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009174083A
Other languages
Japanese (ja)
Other versions
JP2009245952A (en
Inventor
宗行 福田
広康 志知
聡 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009174083A priority Critical patent/JP5042282B2/en
Publication of JP2009245952A publication Critical patent/JP2009245952A/en
Application granted granted Critical
Publication of JP5042282B2 publication Critical patent/JP5042282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、荷電粒子線を試料に照射して観察・分析・加工する荷電粒子線技術に関する。   The present invention relates to a charged particle beam technology for irradiating a charged particle beam to a sample for observation, analysis, and processing.

荷電粒子線を試料に照射して、試料の観察、分析、加工を行う荷電粒子線装置は、広く使用されている。試料が絶縁物質を含む場合に、荷電粒子を走査して試料表面に照射すると、試料表面に帯電を生じることがある。帯電は、照射ビームのドリフトと、2次粒子の放出量の減少により、観察・分析・加工の妨げとなる。そのため、この帯電を防止する方法が重要になる。   A charged particle beam apparatus for irradiating a sample with a charged particle beam and observing, analyzing, and processing the sample is widely used. When the sample includes an insulating material, when charged particles are scanned and irradiated on the sample surface, the sample surface may be charged. Charging hinders observation, analysis, and processing due to drift of the irradiation beam and a decrease in the amount of secondary particles emitted. Therefore, a method for preventing this charging becomes important.

従来の帯電防止法には、荷電粒子を試料表面に照射することにより帯電を中和する方法、紫外線又は荷電粒子線の照射により試料表面に導電層を形成し帯電電荷を逃がす方法、導電性膜で試料表面を覆うことにより帯電電荷を逃がす方法、導電性の箔又はペースト又は端子により帯電電荷を逃がす方法がある。   Conventional antistatic methods include a method of neutralizing charging by irradiating the sample surface with charged particles, a method of releasing a charged charge by forming a conductive layer on the sample surface by irradiating with ultraviolet rays or charged particle beams, a conductive film There are a method of releasing the charged charge by covering the sample surface and a method of releasing the charged charge by a conductive foil, paste or terminal.

荷電粒子の照射により帯電を中和する方法に、従来技術1として「荷電ビーム処理装置およびその方法(特開平8−138617号公報)」がある。従来技術1は、イオンビームによる試料の帯電を電子ビームで中和する際に、中和電子銃の先端をノズル状にして試料の表面近くに設置することにより2次電子検出器が中和電子銃からの電子を引き込むこと無く試料表面からの2次電子を検出する装置及び方法を開示している。   As a prior art 1, there is a “charged beam processing apparatus and method (Japanese Patent Laid-Open No. 8-138617)” as a method for neutralizing charging by irradiation with charged particles. In the prior art 1, when neutralizing the sample charged by the ion beam with the electron beam, the secondary electron detector is arranged near the surface of the sample with the tip of the neutralizing electron gun in the form of a nozzle so that the secondary electron detector is neutralized electrons. An apparatus and method for detecting secondary electrons from a sample surface without drawing electrons from a gun is disclosed.

紫外線又は荷電粒子線の照射により試料表面に導電層を形成し帯電を逃がす方法に、従来技術2として「2次電子画像検出法及びその装置並びに集束荷電粒子ビームによる処理方法及びその装置(特開平11−154479号公報)」、「荷電ビーム処理装置およびその方法(特開平8−138617号公報)」がある。従来技術2は、試料表面の集束荷電粒子ビーム照射領域を含めた領域への正イオンビーム照射により、導電層を誘起し電荷を逃がす方法により、試料の状態、種類によらず安定して帯電を回避し、リアルタイムで試料の2次電子画像を高解像で検出して試料のパターン観察や集束荷電粒子ビームの位置決めなどを高精度に実現し、1.0μm以下の加工処理を実現する装置及び方法を開示している。   As a conventional technique 2, a method of forming a conductive layer on the sample surface by irradiation of ultraviolet rays or charged particle beams to release the charge is disclosed as “Secondary electron image detection method and apparatus thereof, and processing method and apparatus thereof by focused charged particle beam ( 11-154479) and "charged beam processing apparatus and method (Japanese Patent Laid-Open No. 8-138617)". Prior art 2 uses a method of inducing a conductive layer to release charges by irradiating positive ion beam to the area including the focused charged particle beam irradiation area on the surface of the sample, thereby stably charging regardless of the state and type of the sample. Avoiding, real-time detection of secondary electron images of the sample with high resolution, realizing the pattern observation of the sample and positioning of the focused charged particle beam with high accuracy, and an apparatus that realizes processing of 1.0 μm or less, and A method is disclosed.

導電性膜で試料表面を覆う方法に、従来技術3として「導電性レジスト膜及び半導体装置の製造方法(特開平7−74076号公報)」がある。従来技術3は、荷電粒子に感応する樹脂膜の下層に導電性の膜を形成する方法により、帯電を極力抑制する方法と、荷電粒子ビームの屈曲照射現象を低減して精度良いパターン露光を行う方法を開示している。   As a method of covering the sample surface with a conductive film, there is "Conductive resist film and semiconductor device manufacturing method (Japanese Patent Laid-Open No. 7-74076)" as Prior Art 3. Prior art 3 performs a pattern exposure with high accuracy by reducing the charged particle beam bending irradiation phenomenon by suppressing the charging as much as possible by forming a conductive film below the resin film sensitive to charged particles. A method is disclosed.

導電性の端子により帯電を逃がす方法に、従来技術4として「試料帯電除去装置(特開2000−173525号公報)」がある。従来技術4は、端子を遠隔操作により観察・分析・加工領域近傍の少なくとも180度以上の周囲を囲むように接触させ、観察・分析・加工の過程で生じる電荷をアース線を通して逃がすことにより、帯電現象に起因する観察・分析・加工上の支障を排し、高感度・高分解能・高精密作業を実現する装置を開示する。   As a prior art 4, there is a “sample charge removing device (Japanese Patent Laid-Open No. 2000-173525)” as a method for releasing the charge by using a conductive terminal. In the prior art 4, the terminal is contacted so as to surround at least 180 degrees in the vicinity of the observation / analysis / processing area by remote control, and the charge generated in the process of observation / analysis / processing is discharged through the ground wire. Disclosed is a device that eliminates obstacles in observation, analysis, and processing due to phenomena and realizes high sensitivity, high resolution, and high precision work.

導電性のプローブにより帯電電荷を捕らえる方法に、従来技術5として「微細パターンの測定装置(特開平7−94562号公報)」がある。従来技術5は、電子線による負の帯電を、微細パターンに直接接触させるか又は、微細パターンから30μm離し、5000Vの正の電圧をプローブに与えて帯電電荷をとらえることによりチャージアップ現象を未然に防止する微細パターンの測定装置を開示している。   As a prior art 5, there is a “fine pattern measuring device (Japanese Patent Laid-Open No. 7-94562)” as a method for capturing a charged charge with a conductive probe. In the prior art 5, the negative charge due to the electron beam is brought into direct contact with the fine pattern or separated from the fine pattern by 30 μm, and a positive voltage of 5000 V is applied to the probe to catch the charged charge in advance. An apparatus for measuring a fine pattern to be prevented is disclosed.

特開平8−138617号公報JP-A-8-138617 特開平11−154479号公報Japanese Patent Laid-Open No. 11-154479 特開平8−138617号公報JP-A-8-138617 特開平7−74076号公報JP 7-74076 A 特開2000−173525号公報JP 2000-173525 A 特開平7−94562号公報Japanese Unexamined Patent Publication No. 7-94562

上述の従来技術は、試料表面に導電性物質を被覆又は接触する方法又は荷電粒子を照射する方法などにより、荷電粒子線を照射時に発生する帯電を除去する。   The above-described prior art removes the charge generated when a charged particle beam is irradiated by a method of coating or contacting a conductive material on a sample surface or a method of irradiating charged particles.

従来技術1または従来技術2で示した帯電防止法では、観察・分析・加工に用いる荷電粒子線に対して、帯電防止に用いる電子又はイオンビームの照射量が一致しないと、帯電を発生する。この際、荷電粒子線の照射位置精度の向上による観察像の解像度向上と、荷電粒子線の照射により発生する2次電子の放出量増大による観察像コントラストの向上を基準にかかる帯電の中和条件を検出する手段により、電子又はイオンビームの照射量を制御する必要がある。さらに、中和条件の検出手段による照射量制御は、操作者の経験を必要とする。   In the antistatic method shown in prior art 1 or prior art 2, electrification occurs when the irradiation amount of the electron or ion beam used for antistatic does not match the charged particle beam used for observation / analysis / processing. In this case, the neutralization condition for charging is based on the improvement of the resolution of the observation image by improving the irradiation position accuracy of the charged particle beam and the improvement of the observation image contrast by the increase of the emission amount of secondary electrons generated by the irradiation of the charged particle beam. It is necessary to control the irradiation amount of the electron beam or ion beam by means for detecting. Furthermore, the dose control by the neutralization condition detection means requires the experience of the operator.

さらに、電子又はイオンビームの照射により放出される2次電子は、2次電子検出器に引き込まれる。この時、荷電粒子線により試料表面から放出した2次電子と重なるために、電子又はイオンビームの照射による2次電子は、観察像を著しく劣化する。そこで、電子又はイオンビームの照射による2次電子放出量を抑えるためには照射量の制限が必要となり、試料表面の帯電量が多い時、電子又はイオンビームの照射による帯電防止法は有効ではない。   Further, secondary electrons emitted by irradiation with electrons or ion beams are drawn into the secondary electron detector. At this time, since it overlaps with secondary electrons emitted from the surface of the sample by the charged particle beam, the secondary electrons due to irradiation with electrons or ion beams significantly deteriorate the observation image. Therefore, in order to suppress the amount of secondary electron emission due to electron or ion beam irradiation, it is necessary to limit the irradiation amount. When the amount of charge on the sample surface is large, the antistatic method by electron or ion beam irradiation is not effective. .

