WO2008050637A1 - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
WO2008050637A1
WO2008050637A1 PCT/JP2007/070173 JP2007070173W WO2008050637A1 WO 2008050637 A1 WO2008050637 A1 WO 2008050637A1 JP 2007070173 W JP2007070173 W JP 2007070173W WO 2008050637 A1 WO2008050637 A1 WO 2008050637A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless motor
teeth
steering
motor
magnet
Prior art date
Application number
PCT/JP2007/070173
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Okubo
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to JP2008540947A priority Critical patent/JPWO2008050637A1/en
Publication of WO2008050637A1 publication Critical patent/WO2008050637A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles

Definitions

  • the present invention relates to a brushless motor used for a drive source of an electric power steering apparatus, and more particularly to a brushless motor designed to reduce both inductance and cogging torque.
  • the brushless motor of Patent Document 1 is configured such that an auxiliary groove having a 1/2 slot pitch is provided at the tip of a tooth, and the number of slots is apparently doubled. Further, in the brushless motor of Patent Document 2, overhang portions are provided at both ends of the stator core to suppress the magnetic flux flowing from the end face of the stator core. As a result, the teeth tip to the stator core The amount of magnetic flux flowing in is increased, and the pseudo multi-slot effect by the auxiliary groove is improved.
  • the rotor has a 2P structure and the stator has a 3P structure, and the auxiliary grooves are equally spaced from the center of the slot at angles ⁇ and 2 ⁇ at the tip of the teeth provided at a pitch of 4 ⁇ .
  • An arrangement that reduces cogging is shown!
  • Patent Document 1 No. 7-47981
  • Patent Document 2 Japanese Patent Laid-Open No. 10-42531
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-194489
  • An object of the present invention is to provide a brushless motor capable of efficiently exhibiting effects such as cogging torque reduction by an auxiliary groove while reducing inductance.
  • the brushless motor of the present invention includes a rotor including a magnet and a stator including a plurality of teeth facing the magnet via an air gap, and the air gap is provided at a tip of the teeth.
  • a brushless motor formed with a plurality of auxiliary grooves facing each other, the width S along the circumferential direction of the auxiliary grooves and the circumferential direction of the opening formed at the tip of the adjacent teeth. Ratio with width W along W / S force 0.9 ⁇ W / S ⁇ 1.1 And the angle between the center along the circumferential direction of the opening and the center axis along the circumferential direction of the auxiliary groove e w , and the angle between the centers M of the adjacent auxiliary grooves es and
  • the ratio ⁇ sZ ⁇ w of the ⁇ s to the ⁇ w is 0 ⁇ 66 ⁇ s / ⁇ w ⁇ 0.965.
  • W / S is set to 0.9 ⁇ W / S ⁇ 1.1
  • ⁇ s / ⁇ w is set to a range of 0.66 ⁇ ⁇ s w ⁇ w ⁇ 0.965, thereby reducing inductance.
  • Cogging can be kept small while improving the cogging robustness and the effect of armature reaction in the high output range can be reduced. For this reason, for example, when the brushless motor is used as a drive source of the electric power steering apparatus, the return of steering is improved by reducing cogging.
  • due to the inductance reduction torque sagging at high loads is reduced, so that assist force is stabilized and steering feeling is improved.
  • the ratio ⁇ sZ ⁇ w of ⁇ s to ⁇ w may be preferably set to 0.7 ⁇ s / ⁇ w ⁇ 0.9.
  • the brushless motor may have a 6-pole 9-slot configuration in which the magnet has 6 poles and the number of slots formed between the teeth is 9. Furthermore, the brushless motor may be used as a drive source for the electric power steering apparatus.
  • the rotor includes a magnet
  • the stator includes a plurality of teeth facing the magnet through an air gap.
  • the ratio W / S between the auxiliary groove width S and the opening width W between adjacent teeth is 0.9 ⁇ W / S ⁇ 1.1.
  • the angle ⁇ w between the opening center Ml and the auxiliary groove center M2 and the angle between the adjacent auxiliary groove centers M2 ⁇ s ratio ⁇ s / ⁇ w is 0.66 ⁇ ⁇ s / ⁇ w ⁇ 0.965
  • the brushless motor when used as a drive source of the electric power steering apparatus, the return of the steering is improved by reducing the cogging, and the smooth steering is achieved. Operation becomes possible.
  • the influence of the armature reaction in the high output range due to inductance reduction torque sagging at high loads is reduced, assist force is stabilized, and steering feeling can be improved.
  • FIG. 1 is a cross-sectional view showing a configuration of an electric power steering device using a brushless motor according to the present invention.
  • FIG. 2 is an axial sectional view showing a configuration of a brushless motor used in the electric power steering apparatus of FIG. 1.
  • FIG. 3 is a cross-sectional view of the brushless motor of FIG. 2 in the radial direction.
  • FIG. 4 is an explanatory diagram showing a configuration of teeth.
  • FIG. 1 is according to the invention. It is sectional drawing which shows the structure of the electric power steering apparatus using a brushless motor.
  • the electric power steering device (EPS) 1 shown in FIG. 1 has a column assist type structure that applies an operation assisting force to the steering shaft 2, and a brushless motor 3 (hereinafter abbreviated as a motor 3) according to the present invention. Used as a power source.
  • EPS electric power steering device
  • a steering wheel 4 is attached to the steering shaft 2.
  • the steering force of the steering wheel 4 is transmitted to the tie rod 6 via a pinion and a rack shaft (not shown) arranged in the steering gear box 5.
  • Wheels 7 are connected to both ends of the tie rod 6. As the steering wheel 4 is operated, the tie rod 6 is actuated, and the wheel 7 is steered to the left and right via a knuckle arm (not shown).
  • the steering shaft 2 is provided with an assist motor unit 8 that is a steering force assist mechanism.
  • the assist motor unit 8 is provided with a speed reduction mechanism unit 9 and a torque sensor 11.
  • the speed reduction mechanism unit 9 is provided with a worm and a worm hoist not shown.
  • the rotation of the motor 3 is decelerated and transmitted to the steering shaft 2 by the deceleration mechanism 9.
  • the motor 3 and the torque sensor 11 are connected to a control unit (ECU) 12.
  • ECU control unit
  • the torque sensor 11 When the steering wheel 4 is operated and the steering shaft 2 rotates, the torque sensor 11 is activated.
  • the ECU 12 appropriately supplies electric power to the motor 3 based on the torque detected by the torque sensor 11.
  • the motor 3 When the motor 3 is operated, the rotation is transmitted to the steering shaft 2 via the speed reduction mechanism unit 9, and a steering assist force is applied.
  • the steering shaft 2 is rotated by the steering assist force and the manual steering force, and this rotational motion is converted into a linear motion of the rack shaft by the rack 'and' pinion coupling in the steering gear box 5, and the wheel 7 is steered. Operation is performed.
  • FIG. 2 is a sectional view in the axial direction showing the configuration of the motor 3.
  • the motor 3 is an inner rotor type brushless motor having a stator 21 on the outside and a rotor 22 on the inside.
  • the stator 21 includes a housing 23, a stator core 24 fixed to the inner peripheral side of the housing 23, and a winding 25 wound around the stator core 24.
  • the housing 23 is formed in a bottomed cylindrical shape with iron or the like.
  • a synthetic resin bracket 30 is attached to the opening of the housing 23.
  • Stator core 24 is made of steel A large number of the teeth are stacked, and a plurality of teeth protrude from the inner peripheral side of the stator core 24.
  • FIG. 3 is a cross-sectional view along the radial direction of the motor 3 of FIG.
  • the stator core 24 is formed by a ring-shaped yoke portion 26 and a force 27 and a tooth 27 projecting inward from the yoke portion 26.
  • Nine teeth 27 are provided.
  • Slots 28 (9) are formed between the teeth 27, and the motor 3 has a 9-slot configuration.
  • An auxiliary groove 20 is formed at the tip of each tooth 27.
  • a winding 25 is wound around each tooth 27 in a concentrated manner. The winding 25 is accommodated in each slot 28. Winding 25 is connected to a battery (not shown) via power supply wiring 29.
  • the winding 25 is supplied with trapezoidal phase currents (U, V, W) including harmonic components.
  • the rotor 22 is disposed inside the stator 21, and has a configuration in which a rotating shaft 31, a rotor core 32, and a magnet 33 are arranged coaxially.
  • a cylindrical rotor core 32 in which a large number of steel plates are stacked is attached to the outer periphery of the rotating shaft 31.
  • a segment type magnet 33 is disposed on the outer periphery of the rotor core 32.
  • An air gap 45 is formed between the magnet 33 and the teeth 27. The tips of the magnet 33 and the teeth 27 are opposed to each other through an air gap 45.
  • the auxiliary groove 20 is formed facing the air gap 45.
  • the magnets 33 are attached to a magnet holder 34 fixed to the rotating shaft 31, and six magnets 33 are arranged along the circumferential direction. That is, the motor 3 has a 6-pole 9-slot (6P9S) configuration.
  • the ratio W / S between the groove width S of the auxiliary groove 20 and the opening width W of the teeth 27 is 0.9 ⁇ W / S ⁇ 1.1 while adopting such a 6P9S configuration. It is set to be.
  • FIG. 4 is an explanatory view showing the configuration of the tooth 27. As shown in FIG. 4, the groove width S is the width dimension along the circumferential direction of the auxiliary groove 20, and the opening width W is the tip of the adjacent tooth 27. It is the gap dimension along the circumferential direction of the opening 46 formed in the section.
  • the auxiliary groove 20 is not evenly arranged at the tip of the tooth 27, and the auxiliary groove 20 is set as follows while setting W / S within the above-mentioned range. It is provided in a range. That is, the angle between the center M of the opening 46 and the center M of the auxiliary groove 20 is ⁇ w
  • auxiliary grooves 20 are formed so that the relationship 5 is established.
  • ⁇ s / ⁇ w is set to 0 ⁇ 66 ⁇ ⁇ s / ⁇ w
  • the range was set to ⁇ 0 ⁇ 965 (frame A in Fig. 4).
  • the inductance is suppressed, the influence of the armature reaction on the high output side can be reduced, and the torque sag at the time of high load can also be reduced.
  • One end of the rotating shaft 31 is supported by a bearing 35 press-fitted into the bottom of the housing 23 so as to rotate.
  • the other end of the rotating shaft 31 is rotatably supported by a bearing 36 attached to the bracket 30.
  • a spline portion 37 is formed at the end of the rotating shaft 31 (left end in FIG. 2).
  • the rotating shaft 31 is connected to the worm shaft of the speed reduction mechanism portion 9 by a joint member (not shown) attached to the spline portion 37.
  • a worm is formed on the worm shaft. The worm is engaged with a worm wheel fixed to the steering shaft 2 at the speed reduction mechanism section 9.
  • the resolver 41 includes a resolver stator 42 fixed to the bracket 30 side and a resolver rotor 43 fixed to the port 22 side.
  • a coil 44 is wound around the resolver stator 42, and an excitation coil and a detection coil are provided.
  • Resor A resolver rotor 43 fixed to the left end of the magnet holder 34 is disposed inside the stator 42.
  • the resolver rotor 43 has a structure in which metal plates are laminated, and convex portions are formed in three directions.
  • the resolver rotor 43 When the rotating shaft 31 rotates, the resolver rotor 43 also rotates in the resolver stator 42. A high frequency signal is applied to the exciting coil of the resolver stator 42, and the phase of the signal output from the detection coil changes due to the proximity of the convex portion. The rotational position of the rotor 22 is detected by comparing the detection signal with the reference signal. Then, based on the rotational position of the rotor 22, the current to the winding 25 is appropriately switched, and the rotor 22 is rotationally driven.
  • the cogging torque which is a pulsation when no power is passed, is reduced as compared with the conventional brushless motor. For this reason, the return of the steering is improved, and a smooth steering operation is possible. For example, when turning the steering wheel when turning right and then returning the steering wheel for straight ahead, the driver generally does not apply any force to the steering wheel. At this time, the EPS does not assist the steering force (no power is supplied), and if the cogging of the motor is large at this time, there is a possibility that the steering stops midway and does not return smoothly to the straight position. .
  • the motor 3 can reduce the cogging torque and the inductance, the torque sagging at high loads is reduced, the assist force is stabilized, and deterioration of the steering feeling is suppressed.
  • ⁇ s / ⁇ w is set in the range of 0 ⁇ 66 ⁇ ⁇ s / ⁇ w ⁇ 0.965.
  • ⁇ s / 6 w in order to reduce cogging torque, etc. It is more preferable to set ⁇ s / 6 w within the range of 0 ⁇ 7 ⁇ s / ⁇ w ⁇ 0.9 (frame ⁇ in Fig. 4).
  • a 6-pole 9-slot motor has been described as an example of the motor 3.
  • the motor configuration is not limited to this, and the present invention is applicable to a 2-pole 3-slot integral multiple motor. Is applicable.
  • the force using an inner rotor type brushless motor has been shown.
  • the present invention can also be applied to an outer rotor type brushless motor in which a rotor is arranged outside the stator.
  • the force S shown in the example in which the control method according to the present invention is applied to a column assist type EPS motor, the rack assist type in which the motor is arranged coaxially with the rack shaft, and the rack shaft are combined. It can also be applied to a pinion assist type EPS motor that applies auxiliary force to the pinion gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Brushless Motors (AREA)
  • Power Steering Mechanism (AREA)

