WO2008053117A1 - Etiquette electronique pour le suivi et le controle de la chaine du froid et procede de controle de temperature associe - Google Patents

Etiquette electronique pour le suivi et le controle de la chaine du froid et procede de controle de temperature associe Download PDF

Info

Publication number
WO2008053117A1
WO2008053117A1 PCT/FR2007/052265 FR2007052265W WO2008053117A1 WO 2008053117 A1 WO2008053117 A1 WO 2008053117A1 FR 2007052265 W FR2007052265 W FR 2007052265W WO 2008053117 A1 WO2008053117 A1 WO 2008053117A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
value
temperature
product
voltage
Prior art date
Application number
PCT/FR2007/052265
Other languages
English (en)
Inventor
Christian Le Mouellic
Original Assignee
Microcomposants De Haute Sécurité Mhs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microcomposants De Haute Sécurité Mhs filed Critical Microcomposants De Haute Sécurité Mhs
Publication of WO2008053117A1 publication Critical patent/WO2008053117A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/022Means for indicating or recording specially adapted for thermometers for recording
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/04Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0716Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor
    • G06K19/0717Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor the sensor being capable of sensing environmental conditions such as temperature history or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances
    • G01K2207/02Application of thermometers in household appliances for measuring food temperature
    • G01K2207/04Application of thermometers in household appliances for measuring food temperature for conservation purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances
    • G01K2207/02Application of thermometers in household appliances for measuring food temperature
    • G01K2207/06Application of thermometers in household appliances for measuring food temperature for preparation purposes