一般に、荷電粒子線の照射により発生する2次電子は、2次イオンに比較して10〜100倍多く放出される。そのため、2次電子信号をもとにした観察像は、2次イオンのものよりも解像度がよい。しかし、帯電を中和するために電子又はイオンビームを照射する場合は、2次電子発生のために、2次電子信号をもとにした観察像は、2次イオンのものより解像度が劣化してしまう。したがって、荷電粒子線装置では2次イオン検出器が広く用いられている。   Generally, secondary electrons generated by irradiation with a charged particle beam are emitted 10 to 100 times more than secondary ions. Therefore, the resolution of the observation image based on the secondary electron signal is better than that of the secondary ion. However, when irradiating an electron or ion beam to neutralize the charge, the resolution of the observed image based on the secondary electron signal is lower than that of the secondary ion because of generation of secondary electrons. End up. Therefore, secondary ion detectors are widely used in charged particle beam devices.

従来技術3で示した帯電防止法では、試料表面に帯電防止膜を作製する。試料表面を覆ってしまうと、荷電粒子線で表面の構造を観察できなくなり、荷電粒子線による観察・分析・加工の位置決定に不都合を生じる。さらに、試料汚染を回避するためには、該試料表面に形成した帯電防止膜は荷電粒子線による観察・分析・加工後に除去しなければならない。   In the antistatic method shown in Prior Art 3, an antistatic film is produced on the sample surface. If the surface of the sample is covered, the surface structure cannot be observed with the charged particle beam, which causes inconvenience in determining the position of observation / analysis / processing with the charged particle beam. Furthermore, in order to avoid sample contamination, the antistatic film formed on the sample surface must be removed after observation / analysis / processing with a charged particle beam.

従来技術4で示した導電性の端子により帯電を逃がす方法は、観察・分析・加工領域の少なくとも180度以上の周囲を囲むように、端子を遠隔操作により接触させなければならない。該観察・分析・加工領域の180度以上の周囲を囲むように端子を接触させることにより、端子接触の確認が難しくなり、同時に、端子の接触時の位置精度が低下する。さらに、荷電粒子線を照射する観察・分析・加工領域より、広い領域を端子の接触により汚染する。   In the method of releasing the charge by the conductive terminal shown in the prior art 4, the terminal must be brought into contact by remote operation so as to surround at least 180 degrees around the observation / analysis / processing area. By contacting the terminal so as to surround the observation / analysis / processing area of 180 degrees or more, it is difficult to confirm the terminal contact, and at the same time, the positional accuracy at the time of contact of the terminal is lowered. Furthermore, a larger area than the observation / analysis / processing area irradiated with the charged particle beam is contaminated by contact with the terminal.

従来技術5で示した導電性のプローブにより帯電電荷を捕らえる方法は、プローブ接触時は、プローブが微細パターンの一部を隠してしまうことにより観察できなくなり、プローブ非接触時は、帯電電子をプローブでとらえるときの強力な電界で観察像が歪んでしまう。   In the method of capturing charged charges with the conductive probe shown in the prior art 5, when the probe is in contact, the probe hides a part of the fine pattern and cannot be observed, and when the probe is not in contact, the charged electrons are probed. The observation image is distorted by a strong electric field when captured by

帯電防止法を用いずに荷電粒子線を用いて試料作製をする場合、操作者はドリフトする観察像を頼りに、観察・分析・加工をしなければならない。これらの操作や設定を目測で確認するために、帯電防止法を用いない観察・分析・加工は熟練を要する作業であった。この際に、操作者は、加工を失敗すると試料を破壊し、プローブ操作を失敗すると試料破壊又はプローブ先端破損を起こす。   When a sample is prepared using a charged particle beam without using an antistatic method, the operator must perform observation, analysis, and processing on the basis of a drifting observation image. In order to confirm these operations and settings by visual observation, observation, analysis, and processing without using the antistatic method are work requiring skill. At this time, the operator destroys the sample if the processing fails, and causes sample destruction or probe tip damage if the probe operation fails.

これらの方法では、試料に対する汚染低減、導電物質の表面への被覆又は接触の作業軽減、荷電粒子線の試料表面への照射により新たに発生する帯電と、2次電子を用いた観察・分析・加工への端子の影響低減、試料から直接試料片を摘出時の熟練技術の排除などの課題を有する。   In these methods, the contamination of the sample is reduced, the work of coating or contacting the surface of the conductive material is reduced, the charge newly generated by irradiation of the charged particle beam on the sample surface, and observation / analysis using secondary electrons It has problems such as reducing the influence of terminals on processing and eliminating skilled techniques when extracting sample pieces directly from the sample.

本発明は、上記の点に鑑みてなされたものであり、試料表面での帯電を抑制するための経験や熟練技能工程を排除した、信頼性の高い帯電中和制御方法を提供し、総合的に分析や試料作製効率の良い荷電粒子線装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides a highly reliable charge neutralization control method that eliminates experience and skilled skill steps for suppressing charging on the surface of a sample. Another object of the present invention is to provide a charged particle beam apparatus with good analysis and sample preparation efficiency.

上記目的を達成する手段として、本発明は、荷電粒子線(イオンビーム、電子線、等)を試料に照射した際に発生する帯電を、照射領域に隣接または接触する中和用電極により制御するという新しい知見に基づく方法を提供する。   As means for achieving the above object, the present invention controls charging generated when a sample is irradiated with a charged particle beam (ion beam, electron beam, etc.) by a neutralizing electrode adjacent to or in contact with the irradiation region. A method based on the new knowledge is provided.

中和用電極と照射領域間が電気的絶縁状態であっても、荷電粒子線の照射をきっかけにして、帯電している照射領域と中和用電極との間に荷電粒子の授受が成立する。この原因は、荷電粒子線の照射により帯電した試料表面から発生する2次粒子を中和用電極に効率良く引き込むことにより、中和用電極と照射領域の間で近接電荷交換が発生する。中和用電極が、照射領域から例えば300μm以内に隣接または接触していると、荷電粒子線の照射をきっかけにして、帯電している照射領域と中和用電極との間に近接電流が流れる。   Even if the neutralization electrode and the irradiation region are in an electrically insulated state, the charged particle beam is exchanged between the charged irradiation region and the neutralization electrode as a result of the irradiation of the charged particle beam. . The cause of this is that near-charge exchange occurs between the neutralizing electrode and the irradiation region by efficiently drawing the secondary particles generated from the surface of the sample charged by irradiation of the charged particle beam to the neutralizing electrode. If the neutralizing electrode is adjacent to or in contact within, for example, 300 μm from the irradiation region, a proximity current flows between the charged irradiation region and the neutralizing electrode due to the irradiation of the charged particle beam. .

操作者が高精度の観察・分析・加工・プローブ操作をする場合は、中和用電極と照射領域の間隔をさらに近づける必要がある。前記間隔を狭くするにつれて、照射領域との近接電荷交換又は近接電流により帯電電位が低下すると同時に、帯電による照射領域近傍の電界をより狭い空間に閉じ込めることができる。その結果、絶縁物試料表面上で荷電粒子線の照射位置は、前記間隔の約1/50倍の位置精度で制御ができるようになる。同時に、2次粒子検出器での2次粒子の検出量が帯電の影響を受けなくなり、鮮明な観察像を得ることができるようになる。   When the operator performs high-precision observation / analysis / processing / probe operation, it is necessary to further reduce the distance between the neutralizing electrode and the irradiation region. As the interval is narrowed, the charging potential is lowered by proximity charge exchange or proximity current with the irradiation region, and at the same time, the electric field in the vicinity of the irradiation region due to charging can be confined in a narrower space. As a result, the irradiation position of the charged particle beam on the surface of the insulator sample can be controlled with a position accuracy of about 1/50 times the interval. At the same time, the amount of secondary particles detected by the secondary particle detector is not affected by charging, and a clear observation image can be obtained.

上述した帯電を制御する方法を用いて、高精度な観察・分析・加工・プローブ操作を実現する本発明の帯電中和制御方法及びそれを用いた荷電粒子線装置として代表的な構成例を、以下に挙げる。   Using the above-described method for controlling charging, a typical configuration example of a charge neutralization control method of the present invention that realizes highly accurate observation / analysis / processing / probe operation and a charged particle beam apparatus using the same, Listed below.

先ず、帯電中和制御方法として、本発明は、試料台に搭載された試料に荷電粒子源から放出された荷電粒子線を照射して、前記試料の照射領域に発生する帯電を、試料台の表面近くに設置された中和用電極に所定の電圧を印加し、試料とは無接触で、帯電した前記照射領域との間で電荷交換を発生せしめることにより、前記帯電の中和制御を行なうよう構成したことを特徴とする。   First, as a charge neutralization control method, the present invention irradiates a sample mounted on a sample stage with a charged particle beam emitted from a charged particle source, and charges generated in the irradiation region of the sample are The neutralization control of the charging is performed by applying a predetermined voltage to the neutralizing electrode placed near the surface and generating a charge exchange with the charged irradiation region without contact with the sample. It is characterized by having comprised as follows.

また、本発明は、試料台に搭載された試料に荷電粒子源から放出された荷電粒子線を照射して、前記試料の照射領域に発生する帯電を、前記試料台の表面近くに設置された中和用電極に所定の電圧を印加し、前記試料と接触させて、帯電した前記照射領域との間で電流を発生せしめることにより、前記帯電の中和制御を行なうよう構成したことを特徴とする。   In the present invention, the charged particle beam emitted from the charged particle source is irradiated to the sample mounted on the sample table, and the charge generated in the irradiation region of the sample is installed near the surface of the sample table. The neutralization control of the charging is performed by applying a predetermined voltage to the neutralizing electrode, bringing it into contact with the sample, and generating a current with the charged irradiation region. To do.