Abstract

A brushless motor (3) is provided with a rotor (22) having a magnet (33), and a stator (21) having teeth (27) facing the magnet (33) through an air gap (45). At the leading ends of the teeth (27), a plurality of auxiliary grooves (20) which face the air gap (45) are formed. A ratio W/S of the groove width (S) of the auxiliary groove (20) and the opening width (W) of an opening section (46) between the adjacent teeth (27) satisfies inequalities of 0.9≤W/S≤1.1. A ratio ϑs/ϑw of an angle (ϑw) between the center (M1) of the opening section (46) and the center (M2) of the auxiliary groove (20) and an angle (ϑs) between the centers (M2) of the adjacent auxiliary grooves (20) is set within a range of 0.66≤ϑs/ϑw≤0.965.

Description

明 細 書  Specification
ブラシレスモータ 技術分野  Brushless motor technology
[0001] 本発明は、電動パワーステアリング装置の駆動源などに使用されるブラシレスモー タに関し、特に、インダクタンスとコギングトルクの双方の低減を図ったブラシレスモー タに関する。  TECHNICAL FIELD [0001] The present invention relates to a brushless motor used for a drive source of an electric power steering apparatus, and more particularly to a brushless motor designed to reduce both inductance and cogging torque.
背景技術  Background art
[0002] 自動車等の操舵力補助のため、近年多くの車両にいわゆるパワーステアリング装 置が装備されている。このようなパワーステアリング装置としては、近年、エンジン負 荷軽減や重量低減等の観点から、電気式の動力操舵装置(いわゆる電動パワーステ ァリング装置、以下、適宜 EPSと略記する)を搭載した車両が増大している。このよう な EPSの動力源としては、従来よりブラシ付きのモータが多く使用されている力 近 年では、メンテナンス性に優れ、小型で高トルクが得られることから、ブラシレスモータ の使用が増大している。  In order to assist the steering force of automobiles and the like, many vehicles have been equipped with so-called power steering devices in recent years. As such power steering devices, in recent years, an increasing number of vehicles equipped with electric power steering devices (so-called electric power steering devices, hereinafter abbreviated as EPS as appropriate) from the viewpoint of reducing engine load and weight. is doing. As a power source for such EPS, the power with which brushed motors have been used more than ever in recent years In recent years, the use of brushless motors has increased due to excellent maintainability, small size and high torque. Yes.
[0003] ところ力 ブラシレスモータでは、ロータ側のマグネットとステータ側のコアティースと の間の吸引力により、いわゆるコギングトルクが生じやすい傾向がある。このようなコ ギングトルクは、騒音や振動の原因となるのみならず、 EPS用モータにおいては操舵 感を悪化させる一因ともなる。そこで、従来より、コギングトルクを減少させるベぐステ 一タを多スロット化し、トルクムラを細分化する方式が知られている。しかしながら、ス ロットを無限に多くすることは不可能であり、多スロット化はモータサイズの面から自ず と限界がある。このため、コアティース先端の磁束が密となる部分に溝を設け、ティー ス先端部を二股状に分割形成し、これによつて擬似的に多スロット化を図る方式など 、種々のコギング対策が提案されている。  [0003] However, in a brushless motor, a so-called cogging torque tends to occur due to the attractive force between the rotor-side magnet and the stator-side core teeth. Such cogging torque not only causes noise and vibration, but also contributes to the deterioration of steering feeling in EPS motors. Therefore, conventionally, a method is known in which the veg stage for reducing the cogging torque is made into multiple slots to subdivide the torque unevenness. However, it is impossible to increase the number of slots indefinitely, and the increase in the number of slots is naturally limited in terms of motor size. For this reason, there are various countermeasures against cogging, such as providing a groove in the portion where the magnetic flux at the tip of the core teeth is dense and dividing the tip of the tooth into a bifurcated shape, thereby increasing the number of slots in a pseudo manner. Proposed.
[0004] 例えば、特許文献 1のブラシレスモータでは、ティース先端に 1/2スロットピッチの 補助溝を設け、見かけ上スロットが倍増したような構成としている。また、特許文献 2の ブラシレスモータでは、ステータコアの両端にオーバーハング部を設け、ステータコア 端面から流れ込む磁束を抑制する。これにより、ティース先端部からステータコアに 流入する磁束量を増大させ、補助溝による疑似多スロット効果を向上させている。さら に、特許文献 3の電動機では、回転子を 2P、固定子を 3P構造とし、ピッチ 4 Θにて設 けたティース先端に、スロット中心から角度 θ , 2 Θの間隔で補助溝を等間隔に配置 してコギングを低減させる構成が示されて!/、る。 [0004] For example, the brushless motor of Patent Document 1 is configured such that an auxiliary groove having a 1/2 slot pitch is provided at the tip of a tooth, and the number of slots is apparently doubled. Further, in the brushless motor of Patent Document 2, overhang portions are provided at both ends of the stator core to suppress the magnetic flux flowing from the end face of the stator core. As a result, the teeth tip to the stator core The amount of magnetic flux flowing in is increased, and the pseudo multi-slot effect by the auxiliary groove is improved. Furthermore, in the electric motor of Patent Document 3, the rotor has a 2P structure and the stator has a 3P structure, and the auxiliary grooves are equally spaced from the center of the slot at angles θ and 2Θ at the tip of the teeth provided at a pitch of 4Θ. An arrangement that reduces cogging is shown!
特許文献 1:実公平 7-47981号公報  Patent Document 1: No. 7-47981
特許文献 2:特開平 10-42531号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-42531
特許文献 3:特開 2004- 194489号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-194489
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、前述のようにティース先端に補助溝を設ける構成では、実際には、ス テータの加工歪等により、回転位置に応じたコギングの釣り合いがモータごとに変化 し、モータ特性の安定化が図れないという問題があった。すなわち、加工歪のような 一定化が困難な変動要因に基づきコギングが変化するため、コギングのロバス H4( 安定性)が悪化し、却って、モータ特性が安定しないという問題があった。 [0005] However, in the configuration in which the auxiliary groove is provided at the tip of the tooth as described above, the balance of cogging according to the rotational position actually varies depending on the rotation position due to processing distortion of the stator, and the motor characteristics are stabilized. There was a problem that could not be realized. In other words, cogging changes based on variable factors that are difficult to stabilize, such as machining strain, which deteriorates the cogging robustness H4 (stability), and the motor characteristics are not stable.
