WO2008050619A1 - Power supply and microwave generator using same - Google Patents

Power supply and microwave generator using same Download PDF

Info

Publication number
WO2008050619A1
WO2008050619A1 PCT/JP2007/069953 JP2007069953W WO2008050619A1 WO 2008050619 A1 WO2008050619 A1 WO 2008050619A1 JP 2007069953 W JP2007069953 W JP 2007069953W WO 2008050619 A1 WO2008050619 A1 WO 2008050619A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
cycle
switching
duty ratio
power supply
Prior art date
Application number
PCT/JP2007/069953
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Kasai
Yuki Osada
Yuji Obata
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2007800398746A priority Critical patent/CN101529710B/en
Priority to KR1020097007607A priority patent/KR101170591B1/en
Publication of WO2008050619A1 publication Critical patent/WO2008050619A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a power supply device having a switching circuit that performs a switching operation by phase shift type PWM control, and a microwave generator using the power supply device
  • a plasma processing such as an etching process or a film forming process is performed on a semiconductor wafer, a glass substrate, and a substrate to be processed.
  • a plasma processing apparatus such as a plasma etching apparatus or a plasma CVD film forming apparatus is used.
  • a processing gas is supplied into a chamber in which parallel plate electrodes are arranged, a predetermined power is supplied to the parallel plate electrodes, and capacitive coupling between the parallel plate electrodes is performed.
  • a method of generating plasma by using the method has been widely used.
  • a method using microwaves has been attracting attention as a plasma capable of realizing a high plasma density and a low electron temperature.
  • a plasma source using a microwave a plasma source using a microwave generator equipped with a magnetron is generally used.
  • the magnetron is configured by coaxially arranging an anode (anode) having a cavity resonator around a filament as a cathode (force sword).
  • anode anode
  • the cathode is heated and thermoelectrons are emitted.
  • the electric field voltage
  • the thermoelectric element oscillates due to a rotational motion caused by a magnetic field applied in a direction perpendicular to the electric field. As a result, microwaves are generated.
  • a switching circuit for a large-capacity DC power supply is usually composed of a full-bridge circuit using four transistors. In this case, the voltage applied to the transistor (FET) constituting the switching element can be reduced, and the voltage can be freely controlled by the number of transformer turns. The flow can be set.
  • Power control of a power supply using such a switching circuit is generally performed by PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • this control is performed by adjusting the ON / OFF time (duty cycle) of the transistor.
  • the ON / OFF time duty cycle
  • the load line potential becomes unstable and the switching loss increases.
  • phase shift type PWM control is known in which the ON time of each transistor is controlled by shifting the phase with the duty ratio of the gate signal of each transistor being constant.
  • phase shift type PWM control using a full bridge circuit as described above is performed, MOS transistors with high switching efficiency are often used.
  • the off-time is long, that is, the duty ratio of the voltage signal output from the circuit and applied to the load is small! / Sometimes turned on! /, The parasitic capacitance between the source and drain of the transistor Not enough charge is accumulated in the part. For this reason, after turning this off, when another transistor connected in series to this transistor is turned on, a large inrush current flows to the on-state transistor through the capacitance portion of the transistor that was turned off. As a result, these transistors generate heat and cause a large loss.
  • the present invention has been made in view of the power and the circumstances, and the switching circuit is operated by the phase shift type PWM control, while being less affected by loss such as heat generation and having high efficiency. It is an object to provide a power supply device and a microwave generator using the power supply device. [0011] It is another object of the present invention to provide a power supply device having both high efficiency and high power while operating the switching circuit by phase shift type PWM control, and a microwave generation device using the power supply device. And
  • the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage and a plurality of switching elements, and when a DC voltage is input, an on-off-site occurs in each of the switching elements. And a pulse output from the switching circuit by changing the phase of the on / off cycle of each switching element. And a control unit that performs phase shift PWM control for controlling the pulse width of the voltage, and the control unit is a timing at which all of the plurality of switching elements are turned off in the ON / OFF cycle of the switching element.
  • This is a power supply device that is characterized by the fact that it is inserted.
  • the timing at which all of the plurality of switching elements are turned off is inserted. Can be charged.
  • the timing at which all of the plurality of switching elements are turned off is inserted.
  • the present invention also includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on the on / off combination of each of the switching elements, and the switching circuit that is output by changing the phase of the on / off cycle of each of the switching elements. And a control unit that performs phase shift type PWM control for controlling the pulse width of the pulsed voltage, wherein the control unit is configured such that the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value.
  • the timing at which all the plurality of switching elements are turned off is inserted.
  • the timing at which all the plurality of switching elements are turned off is set. This is a power supply device that is designed not to be inserted.
  • the timing at which all the switching elements are turned off in the on / off cycle of the switching element when the duty ratio is smaller than a predetermined value, the timing at which all the switching elements are turned off in the on / off cycle of the switching element.
  • the voltage for example, the parasitic capacitance of the switching transistor can be sufficiently charged during the operation.
  • the duty ratio is equal to or greater than the predetermined value, the timing at which all the plurality of switching elements are turned off is not inserted. As a result, the switch loss in the high duty ratio region is reduced, and more efficient control can be achieved.
  • the present invention also includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on the on / off combination of each of the switching elements, and the switching circuit that is output by changing the phase of the on / off cycle of each of the switching elements. And a control unit that performs phase shift type PWM control for controlling the pulse width of the pulsed voltage, wherein the control unit is configured such that the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value.
  • the frequency of the ON / OFF cycle of each switching element is relatively increased, while the duty cycle is If over ratio of the predetermined value or more, it is the power supply, characterized in that summer to relatively lower the frequency of the on 'off cycle.
  • the control unit controls the frequency of the on / off cycle to be lower if the duty ratio is larger. Also good. Further, even when the duty ratio is smaller than a predetermined value, the control unit performs control so that the frequency of the on / off cycle is lower! / If the duty ratio is larger. It ’s going to be.
  • the present invention also includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements. When a DC voltage is input, each switching element is turned on and off. And a switching circuit that outputs a Norse voltage based on the on / off combination of each of the switching elements, and the switching circuit that is output by changing the phase of the on / off cycle of each of the switching elements. And a control unit that performs phase shift type PWM control for controlling the pulse width of the pulsed voltage, wherein the control unit is configured such that the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value.
  • the timing at which all the plurality of switching elements are turned off is set.
  • the timing at which all of the plurality of switching elements are turned off is not inserted, and the on / off cycle is not performed.
  • the power supply apparatus is characterized in that the frequency is made lower than the frequency when the duty ratio is smaller than the predetermined value! /.
  • the control unit when the duty ratio is equal to or greater than the predetermined value, the control unit performs control so that the frequency of the on / off cycle is lower if the duty ratio is larger. Also good. Further, even when the duty ratio is smaller than a predetermined value, the control unit performs control so that the frequency of the on / off cycle is lower! / If the duty ratio is larger. It ’s going to be.
  • the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. Based on the on / off combination of each of these switching elements. And a phase shift PWM control for controlling the pulse width of the pulse voltage output from the switching circuit by changing the phase of the ON / OFF cycle of each switching element.
  • a control unit that performs the switching element in the ON / OFF cycle when the duty ratio of the pulse voltage output from the switching circuit is smaller than a first value. When the switching element is turned off, the duty ratio is smaller than a second value greater than the first value and greater than the first value!
  • the timing at which all of the plurality of switching elements are turned off is not inserted, and the duty ratio is A power supply device characterized in that, when the value is equal to or greater than 2, the frequency of the on / off cycle is made lower than the frequency when the duty ratio is smaller than the second value. .
  • the control unit when the duty ratio is greater than or equal to the second value, performs control so that the frequency of the on / off cycle is lower when the duty ratio is larger. It may be. Further, the control unit is configured such that, even when the duty ratio is greater than or equal to the first value and smaller than the second value, the frequency of the on / off cycle is lower when the duty ratio is larger. It may be controlled so that Further, the control unit may reduce the frequency of the ON / OFF cycle if the duty ratio is larger even when the duty ratio is smaller than the first value! To control! /, Even! /
  • the switching circuit has four switching elements, which constitute a full bridge circuit.
  • the duty ratios of the on / off cycles of the four switching elements are the same.
  • the switching element is a MOS FET or an IGBT.
  • a step-up transformer that boosts the voltage output from the switching circuit may be further provided.
  • the present invention provides a power supply device having any one of the above characteristics and the power supply device.
  • a microwave oscillating device comprising: a microwave oscillating unit that feeds power and oscillates microwaves.
  • the microwave oscillating unit includes a chamber in which the inside is maintained in a vacuum, a filament that is disposed in the chamber and functions as a cathode that emits thermoelectrons, and the filament in the chamber And a magnetron having an anode that is fed from the power supply device and that forms an electric field with the filament, and a magnetic field generation unit that forms a magnetic field orthogonal to the electric field outside the chamber. Is provided.
  • the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and when each DC element is input, an on-off cycle is provided for each of the switching elements. And a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device, A function of performing phase shift type PWM control for controlling a pulse width of a pulsed voltage output from the switching circuit by changing a phase of an on / off cycle of the switching element, and an on / off cycle of the switching element, And a function of inserting a timing when all of the plurality of switching elements are turned off.
  • a computer program characterized in that to realize the data.
  • the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device, A function of performing phase shift type PWM control for controlling the pulse width of the pulsed voltage output from the switching circuit by changing the phase of the ON / OFF cycle of the switching element; and the pulsed voltage output from the switching circuit ON / OFF cycle of the switching element when the duty ratio of the switching element is smaller than a predetermined value.
  • the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device, A function of performing phase shift type PWM control for controlling the pulse width of the pulsed voltage output from the switching circuit by changing the phase of the ON / OFF cycle of the switching element; and the pulsed voltage output from the switching circuit When the duty ratio of the switching element is smaller than a predetermined value, the on / off cycle of each switching element is And a function of relatively reducing the frequency of the on / off cycle when the duty ratio is equal to or greater than the predetermined value.
  • the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements.
  • each switching element When a DC voltage is input, each switching element is turned on and off.
  • a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device,
  • a function of performing phase shift type PWM control for controlling the pulse width of the pulsed voltage output from the switching circuit by changing the phase of the ON / OFF cycle of the switching element; and the pulsed voltage output from the switching circuit
  • the duty ratio of the switching element is smaller than the first value, In this case, the timing when all of the plurality of switching elements are turned off is inserted, and the duty ratio is less than a second value that is greater than or equal to the first value and greater than the first value.
  • the switching element is not turned off and the duty ratio is greater than or equal to the second value, the on /
  • FIG. 1 is a block diagram showing a microwave plasma processing apparatus including a microwave generating apparatus equipped with a high voltage power supply according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining an internal configuration of the microwave plasma processing apparatus of FIG. 1.
  • FIG. 3A and FIG. 3B are circuit diagrams showing in detail a high-voltage power supply according to one embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a magnetron that is a main component of a microwave oscillating unit in the microwave plasma processing apparatus of FIG. 1.
  • FIG. 5 is a diagram showing an example of a relationship between a gate signal of each switching transistor and a transformer primary voltage waveform in normal phase shift PWM control.
  • FIG. 6 is a diagram schematically showing a one-cycle switching operation in the case of FIG. 5.
  • Figure 7 shows the actual waveforms with duty ratios of 20%, 50%, and 90% when the duty ratio of the transformer primary voltage is changed in actual phase-shift PWM control. is there.
  • FIG. 8 is a diagram schematically showing a one-cycle switching operation in the switching circuit of the high-voltage power supply according to one embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing an operating state of a switching circuit according to another embodiment of the present invention.
  • Fig. 10 shows the gate voltage, transformer primary-side current, when the duty ratio of the gate signal is small at the high frequency, and when multiple order (high order) resonance occurs when the transistor is OFF. It is a figure which shows the waveform of a transformer secondary side electric current.
  • FIG. 11 is a schematic diagram showing an example of an operating state of a switching circuit according to still another embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing another example of the operation state of the switching circuit in still another embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing still another example of the operation state of the switching circuit according to still another embodiment of the present invention.
  • FIG. 14A and FIG. 14B are schematic diagrams showing an operating state of a switching circuit according to another embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing an operation state of a switching circuit in still another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a microwave plasma processing apparatus including a microwave generation apparatus equipped with a high voltage power supply (power supply apparatus) according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the internal configuration.
  • a microwave plasma processing apparatus 100 includes a microwave generator 1, a microphone mouth wave transmission unit 2, a plasma processing unit 3, and a higher-level control unit that controls these units. And an overall control unit 4.