次に、荷電粒子線装置として、本発明は、荷電粒子源と、前記荷電粒子源から放出される荷電粒子線を集束し偏向せしめるための荷電粒子光学系と、前記荷電粒子線を試料に照射して試料からの2次粒子を検出するための検出器と、前記試料を搭載する試料台とを備えた荷電粒子線装置において、前記試料台の表面に対して移動可能に設けた中和用電極と、前記中和用電極に印加する電圧および前記移動を制御する中和用電極制御装置とを有し、前記荷電粒子線を照射して帯電した前記試料上の照射領域と前記中和用電極との間で電荷交換または電流を発生せしめて、前記帯電を中和制御するよう構成したことを特徴とする。   Next, as a charged particle beam apparatus, the present invention includes a charged particle source, a charged particle optical system for focusing and deflecting the charged particle beam emitted from the charged particle source, and irradiating a sample with the charged particle beam. In a charged particle beam apparatus comprising a detector for detecting secondary particles from a sample and a sample stage on which the sample is mounted, neutralization provided movably with respect to the surface of the sample stage An electrode, and a neutralization electrode control device that controls the voltage applied to the neutralization electrode and the movement, and an irradiation region on the sample that is charged by irradiation with the charged particle beam and the neutralization electrode It is characterized in that the charge is neutralized and controlled by generating a charge exchange or current with the electrode.

また、本発明は、荷電粒子源と、前記荷電粒子源から放出する荷電粒子線を集束するレンズと、偏向器と、前記荷電粒子線を試料に照射して2次粒子を検出するための検出器と、前記試料を保持する試料台と、前記試料台の位置を制御する試料位置制御装置とを備えた荷電粒子線装置において、前記試料上の荷電粒子線照射領域と前記レンズとの間にあって前記試料に対し移動可能に設けられ、前記荷電粒子線照射領域との間で電荷交換または電流を発生する第1の電極と、前記第1の電極を制御し、前記試料台位置制御装置とは独立に駆動する電極制御装置と、前記試料台位置制御装置とは独立に駆動し、前記荷電粒子線照射領域との間で電流を発生する第2の電極とを有し、前記第1および前記第2の電極を用いて、帯電した前記荷電粒子線照射領域の中和制御を行なうよう構成したことを特徴とする。   The present invention also provides a charged particle source, a lens that focuses the charged particle beam emitted from the charged particle source, a deflector, and a detection for detecting secondary particles by irradiating the sample with the charged particle beam. A charged particle beam apparatus comprising: a sampler; a sample stage for holding the sample; and a sample position control device for controlling the position of the sample stage. The charged particle beam irradiation region on the sample and the lens A first electrode that is movably provided with respect to the sample and generates charge exchange or current with the charged particle beam irradiation region, controls the first electrode, and the sample stage position control device An electrode control device that is driven independently; and a second electrode that is driven independently of the sample stage position control device and generates a current between the charged particle beam irradiation region, the first and the The charged particles charged using the second electrode Characterized by being configured to perform neutralization control line illumination area.

本発明は、荷電粒子線装置での帯電防止技術での経験や熟練技能工程を排除して、荷電粒子線とプローブの制御の信頼性を向上し、総合的に分析や試料作製効率の良い荷電粒子線装置を実現する。   The present invention eliminates the experience and skilled skill in the antistatic technology in the charged particle beam device, improves the reliability of the control of the charged particle beam and the probe, and performs the charging with a comprehensive analysis and sample preparation efficiency. A particle beam device is realized.

本発明による荷電粒子線装置の第1の実施例を示す図。The figure which shows the 1st Example of the charged particle beam apparatus by this invention. イオンビーム照射時の試料帯電とビームドリフトを示す図。The figure which shows the sample charge and beam drift at the time of ion beam irradiation. 試料表面の帯電電位のイオンビーム照射時間依存性を示す図。The figure which shows the ion beam irradiation time dependence of the charging potential of a sample surface. 帯電振動によるビーム振動周期のビーム電流依存性を示す図。The figure which shows the beam current dependence of the beam vibration period by charging vibration. 中和用電極により帯電を制御する方法を示す回路図。The circuit diagram which shows the method of controlling charging by the electrode for neutralization. 中和用電極に流れる電流の照射電流依存性を示す図。The figure which shows the irradiation current dependence of the electric current which flows into the electrode for neutralization. 中和用電極先端と試料間の高さを示す図。The figure which shows the height between the electrode tip for neutralization, and a sample. イオンビームでの中和用電極に流れる電流の先端高さ依存性を示す図。The figure which shows the tip height dependence of the electric current which flows into the electrode for neutralization with an ion beam. 本発明による荷電粒子線装置の第2の実施例を説明する図。The figure explaining the 2nd Example of the charged particle beam apparatus by this invention. 絶縁物から高精度分析試料を作製する方法を示す図。The figure which shows the method of producing a highly accurate analysis sample from an insulator. 本発明による荷電粒子線装置の第3の実施例を説明する図。The figure explaining the 3rd Example of the charged particle beam apparatus by this invention. 電子線での中和用電極に流れる電流の先端高さ依存性を示す図。The figure which shows the tip height dependence of the electric current which flows into the electrode for neutralization with an electron beam. 試料高さ記録部による中和用電極の制御方法を示す図。The figure which shows the control method of the electrode for neutralization by a sample height recording part. 中和用電極に流れる電流による中和用電極の制御方法を示す図。The figure which shows the control method of the electrode for neutralization by the electric current which flows into the electrode for neutralization. 対物レンズの設定値による中和用電極の制御方法を示す図。The figure which shows the control method of the electrode for neutralization by the setting value of an objective lens. 偏向器の設定値による中和用電極の制御方法を示す図。The figure which shows the control method of the electrode for neutralization by the setting value of a deflector. 従来技術2と本発明の実施例とを比較する説明図。Explanatory drawing which compares the prior art 2 and the Example of this invention.

(実施例1)
図1は、本発明による荷電粒子線装置の第1の実施例の基本構成を示す。
Example 1
FIG. 1 shows a basic configuration of a charged particle beam apparatus according to a first embodiment of the present invention.

本発明の荷電粒子線装置は、イオン源1から引き出し電極2によりイオンビーム11を引き出し、コンデンサレンズ3によりイオンビームを集束した後、ビーム制限アパーチャー4によりイオンビームを絞り、対物レンズ6により試料8の表面にイオンビーム11を集束する荷電粒子光学系と、試料を載置する可動の試料台7と、2次粒子検出器9と、偏向器5と、制御装置10と、中和用電極20とにより構成される。   In the charged particle beam apparatus of the present invention, an ion beam 11 is extracted from the ion source 1 by the extraction electrode 2, the ion beam is focused by the condenser lens 3, the ion beam is narrowed by the beam limiting aperture 4, and the sample 8 is focused by the objective lens 6. A charged particle optical system for focusing the ion beam 11 on the surface, a movable sample stage 7 on which a sample is placed, a secondary particle detector 9, a deflector 5, a control device 10, and a neutralizing electrode 20 It consists of.

中和用電極20は、導電性物質の電極で構成される。中和用電極20の先端部は、イオンビームの走査により観察する面内位置測定手段と、この際の対物レンズ6の設定値による高さ位置測定手段により、試料8のイオンビーム照射位置近傍に接近する。   The neutralizing electrode 20 is composed of an electrode made of a conductive material. The tip of the neutralizing electrode 20 is brought close to the ion beam irradiation position of the sample 8 by means of an in-plane position measuring means for observing by scanning with an ion beam and a height position measuring means based on a set value of the objective lens 6 at this time. approach.

イオンビームの試料照射の際に、イオンビームは弾性散乱又は非弾性散乱される。非弾性散乱では試料から2次電子を発生する。2次電子の多くはエネルギーがわずか数eVしかなく、イオンビーム照射領域表面の電位が周囲に対して数V正に帯電すると、低速の2次電子は試料を離脱できず試料にもどる。イオンビーム照射電流と試料から流出する全電流とが等しくなると、試料の表面電位が平衡に達する。   During ion irradiation of the sample, the ion beam is elastically scattered or inelastically scattered. Inelastic scattering generates secondary electrons from the sample. Most of the secondary electrons have an energy of only a few eV, and when the potential on the surface of the ion beam irradiation region is positively charged by several volts with respect to the surroundings, the low-speed secondary electrons cannot leave the sample and return to the sample. When the ion beam irradiation current is equal to the total current flowing out of the sample, the surface potential of the sample reaches equilibrium.

図2は、試料の電位分布の偏りにより、イオンビームが矢印の方向にビームドリフトする様子を示す。図中、31は等電位線を示す。イオンビーム11の照射位置や試料8の表面での誘電率分布などの結果、表面電位はイオンビームに対して偏って分布している。帯電した電荷は、試料台に対して絶縁抵抗を介して流出する。この絶縁抵抗は、試料の体積抵抗と表面抵抗に関係すると考えられる。絶縁体では、表面抵抗が体積抵抗より小さくなることが多い。   FIG. 2 shows how the ion beam drifts in the direction of the arrow due to the bias in the potential distribution of the sample. In the figure, 31 indicates an equipotential line. As a result of the irradiation position of the ion beam 11 and the dielectric constant distribution on the surface of the sample 8, the surface potential is distributed with a bias with respect to the ion beam. The charged electric charge flows out to the sample stage through the insulation resistance. This insulation resistance is considered to be related to the volume resistance and surface resistance of the sample. In an insulator, the surface resistance is often smaller than the volume resistance.

イオンビーム照射領域での正電荷の帯電電位Vcの時間変化dVc/dtは、試料表面の実効的な静電容量C、絶縁抵抗R、ビーム電流Ipとすると、次式で表される。   The time change dVc / dt of the positively charged charging potential Vc in the ion beam irradiation region is expressed by the following equation, assuming that the effective capacitance C, the insulation resistance R, and the beam current Ip on the sample surface.

dVc/dt=Ip/C−Vc/RC
図3は、イオンビーム照射量(ビーム電流)10nA、試料表面の実効的な静電容量1nF、および絶縁抵抗5GΩを仮定したときの、イオンビーム照射位置での帯電電位の時間依存性である。時間の経過につれて、帯電電位は増大して約10秒後にはほぼ平衡状態になる。
dVc / dt = Ip / C-Vc / RC
FIG. 3 shows the time dependence of the charged potential at the ion beam irradiation position assuming an ion beam irradiation amount (beam current) of 10 nA, an effective electrostatic capacitance of 1 nF on the sample surface, and an insulation resistance of 5 GΩ. As time passes, the charging potential increases and becomes approximately in equilibrium after about 10 seconds.