[0006] 一方、ブラシレスモータを集中巻き構成とすると、ティース間の間隔が狭くなる。この ため、ティースからの漏れ磁束が多くなり、その分、インダクタンスが大きくなる傾向が ある。インダクタンスが大きくなると、モータの電気的時定数が大きくなり、それに伴い 、ステータコイルに印加する駆動電圧と、ステータコイルに流れる電流に位相差が生 じる。このような位相差が生じると、ステーターロータ間の電気子反作用が大きくなり、 高負荷時のトルクが低下する、いわゆるトルクダレが生じるおそれがある。  [0006] On the other hand, when the brushless motor has a concentrated winding configuration, the interval between the teeth becomes narrow. For this reason, the magnetic flux leakage from the teeth increases, and the inductance tends to increase accordingly. When the inductance increases, the electric time constant of the motor increases, and accordingly, a phase difference occurs between the drive voltage applied to the stator coil and the current flowing through the stator coil. When such a phase difference occurs, the electron reaction between the stator rotors increases, and there is a risk of so-called torque sagging in which the torque at high loads is reduced.
[0007] 本発明の目的は、インダクタンス低減を図りつつ、補助溝によるコギングトルク低減 等の効果を効率良く発揮させ得るブラシレスモータを提供することにある。  [0007] An object of the present invention is to provide a brushless motor capable of efficiently exhibiting effects such as cogging torque reduction by an auxiliary groove while reducing inductance.
課題を解決するための手段  Means for solving the problem
[0008] 本発明のブラシレスモータは、マグネットを備えたロータと、前記マグネットとエアギ ヤップを介して対向する複数個のティースを備えたステータとを有し、前記ティースの 先端部に、前記エアギャップに臨んで複数個の補助溝を形成してなるブラシレスモ ータであって、前記補助溝の周方向に沿った幅 Sと、隣接する前記ティースの先端部 に形成された開口部の周方向に沿った幅 Wとの比 W/S力 0.9≤W/S≤1.1であ り、かつ、前記開口部の周方向に沿った中心 と、前記補助溝の周方向に沿った中 心 Μとの間の角度を e w、隣接する前記補助溝の前記中心 M間の角度を e sとし[0008] The brushless motor of the present invention includes a rotor including a magnet and a stator including a plurality of teeth facing the magnet via an air gap, and the air gap is provided at a tip of the teeth. A brushless motor formed with a plurality of auxiliary grooves facing each other, the width S along the circumferential direction of the auxiliary grooves and the circumferential direction of the opening formed at the tip of the adjacent teeth. Ratio with width W along W / S force 0.9≤W / S≤1.1 And the angle between the center along the circumferential direction of the opening and the center axis along the circumferential direction of the auxiliary groove e w , and the angle between the centers M of the adjacent auxiliary grooves es and
2 2 twenty two
たとき、前記 Θ sと前記 Θ wの比 Θ sZ Θ wが、 0·66≤ Θ s/ θ w≤0.965であることを 特徴とする。  Then, the ratio Θ sZ Θ w of the Θ s to the Θ w is 0 · 66≤Θ s / θ w≤0.965.
[0009] 本発明にあっては、 W/Sを 0.9≤W/S≤1.1としつつ、 Θ s/ Θ wを 0.66≤ Θ s Ζ Θ w≤0.965の範囲に設定することにより、インダクタンスの低減を図りつつ、コギ ングを小さく抑えることができ、コギングのロバスト性改善や、高出力域における電機 子反作用の影響低減を図ることができる。このため、例えば、当該ブラシレスモータを 電動パワーステアリング装置の駆動源として用いると、コギング低減により、ステアリン グの戻り性が向上する。また、インダクタンス低減により、高負荷時のトルクダレが少な くなるため、アシスト力が安定し、操舵フィーリングの向上も図られる。  [0009] In the present invention, W / S is set to 0.9≤W / S≤1.1, and Θ s / Θ w is set to a range of 0.66≤ Θ s w Θ w ≤ 0.965, thereby reducing inductance. Cogging can be kept small while improving the cogging robustness and the effect of armature reaction in the high output range can be reduced. For this reason, for example, when the brushless motor is used as a drive source of the electric power steering apparatus, the return of steering is improved by reducing cogging. In addition, due to the inductance reduction, torque sagging at high loads is reduced, so that assist force is stabilized and steering feeling is improved.
[0010] 前記ブラシレスモータにおいて、前記 Θ sと前記 Θ wの比 Θ sZ Θ wを、好ましくは、 0.7≤ Θ s/ θ w≤0.9に設定しても良い。また、前記ブラシレスモータを、前記マグ ネットが 6極、前記ティース間に形成されたスロットの数が 9個の 6極 9スロット構成とし ても良い。さらに、前記ブラシレスモータを電動パワーステアリング装置の駆動源とし て用いても良い。  In the brushless motor, the ratio Θ sZ Θ w of Θ s to Θ w may be preferably set to 0.7≤Θ s / θ w≤0.9. The brushless motor may have a 6-pole 9-slot configuration in which the magnet has 6 poles and the number of slots formed between the teeth is 9. Furthermore, the brushless motor may be used as a drive source for the electric power steering apparatus.
発明の効果  The invention's effect
[0011] 本発明のブラシレスモータによれば、マグネットを備えたロータと、マグネットとエア ギャップを介して対向する複数個のティースを備えたステータとを有し、ティースの先 端部にエアギャップに臨んで複数個の補助溝を形成したブラシレスモータにて、補 助溝幅 Sと、隣接するティース間の開口幅 Wとの比 W/Sを 0.9≤W/S≤1.1としつ つ、ティース間の開口部の中心 Mlと補助溝の中心 M2との間の角度 Θ wと、隣接す る補助溝中心 M2間の角度 Θ sの比 Θ s/ Θ wを 0.66≤ Θ s/ θ w≤0.965の範囲 に設定することにより、インダクタンスの低減を図りつつ、コギングを小さく抑えることが 可能となる。従って、コギングのロバスト性改善や、高出力域における電機子反作用 の影響低減を図ることが可能となる。  [0011] According to the brushless motor of the present invention, the rotor includes a magnet, and the stator includes a plurality of teeth facing the magnet through an air gap. In a brushless motor with multiple auxiliary grooves facing each other, the ratio W / S between the auxiliary groove width S and the opening width W between adjacent teeth is 0.9≤W / S≤1.1. The angle Θ w between the opening center Ml and the auxiliary groove center M2 and the angle between the adjacent auxiliary groove centers M2 Θ s ratio Θ s / Θ w is 0.66≤ Θ s / θ w ≤ 0.965 By setting to this range, it is possible to reduce cogging while reducing inductance. Therefore, it is possible to improve the cogging robustness and reduce the influence of the armature reaction in the high output range.
[0012] また、例えば、当該ブラシレスモータを電動パワーステアリング装置の駆動源として 用いた場合、コギング低減により、ステアリングの戻り性が向上し、スムーズなステアリ ング操作が可能となる。また、インダクタンス低減による高出力域での電機子反作用 の影響減により、高負荷時のトルクダレが少なくなり、アシスト力が安定し、操舵フィー リングの向上を図ることが可能となる。 [0012] Further, for example, when the brushless motor is used as a drive source of the electric power steering apparatus, the return of the steering is improved by reducing the cogging, and the smooth steering is achieved. Operation becomes possible. In addition, by reducing the influence of the armature reaction in the high output range due to inductance reduction, torque sagging at high loads is reduced, assist force is stabilized, and steering feeling can be improved.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明によるブラシレスモータを用いた電動パワーステアリング装置の構成を示 す断面図である。  FIG. 1 is a cross-sectional view showing a configuration of an electric power steering device using a brushless motor according to the present invention.
[図 2]図 1の電動パワーステアリング装置にて使用されているブラシレスモータの構成 を示す軸方向の断面図である。  FIG. 2 is an axial sectional view showing a configuration of a brushless motor used in the electric power steering apparatus of FIG. 1.
[図 3]図 2のブラシレスモータの径方向の断面図である。  3 is a cross-sectional view of the brushless motor of FIG. 2 in the radial direction.
[図 4]ティースの構成を示す説明図である。  FIG. 4 is an explanatory diagram showing a configuration of teeth.