  • the microwave generator 1 includes a high voltage power supply 11 and a microwave oscillating unit 12. As shown in Fig. 2, the high-voltage power supply 11 converts a three-phase 200V AC voltage into a DC voltage, boosts it, and supplies a predetermined DC voltage to the microwave oscillation unit 12. Circuit 13, AC / DC converter 14, switching circuit 15, high voltage step-up transformer 16, rectifier circuit 17, and high-voltage power supply controller 18 that mainly controls the switching circuit 15. Yes.
  • the AC / DC converter 14 includes a rectifier circuit 21 and a smoothing circuit 22. Then, switching is performed (turned on and off) by the switching circuit 15 based on a command of 280 V DC voltage power and high voltage power supply controller 18 converted by the AC / DC converter 14.
  • the DC voltage is boosted to a desired voltage by the high voltage boosting transformer 16 and supplied to the microwave oscillating unit 12 via the rectifier circuit 17.
  • the voltage / current of the high-voltage direct current supplied to the microwave oscillating unit 12 is monitored by the voltage / current monitor 20, and the information is sent to the high-voltage power supply controller 18.
  • the microwave oscillating unit 12 includes a magnetron 23 that oscillates a microwave, a filament power supply 24 that supplies a voltage to the filament of the magnetron 23, and a microwave generator And a vibration unit controller 25.
  • Magnetron 23 is a filament as a cathode (force sword) in a container held in a vacuum.
  • thermoelectrons generate rotational motion and oscillate.
  • the magnetron 23 generates microwaves of 2.45 GHz, for example.
  • the filament power supply 24 includes a high voltage step-down step-down transformer 28, an AC / DC conversion circuit 29, and a switching circuit 30 that step down a 200V alternating current extracted from a 200V three-phase alternating current.
  • 7V DC voltage formed by high voltage step-down transformer 28 and AC / DC converter circuit 29 1S Controlled by switching circuit 30 based on command from microwave oscillator controller 25, predetermined range of 0-7V
  • the voltage is applied to the filament 26 of the magnetron 23.
  • the DC voltage / current supplied to the filament 26 is monitored by a voltage / current monitor 31, and the information is sent to the microwave oscillator controller 25.
  • the microwave transmission unit 2 is for guiding the microwave generated by the microwave generator 1 to the plasma processing unit 3, and guides the microwave generated by the microwave generator 1).
  • a transmission unit controller 37 that controls each component of the microwave transmission unit 2.
  • the antenna 36 has a slot for radiating microwaves. The power of the microwave detected by the power sensor 34 is monitored by the power monitor 38, and the signal is transmitted to the high voltage power controller 18.
  • the plasma processing unit 3 includes an airtightly configured chamber 39, a mounting table 40 on which a substrate S to be processed in the chamber 39 is mounted, and a microwave radiated from an antenna 36.
  • a top plate 41 made of a dielectric material for transmitting waves into the chamber 39, a gas supply unit 42 for supplying a processing gas into the chamber 39, and a gas from the gas supply unit 42 is introduced into the chamber 39.
  • microwaves are radiated into the space above the substrate S to be processed in the chamber 39, plasma of the processing gas is formed in that space.
  • a predetermined plasma process such as an oxidation process or etching is performed on the substrate S to be processed by the plasma.
  • the overall control unit 4 includes a high-level power supply controller 18, a microwave oscillation unit controller 25, a transmission unit controller 37, and a host controller 47 including a microprocessor (combiner) that controls the processing unit controller 46.
  • An external interface 49 having a storage unit 48 storing various necessary programs and processing conditions so-called recipes, a setting unit for performing various settings such as the power of a high-voltage power supply, and a display unit for displaying status and alarms, etc. have.
  • the recipe can be stored in a readable storage medium such as a CD-ROM, a hard disk, a flexible disk, and a nonvolatile memory.
  • the overall control unit 4, the high voltage power supply controller 18, the microwave oscillation unit controller 25, the transmission unit controller 37, and the processing unit controller 46 constitute a control unit.
  • FIG. 3A and 3B are circuit diagrams showing the high voltage power supply 11 in detail.
  • the 200V three-phase AC power first passes through the safety circuit 13 to the AC / DC converter 14.
  • the safety circuit 13 includes a breaker 50, a noise filter 51, and a magnetic contactor 52.
  • the alternating current that has passed through this is converted to direct current by the rectifier circuit 21, and the direct current is smoothed by the smoothing circuit 22 having the capacitor 22a to obtain a direct current of 280V.
  • the four switching transistors Ql, Q2, Q3, and Q4 form a full-bridge circuit (also referred to as an H-bridge), and are phased by the high-voltage power controller 18. Shift-type PWM control is implemented.
  • the switching transistors Ql, Q2, Q3, and Q4 receive the gate drive signals Vgl, Vg2, Vg3, and Vg4 from the high-voltage power supply controller 18 with a 50% duty ratio and controlled phase. It has become so. These are combined and a pulse voltage is output from the switching circuit 15. This Norse voltage force is taken as the transformer primary voltage. It is ejected.
  • the transistor Ql Q4 has a positive output and the transistor Q2 Q3 has a negative output.
  • a field effect transistor can be used from the viewpoint of efficiency, and a power MOS FET, which is preferably a MOS transistor, is preferable.
  • an IGBT insulated gate bipolar transistor, which has a higher breakdown voltage than a MOSFET and is suitable for high power, can be used.
  • the step-up transformer 16 which is the load of the switching circuit 15, is connected in series.
  • a resonant capacitor Cr / 2 is inserted in parallel with each of the switching transistors Q1 and Q4, and a resonant inductor Lr is inserted in the wiring from the transistors Q1 and Q2 to the step-up transformer 16.
  • the resonant capacitor Cr / 2 is a combined capacitance of the parasitic capacitance of the transistor and an additional capacitor connected in parallel to the transistor, and the resonant inductor Lr is connected in series with the leakage inductance of the transformer 16 and the transformer. This is the combined inductance with the additional inductor.
  • the voltage is boosted to 280V power S-8000V. That is, a direct current having a voltage between 0 8000 V is rectified by the rectifier circuit 17 and supplied to the magnetron 23.
  • a filament 26 as a cathode and an anode 27 disposed so as to face the cathode 26 are arranged in a case 61 made of metal, for example, kept in a vacuum.
  • the filament 26 is formed into a cylindrical shape
  • the anode 27 is formed into a coaxial cylindrical shape so as to surround the periphery thereof.
  • FIG. 4 the structure of the magnetron 23 is schematically shown.
  • a plurality of cavity resonators 62 are provided on the surface of the anode 27 facing the filament 26.
  • a side surface 66 (upper and lower surfaces in the figure) 66 of the case 61 is formed of a non-magnetic material, and a permanent magnet 67 is disposed on the outside thereof.
  • a strong magnetic field can be formed in the space between the filament 26 as the cathode and the anode 27 so as to be orthogonal to the opposing direction of these two electrodes.
  • a voltage is applied to the filament 26 from the filament power supply 24, thereby releasing thermionic electrons. Is issued.
  • a predetermined voltage is applied from the high-voltage power source 11 between the filament 26 functioning as a cathode and the anode 27, whereby the current is controlled.
  • thermoelectrons Since the magnetic field acts in a direction perpendicular to the electric field generated at this time, the orthogonal electromagnetic field causes rotational movement of the thermoelectrons emitted from the filament 26, and the thermoelectrons are hollow. Oscillation occurs when passing through the resonator 62. As a result, for example, 2.45 GHz microwaves are generated.
  • the anode 27 is connected to an antenna lead 64 that penetrates the case 61 via an insulating material 63.
  • An antenna 65 is connected to the tip of the antenna lead 64, and the generated microphone mouth wave is propagated from the antenna 65 into the waveguide 32.
  • the substrate to be processed S is loaded into the chamber 39 of the plasma processing unit 3 from a loading / unloading port (not shown).
  • a predetermined processing gas is introduced into the chamber 39 from the gas supply unit 42 via the gas introduction member 43, and a microphone mouth wave is generated by the microwave generator 1, and into the chamber 39 through the microwave transmission unit 2. Microwaves are emitted.
  • the processing gas is turned into plasma in the chamber 39, and a predetermined plasma processing is executed by the microwave plasma.
  • control of the generated microwave is performed by the high voltage power supply controller 18 using the switching circuit 15 of the high voltage power supply 11 of the microwave generator 1.
  • the high voltage power supply controller 18 controls the switching frequency and phase (phase) of each switching transistor of the switching circuit 15 based on the setting signal from the external interface 49, and as described above, The switching operation is performed according to the shift type PWM control.
  • the current and voltage signals from the current / voltage monitor 20 and the power signal detected by the power sensor 34 of the microwave transmission section 2 monitored by the power monitor 38 are fed back and set as set.
  • Each switching transistor of the switching circuit 15 is controlled so that [0056]
  • the gate signals of the switching transistors Ql, Q2, Q3, and Q4 are fixed to a duty ratio of 50%, for example, and their phases are shifted.
  • the voltage waveform of the step-up transformer 16—the secondary side is controlled as desired. That is, if the duty ratio in the voltage waveform applied to the primary side of the transformer 16 is small, the output is small, and if the duty ratio is large, the output is large.
  • Figure 5 shows an example of the gate signal of each switching transistor and the transformer primary voltage waveform.
  • Fig. 6 schematically shows the switching operation in one cycle in the case of Fig. 5.
  • FIG. 7 shows actual waveforms when the switching transistors Q1 to Q4 are actually phase-shifted to change the duty ratio of the transformer primary voltage.
  • Figure 7 shows real waveforms with duty ratios of 20%, 50%, and 90%.
  • the time when Q1 and Q4 are both ON and the time force shaded area where both Q2 and Q3 are ON are shown.
  • phase shift type PWM control when a MOS type transistor is used as a switching transistor, when the off time is long, that is, the voltage output from this circuit and applied to the transformer 16 (output voltage)
  • the duty ratio is small, sufficient charge is not accumulated in the parasitic capacitance between the source and drain of the transistor that was turned on.
  • the duty ratio of the switching transistor Q2 in the states (1) to (3) is small, the charge is hardly accumulated in the parasitic capacitance part of Q2. After turning it off, it is connected in series to the switching transistor Q2.
  • the switching transistor Ql is turned on (state (5))
  • a large inrush current flows to the transistor Q1 through the capacitance part of the transistor Q2 that is turned off.
  • This transistor generates heat and causes a large loss. End up. The same thing occurs in state (1). In this case, a large inrush current flows to the transistor Q2 through the capacitance portion of the transistor Q1 turned off, resulting in a large loss. That is, when the duty ratio of the output voltage from the switching circuit 15 is small, a large current flows through the switching transistors Q1 and Q2 to generate heat and generate a large loss.
  • the switching circuit is controlled by the high voltage power supply controller 18 so that all the switches are provided in the states (4) and (8). That is, in the state (4), the switching transistors Q2 and Q4 are temporarily turned off, and charges are accumulated in the parasitic capacitance. Therefore, no inrush current flows into transistor Q1 in state (5). In the state (8), the switching transistors Ql and Q3 are temporarily turned off, and charges are accumulated in the total capacity. Therefore, no inrush current flows into transistor Q2 in state (1). As described above, it is possible to eliminate the loss due to the inrush current in the switching transistors Ql and Q2. In FIG. 8, the period corresponding to (4) and (8) in FIG.
  • an all-off time for turning off all the switching transistors is provided.
  • the switching operation per cycle increases twice. Therefore, when large power is supplied by increasing the duty ratio of the output voltage, the total loss may increase due to switching loss.
  • the efficiency characteristics of the switching operation of the switching transistors Ql and Q2 are examined in advance. Then, as shown in FIG. 9, two patterns of phase shift type control are switched by the high voltage power supply controller 18 according to the load condition and the like. That is, in the region where the duty ratio of the output voltage is small, the phase shift type PWM control for forming the timing for turning off all the switching transistors is performed as described above. Phase-shift PWM control (Fig. 6) is performed. By such switching control, V and power supply control with less loss can be performed.
  • the resonance circuit is configured by inserting the resonance capacitor Cr / 2 and the resonance inductor Lr as described above so as to maintain as high efficiency as possible.
  • the switching frequency (gate signal frequency) of each switching transistor is set to, for example, 10 to 500 kHz for the purpose of reducing the overall loss by reducing the copper loss of the transformer.
  • a multiple order high The following resonance may occur.
  • Figure 10 shows the situation at that time. In the case shown in Fig. 10, even when the gate voltage is normal, the resonance current flows to the primary side of the transformer when the transistor is OFF.
  • the power S can be increased by decreasing the switching frequency.
  • the impedance changes depending on the frequency, if the frequency is lowered, it becomes difficult to be affected by the resonant inductor, and a larger noise can be obtained.
  • the frequency is increased to, for example, about 50 to 100 kHz.
  • control is performed so that the frequency is lowered to, for example, about 1 to 50 kHz.
  • the frequency is reduced to a constant value at a certain duty ratio or more, for example, 50% or more, or at a low duty ratio with low power, the frequency is fixed at a high frequency as shown in FIG.
  • a high power mode of a certain duty ratio or higher for example, 50% or higher
  • the frequency decreases as the duty ratio increases, or even in a region where the duty ratio is smaller than the predetermined duty ratio as shown in FIG.
  • the frequency can be lowered.
  • This embodiment is a combination of the above-described embodiments.
  • the above-described embodiment is used in the low duty ratio in which the duty ratio is smaller than a predetermined value.
  • control is performed to set the timing for turning off all the switching transistors.
  • the control is switched to the normal phase shift control and the frequency is lowered.
  • the frequency may be reduced to a constant value when the duty ratio is a predetermined value or more, or when the duty ratio is a predetermined value or more as shown in FIG. 14B.
  • the frequency may be changed according to the duty ratio.
  • the duty ratio is smaller than a predetermined value, the frequency may be changed according to the duty ratio.
  • control is performed to provide timing for turning off the switching transistor at a low duty ratio smaller than the first duty ratio A, and the first duty ratio is set.
  • Normal phase shift control is performed at a medium duty ratio that is greater than the ratio A and smaller than the second duty ratio B, and at a high duty ratio that is greater than the second duty ratio B than at the middle duty ratio.
  • control to reduce the frequency is added. Thereby, finer control can be performed.
  • the frequency change in the region of the second duty ratio or higher is the force S that changes the frequency according to the duty ratio in the case of FIG. 15, and the frequency is reduced to a constant value. Good.
  • control the frequency to a region that is greater than the first duty ratio and smaller than the second duty ratio! /, Smaller than the first duty ratio! /, Smaller than the frequency in the region! /, And the frequency. May be. Further, the frequency may be lowered as the duty ratio increases in a region that is greater than or equal to the first duty ratio and smaller than the second duty ratio. In this case, the frequency may be lowered as the duty ratio increases even in a region smaller than the first duty ratio.
  • the present invention is used in a microwave generator.
  • the present invention is not limited to this, and the present invention can be applied to a power supply for other uses that require high voltage.
  • the force using a full bridge circuit including four switching transistors as the switching circuit is not limited thereto, and, for example, a no-bridge bridge circuit may be used.
  • the present invention is suitable for a power source that requires a large amount of power, such as a microwave generator used in a microwave plasma processing apparatus.