帯電して平衡状態になるのであればイオンビーム成形加工への影響は、ほとんど無い。イオンビーム照射時に表面電位の時間変化が生じると、ビームドリフトが生じる。ビームドリフトは、試料表面の構造や物性値による表面電位分布の偏りにより生じる。例えば、カバーガラス(30mm×20mm厚さ0.1mm)表面に走査イオンビームを照射して、2次粒子を検出する方法により観察像の時間変化を評価したところ、SIM像観察をすると、SIM像の観察領域は繰り返し移動をしていた。イオンビーム照射一定時間後、試料の電位が平衡状態になっていれば、観察領域移動は無いはずである。しかし、実際には観察領域移動を繰り返すことから、放電と帯電の繰り返しにより、試料表面電位に時間変化が生じていると言える。   If charged and balanced, there is almost no effect on the ion beam forming process. If the surface potential changes with time during ion beam irradiation, beam drift occurs. The beam drift is caused by the deviation of the surface potential distribution due to the structure and physical properties of the sample surface. For example, when a time change of an observation image is evaluated by a method of detecting a secondary particle by irradiating the surface of a cover glass (30 mm × 20 mm thickness 0.1 mm) with a scanning ion beam, a SIM image is observed. The observation area was repeatedly moved. If the potential of the sample is in an equilibrium state after a certain time of ion beam irradiation, the observation region should not move. However, since the observation region movement is actually repeated, it can be said that a time change occurs in the sample surface potential due to repeated discharge and charging.

図4は、観察領域移動の振動数のビーム電流依存性を示す。放電の振動数fは、ビーム電流Ipとともに増大する。ビーム電流が増大すると、帯電による振動が増えるにつれてビームドリフトも増大してしまうのである。   FIG. 4 shows the beam current dependence of the frequency of observation region movement. The discharge frequency f increases with the beam current Ip. When the beam current increases, the beam drift increases as vibration due to charging increases.

図5は、中和用電極20によりイオンビーム照射による帯電33を制御する方法を示す回路図である。イオンビーム照射により帯電を生じている試料表面に中和用電極20の先端を近づけることにより、近接電荷交換32をすることができる。中和用電極20の先端は、導電性物質で形成した針状の電極である。中和用電極20による近接電荷交換32で流れる電流は、照射領域から試料表面に水平方向30μm、垂直方向30μmの位置に中和用電極20の先端を固定すると、イオンビームの電流の6割以上になる。   FIG. 5 is a circuit diagram showing a method of controlling the charging 33 by ion beam irradiation by the neutralizing electrode 20. The proximity charge exchange 32 can be performed by bringing the tip of the neutralizing electrode 20 close to the surface of the sample that is charged by ion beam irradiation. The tip of the neutralizing electrode 20 is a needle-like electrode formed of a conductive material. The current flowing in the proximity charge exchange 32 by the neutralizing electrode 20 is 60% or more of the current of the ion beam when the tip of the neutralizing electrode 20 is fixed at a position of 30 μm in the horizontal direction and 30 μm in the vertical direction from the irradiation region to the sample surface. become.

中和用電極20は、イオンビーム照射で帯電したプラスの電荷を中和するために常に電子を供給している。図6は、カバーガラスの帯電制御を行ったときの中和用電極20に流れる電流(以下、供給電流)のビーム電流依存性を示す。   The neutralizing electrode 20 always supplies electrons in order to neutralize positive charges charged by ion beam irradiation. FIG. 6 shows the beam current dependency of the current flowing through the neutralizing electrode 20 (hereinafter referred to as supply current) when charging of the cover glass is performed.

イオンビーム照射位置から約16μmの位置に中和用電極20の先端を隣接し、ビーム電流を20pA〜8nAの範囲で変更して供給電流を測定した。図中、その測定結果を■印で示す。供給電流Iがビーム電流Ipと等しい時の直線を細線で示した。図6の2本の直線からビーム電流Ipのほとんどは中和用電極20に流れ、その量がビーム電流Ipに比例しており、中和用電極20以外の経路で絶縁抵抗を通して試料から流出する電流も、Ipにほぼ比例していることが確認できた。このとき絶縁抵抗はビーム電流に依存しないようである。   The tip of the neutralizing electrode 20 was adjacent to the position about 16 μm from the ion beam irradiation position, and the supply current was measured by changing the beam current in the range of 20 pA to 8 nA. In the figure, the measurement results are indicated by ■. A straight line when the supply current I is equal to the beam current Ip is indicated by a thin line. Most of the beam current Ip flows from the two straight lines in FIG. 6 to the neutralizing electrode 20, and the amount thereof is proportional to the beam current Ip, and flows out of the sample through the insulation resistance in a path other than the neutralizing electrode 20. It was confirmed that the current was also substantially proportional to Ip. At this time, the insulation resistance does not seem to depend on the beam current.

図7は、中和用電極先端と試料間の高さを示す。ビーム電流8.0nAを32×32μm領域に照射したときに、中和用電極20の先端は、高さ2μmで照射位置中心から横方向に16μmに設定し、高さ40のみを変更した。中和用電極20の高さを変更する時、制御装置の影響を受けるために、横方向にずれる量は最大で約100μmになる。 FIG. 7 shows the height between the tip of the neutralizing electrode and the sample. When a 32 × 32 μm 2 region was irradiated with a beam current of 8.0 nA, the tip of the neutralizing electrode 20 was set at 2 μm in height and 16 μm in the lateral direction from the irradiation position center, and only the height 40 was changed. When the height of the neutralizing electrode 20 is changed, the amount of displacement in the lateral direction is about 100 μm at the maximum due to the influence of the control device.

図8は、中和用電極に流れる電流の高さ依存性測定結果を示す。中和用電極に流れる電流は4.4〜5.1nAの範囲で変化しているが、100μmまで高さ依存が無い。   FIG. 8 shows the measurement results of the height dependence of the current flowing through the neutralizing electrode. The current flowing through the neutralizing electrode varies in the range of 4.4 to 5.1 nA, but has no height dependency up to 100 μm.

一方、イオンビーム11の照射により試料表面から放出された2次電子の多くは、エネルギーがわずか数eVしかない。この際、帯電と中和用電極20が作る電場により低速の2次電子は試料を離脱できず試料にもどるために、2次粒子検出器9は、試料からの2次電子を検出できなくなってしまう。さらに、イオンビーム11は、中和用電極20と帯電が作る電場によりシフトしてしまう。   On the other hand, most of the secondary electrons emitted from the sample surface by the irradiation of the ion beam 11 have an energy of only a few eV. At this time, the secondary particle detector 9 cannot detect the secondary electrons from the sample because the low-speed secondary electrons cannot leave the sample and return to the sample due to the electric field generated by the charging and neutralizing electrode 20. End up. Further, the ion beam 11 is shifted by the neutralizing electrode 20 and the electric field generated by charging.

上記問題を解決するために、中和用電極自身に電圧をかけるための電圧源、先端を細長い導電性針形状とした中和用電極20を備えた。図5に示すように、試料表面が正に帯電している時に、中和用電極20に負の電位を印加すると、帯電領域との電荷交換以外に2次電子34の放出量を増大させる。そこで、中和用電極20は正の電位約+2Vを印加して2次電子の帯電による引き戻しを緩和すると、イオンビーム走査の精度向上と、試料表面から放出された2次電子の2次粒子検出器9での集率向上により、中和用電極20に0Vを印加した場合と比較して、観察像の解像度は2倍に向上した。   In order to solve the above problems, a voltage source for applying a voltage to the neutralization electrode itself and a neutralization electrode 20 having a long and narrow conductive needle shape are provided. As shown in FIG. 5, when a negative potential is applied to the neutralizing electrode 20 while the sample surface is positively charged, the amount of secondary electrons 34 emitted is increased in addition to charge exchange with the charged region. Therefore, when the neutralization electrode 20 is applied with a positive potential of about +2 V to reduce the pulling back due to charging of secondary electrons, the accuracy of ion beam scanning is improved and the detection of secondary particles of secondary electrons emitted from the sample surface is performed. Due to the improvement of the collection rate in the vessel 9, the resolution of the observation image was improved twice as compared with the case where 0 V was applied to the neutralizing electrode 20.

(実施例2)
図9は、本発明による荷電粒子線装置の第2の実施例の基本構成を示す。本実施例では、メカニカルプローブ21を組み合わせて、数〜サブμmオーダの試料を作製する荷電粒子線装置を構成する。
(Example 2)
FIG. 9 shows a basic configuration of a second embodiment of the charged particle beam apparatus according to the present invention. In the present embodiment, a charged particle beam apparatus that forms a sample of several to sub-μm order is configured by combining the mechanical probe 21.

イオン源1から引き出し電極2によりイオンビームを引き出し、コンデンサレンズ3によりイオンビームを集束した後、ビーム制限アパーチャー4によりイオンビームを絞り、対物レンズ6により試料8の表面にイオンビームを集束する荷電粒子光学系と、試料を載置する可動の試料台7と、2次粒子検出器9と、偏向器5と、制御装置10と、中和用電極20と、メカニカルプローブ21とにより構成される。   After the ion beam is extracted from the ion source 1 by the extraction electrode 2, the ion beam is focused by the condenser lens 3, the ion beam is focused by the beam limiting aperture 4, and the ion beam is focused on the surface of the sample 8 by the objective lens 6. It comprises an optical system, a movable sample stage 7 on which a sample is placed, a secondary particle detector 9, a deflector 5, a control device 10, a neutralizing electrode 20, and a mechanical probe 21.