Definitions

  • the present invention relates to an electronic tag for the monitoring and control of the cold chain.
  • the invention is particularly intended to detect temperature breaks in the cold chain.
  • the invention finds a particularly advantageous application in the field of storage or transport of refrigerated food products. However, it could also be used for storing or transporting products that need to be kept at cryogenic temperature, drugs, chemicals, or biologics.
  • the invention proposes a label for detecting the temperature break in a robust manner, while being inexpensive.
  • the label according to the invention comprises a capacitor connected to a reverse diode.
  • the capacity is loaded at a given voltage.
  • this capacity is discharged at constant current into the diode as a function of time.
  • the label according to the invention comprises an electronic circuit capable of accumulating the storage temperature during the life of the food product. And based on this temperature accumulation value, the circuit transmits a value of a storage quality index representing the integral over the storage temperature time. This index indicates whether the product has been stored at a temperature that allows it to be consumed or not.
  • the capacitor value and the characteristics of the diode are adjusted to cover varying time scales.
  • the capacitance of the capacitor is chosen such that, once charged, the capacitor discharges into the diode at least for the intended storage time at the desired storage temperature.
  • the electronic tag allows the identification of the product.
  • the label has in its memory an identifier corresponding to the product.
  • a correlation is made between the identifier and the product associated with this identifier. And from this correlation, the reader can display the identity of the stored product.
  • the product type with the profile of its voltage curve to see if it is still consumable or not. Because there are products more or less sensitive to temperature variations over time. Thus, for a given temperature variation (of a few degrees), a first type of product that is very sensitive to temperature variation may be considered as non-consumable or unusable, while a second type of less sensitive product may be considered as consumable or usable.
  • the label is readable at each stage of the product's life by an RFID-type radio frequency reading. Thus, the label is read after each storage step during a transport of the product, for example after each unloading step preceding a new loading in a new storage location.
  • the label according to the invention is passive, that is to say that it does not include a power supply circuit, the label being powered by its reader.
  • the only electrical energy necessary for the operation of the tag is that of the charge of the capacitor which is made at the time of its initialization, as well as that produced by the reader during its reading.
  • the invention therefore relates to an electronic tag intended to be attached to a product for controlling the storage temperature of this product, this tag comprising: a transponder able to communicate by radio frequency with a reader, and
  • this temperature control circuit connected to the transponder, this temperature control circuit comprising a capacitor and a diode connected together, the diode being connected in inverse relation to the terminals of the capacitor,
  • the capacitor being charged to a given voltage at the time of initialization of the tag, so that it discharges at constant current into the diode as a function of time
  • the transponder being able to transmit to the reader a signal relative to revolution of the voltage observable at the terminals of the capacitor as a function of time.
  • the invention also relates to a temperature control method in which an electronic tag is used to be attached to a product, this tag comprising: a temperature control circuit comprising a capacitor and a diode connected together, the diode being connected in reverse across the capacitor, this method comprising the following steps:
  • the value of the integral is equal to or greater than the expected value then it can be deduced that the product has been kept at the desired temperature or at a lower temperature, whereas if the value of the integral is less than the value expected then we deduce that the product was not kept at the desired temperature.
  • FIG. 1 a schematic representation of the electronic tag according to the invention exchanging signals with a reader
  • FIG. 2 a graphical representation of the evolution of the voltage at the terminals of the capacitor connected across the diode as a function of time, for different storage temperatures
  • FIG. 3 a schematic representation of an integrator to which the temperature control circuit according to the invention is connected.
  • FIG. 1 shows an electronic tag 1 according to the invention intended to be hooked onto a product of the food or other type (not shown).
  • This tag 1 comprises a transponder 2 of the RFID type connected to a temperature control circuit 3 via a control circuit 4.
  • This control circuit 4 provides communication between the transponder 2 and the temperature control circuit 3.
  • the temperature control circuit 3 comprises a capacitor 7 and a diode 8 connected together.
  • the diode 8 is connected in reverse across the capacitor 7. So that when the capacitor 7 is charged, the cathode 8.1 of the diode 8 is connected to the positive armature 7.1 of the capacitor 7 and the anode 8.2 of the diode 8 is connected to the negative armature 7.2 of the capacitor 7.
  • the transponder 2 comprises an antenna 10 for exchanging radio frequency signals with an RFID reader 13, and a memory 11, preferably of the EEPROM type.
  • the transponder 2 picks up with its antenna 10 an initialization signal IF emitted by said reader 13.
  • This signal SI ensures the setting
  • the control circuit 4 receives from the transponder 2 this signal SI, it transmits to the circuit 3 of temperature control a charge order of the capacitor 7 at a given voltage VCHARGE.
  • the date t0 at which the capacitor 7 has been loaded and the value of the charging voltage VCHARGE are stored in the memory 11 of the transponder 2.
  • the label 1 is initialized when the product to which it is attached is stored between 0 and 5 degrees. However, it may be possible to initialize it while the product is not yet stored cool, or when stored in a temperature range other than 0 ° C-5 ° C.
  • the capacitor 7 discharges into the diode 8. The discharge voltage of the capacitor 7 (very low since the diode is connected in reverse) varies depending on the temperature at which the diode-capacitor assembly is stored.
  • the curves A and B show the evolution of the measurable voltage across the capacitor 7 previously charged to 1 volt, respectively when the tag 1 has been stored at 3 degrees and 8 degrees. These curves A and B are reference curves.