[図 5]6P9S構成のブラシレスモータにて W/S = lとした場合の、 Θ sZ Θ wとコギン 符号の説明  [Figure 5] Explanation of Θ sZ Θ w and coggin code when W / S = l in a 6P9S brushless motor
[0014] 1 電動パワーステアリング装置 [0014] 1 Electric power steering device
2 ステアリングシャフト  2 Steering shaft
3 ブラシレスモータ  3 Brushless motor
4 ステアリングホイ一ノレ  4 Steering wheel
6 タイロッド 6 Tie rod
7 車輪  7 wheels
8 アシストモータ部  8 Assist motor section
9 減速機構部  9 Deceleration mechanism
11 トルクセンサ  11 Torque sensor
12 制御装置  12 Control unit
20 補助溝  20 Auxiliary groove
21 ステータ  21 Stator
22 ロータ  22 Rotor
23 ハウジング 24 ステータコア 23 Housing 24 Stator core
25 巻線  25 windings
26 継鉄部  26 Relay section
27 ティース  27 Teeth
28 スロット  28 slots
29 給電配線  29 Power supply wiring
30 ブラケット  30 Bracket
31 回転軸  31 Rotating shaft
32 ロータコア  32 Rotor core
33 マグネット  33 Magnet
34 マグネットホノレダ  34 Magnet Honoreda
35 ベアリング  35 Bearing
36 ベアリング  36 Bearing
37 スプラインき  37 Spline
41 レゾルバ  41 Resolver
42 レゾルバステータ  42 Resolver stator
43 レゾルバロータ  43 Resolver rotor
44 コイル  44 coils
46 開口部 46 opening
M 開口部中心  M Center of opening
M 補助溝中心  M Auxiliary groove center
2  2
S 溝幅  S groove width
W 開口幅 W opening width
Θ s M— M間の角度  Angle between Θ s M and M
1 2  1 2
Θ w M間の角度  Angle between Θ w M
2  2
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施例を図面に基づいて詳細に説明する。図 1は、本発明による ブラシレスモータを用いた電動パワーステアリング装置の構成を示す断面図である。 図 1の電動パワーステアリング装置 (EPS) 1は、ステアリングシャフト 2に対し動作補 助力を付与するコラムアシスト式の構成となっており、本発明によるブラシレスモータ 3 (以下、モータ 3と略記する)が動力源として使用されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is according to the invention. It is sectional drawing which shows the structure of the electric power steering apparatus using a brushless motor. The electric power steering device (EPS) 1 shown in FIG. 1 has a column assist type structure that applies an operation assisting force to the steering shaft 2, and a brushless motor 3 (hereinafter abbreviated as a motor 3) according to the present invention. Used as a power source.
[0016] ステアリングシャフト 2には、ステアリングホイール 4が取り付けられている。ステアリン グホイール 4の操舵力は、ステアリングギヤボックス 5内に配された図示しないピニォ ンとラック軸を介して、タイロッド 6に伝達される。タイロッド 6の両端には車輪 7が接続 されている。ステアリングホイール 4の操作に伴ってタイロッド 6が作動し、図示しない ナックルアーム等を介して、車輪 7が左右に転舵する。  A steering wheel 4 is attached to the steering shaft 2. The steering force of the steering wheel 4 is transmitted to the tie rod 6 via a pinion and a rack shaft (not shown) arranged in the steering gear box 5. Wheels 7 are connected to both ends of the tie rod 6. As the steering wheel 4 is operated, the tie rod 6 is actuated, and the wheel 7 is steered to the left and right via a knuckle arm (not shown).
[0017] EPS 1では、ステアリングシャフト 2に、操舵力補助機構であるアシストモータ部 8が 設けられている。アシストモータ部 8には、モータ 3と共に、減速機構部 9とトルクセン サ 11が設けられている。減速機構部 9には、図示しないウォームとウォームホイ一ノレ が配されている。モータ 3の回転は、この減速機構部 9によって、ステアリングシャフト 2に減速されて伝達される。モータ 3とトルクセンサ 11は、制御装置(ECU) 12に接続 されている。  In EPS 1, the steering shaft 2 is provided with an assist motor unit 8 that is a steering force assist mechanism. In addition to the motor 3, the assist motor unit 8 is provided with a speed reduction mechanism unit 9 and a torque sensor 11. The speed reduction mechanism unit 9 is provided with a worm and a worm hoist not shown. The rotation of the motor 3 is decelerated and transmitted to the steering shaft 2 by the deceleration mechanism 9. The motor 3 and the torque sensor 11 are connected to a control unit (ECU) 12.
[0018] ステアリングホイール 4が操作され、ステアリングシャフト 2回転すると、トルクセンサ 1 1が作動する。 ECU12は、トルクセンサ 11の検出トルクに基づいて、モータ 3に対し 適宜電力を供給する。モータ 3が作動すると、その回転が減速機構部 9を介してステ ァリングシャフト 2に伝達され操舵補助力が付与される。ステアリングシャフト 2は、この 操舵補助力と手動操舵力によって回転し、ステアリングギヤボックス 5内のラック'アン ド 'ピユオン結合により、この回転運動がラック軸の直線運動に変換され、車輪 7の転 舵動作が行われる。  [0018] When the steering wheel 4 is operated and the steering shaft 2 rotates, the torque sensor 11 is activated. The ECU 12 appropriately supplies electric power to the motor 3 based on the torque detected by the torque sensor 11. When the motor 3 is operated, the rotation is transmitted to the steering shaft 2 via the speed reduction mechanism unit 9, and a steering assist force is applied. The steering shaft 2 is rotated by the steering assist force and the manual steering force, and this rotational motion is converted into a linear motion of the rack shaft by the rack 'and' pinion coupling in the steering gear box 5, and the wheel 7 is steered. Operation is performed.
[0019] 図 2は、モータ 3の構成を示す軸方向の断面図である。図 2に示すように、モータ 3 は、外側にステータ 21、内側にロータ 22を配したインナーロータ型のブラシレスモー タとなっている。ステータ 21は、ハウジング 23と、ハウジング 23の内周側に固定され たステータコア 24、及び、ステータコア 24に巻装された巻線 25とを備えた構成となつ ている。ハウジング 23は、鉄等にて有底筒状に形成されている。ハウジング 23の開 口部には合成樹脂製のブラケット 30が取り付けられている。ステータコア 24は鋼板を 多数積層した構成となっており、ステータコア 24の内周側には複数個のティースが突 設されている。 FIG. 2 is a sectional view in the axial direction showing the configuration of the motor 3. As shown in FIG. 2, the motor 3 is an inner rotor type brushless motor having a stator 21 on the outside and a rotor 22 on the inside. The stator 21 includes a housing 23, a stator core 24 fixed to the inner peripheral side of the housing 23, and a winding 25 wound around the stator core 24. The housing 23 is formed in a bottomed cylindrical shape with iron or the like. A synthetic resin bracket 30 is attached to the opening of the housing 23. Stator core 24 is made of steel A large number of the teeth are stacked, and a plurality of teeth protrude from the inner peripheral side of the stator core 24.
[0020] 図 3は、図 2のモータ 3の径方向に沿った断面図である。図 3に示すように、ステータ コア 24は、リング状の継鉄部 26と、継鉄部 26から内側方向へ突出形成されたティー ス 27と力、ら形成されている。ティース 27は 9、個設けられている。各ティース 27の間に はスロット 28 (9個)が形成され、モータ 3は 9スロット構成となっている。各ティース 27 の先端部には、補助溝 20が形成されている。各ティース 27には巻線 25が集中巻に て巻装されている。巻線 25は、各スロット 28内に収容されている。巻線 25は、給電配 線 29を介してバッテリ(図示せず)と接続されている。巻線 25に対しては、高調波成 分を含んだ台形波形状の相電流 (U,V,W)が供給される。  FIG. 3 is a cross-sectional view along the radial direction of the motor 3 of FIG. As shown in FIG. 3, the stator core 24 is formed by a ring-shaped yoke portion 26 and a force 27 and a tooth 27 projecting inward from the yoke portion 26. Nine teeth 27 are provided. Slots 28 (9) are formed between the teeth 27, and the motor 3 has a 9-slot configuration. An auxiliary groove 20 is formed at the tip of each tooth 27. A winding 25 is wound around each tooth 27 in a concentrated manner. The winding 25 is accommodated in each slot 28. Winding 25 is connected to a battery (not shown) via power supply wiring 29. The winding 25 is supplied with trapezoidal phase currents (U, V, W) including harmonic components.