中和用電極20の先端部は、曲率半径が約100μmの導電性針で構成され、試料8の表面に接近させる。中和用電極20をイオンビーム照射領域から試料表面水平方向に約30μm、垂直方向に約30μmの位置に固定する。試料が絶縁物を含むことにより照射領域で正に帯電する場合は、中和用電極20が帯電した照射領域との間で電荷交換をし帯電を抑制する。30μAのイオンビームを走査するときは、2次粒子検出器9の信号から鮮明な観察像を得ることができる。   The tip of the neutralizing electrode 20 is composed of a conductive needle having a radius of curvature of about 100 μm and is brought close to the surface of the sample 8. The neutralizing electrode 20 is fixed at a position of about 30 μm in the horizontal direction of the sample surface and about 30 μm in the vertical direction from the ion beam irradiation region. When the sample contains an insulator and is positively charged in the irradiation region, the charge is suppressed by exchanging charges with the irradiation region charged by the neutralizing electrode 20. When scanning with a 30 μA ion beam, a clear observation image can be obtained from the signal from the secondary particle detector 9.

しかし、試料を加工するために10nAのイオンビームを照射すると、帯電が増大することによりイオンビームの照射位置が制御できなくなってしまう。そこで、30μAのイオンビームを走査して観察像をたよりに、試料表面にメカニカルプローブ21の先端を接触させる。このとき、10nAのイオンビームを照射しても、メカニカルプローブ21は帯電した照射領域との間で近接電流が流れ込むことにより帯電を抑制し、イオンビームの照射位置を正確に制御することができる。   However, when a 10 nA ion beam is irradiated to process a sample, the charging position increases, and the ion beam irradiation position cannot be controlled. Therefore, the tip of the mechanical probe 21 is brought into contact with the sample surface rather than scanning the ion beam of 30 μA to form an observation image. At this time, even when the ion beam of 10 nA is irradiated, the mechanical probe 21 suppresses charging by the proximity current flowing between the charged irradiation region and the ion beam irradiation position can be accurately controlled.

図10は、絶縁物から高精度分析試料を作製する方法を示す。   FIG. 10 shows a method for producing a high-precision analytical sample from an insulator.

試料表面にメカニカルプローブ21の先端を接触させた状態で、試料基板51の表面に対しイオンビーム52が直角に照射するように基板51の姿勢を保ち、メカニカルプローブ21に重ならないように基板51上でイオンビーム52を矩形に走査させ、試料表面に所要の深さの角穴53を形成する(図10−a)。この時に、プローブ11に電圧を+1V印加したところ、観察像中の所望の試料位置を鮮明に観察し、成形加工を正確に設定し、高精度に試料片を作製することができた。   In a state where the tip of the mechanical probe 21 is in contact with the sample surface, the posture of the substrate 51 is maintained so that the ion beam 52 is irradiated at a right angle to the surface of the sample substrate 51, and the substrate 51 is not overlapped with the mechanical probe 21. Then, the ion beam 52 is scanned in a rectangular shape to form a square hole 53 having a required depth on the sample surface (FIG. 10A). At this time, when a voltage of +1 V was applied to the probe 11, the desired sample position in the observed image was clearly observed, the molding process was accurately set, and a sample piece could be produced with high accuracy.

次に、垂直溝54を形成する(図10−b)。メカニカルプローブ21の先端を基板51から離した後、基板51の表面に対するイオンビーム52の軸が約30°傾斜するように基板51を傾斜させ、傾斜溝55を形成する。基板51の傾斜角の姿勢変更は、試料台によって行われる(図10-c)。再び、基板51の姿勢を表面がイオンビーム52に対して垂直になる状態のままに基板51を設置した後、メカニカルプローブ21の先端を基板51の試料となる部分に接触させる(図10−d)。図9の装置で中和電極20の先端部は、曲率半径が約100μmの導電性針で構成され、中和電極20は同時に堆積性ガスを供給するガスノズルを構成し、試料8の表面に接近させる。ガスノズルから堆積性ガスを供給し、イオンビーム52をメカニカルプローブ21の先端部を含む領域に局所的に照射し、イオンビームアシストデポジション(以下、IBADと略す)膜56を形成する。接触状態にある基板51の分離部分である試料片57とメカニカルプローブ21の先端は、IBAD膜56で接続される(図10−e)。   Next, the vertical groove 54 is formed (FIG. 10B). After the tip of the mechanical probe 21 is separated from the substrate 51, the substrate 51 is tilted so that the axis of the ion beam 52 with respect to the surface of the substrate 51 is tilted by about 30 ° to form the tilted groove 55. The posture change of the inclination angle of the substrate 51 is performed by the sample stage (FIG. 10-c). Again, after the substrate 51 is placed in a state in which the surface of the substrate 51 is perpendicular to the ion beam 52, the tip of the mechanical probe 21 is brought into contact with the portion of the substrate 51 that becomes the sample (FIG. 10-d). ). In the apparatus of FIG. 9, the tip of the neutralization electrode 20 is composed of a conductive needle having a radius of curvature of about 100 μm, and the neutralization electrode 20 forms a gas nozzle that supplies a deposition gas at the same time and approaches the surface of the sample 8. Let A deposition gas is supplied from a gas nozzle, and an ion beam 52 is locally irradiated onto a region including the tip of the mechanical probe 21 to form an ion beam assisted deposition (hereinafter abbreviated as IBAD) film 56. The sample piece 57, which is a separated part of the substrate 51 in contact, and the tip of the mechanical probe 21 are connected by an IBAD film 56 (FIG. 10-e).

イオンビーム52で残りの部分を切り欠き加工し、基板51から分離試料片57を切り出す。切り出された分離試料片57は、接続されたメカニカルプローブ21で支持された状態になる(図10−f)。分離試料片57をサンプルメッシュ58に移動させる(図10−g)。ガスノズルから堆積性ガスを供給し、イオンビーム52を分離試料片とサンプルメッシュが接触する境界領域に局所的に照射し、IBAD膜59を形成する(図10−h)。イオンビーム52をIBAD膜56に隣接した領域に局所的に照射し、メカニカルプローブ21を分離試料片57から切り離す(図10−i)。この分離試料片57の中の観察領域を、厚さ100nm程度に残すようにイオンビーム52を用いて薄膜化し、透過電子顕微鏡でこの試料はサブnmの分解能で観察・分析をすることができる(図10−j)。   The remaining portion is cut out with the ion beam 52, and the separated sample piece 57 is cut out from the substrate 51. The separated sample piece 57 cut out is in a state of being supported by the connected mechanical probe 21 (FIG. 10-f). The separated specimen 57 is moved to the sample mesh 58 (FIG. 10-g). The deposition gas is supplied from the gas nozzle, and the ion beam 52 is locally irradiated to the boundary region where the separated specimen piece and the sample mesh are in contact to form the IBAD film 59 (FIG. 10-h). The region adjacent to the IBAD film 56 is locally irradiated with the ion beam 52, and the mechanical probe 21 is separated from the separated sample piece 57 (FIG. 10-i). The observation region in the separated sample piece 57 is thinned by using the ion beam 52 so as to leave a thickness of about 100 nm, and this sample can be observed and analyzed with sub-nm resolution by a transmission electron microscope ( FIG. 10-j).

(実施例3)
図11は、本発明の荷電粒子線装置の第3の実施例の基本構成を示す。
(Example 3)
FIG. 11 shows a basic configuration of a third embodiment of the charged particle beam apparatus of the present invention.

本発明の荷電粒子線装置は、電子源80から引き出し電極81により電子線82を引き出し、コンデンサレンズ83により電子線を集束した後、対物レンズ84により試料85の表面に電子線を集束する荷電粒子光学系は、試料85を載置する可動の試料台86と、2次電子検出器87と、偏向器88と、制御装置89と、中和用電極90とにより構成される。   The charged particle beam apparatus of the present invention extracts an electron beam 82 from an electron source 80 by an extraction electrode 81, focuses the electron beam by a condenser lens 83, and then focuses the electron beam on the surface of a sample 85 by an objective lens 84. The optical system includes a movable sample stage 86 on which a sample 85 is placed, a secondary electron detector 87, a deflector 88, a control device 89, and a neutralizing electrode 90.

試料85は絶縁物を含むと、電子線82の照射領域に帯電を生じる場合がある。電子線82の照射により試料表面から放出される2次電子の多くは、エネルギーがわずか数eVしかないが、この2次電子が正帯電のときは試料を離脱できず試料にもどり、負帯電のときは加速されるために、2次電子検出器87は、試料85からの2次電子を検出できない。さらに、電子線82は、帯電が作る電場によるシフトのために照射位置を制御することができない。   When the sample 85 includes an insulator, the irradiation region of the electron beam 82 may be charged. Most of the secondary electrons emitted from the surface of the sample by irradiation with the electron beam 82 have an energy of only a few eV. However, when the secondary electrons are positively charged, the sample cannot be detached and returns to the sample, and is negatively charged. Since it is sometimes accelerated, the secondary electron detector 87 cannot detect secondary electrons from the sample 85. Furthermore, the irradiation position of the electron beam 82 cannot be controlled due to a shift caused by an electric field generated by charging.

絶縁物試料(SiO)での観察像は、加速電圧2kVの電子線82(700pA)の走査では著しく解像度が低下していた。この理由は、照射領域の負帯電である。 The resolution of the observation image on the insulator sample (SiO 2 ) was significantly reduced by scanning with an electron beam 82 (700 pA) with an acceleration voltage of 2 kV. The reason for this is the negative charging of the irradiated area.