  • the higher the storage temperature the higher the slope of the discharge curve. In other words, the higher the storage temperature, the faster the capacitor will discharge.
  • the invention is based on this phenomenon to detect whether the tag 1 has been stored at the desired temperature or not.
  • Curve C shows the evolution of the voltage across a capacitor of a tag 1 attached to a product located in a refrigerated truck supposed to be refrigerated at 3 degrees.
  • the reader 13 transmits, at a time ti, a read signal SL to the tag 1 by means of its antenna 12.
  • the transponder 2 captures this signal SL by means of its antenna 10 and transmits it to the controller 4.
  • the controller 4 triggers a reading of the current voltage Vi across the capacitor 8.
  • the value of this voltage Vi is transmitted to the transponder 2 which records it with the date ti at which the measurement was made in the memory 11.
  • This memory 11 comprises also the value Vi-1 and the date t-1 of the previous measurement.
  • the reader 3 calculates the ratio between the difference of the transmitted voltage values (Vi-Vi-1) and the difference between the measurement instants (ti-ti- 1). This ratio (which corresponds to the DC discharge slope of the capacitor) is then compared with an expected slope value DA for a storage temperature of 3 degrees. If the difference is greater than a threshold value K (which corresponds to a tolerance threshold), then it can be deduced that the product has not been stored at the desired temperature. On the other hand, if the difference is zero or less than the value K then it is deduced that the product has been kept at the desired temperature.
  • the reader 13 includes in his memoirs 15,
  • the label 1 transmits to the reader 13 the value of the voltage Vi measured and the time ti at which this measurement was made. The difference between the measured voltage value Vi and an expected voltage value is then calculated.
  • the measured value Vi is greater than the expected value, then it can be deduced that the product has not been stored at a suitable temperature for its consumption. On the other hand, if the measured value is less than or equal to the expected value, then it is deduced that the product has been stored at a suitable temperature for its consumption.
  • the expected voltage values may for example be contained within the memory of the reader 13. In fact, for a given storage temperature and a given charge value VCHARGE, this memory contains expected values of the voltage across the terminals of the device. capacitor 7 measured during a calibration step. The voltage value expected at a given instant ti is thus calculated from the load value VCHARGE, the discharge time (ti-tO) of the capacitor, and the desired storage temperature which are transmitted to the reader by the tag 1 via the SR signal.
  • the signal SR sent to the reader 13 comprises a value of the integral of the voltage across the capacitor over the duration t ⁇ -ti] between the instant to the initialization of the tag and the instant ti of the measurement of said value of the integral.
  • the initial charging voltage VCHARGE, the instant of this initial charge t0 and the desired storage temperature are also transmitted to the reader 13 by the tag 1.
  • the reader 13 contains in its memory 11 a reference curve (for example the curve A) which has been obtained during a calibration step. The value of the expected integral is then calculated by integrating this curve over the duration of the discharge] t ⁇ -ti].
  • the value of the measured integral is smaller than the value of the expected integral, then it is deduced that the product has not been stored at the desired temperature. On the other hand, if the value of the measured integral is greater than or equal to the value of the expected integral, it is deduced that the product has been stored at the desired temperature or at a lower temperature, which means that the freshness product is preserved.
  • the temperature control circuit 3 is connected inside an integrator circuit 21 shown in FIG. 3. More precisely, the anode 8.2 of the diode and the terminal 7.2 of the capacitor are connected to the circuit ground. While the cathode 8.1 and 7.1 of the capacitor are connected to a first input of an operational amplifier 23. The second input of the operational amplifier 23 and connected to ground, so that the amplifier 23 is configured in follower mode.
  • the output of this amplifier 23 is connected to an input of an analog-to-digital converter 24.
  • the output of the converter 24 is connected to an input of the control circuit 4 which reads the voltage to be transmitted to the transponder 2.
  • the circuit 21 comprises a MOS-type transistor 25 whose source is connected to an armature of the capacitor 7.
  • a diode 22 is connected between the transistor 25 and the temperature control circuit 3. More precisely, the anode of this diode 22 is connected to the source of the transistor 25, while the cathode of this diode 22 is connected to the cathode of the diode 8. This diode 22 thus avoids the discharge of the capacitor 7 into the transistor During storage of the product.
  • the NMOS transistor can be replaced by a bipolar type transistor.
  • the memory 11 of the label includes an identifier ID making it possible to identify the product to which the label
  • the identifier ID is contained inside the signal
  • the reader 13 As the reader 13 has in its memory 27 the different ID identifiers possible tags and the types of products with which they are associated, the reader 13 makes a correlation between the identifier ID that has been transmitted to him and the product. And it then displays the identity of the product hanging on the label 1.
  • the type of product and the change in temperature can be combined with one another to take into account the sensitivity of the product to temperature variations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne une étiquette (1 ) électronique destinée à être accrochée à un produit pour le contrôle de la température de stockage de ce produit. Cette étiquette (1 ) comporte une diode (8) reliée en inverse aux bornes (7.1, 7.2) d'un condensateur (7). Cette étiquette est apte à transmettre à un lecteur (13) un signal (SR) relatif à l'évolution de la tension observable aux bornes du condensateur (7) en fonction du temps. L'évolution de ce signal, qui dépend fortement des variations de température, permet de savoir si le produit a été stocké à la température désirée préservant sa fraîcheur. Cette étiquette (1 ) peut être utilisée pour le stockage ou le transport de produits devant être maintenus à une température cryogénique, ou de médicaments, ou de produits surgelés, ou de produits chimiques, ou de produits biologiques.