[0021] ロータ 22はステータ 21の内側に配置されており、回転軸 31と、ロータコア 32、マグ ネット 33を同軸状に配した構成となっている。回転軸 31の外周には、鋼板を多数積 層した円筒形状のロータコア 32が取り付けられている。ロータコア 32の外周には、セ グメントタイプのマグネット 33が配置されている。マグネット 33とティース 27との間には 、エアギャップ 45が形成されている。マグネット 33とティース 27の先端部は、エアギヤ ップ 45を介して対向している。補助溝 20は、このエアギャップ 45に臨んで形成され ている。マグネット 33は、回転軸 31に固定されたマグネットホルダ 34に取り付けられ ており、周方向に沿って 6個配置されている。すなわち、当該モータ 3は、 6極 9スロッ ト(6P9S)構成となっている。  [0021] The rotor 22 is disposed inside the stator 21, and has a configuration in which a rotating shaft 31, a rotor core 32, and a magnet 33 are arranged coaxially. A cylindrical rotor core 32 in which a large number of steel plates are stacked is attached to the outer periphery of the rotating shaft 31. A segment type magnet 33 is disposed on the outer periphery of the rotor core 32. An air gap 45 is formed between the magnet 33 and the teeth 27. The tips of the magnet 33 and the teeth 27 are opposed to each other through an air gap 45. The auxiliary groove 20 is formed facing the air gap 45. The magnets 33 are attached to a magnet holder 34 fixed to the rotating shaft 31, and six magnets 33 are arranged along the circumferential direction. That is, the motor 3 has a 6-pole 9-slot (6P9S) configuration.
[0022] 本発明によるモータ 3では、このような 6P9S構成を採りつつ、補助溝 20の溝幅 Sと 、ティース 27の開口幅 Wとの比 W/Sが、 0.9≤W/S≤1.1となるように設定されて いる。図 4はティース 27の構成を示す説明図であり、図 4に示すように、溝幅 Sは、補 助溝 20の周方向に沿った幅寸法、開口幅 Wは、隣接するティース 27の先端部に形 成された開口部 46の周方向に沿った間隙寸法である。また、モータ 3では、従来の ブラシレスモータとは異なり、補助溝 20がティース 27先端に等分に配置されておら ず、 W/Sを前述の範囲に設定しつつ、補助溝 20を次のような範囲に設けている。 すなわち、開口部 46の中心 Mと、補助溝 20の中心 Mとの間の角度を Θ w、隣接す  [0022] In the motor 3 according to the present invention, the ratio W / S between the groove width S of the auxiliary groove 20 and the opening width W of the teeth 27 is 0.9≤W / S≤1.1 while adopting such a 6P9S configuration. It is set to be. FIG. 4 is an explanatory view showing the configuration of the tooth 27. As shown in FIG. 4, the groove width S is the width dimension along the circumferential direction of the auxiliary groove 20, and the opening width W is the tip of the adjacent tooth 27. It is the gap dimension along the circumferential direction of the opening 46 formed in the section. Also, in the motor 3, unlike the conventional brushless motor, the auxiliary groove 20 is not evenly arranged at the tip of the tooth 27, and the auxiliary groove 20 is set as follows while setting W / S within the above-mentioned range. It is provided in a range. That is, the angle between the center M of the opening 46 and the center M of the auxiliary groove 20 is Θ w
1 2  1 2
る補助溝 20の中心 M間の角度を Θ sとすると(図 4参照)、 0· 66≤ d s/ θ w≤0.96 5の関係が成り立つように補助溝 20が形成されている。 If the angle between the centers M of the auxiliary grooves 20 is Θ s (see Fig. 4), 0 · 66≤ ds / θ w≤0.96 The auxiliary grooves 20 are formed so that the relationship 5 is established.
[0023] 図 5は、 6P9S構成のブラシレスモータにて W/S = lとした場合の、 Θ s/ Θ wとコ の実験によれば、 Θ sZ Θ wとコギングトルク量やインダクタンス(以下、適宜コギング トルク等と略記する)との間には相関関係があり、 Θ s/ Θ wが大きすぎても小さすぎ ても、コギングトルク等が増大することが分かった。この場合、 Θ sZ Θ wが小さいと、 ティース 27中心部の磁気抵抗が大きくなり、隣接するティースへの漏れ磁束が多くな つてコギングトルク等が増大すると考えられる。一方、 Θ sZ Θ wが大きいと、ティース 27先端の磁束が飽和気味となり、隣接するティースへ磁束が漏れやすくなつてコギ ングトルク等が増大すると考えられる。 [0023] Fig. 5 shows that Θ sZ Θ w and cogging torque amount and inductance (hereinafter referred to as the following) according to the experiment of Θ s / Θ w and co, when W / S = l in a 6P9S brushless motor. (It is abbreviated as cogging torque etc. as appropriate), and it was found that cogging torque etc. increased if Θs / Θw was too large or too small. In this case, if Θ sZ Θ w is small, the magnetic resistance at the center of the tooth 27 increases, and the cogging torque and the like increase as the leakage flux to the adjacent teeth increases. On the other hand, if Θ sZ Θ w is large, the magnetic flux at the tip of the tooth 27 becomes saturated, and it is thought that the cogging torque and the like increase as the magnetic flux easily leaks to the adjacent teeth.
[0024] そこで、本発明のモータ 3では、前述の関係を鑑み、 Θ s/ Θ wを 0·66≤ Θ s/ Θ w  Therefore, in the motor 3 of the present invention, in view of the above-described relationship, Θ s / Θ w is set to 0 · 66≤ Θ s / Θ w
≤0·965の範囲(図 4の枠 A)に設定した。図 4に示すように、この範囲においてコギ ングトルク等は極小値を取り( Θ s/ Θ w= 0.77付近)、これにより、インダクタンスの 低減を図りつつ、コギングを小さく抑えることが可能となる。このように、コギングが抑 えられると、加工歪によるコギングの釣り合い変化も抑えられ、コギングのロバス H生も 改善される。また、インダクタンスが抑えられると、高出力側の電機子反作用の影響が 低減でき、高負荷時におけるトルクダレも低減できる。  The range was set to ≤0 · 965 (frame A in Fig. 4). As shown in Fig. 4, the cogging torque, etc., takes a minimum value in this range (near Θ s / Θ w = 0.77), which makes it possible to reduce the cogging while reducing the inductance. In this way, if cogging is suppressed, the cogging balance change due to processing strain is suppressed, and the robustness of cogging is improved. Further, if the inductance is suppressed, the influence of the armature reaction on the high output side can be reduced, and the torque sag at the time of high load can also be reduced.
[0025] 回転軸 31の一端部は、ハウジング 23の底部に圧入されたベアリング 35に回転自 在に支持されている。回転軸 31の他端部は、ブラケット 30に取り付けられたべアリン グ 36によって、回転自在に支持されている。回転軸 31の端部(図 2において左端部) には、スプライン部 37が形成されている。回転軸 31は、スプライン部 37に取り付けら れた図示しないジョイント部材によって、減速機構部 9のウォーム軸に接続される。ゥ オーム軸には、ウォームが形成されている。ウォームは、減速機構部 9にて、ステアリ ングシャフト 2に固定されたウォームホイールと嚙合している。  [0025] One end of the rotating shaft 31 is supported by a bearing 35 press-fitted into the bottom of the housing 23 so as to rotate. The other end of the rotating shaft 31 is rotatably supported by a bearing 36 attached to the bracket 30. A spline portion 37 is formed at the end of the rotating shaft 31 (left end in FIG. 2). The rotating shaft 31 is connected to the worm shaft of the speed reduction mechanism portion 9 by a joint member (not shown) attached to the spline portion 37. A worm is formed on the worm shaft. The worm is engaged with a worm wheel fixed to the steering shaft 2 at the speed reduction mechanism section 9.
[0026] ブラケット 30内には、ベアリング 36と、ロータ 22の回転を検知するレゾルバ 41が収 容されている。レゾルバ 41は、ブラケット 30側に固定されたレゾルバステータ 42と、口 ータ 22側に固定されたレゾルバロータ 43とから構成されている。レゾルバステータ 42 にはコイル 44が巻装されており、励磁コイルと検出コイルが設けられている。レゾル バステータ 42の内側には、マグネットホルダ 34の左端部に固定されたレゾルバロー タ 43が配置される。レゾルバロータ 43は、金属板を積層した構成となっており、三方 向に凸部が形成されている。 [0026] In the bracket 30, a bearing 36 and a resolver 41 for detecting the rotation of the rotor 22 are accommodated. The resolver 41 includes a resolver stator 42 fixed to the bracket 30 side and a resolver rotor 43 fixed to the port 22 side. A coil 44 is wound around the resolver stator 42, and an excitation coil and a detection coil are provided. Resor A resolver rotor 43 fixed to the left end of the magnet holder 34 is disposed inside the stator 42. The resolver rotor 43 has a structure in which metal plates are laminated, and convex portions are formed in three directions.
[0027] 回転軸 31が回転すると、レゾルバロータ 43もまたレゾルバステータ 42内にて回転 する。レゾルバステータ 42の励磁コイルには高周波信号が付与されており、凸部の 近接離反により検出コイルから出力される信号の位相が変化する。この検出信号と基 準信号とを比較することにより、ロータ 22の回転位置が検出される。そして、ロータ 22 の回転位置に基づき、巻線 25への電流が適宜切り替えられ、ロータ 22が回転駆動さ れる。 When the rotating shaft 31 rotates, the resolver rotor 43 also rotates in the resolver stator 42. A high frequency signal is applied to the exciting coil of the resolver stator 42, and the phase of the signal output from the detection coil changes due to the proximity of the convex portion. The rotational position of the rotor 22 is detected by comparing the detection signal with the reference signal. Then, based on the rotational position of the rotor 22, the current to the winding 25 is appropriately switched, and the rotor 22 is rotationally driven.
[0028] このような EPS1では、ステアリングホイール 4が操作されてステアリングシャフト 2が 回転すると、この回転に応じた方向にラック軸が移動して転舵操作がなされる。この 操作により、トルクセンサ 11が作動し、その検出トルクに応じて、図示しないバッテリ 力も給電配線 29を介して巻線 25に電力が供給される。巻線 25に電力が供給される とモータ 3が作動し、回転軸 31とウォーム軸が回転する。ウォーム軸の回転は、ウォー ムホイールを介してステアリングシャフト 2に伝達され、操舵力がアシストされる。  [0028] In such EPS1, when the steering wheel 4 is operated and the steering shaft 2 rotates, the rack shaft moves in a direction corresponding to the rotation, and a steering operation is performed. As a result of this operation, the torque sensor 11 is activated, and electric power is supplied to the winding 25 via the power supply wiring 29 by a battery force (not shown) according to the detected torque. When electric power is supplied to the winding 25, the motor 3 operates and the rotary shaft 31 and the worm shaft rotate. The rotation of the worm shaft is transmitted to the steering shaft 2 via the warm wheel, and the steering force is assisted.
[0029] 前述のように、本発明によるモータ 3では、従来のブラシレスモータに比して、無通 電時の脈動であるコギングトルクの低減が図られている。このため、ステアリングの戻 り性が向上し、スムーズなステアリング操作が可能となる。例えば、右折時等にステア リングを切り、その後直進のためにステアリングを戻す場合には、一般に運転者はス テアリングに力を加えない。この際、 EPSは操舵力をアシストしない(通電していない) 状態となっており、このときモータのコギングが大きいと、ステアリングが途中で止まつ てしまいスムーズに直進位置に戻らない可能性がある。その点、当該モータ 3を用い た EPSでは、ステアリングの戻りを妨げるコギングトルクが抑えられているため、ステア リングの戻り性が向上し、ステアリング操作もスムーズになる。また、モータ 3では、コギ ングトルク低減と共にインダクタンスも抑えられるため、高負荷時のトルクダレが少なく なり、アシスト力が安定し、操舵フィーリングの悪化が抑えられる。  [0029] As described above, in the motor 3 according to the present invention, the cogging torque, which is a pulsation when no power is passed, is reduced as compared with the conventional brushless motor. For this reason, the return of the steering is improved, and a smooth steering operation is possible. For example, when turning the steering wheel when turning right and then returning the steering wheel for straight ahead, the driver generally does not apply any force to the steering wheel. At this time, the EPS does not assist the steering force (no power is supplied), and if the cogging of the motor is large at this time, there is a possibility that the steering stops midway and does not return smoothly to the straight position. . On the other hand, in the EPS using the motor 3, since the cogging torque that hinders the return of the steering is suppressed, the return of the steering is improved and the steering operation is smooth. In addition, since the motor 3 can reduce the cogging torque and the inductance, the torque sagging at high loads is reduced, the assist force is stabilized, and deterioration of the steering feeling is suppressed.
[0030] 本発明は前記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種 々変更可能であることは言うまでもなレ、。 例えば、前述の実施例では、 Θ s/ Θ wを 0·66≤ Θ s/ θ w≤0.965の範囲に設定 した例を示したが、図 4から分かるように、コギングトルク等の低減のためには、 Θ s/ 6 wを 0· 7≤ θ s/ θ w≤0.9の範囲(図 4の枠 Β)に設定することがより好ましい。また 、前述の実施例では、モータ 3として 6極 9スロットのモータを例に挙げて説明したが、 モータ構成はこれには限定されず、 2極 3スロットの整数倍のモータにも、本発明は適 用可能である。 [0030] Needless to say, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, in the above-mentioned embodiment, Θ s / Θ w is set in the range of 0 · 66 ≤ Θ s / θ w ≤ 0.965. However, as can be seen from Fig. 4, in order to reduce cogging torque, etc. It is more preferable to set Θ s / 6 w within the range of 0 · 7≤θ s / θ w≤0.9 (frame 枠 in Fig. 4). In the above-described embodiment, a 6-pole 9-slot motor has been described as an example of the motor 3. However, the motor configuration is not limited to this, and the present invention is applicable to a 2-pole 3-slot integral multiple motor. Is applicable.
さらに、前述の実施例では、インナーロータ型のブラシレスモータを用いた例を示し た力 本発明は、ステータの外側にロータを配したァウタロータ型のブラシレスモータ にも適用可能である。加えて、前述の実施例では、本発明による制御方法をコラムァ シスト式 EPSのモータに適用した例を示した力 S、ラック軸と同軸状にモータを配したラ ックアシスト式や、ラック軸と嚙合するピニオンギヤに補助力を付与するピニオンァシ スト式の EPS用モータにも適用可能である。  Further, in the above-described embodiments, the force using an inner rotor type brushless motor has been shown. The present invention can also be applied to an outer rotor type brushless motor in which a rotor is arranged outside the stator. In addition, in the above-described embodiments, the force S shown in the example in which the control method according to the present invention is applied to a column assist type EPS motor, the rack assist type in which the motor is arranged coaxially with the rack shaft, and the rack shaft are combined. It can also be applied to a pinion assist type EPS motor that applies auxiliary force to the pinion gear.

Claims

請求の範囲 The scope of the claims
[1] マグネットを備えたロータと、前記マグネットとエアギャップを介して対向する複数個 のティースを備えたステータとを有し、前記ティースの先端部に、前記エアギャップに 臨んで複数個の補助溝を形成してなるブラシレスモータであって、  [1] A rotor having a magnet and a stator having a plurality of teeth facing the magnet via an air gap, and a plurality of auxiliary members facing the air gap at the tip of the teeth A brushless motor formed with grooves,
前記補助溝の周方向に沿った幅 sと、隣接する前記ティースの先端部に形成され た開口部の周方向に沿った幅 Wとの比 W/S力 S、 0.9≤W/S≤1.1であり、かつ、 前記開口部の周方向に沿った中心 Mと、前記補助溝の周方向に沿った中心 Mと  Ratio of width s along the circumferential direction of the auxiliary groove to width W along the circumferential direction of the opening formed at the tip of the adjacent tooth W / S force S, 0.9≤W / S≤1.1 And center M along the circumferential direction of the opening, and center M along the circumferential direction of the auxiliary groove
1 2 の間の角度を Θ w、隣接する前記補助溝の前記中心 M間の角度を Θ sとしたとき、  When the angle between 1 and 2 is Θ w and the angle between the centers M of the adjacent auxiliary grooves is Θ s,
2  2
前記 Θ sと前記 Θ wの比 Θ s/ Θ w力 0.66≤ Θ s/ θ w≤0.965であることを特徴と  The ratio of Θ s to Θ w Θ s / Θ w force 0.66≤ Θ s / θ w ≤ 0.965
[2] 請求項 1記載のブラシレスモータにおいて、前記 Θ sと前記 Θ wの比 Θ sZ Θ wが、[2] The brushless motor according to claim 1, wherein the ratio Θ sZ Θ w of Θ s to Θ w is
0.7≤ Θ s/ θ w≤ 0.9であることを特徴とするブラシレスモータ。 A brushless motor characterized by 0.7≤ Θ s / θ w ≤ 0.9.
[3] 請求項 1記載のブラシレスモータにおいて、前記ブラシレスモータは、前記マグネッ トが 6極、前記ティース間に形成されたスロットの数が 9個の 6極 9スロット構成であるこ とを特徴とするブラシレスモータ。 [3] The brushless motor according to claim 1, wherein the brushless motor has a 6-pole 9-slot configuration in which the magnet has 6 poles and the number of slots formed between the teeth is 9. Brushless motor.
[4] 請求項 1記載のブラシレスモータにおいて、前記ブラシレスモータは、電動パワース テアリング装置の駆動源として使用されることを特徴とするブラシレスモータ。 [4] The brushless motor according to claim 1, wherein the brushless motor is used as a drive source of an electric power steering device.
PCT/JP2007/070173 2006-10-25 2007-10-16 Brushless motor WO2008050637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008540947A JPWO2008050637A1 (en) 2006-10-25 2007-10-16 Brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-289499 2006-10-25
JP2006289499 2006-10-25

Publications (1)

Publication Number Publication Date
WO2008050637A1 true WO2008050637A1 (en) 2008-05-02

Family

ID=39324436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070173 WO2008050637A1 (en) 2006-10-25 2007-10-16 Brushless motor

Country Status (2)

Country Link
JP (1) JPWO2008050637A1 (en)
WO (1) WO2008050637A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172063A (en) * 2009-01-20 2010-08-05 Mitsuba Corp Outer rotor brushless motor
JP2010187491A (en) * 2009-02-13 2010-08-26 Mitsuba Corp Brushless motor
JP2011188685A (en) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp Permanent magnet motor
JP2011250667A (en) * 2010-05-27 2011-12-08 Kazuhiko Goto Iron core of rotary electric machine
WO2012032591A1 (en) * 2010-09-06 2012-03-15 三菱電機株式会社 Permanent magnet type rotating electrical machine and electrical power steering device using same
CN104038010A (en) * 2013-03-06 2014-09-10 阿斯莫株式会社 Motor
JP2014176128A (en) * 2013-03-06 2014-09-22 Asmo Co Ltd Motor
JP2014209847A (en) * 2014-07-09 2014-11-06 三菱電機株式会社 Permanent magnet dynamo-electric machine and electric power steering device using the same
US9800100B2 (en) 2014-06-06 2017-10-24 Mitsubishi Electric Corporation Permanent magnet motor and driving apparatus-integrated permanent magnet motor
CN109391098A (en) * 2018-10-14 2019-02-26 西安航天动力测控技术研究所 A kind of torque motor structure design method of low torque fluctuation
CN109643915A (en) * 2016-09-05 2019-04-16 Lg伊诺特有限公司 Stator and motor including stator
KR20190128450A (en) * 2018-05-08 2019-11-18 엘지이노텍 주식회사 Motor
CN111033946A (en) * 2017-08-28 2020-04-17 Lg伊诺特有限公司 Stator and motor including the same
WO2021079577A1 (en) * 2019-10-25 2021-04-29 梨木 政行 Motor and control device thereof
GB2608834A (en) * 2021-07-13 2023-01-18 Dyson Technology Ltd A stator core
KR102673752B1 (en) * 2016-09-05 2024-06-10 엘지이노텍 주식회사 Stator and motor having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308198A (en) * 1995-05-08 1996-11-22 Nippon Seiko Kk Brushless motor
JPH1042531A (en) * 1996-05-24 1998-02-13 Matsushita Electric Ind Co Ltd Motor
JP2003061272A (en) * 2001-08-09 2003-02-28 Mitsubishi Electric Corp Permanent magnet dynamo-electric machine, and electric power steering device
JP2004194489A (en) * 2002-12-13 2004-07-08 Mitsuba Corp Brushless motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096803A (en) * 2002-08-29 2004-03-25 Mitsubishi Electric Corp Permanent magnet synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308198A (en) * 1995-05-08 1996-11-22 Nippon Seiko Kk Brushless motor
JPH1042531A (en) * 1996-05-24 1998-02-13 Matsushita Electric Ind Co Ltd Motor
JP2003061272A (en) * 2001-08-09 2003-02-28 Mitsubishi Electric Corp Permanent magnet dynamo-electric machine, and electric power steering device
JP2004194489A (en) * 2002-12-13 2004-07-08 Mitsuba Corp Brushless motor

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172063A (en) * 2009-01-20 2010-08-05 Mitsuba Corp Outer rotor brushless motor
JP2010187491A (en) * 2009-02-13 2010-08-26 Mitsuba Corp Brushless motor
JP2011188685A (en) * 2010-03-10 2011-09-22 Mitsubishi Electric Corp Permanent magnet motor
JP2011250667A (en) * 2010-05-27 2011-12-08 Kazuhiko Goto Iron core of rotary electric machine
JP5645940B2 (en) * 2010-09-06 2014-12-24 三菱電機株式会社 Permanent magnet type rotating electric machine and electric power steering apparatus using the same
JPWO2012032591A1 (en) * 2010-09-06 2013-12-12 三菱電機株式会社 Permanent magnet type rotating electric machine and electric power steering apparatus using the same
WO2012032591A1 (en) * 2010-09-06 2012-03-15 三菱電機株式会社 Permanent magnet type rotating electrical machine and electrical power steering device using same
US9172278B2 (en) 2010-09-06 2015-10-27 Mitsubishi Electric Corporation Permanent magnet type rotary electric machine and electric power steering apparatus using the same
CN104038010A (en) * 2013-03-06 2014-09-10 阿斯莫株式会社 Motor
JP2014176128A (en) * 2013-03-06 2014-09-22 Asmo Co Ltd Motor
US9800102B2 (en) 2013-03-06 2017-10-24 Asmo Co., Ltd. Dual rotor core motor with reduced flux leakage
CN104038010B (en) * 2013-03-06 2018-01-30 阿斯莫株式会社 Motor
US10734852B2 (en) 2013-03-06 2020-08-04 Asmo Co., Ltd. Motor
US9800100B2 (en) 2014-06-06 2017-10-24 Mitsubishi Electric Corporation Permanent magnet motor and driving apparatus-integrated permanent magnet motor
JP2014209847A (en) * 2014-07-09 2014-11-06 三菱電機株式会社 Permanent magnet dynamo-electric machine and electric power steering device using the same
EP3509187A4 (en) * 2016-09-05 2019-09-11 LG Innotek Co., Ltd. Stator, and motor comprising same
CN109643915A (en) * 2016-09-05 2019-04-16 Lg伊诺特有限公司 Stator and motor including stator
JP2019527016A (en) * 2016-09-05 2019-09-19 エルジー イノテック カンパニー リミテッド Stator and motor including the stator
KR102673752B1 (en) * 2016-09-05 2024-06-10 엘지이노텍 주식회사 Stator and motor having the same
CN111033946A (en) * 2017-08-28 2020-04-17 Lg伊诺特有限公司 Stator and motor including the same
US11637462B2 (en) 2017-08-28 2023-04-25 Lg Innotek Co., Ltd. Stator and motor including same
JP2020532263A (en) * 2017-08-28 2020-11-05 エルジー イノテック カンパニー リミテッド Stator and motor including it
US11876403B2 (en) 2017-08-28 2024-01-16 Lg Innotek Co., Ltd. Stator and motor including same
EP3678281A4 (en) * 2017-08-28 2021-05-26 LG Innotek Co., Ltd. Stator and motor including same
US11316389B2 (en) 2017-08-28 2022-04-26 Lg Innotek Co., Ltd. Stator and motor including same
CN111033946B (en) * 2017-08-28 2022-09-13 Lg伊诺特有限公司 Stator and motor including the same
JP7198807B2 (en) 2017-08-28 2023-01-04 エルジー イノテック カンパニー リミテッド Stator and motor containing same
KR20190128450A (en) * 2018-05-08 2019-11-18 엘지이노텍 주식회사 Motor
KR102570802B1 (en) * 2018-05-08 2023-08-25 엘지이노텍 주식회사 Motor
CN109391098A (en) * 2018-10-14 2019-02-26 西安航天动力测控技术研究所 A kind of torque motor structure design method of low torque fluctuation
JP7406739B2 (en) 2019-10-25 2023-12-28 政行 梨木 Motor and its control device
JP2021069223A (en) * 2019-10-25 2021-04-30 梨木 政行 Motor and control device thereof
WO2021079577A1 (en) * 2019-10-25 2021-04-29 梨木 政行 Motor and control device thereof
GB2608834A (en) * 2021-07-13 2023-01-18 Dyson Technology Ltd A stator core

Also Published As

Publication number Publication date
JPWO2008050637A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008050637A1 (en) Brushless motor
JP3875188B2 (en) Electric motor device
US7595577B2 (en) Brushless motor and electric power steering apparatus incorporating the same
JP6411833B2 (en) Brushless motor
US8116946B2 (en) Electric power steering device
JP2001275325A (en) Motor-driven power steering device
WO2016002334A1 (en) Electric power steering system
US8164289B2 (en) Brushless motor and control method of brushless motor
JP5897298B2 (en) Brushless motor control method, brushless motor control device, brushless motor, and electric power steering device
JP5168882B2 (en) Electric power steering device
JP2008301601A (en) Brushless motor
WO2007029562A1 (en) Motor for electric power steering system
JP4366823B2 (en) Brushless motor control device for power steering
JP2008172983A (en) Brushless motor, control method thereof, and controller therefor
JP5688925B2 (en) Brushless motor control method and brushless motor control device
JP5129732B2 (en) Brushless motor control method and brushless motor
JP2010183648A (en) Permanent magnet rotary electric machine and electric vehicle using the same
US7902709B2 (en) Brush-less motor and electric power steering device having brush-less motor
JP2006121821A (en) Synchronous reluctance motor and electric steering device mounted with the synchronous reluctance motor
US7893580B2 (en) Positioning mechanism of resolver and electrically-driven power steering apparatus
JP2004159462A (en) Motor arrangement
JP6838840B2 (en) Brushless motors and motors for electric power steering devices
JP5144994B2 (en) Electric motor
JP2004023905A (en) Brushless motor
JP2008011675A (en) Brushless motor and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008540947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829907

Country of ref document: EP

Kind code of ref document: A1