図12は、中和用電極90と帯電した照射領域間の電荷交換により流れる電流を示す。この際、照射領域3×3μmから水平方向に9μmに離して、中和用電極90の先端を垂直方向に距離0〜約360μmに移動した。この際に、試料の絶縁物表面に接触させると、中和用電極90と帯電した照射領域の間で約200pAの電流が流れた。中和用電極90に100pA以上の電流が流れる場合、観察像の解像度は1nmに達していた。 FIG. 12 shows a current that flows due to charge exchange between the neutralizing electrode 90 and the charged irradiation region. At this time, the tip of the neutralizing electrode 90 was moved in the vertical direction to a distance of 0 to about 360 μm away from the irradiation region 3 × 3 μm 2 in the horizontal direction by 9 μm. At this time, when it was brought into contact with the insulator surface of the sample, a current of about 200 pA flowed between the neutralizing electrode 90 and the charged irradiation region. When a current of 100 pA or more flows through the neutralizing electrode 90, the resolution of the observation image has reached 1 nm.

さらに、中和用電極90に+5Vの電圧を印加すると、中和用電極90の先端が試料面の位置で500pA、垂直方向に距離360μmの位置で約300pAの電流が流れた。照射領域が負帯電した時に、正の電圧を印加した場合、電子線82の照射により試料表面から放出された2次電子を中和用電極がとり込む。その結果、2次電子検出器87は、この2次電子を検出できないために観察像のS/Nが低下する。中和用電極90が2次電子のとり込みと加速を回避するためには、中和用電極90に0Vから−5Vの負電圧を印加すればよかった。これにより、観察像のS/Nが改善し、解像度は1nmに達していた。   Furthermore, when a voltage of +5 V was applied to the neutralization electrode 90, a current of about 300 pA flowed at a position where the tip of the neutralization electrode 90 was 500 pA at the position of the sample surface and a distance of 360 μm in the vertical direction. When a positive voltage is applied when the irradiation region is negatively charged, the neutralizing electrode takes in secondary electrons emitted from the sample surface by irradiation of the electron beam 82. As a result, since the secondary electron detector 87 cannot detect the secondary electrons, the S / N of the observed image decreases. In order for the neutralizing electrode 90 to avoid taking in and accelerating secondary electrons, a negative voltage of 0 V to −5 V may be applied to the neutralizing electrode 90. As a result, the S / N of the observed image was improved, and the resolution reached 1 nm.

(実施例4)
図13は、実施例1、実施例2および実施例3において、試料8の表面が試料台7に対して平行ではない場合の帯電制御方法を示す。この場合、試料台7を右方向に移動すると、中和用電極20の先端が試料表面に干渉する。中和用電極20の先端は試料8との衝突により破壊されたり、試料8の表面は中和用電極20の衝突により破壊される。この干渉を回避しなければ、中和用電極20による帯電制御は有効に働かない。そこで、試料8の照射領域と中和用電極20の間での電荷交換と干渉を両立する方法について、以下に示す。
(Example 4)
FIG. 13 shows a charge control method when the surface of the sample 8 is not parallel to the sample stage 7 in the first, second, and third embodiments. In this case, when the sample stage 7 is moved rightward, the tip of the neutralizing electrode 20 interferes with the sample surface. The tip of the neutralizing electrode 20 is destroyed by the collision with the sample 8, or the surface of the sample 8 is broken by the collision with the neutralizing electrode 20. Unless this interference is avoided, the charge control by the neutralizing electrode 20 does not work effectively. Therefore, a method for achieving both charge exchange and interference between the irradiation region of the sample 8 and the neutralizing electrode 20 will be described below.

まず、試料8の照射領域と中和用電極20の間での電荷交換と干渉を両立する方法の第1の例を、図13に示す。荷電粒子線を照射する前に、試料8の表面全体の高さ分布を制御装置10の記録部61に記録する。例えば、中和用電極20の先端距離62を100μmにする場合は、高さ分布の精度は、±50μmを必要とする。先端距離62を短くするためには、高さ分布の精度をよくしなければならない。試料台7を移動するときに発生する高さ変化を記録部61で計算し、変化分だけ中和用電極20を移動させることにより、先端距離62を一定にする。例えば、先端距離62が100μmの場合は、荷電粒子線の照射領域は100×100μmであり、観察精度は1μmになる。観察精度を向上するためには、先端距離62を短く設定して中和用電極20による帯電制御をする必要があった。 First, FIG. 13 shows a first example of a method for achieving both charge exchange and interference between the irradiation region of the sample 8 and the neutralizing electrode 20. Before irradiating the charged particle beam, the height distribution of the entire surface of the sample 8 is recorded in the recording unit 61 of the control device 10. For example, when the tip distance 62 of the neutralizing electrode 20 is set to 100 μm, the accuracy of the height distribution needs to be ± 50 μm. In order to shorten the tip distance 62, the accuracy of the height distribution must be improved. The height change that occurs when the sample stage 7 is moved is calculated by the recording unit 61, and the tip electrode distance 62 is made constant by moving the neutralizing electrode 20 by the change amount. For example, when the tip distance 62 is 100 μm, the charged particle beam irradiation area is 100 × 100 μm 2 and the observation accuracy is 1 μm. In order to improve the observation accuracy, it is necessary to control charging by the neutralizing electrode 20 with the tip distance 62 set short.

試料8の照射領域と中和用電極20の間での電荷交換と干渉を両立する方法の第2の例を、図14に示す。前述の例とは異なり、2つ目の方法は、帯電制御中に照射領域と中和用電極20間に流れる電流を電流計63により測定する。該電流は、先端距離62に依存する。試料8に近づき先端距離62が短くなると、中和用電極20に流れる電流は増大する。そこで、試料を移動する途中あるいは移動後に、中和用電極20の先端が試料表面と干渉しないように該電流をモニタし計算部64により先端距離62を算出し、先端距離62を一定になるように中和用電極20を制御値する。例えば、先端距離62が1μmの場合は、荷電粒子線の照射領域は1×1μmであり、観察精度は10nmになる。観察精度を向上するためには、先端距離62を短くするかまたは、照射領域の周辺に接触する方法により中和用電極20による帯電制御をする必要があった。 FIG. 14 shows a second example of a method for achieving both charge exchange and interference between the irradiation region of the sample 8 and the neutralizing electrode 20. Unlike the above example, the second method measures the current flowing between the irradiation region and the neutralizing electrode 20 by the ammeter 63 during the charge control. The current depends on the tip distance 62. When approaching the sample 8 and reducing the tip distance 62, the current flowing through the neutralizing electrode 20 increases. Therefore, during or after moving the sample, the current is monitored so that the tip of the neutralizing electrode 20 does not interfere with the sample surface, the tip distance 62 is calculated by the calculation unit 64, and the tip distance 62 is made constant. The neutralizing electrode 20 is controlled. For example, when the tip distance 62 is 1 μm, the charged particle beam irradiation area is 1 × 1 μm 2 and the observation accuracy is 10 nm. In order to improve the observation accuracy, it is necessary to control charging by the neutralizing electrode 20 by shortening the tip distance 62 or by contacting the periphery of the irradiation region.

試料8の照射領域と中和用電極20の間での電荷交換と干渉を両立する方法の第3の例を、図15に示す。前述の2つの例とは異なり、3つ目の方法は、対物レンズ6の設定値を利用するものである。中和用電極20が退避位置(例えば先端距離62が100μm)にあるときに対物レンズ6の設定値を変化させて試料8の表面に荷電粒子線の集束点を合わせる。この際、制御装置10は、この対物レンズ6の設定値の変化量より、計算部65にて先端距離62を算出し、中和用電極20を試料表面に近づける。対物レンズ6の設定値による先端距離62の制御精度は30μmであった。   FIG. 15 shows a third example of a method for achieving both charge exchange and interference between the irradiation region of the sample 8 and the neutralizing electrode 20. Unlike the two examples described above, the third method uses the set value of the objective lens 6. When the neutralizing electrode 20 is at the retracted position (for example, the tip distance 62 is 100 μm), the set value of the objective lens 6 is changed to adjust the focused point of the charged particle beam to the surface of the sample 8. At this time, the control device 10 calculates the tip distance 62 by the calculation unit 65 from the amount of change in the set value of the objective lens 6, and brings the neutralizing electrode 20 closer to the sample surface. The control accuracy of the tip distance 62 according to the set value of the objective lens 6 was 30 μm.

試料8の照射領域と中和用電極20の間での電荷交換と干渉を両立する方法の第4の例を、図16に示す。中和用電極20は、荷電粒子線の照射角度に対して20〜80度の方向に1軸可動機構を保持する。制御装置10は、荷電粒子線の走査範囲を偏向器5に設定すると同時に、走査範囲に対応した先端距離62を計算部65で算出して、中和用電極を制御する。例えば、先端距離62を30μmに設定した場合、走査範囲を30×30μmでは観察精度は0.3μmであり、加工精度は0.5μmであった。 FIG. 16 shows a fourth example of a method for achieving both charge exchange and interference between the irradiation region of the sample 8 and the neutralizing electrode 20. The neutralizing electrode 20 holds a uniaxial movable mechanism in a direction of 20 to 80 degrees with respect to the irradiation angle of the charged particle beam. The control device 10 sets the scanning range of the charged particle beam in the deflector 5 and simultaneously calculates the tip distance 62 corresponding to the scanning range by the calculation unit 65 to control the neutralization electrode. For example, when the tip distance 62 is set to 30 μm, the observation accuracy is 0.3 μm and the processing accuracy is 0.5 μm when the scanning range is 30 × 30 μm 2 .

走査範囲を狭くして高精度な観察、さらに観察像を参照しながら高精度な加工をする場合は、走査範囲を変更する際に、観察と加工の精度を向上するために自動的に先端距離62を短くする。例えば、先端距離62を1μmにした場合、試料8を移動すると中和用電極20と試料8が干渉してしまうので、試料台7で試料8を移動できる範囲を横方向に10μm以下に設定した。   When the scanning range is narrowed and high-precision observation is performed, and when high-precision processing is performed while referring to the observation image, the tip distance is automatically adjusted to improve the observation and processing accuracy when changing the scanning range. 62 is shortened. For example, when the tip distance 62 is set to 1 μm, if the sample 8 is moved, the neutralizing electrode 20 and the sample 8 interfere with each other. Therefore, the range in which the sample 8 can be moved on the sample stage 7 is set to 10 μm or less in the horizontal direction. .