Abstract

A power supply comprises an AC/DC converting section for converting AC voltage into DC voltage, a switching circuit having switching elements and outputting a pulse voltage according to the combination of ons and offs of the switching elements due to an on/off cycle of each switching element caused when the DC voltage is inputted and a control section for performing phase-shift PWM control to control the pulse width of the pulse voltage outputted from the switching circuit by varying the phase of the on/off cycle of each switching element. The power supply is characterized in that the control circuit inserts a timing at which the switching elements are all off in the on/off cycles of the switching elements.

Description

明 細 書  Specification
電源装置及びそれを用いたマイクロ波発生装置  Power supply device and microwave generator using the same
技術分野  Technical field
[0001] 本発明は、フェーズシフト型の PWM制御によるスイッチング動作を行うスイッチング 回路を有する電源装置、及び、当該電源装置を用いたマイクロ波発生装置に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a power supply device having a switching circuit that performs a switching operation by phase shift type PWM control, and a microwave generator using the power supply device
[0002] 半導体デバイスや液晶表示装置の製造工程においては、半導体ウェハやガラス基 板とレ、つた被処理基板に、エッチング処理や成膜処理等のプラズマ処理が施される 。このため、プラズマエッチング装置やプラズマ CVD成膜装置等のプラズマ処理装 置が用いられる。  In the manufacturing process of a semiconductor device or a liquid crystal display device, a plasma processing such as an etching process or a film forming process is performed on a semiconductor wafer, a glass substrate, and a substrate to be processed. For this reason, a plasma processing apparatus such as a plasma etching apparatus or a plasma CVD film forming apparatus is used.
[0003] プラズマ処理装置におけるプラズマの発生方式としては、平行平板電極が配置さ れたチャンバ内に処理ガスを供給し、平行平板電極に所定の電力を供給して、平行 平板電極間の容量結合によってプラズマを発生させるという方式が多用されてきた。 し力、しながら、近時、高プラズマ密度と低電子温度を実現することができるプラズマと して、マイクロ波を利用した方式が注目されつつある。  [0003] As a method of generating plasma in a plasma processing apparatus, a processing gas is supplied into a chamber in which parallel plate electrodes are arranged, a predetermined power is supplied to the parallel plate electrodes, and capacitive coupling between the parallel plate electrodes is performed. A method of generating plasma by using the method has been widely used. However, recently, a method using microwaves has been attracting attention as a plasma capable of realizing a high plasma density and a low electron temperature.
[0004] マイクロ波を利用するプラズマ源としては、マグネトロンを備えたマイクロ波発生装 置を用いるものが一般的である。マグネトロンは、陰極 (力ソード)としてのフィラメント の周囲に、空洞共振器を有する陽極(アノード)を同軸状に配置して構成される。これ らの両電極間に対して直流電界をかけた状態で、陰極が加熱して、熱電子が放出さ れる。両電極間に加える電界(電圧)を調整することによって、流れる電流は制御され る。これと同時に、当該電界に対して直交する方向に与えられる磁界によって、熱電 子に回転運動が生じて発振する。その結果として、マイクロ波が発生する。  [0004] As a plasma source using a microwave, a plasma source using a microwave generator equipped with a magnetron is generally used. The magnetron is configured by coaxially arranging an anode (anode) having a cavity resonator around a filament as a cathode (force sword). With the DC electric field applied between these two electrodes, the cathode is heated and thermoelectrons are emitted. By adjusting the electric field (voltage) applied between both electrodes, the flowing current is controlled. At the same time, the thermoelectric element oscillates due to a rotational motion caused by a magnetic field applied in a direction perpendicular to the electric field. As a result, microwaves are generated.
[0005] マグネトロンをマイクロ波発振器に用いる場合には、大容量の高電圧電源が必要で ある。大容量の直流電源のスイッチング回路は、通常、 4つのトランジスタを用いたフ ルブリッジ回路で構成される。この場合、スイッチング素子を構成するトランジスタ(F ET)に力、かる電圧を低下させることができ、また、トランス巻き数により自由に電圧 '電 流を設定することができる。 [0005] When a magnetron is used for a microwave oscillator, a large-capacity high-voltage power supply is required. A switching circuit for a large-capacity DC power supply is usually composed of a full-bridge circuit using four transistors. In this case, the voltage applied to the transistor (FET) constituting the switching element can be reduced, and the voltage can be freely controlled by the number of transformer turns. The flow can be set.
[0006] このようなスイッチング回路を用いた電源のパワー制御は、一般的に、 PWM (Puls e Width Modulation)制御により行われている。この制御は、従来、トランジスタの オン'オフの時間(デューティサイクル)を調整することにより行われていた。しかしな がら、全てのトランジスタがオフになる時間が長いと、負荷のラインの電位が不安定と なり、スイッチングロスが増加してしまう。  [0006] Power control of a power supply using such a switching circuit is generally performed by PWM (Pulse Width Modulation) control. Conventionally, this control is performed by adjusting the ON / OFF time (duty cycle) of the transistor. However, if all the transistors are turned off for a long time, the load line potential becomes unstable and the switching loss increases.
[0007] このような不都合を回避する技術として、各トランジスタのゲート信号のデューティー 比を一定として位相(フェーズ)をシフトすることにより各トランジスタの ON時間を制御 するフェーズシフト型の PWM制御が知られている(例えば、トランジスタ技術 2004 年 6月号 228〜235ページ(非特許文献 1) )。フェーズシフト型の PWM制御を行う ことにより、共振回路を容易に形成できるため、効率のよいスイッチング動作を行わせ ること力 Sでさる。  [0007] As a technique for avoiding such inconvenience, phase shift type PWM control is known in which the ON time of each transistor is controlled by shifting the phase with the duty ratio of the gate signal of each transistor being constant. (For example, Transistor Technology, June 2004, pp. 228-235 (Non-Patent Document 1)). Resonance circuits can be easily formed by performing phase-shift PWM control, so the force S that allows efficient switching operation is reduced.
発明の要旨  Summary of the Invention
[0008] 以上のようなフルブリッジ回路を用いるフェーズシフト型の PWM制御を行う場合に は、スイッチング効率の高い MOS型トランジスタが多用される。しかし、オフ時間が長 いとき、すなわち、当該回路から出力され負荷に印加される電圧信号のデューティー 比が小さ!/、ときには、オンになって!/、たトランジスタのソース ·ドレイン間の寄生容量部 分に電荷が十分に蓄積されない。このため、これをオフにした後、このトランジスタに 直列に接続されている他のトランジスタをオンにしたとき、オフにしたトランジスタの容 量部分を通ってオン状態のトランジスタに大きな突入電流が流れてしまって、これらト ランジスタが発熱し、大きなロスを生じてしまう。  [0008] When phase shift type PWM control using a full bridge circuit as described above is performed, MOS transistors with high switching efficiency are often used. However, when the off-time is long, that is, the duty ratio of the voltage signal output from the circuit and applied to the load is small! / Sometimes turned on! /, The parasitic capacitance between the source and drain of the transistor Not enough charge is accumulated in the part. For this reason, after turning this off, when another transistor connected in series to this transistor is turned on, a large inrush current flows to the on-state transistor through the capacitance portion of the transistor that was turned off. As a result, these transistors generate heat and cause a large loss.
[0009] 一方、負荷に印加される電圧信号のデューティー比が大き!/、場合には、より大きな パワーが求められる。し力もながら、通常のフェーズシフト制御では、効率が低下して 、パワーが十分に得られない場合も生じる。  [0009] On the other hand, when the duty ratio of the voltage signal applied to the load is large! /, Greater power is required. However, in normal phase shift control, the efficiency is reduced and sufficient power may not be obtained.
[0010] 本発明は、力、かる事情に鑑みてなされたものであって、スイッチング回路をフェーズ シフト型の PWM制御により動作させる一方で、発熱等のロスの影響が少なく高効率 であるような電源装置、及び、当該電源装置を用いたマイクロ波発生装置を提供する ことを目白勺とする。 [0011] また、スイッチング回路をフェーズシフト型の PWM制御により動作させる一方で高 効率と高パワーとを兼備した電源装置、及び、当該電源装置を用いたマイクロ波発 生装置を提供することを目的とする。 [0010] The present invention has been made in view of the power and the circumstances, and the switching circuit is operated by the phase shift type PWM control, while being less affected by loss such as heat generation and having high efficiency. It is an object to provide a power supply device and a microwave generator using the power supply device. [0011] It is another object of the present invention to provide a power supply device having both high efficiency and high power while operating the switching circuit by phase shift type PWM control, and a microwave generation device using the power supply device. And
[0012] さらに、このような電源装置のスイッチング回路を制御するためのコンピュータプログ ラムを提供することを目的とする。  [0012] It is another object of the present invention to provide a computer program for controlling the switching circuit of such a power supply device.
[0013] 本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のスィッチ ング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン'ォフサ イタルが生じて、これら各スイッチング素子のオン 'オフの組み合わせに基づいてパ ノレス状電圧を出力するスイッチング回路と、前記各スイッチング素子のオン'オフサイ クルの位相を変化させることにより前記スイッチング回路から出力されるパルス状電圧 のパルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、を備え、前記制 御部は、前記スイッチング素子のオン'オフサイクルにおいて、前記複数のスィッチン グ素子が全てオフとなるタイミングを揷入するようになっていることを特徴とする電源 装置である。  [0013] The present invention includes an AC / DC converter that converts an AC voltage into a DC voltage and a plurality of switching elements, and when a DC voltage is input, an on-off-site occurs in each of the switching elements. And a pulse output from the switching circuit by changing the phase of the on / off cycle of each switching element. And a control unit that performs phase shift PWM control for controlling the pulse width of the voltage, and the control unit is a timing at which all of the plurality of switching elements are turned off in the ON / OFF cycle of the switching element. This is a power supply device that is characterized by the fact that it is inserted.
[0014] 本発明によれば、前記スイッチング素子のオン.オフサイクルにおいて、複数のスィ ツチング素子が全てオフとなるタイミングが揷入されることにより、動作途中において 例えばスイッチングトランジスタの寄生容量を十分に充電することができる。これにより 、例えばスイッチングトランジスタにおいて、充電電荷が少ないことに起因する突入電 流の発生を防止することができる。このため、突入電流によるロスおよびトランジスタ の発熱等を抑制することができる。  [0014] According to the present invention, in the on / off cycle of the switching element, the timing at which all of the plurality of switching elements are turned off is inserted. Can be charged. Thereby, for example, in a switching transistor, it is possible to prevent the occurrence of an inrush current due to a small charge. For this reason, loss due to inrush current and heat generation of the transistor can be suppressed.
[0015] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、前記各スイッチング素子のオン'オフ サイクルの位相を変化させることにより前記スイッチング回路から出力されるパルス状 電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、を備え、前 記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー比が 所定値よりも小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて、前 記複数のスイッチング素子が全てオフとなるタイミングを揷入するようになっており、一 方、前記デューティー比が前記所定値以上の場合には、前記複数のスイッチング素 子が全てオフとなるタイミングを揷入しないようになっていることを特徴とする電源装 置である。 [0015] The present invention also includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on the on / off combination of each of the switching elements, and the switching circuit that is output by changing the phase of the on / off cycle of each of the switching elements. And a control unit that performs phase shift type PWM control for controlling the pulse width of the pulsed voltage, wherein the control unit is configured such that the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value. In the ON / OFF cycle of the switching element, The timing at which all the plurality of switching elements are turned off is inserted. On the other hand, when the duty ratio is equal to or greater than the predetermined value, the timing at which all the plurality of switching elements are turned off is set. This is a power supply device that is designed not to be inserted.
[0016] 本発明によれば、スイッチング回路から出力されるパルス状電圧のデューティー比 が所定値よりも小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて、 複数のスイッチング素子が全てオフとなるタイミングが揷入されることにより、動作途中 において例えばスイッチングトランジスタの寄生容量を十分に充電することができる。 一方、デューティー比が前記所定値以上の場合には、複数のスイッチング素子が全 てオフとなるタイミングは揷入されない。これにより、高デューティー比領域におけるス イツチンダロスが低減され、より効率の高!/、制御を行うこと力 Sできる。  According to the present invention, when the duty ratio of the pulse voltage output from the switching circuit is smaller than a predetermined value, the timing at which all the switching elements are turned off in the on / off cycle of the switching element. By inserting the voltage, for example, the parasitic capacitance of the switching transistor can be sufficiently charged during the operation. On the other hand, when the duty ratio is equal to or greater than the predetermined value, the timing at which all the plurality of switching elements are turned off is not inserted. As a result, the switch loss in the high duty ratio region is reduced, and more efficient control can be achieved.
[0017] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、前記各スイッチング素子のオン'オフ サイクルの位相を変化させることにより前記スイッチング回路から出力されるパルス状 電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、を備え、前 記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー比が 所定値よりも小さい場合に、前記各スイッチング素子のオン'オフサイクルの周波数を 相対的に高くするようになつており、一方、前記デューティー比が前記所定値以上の 場合には、前記オン'オフサイクルの周波数を相対的に低くするようになつていること を特徴とする電源装置である。  [0017] The present invention also includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on the on / off combination of each of the switching elements, and the switching circuit that is output by changing the phase of the on / off cycle of each of the switching elements. And a control unit that performs phase shift type PWM control for controlling the pulse width of the pulsed voltage, wherein the control unit is configured such that the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value. On the other hand, the frequency of the ON / OFF cycle of each switching element is relatively increased, while the duty cycle is If over ratio of the predetermined value or more, it is the power supply, characterized in that summer to relatively lower the frequency of the on 'off cycle.
[0018] 本発明によれば、スイッチング回路から出力されるパルス状電圧のデューティー比 が所定値よりも小さい場合に、前記各スイッチング素子のオン'オフサイクルの周波数 が相対的に高くされ、前記デューティー比が前記所定値以上の場合に、前記オン- オフサイクルの周波数が相対的に低くされる。これにより、低パワーモードにおいては 良好なパワー制御性能が達成されるとともに、高パワーモードにおいては高効率を 得ること力 Sでさる。 [0019] この場合、前記制御部は、前記デューティー比が前記所定値以上の場合に、前記 デューティー比がより大きければ前記オン ·オフサイクルの周波数がより低いというよう に制御するようになっていてもよい。更には、前記制御部は、前記デューティー比が 所定値よりも小さい場合においても、前記デューティー比がより大きければ前記オン' オフサイクルの周波数がより低!/、とレ、うように制御するようになってレ、てもよレ、。 According to the present invention, when the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value, the frequency of the on / off cycle of each switching element is relatively increased, and the duty cycle When the ratio is greater than or equal to the predetermined value, the frequency of the on-off cycle is relatively lowered. As a result, good power control performance is achieved in the low power mode, and high power efficiency is obtained in the high power mode. [0019] In this case, when the duty ratio is equal to or greater than the predetermined value, the control unit controls the frequency of the on / off cycle to be lower if the duty ratio is larger. Also good. Further, even when the duty ratio is smaller than a predetermined value, the control unit performs control so that the frequency of the on / off cycle is lower! / If the duty ratio is larger. It ’s going to be.
[0020] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、前記各スイッチング素子のオン'オフ サイクルの位相を変化させることにより前記スイッチング回路から出力されるパルス状 電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、を備え、前 記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー比が 所定値よりも小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて、前 記複数のスイッチング素子が全てオフとなるタイミングを揷入するようになっており、一 方、前記デューティー比が前記所定値以上の場合には、前記複数のスイッチング素 子が全てオフとなるタイミングを揷入しないで、かつ、前記オン'オフサイクルの周波 数を前記デューティー比が前記所定値よりも小さい場合の周波数よりも低くするよう になって!/、ることを特徴とする電源装置である。  [0020] The present invention also includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements. When a DC voltage is input, each switching element is turned on and off. And a switching circuit that outputs a Norse voltage based on the on / off combination of each of the switching elements, and the switching circuit that is output by changing the phase of the on / off cycle of each of the switching elements. And a control unit that performs phase shift type PWM control for controlling the pulse width of the pulsed voltage, wherein the control unit is configured such that the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value. In addition, in the ON / OFF cycle of the switching element, the timing at which all the plurality of switching elements are turned off is set. On the other hand, when the duty ratio is equal to or greater than the predetermined value, the timing at which all of the plurality of switching elements are turned off is not inserted, and the on / off cycle is not performed. The power supply apparatus is characterized in that the frequency is made lower than the frequency when the duty ratio is smaller than the predetermined value! /.
[0021] 本発明によれば、よりきめ細かな制御を行うことができ、効率とパワー制御性とを高 Vヽレベルで両立させることができる。  [0021] According to the present invention, finer control can be performed, and both efficiency and power controllability can be achieved at a high V level.