Description

Etiquette électronique pour le suivi et le contrôle de la chaîne du froid et procédé de contrôle de température associé
La présente invention concerne une étiquette électronique pour le suivi et le contrôle de la chaîne du froid. L'invention a notamment pour but de détecter les ruptures de température dans la chaîne du froid. L'invention trouve une application particulièrement avantageuse dans le domaine du stockage ou du transport des produits alimentaires réfrigérés. Toutefois, elle pourrait aussi être utilisée pour le stockage ou le transport de produits devant être maintenus à une température cryogénique, de médicaments, de produits chimiques, ou de produits biologiques.
On sait que certains produits doivent être stockés dans une plage de température particulière afin de garder leur fraîcheur ou leurs propriétés chimiques. Toute augmentation de température durant une durée supérieure à une durée de tolérance conduit au développement de microorganismes ou à une modification de structure chimique rendant le produit non consommable ou non utilisable, suivant sa nature. Le contrôle de la chaîne du froid utilise de plus en en plus d'étiquettes comportant des marqueurs permettant de vérifier si le produit a subi une rupture de cette chaîne du froid. Par exemple, il est connu d'utiliser des étiquettes comportant des organismes vivants qui changent de couleur lorsque la température dépasse une valeur de température seuil pendant une durée qui engendre une diminution de la qualité du produit.
L'invention propose une étiquette permettant de détecter la rupture de température de manière robuste, tout en étant peu onéreuse.
A cette fin, l'étiquette selon l'invention comporte une capacité connectée à une diode en inverse. Par une opération d'initialisation effectuée au début du stockage, la capacité est chargée à une tension donnée. Durant le stockage du produit alimentaire, cette capacité se décharge à courant constant dans la diode en fonction du temps.
La sensibilité importante du courant inverse de la diode en fonction de la température permet d'obtenir une tension aux bornes de la capacité à un instant donné qui dépend fortement de la température à laquelle le circuit a été stocké. La mesure de la tension en fin de stockage permet donc de connaître avec précision la température de stockage du produit. Et en fonction de cette tension, on détecte si le produit est sorti ou non de la spécification de température stockage. Dans une réalisation, l'étiquette selon l'invention comporte un circuit électronique capable de faire un cumul de la température de stockage durant la vie du produit alimentaire. Et en fonction de cette valeur de cumul de température, le circuit transmet une valeur d'un indice de qualité de stockage représentant l'intégrale sur le temps de la température de stockage. Cet indice indique si le produit a été conservé à une température permettant sa consommation ou pas.
De préférence, la valeur du condensateur et les caractéristiques de la diode sont ajustées pour couvrir des échelles de temps variables. En particulier, la capacité du condensateur est choisie de sorte qu'une fois chargé, le condensateur se décharge dans la diode au moins pendant toute la durée de stockage prévue à la température de stockage désirée.
Par ailleurs, l'étiquette électronique permet l'identification du produit. A cet effet, l'étiquette comporte dans sa mémoire un identifiant correspondant au produit. Lorsque cet identifiant est transmis au lecteur, une corrélation est faite entre l'identifiant et le produit associé à cet identifiant. Et à partir de cette corrélation, le lecteur peut afficher l'identité du produit stocké.
En outre, il est possible de combiner le type de produit avec le profil de sa courbe de tension pour savoir s'il est toujours consommable ou pas. Car il existe des produits plus ou moins sensibles aux variations de températures dans le temps. Ainsi, pour une variation de température donnée (de quelques de degrés), un premier type de produit très sensible au variation de température pourra être considéré comme non consommable ou non utilisable, alors qu'un deuxième type de produit moins sensible pourra être considéré comme consommable ou utilisable. L'étiquette est lisible à chaque étape de la vie du produit par une lecture radiofréquence de type RFID. Ainsi, l'étiquette est lue après chaque étape de stockage lors d'un transport du produit, par exemple après chaque étape de déchargement précédent un nouveau chargement dans un nouvel endroit de stockage. De préférence, l'étiquette selon l'invention est passive, c'est-à-dire qu'elle ne comporte pas de circuit d'alimentation, l'étiquette étant mise sous tension par son lecteur. Ainsi, la seule énergie électrique nécessaire au fonctionnement de l'étiquette est celle de la charge du condensateur qui est réalisée au moment de son initialisation, ainsi que celle produite par le lecteur lors de sa lecture.
L'invention concerne donc une étiquette électronique destinée à être accrochée à un produit pour le contrôle de la température de stockage de ce produit, cette étiquette comportant : - un transpondeur apte à communiquer par radiofréquence avec un lecteur, et
- un circuit de contrôle de température relié au transpondeur, ce circuit de contrôle de température comportant un condensateur et une diode reliés entre eux, - la diode étant reliée en inverse aux bornes du condensateur,
- le condensateur étant chargé à une tension donnée au moment de l'initialisation de l'étiquette, de sorte qu'il se décharge à courant constant dans la diode en fonction du temps,
- le transpondeur étant apte à transmettre au lecteur un signal relatif à révolution de la tension observable aux bornes du condensateur en fonction du temps.
L'invention concerne également un procédé de contrôle de température dans lequel, on met en oeuvre une étiquette électronique destinée à être accrochée à un produit, cette étiquette comportant : - un circuit de contrôle de température comportant un condensateur et une diode reliés entre eux, la diode étant reliée en inverse aux bornes du condensateur, ce procédé comportant les étapes suivantes :
- charger le condensateur à une tension donnée au moment de l'initialisation de l'étiquette, de sorte qu'il se décharge à courant constant dans la diode en fonction du temps,
- calculer, à un instant de mesure, une valeur de l'intégrale de la tension aux bornes du condensateur sur une durée comprise entre l'instant de l'initialisation de l'étiquette et l'instant de mesure, et - comparer la valeur de l'intégrale calculée avec une valeur de l'intégrale attendue pour une température de stockage désirée, et
- si la valeur de l'intégrale est égale ou supérieure à la valeur attendue alors on en déduit que le produit a été conservé à la température désirée ou à une température inférieure, tandis que si la valeur de l'intégrale est inférieure à la valeur attendue alors on en déduit que le produit n'a pas été conservé à la température désirée.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. Ces figures montrent :
- figure 1 : une représentation schématique de l'étiquette électronique selon l'invention échangeant des signaux avec un lecteur ;
- figure 2 : une représentation graphique de l'évolution de la tension aux bornes du condensateur branché aux bornes de la diode en fonction du temps, pour différentes températures de stockage,
- figure 3 : une représentation schématique d'un intégrateur auquel le circuit de contrôle de température selon l'invention est relié.
Les éléments identiques conservent la même référence d'une figure à l'autre.
La figure 1 montre une étiquette 1 électronique selon l'invention destinée à être accrochée sur un produit de type alimentaire ou autre (non représenté). Cette étiquette 1 comporte un transpondeur 2 de type RFID relié à un circuit 3 de contrôle de température par l'intermédiaire d'un circuit 4 de commande. Ce circuit 4 de commande assure une communication entre le transpondeur 2 et le circuit 3 de contrôle de température.
Plus précisément, le circuit 3 de contrôle de température comporte un condensateur 7 et une diode 8 reliés entre eux. La diode 8 est connectée en inverse aux bornes du condensateur 7. De sorte que lorsque le condensateur 7 est chargé, la cathode 8.1 de la diode 8 est reliée à l'armature positive 7.1 du condensateur 7 et l'anode 8.2 de la diode 8 est reliée à l'armature négative 7.2 du condensateur 7.
Par ailleurs, le transpondeur 2 comporte une antenne 10 permettant d'échanger des signaux radiofréquences avec un lecteur RFID 13, et une mémoire 11 de préférence du type EEPROM. Durant une étape d'initialisation, lorsque l'étiquette 1 est située à proximité du lecteur 13, le transpondeur 2 capte à l'aide de son antenne 10 un signal d'initialisation SI émis par ledit lecteur 13. Ce signal SI assure la mise sous tension de l'étiquette 1. En outre, dès que le circuit 4 de commande reçoit du transpondeur 2 ce signal SI, il transmet au circuit 3 de contrôle de température un ordre de charge du condensateur 7 à une tension donnée VCHARGE. La date tO à laquelle le condensateur 7 a été chargé et la valeur de la tension de charge VCHARGE sont enregistrées dans la mémoire 11 du transpondeur 2. Dans une mise en oeuvre, pour un produit alimentaire, l'étiquette 1 est initialisée lorsque le produit auquel elle est accrochée est stocké entre 0 et 5 degrés. Toutefois, il serait possible de l'initialiser alors que le produit n'est pas encore stocké au frais, ou lorsqu'il est stocké dans une plage de température différente de 0°C-5°C. Une fois chargé, le condensateur 7 se décharge dans la diode 8. La tension de décharge du condensateur 7 (très faible puisque la diode est branchée en inverse) varie en fonction de la température à laquelle est stocké l'ensemble diode-condensateur.
Sur la figure 2, les courbes A et B montrent l'évolution de la tension mesurable aux bornes du condensateur 7 chargé au préalable à 1 volt, respectivement lorsque l'étiquette 1 a été stockée à 3 degrés et 8 degrés. Ces courbes A et B sont des courbes de référence.
On s'aperçoit que plus la température de stockage est élevée, plus la pente de la courbe de décharge est élevée. Autrement dit, plus la température de stockage est élevée, plus le condensateur se décharge rapidement. L'invention se base sur ce phénomène pour détecter si l'étiquette 1 a été stockée à la température désirée ou non.
La courbe C montre l'évolution de la tension aux bornes d'un condensateur d'une étiquette 1 accrochée à un produit situé dans un camion frigorifique supposé être réfrigéré à 3 degrés.
Durant une étape de contrôle de température de stockage du produit situé dans le camion, le lecteur 13 émet, à un instant ti, un signal de lecture SL à destination de l'étiquette 1 au moyen de son antenne 12. Le transpondeur 2 capte ce signal SL au moyen de son antenne 10 et le transmet au contrôleur 4. Dès qu'il reçoit ce signal SL, le contrôleur 4 déclenche une lecture de la tension Vi actuelle aux bornes de la capacité 8. La valeur de cette tension Vi est transmise au transpondeur 2 qui l'enregistre avec la date ti à laquelle la mesure a été effectuée dans la mémoire 11. Cette mémoire 11 comporte également la valeur Vi-1 et la date t-1 de la mesure précédente.
Deux valeurs de tension mesurées aux bornes du condensateur 7 lors de sa décharge : la mesure actuelle Vi mesurée à ti et la mesure précédente Vi-1 mesurée à ti-1 avec les deux dates associées ti et ti-1 sont transmises par radio-fréquence au lecteur extérieur 13 via un signal SR. Le lecteur 3 calcule alors le rapport entre la différence des valeurs de tension transmises (Vi-Vi-1 ) et la différence entre les instants de mesure (ti-ti- 1 ). Ce rapport (qui correspond à la pente DC de décharge du condensateur) est alors comparé avec une valeur de pente attendue DA pour une température de stockage à 3 degrés. Si la différence est supérieure à une valeur seuil K (qui correspond à un seuil de tolérance), alors on en déduit que le produit n'a pas été conservé à la température désirée. En revanche, si la différence est nulle ou inférieure à la valeur K alors on en déduit que le produit a été conservé à la température désirée. Dans une réalisation, le lecteur 13 comporte dans ses mémoires 15,
16 une valeur de pente DA, DB attendue et une valeur de tolérance K, K' pour chaque température de stockage désirée.
En variante, l'étiquette 1 transmet au lecteur 13 la valeur de la tension Vi mesurée ainsi que l'instant ti auquel cette mesure a été effectuée. On calcule alors la différence entre la valeur de tension mesurée Vi et une valeur de tension attendue.
Si la valeur mesurée Vi est supérieure à la valeur attendue, alors on en déduit que le produit n'a pas été stocké à une température convenable pour sa consommation. En revanche, si la valeur mesurée est inférieure ou égale à la valeur attendue, alors on en déduit que le produit a été stocké à une température convenable pour sa consommation.
Les valeurs de tension attendues peuvent par exemple être contenues à l'intérieur de la mémoire du lecteur 13. En effet, pour une température de stockage donnée et une valeur de charge VCHARGE donnée, cette mémoire contient des valeurs attendues de la tension aux bornes du condensateur 7 mesurées au cours d'une étape d'étalonnage. La valeur de tension attendue à un instant donné ti est ainsi calculée à partir de la valeur de charge VCHARGE, de la durée de décharge (ti-tO) du condensateur, et de la température de stockage désirée qui sont transmises au lecteur par l'étiquette 1 via le signal SR.
En variante, le signal SR envoyé au lecteur 13 comporte une valeur de l'intégrale de la tension aux bornes du condensateur sur la durée ]tθ-ti] comprise entre l'instant to de l'initialisation de l'étiquette et l'instant ti de la mesure de ladite valeur de l'intégrale. Dans cette variante, la tension de charge initiale VCHARGE, l'instant de cette charge initiale tO et la température de stockage désirée sont également transmises au lecteur 13 par l'étiquette 1. Pour cette tension de charge VCHARGE et cette température de stockage désirée, le lecteur 13 contient dans sa mémoire 11 une courbe de référence (par exemple la courbe A) qui a été obtenue au cours d'une étape d'étalonnage. La valeur de l'intégrale attendue est alors calculée en intégrant cette courbe sur la durée de la décharge ]tθ-ti].
Si la valeur de l'intégrale mesurée est plus petite que la valeur de l'intégrale attendue, alors on en déduit que le produit n'a pas été stocké à la température désirée. En revanche, si la valeur de l'intégrale mesurée est plus grande ou égale que la valeur de l'intégrale attendue, on en déduit que le produit a été stocké à la température désirée ou à une température inférieure, ce qui signifie que la fraîcheur du produit est préservée.
Pour calculer l'intégrale de la tension mesurée, le circuit 3 de contrôle de température est branché à l'intérieur d'un circuit intégrateur 21 représenté à la figure 3. Plus précisément, l'anode 8.2 de la diode et la borne 7.2 du condensateur sont reliées à la masse du circuit. Tandis que la cathode 8.1 et à la borne 7.1 du condensateur sont reliées sur une première entrée d'un amplificateur opérationnel 23. La deuxième entrée de l'amplificateur opérationnel 23 et relié à la masse, de sorte que l'amplificateur 23 est configuré en mode suiveur.
La sortie de cet amplificateur 23 est connectée sur une entrée d'un convertisseur 24 analogique-numérique. La sortie du convertisseur 24 est reliée à une entrée du circuit 4 de commande qui lit la tension à transmettre au transpondeur 2. Par ailleurs, le circuit 21 comporte un transistor 25 de type MOS dont la source est reliée à une armature du condensateur 7. Ainsi lorsqu'une tension VCHARGE est appliquée au drain et qu'un signal UG appliqué sur la grille rend ce transistor 25 passant, le condensateur 7 se charge à la tension VCHARGE. Comme on l'a vu, cette charge se produit au moment de l'initialisation de l'étiquette 1.
En outre, une diode 22 est reliée entre le transistor 25 et le circuit 3 de contrôle de température. Plus précisément, l'anode de cette diode 22 est reliée à la source du transistor 25, tandis que la cathode de cette diode 22 est reliée à la cathode de la diode 8. Cette diode 22 évite ainsi la décharge du condensateur 7 dans le transistor 25 durant le stockage du produit.
En variante, le transistor 25 NMOS peut être remplacé par un transistor de type bipolaire.
Dans une réalisation particulière, la mémoire 11 de l'étiquette comporte un identifiant ID permettant d'identifier le produit auquel l'étiquette
1 est attachée. A cet effet, l'identifiant ID est contenu à l'intérieur du signal
SR transmis au lecteur 13 au moment d'une lecture de l'étiquette 1. Comme le lecteur 13 comporte dans sa mémoire 27 les différents identifiants ID possibles des étiquettes et les types de produits auxquels ils sont associés, le lecteur 13 fait une corrélation entre l'identifiant ID qui lui a été transmis et le produit. Et il affiche alors l'identité du produit accroché à l'étiquette 1.
Le type de produit et l'évolution de la température peuvent être combinés entre eux afin de tenir compte de la sensibilité du produit aux variations de température.

Claims

REVENDICATIONS
1 - Etiquette (1) électronique destinée à être accrochée à un produit pour le contrôle de la température de stockage de ce produit, cette étiquette (1 ) comportant :
- un transpondeur (2) apte à communiquer par radiofréquence avec un lecteur (13), et
- un circuit (3) de contrôle de température relié au transpondeur (2), ce circuit (3) de contrôle de température comportant un condensateur (7) et une diode (8) reliés entre eux,
- la diode (8) étant reliée en inverse aux bornes (7.1 , 7.2) du condensateur (7),
- le condensateur (7) étant chargé à une tension donnée (VCHARGE) au moment de l'initialisation (tO) de l'étiquette (1 ), de sorte qu'il se décharge à courant constant dans la diode (8) en fonction du temps,
- le transpondeur (2) étant apte à transmettre au lecteur (13) un signal (SR) relatif à l'évolution de la tension observable aux bornes du condensateur (7) en fonction du temps.
2 - Etiquette selon la revendication 1 , caractérisée en ce que : - la capacité du condensateur (7) est choisie de sorte qu'une fois chargé, le condensateur (7) se décharge dans la diode (8) au moins pendant toute la durée d'un stockage prévue à une température désirée.
3 - Etiquette selon la revendication 1 ou 2, caractérisée en ce qu'elle comporte en outre : - une mémoire (11 ) pour stocker un identifiant (ID) correspondant au produit, ainsi que la date (tO) et la valeur (VCHARGE) de la tension aux bornes du condensateur (7) au moment de l'initialisation, l'étiquette (1) étant apte à transmettre ces données au lecteur (13).
4 - Etiquette selon l'une des revendications 1 à 3, caractérisée en ce que :
- l'initialisation de l'étiquette est réalisée lorsque le produit auquel elle est accrochée est stocké à une température comprise entre 0 et 5 degrés.
5 - Etiquette selon l'une des revendications 1 à 4, caractérisée en ce qu'elle comporte un circuit de commande (4) assurant la communication entre le transpondeur (2) et le circuit (3) de contrôle de température. 6 - Etiquette selon l'une des revendications 1 à 5, caractérisée en ce qu'elle est passive, l'étiquette étant mise sous tension par le lecteur (13).
7 - Etiquette selon l'une des revendications 1 à 6, caractérisée en ce que : - le signal (SR) relatif à l'évolution de la tension observable aux bornes du condensateur en fonction du temps comporte une valeur (Vi) de la tension aux bornes du condensateur mesurée et l'instant (ti) de cette mesure, ainsi qu'une valeur (Vi-1 ) de la mesure précédente et l'instant (ti-1 ) de cette mesure précédente. 8 - Etiquette selon l'une des revendications 1 à 7, caractérisée en ce que :
- le signal (SR) relatif à l'évolution de la tension observable aux bornes du condensateur en fonction du temps comporte une valeur de l'intégrale de tension aux bornes du condensateur sur une durée comprise entre l'instant (tO) de l'initialisation de l'étiquette et l'instant (ti) de la mesure de ladite valeur de l'intégrale.
9 - Utilisation de l'étiquette selon l'une des revendications précédentes pour le stockage ou le transport de produits devant être maintenus à une température cryogénique, ou de médicaments, ou de produits congelés ou surgelés, ou de produits chimiques, ou de produits biologiques.
10 - Procédé de contrôle de température dans lequel, on met en oeuvre une étiquette (1 ) électronique destinée à être accrochée à un produit, cette étiquette (1) comportant :
- un circuit (3) de contrôle de température comportant un condensateur (7) et une diode (8) reliés entre eux, la diode (8) étant reliée en inverse aux bornes du condensateur (7), ce procédé comportant les étapes suivantes :
- charger le condensateur (7) à une tension donnée (VCHARGE) au moment de l'initialisation (tO) de l'étiquette (1), de sorte qu'il se décharge à courant constant dans la diode en fonction du temps,
- calculer, à un instant (ti) de mesure, une valeur de l'intégrale de la tension aux bornes du condensateur sur une durée comprise entre l'instant de l'initialisation de l'étiquette (tO) et l'instant (ti) de mesure, et
- comparer la valeur de l'intégrale calculée avec une valeur de l'intégrale attendue pour une température de stockage désirée, et - si la valeur de l'intégrale est égale ou supérieure à la valeur attendue alors on en déduit que le produit a été conservé à la température désirée ou à une température inférieure, tandis que si la valeur de l'intégrale est inférieure à la valeur attendue alors on en déduit que le produit n'a pas été conservé à la température désirée.
11 - Procédé selon la revendication 10, caractérisé en ce que, pour calculer la valeur de l'intégrale attendue, on calcule l'intégrale d'une courbe de référence (A) de la tension obtenue pour la tension de charge du condensateur (7) et pour la température de stockage désirée, cette intégrale étant calculée sur la durée de décharge du condensateur (7) comprise entre l'instant (tO) de l'initialisation de l'étiquette et l'instant (ti) de mesure.
PCT/FR2007/052265 2006-10-27 2007-10-29 Etiquette electronique pour le suivi et le controle de la chaine du froid et procede de controle de temperature associe WO2008053117A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654612 2006-10-27
FR0654612A FR2907939B1 (fr) 2006-10-27 2006-10-27 Etiquette electronique pour le suivi et le controle de la chaine du froid et procede de controle de temperature associe

Publications (1)

Publication Number Publication Date
WO2008053117A1 true WO2008053117A1 (fr) 2008-05-08

Family

ID=38179953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052265 WO2008053117A1 (fr) 2006-10-27 2007-10-29 Etiquette electronique pour le suivi et le controle de la chaine du froid et procede de controle de temperature associe

Country Status (2)

Country Link
FR (1) FR2907939B1 (fr)
WO (1) WO2008053117A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511379A1 (fr) 2011-04-11 2012-10-17 Universidad Pública De Navarra Dispositif de surveillance du temps-température
CN104359565A (zh) * 2014-10-17 2015-02-18 中国农业大学 一种冷链运输温度监测与预警的方法及系统
CN109085868A (zh) * 2018-10-08 2018-12-25 中义(泰州)医药科技有限公司 一种应用于冷链运输的存储温度自动控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599278B2 (en) * 2014-07-11 2017-03-21 Marc Ruckman Adjustable support
EP3311129A4 (fr) * 2015-06-22 2019-03-27 Menumat OY Dispositif et procédé pour le traitement et la surveillance de portions alimentaires dans une chaîne de service de repas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058252A2 (fr) * 2000-02-11 2001-08-16 Bio Medic Data Systems Inc. Transpondeur de detection de temperature implantable a programmation inductive
EP1262756A1 (fr) * 2001-05-29 2002-12-04 EM Microelectronic-Marin SA Dispositif électronique de suivi de la température d'un milieu à surveiller et procédé pour la mise en oeuvre d'un tel dispositif
US20050248455A1 (en) * 2004-04-27 2005-11-10 Pope Gary W Shelf-life monitoring sensor-transponder system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058252A2 (fr) * 2000-02-11 2001-08-16 Bio Medic Data Systems Inc. Transpondeur de detection de temperature implantable a programmation inductive
EP1262756A1 (fr) * 2001-05-29 2002-12-04 EM Microelectronic-Marin SA Dispositif électronique de suivi de la température d'un milieu à surveiller et procédé pour la mise en oeuvre d'un tel dispositif
US20050248455A1 (en) * 2004-04-27 2005-11-10 Pope Gary W Shelf-life monitoring sensor-transponder system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511379A1 (fr) 2011-04-11 2012-10-17 Universidad Pública De Navarra Dispositif de surveillance du temps-température
CN104359565A (zh) * 2014-10-17 2015-02-18 中国农业大学 一种冷链运输温度监测与预警的方法及系统
CN109085868A (zh) * 2018-10-08 2018-12-25 中义(泰州)医药科技有限公司 一种应用于冷链运输的存储温度自动控制系统

Also Published As

Publication number Publication date
FR2907939A1 (fr) 2008-05-02
FR2907939B1 (fr) 2009-01-30

Similar Documents

Publication Publication Date Title
WO2008053117A1 (fr) Etiquette electronique pour le suivi et le controle de la chaine du froid et procede de controle de temperature associe
FR3011393A1 (fr) Procede et appareil d'evaluation de l'etat de sante d'une batterie lithium
EP2707935A2 (fr) Procede de gestion et diagnostic d'une batterie
CN105444513A (zh) 一种可与手机通信的智能冰箱
EP2846394A1 (fr) Batterie intelligente munie d'un circuit de gestion de la tension d'alimentation
FR3007531A1 (fr) Procede d'evaluation de l'etat de charge d'une batterie
FR2953314A1 (fr) Prolongateur d'antenne rfid auto-parametrable
FR3067534A1 (fr) Procede de controle du niveau de puissance emise par un dispositif de communication sans contact, par exemple un lecteur, et dispositif de communication sans contact correspondant
EP2260314A1 (fr) Equipement de releve et de transmission de valeurs mesurees de grandeurs physiques, et capteur de mesure pour un tel equipement
WO2019149696A1 (fr) Procédé de fonctionnement d'un appareil électronique communiquant sans fil et appareil électronique communiquant sans fil mettant en oeuvre ce procédé
FR3004564A1 (fr) Marqueur d'identification
EP4198811A1 (fr) Detection de dispositif nfc
FR2697637A1 (fr) Procédé et dispositif de mesure de la charge d'une batterie d'accumulateurs.
EP3675473B1 (fr) Procédé et système de détection d'un mode de transport aérien
FR3060505A1 (fr) Procede de controle de prise en main d’un organe de direction de vehicule
FR2975517A1 (fr) Enregistrement automatique de la position de stationnement d'un vehicule
FR3117984A1 (fr) Procédé et dispositif de mesure d’un contact ou d’une proximité avec un volant de véhicule
WO2008080705A1 (fr) Methode de calibration pour capteurs saw
EP1061315B1 (fr) Système pour l'exploitation et la gestion d'un parc de conteneurs réfrigérés
EP3291155B1 (fr) Procédé de surveillance d'un flacon de produit alimentaire, en particulier de boisson alcoolisée
WO2021116436A1 (fr) Surveillance du vieillissement d'un composant
KR20140087994A (ko) 전동장치용 배터리의 전력모니터링 시스템
EP4274486B1 (fr) Dispositif d'analyse d'urine pour mesurer la température de l'urine
WO2018202958A1 (fr) Procédé de contrôle de l'adaptation d'une antenne à un chemin de transmission, et dispositif correspondant
WO2023111409A1 (fr) Procede de recalage de l'etat de charge d'un systeme de batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07866508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07866508

Country of ref document: EP

Kind code of ref document: A1