本手法は、図13、図14及び図15で示した試料8の照射領域と中和用電極20の間での電荷交換と干渉を両立する方法と組合わせることができる。走査範囲が狭い(例えば30×30μmよりも狭い)場合、図16で示す方法で中和用電極20を制御し、走査範囲が広い場合、図13、図14及び図15で示す方法で中和用電極20を制御する。これにより、飛躍的に荷電粒子線の観察・加工の精度が向上した。 This method can be combined with the method of achieving both charge exchange and interference between the irradiation region of the sample 8 and the neutralizing electrode 20 shown in FIGS. 13, 14, and 15. When the scanning range is narrow (for example, smaller than 30 × 30 μm 2 ), the neutralizing electrode 20 is controlled by the method shown in FIG. 16, and when the scanning range is wide, the method shown in FIGS. The summing electrode 20 is controlled. This dramatically improved the accuracy of observation and processing of charged particle beams.

図17は、従来技術2を示す(a)と、本発明の実施例を示す(b)とを比較する説明図である。従来技術2の「特開平8−138617号公報」では、イオンビームが試料の絶縁層に照射されると、試料表面の照射領域付近に非常に薄い導電層70を形成し、この導電層に接触させたプローブ71を通してチャージをアースに流してチャージアップを回避する方法を開示している。   FIG. 17 is an explanatory diagram comparing (a) showing the prior art 2 and (b) showing an example of the present invention. According to Japanese Patent Laid-Open No. 8-138617 of Prior Art 2, when an ion beam is applied to an insulating layer of a sample, a very thin conductive layer 70 is formed in the vicinity of the irradiation region on the sample surface, and this conductive layer is contacted. Discloses a method of avoiding charge-up by flowing charge to ground through the probe 71.

この方法では、イオンビームの照射領域がプローブの先端半径に比較して狭い時にイオンビームで形成した導電層に直接接触すると、(a)に示すように、プローブ71はイオンビーム11の照射領域に重なる。しかし、本実施例では、(b)に示すように、直接導電層70に接触する必要が無く、プローブ(中和用電極20)はイオンビームの照射領域に重なることはない。   In this method, when the ion beam irradiation region is narrower than the tip radius of the probe, when the ion beam 11 is in direct contact with the conductive layer formed by the ion beam, the probe 71 moves to the ion beam 11 irradiation region as shown in FIG. Overlap. However, in this embodiment, as shown in (b), it is not necessary to directly contact the conductive layer 70, and the probe (neutralization electrode 20) does not overlap the ion beam irradiation region.

以上のように、本発明になる荷電粒子線装置によれば、帯電を該試料の表面に隣接又は接触した中和用電極で制御することにより、高精度に荷電粒子線を制御し、その結果、試料表面での帯電を抑制するための経験や熟練技能工程の排除と、2次イオン検出器と電子銃又はイオン銃を排除により、帯電制御技術の信頼性の向上、装置価格の低減、高精度な観察・分析・加工・プローブ操作を実現し得る。   As described above, according to the charged particle beam apparatus of the present invention, the charged particle beam is controlled with high accuracy by controlling the charging with the neutralizing electrode adjacent to or in contact with the surface of the sample. By eliminating experience and skilled skill steps to suppress charging on the sample surface, and eliminating secondary ion detectors and electron guns or ion guns, improving the reliability of charging control technology, reducing equipment costs, Accurate observation, analysis, processing, and probe operation can be realized.

以上、本発明を整理すると、次のようになる。
(1)試料台に搭載された試料に荷電粒子源から放出された荷電粒子線を照射して、前記試料の照射領域に発生する帯電を、前記試料台の表面近くに設置された中和用電極に所定の電圧を印加し、前記試料とは無接触で帯電した前記照射領域との間で電荷交換を発生せしめることにより、前記帯電の中和制御を行なうよう構成したことを特徴とする帯電中和制御方法。
(2)試料台に搭載された試料に荷電粒子源から放出された荷電粒子線を照射して、前記試料の照射領域に発生する帯電を、前記試料台の表面近くに設置された中和用電極に所定の電圧を印加し、前記試料とは接触させて帯電した前記照射領域との間で電流を発生せしめることにより、前記帯電の中和制御を行なうよう構成したことを特徴とする帯電中和制御方法。
(3)前記(1)または(2)の構成において、前記荷電粒子線により前記試料の表面を観察することにより、前記中和用電極を前記照射領域の近傍に接触させ、前記帯電の中和制御を行なうよう構成したことを特徴とする帯電中和制御方法。
(4)前記(1)または(2)の構成において、前記中和用電極を前記試料の表面に対して移動可能に構成したことを特徴とする帯電中和制御方法。
(5)前記(1)または(2)の構成において、前記中和用電極に、−5Vから+5Vの電圧を印加してなることを特徴とする帯電中和制御方法。
(6)前記(1)または(2)または(3)の構成において、前記試料が、絶縁物を含むことを特徴とする帯電中和制御方法。
(7)試料台に搭載された絶縁物を含む試料に荷電粒子源から放出された荷電粒子線を照射して、前記試料の照射領域に発生する帯電を、前記試料台の表面近くに設置された中和用電極に所定の電圧を印加し、前記試料とは無接触で、前記帯電の中和制御を行なうよう構成したことを特徴とする帯電中和制御方法。
(8)荷電粒子源と、前記荷電粒子源から放出される荷電粒子線を集束し偏向せしめるための荷電粒子光学系と、前記荷電粒子線を試料に照射して試料からの2次粒子を検出するための検出器と、前記試料を搭載する試料台とを備えた荷電粒子線装置において、前記試料台の表面に対して移動可能に設けた中和用電極と、前記中和用電極に印加する電圧および前記移動を制御する中和用電極制御装置とを有し、前記荷電粒子線を照射して帯電した前記試料上の照射領域と前記中和用電極との間で電荷交換または電流を発生せしめて、前記帯電を中和制御するよう構成したことを特徴とする荷電粒子線装置。
(9)前記(8)の構成において、前記中和用電極が、前記荷電粒子光学系と前記試料台との間にあって、前記試料台の表面に対して移動可能に設けてなることを特徴とする荷電粒子線装置。
(10)前記(8)の構成において、前記中和用電極は、導電性物質を曲率100μm以下の先端を有する針状に成形された電極で構成されていることを特徴とする荷電粒子線装置。
(11)前記(8)の構成において、前記中和用電極に、−5Vから+5Vの電圧を印加してなることを特徴とする荷電粒子線装置。
(12)前記(8)の構成において、前記中和用電極制御装置が、前記帯電の中和制御中に前記照射領域と前記中和用電極との間に流れる電流の変化から、前記中和用電極の位置又は電圧の制御値を計算する計算部を具備することを特徴とする荷電粒子線装置。
(13)前記(8)の構成において、前記中和用電極制御装置が、前記レンズ又は前記偏向器の設定値より、前記中和用電極と前記試料間の距離又は電圧を計算する計算部を具備することを特徴とする荷電粒子線装置。
(14)荷電粒子源と、前記荷電粒子源から放出する荷電粒子線を集束するレンズと、偏向器と、前記荷電粒子線を試料に照射して2次粒子を検出するための検出器と、前記試料を保持する試料台と、前記試料台の位置を制御する試料位置制御装置とを備えた荷電粒子線装置において、前記試料上の荷電粒子線照射領域と前記レンズとの間にあって前記試料に対し移動可能に設けられ、前記荷電粒子線照射領域との間で電荷交換または電流を発生する第1の電極(例えば、中和用電極)と、前記第1の電極を制御し、前記試料台位置制御装置とは独立に駆動する電極制御装置と、前記試料台位置制御装置とは独立に駆動し、前記荷電粒子線照射領域との間で電流を発生する第2の電極(例えば、メカニカルプローブ)とを有し、前記第1および前記第2の電極を用いて、帯電した前記荷電粒子線照射領域の中和制御を行なうよう構成したことを特徴とする荷電粒子線装置。
The present invention is summarized as follows.
(1) The sample mounted on the sample stage is irradiated with the charged particle beam emitted from the charged particle source, and the charge generated in the irradiation region of the sample is neutralized installed near the surface of the sample stage. Charging characterized in that neutralization control of the charging is performed by applying a predetermined voltage to the electrode and generating charge exchange with the irradiation region charged without contact with the sample. Neutralization control method.
(2) Neutralization is performed near the surface of the sample table by irradiating the sample mounted on the sample table with the charged particle beam emitted from the charged particle source and generating the charge generated in the irradiation region of the sample. The charging is characterized in that neutralization control of the charging is performed by applying a predetermined voltage to the electrode and generating a current between the irradiation region and the charged region in contact with the sample. Sum control method.
(3) In the configuration of (1) or (2), by observing the surface of the sample with the charged particle beam, the neutralization electrode is brought into contact with the vicinity of the irradiation region, thereby neutralizing the charge. A charge neutralization control method characterized by being configured to perform control.
(4) The charging neutralization control method according to (1) or (2), wherein the neutralizing electrode is configured to be movable with respect to the surface of the sample.
(5) The charging neutralization control method according to (1) or (2), wherein a voltage of −5 V to +5 V is applied to the neutralizing electrode.
(6) The charge neutralization control method according to (1), (2), or (3), wherein the sample includes an insulator.
(7) A charged particle beam emitted from a charged particle source is irradiated on a sample including an insulator mounted on the sample table, and the charge generated in the irradiation region of the sample is installed near the surface of the sample table. A charge neutralization control method, wherein a predetermined voltage is applied to the neutralization electrode and the charge neutralization control is performed without contact with the sample.
(8) A charged particle source, a charged particle optical system for focusing and deflecting a charged particle beam emitted from the charged particle source, and detecting secondary particles from the sample by irradiating the sample with the charged particle beam In a charged particle beam apparatus including a detector for performing the above and a sample stage on which the sample is mounted, the neutralizing electrode provided movably with respect to the surface of the sample stage, and applied to the neutralizing electrode A neutralizing electrode control device for controlling the voltage and the movement, and exchanging charges or current between the irradiation region on the sample charged by irradiating the charged particle beam and the neutralizing electrode. A charged particle beam apparatus configured to neutralize and control the charge by generating the charge.
(9) In the configuration of (8), the neutralization electrode is provided between the charged particle optical system and the sample stage, and is movable with respect to the surface of the sample stage. Charged particle beam device.
(10) The charged particle beam apparatus according to (8), wherein the neutralization electrode is formed of a needle-shaped electrode having a tip with a curvature of 100 μm or less made of a conductive material. .
(11) The charged particle beam apparatus according to (8), wherein a voltage of −5 V to +5 V is applied to the neutralizing electrode.
(12) In the configuration of (8), the neutralization electrode control device is configured to detect the neutralization based on a change in current flowing between the irradiation region and the neutralization electrode during the neutralization control of the charge. A charged particle beam apparatus comprising a calculation unit that calculates a control value of a position or a voltage of a working electrode.
(13) In the configuration of (8), the neutralization electrode control device includes a calculation unit that calculates a distance or voltage between the neutralization electrode and the sample from a set value of the lens or the deflector. A charged particle beam apparatus comprising:
(14) a charged particle source, a lens that focuses a charged particle beam emitted from the charged particle source, a deflector, a detector for irradiating the sample with the charged particle beam to detect secondary particles, In a charged particle beam apparatus comprising a sample stage for holding the sample and a sample position control device for controlling the position of the sample stage, the charged particle beam irradiation area on the sample and the lens are disposed on the sample. A first electrode (e.g., a neutralization electrode) that is movably provided and generates charge exchange or current between the charged particle beam irradiation region and the first electrode; An electrode controller that is driven independently of the position controller and a second electrode that is driven independently of the sample stage position controller and generates a current between the charged particle beam irradiation region (for example, a mechanical probe) ), And the first and Using said second electrode, charged the charged particle beam apparatus characterized by being configured to perform the neutralization control of the charged particle beam irradiation region.