[0022] この場合、前記制御部は、前記デューティー比が前記所定値以上の場合に、前記 デューティー比がより大きければ前記オン ·オフサイクルの周波数がより低いというよう に制御するようになっていてもよい。更には、前記制御部は、前記デューティー比が 所定値よりも小さい場合においても、前記デューティー比がより大きければ前記オン' オフサイクルの周波数がより低!/、とレ、うように制御するようになってレ、てもよレ、。  In this case, when the duty ratio is equal to or greater than the predetermined value, the control unit performs control so that the frequency of the on / off cycle is lower if the duty ratio is larger. Also good. Further, even when the duty ratio is smaller than a predetermined value, the control unit performs control so that the frequency of the on / off cycle is lower! / If the duty ratio is larger. It ’s going to be.
[0023] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、前記各スイッチング素子のオン'オフ サイクルの位相を変化させることにより前記スイッチング回路から出力されるパルス状 電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、を備え、前 記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー比が 第 1の値よりも小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて、 前記複数のスイッチング素子が全てオフとなるタイミングを揷入するようになっており、 一方、前記デューティー比が前記第 1の値以上で当該第 1の値よりも大きい第 2の値 より小さ!/、場合に、前記複数のスイッチング素子が全てオフとなるタイミングを揷入し ないようになっており、前記デューティー比が前記第 2の値以上の場合に、前記オン' オフサイクルの周波数を前記デューティー比が前記第 2の値よりも小さい場合の周波 数よりも低くするようになつていることを特徴とする電源装置である。 [0023] Further, the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. Based on the on / off combination of each of these switching elements. And a phase shift PWM control for controlling the pulse width of the pulse voltage output from the switching circuit by changing the phase of the ON / OFF cycle of each switching element. A control unit that performs the switching element in the ON / OFF cycle when the duty ratio of the pulse voltage output from the switching circuit is smaller than a first value. When the switching element is turned off, the duty ratio is smaller than a second value greater than the first value and greater than the first value! / In addition, the timing at which all of the plurality of switching elements are turned off is not inserted, and the duty ratio is A power supply device characterized in that, when the value is equal to or greater than 2, the frequency of the on / off cycle is made lower than the frequency when the duty ratio is smaller than the second value. .
[0024] 本発明によっても、よりきめ細かな制御を行うことができ、効率とパワー制御性とを高 Vヽレベルで両立させることができる。  [0024] According to the present invention, finer control can be performed, and both efficiency and power controllability can be achieved at a high V level.
[0025] この場合、前記制御部は、前記デューティー比が前記第 2の値以上の場合に、前 記デューティー比がより大きければ前記オン'オフサイクルの周波数がより低いという ように制御するようになっていてもよい。更には、前記制御部は、前記デューティー比 が前記第 1の値以上で前記第 2の値よりも小さい場合においても、前記デューティー 比がより大きければ前記オン ·オフサイクルの周波数がより低いというように制御する ようになつていてもよい。更には、前記制御部は、前記デューティー比が前記第 1の 値よりも小さい場合においても、前記デューティー比がより大きければ前記オン'オフ サイクルの周波数がより低!/、と!/、うように制御するようになって!/、てもよ!/、。  [0025] In this case, when the duty ratio is greater than or equal to the second value, the control unit performs control so that the frequency of the on / off cycle is lower when the duty ratio is larger. It may be. Further, the control unit is configured such that, even when the duty ratio is greater than or equal to the first value and smaller than the second value, the frequency of the on / off cycle is lower when the duty ratio is larger. It may be controlled so that Further, the control unit may reduce the frequency of the ON / OFF cycle if the duty ratio is larger even when the duty ratio is smaller than the first value! To control! /, Even! /
[0026] 以上の各発明において、好適には、前記スイッチング回路は、 4個のスイッチング素 子を有しており、それらはフルブリッジ回路を構成している。そして、好ましくは、当該 4個のスイッチング素子のオン'オフサイクルのデューティー比は、同一である。  [0026] In each of the above inventions, preferably, the switching circuit has four switching elements, which constitute a full bridge circuit. Preferably, the duty ratios of the on / off cycles of the four switching elements are the same.
[0027] また、例えば、前記スイッチング素子は、 MOS FETあるいは IGBTである。また、 前記スイッチング回路から出力される電圧を昇圧させる昇圧トランスが、更に設けられ 得る。  For example, the switching element is a MOS FET or an IGBT. In addition, a step-up transformer that boosts the voltage output from the switching circuit may be further provided.
[0028] また、本発明は、以上のいずれかの特徴を有する電源装置と、前記電源装置から 給電されてマイクロ波を発振させるマイクロ波発振部と、を備えたことを特徴とするマ イク口波発生装置である。 [0028] Further, the present invention provides a power supply device having any one of the above characteristics and the power supply device. A microwave oscillating device comprising: a microwave oscillating unit that feeds power and oscillates microwaves.
[0029] 好ましくは、前記マイクロ波発振部は、内部が真空に保持されるチャンバと、前記チ ヤンバ内に配置された、熱電子を放出させる陰極として機能するフィラメントと、前記 チャンバ内に前記フィラメントと対向して配置された、前記電源装置から給電されて 前記フィラメントとの間に電界を形成する陽極と、前記チャンバの外側に前記電界に 直交する磁場を形成する磁場発生手段と、を有するマグネトロンを備える。  [0029] Preferably, the microwave oscillating unit includes a chamber in which the inside is maintained in a vacuum, a filament that is disposed in the chamber and functions as a cathode that emits thermoelectrons, and the filament in the chamber And a magnetron having an anode that is fed from the power supply device and that forms an electric field with the filament, and a magnetic field generation unit that forms a magnetic field orthogonal to the electric field outside the chamber. Is provided.
[0030] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、を備えた電源装置を制御するように コンピュータを機能させるコンピュータプログラムであって、前記各スイッチング素子 のオン'オフサイクルの位相を変化させることにより前記スイッチング回路から出力さ れるパルス状電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う機能と、 前記スイッチング素子のオン.オフサイクルにおいて、前記複数のスイッチング素子が 全てオフとなるタイミングを揷入する機能と、をコンピュータに実現させることを特徴と するコンピュータプログラムである。  [0030] Further, the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and when each DC element is input, an on-off cycle is provided for each of the switching elements. And a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device, A function of performing phase shift type PWM control for controlling a pulse width of a pulsed voltage output from the switching circuit by changing a phase of an on / off cycle of the switching element, and an on / off cycle of the switching element, And a function of inserting a timing when all of the plurality of switching elements are turned off. A computer program, characterized in that to realize the data.
[0031] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、を備えた電源装置を制御するように コンピュータを機能させるコンピュータプログラムであって、前記各スイッチング素子 のオン'オフサイクルの位相を変化させることにより前記スイッチング回路から出力さ れるパルス状電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う機能と、 前記スイッチング回路から出力されるパルス状電圧のデューティー比が所定値よりも 小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて、前記複数のスィ ツチング素子が全てオフとなるタイミングを揷入する一方、前記デューティー比が前 記所定値以上の場合には、前記複数のスイッチング素子が全てオフとなるタイミング を揷入しないという機能と、をコンピュータに実現させることを特徴とするコンピュータ プログラムである。 [0031] Further, the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device, A function of performing phase shift type PWM control for controlling the pulse width of the pulsed voltage output from the switching circuit by changing the phase of the ON / OFF cycle of the switching element; and the pulsed voltage output from the switching circuit ON / OFF cycle of the switching element when the duty ratio of the switching element is smaller than a predetermined value. Oite While the plurality of sweep rate Tsuchingu element is 揷入 the timing at which all off, when the duty ratio is equal to or higher than previous SL predetermined value, the timing at which the plurality of switching elements are all turned off This is a computer program characterized by having a computer realize the function of not inserting
[0032] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、を備えた電源装置を制御するように コンピュータを機能させるコンピュータプログラムであって、前記各スイッチング素子 のオン'オフサイクルの位相を変化させることにより前記スイッチング回路から出力さ れるパルス状電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う機能と、 前記スイッチング回路から出力されるパルス状電圧のデューティー比が所定値よりも 小さい場合に、前記各スイッチング素子のオン'オフサイクルの周波数を相対的に高 くし、前記デューティー比が前記所定値以上の場合に、前記オン'オフサイクルの周 波数を相対的に低くするという機能と、をコンピュータに実現させることを特徴とするコ ンピュータプログラムである。  [0032] Further, the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements, and each switching element is turned on and off when a DC voltage is input. And a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device, A function of performing phase shift type PWM control for controlling the pulse width of the pulsed voltage output from the switching circuit by changing the phase of the ON / OFF cycle of the switching element; and the pulsed voltage output from the switching circuit When the duty ratio of the switching element is smaller than a predetermined value, the on / off cycle of each switching element is And a function of relatively reducing the frequency of the on / off cycle when the duty ratio is equal to or greater than the predetermined value. Computer program.
[0033] また、本発明は、交流電圧を直流電圧に変換する交流/直流変換部と、複数のス イッチング素子を有し、直流電圧が入力される際に前記各スイッチング素子にオン- オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わせに基づい てノ ルス状電圧を出力するスイッチング回路と、を備えた電源装置を制御するように コンピュータを機能させるコンピュータプログラムであって、前記各スイッチング素子 のオン'オフサイクルの位相を変化させることにより前記スイッチング回路から出力さ れるパルス状電圧のパルス幅を制御するフェーズシフト型 PWM制御を行う機能と、 前記スイッチング回路から出力されるパルス状電圧のデューティー比が第 1の値より も小さい場合に、前記スイッチング素子のオン ·オフサイクルにおいて、前記複数のス イッチング素子が全てオフとなるタイミングを揷入し、前記デューティー比が第 1の値 以上で前記第 1の値よりも大きい第 2の値より小さい場合に、前記複数のスイッチング 素子が全てオフとなるタイミングを揷入せず、前記デューティー比が前記第 2の値以 上の場合に前記オン'オフサイクルの周波数を前記デューティー比が前記第 2の値よ りも小さい場合の周波数よりも低くするという機能と、をコンピュータに実現させること を特徴とするコンピュータプログラムである。 [0033] Further, the present invention includes an AC / DC converter that converts an AC voltage into a DC voltage, and a plurality of switching elements. When a DC voltage is input, each switching element is turned on and off. And a switching circuit that outputs a Norse voltage based on a combination of ON and OFF of each of these switching elements, and a computer program for causing a computer to function to control a power supply device, A function of performing phase shift type PWM control for controlling the pulse width of the pulsed voltage output from the switching circuit by changing the phase of the ON / OFF cycle of the switching element; and the pulsed voltage output from the switching circuit When the duty ratio of the switching element is smaller than the first value, In this case, the timing when all of the plurality of switching elements are turned off is inserted, and the duty ratio is less than a second value that is greater than or equal to the first value and greater than the first value. When the switching element is not turned off and the duty ratio is greater than or equal to the second value, the on / off cycle frequency is less than the second value. To make the computer realize the function of lowering the frequency of Is a computer program characterized by
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の一実施の形態に係る高電圧電源を搭載したマイクロ波発生装 置を含むマイクロ波プラズマ処理装置を示すブロック図である。 FIG. 1 is a block diagram showing a microwave plasma processing apparatus including a microwave generating apparatus equipped with a high voltage power supply according to an embodiment of the present invention.
[図 2]図 2は、図 1のマイクロ波プラズマ処理装置の内部構成を説明するための概略 図である。 FIG. 2 is a schematic diagram for explaining an internal configuration of the microwave plasma processing apparatus of FIG. 1.
[図 3]図 3A及び図 3Bは、本発明の一実施の形態に係る高電圧電源を詳細に示す 回路図である。  FIG. 3A and FIG. 3B are circuit diagrams showing in detail a high-voltage power supply according to one embodiment of the present invention.
[図 4]図 4は、図 1のマイクロ波プラズマ処理装置におけるマイクロ波発振部の主構成 部であるマグネトロンを示す断面図である。  FIG. 4 is a cross-sectional view showing a magnetron that is a main component of a microwave oscillating unit in the microwave plasma processing apparatus of FIG. 1.
[図 5]図 5は、通常のフェーズシフト型 PWM制御における各スイッチングトランジスタ のゲート信号とトランス一次側電圧波形の関係の一例を示す図である。  FIG. 5 is a diagram showing an example of a relationship between a gate signal of each switching transistor and a transformer primary voltage waveform in normal phase shift PWM control.
[図 6]図 6は、図 5の場合における、 1サイクルのスイッチング動作を模式的に示す図 である。  FIG. 6 is a diagram schematically showing a one-cycle switching operation in the case of FIG. 5.
[図 7]図 7は、実際のフェーズシフト型 PWM制御において、トランス一次側電圧のデ ユーティー比を変化させた場合の、デューティー比 20%、 50%、 90%の実波形を示 す図である。  [Figure 7] Figure 7 shows the actual waveforms with duty ratios of 20%, 50%, and 90% when the duty ratio of the transformer primary voltage is changed in actual phase-shift PWM control. is there.
[図 8]図 8は、本発明の一実施の形態に係る高電圧電源のスイッチング回路における 、 1サイクルのスイッチング動作を模式的に示す図である。  FIG. 8 is a diagram schematically showing a one-cycle switching operation in the switching circuit of the high-voltage power supply according to one embodiment of the present invention.
[図 9]図 9は、本発明の他の実施の形態のスイッチング回路の動作状態を示す模式 図である。  FIG. 9 is a schematic diagram showing an operating state of a switching circuit according to another embodiment of the present invention.
[図 10]図 10は、高い周波数において、ゲート信号のデューティ比が小さい場合であ つてかつトランジスタの OFF時に複数次(高次)の共振が起こった際における、ゲート 電圧、トランス一次側電流、トランス二次側電流の波形を示す図である。  [Fig. 10] Fig. 10 shows the gate voltage, transformer primary-side current, when the duty ratio of the gate signal is small at the high frequency, and when multiple order (high order) resonance occurs when the transistor is OFF. It is a figure which shows the waveform of a transformer secondary side electric current.
[図 11]図 11は、本発明のさらに他の実施の形態におけるスイッチング回路の動作状 態の例を示す模式図である。 FIG. 11 is a schematic diagram showing an example of an operating state of a switching circuit according to still another embodiment of the present invention.
[図 12]図 12は、本発明のさらに他の実施の形態におけるスイッチング回路の動作状 態の他の例を示す模式図である。 [図 13]図 13は、本発明のさらに他の実施の形態におけるスイッチング回路の動作状 態のさらに他の例を示す模式図である。 FIG. 12 is a schematic diagram showing another example of the operation state of the switching circuit in still another embodiment of the present invention. FIG. 13 is a schematic diagram showing still another example of the operation state of the switching circuit according to still another embodiment of the present invention.
[図 14]図 14A及び図 14Bは、本発明の別の実施の形態におけるスイッチング回路の 動作状態を示す模式図である。  FIG. 14A and FIG. 14B are schematic diagrams showing an operating state of a switching circuit according to another embodiment of the present invention.
[図 15]図 15は、本発明のさらに別の実施の形態におけるスイッチング回路の動作状 態を示す模式図である。  FIG. 15 is a schematic diagram showing an operation state of a switching circuit in still another embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下、添付図面を参照して、本発明の一実施の形態について詳細に説明する。図 1は、本発明の一実施の形態に係る高電圧電源 (電源装置)を搭載したマイクロ波発 生装置を含むマイクロ波プラズマ処理装置を示すブロック図である。図 2は、その内 部構成を説明するための概略図である。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing a microwave plasma processing apparatus including a microwave generation apparatus equipped with a high voltage power supply (power supply apparatus) according to an embodiment of the present invention. FIG. 2 is a schematic diagram for explaining the internal configuration.
[0036] 図 1に示すように、マイクロ波プラズマ処理装置 100は、マイクロ波発生装置 1と、マ イク口波伝送部 2と、プラズマ処理部 3と、これら各部を制御する上位の制御部である 全体制御部 4と、を具備している。  As shown in FIG. 1, a microwave plasma processing apparatus 100 includes a microwave generator 1, a microphone mouth wave transmission unit 2, a plasma processing unit 3, and a higher-level control unit that controls these units. And an overall control unit 4.
[0037] マイクロ波発生装置 1は、高電圧電源 11とマイクロ波発振部 12とを備えている。高 電圧電源 11は、図 2に示すように、 3相 200Vの交流電圧を直流電圧に変換し、昇圧 して、所定の直流電圧をマイクロ波発振部 12に供給するためのものであり、安全回 路 13と、 AC/DC変換部 14と、スイッチング回路 15と、高耐圧昇圧トランス 16と、整 流回路 17と、主にスイッチング回路 15を制御する高電圧電源コントローラ 18と、を有 している。 AC/DC変換部 14は、整流回路 21と平滑回路 22を有している。そして、 AC/DC変換部 14で変換された 280Vの直流電圧力 高電圧電源コントローラ 18 力もの指令に基づいて、スイッチング回路 15によってスイッチングされる(オン ·オフさ れる)。そして、当該直流電圧は、高耐圧昇圧トランス 16で所望の電圧に昇圧され、 整流回路 17を経てマイクロ波発振部 12に供給される。マイクロ波発振部 12へ供給さ れる高圧直流の電圧'電流は、電圧 ·電流モニタ 20でモニタされ、その情報は高電 圧電源コントローラ 18に送られる。  The microwave generator 1 includes a high voltage power supply 11 and a microwave oscillating unit 12. As shown in Fig. 2, the high-voltage power supply 11 converts a three-phase 200V AC voltage into a DC voltage, boosts it, and supplies a predetermined DC voltage to the microwave oscillation unit 12. Circuit 13, AC / DC converter 14, switching circuit 15, high voltage step-up transformer 16, rectifier circuit 17, and high-voltage power supply controller 18 that mainly controls the switching circuit 15. Yes. The AC / DC converter 14 includes a rectifier circuit 21 and a smoothing circuit 22. Then, switching is performed (turned on and off) by the switching circuit 15 based on a command of 280 V DC voltage power and high voltage power supply controller 18 converted by the AC / DC converter 14. Then, the DC voltage is boosted to a desired voltage by the high voltage boosting transformer 16 and supplied to the microwave oscillating unit 12 via the rectifier circuit 17. The voltage / current of the high-voltage direct current supplied to the microwave oscillating unit 12 is monitored by the voltage / current monitor 20, and the information is sent to the high-voltage power supply controller 18.
[0038] マイクロ波発振部 12は、図 2に示すように、マイクロ波を発振させるマグネトロン 23と 、マグネトロン 23のフィラメントに電圧を供給するフィラメント電源 24と、マイクロ波発 振部コントローラ 25と、を有している。 As shown in FIG. 2, the microwave oscillating unit 12 includes a magnetron 23 that oscillates a microwave, a filament power supply 24 that supplies a voltage to the filament of the magnetron 23, and a microwave generator And a vibration unit controller 25.
[0039] マグネトロン 23は、真空に保持される容器内に、陰極 (力ソード)としてのフィラメント  [0039] Magnetron 23 is a filament as a cathode (force sword) in a container held in a vacuum.
26と陽極(アノード) 27とを有している。フィラメント 26に電圧が印加されると、熱電子 が放出される。両電極間に高電圧電源 11から所定の電圧を加えることによって、流 れる電流が制御される。また、この際に生じる電界に対して、直交する方向に磁界を カロえることにより、熱電子に回転運動が生じて、発振する。結果として、マグネトロン 2 3は、例えば 2· 45GHzのマイクロ波を発生する。  26 and an anode 27. When a voltage is applied to the filament 26, thermionic electrons are emitted. By applying a predetermined voltage from the high-voltage power supply 11 between both electrodes, the flowing current is controlled. In addition, by rotating the magnetic field in a direction perpendicular to the electric field generated at this time, the thermoelectrons generate rotational motion and oscillate. As a result, the magnetron 23 generates microwaves of 2.45 GHz, for example.
[0040] フィラメント電源 24は、 200Vの 3相交流から取り出される 200Vの交流を降圧する 高耐圧降圧トランス 28と、 AC/DC変換回路 29と、スイッチング回路 30と、を有して V、る。高耐圧降圧トランス 28と AC/DC変換回路 29とで形成された 7Vの直流電圧 1S マイクロ波発振部コントローラ 25からの指令に基づいてスイッチング回路 30で制 御されて、 0〜7Vの範囲の所定の電圧となってマグネトロン 23のフィラメント 26に印 カロされる。なお、フィラメント 26へ供給される直流の電圧 ·電流は、電圧'電流モニタ 3 1でモニタされ、その情報はマイクロ波発振部コントローラ 25に送られる。  [0040] The filament power supply 24 includes a high voltage step-down step-down transformer 28, an AC / DC conversion circuit 29, and a switching circuit 30 that step down a 200V alternating current extracted from a 200V three-phase alternating current. 7V DC voltage formed by high voltage step-down transformer 28 and AC / DC converter circuit 29 1S Controlled by switching circuit 30 based on command from microwave oscillator controller 25, predetermined range of 0-7V The voltage is applied to the filament 26 of the magnetron 23. The DC voltage / current supplied to the filament 26 is monitored by a voltage / current monitor 31, and the information is sent to the microwave oscillator controller 25.
[0041] マイクロ波伝送部 2は、マイクロ波発生装置 1で発生されたマイクロ波をプラズマ処 理部 3に導くためのものであり、マイクロ波発生装置 1で発生されたマイクロ波 波) を導く導波管 32と、反射マイクロ波を分離するためのアイソレータ 33と、マイクロ波の パワーを検出するパワーセンサ 34と、インピーダンス調整を行うチューナ 35と、伝送 されたマイクロ波をプラズマ処理部 3へ放射するためのアンテナ 36と、マイクロ波伝 送部 2の各構成部を制御する伝送部コントローラ 37と、を有している。アンテナ 36に は、マイクロ波を放射するためのスロットが形成されている。パワーセンサ 34で検出さ れるマイクロ波のパワーは、パワーモニタ 38によりモニタされ、その信号は高電圧電 源コントローラ 18に送信される。  [0041] The microwave transmission unit 2 is for guiding the microwave generated by the microwave generator 1 to the plasma processing unit 3, and guides the microwave generated by the microwave generator 1). Waveguide 32, isolator 33 for separating the reflected microwave, power sensor 34 for detecting the power of the microwave, tuner 35 for adjusting the impedance, and radiating the transmitted microwave to plasma processing unit 3 And a transmission unit controller 37 that controls each component of the microwave transmission unit 2. The antenna 36 has a slot for radiating microwaves. The power of the microwave detected by the power sensor 34 is monitored by the power monitor 38, and the signal is transmitted to the high voltage power controller 18.
[0042] プラズマ処理部 3は、気密に構成されたチャンバ 39と、チャンバ 39内でプラズマ処 理が施される被処理基板 Sを載置する載置台 40と、アンテナ 36から放射されるマイ クロ波をチャンバ 39内に透過させるための誘電体材料からなる天板 41と、チャンバ 3 9内に処理ガスを供給するガス供給部 42と、ガス供給部 42からのガスをチャンバ 39 内に導入するガス導入部材 43と、チャンバ 39の底部に設けられた排気口 44と、排 気口 44を介してチャンバ 39内を排気する排気部 45と、プラズマ処理部 3の各構成 部を制御する処理部コントローラ 46と、を有している。チャンバ 39の被処理基板 Sの 上方空間にマイクロ波が放射されることにより、その空間に処理ガスのプラズマが形 成される。そのプラズマにより、被処理基板 Sに酸化処理やエッチング等の所定のプ ラズマ処理が施される。 [0042] The plasma processing unit 3 includes an airtightly configured chamber 39, a mounting table 40 on which a substrate S to be processed in the chamber 39 is mounted, and a microwave radiated from an antenna 36. A top plate 41 made of a dielectric material for transmitting waves into the chamber 39, a gas supply unit 42 for supplying a processing gas into the chamber 39, and a gas from the gas supply unit 42 is introduced into the chamber 39. A gas introduction member 43, an exhaust port 44 provided at the bottom of the chamber 39, An exhaust unit 45 that exhausts the inside of the chamber 39 through the air vent 44 and a processing unit controller 46 that controls each component of the plasma processing unit 3 are provided. When microwaves are radiated into the space above the substrate S to be processed in the chamber 39, plasma of the processing gas is formed in that space. A predetermined plasma process such as an oxidation process or etching is performed on the substrate S to be processed by the plasma.
[0043] 全体制御部 4は、高電圧電源コントローラ 18、マイクロ波発振部コントローラ 25、伝 送部コントローラ 37、処理部コントローラ 46を制御するマイクロプロセッサ(コンビユー タ)からなる上位コントローラ 47と、制御に必要な各種プログラムや処理条件いわゆる レシピ等が格納された記憶部 48と、高電圧電源のパワー等の各種設定を行う設定部 やステータスおよび警報等を表示する表示部等を有する外部インターフェース 49と、 を有している。前記レシピは、例えば、 CD-ROM,ハードディスク、フレキシブルデ イスク、不揮発性メモリなどの読み出し可能な記憶媒体に格納され得る。全体制御部 4、高電圧電源コントローラ 18、マイクロ波発振部コントローラ 25、伝送部コントローラ 37、処理部コントローラ 46で、制御部が構成されている。  [0043] The overall control unit 4 includes a high-level power supply controller 18, a microwave oscillation unit controller 25, a transmission unit controller 37, and a host controller 47 including a microprocessor (combiner) that controls the processing unit controller 46. An external interface 49 having a storage unit 48 storing various necessary programs and processing conditions so-called recipes, a setting unit for performing various settings such as the power of a high-voltage power supply, and a display unit for displaying status and alarms, etc. have. The recipe can be stored in a readable storage medium such as a CD-ROM, a hard disk, a flexible disk, and a nonvolatile memory. The overall control unit 4, the high voltage power supply controller 18, the microwave oscillation unit controller 25, the transmission unit controller 37, and the processing unit controller 46 constitute a control unit.
[0044] 次に、高電圧電源 11について詳細に説明する。  Next, the high voltage power supply 11 will be described in detail.
[0045] 図 3A及び図 3Bは、高電圧電源 11を詳細に示す回路図である。図 3Aに示すよう に、 200Vの 3相交流力 まず安全回路 13を経て AC/DC変換部 14に至る。安全 回路 13は、ブレーカー 50と、ノイズフィルタ 51と、マグネテイツタコンタクタ 52と、を有 している。これを経た交流電流は、整流回路 21により直流に変換され、その直流電 流がコンデンサ 22aを有する平滑回路 22によって平滑化されて、 280Vの直流とされ  3A and 3B are circuit diagrams showing the high voltage power supply 11 in detail. As shown in Fig. 3A, the 200V three-phase AC power first passes through the safety circuit 13 to the AC / DC converter 14. The safety circuit 13 includes a breaker 50, a noise filter 51, and a magnetic contactor 52. The alternating current that has passed through this is converted to direct current by the rectifier circuit 21, and the direct current is smoothed by the smoothing circuit 22 having the capacitor 22a to obtain a direct current of 280V.
[0046] 図 3Bに示すように、スイッチング回路 15では、 4つのスイッチングトランジスタ Ql、 Q2、 Q3、 Q4がフルブリッジ回路 (Hブリッジとも称す)を構成しており、高電圧電源コ ントローラ 18によってフェーズシフト型の PWM制御を実施するようになっている。スィ ツチングトランジスタ Ql、 Q2、 Q3、 Q4には、高電圧電源コントローラ 18から、それぞ れ位相(フェーズ)が制御されたデューティー比 50%のゲートドライブ信号 Vgl、 Vg2 、 Vg3、 Vg4が入力されるようになっている。これらが合成されて、パルス状電圧がス イッチング回路 15から出力される。このノ ルス状電圧力 トランス一次側電圧として取 り出される。 [0046] As shown in FIG. 3B, in the switching circuit 15, the four switching transistors Ql, Q2, Q3, and Q4 form a full-bridge circuit (also referred to as an H-bridge), and are phased by the high-voltage power controller 18. Shift-type PWM control is implemented. The switching transistors Ql, Q2, Q3, and Q4 receive the gate drive signals Vgl, Vg2, Vg3, and Vg4 from the high-voltage power supply controller 18 with a 50% duty ratio and controlled phase. It has become so. These are combined and a pulse voltage is output from the switching circuit 15. This Norse voltage force is taken as the transformer primary voltage. It is ejected.
[0047] スイッチングトランジスタ Q1 Q4のうち、トランジスタ Ql Q4が正出力であり、トラ ンジスタ Q2 Q3が負出力である。スイッチングトランジスタとしては、効率の観点から 電界効果型トランジスタを用いることができ、 MOS型のものが好ましぐパワー MOS FETが好適である。また、 MOSFETに比べて高耐圧であり高パワー用に適している IGBT (絶縁ゲート型バイポーラトランジスタ)を用いることもできる。  [0047] Of the switching transistors Q1 and Q4, the transistor Ql Q4 has a positive output and the transistor Q2 Q3 has a negative output. As the switching transistor, a field effect transistor can be used from the viewpoint of efficiency, and a power MOS FET, which is preferably a MOS transistor, is preferable. In addition, an IGBT (insulated gate bipolar transistor), which has a higher breakdown voltage than a MOSFET and is suitable for high power, can be used.
[0048] また、スイッチング回路 15の負荷である昇圧トランス 16は、直列に接続されたトラン 続されている。また、各スイッチングトランジスタ Q1 Q4と並列に共振コンデンサ Cr /2が揷入され、トランジスタ Q1と Q2との間から昇圧トランス 16に至る配線に共振ィ ンダクタ Lrが揷入されている。ここで、共振コンデンサ Cr/2は、トランジスタの寄生 容量とトランジスタに並列に接続される追加コンデンサとの合成容量であり、共振イン ダクタ Lrは、トランス 16の漏れインダクタンスとトランスに直列に接続される追加インダ クタとの合成インダクタンスである。昇圧トランス 16では、 280V力 S— 8000Vまで昇圧 される。すなわち、 0 8000Vの間の電圧の直流電流が、整流回路 17で整流され てマグネトロン 23に供給されるようになっている。  [0048] The step-up transformer 16, which is the load of the switching circuit 15, is connected in series. In addition, a resonant capacitor Cr / 2 is inserted in parallel with each of the switching transistors Q1 and Q4, and a resonant inductor Lr is inserted in the wiring from the transistors Q1 and Q2 to the step-up transformer 16. Here, the resonant capacitor Cr / 2 is a combined capacitance of the parasitic capacitance of the transistor and an additional capacitor connected in parallel to the transistor, and the resonant inductor Lr is connected in series with the leakage inductance of the transformer 16 and the transformer. This is the combined inductance with the additional inductor. In the step-up transformer 16, the voltage is boosted to 280V power S-8000V. That is, a direct current having a voltage between 0 8000 V is rectified by the rectifier circuit 17 and supplied to the magnetron 23.
[0049] 次に、マイクロ波発振部 12の主構成部であるマグネトロン 23について、図 4を参照 して説明する。 Next, the magnetron 23 that is the main component of the microwave oscillating unit 12 will be described with reference to FIG.
[0050] このマグネトロン 23では、真空に保持された例えば金属製のケース 61内に、陰極と してのフィラメント 26と、これに対向するように配置された陽極 27と、が配置されてい る。実際には、フィラメント 26は円筒状に成形され、その周囲を囲むようにして陽極 2 7が同軸円筒状に成形されている力 図 4ではマグネトロン 23の構造が模式的に記 載されている。陽極 27のフィラメント 26に対向する面に、複数の空洞共振器 62が設 けられている。  [0050] In the magnetron 23, a filament 26 as a cathode and an anode 27 disposed so as to face the cathode 26 are arranged in a case 61 made of metal, for example, kept in a vacuum. Actually, the filament 26 is formed into a cylindrical shape, and the anode 27 is formed into a coaxial cylindrical shape so as to surround the periphery thereof. In FIG. 4, the structure of the magnetron 23 is schematically shown. A plurality of cavity resonators 62 are provided on the surface of the anode 27 facing the filament 26.
[0051] ケース 61の側面(図中の上下面) 66は、非磁性材料で形成され、その外側に永久 磁石 67が配置されている。これにより、陰極としてのフィラメント 26と陽極 27との間の 空間に、これら両電極の対向方向と直交するように強力な磁界が形成できる。また、 フィラメント 26には、フィラメント電源 24から電圧が印加され、これにより熱電子が放 出される。また、陰極として機能するフィラメント 26と陽極 27との間には、高電圧電源 11から所定の電圧が印加され、これにより電流が制御される。この際に生じる電界に 対して、前記磁界が当該電界と直交する方向に作用するので、この直交電磁界によ つて、フィラメント 26から放出される熱電子に回転運動が生じて、熱電子が空洞共振 器 62を通過する際に発振が生じ、結果として例えば 2. 45GHzのマイクロ波が発生 される。 [0051] A side surface 66 (upper and lower surfaces in the figure) 66 of the case 61 is formed of a non-magnetic material, and a permanent magnet 67 is disposed on the outside thereof. As a result, a strong magnetic field can be formed in the space between the filament 26 as the cathode and the anode 27 so as to be orthogonal to the opposing direction of these two electrodes. In addition, a voltage is applied to the filament 26 from the filament power supply 24, thereby releasing thermionic electrons. Is issued. A predetermined voltage is applied from the high-voltage power source 11 between the filament 26 functioning as a cathode and the anode 27, whereby the current is controlled. Since the magnetic field acts in a direction perpendicular to the electric field generated at this time, the orthogonal electromagnetic field causes rotational movement of the thermoelectrons emitted from the filament 26, and the thermoelectrons are hollow. Oscillation occurs when passing through the resonator 62. As a result, for example, 2.45 GHz microwaves are generated.
[0052] 陽極 27には、絶縁材 63を介してケース 61を貫通するアンテナリード 64が接続され る。このアンテナリード 64の先端部には、アンテナ 65が接続され、発生されたマイク 口波は、このアンテナ 65から導波管 32内へ伝搬されるようになっている。  [0052] The anode 27 is connected to an antenna lead 64 that penetrates the case 61 via an insulating material 63. An antenna 65 is connected to the tip of the antenna lead 64, and the generated microphone mouth wave is propagated from the antenna 65 into the waveguide 32.
[0053] 次に、以上のように構成されるマイクロ波プラズマ処理装置における処理動作につ いて説明する。  Next, a processing operation in the microwave plasma processing apparatus configured as described above will be described.
[0054] まず、外部インターフェース 49の設定部において、高電圧電源のパワー等の各種 設定が行われる。そして、プラズマ処理部 3のチャンバ 39内に、図示しない搬入出口 から、被処理基板 Sが搬入される。そして、ガス供給部 42からガス導入部材 43を介し て所定の処理ガスがチャンバ 39内に導入され、マイクロ波発生装置 1によってマイク 口波が発生され、マイクロ波伝送部 2を経てチャンバ 39内にマイクロ波が放射される。 これにより、チャンバ 39内で処理ガスがプラズマ化され、このマイクロ波プラズマによ り所定のプラズマ処理が実行される。  First, in the setting unit of the external interface 49, various settings such as the power of the high voltage power supply are performed. Then, the substrate to be processed S is loaded into the chamber 39 of the plasma processing unit 3 from a loading / unloading port (not shown). Then, a predetermined processing gas is introduced into the chamber 39 from the gas supply unit 42 via the gas introduction member 43, and a microphone mouth wave is generated by the microwave generator 1, and into the chamber 39 through the microwave transmission unit 2. Microwaves are emitted. As a result, the processing gas is turned into plasma in the chamber 39, and a predetermined plasma processing is executed by the microwave plasma.
[0055] このとき、発生されるマイクロ波の制御は、マイクロ波発生装置 1の高電圧電源 11の スイッチング回路 15を利用して、高電圧電源コントローラ 18によって行われる。具体 的には、高電圧電源コントローラ 18は、外部インターフェース 49からの設定信号に 基づいて、スイッチング回路 15の各スイッチングトランジスタのスイッチング周波数お よび位相(フェーズ)等を制御し、上述したように、フェーズシフト型の PWM制御に従 つてスイッチング動作を行わせる。このとき、電流'電圧モニタ 20からの電流および電 圧の信号、ならびに、パワーモニタ 38によりモニタされるマイクロ波伝送部 2のパワー センサ 34により検出されるパワーの信号がフィードバックされ、設定された通りのパヮ 一が供給されるように、スイッチング回路 15の各スイッチングトランジスタが制御され [0056] 通常のフェーズシフト型の PWM制御によるスイッチング動作では、スイッチングトラ ンジスタ Ql、 Q2、 Q3、 Q4のゲート信号が、例えばデューティー比 50%に固定され て、これらの位相(フェーズ)がシフトされる。そして、適宜のデッドタイムが揷入される ことにより、昇圧トランス 16—次側の電圧波形が所望に制御される。すなわち、トラン ス 16の一次側に印加される電圧波形におけるデューティー比が小さければ、出力が 小さくなり、当該デューティー比が大きければ、出力が大きくなる。各スイッチングトラ ンジスタのゲート信号とトランス一次側電圧波形の例を、図 5に模式的に示す。また、 図 5の場合の 1サイクルのスイッチング動作を、図 6に模式的に示す。 (図 6では、簡 略化のため、スイッチングトランジスタ Q1〜Q4が単なる開閉スィッチとして描かれ、ト ランスが箱で示されている。)図 5の(1)〜(8)の部分力 図 6の(1)〜(8)の状態に、 それぞれ対応している。ここで、デッドタイムとは、図 5における(2) (4) (6) (8)の状態 である。フェーズシフト型の PWM制御においては、これらを省略することもできる。し かし、これらを省略した場合、例えば図 6の(1)から(3)に、トランジスタが切り換わるこ とになる。この場合、トランジスタは、 ONする時よりも OFFする時の方が時間力 Sかかる 。このため、瞬間的に Q3と Q4を通して短絡電流が流れる可能性がある。したがって 、デッドタイムを設けることが好ましい。 At this time, control of the generated microwave is performed by the high voltage power supply controller 18 using the switching circuit 15 of the high voltage power supply 11 of the microwave generator 1. Specifically, the high voltage power supply controller 18 controls the switching frequency and phase (phase) of each switching transistor of the switching circuit 15 based on the setting signal from the external interface 49, and as described above, The switching operation is performed according to the shift type PWM control. At this time, the current and voltage signals from the current / voltage monitor 20 and the power signal detected by the power sensor 34 of the microwave transmission section 2 monitored by the power monitor 38 are fed back and set as set. Each switching transistor of the switching circuit 15 is controlled so that [0056] In a normal phase shift type PWM control switching operation, the gate signals of the switching transistors Ql, Q2, Q3, and Q4 are fixed to a duty ratio of 50%, for example, and their phases are shifted. The Then, by inserting an appropriate dead time, the voltage waveform of the step-up transformer 16—the secondary side is controlled as desired. That is, if the duty ratio in the voltage waveform applied to the primary side of the transformer 16 is small, the output is small, and if the duty ratio is large, the output is large. Figure 5 shows an example of the gate signal of each switching transistor and the transformer primary voltage waveform. In addition, Fig. 6 schematically shows the switching operation in one cycle in the case of Fig. 5. (In Fig. 6, for the sake of simplicity, the switching transistors Q1 to Q4 are depicted as simple open / close switches, and the transformer is shown as a box.) Partial force of (1) to (8) in Fig. 5 Correspond to the states (1) to (8). Here, the dead time is the state (2) (4) (6) (8) in Fig. 5. These can be omitted in the phase shift type PWM control. However, if these are omitted, for example, the transistors are switched from (1) to (3) in FIG. In this case, the transistor takes more time S when it is turned off than when it is turned on. For this reason, a short-circuit current may flow instantaneously through Q3 and Q4. Therefore, it is preferable to provide a dead time.
[0057] また、実際に各スイッチングトランジスタ Q1〜Q4をフェーズシフトさせてトランス一 次側電圧のデューティー比を変化させた場合の実波形について、図 7に示す。図 7 には、デューティー比 20%、 50%、 90%の実波形が示されている。図 7において、 Q 1と Q4が共に ONしている時間、及び、 Q2と Q3が共に ONしている時間力 斜線部 で示されている。  FIG. 7 shows actual waveforms when the switching transistors Q1 to Q4 are actually phase-shifted to change the duty ratio of the transformer primary voltage. Figure 7 shows real waveforms with duty ratios of 20%, 50%, and 90%. In FIG. 7, the time when Q1 and Q4 are both ON and the time force shaded area where both Q2 and Q3 are ON are shown.
[0058] このようなフェーズシフト型の PWM制御において、スイッチングトランジスタとして M OS型トランジスタを用いると、オフ時間が長いとき、すなわち、この回路から出力され トランス 16に印加される電圧(出力電圧)のデューティー比が小さいとき、オンになつ ていたトランジスタのソース'ドレイン間の寄生容量部分に電荷が十分に蓄積されな い。例えば、図 6の場合、状態(1)〜(3)でスイッチングトランジスタ Q2がオン状態で ある力 デューティー比が小さいとき、 Q2の寄生容量部分にはほとんど電荷が蓄積さ れない。これをオフにした後、当該スイッチングトランジスタ Q2に直列に接続されてい るスイッチングトランジスタ Qlをオンにしたとき(状態(5) )、オフにしたトランジスタ Q2 の容量部分を通ってトランジスタ Q1に大きな突入電流が流れてしまい、このトランジ スタが発熱して大きなロスが生じてしまう。同様なことが、状態(1)の時にも発生する。 この場合には、オフにしたトランジスタ Q1の容量部分を通ってトランジスタ Q2に大き な突入電流が流れしまい、大きなロスが生じてしまう。つまり、スイッチング回路 15か らの出力電圧のデューティー比が小さい場合には、スイッチングトランジスタ Q1及び Q2に大きな電流が流れて熱が発生し大きなロスが発生する。 In such a phase shift type PWM control, when a MOS type transistor is used as a switching transistor, when the off time is long, that is, the voltage output from this circuit and applied to the transformer 16 (output voltage) When the duty ratio is small, sufficient charge is not accumulated in the parasitic capacitance between the source and drain of the transistor that was turned on. For example, in the case of Fig. 6, when the duty ratio of the switching transistor Q2 in the states (1) to (3) is small, the charge is hardly accumulated in the parasitic capacitance part of Q2. After turning it off, it is connected in series to the switching transistor Q2. When the switching transistor Ql is turned on (state (5)), a large inrush current flows to the transistor Q1 through the capacitance part of the transistor Q2 that is turned off. This transistor generates heat and causes a large loss. End up. The same thing occurs in state (1). In this case, a large inrush current flows to the transistor Q2 through the capacitance portion of the transistor Q1 turned off, resulting in a large loss. That is, when the duty ratio of the output voltage from the switching circuit 15 is small, a large current flows through the switching transistors Q1 and Q2 to generate heat and generate a large loss.
[0059] そこで、本実施の形態では、図 8に示すように、状態(4)と(8)において、全てのスィ が設けられるように、高電圧電源コントローラ 18によってスイッチング回路が制御され る。すなわち、状態(4)で、スイッチングトランジスタ Q2, Q4を一時的にオフにして、 寄生容量に電荷が溜まる。従って、状態(5)で、トランジスタ Q1への突入電流が流れ ない。また、状態(8)で、スイッチングトランジスタ Ql , Q3を一時的にオフにして、全 生容量に電荷が溜まる。従って、状態(1)で、トランジスタ Q2への突入電流が流れな い。以上により、スイッチングトランジスタ Ql , Q2での突入電流によるロスを解消する こと力 Sできる。なお、図 8においては、図 6の(4)、 (8)に相当する期間を省略して、ト 必ずトランジスタ、スイッチング回路においてロスが発生するため、 1サイクル(図 8の( 1)〜(8)に相当)中におけるスイッチング回数は極力少なくすることが望ましい。この 観点から、全てのトランジスタが OFFにされる期間は、負荷に電流を流す期間(1)、 ( 5)の直前に設けられることが好ましレ、。 Therefore, in the present embodiment, as shown in FIG. 8, the switching circuit is controlled by the high voltage power supply controller 18 so that all the switches are provided in the states (4) and (8). That is, in the state (4), the switching transistors Q2 and Q4 are temporarily turned off, and charges are accumulated in the parasitic capacitance. Therefore, no inrush current flows into transistor Q1 in state (5). In the state (8), the switching transistors Ql and Q3 are temporarily turned off, and charges are accumulated in the total capacity. Therefore, no inrush current flows into transistor Q2 in state (1). As described above, it is possible to eliminate the loss due to the inrush current in the switching transistors Ql and Q2. In FIG. 8, the period corresponding to (4) and (8) in FIG. 6 is omitted, and loss always occurs in the transistor and the switching circuit. Therefore, one cycle ((1) to (( Equivalent to 8)), it is desirable to reduce the number of switching times as much as possible. From this point of view, it is preferable that the period during which all the transistors are turned off is provided immediately before the period (1) and (5) in which the current flows to the load.
[0060] ここで、オールオフタイムがない図 6の場合と、オールオフタイムが設けられる図 8の 場合について、実際にトランジスタを動作させて比較実験をおこなった。実験では、 スイッチング回路 15からの出力電圧のデューティー比が変化された。また、ヒートシン クに取付けられたトランジスタの金属ケースの温度が測定され、温度が 100°Cを超え るとトランジスタが故障するので、当該温度の近辺で実験は終了された。結果を、以 下の表 1に示す。 Here, in the case of FIG. 6 where there is no all-off time and the case of FIG. 8 where an all-off time is provided, a comparative experiment was performed by actually operating the transistors. In the experiment, the duty ratio of the output voltage from the switching circuit 15 was changed. Also, the temperature of the metal case of the transistor attached to the heat sink was measured, and when the temperature exceeded 100 ° C, the transistor failed, so the experiment was terminated near that temperature. The result It is shown in Table 1 below.
[表 1]
Figure imgf000019_0001
[table 1]
Figure imgf000019_0001
[0061] 表 1に示されるように、オールオフタイムが設けられることで、スイッチングに伴うトラ ンジスタの発熱が抑制されることが確認された。 [0061] As shown in Table 1, it was confirmed that by providing an all-off time, heat generation of the transistor due to switching was suppressed.
[0062] 次に、他の実施の形態について説明する。 Next, another embodiment will be described.
[0063] 上記の実施の形態においては、全てのスイッチングトランジスタを全てオフにするォ ールオフタイムが設けられた。この場合、 1サイクル当たりのスイッチング動作が 2回増 カロすることになる。従って、出力電圧のデューティー比を大きくして大電力を供給する 場合には、スイッチングロスにより、かえってトータルのロスが大きくなる可能性がある [0063] In the above embodiment, an all-off time for turning off all the switching transistors is provided. In this case, the switching operation per cycle increases twice. Therefore, when large power is supplied by increasing the duty ratio of the output voltage, the total loss may increase due to switching loss.
Yes
[0064] そこで、本実施の形態においては、予めスイッチングトランジスタ Ql、 Q2のスィッチ ング動作の効率特性が調べられる。そして、負荷の状況等に応じて、高電圧電源コ ントローラ 18により、図 9に示すように、 2パターンのフェーズシフト型制御が切り替え られる。すなわち、出力電圧のデューティー比が小さい領域においては、上述したよ うに全てのスイッチングトランジスタをオフにするタイミングを形成するモードのフエ一 ズシフト型 PWM制御が行われ、所定のデューティー比に達すると、通常のフェーズ シフト型 PWM制御(図 6)が行われる。このような切り替え制御により、よりロスの少な V、電源制御を行うことができる。  Therefore, in the present embodiment, the efficiency characteristics of the switching operation of the switching transistors Ql and Q2 are examined in advance. Then, as shown in FIG. 9, two patterns of phase shift type control are switched by the high voltage power supply controller 18 according to the load condition and the like. That is, in the region where the duty ratio of the output voltage is small, the phase shift type PWM control for forming the timing for turning off all the switching transistors is performed as described above. Phase-shift PWM control (Fig. 6) is performed. By such switching control, V and power supply control with less loss can be performed.
[0065] 次に、さらに他の実施の形態について説明する。  Next, still another embodiment will be described.
[0066] 上記スイッチング回路 15においては、極力高い効率を維持すベぐ上述のように、 共振コンデンサ Cr/2と共振インダクタ Lrとを揷入して共振回路が構成されている。 そして、トランスの銅損を低下させて全体のロスを少なくする目的で、各スイッチングト ランジスタのスイッチング周波数(ゲート信号の周波数)は、例えば 10〜500kHzに 設定される。し力もながら、このように高い周波数においては、スイッチング回路 15か らの出力電圧のデューティー比が小さい場合、トランジスタの OFF時に、複数次(高 次)の共振が起こることがある。図 10は、その時の様子を示したものである。図 10に 示す場合、ゲート電圧は正常であっても、トランジスタの OFF時にトランス一次側に 共振電流が流れてしまっている。このため、トランス二次側においても電圧が出力さ れ、正常なフェーズシフト型 PWM制御が行われない。このようなパワー制御性の悪 化を防止するため、共振周波数を低く設定する必要がある。共振周波数 frは、 fr= l / (2 π (LrCr) 1/2)であるので、 Lr, Crを大きく設定する必要がある。し力、し、 Crを 大きくすると、既述のように、これが充電されていない時にこれと直列に接続されてい るトランジスタに大きな突入電流が流れ、発熱を起こすので好ましくない。一方、 Lrを 大きくすると、スイッチング回路 15からの出力電圧のデューティー比が大きい大電力 モード(高パワーモード)において、トランス 16に直列に接続された共振インダクタの 影響により、十分なパワーが得られない可能性がある。 In the switching circuit 15, the resonance circuit is configured by inserting the resonance capacitor Cr / 2 and the resonance inductor Lr as described above so as to maintain as high efficiency as possible. The switching frequency (gate signal frequency) of each switching transistor is set to, for example, 10 to 500 kHz for the purpose of reducing the overall loss by reducing the copper loss of the transformer. However, at such a high frequency, when the duty ratio of the output voltage from the switching circuit 15 is small, a multiple order (high The following resonance may occur. Figure 10 shows the situation at that time. In the case shown in Fig. 10, even when the gate voltage is normal, the resonance current flows to the primary side of the transformer when the transistor is OFF. For this reason, voltage is also output on the secondary side of the transformer, and normal phase shift PWM control is not performed. In order to prevent such deterioration of power controllability, it is necessary to set the resonance frequency low. Since the resonance frequency fr is fr = l / (2π (LrCr) 1/2), it is necessary to set Lr and Cr large. Increasing the force and Cr is not preferable because, as described above, a large inrush current flows through the transistor connected in series when it is not charged and heat is generated. On the other hand, if Lr is increased, sufficient power cannot be obtained due to the influence of the resonant inductor connected in series with the transformer 16 in the high power mode (high power mode) in which the duty ratio of the output voltage from the switching circuit 15 is large. there is a possibility.
[0067] このような大電力モードの場合には、スイッチング周波数を低下させることによって、 得られるパワーを上昇させること力 Sできる。つまり、周波数によってインピーダンスが変 化するから、周波数を低下させれば共振インダクタの影響を受け難くなり、より大きな ノ ヮ一を得ることカできる。  In such a high power mode, the power S can be increased by decreasing the switching frequency. In other words, since the impedance changes depending on the frequency, if the frequency is lowered, it becomes difficult to be affected by the resonant inductor, and a larger noise can be obtained.
[0068] そこで、本実施の形態においては、効率を重視する必要がある低デューティー比、 例えば 50%未満、の低パワーモードの場合には、周波数を高ぐ例えば 50〜100k Hz程度とする一方、パワーを重視する必要がある高デューティー比、例えば 50%以 上、の高パワーモードの場合には、周波数を低ぐ例えば l〜50kHz程度とするよう に制御が行われる。これにより、パワー制御性が問題となる低パワーモードにおいて も、共振が起こることなく動作することができ、パワーが重視される高パワーモードに お!/、ては、共振インダクタのインダクタンスを小さくすることで高効率を得ることができ る。この場合に、図 11に示すように、あるデューティー比以上、例えば 50%以上、で 周波数を一定値に低下させたり、図 12に示すように、パワーの小さい低デューティー 比では高い周波数で固定とし、あるデューティー比以上、例えば 50%以上、の高パ ヮーモードにおいてはデューティー比が上昇するにつれて周波数を低下させたり、 図 13に示すように、所定のデューティー比よりも小さい領域においても、デューティ 一比が大きくなるにつれて周波数を低下させたりできる。このような態様により、極力 効率を低下させずに大きなパワーを得ることができる。 [0068] Therefore, in the present embodiment, in the low power mode with a low duty ratio, for example, less than 50%, in which efficiency should be emphasized, the frequency is increased to, for example, about 50 to 100 kHz. In the case of a high power mode with a high duty ratio that requires emphasis on power, for example, 50% or more, control is performed so that the frequency is lowered to, for example, about 1 to 50 kHz. As a result, even in the low power mode where power controllability is a problem, it can operate without resonance, and in the high power mode where power is important, the inductance of the resonant inductor is reduced. High efficiency can be obtained. In this case, as shown in FIG. 11, the frequency is reduced to a constant value at a certain duty ratio or more, for example, 50% or more, or at a low duty ratio with low power, the frequency is fixed at a high frequency as shown in FIG. In a high power mode of a certain duty ratio or higher, for example, 50% or higher, the frequency decreases as the duty ratio increases, or even in a region where the duty ratio is smaller than the predetermined duty ratio as shown in FIG. As the value increases, the frequency can be lowered. By such a mode, as much as possible A large power can be obtained without reducing the efficiency.
[0069] 次に、別の実施の形態について説明する。 [0069] Next, another embodiment will be described.
[0070] 本実施の形態は、これまでの実施の形態を組み合わせたものであり、例えば、図 1 4A及び図 14Bに示すように、デューティー比が所定値よりも小さい低デューティー比 においては、上述のように全てのスイッチングトランジスタをオフにするタイミングを設 ける制御が行われ、所定のデューティー比以上においては、通常のフェーズシフト型 制御に切り替えられると共に、周波数が低下させられる。具体的には、図 14Aに示す ように、デューティー比が所定値以上の場合において、周波数を一定値に低下させ てもよいし、図 14Bに示すように、デューティー比が所定値以上の場合において、デ ユーティー比に応じて周波数を変化させてもよい。また、デューティー比が所定値より 小さいときにも、デューティー比に応じて周波数を変化させてもよい。  [0070] This embodiment is a combination of the above-described embodiments. For example, as shown in FIGS. 14A and 14B, in the low duty ratio in which the duty ratio is smaller than a predetermined value, the above-described embodiment is used. As described above, control is performed to set the timing for turning off all the switching transistors. When the duty ratio is equal to or higher than a predetermined duty ratio, the control is switched to the normal phase shift control and the frequency is lowered. Specifically, as shown in FIG. 14A, the frequency may be reduced to a constant value when the duty ratio is a predetermined value or more, or when the duty ratio is a predetermined value or more as shown in FIG. 14B. The frequency may be changed according to the duty ratio. Also, when the duty ratio is smaller than a predetermined value, the frequency may be changed according to the duty ratio.
[0071] 次に、さらに別の実施の形態について説明する。  Next, still another embodiment will be described.
[0072] 本実施の形態では、図 15に示すように、第 1のデューティー比 Aよりも小さい低デュ 一ティー比において、スイッチングトランジスタをオフにするタイミングを設ける制御が 行われ、第 1のデューティー比 A以上で第 2のデューティー比 Bより小さい中デューテ ィー比において、通常のフェーズシフト型制御が行われ、第 2のデューティー比 B以 上の高デューティー比においては、中デューティー比の時よりも周波数を小さくする 制御が加えられる。これにより、よりきめの細かい制御を行うことができる。本実施の形 態における、第 2のデューティー比以上の領域における周波数の変化は、図 15の場 合ではデューティー比に応じて周波数を変化させている力 S、周波数を一定値に低下 させてもよい。また、第 1のデューティー比以上で第 2のデューティー比よりも小さい領 域にお!/、て、第 1のデューティー比よりも小さ!/、領域における周波数よりも小さ!/、周波 数に制御してもよい。また、第 1のデューティー比以上で第 2のデューティー比よりも 小さい領域において、デューティー比が大きくなるにつれて周波数を低下させてもよ い。この場合、第 1のデューティー比より小さい領域においても、デューティー比が大 きくなるにつれて周波数を低下させてもよい。  In the present embodiment, as shown in FIG. 15, control is performed to provide timing for turning off the switching transistor at a low duty ratio smaller than the first duty ratio A, and the first duty ratio is set. Normal phase shift control is performed at a medium duty ratio that is greater than the ratio A and smaller than the second duty ratio B, and at a high duty ratio that is greater than the second duty ratio B than at the middle duty ratio. In addition, control to reduce the frequency is added. Thereby, finer control can be performed. In the present embodiment, the frequency change in the region of the second duty ratio or higher is the force S that changes the frequency according to the duty ratio in the case of FIG. 15, and the frequency is reduced to a constant value. Good. Also, control the frequency to a region that is greater than the first duty ratio and smaller than the second duty ratio! /, Smaller than the first duty ratio! /, Smaller than the frequency in the region! /, And the frequency. May be. Further, the frequency may be lowered as the duty ratio increases in a region that is greater than or equal to the first duty ratio and smaller than the second duty ratio. In this case, the frequency may be lowered as the duty ratio increases even in a region smaller than the first duty ratio.
[0073] なお、本発明は、上記各実施の形態に限定されることなぐ種々変形可能である。  It should be noted that the present invention can be variously modified without being limited to the above embodiments.
例えば、上記各実施の形態においては、本発明をマイクロ波発生装置に用いたが、 これに限らず、高電圧が必要な他の用途の電源にも適用可能である。また、上記各 実施の形態では、スイッチング回路として 4つのスイッチングトランジスタを搭載したフ ルブリッジ回路を用いた力 これに限らず、例えばノ、ーフブリッジ回路が用いられても よい。 For example, in each of the above embodiments, the present invention is used in a microwave generator. However, the present invention is not limited to this, and the present invention can be applied to a power supply for other uses that require high voltage. Further, in each of the embodiments described above, the force using a full bridge circuit including four switching transistors as the switching circuit is not limited thereto, and, for example, a no-bridge bridge circuit may be used.
本発明は、マイクロ波プラズマ処理装置に用いられるマイクロ波発生装置等、大電 力が要求される電源に好適である。  The present invention is suitable for a power source that requires a large amount of power, such as a microwave generator used in a microwave plasma processing apparatus.

Claims

請求の範囲 The scope of the claims
[1] 交流電圧を直流電圧に変換する交流/直流変換部と、  [1] An AC / DC converter that converts AC voltage to DC voltage;
複数のスイッチング素子を有し、直流電圧が入力される際に前記各スイッチング素 子にオン ·オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わ せに基づいてノ ルス状電圧を出力するスイッチング回路と、  It has multiple switching elements, and when a DC voltage is input, an ON / OFF cycle occurs in each switching element, and a NOR voltage is output based on the ON / OFF combination of each switching element. A switching circuit to
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 A phase shift type that controls the pulse width of the Norse voltage output from the switching circuit by changing the phase of the ON / OFF cycle of each switching element.
PWM制御を行う制御部と、 A control unit that performs PWM control;
を備え、  With
前記制御部は、前記スイッチング素子のオン ·オフサイクルにおいて、前記複数の スイッチング素子が全てオフとなるタイミングを揷入するようになっている  The control unit inserts a timing at which all of the plurality of switching elements are turned off in an on / off cycle of the switching elements.
ことを特徴とする電源装置。  A power supply device characterized by that.
[2] 交流電圧を直流電圧に変換する交流/直流変換部と、 [2] an AC / DC converter that converts AC voltage to DC voltage;
複数のスイッチング素子を有し、直流電圧が入力される際に前記各スイッチング素 子にオン ·オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わ せに基づいてノ ルス状電圧を出力するスイッチング回路と、  It has multiple switching elements, and when a DC voltage is input, an ON / OFF cycle occurs in each switching element, and a NOR voltage is output based on the ON / OFF combination of each switching element. A switching circuit to
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、  A control unit that performs phase shift type PWM control for controlling a pulse width of a Norse voltage output from the switching circuit by changing a phase of an ON / OFF cycle of each switching element;
を備え、  With
前記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー 比が所定値よりも小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて 、前記複数のスイッチング素子が全てオフとなるタイミングを揷入するようになっており 、一方、前記デューティー比が前記所定値以上の場合には、前記複数のスィッチン グ素子が全てオフとなるタイミングを揷入しなレ、ようになってレ、る  When the duty ratio of the pulse voltage output from the switching circuit is smaller than a predetermined value, the control unit determines a timing at which all of the plurality of switching elements are turned off in the ON / OFF cycle of the switching elements. On the other hand, if the duty ratio is greater than or equal to the predetermined value, the timing when all of the plurality of switching elements are turned off is not inserted.
ことを特徴とする電源装置。  A power supply device characterized by that.
[3] 交流電圧を直流電圧に変換する交流/直流変換部と、 [3] an AC / DC converter that converts AC voltage to DC voltage;
複数のスイッチング素子を有し、直流電圧が入力される際に前記各スイッチング素 子にオン ·オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わ せに基づいてノ ルス状電圧を出力するスイッチング回路と、 Each of the switching elements when a DC voltage is input. A switching circuit that generates an on-off cycle based on a combination of on / off of each of these switching elements,
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、  A control unit that performs phase shift type PWM control for controlling a pulse width of a Norse voltage output from the switching circuit by changing a phase of an ON / OFF cycle of each switching element;
を備え、 With
前記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー 比が所定値よりも小さい場合に、前記各スイッチング素子のオン'オフサイクルの周波 数を相対的に高くするようになつており、一方、前記デューティー比が前記所定値以 上の場合には、前記オン'オフサイクルの周波数を相対的に低くするようになつてい る  The control unit is configured to relatively increase the frequency of the on / off cycle of each switching element when the duty ratio of the pulse voltage output from the switching circuit is smaller than a predetermined value. On the other hand, when the duty ratio is greater than or equal to the predetermined value, the frequency of the on / off cycle is relatively lowered.
ことを特徴とする電源装置。 A power supply device characterized by that.
交流電圧を直流電圧に変換する交流/直流変換部と、  An AC / DC converter that converts AC voltage to DC voltage;
複数のスイッチング素子を有し、直流電圧が入力される際に前記各スイッチング素 子にオン ·オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わ せに基づいてノ ルス状電圧を出力するスイッチング回路と、  It has multiple switching elements, and when a DC voltage is input, an ON / OFF cycle occurs in each switching element, and a NOR voltage is output based on the ON / OFF combination of each switching element. A switching circuit to
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、  A control unit that performs phase shift type PWM control for controlling a pulse width of a Norse voltage output from the switching circuit by changing a phase of an ON / OFF cycle of each switching element;
を備え、 With
前記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー 比が所定値よりも小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて 、前記複数のスイッチング素子が全てオフとなるタイミングを揷入するようになっており 、一方、前記デューティー比が前記所定値以上の場合には、前記複数のスィッチン グ素子が全てオフとなるタイミングを揷入しないで、かつ、前記オン'オフサイクルの 周波数を前記デューティー比が前記所定値よりも小さい場合の周波数よりも低くする ようになつている  When the duty ratio of the pulse voltage output from the switching circuit is smaller than a predetermined value, the control unit determines a timing at which all of the plurality of switching elements are turned off in the ON / OFF cycle of the switching elements. On the other hand, when the duty ratio is greater than or equal to the predetermined value, the timing at which all the switching elements are turned off is not inserted, and the frequency of the on / off cycle is determined. Is made lower than the frequency when the duty ratio is smaller than the predetermined value.
ことを特徴とする電源装置。 [5] 前記制御部は、前記デューティー比が前記所定値以上の場合に、前記デューティ 一比がより大きければ前記オン ·オフサイクルの周波数がより低いというように制御す るようになっている A power supply device characterized by that. [5] When the duty ratio is greater than or equal to the predetermined value, the control unit performs control so that the frequency of the on / off cycle is lower if the duty ratio is larger.
ことを特徴とする請求項 3または 4に記載の電源装置。  The power supply device according to claim 3 or 4, wherein
[6] 前記制御部は、前記デューティー比が所定値よりも小さ!/、場合にお!/、ても、前記デ ユーティー比がより大きければ前記オン ·オフサイクルの周波数がより低いというように 制御するようになっている  [6] The control unit may determine that the duty cycle is smaller than a predetermined value! /, In some cases! /, But if the duty ratio is larger, the frequency of the on / off cycle is lower. To control
ことを特徴とする請求項 5に記載の電源装置。  The power supply device according to claim 5, wherein:
[7] 交流電圧を直流電圧に変換する交流/直流変換部と、 [7] An AC / DC converter that converts AC voltage to DC voltage;
複数のスイッチング素子を有し、直流電圧が入力される際に前記各スイッチング素 子にオン ·オフサイクルが生じて、これら各スイッチング素子のオン ·オフの組み合わ せに基づいてノ ルス状電圧を出力するスイッチング回路と、  It has multiple switching elements, and when a DC voltage is input, an ON / OFF cycle occurs in each switching element, and a NOR voltage is output based on the ON / OFF combination of each switching element. A switching circuit to
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う制御部と、  A control unit that performs phase shift type PWM control for controlling a pulse width of a Norse voltage output from the switching circuit by changing a phase of an ON / OFF cycle of each switching element;
を備え、  With
前記制御部は、前記スイッチング回路から出力されるパルス状電圧のデューティー 比が第 1の値よりも小さい場合に、前記スイッチング素子のオン'オフサイクルにおい て、前記複数のスイッチング素子が全てオフとなるタイミングを揷入するようになって おり、一方、前記デューティー比が前記第 1の値以上で当該第 1の値よりも大きい第 2 の値より小さレ、場合に、前記複数のスイッチング素子が全てオフとなるタイミングを揷 入しないようになっており、前記デューティー比が前記第 2の値以上の場合に、前記 オン'オフサイクルの周波数を前記デューティー比が前記第 2の値よりも小さい場合 の周波数よりも低くするようになつている  When the duty ratio of the pulse voltage output from the switching circuit is smaller than the first value, the control unit turns off the plurality of switching elements in the ON / OFF cycle of the switching elements. On the other hand, when the duty ratio is smaller than a second value that is greater than or equal to the first value and greater than the first value, the plurality of switching elements are all When the duty ratio is equal to or greater than the second value, the on / off cycle frequency is set to be less than the second value when the duty ratio is smaller than the second value. It is getting lower than the frequency
ことを特徴とする電源装置。  A power supply device characterized by that.
[8] 前記制御部は、前記デューティー比が前記第 2の値以上の場合に、前記デューテ ィー比がより大きければ前記オン ·オフサイクルの周波数がより低いというように制御 するようになつている ことを特徴とする請求項 7に記載の電源装置。 [8] When the duty ratio is equal to or greater than the second value, the control unit performs control so that the frequency of the on / off cycle is lower when the duty ratio is larger. Have The power supply device according to claim 7.
前記制御部は、前記デューティー比が前記第 1の値以上で前記第 2の値よりも小さ い場合においても、前記デューティー比がより大きければ前記オン'オフサイクルの 周波数がより低!/、とレ、うように制御するようになってレ、る  Even when the duty ratio is equal to or higher than the first value and smaller than the second value, the control unit has a lower frequency of the on / off cycle if the duty ratio is larger! I ’m going to control it.
ことを特徴とする請求項 8に記載の電源装置。 The power supply device according to claim 8, wherein:
前記制御部は、前記デューティー比が前記第 1の値よりも小さい場合においても、 前記デューティー比がより大きければ前記オン'オフサイクルの周波数がより低いとい うように制御するようになっている  The control unit controls the frequency of the on / off cycle to be lower if the duty ratio is larger even when the duty ratio is smaller than the first value.
ことを特徴とする請求項 9に記載の電源装置。 The power supply device according to claim 9, wherein:
前記スイッチング回路は、 4個のスイッチング素子を有しており、それらはフルブリツ ジ回路を構成している  The switching circuit has four switching elements, which constitute a full bridge circuit.
ことを特徴とする請求項 1乃至 10のいずれかに記載の電源装置。 The power supply device according to claim 1, wherein the power supply device is a power supply device.
前記 4個のスイッチング素子のオン'オフサイクルのデューティー比は、同一である ことを特徴とする請求項 11に記載の電源装置。  12. The power supply device according to claim 11, wherein the duty ratios of on / off cycles of the four switching elements are the same.
前記スイッチング素子は、 MOS FETあるいは IGBTである  The switching element is a MOS FET or an IGBT.
ことを特徴とする請求項 1乃至 12のいずれかに記載の電源装置。 The power supply device according to claim 1, wherein the power supply device is a power supply device.
前記スィッチング回路から出力される電圧を昇圧させる昇圧トランス  Step-up transformer for stepping up a voltage output from the switching circuit
を更に備えたことを特徴とする請求項 1乃至 13のいずれかに記載の電源装置。 請求項 1乃至 14のいずれかに記載された電源装置と、 The power supply device according to claim 1, further comprising: A power supply device according to any one of claims 1 to 14,
前記電源装置から給電されてマイクロ波を発振させるマイクロ波発振部と、 を備えたことを特徴とするマイクロ波発生装置。  A microwave generation unit comprising: a microwave oscillation unit that is supplied with power from the power supply unit and oscillates microwaves.
前記マイクロ波発振部は、  The microwave oscillation unit is
内部が真空に保持されるチャンバと、  A chamber whose interior is maintained in a vacuum;
前記チャンバ内に配置された、熱電子を放出させる陰極として機能するフィラメント と、  A filament disposed in the chamber that functions as a cathode for emitting thermal electrons;
前記チャンバ内に前記フィラメントと対向して配置された、前記電源装置から給電さ れて前記フィラメントとの間に電界を形成する陽極と、  An anode disposed opposite to the filament in the chamber and powered by the power supply to form an electric field with the filament;
前記チャンバの外側に前記電界に直交する磁場を形成する磁場発生手段と、 を有するマグネトロンを備えてレ、る Magnetic field generating means for forming a magnetic field orthogonal to the electric field outside the chamber; Equipped with a magnetron
ことを特徴とする請求項 15に記載のマイクロ波発生装置。  16. The microwave generator according to claim 15, wherein
[17] 交流電圧を直流電圧に変換する交流/直流変換部と、複数のスイッチング素子を 有し、直流電圧が入力される際に前記各スイッチング素子にオン'オフサイクルが生 じて、これら各スイッチング素子のオン .オフの組み合わせに基づ!/、てパルス状電圧 を出力するスイッチング回路と、を備えた電源装置を制御するようにコンピュータを機 能させるコンピュータプログラムであって、 [17] An AC / DC converter that converts an AC voltage into a DC voltage and a plurality of switching elements. When a DC voltage is input, an ON / OFF cycle occurs in each of the switching elements. A computer program for causing a computer to function to control a power supply device comprising: a switching circuit that outputs a pulsed voltage based on a combination of ON and OFF of switching elements;
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う機能と、  A function of performing phase shift type PWM control for controlling the pulse width of the Norse voltage output from the switching circuit by changing the phase of the ON / OFF cycle of each switching element;
前記スイッチング素子のオン'オフサイクルにおいて、前記複数のスイッチング素子 が全てオフとなるタイミングを揷入する機能と、  A function of inserting a timing at which all of the plurality of switching elements are turned off in the ON / OFF cycle of the switching elements;
をコンピュータに実現させることを特徴とするコンピュータプログラム。  A computer program for causing a computer to realize the above.
[18] 交流電圧を直流電圧に変換する交流/直流変換部と、複数のスイッチング素子を 有し、直流電圧が入力される際に前記各スイッチング素子にオン'オフサイクルが生 じて、これら各スイッチング素子のオン .オフの組み合わせに基づ!/、てパルス状電圧 を出力するスイッチング回路と、を備えた電源装置を制御するようにコンピュータを機 能させるコンピュータプログラムであって、 [18] An AC / DC converter that converts an AC voltage into a DC voltage and a plurality of switching elements. When a DC voltage is input, an ON / OFF cycle occurs in each of the switching elements. A computer program for causing a computer to function to control a power supply device comprising: a switching circuit that outputs a pulsed voltage based on a combination of ON and OFF of switching elements;
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う機能と、  A function of performing phase shift type PWM control for controlling the pulse width of the Norse voltage output from the switching circuit by changing the phase of the ON / OFF cycle of each switching element;
前記スイッチング回路から出力されるパルス状電圧のデューティー比が所定値より も小さい場合に、前記スイッチング素子のオン ·オフサイクルにおいて、前記複数のス イッチング素子が全てオフとなるタイミングを揷入する一方、前記デューティー比が前 記所定値以上の場合には、前記複数のスイッチング素子が全てオフとなるタイミング を揷入しないという機能と、  When the duty ratio of the pulse voltage output from the switching circuit is smaller than a predetermined value, the timing at which all of the plurality of switching elements are turned off in the on / off cycle of the switching element is inserted, When the duty ratio is equal to or greater than the predetermined value, a function of not inserting a timing at which the plurality of switching elements are all turned off;
をコンピュータに実現させることを特徴とするコンピュータプログラム。  A computer program for causing a computer to realize the above.
[19] 交流電圧を直流電圧に変換する交流/直流変換部と、複数のスイッチング素子を 有し、直流電圧が入力される際に前記各スイッチング素子にオン'オフサイクルが生 じて、これら各スイッチング素子のオン .オフの組み合わせに基づ!/、てパルス状電圧 を出力するスイッチング回路と、を備えた電源装置を制御するようにコンピュータを機 能させるコンピュータプログラムであって、 [19] An AC / DC converter that converts AC voltage to DC voltage, and multiple switching elements Switching circuit that generates an on / off cycle when the DC voltage is input, and outputs a pulsed voltage based on the combination of ON / OFF of each switching element. And a computer program for causing a computer to function to control a power supply device comprising:
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う機能と、  A function of performing phase shift type PWM control for controlling the pulse width of the Norse voltage output from the switching circuit by changing the phase of the ON / OFF cycle of each switching element;
前記スイッチング回路から出力されるパルス状電圧のデューティー比が所定値より も小さい場合に、前記各スイッチング素子のオン'オフサイクルの周波数を相対的に 高くし、前記デューティー比が前記所定値以上の場合に、前記オン'オフサイクルの 周波数を相対的に低くするという機能と、  When the duty ratio of the pulsed voltage output from the switching circuit is smaller than a predetermined value, the frequency of the ON / OFF cycle of each switching element is relatively increased, and the duty ratio is equal to or higher than the predetermined value. And a function of relatively reducing the frequency of the on / off cycle,
をコンピュータに実現させることを特徴とするコンピュータプログラム。  A computer program for causing a computer to realize the above.
[20] 交流電圧を直流電圧に変換する交流/直流変換部と、複数のスイッチング素子を 有し、直流電圧が入力される際に前記各スイッチング素子にオン'オフサイクルが生 じて、これら各スイッチング素子のオン .オフの組み合わせに基づ!/、てパルス状電圧 を出力するスイッチング回路と、を備えた電源装置を制御するようにコンピュータを機 能させるコンピュータプログラムであって、 [20] An AC / DC converter that converts an AC voltage into a DC voltage and a plurality of switching elements. When a DC voltage is input, an ON / OFF cycle occurs in each of the switching elements. A computer program for causing a computer to function to control a power supply device comprising: a switching circuit that outputs a pulsed voltage based on a combination of ON and OFF of switching elements;
前記各スイッチング素子のオン'オフサイクルの位相を変化させることにより前記ス イッチング回路から出力されるノ ルス状電圧のノ ルス幅を制御するフェーズシフト型 PWM制御を行う機能と、  A function of performing phase shift type PWM control for controlling the pulse width of the Norse voltage output from the switching circuit by changing the phase of the ON / OFF cycle of each switching element;
前記スイッチング回路から出力されるパルス状電圧のデューティー比が第 1の値よ りも小さい場合に、前記スイッチング素子のオン'オフサイクルにおいて、前記複数の スイッチング素子が全てオフとなるタイミングを揷入し、前記デューティー比が第 1の 値以上で前記第 1の値よりも大きい第 2の値より小さい場合に、前記複数のスィッチン グ素子が全てオフとなるタイミングを揷入せず、前記デューティー比が前記第 2の値 以上の場合に前記オン'オフサイクルの周波数を前記デューティー比が前記第 2の 値よりも小さい場合の周波数よりも低くするという機能と、  When the duty ratio of the pulse voltage output from the switching circuit is smaller than the first value, the timing at which all of the plurality of switching elements are turned off in the ON / OFF cycle of the switching element is inserted. When the duty ratio is greater than or equal to the first value and smaller than the second value that is greater than the first value, the timing at which all of the plurality of switching elements are turned off is not inserted, and the duty ratio is A function of making the frequency of the on / off cycle lower than the frequency when the duty ratio is smaller than the second value when the second value or more;
をコンピュータに実現させることを特徴とするコンピュータプログラム。  A computer program for causing a computer to realize the above.
PCT/JP2007/069953 2006-10-27 2007-10-12 Power supply and microwave generator using same WO2008050619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800398746A CN101529710B (en) 2006-10-27 2007-10-12 Power supply and microwave generator using same
KR1020097007607A KR101170591B1 (en) 2006-10-27 2007-10-12 Power supply and microwave generator using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006293305A JP5171010B2 (en) 2006-10-27 2006-10-27 Power supply device, microwave generator using the same, and computer program
JP2006-293305 2006-10-27

Publications (1)

Publication Number Publication Date
WO2008050619A1 true WO2008050619A1 (en) 2008-05-02

Family

ID=39324419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069953 WO2008050619A1 (en) 2006-10-27 2007-10-12 Power supply and microwave generator using same

Country Status (5)

Country Link
JP (1) JP5171010B2 (en)
KR (1) KR101170591B1 (en)
CN (1) CN101529710B (en)
TW (1) TWI418259B (en)
WO (1) WO2008050619A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447283A (en) * 2010-10-04 2012-05-09 联想(新加坡)私人有限公司 Method and apparatus for charging batteries
JP2013520952A (en) * 2010-02-22 2013-06-06 シーメンス アクティエンゲゼルシャフト High frequency power supply for loads without impedance matching
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620151B2 (en) * 2008-12-12 2011-01-26 東光株式会社 Non-contact power transmission circuit
JP5262732B2 (en) * 2009-01-09 2013-08-14 トヨタ自動車株式会社 Resonant buck-boost converter controller
JP5532794B2 (en) 2009-09-28 2014-06-25 富士電機株式会社 Synchronous rectification control device, control method, and isolated switching power supply
WO2012059983A1 (en) * 2010-11-02 2012-05-10 三菱電機株式会社 Power source device and programmable controller
US20120114009A1 (en) * 2010-11-04 2012-05-10 Jeffrey Melvin Forward-flyback power supply using an inductor in the transformer primary and method of using same
JP6072462B2 (en) * 2012-08-07 2017-02-01 株式会社日立ハイテクノロジーズ Plasma processing apparatus and microwave output apparatus
TWI649806B (en) * 2017-09-29 2019-02-01 財團法人工業技術研究院 Method for operating microwave heating device and microwave annealing process using the same
US10692742B2 (en) 2015-11-05 2020-06-23 Industrial Technology Research Institute Operating method of microwave heating device and microwave annealing process using the same
TWI680367B (en) * 2016-07-05 2019-12-21 台達電子工業股份有限公司 Microwave generator with power factor correction function and control method thereof
JP6986910B2 (en) * 2017-09-12 2021-12-22 東京エレクトロン株式会社 Voltage application device and output voltage waveform formation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309234A (en) * 1988-06-07 1989-12-13 Matsushita Electric Ind Co Ltd Magnetron
JPH0622551A (en) * 1992-07-07 1994-01-28 Hitachi Medical Corp Resonance-type dc-dc converter
JP2002238257A (en) * 2001-02-06 2002-08-23 Toshiba Corp Control method for resonance dc-dc converter
JP2002325458A (en) * 2001-02-26 2002-11-08 Shinei Sangyo Kk Constant-current device
JP2003018857A (en) * 2001-06-29 2003-01-17 Tdk Corp Switching power supply device, control circuit used therefor, and control method thereof
JP2006149016A (en) * 2004-11-17 2006-06-08 Sony Corp Switching regulator circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2102584U (en) * 1991-08-25 1992-04-22 魏殿忠 Phase-shift controlled dc converter
JP3550972B2 (en) * 1997-09-29 2004-08-04 株式会社日立製作所 Power supply
JP3890184B2 (en) * 2000-05-15 2007-03-07 Necパーソナルプロダクツ株式会社 Power supply device, power control method thereof, and information processing apparatus
US7269217B2 (en) * 2002-10-04 2007-09-11 Intersil Americas Inc. PWM controller with integrated PLL
TWI245150B (en) * 2002-11-07 2005-12-11 Chang-Yong Chen Programmable distributed multiple lamps CCFL inverter system
CN100514537C (en) * 2004-12-27 2009-07-15 乐金电子(天津)电器有限公司 Structure of magnetic pole in magnetron

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309234A (en) * 1988-06-07 1989-12-13 Matsushita Electric Ind Co Ltd Magnetron
JPH0622551A (en) * 1992-07-07 1994-01-28 Hitachi Medical Corp Resonance-type dc-dc converter
JP2002238257A (en) * 2001-02-06 2002-08-23 Toshiba Corp Control method for resonance dc-dc converter
JP2002325458A (en) * 2001-02-26 2002-11-08 Shinei Sangyo Kk Constant-current device
JP2003018857A (en) * 2001-06-29 2003-01-17 Tdk Corp Switching power supply device, control circuit used therefor, and control method thereof
JP2006149016A (en) * 2004-11-17 2006-06-08 Sony Corp Switching regulator circuit

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520952A (en) * 2010-02-22 2013-06-06 シーメンス アクティエンゲゼルシャフト High frequency power supply for loads without impedance matching
JP2014239061A (en) * 2010-02-22 2014-12-18 シーメンス アクティエンゲゼルシャフト High frequency power source for load not subjected to impedance matching
US9000738B2 (en) 2010-02-22 2015-04-07 Siemens Aktiengesellschaft High-frequency supply of a load without impedance matching
US8963505B2 (en) 2010-10-04 2015-02-24 Lenovo (Singapore) Pte Ltd. Method and apparatus for charging batteries
CN102447283B (en) * 2010-10-04 2016-08-17 联想(新加坡)私人有限公司 Charging system and charging method
CN102447283A (en) * 2010-10-04 2012-05-09 联想(新加坡)私人有限公司 Method and apparatus for charging batteries
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11776789B2 (en) 2020-07-31 2023-10-03 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Also Published As

Publication number Publication date
JP5171010B2 (en) 2013-03-27
TWI418259B (en) 2013-12-01
JP2008113473A (en) 2008-05-15
CN101529710A (en) 2009-09-09
KR20090055630A (en) 2009-06-02
KR101170591B1 (en) 2012-08-01
CN101529710B (en) 2013-03-20
TW200830946A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
WO2008050619A1 (en) Power supply and microwave generator using same
JP3884664B2 (en) Induction heating device
JP5174013B2 (en) Generator for spectroscopic analysis
JPH04230988A (en) Driving circuit for inverter microwave oven
JP2002152997A (en) High-frequency remote power supply
KR20220071212A (en) Microwave magnetron with constant anodic impedance and systems using the same
JP5179874B2 (en) High frequency heating power supply
JP4710503B2 (en) Induction heating device
US20050248288A1 (en) Light modulation method and apparatus for cold cathode fluorescent lamps
JP2005116385A (en) Induction heating device
JP2003243749A (en) Laser power source apparatus
JP2006120339A (en) High-frequency heating power source device
US20030117077A1 (en) Microwave oven
KR20170000164A (en) Induction heat cooking apparatus and method for driving the same
US20230007764A1 (en) Method of operating a piezoelectric plasma generator
CN219304718U (en) Bipolar pulse current source type driving circuit suitable for dielectric barrier discharge
JP3576462B2 (en) Microwave power supply system for semiconductor manufacturing equipment
JP2000357617A (en) Transformer of power supply for driving magnetron
KR100582716B1 (en) Pulse transformer of high-voltage power supply for driving traveling-wave tube
JP4341754B2 (en) High voltage power supply
Skała et al. A single-switch class E voltage-source inverter for induction heating-influence of the parameters of the resonant circuit elements on its performance at optimal control
Crisafulli et al. High efficiency start-up control of magnetron filament for MWO applications
JP2014232623A (en) Magnetron drive power source
KR20160144858A (en) Apparatus and method of controlling llc resonant converter
KR100361027B1 (en) Microwave oven

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039874.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097007607

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829689

Country of ref document: EP

Kind code of ref document: A1