1…イオン源、2…引き出し電極、3…コンデンサレンズ、4…ビーム制限絞り、5…偏向器、6…対物レンズ、7…試料位置制御装置、8…試料、9…2次粒子検出器、10…制御装置、11…イオンビーム、20…中和用電極、21…メカニカルプローブ、31…等電位線、32…近接電荷交換、33…帯電、34…2次電子、35…リーク電流、40…中和用電極と試料間の高さ、50…保護膜、51…基板、52…イオンビーム、53…角穴、54…底穴、55…溝、56…IBAD膜、57…試料片、58…サンプルメッシュ、59…IBAD膜、60…薄膜、61…計算部、62…先端距離、63…電流計、64…計算部、65…計算部、70…導電層、71…プローブ、80…電子源、81…引き出し電極、82…電子線、83…コンデンサレンズ、84…対物レンズ、85…試料、86…試料台、87…2次電子検出器、88…偏向器、89…制御装置、90…中和用電極。   DESCRIPTION OF SYMBOLS 1 ... Ion source, 2 ... Extraction electrode, 3 ... Condenser lens, 4 ... Beam limiting aperture, 5 ... Deflector, 6 ... Objective lens, 7 ... Sample position control apparatus, 8 ... Sample, 9 ... Secondary particle detector, DESCRIPTION OF SYMBOLS 10 ... Control apparatus, 11 ... Ion beam, 20 ... Electrode for neutralization, 21 ... Mechanical probe, 31 ... Equipotential line, 32 ... Proximity charge exchange, 33 ... Charging, 34 ... Secondary electron, 35 ... Leakage current, 40 ... height between neutralization electrode and sample, 50 ... protective film, 51 ... substrate, 52 ... ion beam, 53 ... square hole, 54 ... bottom hole, 55 ... groove, 56 ... IBAD film, 57 ... sample piece, 58 ... sample mesh, 59 ... IBAD film, 60 ... thin film, 61 ... calculation unit, 62 ... tip distance, 63 ... ammeter, 64 ... calculation unit, 65 ... calculation unit, 70 ... conductive layer, 71 ... probe, 80 ... Electron source, 81 ... extraction electrode, 82 ... electron beam, 8 ... condenser lens, 84 ... objective lens, 85 ... sample, 86 ... sample stage 87 ... secondary electron detector, 88 ... deflector, 89 ... controller, 90 ... neutralizing electrode.

Claims (4)

イオン源と、
試料を載置する試料台と、
上記イオン源から放出されるイオンビームを集束して偏向せしめるためのイオンビーム照射光学系と、
上記イオンビームを上記試料に照射して該試料からの二次粒子を検出する検出器と、
上記試料台と電気的に接続され、上記試料台と同電位の状態で、上記試料へ電子を供給することによって、上記イオンビームの照射によって生じた上記試料の正帯電を、上記試料とは非接触で中和する中和電極と、を備えることを特徴とするイオンビーム装置。
An ion source;
A sample stage on which the sample is placed;
An ion beam irradiation optical system for focusing and deflecting the ion beam emitted from the ion source;
A detector for irradiating the sample with the ion beam to detect secondary particles from the sample;
By supplying electrons to the sample while being electrically connected to the sample stage and at the same potential as the sample stage, the positive charge of the sample caused by the irradiation of the ion beam is not different from the sample. ion beam apparatus comprising: a, a neutralization electrode to neutralize the contact.
請求項1記載のイオンビーム装置において、上記中和電極の先端は、導電性物質で形成した針状の電極であることを特徴とするイオンビーム装置。 The ion beam apparatus according to claim 1, wherein said tip of neutralizing electrode, an ion beam apparatus which is a needle-shaped electrode formed of a conductive material. 請求項1記載のイオンビーム装置において、上記中和電極の先端部の曲率半径が100μm以下であることを特徴とするイオンビーム装置。 The ion beam apparatus according to claim 1, the ion beam and wherein the radius of curvature of the tip portion of the neutralizing electrode is 100μm or less. 請求項3記載のイオンビーム装置において、上記中和電極は電流計と接続され、上記電流計により測定される電流量をモニタすることで上記中和電極の先端と上記試料との距離を算出することを特徴とするイオンビーム装置。 The ion beam apparatus according to claim 3, wherein the neutralizing electrode is connected to the ammeter, the distance between the tip and the sample of the neutralizing electrode by monitoring the amount of current measured by the ammeter An ion beam apparatus characterized by calculating.
JP2009174083A 2009-07-27 2009-07-27 Ion beam equipment Expired - Fee Related JP5042282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174083A JP5042282B2 (en) 2009-07-27 2009-07-27 Ion beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174083A JP5042282B2 (en) 2009-07-27 2009-07-27 Ion beam equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007249310A Division JP2008004569A (en) 2007-09-26 2007-09-26 Electrostatic charge neutralization control method and charged particle beam device using it

Publications (2)

Publication Number Publication Date
JP2009245952A JP2009245952A (en) 2009-10-22
JP5042282B2 true JP5042282B2 (en) 2012-10-03

Family

ID=41307563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174083A Expired - Fee Related JP5042282B2 (en) 2009-07-27 2009-07-27 Ion beam equipment

Country Status (1)

Country Link
JP (1) JP5042282B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311424B2 (en) * 1974-02-22 1978-04-21
JPS6392025A (en) * 1986-10-06 1988-04-22 Mitsubishi Electric Corp Conductive-material machining apparatus
JPH01286242A (en) * 1988-05-13 1989-11-17 Hitachi Ltd Analyzer with electricity removing function
JP2774884B2 (en) * 1991-08-22 1998-07-09 株式会社日立製作所 Method for separating sample and method for analyzing separated sample obtained by this separation method
JP3184675B2 (en) * 1993-09-22 2001-07-09 株式会社東芝 Measuring device for fine patterns
JPH08138617A (en) * 1994-11-10 1996-05-31 Hitachi Ltd Charged beam processing device and its method
JP3335790B2 (en) * 1995-03-24 2002-10-21 日本電子株式会社 Fine processing method and device
JP4186335B2 (en) * 1999-09-13 2008-11-26 株式会社日立製作所 Ion beam processing equipment
JP4090657B2 (en) * 2000-02-01 2008-05-28 株式会社日立製作所 Probe device
JP2003151479A (en) * 2001-11-15 2003-05-23 Hitachi Ltd Method for controlling neutralization of charge and charged particle beam device using the same

Also Published As

Publication number Publication date
JP2009245952A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US7372050B2 (en) Method of preventing charging, and apparatus for charged particle beam using the same
US10522327B2 (en) Method of operating a charged particle beam specimen inspection system
JP6188792B2 (en) Preparation of slices for TEM observation
TWI794782B (en) Charged particle beam apparatus with multiple detectors and methods for imaging
US20160299103A1 (en) Application of electron-beam induced plasma probes to inspection, test, debug and surface modifications
US9401297B2 (en) Electrostatic chuck mechanism and charged particle beam apparatus
CN107438891B (en) For using the semiconductor of Secondary Ion Mass Spectrometry to measure and the system and method for surface analysis
US20170294291A1 (en) APPLICATION OF eBIP TO INSPECTION, TEST, DEBUG AND SURFACE MODIFICATIONS
JP2001513258A (en) SEM equipped with electrostatic objective lens and electric scanning device
US11626267B2 (en) Back-scatter electrons (BSE) imaging with a SEM in tilted mode using cap bias voltage
JP2008004569A (en) Electrostatic charge neutralization control method and charged particle beam device using it
JP5042282B2 (en) Ion beam equipment
JP2024508743A (en) System and method suitable for uniform ion cutting
JP2004170395A (en) Charged particle beam system
US9666411B1 (en) Virtual ground for target substrate using floodgun and feedback control
TWI794767B (en) Systems and methods for signal electron detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5042282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees