WO2008050405A1 - Wire discharge processing machine - Google Patents

Wire discharge processing machine Download PDF

Info

Publication number
WO2008050405A1
WO2008050405A1 PCT/JP2006/321179 JP2006321179W WO2008050405A1 WO 2008050405 A1 WO2008050405 A1 WO 2008050405A1 JP 2006321179 W JP2006321179 W JP 2006321179W WO 2008050405 A1 WO2008050405 A1 WO 2008050405A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
workpiece
wire
pulse
Prior art date
Application number
PCT/JP2006/321179
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Onodera
Tatsushi Sato
Yoshikazu Ukai
Takashi Hashimoto
Koichiro Hattori
Hisashi Yamada
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to CN200680011788.XA priority Critical patent/CN101282812B/en
Priority to PCT/JP2006/321179 priority patent/WO2008050405A1/en
Priority to DE112006004082T priority patent/DE112006004082T5/en
Priority to JP2007513126A priority patent/JP5031555B2/en
Priority to TW095146203A priority patent/TWI335848B/en
Publication of WO2008050405A1 publication Critical patent/WO2008050405A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Definitions

  • the present invention relates to a wire electric discharge machine that processes a workpiece into a predetermined shape by generating an electric discharge between a wire electrode and the workpiece.
  • a high-frequency pulse voltage is applied to a wire electrode, and at this time, the workpiece is removed minutely by a discharge generated between the wire electrode and the workpiece, and the workpiece is removed.
  • the workpiece is processed into a predetermined shape.
  • the wire electrode travels in a predetermined direction, for example, in a vertical direction, by a pair of upper and lower wire guides, and the machining fluid is supplied around the wire electrode while the workpiece is being processed.
  • the workpiece can be precisely machined by generating the electric discharge while moving the table on which the workpiece is placed in a predetermined direction by numerical control.
  • Patent Document 1 two or more energizing terminals for supplying a pulse voltage from a machining power source to a wire electrode are provided above and below the workpiece, and each energizing terminal and the machining power source are provided.
  • a discharge power device is described in which an energization switching switch is provided between them and the energization switching switch is switched and controlled each time a plurality of continuous pulse voltages are applied from a machining power source to one energization terminal.
  • the discharge location between the wire electrode and the object to be moved periodically moves up and down, so that even if a large current is applied, the wire electrode Heat generation is suppressed, and furthermore, the discharge points between the wire electrode and the workpiece are also dispersed, so that the wire breakage is prevented.
  • Patent Document 2 discloses that electrons for supplying a carburizing pulse to the wire electrode are provided on the upper side and the lower side of the workpiece and between the upper side electrons and the workpiece.
  • a wire-cut discharge calorie device is described in which a machining pulse power supply is provided between the lower electronic device and the workpiece.
  • the concentration of discharge points is prevented by flowing pulse currents asynchronously to the force wire electrodes of the upper and lower electrons, and as a result, wire breakage is prevented.
  • Patent Document 3 two contacts are provided along the wire electrode so as to be positioned at both ends of the processing area of the workpiece (cage piece).
  • An electric discharge machining apparatus is described that supplies a cathode current to one or both of two contacts depending on the position of discharge between the two and the object.
  • the contact to which machining current is to be supplied is changed according to the discharge position to prevent local heating due to concentrated discharge, and as a result, wire breakage is prevented.
  • Patent Document 1 JP 59-47123 A
  • Patent Document 2 JP-A-1-97525
  • Patent Document 3 Japanese Patent Publication No. 6-61663
  • Each of the electric discharge machining devices described in Patent Documents 1 to 3 is a force that is useful in improving productivity by preventing wire breakage and improving productivity in wire electric discharge machining.
  • the short circuit described above applies a voltage of several pulses to the wire electrode via one of the current-carrying terminal arranged above the workpiece and the current-carrying terminal arranged below. It may occur even when only applied.
  • the present invention has been made in view of the above circumstances, and it is desirable to obtain a wire electric discharge machine that can easily improve productivity by suppressing short-circuiting and wire breakage between a wire electrode and a workpiece. Objective.
  • the wire electric discharge machine of the present invention that achieves the above-mentioned object is capable of covering the workpiece while supplying the machining fluid between the wire electrode running in the plate thickness direction of the workpiece and the workpiece.
  • a high-frequency pulse voltage is applied to the wire electrode through a pair of power supply units arranged above and below the wafer, and the object to be driven is covered by a discharge generated between the wire electrode and the object to be cured.
  • a high-frequency pulse voltage is applied to the upper power supply unit disposed above the workpiece among the pair of power supply units via the first switching element unit.
  • a main power source that applies a high-frequency pulse voltage to the lower power feeding section disposed below the workpiece via the second switching element section, and an opening / closing operation of the first switching element section on the first switching element section.
  • the first pulse oscillator that supplies the pulse signal to be controlled and the second switching A second pulse oscillator for supplying a pulse signal for controlling the switching operation of the second switching element unit to the slave unit, and the switching operation of each of the first switching element unit and the second switching element unit.
  • the pulse oscillation control unit controls the operations of the first pulse oscillator and the second pulse oscillator based on the power supply control data
  • the upper power supply state is changed during the electric discharge machining.
  • the lower power supply state and the both-side power supply state can be mixed in any pattern.
  • Appropriate power supply control data according to the planned electric discharge machining conditions, for example, is obtained in advance by experiments and stored in the storage unit, thereby suppressing short-circuiting and wire breakage between the wire electrode and the workpiece. Can do. Therefore, it is easy to improve productivity.
  • FIG. 1 is a configuration diagram schematically showing an example of a wire electric discharge machine of the present invention.
  • FIG. 2 shows the relationship between the pulse oscillator waveform shown in FIG. 1 and the waveform of the pulse signal supplied to the first switching element part or the second switching element part and the power supply state to the wire electrode.
  • FIG. 3 is a configuration diagram schematically showing an example of a main power source having a first main power source and a second main power source in the wire electric discharge machine according to the present invention.
  • FIG. 4 is a graph schematically showing the relationship between the discharge position and the discharge current value when the wire electric discharge machine shown in FIG.
  • FIG. 5 is a configuration diagram schematically showing an example of a wire discharge machine of the present invention that can prevent wire breakage due to impedance deviation between feeding circuits. .
  • FIG. 6 is a graph showing impedances between power feeding circuits in the wire electric discharge machine of the present invention. It is a block diagram which shows roughly the other example which can prevent the wire breakage resulting from bias
  • FIG. 7 schematically shows still another example of the wire discharge machine of the present invention that can prevent wire breakage caused by impedance deviation between power supply circuits.
  • FIG. 8 is a diagram showing the adjustment of the high-frequency pulse voltage supply condition to each power supply circuit in accordance with the impedance of each of the upper and lower power supply circuits in the wire electric discharge machine of the present invention. It is a block diagram which shows an example of a thing roughly.
  • FIG. 9 is a diagram showing the adjustment of the high-frequency pulse voltage supply condition to each power supply circuit according to the impedance of each of the upper and lower power supply circuits in the wire electric discharge machine of the present invention. It is a block diagram which shows schematically the other example of a thing.
  • FIG. 10 is a configuration diagram schematically showing an example of a wire electric discharge machine of the present invention to which a wire disconnection avoidance function is added.
  • FIG. 11 is a schematic diagram showing an example of a power feeding pattern when a power feeding ratio recovery function is added to the pulse oscillation control unit of the wire electric discharge machine shown in FIG.
  • FIG. 12 is a configuration diagram schematically showing an example of a wire electric discharge machine to which a short-circuit prevention function is added, according to the present invention.
  • FIG. 13 shows a first pulse oscillator and a first pulse oscillator according to the flow rate of the machining liquid supplied to each of the upper nozzle and the lower nozzle in the wire electric discharge machine of the present invention.
  • FIG. 6 is a configuration diagram schematically showing an example in which a function for controlling the operation of each of the second pulse oscillators is added.
  • FIG. 14 converts the appearance pattern of the upper power supply state, the lower power supply state, and the both-side power supply state input from the input section of the wire electric discharge machine of the present invention into power supply control data. It is a block diagram which shows roughly an example of what the data conversion part was provided in the control apparatus.
  • FIG. 15 is a configuration diagram schematically illustrating an example of the wire discharge machine of the present invention in which only one switching element unit is provided in one power supply unit.
  • FIG. 1 is a block diagram schematically showing an example of a wire electric discharge machine of the present invention.
  • the wire electric discharge machine 130 shown in the figure includes a processing machine main body 80 that performs electric discharge machining of the workpiece W into a predetermined shape under numerical control, a control device 110 that numerically controls the operation of the processing machine main body 80, and an existence.
  • An input unit 115 connected to the control device 110 by wire or wireless to input commands and data to the control device 110, and displays the commands and data input to the control device 110 or the operating status of the processing machine body 80, etc.
  • the display unit 120 is provided.
  • the processing machine main body 80 applies a high-frequency pulse voltage to the wire electrode 1 that travels in the thickness direction of the workpiece W and is generated between the wire electrode 1 and the workpiece W.
  • the workpiece W is processed by electric discharge.
  • the workpiece W is placed on a table that can move on the X—Y plane (horizontal plane), and the wire electrode 1 crosses the workpiece W in the thickness direction with tension applied. Travel like so.
  • a wire bobbin 10 In order to run the wire electrode 1 in a predetermined direction, a wire bobbin 10, a tension roller 12 a, a guide roller 14 a, and a wire guide 16 a are disposed above the table 5, and a wire guide is disposed below the table 5. 16b, guide roller 14b, and tension roller 12g are arranged.
  • the wire electrode 1 wound around the wire bobbin 10 is pulled out by the tension roller 12a, guided in the vertical direction by the guide roller 14a, the wire guide 16a, the wire guide 16b, and the guide roller 14b, and then pulled by the tension roller 12b. It is recovered in the carrier recovery box 18.
  • the pulling speed of the wire electrode 1 by the tension roller 12b is set to be faster than the pulling speed of the wire electrode 1 by the tension roller 12a. As a result, the wire electrode 1 can be applied to the workpiece W in a tensioned state. Drive across the thickness direction.
  • a pair of power feeding units 20 a and 20 b are arranged separately above and below the table 5 in order to apply a high-frequency pulse voltage to the wire electrode 1.
  • a power supply unit 20a (hereinafter referred to as “upper power supply unit 20a”) disposed above the table 5 is positioned above the wire guide 16a.
  • the power feeding portion 20b disposed below the table 5 (hereinafter referred to as “lower power feeding portion 20b”) is located below the wire guide 16b.
  • a first switching element unit 25a having at least one switching element is connected to the upper power feeding unit 20a, and a main power source 30 and a first pulse oscillator 35a are connected to the first switching element unit 25a. Yes.
  • a second switching element unit 25b having at least one switching element is connected to the lower power feeding unit 20b, and a main power supply 30 and a second pulse oscillator 35b are connected to the second switching element unit 25b. ing.
  • the main power supply 30 is also connected to the central portion in the thickness direction of the workpiece W.
  • the main power supply 30 supplies a voltage having a predetermined height to each of the first switching element unit 25a and the second switching element unit 25b during operation, and the first pulse oscillator 35a and the second pulse
  • the oscillator 35b supplies the first switching element unit 25a or the second switching element unit 25b with a pulse signal that controls the opening / closing operation of the switching element unit 25a, 25b.
  • the operations of the first pulse oscillator 35a and the second pulse oscillator 35b are controlled by a pulse oscillation control unit 95, which will be described later, so that the switching element units 25a and 25b are opened and closed with a predetermined pattern, whereby the upper power feeding unit 20a or
  • the above-described high frequency pulse voltage can be applied to the wire electrode 1 from the lower power supply unit 20b to the wire electrode 1 or both forces of the upper power supply unit 20a and the lower power supply unit 20b.
  • the width of the gap between the workpiece W and the wire electrode 1 is adjusted by moving the table 5.
  • a table driving device 55 is connected to the table 5.
  • This table drive device 55 is a workpiece While discharging W, the table 5 is moved in a predetermined direction.
  • the table 5 includes a speed sensor (not shown) such as a linear encoder or a rotary encoder. Based on the detection result of the speed sensor, the speed measuring device (not shown) The degree is measured and the measurement result is transmitted to the calculation and control unit 90 described later.
  • the discharge carriage of the driven object W In order to prevent overheating of the wire electrode 1 and prevent disconnection of the wire electrode 1 during discharge caching of the driven object W, the discharge carriage of the driven object W In some cases, the machining liquid is supplied between the workpiece W and the wire electrode 1 through the upper nozzle 65a and the lower nozzle 65b.
  • the upper nozzle 65a is disposed above the force-receiving object W
  • the lower nozzle 65b is disposed below the force-receiving object W.
  • the machining fluid supply device 60 has a flow rate measurement function for separately measuring the machining fluid supply amount (flow rate) to the upper nozzle 65a and the machining fluid supply amount (flow rate) to the lower nozzle 65b.
  • control device 110 that controls the operation of the processing machine main body 80 includes a storage unit 85, a calculation / control unit 90, and a pulse oscillation control unit 95.
  • the storage unit 85 stores numerical control data used for controlling operations of the table driving device 55 and the machining fluid supply device 60, and the first switching element unit 25a and the second switching unit unit 25a.
  • the power supply control data for controlling the mode of power supply to the wire electrode 1 by defining the opening / closing operation of each switching element unit 25b is stored. This power supply control data is set so as to prevent a short circuit or wire breakage between the wire electrode 1 and the workpiece W under standard discharge cab conditions.
  • the power supply control data stored in the storage unit 85 may be only one type, or when it is expected or scheduled to produce a plurality of types of products by the wire electric discharge machine 130, for each product. A plurality of types of power supply control data associated with each other may be used.
  • the calculation / control unit 90 first activates the sub power supply 40 when a command for instructing the start of operation of the wire electric discharge machine 130 is input from the input unit 115 described later. And the voltage detection device It is determined whether or not the detection result of the device 50 is within a predetermined range, and when it is within the predetermined range, the main power source 30 is activated. Thereafter, based on the numerical control data stored in the storage unit 85, the operations of the table driving device 55, the force liquid supply device 60, and the like are controlled.
  • the operation of the table driving device 55 is controlled based on the numerical control data to move the table 5 in a predetermined direction, and the force application liquid supply device 60 based on the numerical control data 60
  • the machining fluid of a predetermined flow rate is supplied from the nozzles 65a and 65b.
  • the calculation / control unit 90 obtains the energy of the high-frequency pulse voltage applied from the wire electrode 1 to the target object W based on the detection result of the potential difference by the voltage detection device 50, and the speed described above. The machining speed is obtained based on the driving speed of the table 5 by the measuring device. Then, the plate thickness of the workpiece W is sequentially calculated from the energy of the high-frequency pulse voltage, the carriage speed, and the force, and the control data corresponding to the plate thickness is also read out from the above numerical control data force. The feedback control is performed on the energy of the high-frequency pulse voltage applied to the wire electrode 1. Specifically, the pulse interval of the high frequency pulse voltage to be applied is feedback controlled. In addition, this calculation / control unit 90 controls the operation of the display unit 120 to display the command and data input to the control device 110 or the operation status of the processing machine body 80 on the display 120. .
  • the pulse oscillation control unit 95 starts operation under the control of the arithmetic and control unit 95, reads predetermined power supply control data stored in the storage unit 85, and performs a first operation based on the power supply control data.
  • the operation of each of the one pulse oscillator 35a and the second pulse oscillator 35b is controlled.
  • the user designates desired power supply control data with the input unit 115 prior to the electric discharge machining of the workpiece W.
  • the power supply control data stored in the storage unit 85 is displayed on the display unit 120 so that the user can easily select desired power supply control data.
  • the power supply control data read by the pulse oscillation control unit 95 includes data for opening and closing the first switching element unit 25a with the second switching element unit 25b open, and the first switching element unit
  • the data for opening and closing the second switching element portion 25b with 25a kept open is the same as each other of the first switching element portion 25a and the second switching element 25b. Data to be opened and closed. For this reason, during the period during which discharge of the object W is carried out, only the upper power supply unit 20a is applied with a high-frequency pulse voltage to the wire electrode 1, and the upper power supply state is applied only to the lower power supply unit 20b.
  • the lower power supply state where a high-frequency pulse voltage is applied to the wire electrode 1 and the both-side power supply state where the high-frequency pulse voltage is applied to the wire electrode 1 are mixed in a predetermined pattern. It will be.
  • FIG. 2 shows the relationship between the waveform of the pulse signal supplied to the first switching element unit 25a or the second switching element unit 25b and the power supply state to the wire electrode 1 for each pulse oscillator 35a, 35b.
  • the pulse signal supplied from the first pulse oscillator 35a to the first switching element unit 25a has a pulse waveform in which the low level L and the high level H repeat at a predetermined cycle, and the second pulse
  • the pulse signal force supplied from the oscillator 35b to the second switching element section 25b remains at one level L
  • the first switching element section 25a opens and closes while the second switching element section 25b remains open. State UF.
  • the pulse signal supplied from the second pulse oscillator 35b to the second switching element unit 25b while the pulse signal supplied from the first pulse oscillator 35a to the first switching element unit 25a remains at the low level L.
  • the second switching element 25b opens and closes with the first switching element 25a open, so the lower power supply state It becomes LF.
  • the pulse signal supplied from the first pulse oscillator 35a to the first switching element unit 25a and the pulse signal supplied from the second pulse oscillator 35b to the second switching element unit 25b have a pulse waveform synchronized with each other. Since the first switching element portion 25a and the second switching element portion 25b open and close in synchronization with each other, the both-side power feeding state BF is obtained.
  • the inventors of the present invention determined that the frequency of occurrence of a short circuit between the wire electrode 1 and the workpiece W and the difficulty of occurrence of wire breakage depend on the material and wire diameter of the wire electrode 1 and the quality of the working fluid used.
  • the above-mentioned power supply states vary depending on the processing conditions, such as the amount of processing fluid supplied from each nozzle 65a and 65b, the material of the workpiece W, and the shape of the product to be manufactured from the workpiece W.
  • short-circuiting frequently occurs and machining speed does not increase easily when switching at a short cycle. Revealed. It was also experimentally clarified that wire breakage is likely to occur if the number of pulses under each power supply condition is too large.
  • the sum of the number of high-frequency pulse voltages applied to the wire electrode 1 under the upper power supply state and the number of high-frequency pulse voltages applied to the wire electrode 1 under the lower power supply state If the number of high-frequency pulse voltages applied to wire electrode 1 is the same as the number of pulses in each power supply state, the number of pulses under each power supply state will be less than 3, causing short-circuiting between wire electrode 1 and workpiece W. The speed may be significantly reduced. Also, if the number of pulses under each power supply state is 10000 or more, the position of the discharge point between the wire electrode 1 and the workpiece W is not so dispersed in the thickness direction of the workpiece W. Wire breakage may occur easily.
  • the inventors of the present invention have short-circuited the wire electrode 1 and the driven object W if the ratio of the number of pulses under the double-sided feeding state in the total number of pulses applied to the wire electrode 1 is too small. It has been experimentally clarified that wire breakage is likely to occur if the frequency of occurrence increases. For example, if the above ratio is less than 50%, short circuit is likely to occur, and if it is 95% or more, wire breakage is likely to occur.
  • the short circuit and the wire breakage between the wire electrode 1 and the driven object W can be suppressed by appropriately mixing the upper power supply state, the lower power supply state, and the both-side power supply state. I know that there is.
  • the pulse oscillation control unit 95 operates based on the above-described power supply control data stored in the storage unit 85, and the operations of the first pulse oscillator 35a and the second pulse oscillator 35b, respectively.
  • the power supply is controlled so that the upper power supply state, the lower power supply state, and the both-side power supply state are mixed in a predetermined pattern. Therefore, by obtaining appropriate power supply control data through experiments and storing them in the storage unit 85 in advance, it is possible to suppress short-circuiting and wire breakage between the wire electrode 1 and the driven object W, respectively. Therefore, it is easy to improve productivity in the wire discharge power machine 130.
  • the main power source is divided into two main power sources, the first main power source and the second main power source, in order to suppress overheating of the wire electrode at the center of the workpiece in the plate thickness direction. be able to.
  • FIG. 3 is a configuration diagram schematically illustrating an example of a wire electrical discharge machining apparatus in which the main power source includes a first main power source and a second main power source.
  • the main power supply 30 has a first main power supply 30a and a second main power supply 30b.
  • the first main power supply 30a is connected to the upper power feeding part 20a via the first switching element part 25a, and is connected to the upper part in the plate thickness direction of the workpiece W.
  • the second main power supply 30b is connected to the lower power feeding unit 20b via the second switching element unit 25b, and is also connected to the lower part of the workpiece W in the thickness direction.
  • the operations of the first main power supply 30a and the second main power supply 30b are controlled by the calculation / control section 90a.
  • the configuration of the wire discharge power machine 140 other than the above is the same as that of the wire discharge power machine 130 shown in FIG. 1, among the components shown in FIG.
  • the same reference numerals as those used in FIG. 1 are given to those common to the constituent members, and the description thereof is omitted.
  • the processing machine main body constituting the wire electric discharge machine 140 is given a new reference numeral 80A, and the control device is given a new reference numeral 110A.
  • the first main power supply 30a is connected to the upper part in the plate thickness direction of the workpiece W and the second main power supply 30b is connected to the workpiece W. Since it is connected to the lower part of the plate thickness direction, the impedance from the first main power supply 30a to the discharge point and the impedance from the second main power supply 30b to the discharge point when both sides are fed are the position of the discharge point, respectively. However, the closer to the center of the workpiece W in the plate thickness direction, the larger it becomes. As a result, the discharge current value between the wire electrode 1 and the workpiece W decreases as the position of the discharge point approaches the center of the workpiece W in the plate thickness direction.
  • FIG. 4 is a graph schematically showing the relationship between the discharge position (position of the discharge point) and the discharge current value when the wire electric discharge machine 140 is in a power supply state on both sides.
  • the solid line L in the figure is the above
  • the flow value is obtained under the same processing conditions.
  • the discharge current value between the wire electrode and the workpiece is the position of the discharge point at the plate of the workpiece. Thickness center The force that decreases as it gets closer to the part is greater in force than that in the wire electric discharge machine 140 than in the S wire electric discharge machine 130. Also, the discharge current value itself at the center portion in the plate thickness direction of the workpiece is smaller in the wire discharge force machine 140 than in the wire discharge force machine 130 under the same machining conditions.
  • the force applied to suppress overheating of the wire electrode during the discharge cage by supplying a machining fluid between the wire electrode and the workpiece.
  • the workpiece is less cooled by the machining fluid than in the upper and lower portions of the workpiece in the plate thickness direction.
  • the wire electrode is overheated, causing wire breakage.
  • the discharge current value in the double-sided power supply state becomes smaller as it approaches the central portion in the plate thickness direction of the workpiece W.
  • the wire electrode 1! In the center of the workpiece W in the thickness direction, it is easy to suppress excessive overheating of the wire electrode 1! Therefore, it is easier to prevent the wire breakage compared to the wire electric discharge machine 130 (see FIG. 1) described in the first embodiment.
  • the wire discharge power machine 140 similarly to the wire discharge power machine 130, the upper power supply state, the lower power supply state, and the both-side power supply state are mixed in a predetermined pattern. Short circuit between the wire electrode 1 and the workpiece W can be prevented, and wire breakage can be easily suppressed as compared with the wire discharge calorifier 130. As a result, it becomes easier to improve productivity as compared with the wire electric discharge machine 130.
  • the distance from the discharge point to each power supply unit changes.
  • the impedances of the power supply circuit that reaches the discharge point via the power supply (hereinafter referred to as “upper power supply circuit”) and the power supply circuit that reaches the discharge point via the lower power supply section (hereinafter referred to as “lower power supply circuit”). Is biased. Such a bias in impedance causes a difference in the magnitude of the discharge current in each power supply circuit, and wire breakage easily occurs in the magnitude of the discharge current and in the power supply circuit (low impedance! /, Power supply circuit).
  • the impedance between the upper feeding circuit and the lower feeding circuit is reduced. Adjust the supply conditions of the high-frequency pulse voltage to each of the upper power supply circuit and the lower power supply circuit according to the bias of the dance, and configure to prevent the wire breakage due to the impedance bias between the power supply circuits be able to.
  • FIG. 5 to FIG. 7 are configuration diagrams schematically showing an example of a wire electric discharge machine that can prevent wire disconnection caused by impedance deviation between power feeding circuits.
  • those common to the constituent members shown in FIG. 1 are given the same reference numerals as those used in FIG. 1 and their description is omitted.
  • a wire discharge power machine 150 shown in Fig. 5 includes a control device 11OB having a pulse oscillation control unit 95a.
  • the pulse oscillation control unit 95a reads the data of the Z-axis height (the height of the upper power feeding unit 20a with respect to the lower power feeding unit 20b) stored in advance in the storage unit 85 by the user or stored in the storage unit 85.
  • the numerical control data force also determines the Z-axis height, and compares the Z-axis height with the reference value to determine the magnitude relationship between the impedances of the upper and lower power supply circuits.
  • the power supply control data read from the storage unit 85 is modified by, for example, calculation so that the impedance is small, the discharge current value in the power supply circuit is close to the impedance, and the discharge current value in the power supply circuit is approximated, for example.
  • the pulse oscillation control unit 95a controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the supplied power supply control data.
  • the discharge current value can be adjusted.
  • the number of switching elements to be opened is changed to change the high-frequency pulse voltage supplied to the wire electrode 1. You can also adjust the energy.
  • the reference value the Z-axis height that was assumed when the power supply control data was created is used, and the reference value is stored in advance in the storage unit 85, for example.
  • This wire electric discharge machine 150 is particularly suitable when a flat plate is used as the workpiece W.
  • the wire discharge force machine 160 shown in FIG. 6 includes a control device 110C having an arithmetic / control unit 90b and a pulse oscillation control unit 95b.
  • the calculation control unit 90b Similar to the control unit 90 (see FIG. 1), the plate thickness of the workpiece W is sequentially calculated using the energy of the high-frequency pulse voltage applied from the wire electrode 1 to the workpiece W and the machining speed. It has a function and sends the calculation result to the pulse oscillation control unit 95b.
  • FIG. 6 shows a speed measuring device 57 that is not shown in FIG.
  • the pulse oscillation control unit 95b compares the above calculation result sent from the arithmetic and control unit 90b with a reference value, and obtains a magnitude relationship between the impedances of the upper power supply circuit and the lower power supply circuit. . Then, the power supply control data read from the storage unit 85 is modified by, for example, computation so that the impedance is small, the value of the discharge current value S in the power supply circuit is large, and the value of the discharge current in the power supply circuit is approximated.
  • the pulse oscillation controller 95b controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the power supply control data.
  • the plate thickness assumed when the power supply control data is created is used, and the reference value is stored in advance in the storage unit 85, for example.
  • the shear electric discharge machine 160 is suitable not only when a flat plate-like object is used as the workpiece W, but also when a concave portion or a hole is formed in advance in the workpiece W.
  • a wire discharge force machine 170 shown in FIG. 7 includes a control device 110D having a calculation / control unit 90c, a pulse oscillation control unit 95c, and a plate thickness determining unit 100. It also stores 3D data of caloche objects.
  • the arithmetic control unit 90c controls the operation of the plate thickness determining unit 100.
  • the plate thickness determining unit 100 stores the three-dimensional data and the numerical control data (V for table driving device 55) stored in the storage unit 85. And the thickness of the workpiece W at the electrical discharge machining location is determined, and the thickness data is sent to the pulse oscillation control unit 95b.
  • the pulse oscillation control unit 95c compares the plate thickness data sent from the calculation / control unit 90c with a reference value to determine the magnitude relationship between the impedances of the upper and lower power supply circuits. Then, the power supply control data read from the storage unit 85 is modified by, for example, calculation so that the discharge current value in the power supply circuit with low impedance approaches the discharge current value in the power supply circuit with high impedance, and the modified power supply control is performed. Based on the data, the pulse oscillation controller 95c controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b. As the reference value, the plate thickness that was assumed when the power supply control data was created is used. Is stored in advance in the storage unit 85, for example. This wire discharge power machine 170 is suitable not only when a flat plate-like object is used as the workpiece W but also when a recess or a hole is formed in advance in the workpiece W.
  • the supply condition of the high-frequency pulse voltage to each power supply circuit is adjusted according to the impedance of the upper power supply circuit and the impedance of the lower power supply circuit, so that the impedance between the power supply circuits is uneven. It can be configured to prevent the resulting wire breakage.
  • FIGs. 8 and 9 show wire electric discharge machining that can adjust the supply condition of the high-frequency pulse voltage to each power supply circuit according to the impedance of the upper power supply circuit and the impedance of the lower power supply circuit, respectively. It is a block diagram which shows an example of a machine roughly. Among the constituent members shown in these drawings, those common to the constituent members shown in FIG. 1 are given the same reference numerals as those used in FIG. 1 and their description is omitted.
  • a wire electric discharge machine 180 shown in FIG. 8 includes a main body 80B having an impedance measuring unit 70, and a control device 110E having a pulse oscillation control unit 95d.
  • the impedance measurement unit 70 measures the impedance between the main power supply 30 and the upper power supply unit 20a in the upper power supply circuit and the impedance between the main power supply 30 and the lower power supply unit 20b in the lower power supply circuit. This measurement result is transmitted to the pulse oscillation control unit 95d.
  • the pulse oscillation control unit 95d compares the measurement result of the impedance measurement unit 70 with the reference value. Compare the magnitude relationship between the impedances of the upper and lower power supply circuits.
  • the power supply control data read from the storage unit 85 is modified by, for example, computation so as to approach the small impedance V, the large value of the discharge current value impedance in the power supply circuit, and the discharge current value in the power supply circuit.
  • the pulse oscillation control unit 95d controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the supplied power supply control data.
  • the reference value the impedance assumed when the power supply control data is created is used, and the reference value is stored in advance in the storage unit 85, for example.
  • a wire discharge power machine 190 shown in FIG. 9 includes a control device 11 OF having a pulse oscillation control unit 95e, and the storage unit 85 has a manufacturer or user of the wire discharge power machine 190
  • the impedances of the upper and lower power supply circuits measured in advance are stored in advance. Specifically, the actual measurement data of the impedance between the main power supply 30 and the upper power supply unit 20a in the upper power supply circuit, and the actual measurement data of the impedance between the main power supply 30 and the lower power supply unit 20b in the lower power supply circuit. And are stored in advance.
  • the pulse oscillation control unit 95e is stored in the storage unit 85 and directly compares the measured data of each of the impedances described above or compared with a reference value, so that the impedance of each of the upper feeding circuit and the lower feeding circuit is compared. Find the magnitude relationship. Then, the power supply control data read from the storage unit 85 is modified by, for example, calculation so as to approach the discharge current value in the power supply circuit having a large impedance S, and the power supply control data thus modified Based on the data, the pulse oscillation control unit 95e controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b.
  • the reference value an impedance that is assumed when power supply control data is created is used, and the reference value is stored in advance in the storage unit 85, for example.
  • each of the wire discharge power machines 180 and 190 described above the supply condition of the high-frequency pulse voltage to each power supply circuit depends on the impedance of the upper power supply circuit itself and the impedance of the lower power supply circuit itself. Therefore, it is easy to prevent wire breakage due to impedance deviation (magnitude relationship) between the feeder circuits. Therefore, these wire electric discharge machine 180, 190 has the same technical effect as each wire electric discharge machine 150, 160, 170 described in the third embodiment. [0061] Embodiment 5.
  • the wire discharge machine prevents the wire breakage of the operations of the first pulse oscillator and the second pulse oscillator when a wire breakage sign (hereinafter referred to as a “breakage sign”) is detected. It is possible to add a wire breakage avoiding function for controlling the above.
  • FIG. 10 is a configuration diagram schematically showing an example of a wire electric discharge machine to which a wire breakage avoiding function is added.
  • the wire electric discharge machine 200 shown in the figure includes a processing machine main body 80C having a disconnection sign detection unit 75 and a control device 110G having a pulse oscillation control unit 95f.
  • power supply control data described in Embodiments 1 to 4
  • power supply control data for disconnection avoidance power supply control for avoiding wire disconnection when there is a sign of disconnection Data
  • power supply control data for disconnection avoidance is further stored.
  • those common to the constituent members shown in FIG. 1 are given the same reference numerals as those used in FIG. 1, and description thereof is omitted.
  • the disconnection sign detection unit 75 is electrically connected to the upper power supply unit 20a, the lower power supply unit 20b, and the workpiece W, and for example, currents in the upper power supply circuit and the lower power supply circuit are detected.
  • the shunt ratio also determines the position of the discharge point, and when a concentrated discharge with a single discharge point is detected, it is determined that there is a sign of wire breakage. Is sent to the pulse oscillation controller 95f.
  • the pulse oscillation control unit 95f modifies the feed control data by reading the disconnection avoidance power supply control data from the storage unit 85, and based on this disconnection avoidance feed control data, Wire breakage is avoided by controlling the operation of the 1-pulse oscillator 35a and the second-pulse oscillator 35b. For example, each of the first pulse oscillator 35a and the second pulse oscillator 35b is operated and controlled so that the upper power supply state and the lower power supply state appear alternately, thereby dispersing the position of the discharge point with the passage of time. Avoid disconnection.
  • the wire electrical discharge machine 200 Since the wire electrical discharge machine 200 has the above-described wire disconnection avoidance function, it is easier to prevent wire disconnection than the wire electrical discharge machines described in Embodiments 1 to 4. It is. Therefore, according to the wire discharge force machine 200, the upper power supply state, the lower power supply state, and the both-side power supply state are set in a predetermined pattern as in the wire discharge calorie machine 130 shown in FIG. By mixing them together, it is possible to prevent a short circuit between the wire electrode 1 and the workpiece w, and it is easier to suppress wire breakage than the wire discharge force machine 130. As a result, it becomes easier to improve productivity compared to the wire discharge power machine 130.
  • the pulse oscillation control unit When a wire breakage avoidance function is added to the wire electric discharge machine, the pulse oscillation control unit is provided with a power supply ratio when a long-term view (about 1 to 2 seconds) is reached.
  • the function to return the power supply ratio to the upper power supply state, lower power supply state, and both-side power supply state when the operations of the first and second pulse oscillators are controlled based on the basic power supply control data hereinafter referred to as the power supply ratio.
  • Power supply ratio recovery function can be added.
  • FIG. 11 is a schematic diagram showing an example of a power supply pattern when a power supply ratio return function is added to the pulse oscillation control unit 95f described above. In the example shown in the figure, until the time T
  • the pulse oscillation controller 95f controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b. Under the basic power supply control data, the operation of performing the upper power supply state and the lower power supply state for each cycle and then performing the both-side power supply state for two cycles is repeated.
  • a disconnection sign detection unit 75 sends a disconnection sign detection signal to the pulse oscillation control unit 95f.
  • the pulse oscillation control unit 95f starts controlling the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the disconnection avoidance power supply control data, and the upper power supply state and the lower power supply state are changed.
  • the operations of the first pulse oscillator 35a and the second pulse oscillator 35b are controlled so that they appear alternately.
  • the pulse oscillation control unit 95f exhibits the power supply ratio recovery function.
  • the first pulse oscillator 35a and the second pulse oscillator 35b are set so that the power supply ratios in the upper power supply state, the lower power supply state, and the both-side power supply state become the power supply ratios under the basic power supply control data. Control each action.
  • the both-side power supply state is performed for one cycle from time T to time T, and
  • each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled so that the ratio of the upper power supply state, the lower power supply state, and the both-side power supply state is 1: 1: 2, and the time Between T and time T, the upper power supply state and the lower power supply state are each one cycle.
  • the power supply ratio recovery function assigned to the pulse oscillation control unit 95f includes a function for calculating a power supply ratio under the basic power supply control data, an upper power supply state under the power supply control data for disconnection avoidance, The difference between the power supply ratio caused by power supply under the power supply control data for disconnection avoidance, that is, the power supply ratio under the basic power supply control data It includes a function to calculate the force deviation and a function to correct the deviation. After the time T, the pulse oscillation control unit 95f
  • each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled based on the basic power supply control data.
  • the short circuit is prevented or the short circuit is eliminated when a short circuit sign or short circuit between the wire electrode and the workpiece is detected.
  • a function for controlling the operations of the first pulse oscillator and the second pulse oscillator (hereinafter referred to as “short-circuit prevention function”) can be added.
  • FIG. 12 is a configuration diagram schematically showing an example of a wire electric discharge machine to which a short circuit prevention function is added.
  • the wire electric discharge machine 210 shown in the figure includes a control device 110H having a calculation / control unit 90d and a pulse oscillation control unit 95g, and the storage unit 85 is short-circuited when a short-circuit sign or short circuit occurs.
  • power supply control data hereinafter referred to as “short-circuit prevention power supply control data” for preventing a short circuit or eliminating a short circuit is stored.
  • short-circuit prevention power supply control data power supply control data for preventing a short circuit or eliminating a short circuit is stored.
  • the control unit 90d determines that the wire electrode 1 and the driven object W are based on the potential difference between the power supply units 20a, 2 Ob and the driven object W detected by the voltage detection device 50. Detects short circuit or short circuit. Specifically, the potential difference force between each of the power feeding units 20a, 20b detected by the voltage detection device 50 and the object W is also calculated as a discharge voltage value, and this value is the material of the wire electrode 1. When the average discharge voltage falls below a preset average discharge voltage based on the material of the workpiece W, the quality of the machining fluid, the magnitude of the high-frequency pulse voltage applied to the wire electrode 1, etc. It is determined that it has occurred. And when a short circuit sign or short circuit is detected
  • the calculation / control unit 90d sends a predetermined signal (hereinafter referred to as a “short circuit / prediction detection signal”) to the pulse oscillation control unit 95g.
  • a predetermined signal hereinafter referred to as a “short circuit / prediction detection signal”
  • the average discharge voltage value is obtained by the manufacturer or user of the wire electric discharge machine 210 and stored in the storage unit 85 in advance.
  • the pulse oscillation control unit 95g that has received the short circuit / predictive detection signal from the arithmetic / control unit 90d modifies the power supply control data by reading the power supply control data for short circuit prevention from the storage unit 85, and this short circuit prevention Based on the power supply control data, the operation of each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled to prevent a short circuit between the wire electrode 1 and the workpiece W or the wire electrode 1 and the workpiece Eliminate the short circuit with W.
  • the discharge between the wire electrode 1 and the target object W is stabilized, thereby Prevent short circuit between wire electrode 1 and workpiece W or eliminate short circuit between wire electrode 1 and workpiece W.
  • the wire electric discharge machine 210 Since the wire electric discharge machine 210 has the above-described short-circuit prevention function, the wire breakage 1 and the load W are compared with the wire electric discharge machine described in the first to fifth embodiments. It is easy to prevent short circuit. Therefore, according to the wire electric discharge machine 210, the upper electric supply state, the lower electric supply state, and the both-side electric supply state are mixed in a predetermined pattern in the same manner as the wire electric discharge machine 130 shown in FIG. It is possible to prevent a short circuit between the electrode 1 and the workpiece W and to easily suppress a short circuit between the wire electrode 1 and the workpiece W compared to the wire discharge power machine 130. Become. As a result, it becomes easier to improve productivity as compared with the wire discharge power machine 130. Even when a short-circuit prevention function is added to the wire electric discharge machine, the power supply ratio return function described in the fifth embodiment can be added to the pulse oscillation control unit.
  • the wire electric discharge machine of the present invention includes a first pulse oscillator and a second pulse generator according to the flow rate of the machining liquid supplied from the machining liquid supply device to each of the upper nozzle and the lower nozzle.
  • a function for controlling the operation of each vibrator can be added.
  • FIG. 13 is a configuration diagram schematically showing an example of a wire electric discharge machine to which the above function is added.
  • the wire discharge force machine 220 shown in the figure includes a control device 1101 having a calculation / control unit 90e, a pulse oscillation control unit 95h, and a flow rate comparison unit 105.
  • a control device 1101 having a calculation / control unit 90e, a pulse oscillation control unit 95h, and a flow rate comparison unit 105.
  • those common to the constituent members shown in FIG. 1 are designated by the same reference numerals as those used in FIG. 1, and description thereof is omitted.
  • the calculation / control unit 90e controls the operation of the machining fluid supply device 60 based on the numerical control data (numerical control data for the machining fluid supply device 60) stored in the storage unit 85.
  • data on the flow rate of the machining fluid supplied to the upper nozzle 65 a from the force working fluid supply device 60 and the flow rate of the machining fluid supplied to the lower nozzle 65 b are sent to the flow rate comparison unit 105.
  • the flow rate comparison unit 105 to which these data are sent compares each data with the reference value and sends the result to the pulse oscillation control unit 95h.
  • the flow rate comparison unit 105 has, for example, data on the flow rate of the machining fluid assumed when the power supply control data is created as the reference value.
  • the pulse oscillation control unit 95h reads the power supply control data from the storage unit 85 to control the operations of the first pulse oscillator 35a and the second pulse oscillator 35b, while processing the comparison result force by the flow rate comparison unit 105.
  • the power supply control data is modified by, for example, calculation. That is, in the upper power feeding unit 20a and the lower power feeding unit 20b, the power feeding unit force on the same side as the nozzle that is determined that the flow rate of the kale solution exceeds the reference value is the high frequency supplied to the wire electrode 1
  • the above power supply control data is modified so that the power supply ratio of the pulse voltage is lowered. Then, the operation of each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled based on the modified power supply control data.
  • the flow rate of the machining fluid supplied from the machining fluid supply device to each of the upper nozzle and the lower nozzle is constant throughout the entire discharge force.
  • the flow rate of the machining fluid differs between a location where the relative movement path of the wire electrode is linear and a location where the arc is circular.
  • the flow rate of the cutting liquid may be different between the upper nozzle 65a and the lower nozzle 65b.
  • the upper nozzle 65a and the lower nozzle 65b make the flow rate of the cutting liquid If they are different, the amount of machining fluid flowing from the nozzle with a high machining fluid flow rate into the force working groove (gap between the wire electrode 1 and the workpiece W) is from the nozzle with a low machining fluid flow rate.
  • the amount of machining fluid flowing into the machining groove is less, and the machining fluid flow rate is high. Machining debris and the like are likely to accumulate in the machining groove on the nozzle side. As a result, wire breakage is likely to occur due to the high discharge frequency on the nozzle side where the flow rate of the machining fluid is large.
  • the power feeding unit car on the same side as the nozzle is detected. Since the operations of the first pulse oscillator 35a and the second pulse oscillator 35b are controlled so that the feeding ratio of the high-frequency pulse voltage supplied to the wire electrode 1 is lowered, the upper nozzle 65a and the lower nozzle 65b Wire breakage is suppressed even when the flow rate of the machining fluid supplied to each fluctuates.
  • the wire discharge power machine 220 the upper power supply state, the lower power supply state, and the both-side power supply state are set in a predetermined pattern in the same manner as the wire discharge power machine 130 shown in FIG.
  • the wire breakage can be easily suppressed as compared with the wire discharge power machine 130.
  • the force explained for the wire electric discharge machine of the present invention by exemplifying the seven embodiments.
  • the present invention is not limited to the seven embodiments described above.
  • a mixed pattern (appearance pattern) of the upper power supply state, the lower power supply state, and the both-side power supply state is displayed from the input unit so that the user can easily store desired power supply control data in the storage unit. It is possible to provide a data conversion unit in the control device so that desired power supply control data can be stored in the storage unit simply by inputting.
  • FIG. 14 is a configuration diagram schematically showing an example of a wire electric discharge machine in which the data conversion unit is provided in the control device.
  • the control device 110J of the wire electric discharge machine 230 shown in the figure when the mixed pattern (appearance pattern) of the upper power supply state, the lower power supply state, and the both-side power supply state is also input, the appearance pattern A data conversion unit 108 for generating power supply control data corresponding to the data is provided.
  • the power supply control data created by the data conversion unit 108 is stored in the storage unit 85 via the calculation / control unit 90f.
  • Pulse oscillation The control unit 95 controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the power supply control data. 14 that are the same as those shown in FIG. 1 are assigned the same reference numerals as those used in FIG. 1, and descriptions thereof are omitted.
  • the first switching element unit and the second switching element unit to which the main power source is connected are separated from the main power source. Or a component of the main power source.
  • the third switching element unit and the fourth switching element unit to which the sub power source is connected can be separate members from the sub power source, or can be a constituent member of the sub power source.
  • FIG. 15 is a configuration diagram schematically showing an example of a wire discharge molding machine in which only one switching element unit is provided in one power feeding unit.
  • one switching element part 28a (hereinafter referred to as “first switching element part 28a”) is provided corresponding to the upper power feeding part 20a.
  • the switching element parts other than the first switching element part 28a are not connected to the upper power feeding part 20a.
  • one switching element portion 28b (hereinafter referred to as “second switching element portion 28b”) is provided corresponding to the lower power feeding portion 20b, and switching element portions other than the second switching element portion 28b are provided.
  • a first pulse oscillator 35a is connected to the first switching element section 28a, and a second pulse oscillator 35b is connected to the second switching element section 28b.
  • the first switching element section 28a may be a separate member from either the main power supply 30 or the sub power supply 40, or may be a constituent member of the main power supply 30 or the sub power supply 40.
  • the second switching element portion 28b can be a separate member for the main power supply 30 and the sub power supply 40, or the main power supply 30 or the sub power supply 40. It can also be a component of 40.
  • the wire electric discharge machine of the present invention can perform the upper power supply state, the lower power supply state, and the both-side power supply state during the electric discharge machining. Since it is possible to mix (appear) arbitrarily, the electrical discharge machining amount in the plate thickness direction of the workpiece is appropriately changed while preventing the short circuit between the wire electrode and the workpiece and the wire breakage, and It is also possible to improve the processing accuracy in the plate thickness direction. Increasing the power supply ratio in the upper power supply state allows electric discharge machining to proceed in the upper part in the plate thickness direction of the workpiece, and increasing the power supply ratio in the lower power supply state causes the lower part in the plate thickness direction in the work piece. Therefore, the machining accuracy in the plate thickness direction of the workpiece can be improved by appropriately combining these power supply states.
  • the thickness of the workpiece at the electric discharge machining location can be obtained using the three-dimensional data of the workpiece as in the wire electric discharge machine 170 shown in FIG.
  • the wire electrode force is also applied to the energy of the high-frequency pulse voltage applied to the workpiece, the machining speed, etc. It is also possible to omit the function of calculating the plate thickness of the workpiece from the above.
  • the wire discharge machine according to the present invention can be variously modified, modified and combined in addition to the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A wire discharge processing machine performs a feeding control in such a manner that there are mixed, during a discharge processing, an upper side feeding state in which a high frequency pulse voltage is applied to a wire electrode only from an upper feeding part disposed above a processed subject, a lower side feeding state in which a high frequency pulse voltage is applied to the wire electrode only from a lower feeding part disposed beneath the processed subject and a two-side feeding state in which the high frequency pulse voltages are synchronously applied to the wire electrode from both the upper and lower feeding parts, thereby suppressing the short-circuiting between the wire electrode and the processed subject and also suppressing the wire brakes, thereby facilitating the improvement of productivity.

Description

ワイヤ放電力卩工機  Wire discharge power machine
技術分野  Technical field
[0001] 本発明は、ワイヤ電極と被加工物との間で放電を生じさせて被加工物を所定形状 に加工するワイヤ放電加工機に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a wire electric discharge machine that processes a workpiece into a predetermined shape by generating an electric discharge between a wire electrode and the workpiece.
背景技術  Background art
[0002] ワイヤ放電カ卩工機では、ワイヤ電極に高周波ノ ルス電圧を印加し、このときワイヤ 電極と被加工物との間に生じる放電により被加工物を微少量ずつ除去して、当該被 加工物を所定形状に加工する。ワイヤ電極は上下一対のワイヤガイドにより所定方 向、例えば垂直方向に案内されながら当該方向に走行し、該ワイヤ電極の周囲には 被加工物を加工する間中、加工液が供給される。例えば被加工物が載置されたテー ブルを数値制御により所定の方向に移動させながら上記の放電を生じさせることによ り、被加工物を精密加工することができる。  [0002] In a wire discharge machine, a high-frequency pulse voltage is applied to a wire electrode, and at this time, the workpiece is removed minutely by a discharge generated between the wire electrode and the workpiece, and the workpiece is removed. The workpiece is processed into a predetermined shape. The wire electrode travels in a predetermined direction, for example, in a vertical direction, by a pair of upper and lower wire guides, and the machining fluid is supplied around the wire electrode while the workpiece is being processed. For example, the workpiece can be precisely machined by generating the electric discharge while moving the table on which the workpiece is placed in a predetermined direction by numerical control.
[0003] ワイヤ放電カ卩ェによって被力卩ェ物を精密かつ安定にカ卩ェするうえからは、ワイヤ電 極と被カ卩ェ物との間隔を所定の範囲内に収めながらカ卩ェすることが大切であり、ワイ ャ電極と被加工物とが短絡すると放電が生じなくなるので加工が停止する。またワイ ャ電極と被加工物との間に加工屑等が溜まる等して放電の集中(以下、「集中放電」 という。)が起こり、放電エネルギーが局所的に過大になる結果としてワイヤ電極の断 線 (以下、「ワイヤ断線」という。)がしばしば生じる。ワイヤ断線が生じるとワイヤ電極を ワイヤガイドによって再度案内させ直さなければならないため、生産性が大きく低下 する。そこで、ワイヤ断線を予防する技術が種々考案されている。  [0003] From the standpoint of accurately and stably covering a workpiece by wire discharge carriage, the distance between the wire electrode and the workpiece is kept within a predetermined range. It is important to do this, and if the wire electrode and workpiece are short-circuited, the discharge stops and the machining stops. In addition, discharge concentration (hereinafter referred to as “concentrated discharge”) occurs due to accumulation of machining waste between the wire electrode and the workpiece, and as a result, the discharge energy is locally excessively increased. Disconnection (hereinafter referred to as “wire disconnection”) often occurs. When wire breakage occurs, the wire electrode must be guided again by the wire guide, which greatly reduces productivity. Thus, various techniques for preventing wire breakage have been devised.
[0004] 例えば特許文献 1には、加工電源からワイヤ電極にパルス電圧を供給するための 通電端子を被加工物の上方と下方とに 2個以上設けると共に、各通電端子と加工電 源との間に通電切換えスィッチを設け、加工電源から 1つの通電端子に連続した複 数のパルス電圧が印加されるごとに上記の通電切換えスィッチを切換え制御する放 電力卩ェ装置が記載されて 、る。この放電カ卩ェ装置ではワイヤ電極と被カ卩ェ物との間 での放電箇所が周期的に上下に移動することから、大電流を通電してもワイヤ電極 の発熱が抑えられ、更にはワイヤ電極と被加工物との間での放電点も分散することか ら、ワイヤ断線が防止される。 [0004] For example, in Patent Document 1, two or more energizing terminals for supplying a pulse voltage from a machining power source to a wire electrode are provided above and below the workpiece, and each energizing terminal and the machining power source are provided. A discharge power device is described in which an energization switching switch is provided between them and the energization switching switch is switched and controlled each time a plurality of continuous pulse voltages are applied from a machining power source to one energization terminal. In this discharge carriage device, the discharge location between the wire electrode and the object to be moved periodically moves up and down, so that even if a large current is applied, the wire electrode Heat generation is suppressed, and furthermore, the discharge points between the wire electrode and the workpiece are also dispersed, so that the wire breakage is prevented.
[0005] また、特許文献 2には、ワイヤ電極にカ卩工パルスを供給するための通電子を被カロェ 物の上側と下側とに設けると共に、上側通電子と被加工物との間および下側通電子 と被加工物との間にそれぞれ個別に加工用パルス電源を設けたワイヤカット放電カロ ェ装置が記載されている。このワイヤカット放電カ卩ェ装置では、上側通電子および下 側通電子の各々力 ワイヤ電極に非同期にパルス電流を流すことによって放電点の 集中を防止し、その結果としてワイヤ断線を防止する。  [0005] Further, Patent Document 2 discloses that electrons for supplying a carburizing pulse to the wire electrode are provided on the upper side and the lower side of the workpiece and between the upper side electrons and the workpiece. A wire-cut discharge calorie device is described in which a machining pulse power supply is provided between the lower electronic device and the workpiece. In this wire-cut discharge cache device, the concentration of discharge points is prevented by flowing pulse currents asynchronously to the force wire electrodes of the upper and lower electrons, and as a result, wire breakage is prevented.
[0006] そして特許文献 3には、被力卩ェ物 (カ卩ェ片)での加工域の両端に位置するようにし て 2つのコンタクトをワイヤ電極に沿って設け、ワイヤ電極と被カ卩ェ物との間での放電 位置に応じて 2つのコンタクトのいずれか一方または両方にカ卩ェ電流を供給する放 電加工装置が記載されている。この放電加工装置では、加工電流を供給すべきコン タクトを放電位置に応じて変更することで集中放電による局所的な加熱を防止し、そ の結果としてワイヤ断線を防止する。  [0006] In Patent Document 3, two contacts are provided along the wire electrode so as to be positioned at both ends of the processing area of the workpiece (cage piece). An electric discharge machining apparatus is described that supplies a cathode current to one or both of two contacts depending on the position of discharge between the two and the object. In this electric discharge machining apparatus, the contact to which machining current is to be supplied is changed according to the discharge position to prevent local heating due to concentrated discharge, and as a result, wire breakage is prevented.
[0007] 特許文献 1 :特開昭 59— 47123号公報  [0007] Patent Document 1: JP 59-47123 A
特許文献 2:特開平 1— 97525号公報  Patent Document 2: JP-A-1-97525
特許文献 3:特公平 6 - 61663号公報  Patent Document 3: Japanese Patent Publication No. 6-61663
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 特許文献 1〜3に記載された各放電加工装置は、いずれも、ワイヤ断線を防止して 生産性を向上させるうえで有用なものではある力 ワイヤ放電加工での生産性を向上 させるためには、ワイヤ断線を防止すると共にワイヤ電極と被カ卩ェ物との短絡を防止 することが望まれる。上記の短絡は、本件発明者等の実験によれば、被加工物の上 方に配置された通電端子および下方に配置された通電端子のいずれか一方を介し てワイヤ電極に数パルスの電圧を印加しただけでも生じることがある。  [0008] Each of the electric discharge machining devices described in Patent Documents 1 to 3 is a force that is useful in improving productivity by preventing wire breakage and improving productivity in wire electric discharge machining. For this purpose, it is desired to prevent the wire breakage and the short circuit between the wire electrode and the object to be covered. According to the inventors' experiments, the short circuit described above applies a voltage of several pulses to the wire electrode via one of the current-carrying terminal arranged above the workpiece and the current-carrying terminal arranged below. It may occur even when only applied.
[0009] このため、特許文献 1に記載された放電加工装置におけるように一方の給電端子 からワイヤ電極への給電と他方の給電端子からワイヤ電極への給電とを交互に行う だけでは、上記の短絡を効率よく抑制することはできない。特許文献 2に記載された ワイヤカット放電加工装置におけるように一方の給電端子力 ワイヤ電極への給電と 他方の給電端子からワイヤ電極への給電とを非同期で行った場合や、特許文献 3〖こ 記載された放電加工装置におけるように一方の給電端子力 ワイヤ電極への給電と 他方の給電端子からワイヤ電極への給電とを放電位置に応じて変更した場合におい ても同様であり、これらの給電形態では上記の短絡を効率よく抑制することはできな い。ワイヤ電極と被カ卩ェ物とが短絡すると放電が起きなくなるので、放電加工自体が 停滞して平均の加工速度が低下する。 [0009] For this reason, as in the electric discharge machining apparatus described in Patent Document 1, the power supply from one power supply terminal to the wire electrode and the power supply from the other power supply terminal to the wire electrode are merely performed alternately. Short circuit cannot be suppressed efficiently. It was described in Patent Document 2 One power supply terminal force as in the wire-cut electric discharge machining apparatus When the power supply to the wire electrode and the power supply from the other power supply terminal to the wire electrode are performed asynchronously, or in the electric discharge machining apparatus described in Patent Document 3 Thus, even when the power supply to one wire terminal and the power supply from the other power supply terminal to the wire electrode are changed according to the discharge position, the above short-circuiting is efficient in these power supply configurations. It cannot be suppressed well. When the wire electrode and the workpiece are short-circuited, the electric discharge does not occur, so that the electric discharge machining itself stagnates and the average machining speed decreases.
[0010] 本発明は上記の事情に鑑みてなされたものであり、ワイヤ電極と被加工物との短絡 およびワイヤ断線をそれぞれ抑制して生産性を向上させ易いワイヤ放電加工機を得 ることを目的とする。 [0010] The present invention has been made in view of the above circumstances, and it is desirable to obtain a wire electric discharge machine that can easily improve productivity by suppressing short-circuiting and wire breakage between a wire electrode and a workpiece. Objective.
課題を解決するための手段  Means for solving the problem
[0011] 上記の目的を達成する本発明のワイヤ放電加工機は、被加工物の板厚方向に走 行するワイヤ電極と被カ卩ェ物との間に加工液を供給しながら、被カ卩ェ物の上下に配 置された一対の給電部を介してワイヤ電極に高周波パルス電圧を印加し、ワイヤ電 極と被カ卩ェ物との間に生じる放電により被力卩ェ物をカ卩ェするワイヤ放電カ卩工機であ つて、一対の給電部のうちで被加工物の上側に配置された上側給電部には第 1スィ ツチング素子部を介して高周波パルス電圧を印加し、被加工物の下側に配置された 下側給電部には第 2スイッチング素子部を介して高周波パルス電圧を印加するメイン 電源と、第 1スイッチング素子部に該第 1スイッチング素子部の開閉動作を制御する パルス信号を供給する第 1パルス発振器と、第 2スイッチング素子部に該第 2スィッチ ング素子部の開閉動作を制御するパルス信号を供給する第 2パルス発振器と、第 1 スイッチング素子部および第 2スイッチング素子部それぞれの開閉動作を規定して、 上側給電部のみ力 ワイヤ電極に高周波パルス電圧を印加する上側給電状態と、下 側給電部のみ力 ワイヤ電極に高周波パルス電圧を印加する下側給電状態と、上側 給電部と下側給電部との両方力 互いに同期してワイヤ電極に高周波パルス電圧を 印加する両側給電状態とが混在するように給電制御する給電制御データが格納され て 、る記憶部と、給電制御データを基に第 1パルス発振器および第 2パルス発振器 それぞれの動作を制御するパルス発振制御部と、を有することを特徴とするものであ る。 [0011] The wire electric discharge machine of the present invention that achieves the above-mentioned object is capable of covering the workpiece while supplying the machining fluid between the wire electrode running in the plate thickness direction of the workpiece and the workpiece. A high-frequency pulse voltage is applied to the wire electrode through a pair of power supply units arranged above and below the wafer, and the object to be driven is covered by a discharge generated between the wire electrode and the object to be cured. A high-frequency pulse voltage is applied to the upper power supply unit disposed above the workpiece among the pair of power supply units via the first switching element unit. A main power source that applies a high-frequency pulse voltage to the lower power feeding section disposed below the workpiece via the second switching element section, and an opening / closing operation of the first switching element section on the first switching element section. The first pulse oscillator that supplies the pulse signal to be controlled and the second switching A second pulse oscillator for supplying a pulse signal for controlling the switching operation of the second switching element unit to the slave unit, and the switching operation of each of the first switching element unit and the second switching element unit. Only force Upper power supply state where high frequency pulse voltage is applied to wire electrode, Lower power supply force only Lower power supply state where high frequency pulse voltage is applied to wire electrode Both upper power supply portion and lower power supply portion Power supply control data for controlling power supply is stored so that both sides of the power supply state in which a high-frequency pulse voltage is applied to the wire electrode synchronously are mixed, and the first pulse oscillator and the second pulse generator are stored based on the storage unit and the power supply control data. A pulse oscillation control unit for controlling the operation of each of the pulse oscillators. The
発明の効果  The invention's effect
[0012] 上述の上側給電状態や下側給電状態のときにはワイヤ電極と被加工物との短絡が 起こり易くなるが、これら上側給電状態と下側給電状態とを交互に出現させると、ワイ ャ電極と被加工物の間の放電点の位置が被加工物の板厚方向(厚さ方向)に変化 するので、集中放電の発生を抑制してワイヤ断線を防止することができる。また、両 側給電状態のときにはワイヤ電極と被加工物の間の放電が安定するので、ワイヤ電 極と被カ卩ェ物との短絡を防止することができる。  [0012] In the above-described upper power supply state and lower power supply state, a short circuit between the wire electrode and the workpiece is likely to occur. However, when the upper power supply state and the lower power supply state appear alternately, the wire electrode Since the position of the discharge point between the workpiece and the workpiece changes in the plate thickness direction (thickness direction) of the workpiece, the occurrence of concentrated discharge can be suppressed and wire breakage can be prevented. In addition, since the discharge between the wire electrode and the workpiece is stabilized in the both-side power supply state, a short circuit between the wire electrode and the workpiece can be prevented.
[0013] 本発明のワイヤ放電加工機では、給電制御データを基にパルス発振制御部が第 1 パルス発振器および第 2パルス発振器それぞれの動作を制御するので、放電加工の 期間中に上側給電状態と下側給電状態と両側給電状態とを任意のパターンで混在 させることができる。予定している放電加工条件等に応じた適当な給電制御データを 例えば実験により予め求めて記憶部に格納しておくことにより、ワイヤ電極と被カロェ 物との短絡およびワイヤ断線をそれぞれ抑制することができる。そのため、生産性を 向上させることち容易である。  In the wire electric discharge machine of the present invention, since the pulse oscillation control unit controls the operations of the first pulse oscillator and the second pulse oscillator based on the power supply control data, the upper power supply state is changed during the electric discharge machining. The lower power supply state and the both-side power supply state can be mixed in any pattern. Appropriate power supply control data according to the planned electric discharge machining conditions, for example, is obtained in advance by experiments and stored in the storage unit, thereby suppressing short-circuiting and wire breakage between the wire electrode and the workpiece. Can do. Therefore, it is easy to improve productivity.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は、本発明のワイヤ放電加工機の一例を概略的に示す構成図である。  FIG. 1 is a configuration diagram schematically showing an example of a wire electric discharge machine of the present invention.
[図 2]図 2は、図 1に示した各パルス発振器力 第 1スイッチング素子部または第 2スィ ツチング素子部に供給されるパルス信号の波形と、ワイヤ電極への給電状態との関 係を示す概略図である。  [FIG. 2] FIG. 2 shows the relationship between the pulse oscillator waveform shown in FIG. 1 and the waveform of the pulse signal supplied to the first switching element part or the second switching element part and the power supply state to the wire electrode. FIG.
[図 3]図 3は、本発明のワイヤ放電加工機のうちで、メイン電源が第 1メイン電源と第 2 メイン電源とを有するものの一例を概略的に示す構成図である。  FIG. 3 is a configuration diagram schematically showing an example of a main power source having a first main power source and a second main power source in the wire electric discharge machine according to the present invention.
[図 4]図 4は、図 3に示したワイヤ放電加工機を両側給電状態としたときの放電位置と 放電電流値との関係を概略的に示すグラフである。  FIG. 4 is a graph schematically showing the relationship between the discharge position and the discharge current value when the wire electric discharge machine shown in FIG.
[図 5]図 5は、本発明のワイヤ放電カ卩工機のうちで給電回路間でのインピーダンスの 偏りに起因するワイヤ断線を防止することができるものの一例を概略的に示す構成図 である。  [Fig. 5] Fig. 5 is a configuration diagram schematically showing an example of a wire discharge machine of the present invention that can prevent wire breakage due to impedance deviation between feeding circuits. .
[図 6]図 6は、本発明のワイヤ放電加工機のうちで給電回路間でのインピーダンスの 偏りに起因するワイヤ断線を防止することができるものの他の例を概略的に示す構成 図である。 [FIG. 6] FIG. 6 is a graph showing impedances between power feeding circuits in the wire electric discharge machine of the present invention. It is a block diagram which shows roughly the other example which can prevent the wire breakage resulting from bias | biasing.
[図 7]図 7は、本発明のワイヤ放電カ卩工機のうちで給電回路間でのインピーダンスの 偏りに起因するワイヤ断線を防止することができるものの更に他の例を概略的に示す 構成図である。  [FIG. 7] FIG. 7 schematically shows still another example of the wire discharge machine of the present invention that can prevent wire breakage caused by impedance deviation between power supply circuits. FIG.
[図 8]図 8は、本発明のワイヤ放電加工機のうちで上側および下側それぞれの給電回 路自体のインピーダンスに応じて各給電回路への高周波パルス電圧の供給条件を 調節することが可能なものの一例を概略的に示す構成図である。  [FIG. 8] FIG. 8 is a diagram showing the adjustment of the high-frequency pulse voltage supply condition to each power supply circuit in accordance with the impedance of each of the upper and lower power supply circuits in the wire electric discharge machine of the present invention. It is a block diagram which shows an example of a thing roughly.
[図 9]図 9は、本発明のワイヤ放電加工機のうちで上側および下側それぞれの給電回 路自体のインピーダンスに応じて各給電回路への高周波パルス電圧の供給条件を 調節することが可能なものの他の例を概略的に示す構成図である。  [FIG. 9] FIG. 9 is a diagram showing the adjustment of the high-frequency pulse voltage supply condition to each power supply circuit according to the impedance of each of the upper and lower power supply circuits in the wire electric discharge machine of the present invention. It is a block diagram which shows schematically the other example of a thing.
[図 10]図 10は、本発明のワイヤ放電加工機のうちでワイヤ断線回避機能が付加され たものの一例を概略的に示す構成図である。  FIG. 10 is a configuration diagram schematically showing an example of a wire electric discharge machine of the present invention to which a wire disconnection avoidance function is added.
[図 11]図 11は、図 10に示したワイヤ放電加工機のパルス発振制御部に給電比率復 帰機能を付加したときの給電パターンの一例を示す概略図である。  FIG. 11 is a schematic diagram showing an example of a power feeding pattern when a power feeding ratio recovery function is added to the pulse oscillation control unit of the wire electric discharge machine shown in FIG.
[図 12]図 12は、本発明のワイヤ放電加工機のうちで短絡防止機能が付加されたもの の一例を概略的に示す構成図である。 FIG. 12 is a configuration diagram schematically showing an example of a wire electric discharge machine to which a short-circuit prevention function is added, according to the present invention.
[図 13]図 13は、本発明のワイヤ放電加工機のうちで加工液供給装置カゝら上側ノズル および下側ノズルの各々に供給される加工液の流量に応じて第 1パルス発振器およ び第 2パルス発振器それぞれの動作を制御する機能が付加されたものの一例を概略 的に示す構成図である。  [FIG. 13] FIG. 13 shows a first pulse oscillator and a first pulse oscillator according to the flow rate of the machining liquid supplied to each of the upper nozzle and the lower nozzle in the wire electric discharge machine of the present invention. FIG. 6 is a configuration diagram schematically showing an example in which a function for controlling the operation of each of the second pulse oscillators is added.
[図 14]図 14は、本発明のワイヤ放電加工機のうちで入力部カゝら入力された上側給電 状態、下側給電状態、および両側給電状態の出現パターンを給電制御データに変 換するデータ変換部が制御装置に設けられたものの一例を概略的に示す構成図で ある。  [FIG. 14] FIG. 14 converts the appearance pattern of the upper power supply state, the lower power supply state, and the both-side power supply state input from the input section of the wire electric discharge machine of the present invention into power supply control data. It is a block diagram which shows roughly an example of what the data conversion part was provided in the control apparatus.
[図 15]図 15は、本発明のワイヤ放電カ卩工機のうちでスイッチング素子部が 1つの給 電部に 1つのみ設けられたものの一例を概略的に示す構成図である。  FIG. 15 is a configuration diagram schematically illustrating an example of the wire discharge machine of the present invention in which only one switching element unit is provided in one power supply unit.
符号の説明 1 ワイヤ電極 Explanation of symbols 1 Wire electrode
20a 上側給電部 20a Upper power feeding part
20b 下側給電部 20b Lower power supply
25a, 28a 第 1スイッチング素子部 25a, 28a First switching element
25b, 28b 第 2スイッチング素子部 25b, 28b Second switching element
30 メイン電源 30 Main power supply
30a 第 1メイン電源 30a 1st main power supply
30b 第 2メイン電源 30b Second main power supply
35a 第 1パルス発振器 35a First pulse oscillator
35b 第 2パルス発振器 35b Second pulse oscillator
50 電圧検出装置 50 Voltage detector
55 テーブル駆動装置 55 Table drive unit
57 速度計測装置 57 Speed measuring device
60 加工液供給装置 60 Processing fluid supply device
65a 上側ノズル 65a Upper nozzle
65b 下側ノズル 65b lower nozzle
70 インピーダンス計測部 70 Impedance measurement section
75 断線予兆検出部 75 Disconnection sign detector
80, 80A〜80D カロェ機本体 80, 80A ~ 80D Karoe machine itself
85 記憶部 85 Memory
90, 90a〜90f 演算 ·制御部  90, 90a to 90f Operation / control unit
95, 95a〜95f パルス発振制御部 95, 95a to 95f Pulse oscillation controller
00 板厚決定部00 Thickness determination section
05 流量比較部05 Flow rate comparison part
10, 110A〜110J 制御装置10, 110A ~ 110J Controller
30, 140, 150, 160, 170, 180, 190 ワイヤ放電加工機00, 210, 220, 230, 240 ワイヤ放電加工機 30, 140, 150, 160, 170, 180, 190 Wire EDM 00, 210, 220, 230, 240 Wire EDM
W 被加工物 発明を実施するための最良の形態 W Workpiece BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明のワイヤ放電加工機の実施の形態について、図面を参照して詳細に 説明する。なお、本発明は以下に説明する実施の形態に限定されるものではない。  Hereinafter, embodiments of a wire electric discharge machine of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below.
[0017] 実施の形態 1.  [0017] Embodiment 1.
図 1は、本発明のワイヤ放電加工機の一例を概略的に示す構成図である。同図に 示すワイヤ放電加工機 130は、数値制御の下に被加工物 Wを所定形状に放電加工 する加工機本体 80と、該加工機本体 80の動作を数値制御する制御装置 110と、有 線または無線により制御装置 110に接続されて該制御装置 110に指令やデータ等 を入力する入力部 115と、制御装置 110に入力された指令やデータ等あるいは加工 機本体 80の運転状況等を表示する表示部 120とを具備して ヽる。  FIG. 1 is a block diagram schematically showing an example of a wire electric discharge machine of the present invention. The wire electric discharge machine 130 shown in the figure includes a processing machine main body 80 that performs electric discharge machining of the workpiece W into a predetermined shape under numerical control, a control device 110 that numerically controls the operation of the processing machine main body 80, and an existence. An input unit 115 connected to the control device 110 by wire or wireless to input commands and data to the control device 110, and displays the commands and data input to the control device 110 or the operating status of the processing machine body 80, etc. The display unit 120 is provided.
[0018] 上記の加工機本体 80は、被加工物 Wの板厚方向に走行するワイヤ電極 1に高周 波パルス電圧を印加し、ワイヤ電極 1と被力卩ェ物 Wとの間に生じる放電により被カロェ 物 Wを加工する。被力卩ェ物 Wは X— Y平面(水平面)上で移動可能なテーブル 5〖こ 載置され、ワイヤ電極 1は張力が付与された状態で被加工物 Wをその板厚方向に横 切るように走行する。  [0018] The processing machine main body 80 applies a high-frequency pulse voltage to the wire electrode 1 that travels in the thickness direction of the workpiece W and is generated between the wire electrode 1 and the workpiece W. The workpiece W is processed by electric discharge. The workpiece W is placed on a table that can move on the X—Y plane (horizontal plane), and the wire electrode 1 crosses the workpiece W in the thickness direction with tension applied. Travel like so.
[0019] ワイヤ電極 1を所定方向に走行させるために、テーブル 5の上方にはワイヤボビン 1 0、テンションローラ 12a、ガイドローラ 14a、およびワイヤガイド 16aが配置され、テー ブル 5の下方にはワイヤガイド 16b、ガイドローラ 14b、およびテンションローラ 12gが 配置されている。ワイヤボビン 10に卷回されたワイヤ電極 1は、テンションローラ 12a により引き出され、ガイドローラ 14a、ワイヤガイド 16a、ワイヤガイド 16b、およびガイド ローラ 14bにより鉛直方向に案内された後にテンションローラ 12bに引き取られて、ヮ ィャ回収用箱 18内に回収される。テンションローラ 12bによるワイヤ電極 1の引取り速 度の方がテンションローラ 12aによるワイヤ電極 1の引き出し速度よりも速く設定される 結果として、ワイヤ電極 1は張力が付与された状態で被加工物 Wをその板厚方向に 横切るように走行する。  In order to run the wire electrode 1 in a predetermined direction, a wire bobbin 10, a tension roller 12 a, a guide roller 14 a, and a wire guide 16 a are disposed above the table 5, and a wire guide is disposed below the table 5. 16b, guide roller 14b, and tension roller 12g are arranged. The wire electrode 1 wound around the wire bobbin 10 is pulled out by the tension roller 12a, guided in the vertical direction by the guide roller 14a, the wire guide 16a, the wire guide 16b, and the guide roller 14b, and then pulled by the tension roller 12b. It is recovered in the carrier recovery box 18. The pulling speed of the wire electrode 1 by the tension roller 12b is set to be faster than the pulling speed of the wire electrode 1 by the tension roller 12a. As a result, the wire electrode 1 can be applied to the workpiece W in a tensioned state. Drive across the thickness direction.
[0020] また、ワイヤ電極 1に高周波パルス電圧を印加するために、一対の給電部 20a, 20 bがテーブル 5の上下に分かれて配置されている。テーブル 5の上方に配置された給 電部 20a (以下、「上側給電部 20a」という。)はワイヤガイド 16aの上方に位置してお り、テーブル 5の下方に配置された給電部 20b (以下、「下側給電部 20b」という。)は ワイヤガイド 16bの下方に位置している。そして、上側給電部 20aには少なくとも 1つ のスイッチング素子を有する第 1スイッチング素子部 25aが接続され、該第 1スィッチ ング素子部 25aにはメイン電源 30と第 1パルス発振器 35aとが接続されている。また、 下側給電部 20bには少なくとも 1つのスイッチング素子を有する第 2スイッチング素子 部 25bが接続され、該第 2スイッチング素子部 25bにはメイン電源 30と第 2パルス発 振器 35bとが接続されている。メイン電源 30は、被力卩ェ物 Wにおける板厚方向中央 部にも接続されている。 In addition, a pair of power feeding units 20 a and 20 b are arranged separately above and below the table 5 in order to apply a high-frequency pulse voltage to the wire electrode 1. A power supply unit 20a (hereinafter referred to as “upper power supply unit 20a”) disposed above the table 5 is positioned above the wire guide 16a. Thus, the power feeding portion 20b disposed below the table 5 (hereinafter referred to as “lower power feeding portion 20b”) is located below the wire guide 16b. A first switching element unit 25a having at least one switching element is connected to the upper power feeding unit 20a, and a main power source 30 and a first pulse oscillator 35a are connected to the first switching element unit 25a. Yes. In addition, a second switching element unit 25b having at least one switching element is connected to the lower power feeding unit 20b, and a main power supply 30 and a second pulse oscillator 35b are connected to the second switching element unit 25b. ing. The main power supply 30 is also connected to the central portion in the thickness direction of the workpiece W.
[0021] 上記のメイン電源 30は、その運転時に所定の高さの電圧を第 1スイッチング素子部 25aおよび第 2スイッチング素子部 25bの各々に供給し、第 1パルス発振器 35aおよ び第 2パルス発振器 35bは、第 1スイッチング素子部 25aまたは第 2スイッチング素子 部 25bに当該スイッチング素子部 25a, 25bの開閉動作を制御するパルス信号を供 給する。第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれの動作を後述 のパルス発振制御部 95により制御して各スイッチング素子部 25a, 25bを所定のパタ ーンで開閉させることにより、上側給電部 20aもしくは下側給電部 20bからワイヤ電極 1に、または上側給電部 20aと下側給電部 20bの両方力もワイヤ電極 1に上述の高周 波パルス電圧を印加することができる。 [0021] The main power supply 30 supplies a voltage having a predetermined height to each of the first switching element unit 25a and the second switching element unit 25b during operation, and the first pulse oscillator 35a and the second pulse The oscillator 35b supplies the first switching element unit 25a or the second switching element unit 25b with a pulse signal that controls the opening / closing operation of the switching element unit 25a, 25b. The operations of the first pulse oscillator 35a and the second pulse oscillator 35b are controlled by a pulse oscillation control unit 95, which will be described later, so that the switching element units 25a and 25b are opened and closed with a predetermined pattern, whereby the upper power feeding unit 20a or The above-described high frequency pulse voltage can be applied to the wire electrode 1 from the lower power supply unit 20b to the wire electrode 1 or both forces of the upper power supply unit 20a and the lower power supply unit 20b.
[0022] なお、被力卩ェ物 Wの放電力卩ェを開始あるいは再開するにあたっては、まず、ワイヤ 電極 1と被力卩ェ物 Wとの間隙が所定の広さに収まっている力否か等を検出するため に、サブ電源 40から比較的低 、パルス電圧が第 3スイッチング素子部 45aを介して 上側給電部 20aに供給されると共に第 4スイッチング素子部 45bを介して下側給電部 20bに供給される。このとき、第 3スイッチング素子部 45aおよび第 4スイッチング素子 部 45bの各々が互いに同期して閉とされる。そして、各給電部 20a, 20bと被力卩ェ物 Wとの電位差が電圧検出装置 50により検出され、当該検出結果が所定の範囲内に あつたときに初めてメイン電源 30が動作する。一方、上記の検出結果が所定の範囲 に収まっていな力つたときには、テーブル 5を移動させることで被力卩ェ物 Wとワイヤ電 極 1との間隙の広さが調節される。テーブル 5を移動させるために、当該テーブル 5に はテーブル駆動装置 55が接続されている。このテーブル駆動装置 55は、被加工物 Wを放電カ卩ェする間も、テーブル 5を所定方向に移動させる。なお、テーブル 5はリ ユアエンコーダやロータリーエンコーダ等の速度センサ(図示せず。 )を備えており、 該速度センサの検出結果を基に速度計測装置(図示せず。 )がテーブル 5の駆動速 度を計測して、計測結果を後述の演算,制御部 90に伝える。 [0022] When starting or restarting the discharge force of the workpiece W, first, it is necessary to determine whether the gap between the wire electrode 1 and the workpiece W is within a predetermined area. In order to detect this, the sub-power supply 40 is relatively low, and the pulse voltage is supplied to the upper power feeding unit 20a through the third switching element unit 45a and the lower power feeding unit through the fourth switching element unit 45b. Supplied to 20b. At this time, each of the third switching element unit 45a and the fourth switching element unit 45b is closed in synchronization with each other. Then, the potential difference between each of the power supply units 20a, 20b and the power receiver W is detected by the voltage detection device 50, and the main power supply 30 operates only when the detection result falls within a predetermined range. On the other hand, when the detection result is not within the predetermined range, the width of the gap between the workpiece W and the wire electrode 1 is adjusted by moving the table 5. In order to move the table 5, a table driving device 55 is connected to the table 5. This table drive device 55 is a workpiece While discharging W, the table 5 is moved in a predetermined direction. The table 5 includes a speed sensor (not shown) such as a linear encoder or a rotary encoder. Based on the detection result of the speed sensor, the speed measuring device (not shown) The degree is measured and the measurement result is transmitted to the calculation and control unit 90 described later.
[0023] また、被力卩ェ物 Wの放電カ卩ェ時におけるワイヤ電極 1の過熱を抑えて当該ワイヤ電 極 1の断線を防止するために、被力卩ェ物 Wの放電カ卩ェ時には、加工液供給装置 60 力 上側ノズル 65aと下側ノズル 65bとを介して被カ卩ェ物 Wとワイヤ電極 1との間に加 工液が供給される。上側ノズル 65aは被力卩ェ物 Wの上方に配置されており、下側ノズ ル 65bは被力卩ェ物 Wの下方に配置されている。加工液供給装置 60は、上側ノズル 6 5aへの加工液の供給量(流量)および下側ノズル 65bへの加工液の供給量(流量) をそれぞれ別個に計測する流量計測機能を有して 、る。  [0023] In addition, in order to prevent overheating of the wire electrode 1 and prevent disconnection of the wire electrode 1 during discharge caching of the driven object W, the discharge carriage of the driven object W In some cases, the machining liquid is supplied between the workpiece W and the wire electrode 1 through the upper nozzle 65a and the lower nozzle 65b. The upper nozzle 65a is disposed above the force-receiving object W, and the lower nozzle 65b is disposed below the force-receiving object W. The machining fluid supply device 60 has a flow rate measurement function for separately measuring the machining fluid supply amount (flow rate) to the upper nozzle 65a and the machining fluid supply amount (flow rate) to the lower nozzle 65b. The
[0024] 一方、加工機本体 80の動作を制御する制御装置 110は、記憶部 85と、演算'制御 部 90と、パルス発振制御部 95とを備えている。  On the other hand, the control device 110 that controls the operation of the processing machine main body 80 includes a storage unit 85, a calculation / control unit 90, and a pulse oscillation control unit 95.
[0025] 上記の記憶部 85には、テーブル駆動装置 55や加工液供給装置 60等の動作の制 御に用いられる数値制御データが格納されていると共に、第 1スイッチング素子部 25 aおよび第 2スイッチング素子部 25bそれぞれの開閉動作を規定してワイヤ電極 1へ の給電の形態を制御する給電制御データが格納されて 、る。この給電制御データは 、標準的な放電カ卩ェ条件の下でワイヤ電極 1と被力卩ェ物 Wとの短絡やワイヤ断線が 防止されるように設定されたものであり、当該給電制御データは、第 2スイッチング素 子部 25bを開にしたまま第 1スイッチング素子部 25aを開閉させるデータと、第 1スイツ チング素子部 25aを開にしたまま第 2スイッチング素子部 25bを開閉させるデータと、 第 1スイッチング素子部 25aおよび第 2スイッチング 25bの各々を互いに同期させて 開閉させるデータとを含んでいる。  The storage unit 85 stores numerical control data used for controlling operations of the table driving device 55 and the machining fluid supply device 60, and the first switching element unit 25a and the second switching unit unit 25a. The power supply control data for controlling the mode of power supply to the wire electrode 1 by defining the opening / closing operation of each switching element unit 25b is stored. This power supply control data is set so as to prevent a short circuit or wire breakage between the wire electrode 1 and the workpiece W under standard discharge cab conditions. Data for opening and closing the first switching element part 25a with the second switching element part 25b open, data for opening and closing the second switching element part 25b with the first switching element part 25a open, and And data for opening and closing each of the first switching element portion 25a and the second switching 25b in synchronization with each other.
[0026] 記憶部 85に格納する給電制御データは 1種類のみであってもよいし、ワイヤ放電 加工機 130により複数種の製品を作製することが予想ないし予定される場合には、 製品毎に対応付けられた複数種の給電制御データであってもよい。  [0026] The power supply control data stored in the storage unit 85 may be only one type, or when it is expected or scheduled to produce a plurality of types of products by the wire electric discharge machine 130, for each product. A plurality of types of power supply control data associated with each other may be used.
[0027] 演算 ·制御部 90は、ワイヤ放電加工機 130の運転開始を指示する指令が後述の入 力部 115から入力されたときに、まずサブ電源 40を起動させる。そして、電圧検出装 置 50の検出結果が所定の範囲に収まっている力否かを判断し、所定の範囲に収ま つていたときにはメイン電源 30を起動させる。その後、記憶部 85に格納されている数 値制御データに基づいてテーブル駆動装置 55や力卩ェ液供給装置 60等の動作を制 御する。被加工物 Wの放電加工時には、数値制御データに基づいてテーブル駆動 装置 55の動作が制御されてテーブル 5が所定方向に移動すると共に、数値制御デ ータに基づいて力卩工液供給装置 60から各ノズル 65a, 65bにそれぞれ所定流量の 加工液が供給される。 The calculation / control unit 90 first activates the sub power supply 40 when a command for instructing the start of operation of the wire electric discharge machine 130 is input from the input unit 115 described later. And the voltage detection device It is determined whether or not the detection result of the device 50 is within a predetermined range, and when it is within the predetermined range, the main power source 30 is activated. Thereafter, based on the numerical control data stored in the storage unit 85, the operations of the table driving device 55, the force liquid supply device 60, and the like are controlled. At the time of electric discharge machining of the workpiece W, the operation of the table driving device 55 is controlled based on the numerical control data to move the table 5 in a predetermined direction, and the force application liquid supply device 60 based on the numerical control data 60 The machining fluid of a predetermined flow rate is supplied from the nozzles 65a and 65b.
[0028] また、演算 ·制御部 90は、電圧検出装置 50による電位差の検出結果を基にワイヤ 電極 1から被力卩ェ物 Wに印加される高周波パルス電圧のエネルギーを求めると共に 、前述の速度計測装置によるテーブル 5の駆動速度を基に加工速度を求める。そし て、これら高周波パルス電圧のエネルギーとカ卩ェ速度等と力ゝら被力卩ェ物 Wの板厚を 逐次算出し、該板厚に応じた制御データを上記の数値制御データ力も読み出して、 ワイヤ電極 1に印加する高周波パルス電圧のエネルギーをフィードバック制御する。 具体的には、印加する高周波パルス電圧のパルス間隔をフィードバック制御する。さ らに、この演算.制御部 90は表示部 120の動作を制御して、制御装置 110に入力さ れた指令やデータ等、あるいは加工機本体 80の運転状況等を表示 120に表示させ る。  [0028] Further, the calculation / control unit 90 obtains the energy of the high-frequency pulse voltage applied from the wire electrode 1 to the target object W based on the detection result of the potential difference by the voltage detection device 50, and the speed described above. The machining speed is obtained based on the driving speed of the table 5 by the measuring device. Then, the plate thickness of the workpiece W is sequentially calculated from the energy of the high-frequency pulse voltage, the carriage speed, and the force, and the control data corresponding to the plate thickness is also read out from the above numerical control data force. The feedback control is performed on the energy of the high-frequency pulse voltage applied to the wire electrode 1. Specifically, the pulse interval of the high frequency pulse voltage to be applied is feedback controlled. In addition, this calculation / control unit 90 controls the operation of the display unit 120 to display the command and data input to the control device 110 or the operation status of the processing machine body 80 on the display 120. .
[0029] パルス発振制御部 95は、演算,制御部 95による制御の下に動作を開始し、記憶部 85に格納されている所定の給電制御データを読み出して、該給電制御データを基 に第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれの動作を制御する。 記憶部 85に複数種の給電制御データが格納されている場合、ユーザは被加工物 W の放電加工に先だって所望の給電制御データを入力部 115により指定する。このと き、ユーザが所望の給電制御データを選択し易いように、記憶部 85に格納されてい る給電制御データが表示部 120に表示される。  [0029] The pulse oscillation control unit 95 starts operation under the control of the arithmetic and control unit 95, reads predetermined power supply control data stored in the storage unit 85, and performs a first operation based on the power supply control data. The operation of each of the one pulse oscillator 35a and the second pulse oscillator 35b is controlled. When a plurality of types of power supply control data are stored in the storage unit 85, the user designates desired power supply control data with the input unit 115 prior to the electric discharge machining of the workpiece W. At this time, the power supply control data stored in the storage unit 85 is displayed on the display unit 120 so that the user can easily select desired power supply control data.
[0030] パルス発振制御部 95が読み出す給電制御データには、上述したように、第 2スイツ チング素子部 25bを開にしたまま第 1スイッチング素子部 25aを開閉させるデータと、 第 1スイッチング素子部 25aを開にしたまま第 2スイッチング素子部 25bを開閉させる データと、第 1スイッチング素子部 25aおよび第 2スイッチング 25bの各々を互いに同 期させて開閉させるデータとが含まれている。そのため、被力卩ェ物 Wを放電カ卩ェする 期間中は、上側給電部 20aのみ力もワイヤ電極 1に高周波パルス電圧が印加される 上側給電状態と、下側給電部 20bのみ力 ワイヤ電極 1に高周波パルス電圧が印加 される下側給電状態と、上側給電部 20aおよび下側給電部 20bの両方力もワイヤ電 極 1に高周波パルス電圧が印加される両側給電状態とが所定のパターンで混在する ことになる。 [0030] As described above, the power supply control data read by the pulse oscillation control unit 95 includes data for opening and closing the first switching element unit 25a with the second switching element unit 25b open, and the first switching element unit The data for opening and closing the second switching element portion 25b with 25a kept open is the same as each other of the first switching element portion 25a and the second switching element 25b. Data to be opened and closed. For this reason, during the period during which discharge of the object W is carried out, only the upper power supply unit 20a is applied with a high-frequency pulse voltage to the wire electrode 1, and the upper power supply state is applied only to the lower power supply unit 20b. The lower power supply state where a high-frequency pulse voltage is applied to the wire electrode 1 and the both-side power supply state where the high-frequency pulse voltage is applied to the wire electrode 1 are mixed in a predetermined pattern. It will be.
[0031] 図 2は、各パルス発振器 35a, 35b力も第 1スイッチング素子部 25aまたは第 2スイツ チング素子部 25bに供給されるパルス信号の波形と、ワイヤ電極 1への給電状態との 関係を示す概略図である。  FIG. 2 shows the relationship between the waveform of the pulse signal supplied to the first switching element unit 25a or the second switching element unit 25b and the power supply state to the wire electrode 1 for each pulse oscillator 35a, 35b. FIG.
[0032] 同図に示すように、第 1パルス発振器 35aから第 1スイッチング素子部 25aに供給さ れるパルス信号がローレベル Lとハイレベル Hとを所定の周期で繰り返すパルス波形 で、第 2パルス発振器 35bから第 2スイッチング素子部 25bに供給されるパルス信号 力 一レベル Lのままであるときには、第 2スイッチング素子部 25bが開のまま第 1スィ ツチング素子部 25aが開閉する結果として、上側給電状態 UFとなる。逆に、第 1パル ス発振器 35aから第 1スイッチング素子部 25aに供給されるノ ルス信号がローレベル Lのままで、第 2パルス発振器 35bから第 2スイッチング素子部 25bに供給されるパル ス信号がローレベル Lとハイレベル Hとを所定の周期で繰り返すパルス波形であると きには、第 1スイッチング素子部 25aが開のまま第 2スイッチング素子部 25bが開閉す るので、下側給電状態 LFとなる。そして、第 1パルス発振器 35aから第 1スイッチング 素子部 25aに供給されるパルス信号と第 2パルス発振器 35bから第 2スイッチング素 子部 25bに供給されるパルス信号とが互いに同期したパルス波形であるときには、第 1スイッチング素子部 25aおよび第 2スイッチング素子部 25bが互いに同期して開閉 するので、両側給電状態 BFとなる。  [0032] As shown in the figure, the pulse signal supplied from the first pulse oscillator 35a to the first switching element unit 25a has a pulse waveform in which the low level L and the high level H repeat at a predetermined cycle, and the second pulse When the pulse signal force supplied from the oscillator 35b to the second switching element section 25b remains at one level L, the first switching element section 25a opens and closes while the second switching element section 25b remains open. State UF. On the other hand, the pulse signal supplied from the second pulse oscillator 35b to the second switching element unit 25b while the pulse signal supplied from the first pulse oscillator 35a to the first switching element unit 25a remains at the low level L. Is a pulse waveform that repeats low level L and high level H in a predetermined cycle, the second switching element 25b opens and closes with the first switching element 25a open, so the lower power supply state It becomes LF. When the pulse signal supplied from the first pulse oscillator 35a to the first switching element unit 25a and the pulse signal supplied from the second pulse oscillator 35b to the second switching element unit 25b have a pulse waveform synchronized with each other. Since the first switching element portion 25a and the second switching element portion 25b open and close in synchronization with each other, the both-side power feeding state BF is obtained.
[0033] 本件発明者等は、ワイヤ電極 1と被力卩ェ物 Wとの短絡の発生頻度やワイヤ断線の 発生の難易は、ワイヤ電極 1の材質や線径、使用する加工液の液質や各ノズル 65a , 65bからの加工液の供給量、被加工物 Wの材質や当該被加工物 Wから作製しょう とする製品の形状等、加工条件に応じて変動するものの、上述した各給電状態を短 い周期で切り換えると短絡が頻発して加工速度が上がらなくなり易いことを実験により 明らかにした。また、各給電状態下でのパルス数を多くしすぎるとワイヤ断線が起こり 易くなることも、実験的に明らかにした。 [0033] The inventors of the present invention determined that the frequency of occurrence of a short circuit between the wire electrode 1 and the workpiece W and the difficulty of occurrence of wire breakage depend on the material and wire diameter of the wire electrode 1 and the quality of the working fluid used. The above-mentioned power supply states vary depending on the processing conditions, such as the amount of processing fluid supplied from each nozzle 65a and 65b, the material of the workpiece W, and the shape of the product to be manufactured from the workpiece W. Experiments have shown that short-circuiting frequently occurs and machining speed does not increase easily when switching at a short cycle. Revealed. It was also experimentally clarified that wire breakage is likely to occur if the number of pulses under each power supply condition is too large.
[0034] 例えば、上側給電状態下でワイヤ電極 1に印加する高周波パルス電圧のパルス数 と下側給電状態下でワイヤ電極 1に印加する高周波パルス電圧のパルス数との和を 、両側給電状態下でワイヤ電極 1に印加する高周波パルス電圧のパルス数と同数に した場合には、各給電状態下でのパルス数を 3未満にするとワイヤ電極 1と被加工物 Wとの短絡が頻発して加工速度が大幅に低下することがある。また、各給電状態下 でのパルス数を 10000以上にすると、ワイヤ電極 1と被力卩ェ物 Wとの間での放電点 の位置が被加工物 Wの板厚方向にそれ程分散しなくなって、ワイヤ断線が起こり易く なることがある。  [0034] For example, the sum of the number of high-frequency pulse voltages applied to the wire electrode 1 under the upper power supply state and the number of high-frequency pulse voltages applied to the wire electrode 1 under the lower power supply state If the number of high-frequency pulse voltages applied to wire electrode 1 is the same as the number of pulses in each power supply state, the number of pulses under each power supply state will be less than 3, causing short-circuiting between wire electrode 1 and workpiece W. The speed may be significantly reduced. Also, if the number of pulses under each power supply state is 10000 or more, the position of the discharge point between the wire electrode 1 and the workpiece W is not so dispersed in the thickness direction of the workpiece W. Wire breakage may occur easily.
[0035] さらに、本件発明者等は、ワイヤ電極 1に印加する総パルス数に占める両側給電状 態下でのパルス数の割合が少なすぎるとワイヤ電極 1と被力卩ェ物 Wとの短絡の発生 頻度が高くなり、多すぎるとワイヤ断線が起こり易くなることを実験的に明らかにした。 例えば、上記の割合が 50%未満では短絡が起こり易くなり、 95%以上ではワイヤ断 線が起こり易くなることがある。  [0035] Further, the inventors of the present invention have short-circuited the wire electrode 1 and the driven object W if the ratio of the number of pulses under the double-sided feeding state in the total number of pulses applied to the wire electrode 1 is too small. It has been experimentally clarified that wire breakage is likely to occur if the frequency of occurrence increases. For example, if the above ratio is less than 50%, short circuit is likely to occur, and if it is 95% or more, wire breakage is likely to occur.
[0036] これらのことを考慮すると、ワイヤ電極 1と被力卩ェ物 Wとの短絡およびワイヤ断線は 、上側給電状態、下側給電状態、および両側給電状態を適宜混在させることで抑制 可能であることが判る。  [0036] In consideration of the above, the short circuit and the wire breakage between the wire electrode 1 and the driven object W can be suppressed by appropriately mixing the upper power supply state, the lower power supply state, and the both-side power supply state. I know that there is.
[0037] 上述したワイヤ放電力卩ェ機 130では、記憶部 85に格納されている前述の給電制御 データを基にパルス発振制御部 95が第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれの動作を制御する結果として、上側給電状態と下側給電状態と両側給 電状態とが所定のパターンで混在するように給電制御される。したがって、適当な給 電制御データを実験により求めて記憶部 85に予め格納しておくことにより、ワイヤ電 極 1と被力卩ェ物 Wとの短絡およびワイヤ断線をそれぞれ抑制することできる。そのた め、ワイヤ放電力卩ェ機 130では生産性を向上させることが容易である。  [0037] In the wire discharge force machine 130 described above, the pulse oscillation control unit 95 operates based on the above-described power supply control data stored in the storage unit 85, and the operations of the first pulse oscillator 35a and the second pulse oscillator 35b, respectively. As a result of controlling the power supply, the power supply is controlled so that the upper power supply state, the lower power supply state, and the both-side power supply state are mixed in a predetermined pattern. Therefore, by obtaining appropriate power supply control data through experiments and storing them in the storage unit 85 in advance, it is possible to suppress short-circuiting and wire breakage between the wire electrode 1 and the driven object W, respectively. Therefore, it is easy to improve productivity in the wire discharge power machine 130.
[0038] 実施の形態 2.  [0038] Embodiment 2.
本発明のワイヤ放電加工機においては、被加工物の板厚方向中央部でのワイヤ電 極の過熱を抑えるために、メイン電源を第 1メイン電源と第 2メイン電源の 2つに分ける ことができる。 In the wire electric discharge machine of the present invention, the main power source is divided into two main power sources, the first main power source and the second main power source, in order to suppress overheating of the wire electrode at the center of the workpiece in the plate thickness direction. be able to.
[0039] 図 3は、メイン電源が第 1メイン電源と第 2メイン電源とを有するワイヤ放電加工装置 の一例を概略的に示す構成図である。同図に示すワイヤ放電加工装置 140では、メ イン電源 30が第 1メイン電源 30aと第 2メイン電源 30bとを有して 、る。第 1メイン電源 30aは第 1スイッチング素子部 25aを介して上側給電部 20aに接続されていると共に 、被加工物 Wにおける板厚方向上部に接続されている。また、第 2メイン電源 30bは 第 2スイッチング素子部 25bを介して下側給電部 20bに接続されて 、ると共に、被カロ ェ物 Wにおける板厚方向下部に接続されている。これら第 1メイン電源 30aおよび第 2メイン電源 30bの動作は、演算 ·制御部 90aにより制御される。  FIG. 3 is a configuration diagram schematically illustrating an example of a wire electrical discharge machining apparatus in which the main power source includes a first main power source and a second main power source. In the wire electric discharge machining apparatus 140 shown in the figure, the main power supply 30 has a first main power supply 30a and a second main power supply 30b. The first main power supply 30a is connected to the upper power feeding part 20a via the first switching element part 25a, and is connected to the upper part in the plate thickness direction of the workpiece W. The second main power supply 30b is connected to the lower power feeding unit 20b via the second switching element unit 25b, and is also connected to the lower part of the workpiece W in the thickness direction. The operations of the first main power supply 30a and the second main power supply 30b are controlled by the calculation / control section 90a.
[0040] ワイヤ放電力卩工機 140における上述以外の構成は図 1に示したワイヤ放電力卩工機 130における構成と同様であるので、図 3に示した構成部材のうちで図 1に示した構 成部材と共通するものについては、図 1で用いた参照符号と同じ参照符号を付して その説明を省略する。なお、ワイヤ放電加工機 140を構成する加工機本体には新た な参照符号 80Aを付し、制御装置には新たな参照符号 110Aを付してある。  [0040] Since the configuration of the wire discharge power machine 140 other than the above is the same as that of the wire discharge power machine 130 shown in FIG. 1, among the components shown in FIG. The same reference numerals as those used in FIG. 1 are given to those common to the constituent members, and the description thereof is omitted. Note that the processing machine main body constituting the wire electric discharge machine 140 is given a new reference numeral 80A, and the control device is given a new reference numeral 110A.
[0041] このように構成されたワイヤ放電力卩工機 140では、第 1メイン電源 30aが被力卩ェ物 W における板厚方向上部に接続され、第 2メイン電源 30bが被加工物 Wにおける板厚 方向下部に接続されていることから、両側給電状態のときの第 1メイン電源 30aから 放電点までのインピーダンスおよび第 2メイン電源 30bから放電点までのインピーダ ンスは、それぞれ、放電点の位置が被加工物 Wの板厚方向中央部に近づくほど大き くなる。その結果として、ワイヤ電極 1と被力卩ェ物 Wとの間の放電電流値は、放電点の 位置が被加工物 Wの板厚方向中央部に近づくほど小さくなる。  [0041] In the wire discharge power machine 140 configured as described above, the first main power supply 30a is connected to the upper part in the plate thickness direction of the workpiece W and the second main power supply 30b is connected to the workpiece W. Since it is connected to the lower part of the plate thickness direction, the impedance from the first main power supply 30a to the discharge point and the impedance from the second main power supply 30b to the discharge point when both sides are fed are the position of the discharge point, respectively. However, the closer to the center of the workpiece W in the plate thickness direction, the larger it becomes. As a result, the discharge current value between the wire electrode 1 and the workpiece W decreases as the position of the discharge point approaches the center of the workpiece W in the plate thickness direction.
[0042] 図 4は、ワイヤ放電加工機 140を両側給電状態としたときの放電位置 (放電点の位 置)と放電電流値との関係を概略的に示すグラフである。同図中の実線 Lが上記の  FIG. 4 is a graph schematically showing the relationship between the discharge position (position of the discharge point) and the discharge current value when the wire electric discharge machine 140 is in a power supply state on both sides. The solid line L in the figure is the above
1 関係を示している。参考のために、図 1に示したワイヤ放電力卩ェ機 130における上記 の関係を図 4中に破線 Lで示す。実線 Lで示す放電電流値と破線 Lで示す放電電  1 Indicates a relationship. For reference, the above relationship in the wire discharge force machine 130 shown in FIG. 1 is indicated by a broken line L in FIG. The discharge current value indicated by the solid line L and the discharge current indicated by the broken line L
2 1 2  2 1 2
流値とは、同一加工条件下で得られたものである。  The flow value is obtained under the same processing conditions.
[0043] 図 4力ら明ら力なように、ワイヤ放電加工機 130, 140のいずれにおいても、ワイヤ 電極と被加工物との間の放電電流値は放電点の位置が被加工物の板厚方向中央 部に近づくほど小さくなる力 その低下の度合いはワイヤ放電加工機 140における方 力 Sワイヤ放電加工機 130におけるよりも大きい。そして、被加工物の板厚方向中央部 での放電電流値自体も、同一加工条件下であればワイヤ放電力卩ェ機 140における 方がワイヤ放電力卩工機 130におけるよりも小さい。 [0043] As shown in FIG. 4, in both of the wire electric discharge machines 130 and 140, the discharge current value between the wire electrode and the workpiece is the position of the discharge point at the plate of the workpiece. Thickness center The force that decreases as it gets closer to the part is greater in force than that in the wire electric discharge machine 140 than in the S wire electric discharge machine 130. Also, the discharge current value itself at the center portion in the plate thickness direction of the workpiece is smaller in the wire discharge force machine 140 than in the wire discharge force machine 130 under the same machining conditions.
[0044] 一般に、ワイヤ放電カ卩工機ではワイヤ電極と被カ卩ェ物との間に加工液を供給するこ とで放電カ卩ェ時におけるワイヤ電極の過熱が抑えられている力 被カ卩ェ物の板厚方 向中央部では、当該被加工物の板厚方向上部や板厚方向下部に比べて加工液に よる冷却が行われにくぐそのため被カ卩ェ物の板厚方向中央でワイヤ電極が過度に 過熱してワイヤ断線を起こすことがしばしばある。  [0044] In general, in a wire discharge machine, the force applied to suppress overheating of the wire electrode during the discharge cage by supplying a machining fluid between the wire electrode and the workpiece. At the center of the workpiece in the plate thickness direction, the workpiece is less cooled by the machining fluid than in the upper and lower portions of the workpiece in the plate thickness direction. In many cases, the wire electrode is overheated, causing wire breakage.
[0045] し力しながら、図 3に示したワイヤ放電力卩ェ機 140においては、両側給電状態とした ときの放電電流値が被加工物 Wの板厚方向中央部に近づくほど小さくなるので、被 加工物 Wの板厚方向中央部にお!、てもワイヤ電極 1の過度の過熱を抑え易!、。その ため、実施の形態 1で説明したワイヤ放電加工機 130 (図 1参照)に比べて、ワイヤ断 線を防止することが容易である。  [0045] However, in the wire discharge force machine 140 shown in FIG. 3, the discharge current value in the double-sided power supply state becomes smaller as it approaches the central portion in the plate thickness direction of the workpiece W. In the center of the workpiece W in the thickness direction, it is easy to suppress excessive overheating of the wire electrode 1! Therefore, it is easier to prevent the wire breakage compared to the wire electric discharge machine 130 (see FIG. 1) described in the first embodiment.
[0046] したがって、ワイヤ放電力卩工機 140によれば、ワイヤ放電力卩工機 130と同様に上側 給電状態と下側給電状態と両側給電状態とを所定のパターンで混在させることによ つてワイヤ電極 1と被力卩ェ物 Wとの短絡を防止することができると共に、ワイヤ放電カロ ェ機 130に比べてワイヤ断線を抑制することが容易になる。その結果として、ワイヤ 放電加工機 130に比べて生産性を向上させることが容易になる。  Therefore, according to the wire discharge power machine 140, similarly to the wire discharge power machine 130, the upper power supply state, the lower power supply state, and the both-side power supply state are mixed in a predetermined pattern. Short circuit between the wire electrode 1 and the workpiece W can be prevented, and wire breakage can be easily suppressed as compared with the wire discharge calorifier 130. As a result, it becomes easier to improve productivity as compared with the wire electric discharge machine 130.
[0047] 実施の形態 3.  [0047] Embodiment 3.
ワイヤ放電加工機では、 Z軸高さ(上側給電部の相対的な高さ)や被加工物の板厚 が変わると放電点から各給電部までの距離が変わり、これに伴って上側給電部を経 て放電点に達する給電回路 (以下、「上側給電回路」という。)、および下側給電部を 経て放電点に達する給電回路 (以下、「下側給電回路」という。)それぞれのインピー ダンスに偏りが生じる。このようなインピーダンスの偏りは各給電回路での放電電流の 大きさに差異をもたらし、放電電流の大き 、給電回路 (インピーダンスの小さ!/、給電 回路)ではワイヤ断線が起こり易くなる。  In wire electric discharge machines, when the Z-axis height (relative height of the upper power supply unit) or the thickness of the workpiece changes, the distance from the discharge point to each power supply unit changes. The impedances of the power supply circuit that reaches the discharge point via the power supply (hereinafter referred to as “upper power supply circuit”) and the power supply circuit that reaches the discharge point via the lower power supply section (hereinafter referred to as “lower power supply circuit”). Is biased. Such a bias in impedance causes a difference in the magnitude of the discharge current in each power supply circuit, and wire breakage easily occurs in the magnitude of the discharge current and in the power supply circuit (low impedance! /, Power supply circuit).
[0048] 本発明のワイヤ放電加工機では、上側給電回路と下側給電回路との間でのインピ 一ダンスの偏りに応じて上側給電回路および下側給電回路それぞれへの高周波パ ルス電圧の供給条件を調節して、給電回路間でのインピーダンスの偏りに起因する ワイヤ断線を防止するように構成することができる。 [0048] In the wire electric discharge machine of the present invention, the impedance between the upper feeding circuit and the lower feeding circuit is reduced. Adjust the supply conditions of the high-frequency pulse voltage to each of the upper power supply circuit and the lower power supply circuit according to the bias of the dance, and configure to prevent the wire breakage due to the impedance bias between the power supply circuits be able to.
[0049] 図 5〜図 7は、それぞれ、給電回路間でのインピーダンスの偏りに起因するワイヤ断 線を防止することができるワイヤ放電加工機の一例を概略的に示す構成図である。こ れらの図に示す構成部材のうちで図 1に示した構成部材と共通するものについては、 図 1で用いた参照符号と同じ参照符号を付してその説明を省略する。  FIG. 5 to FIG. 7 are configuration diagrams schematically showing an example of a wire electric discharge machine that can prevent wire disconnection caused by impedance deviation between power feeding circuits. Among the constituent members shown in these drawings, those common to the constituent members shown in FIG. 1 are given the same reference numerals as those used in FIG. 1 and their description is omitted.
[0050] 図 5に示すワイヤ放電力卩工機 150は、パルス発振制御部 95aを有する制御装置 11 OBを備えている。パルス発振制御部 95aは、ユーザによって記憶部 85に予め格納さ れた Z軸高さ(下側給電部 20bに対する上側給電部 20aの高さ)のデータを読み出し 、または記憶部 85に格納されている数値制御データ力も Z軸高さを求め、この Z軸高 さを基準値と比較して上側給電回路および下側給電回路それぞれでのインピーダン スの大小関係を求める。そして、記憶部 85から読み出した給電制御データをインピ 一ダンスの小さ \、給電回路での放電電流値がインピーダンスの大き 、給電回路での 放電電流値に近づくように例えば演算により改変し、該改変した給電制御データを 基に当該パルス発振制御部 95aが第 1パルス発振器 35aおよび第 2パルス発振器 3 5bそれぞれの動作を制御する。  [0050] A wire discharge power machine 150 shown in Fig. 5 includes a control device 11OB having a pulse oscillation control unit 95a. The pulse oscillation control unit 95a reads the data of the Z-axis height (the height of the upper power feeding unit 20a with respect to the lower power feeding unit 20b) stored in advance in the storage unit 85 by the user or stored in the storage unit 85. The numerical control data force also determines the Z-axis height, and compares the Z-axis height with the reference value to determine the magnitude relationship between the impedances of the upper and lower power supply circuits. Then, the power supply control data read from the storage unit 85 is modified by, for example, calculation so that the impedance is small, the discharge current value in the power supply circuit is close to the impedance, and the discharge current value in the power supply circuit is approximated, for example. The pulse oscillation control unit 95a controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the supplied power supply control data.
[0051] 例えば、高周波パルス電圧でのパルス長またはパルス間隔を変更したり、供給する パルス数を変更したりしてワイヤ電極 1に供給する高周波パルス電圧のエネルギーを 調節することにより、放電電流値を調節することができる。第 1スイッチング素子部 25 aおよび第 2スイッチング素子部 25bがそれぞれ複数のスイッチング素子を有する場 合には、開にするスイッチング素子の数を変更することでワイヤ電極 1に供給する高 周波パルス電圧のエネルギーを調節することもできる。なお、上記の基準値としては 給電制御データの作成時に想定していた Z軸高さが用いられ、当該基準値は例えば 記憶部 85に予め格納される。このワイヤ放電加工機 150は、被加工物 Wとして平板 状物を用いる場合に特に好適である。  [0051] For example, by adjusting the energy of the high frequency pulse voltage supplied to the wire electrode 1 by changing the pulse length or pulse interval in the high frequency pulse voltage or changing the number of pulses to be supplied, the discharge current value Can be adjusted. When each of the first switching element unit 25a and the second switching element unit 25b has a plurality of switching elements, the number of switching elements to be opened is changed to change the high-frequency pulse voltage supplied to the wire electrode 1. You can also adjust the energy. As the reference value, the Z-axis height that was assumed when the power supply control data was created is used, and the reference value is stored in advance in the storage unit 85, for example. This wire electric discharge machine 150 is particularly suitable when a flat plate is used as the workpiece W.
[0052] 図 6に示すワイヤ放電力卩ェ機 160は、演算 ·制御部 90bおよびパルス発振制御部 9 5bを有する制御装置 110Cを備えている。演算 ·制御部 90bは、図 1に示した演算 · 制御部 90 (図 1参照)と同様に、ワイヤ電極 1から被力卩ェ物 Wに印加される高周波パ ルス電圧のエネルギーと加工速度等を用いて被加工物 Wの板厚を逐次算出する機 能を有しており、算出結果をパルス発振制御部 95bに送る。図 6には、図 1において 図示を省略した速度計測装置 57が示されて ヽる。 The wire discharge force machine 160 shown in FIG. 6 includes a control device 110C having an arithmetic / control unit 90b and a pulse oscillation control unit 95b. The calculation control unit 90b Similar to the control unit 90 (see FIG. 1), the plate thickness of the workpiece W is sequentially calculated using the energy of the high-frequency pulse voltage applied from the wire electrode 1 to the workpiece W and the machining speed. It has a function and sends the calculation result to the pulse oscillation control unit 95b. FIG. 6 shows a speed measuring device 57 that is not shown in FIG.
[0053] パルス発振制御部 95bは、演算,制御部 90bから送られてくる上記の算出結果を基 準値と比較して上側給電回路および下側給電回路それぞれでのインピーダンスの大 小関係を求める。そして、記憶部 85から読み出した給電制御データをインピーダンス の小さ 、給電回路での放電電流値力 Sインピーダンスの大き 、給電回路での放電電 流値に近づくように例えば演算により改変し、該改変した給電制御データを基に当該 パルス発振制御部 95bが第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞ れの動作を制御する。なお、上記の基準値としては給電制御データの作成時に想定 していた板厚が用いられ、当該基準値は例えば記憶部 85に予め格納される。このヮ ィャ放電加工機 160は、被加工物 Wとして平板状物を用いる場合は勿論、被加工物 Wに凹部ゃ孔が予め形成されている場合にも好適である。  [0053] The pulse oscillation control unit 95b compares the above calculation result sent from the arithmetic and control unit 90b with a reference value, and obtains a magnitude relationship between the impedances of the upper power supply circuit and the lower power supply circuit. . Then, the power supply control data read from the storage unit 85 is modified by, for example, computation so that the impedance is small, the value of the discharge current value S in the power supply circuit is large, and the value of the discharge current in the power supply circuit is approximated. The pulse oscillation controller 95b controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the power supply control data. As the reference value, the plate thickness assumed when the power supply control data is created is used, and the reference value is stored in advance in the storage unit 85, for example. The shear electric discharge machine 160 is suitable not only when a flat plate-like object is used as the workpiece W, but also when a concave portion or a hole is formed in advance in the workpiece W.
[0054] 図 7に示すワイヤ放電力卩ェ機 170は、演算 ·制御部 90c、パルス発振制御部 95c、 および板厚決定部 100を有する制御装置 110Dを備えており、記憶部 85には被カロ ェ物の 3次元データが更に格納されている。演算制御部 90cは、板厚決定部 100の 動作を制御し、該板厚決定部 100は、上記の 3次元データと記憶部 85に格納されて V、る数値制御データ (テーブル駆動装置 55用の数値制御データ)とを基に放電加工 箇所を特定すると共に当該放電加工箇所での被加工物 Wの板厚を求め、該板厚の データをパルス発振制御部 95bに送る。パルス発振制御部 95cは、演算 ·制御部 90 cから送られてくる上記板厚のデータを基準値と比較して上側給電回路および下側 給電回路それぞれでのインピーダンスの大小関係を求める。そして、記憶部 85から 読み出した給電制御データをインピーダンスの小さい給電回路での放電電流値がィ ンピーダンスの大きい給電回路での放電電流値に近づくように例えば演算により改 変し、該改変した給電制御データを基に当該パルス発振制御部 95cが第 1パルス発 振器 35aおよび第 2パルス発振器 35bそれぞれの動作を制御する。なお、上記の基 準値としては給電制御データの作成時に想定していた板厚が用いられ、当該基準値 は例えば記憶部 85に予め格納される。このワイヤ放電力卩工機 170は、被加工物 Wと して平板状物を用いる場合は勿論、被加工物 Wに凹部ゃ孔が予め形成されている 場合にも好適である。 A wire discharge force machine 170 shown in FIG. 7 includes a control device 110D having a calculation / control unit 90c, a pulse oscillation control unit 95c, and a plate thickness determining unit 100. It also stores 3D data of caloche objects. The arithmetic control unit 90c controls the operation of the plate thickness determining unit 100. The plate thickness determining unit 100 stores the three-dimensional data and the numerical control data (V for table driving device 55) stored in the storage unit 85. And the thickness of the workpiece W at the electrical discharge machining location is determined, and the thickness data is sent to the pulse oscillation control unit 95b. The pulse oscillation control unit 95c compares the plate thickness data sent from the calculation / control unit 90c with a reference value to determine the magnitude relationship between the impedances of the upper and lower power supply circuits. Then, the power supply control data read from the storage unit 85 is modified by, for example, calculation so that the discharge current value in the power supply circuit with low impedance approaches the discharge current value in the power supply circuit with high impedance, and the modified power supply control is performed. Based on the data, the pulse oscillation controller 95c controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b. As the reference value, the plate thickness that was assumed when the power supply control data was created is used. Is stored in advance in the storage unit 85, for example. This wire discharge power machine 170 is suitable not only when a flat plate-like object is used as the workpiece W but also when a recess or a hole is formed in advance in the workpiece W.
[0055] 上述した各ワイヤ放電力卩ェ機 150, 160, 170においては、給電回路間でのインピ 一ダンスの大小関係 (偏り)に応じて上側給電回路および下側給電回路それぞれへ の高周波パルス電圧の供給条件が調節されるので、給電回路間でのインピーダンス の偏りに起因するワイヤ断線を防止することが容易である。したがって、これらのワイ ャ放電力卩工機 150, 160, 170によれば、図 1に示したワイヤ放電力卩工機 130と同様 に上側給電状態と下側給電状態と両側給電状態とを所定のパターンで混在させるこ とによってワイヤ電極 1と被力卩ェ物 Wとの短絡を防止することができると共に、ワイヤ 放電力卩工機 130に比べてワイヤ断線を抑制することが容易になる。その結果として、 ワイヤ放電力卩ェ機 130に比べて生産性を向上させることが容易になる。  [0055] In each of the above-described wire discharge force machines 150, 160, and 170, the high-frequency pulse to each of the upper power supply circuit and the lower power supply circuit according to the magnitude relationship (bias) of the impedance between the power supply circuits. Since the voltage supply conditions are adjusted, it is easy to prevent wire breakage due to impedance imbalance between power supply circuits. Therefore, according to these wire discharge power machine 150, 160, 170, the upper power supply state, the lower power supply state, and the both-side power supply state are determined in the same manner as the wire discharge power machine 130 shown in FIG. By mixing them in this pattern, it is possible to prevent a short circuit between the wire electrode 1 and the workpiece W, and it is easier to suppress wire breakage than the wire discharge power machine 130. As a result, it becomes easier to improve productivity as compared with the wire discharge power machine 130.
[0056] 実施の形態 4.  [0056] Embodiment 4.
本発明のワイヤ放電加工機では、上側給電回路のインピーダンスと下側給電回路 のインピーダンスとに応じて各給電回路への高周波パルス電圧の供給条件を調節し て、給電回路間でのインピーダンスの偏りに起因するワイヤ断線を防止するように構 成することができる。  In the wire electric discharge machine of the present invention, the supply condition of the high-frequency pulse voltage to each power supply circuit is adjusted according to the impedance of the upper power supply circuit and the impedance of the lower power supply circuit, so that the impedance between the power supply circuits is uneven. It can be configured to prevent the resulting wire breakage.
[0057] 図 8および図 9は、それぞれ、上側給電回路のインピーダンスと下側給電回路のィ ンピーダンスとに応じて各給電回路への高周波パルス電圧の供給条件を調節するこ とができるワイヤ放電加工機の一例を概略的に示す構成図である。これらの図に示 す構成部材のうちで図 1に示した構成部材と共通するものについては、図 1で用いた 参照符号と同じ参照符号を付してその説明を省略する。  [0057] Figs. 8 and 9 show wire electric discharge machining that can adjust the supply condition of the high-frequency pulse voltage to each power supply circuit according to the impedance of the upper power supply circuit and the impedance of the lower power supply circuit, respectively. It is a block diagram which shows an example of a machine roughly. Among the constituent members shown in these drawings, those common to the constituent members shown in FIG. 1 are given the same reference numerals as those used in FIG. 1 and their description is omitted.
[0058] 図 8に示すワイヤ放電加工機 180は、インピーダンス計測部 70を有する加工機本 体 80Bと、パルス発振制御部 95dを有する制御装置 110Eとを備えている。インピー ダンス計測部 70は、上側給電回路におけるメイン電源 30と上側給電部 20aとの間の インピーダンス、および下側給電回路におけるメイン電源 30と下側給電部 20bとの間 のインピーダンスをそれぞれ実測し、この実測結果をパルス発振制御部 95dに伝える 。パルス発振制御部 95dは、インピーダンス計測部 70による実測結果を基準値と比 較して上側給電回路および下側給電回路それぞれでのインピーダンスの大小関係 を求める。そして、記憶部 85から読み出した給電制御データをインピーダンスの小さ V、給電回路での放電電流値力インピーダンスの大き!/、給電回路での放電電流値に 近づくように例えば演算により改変し、該改変した給電制御データを基に当該パルス 発振制御部 95dが第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれの動 作を制御する。なお、上記の基準値としては給電制御データの作成時に想定してい たインピーダンスが用いられ、当該基準値は例えば記憶部 85に予め格納される。 A wire electric discharge machine 180 shown in FIG. 8 includes a main body 80B having an impedance measuring unit 70, and a control device 110E having a pulse oscillation control unit 95d. The impedance measurement unit 70 measures the impedance between the main power supply 30 and the upper power supply unit 20a in the upper power supply circuit and the impedance between the main power supply 30 and the lower power supply unit 20b in the lower power supply circuit. This measurement result is transmitted to the pulse oscillation control unit 95d. The pulse oscillation control unit 95d compares the measurement result of the impedance measurement unit 70 with the reference value. Compare the magnitude relationship between the impedances of the upper and lower power supply circuits. Then, the power supply control data read from the storage unit 85 is modified by, for example, computation so as to approach the small impedance V, the large value of the discharge current value impedance in the power supply circuit, and the discharge current value in the power supply circuit. The pulse oscillation control unit 95d controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the supplied power supply control data. As the reference value, the impedance assumed when the power supply control data is created is used, and the reference value is stored in advance in the storage unit 85, for example.
[0059] 図 9に示すワイヤ放電力卩工機 190は、パルス発振制御部 95eを有する制御装置 11 OFを備えており、記憶部 85には、ワイヤ放電力卩ェ機 190のメーカまたはユーザが予 め測定した上側給電給回路および下側給電回路それぞれのインピーダンスが予め 格納されている。具体的には、上側給電回路におけるメイン電源 30と上側給電部 20 aとの間のインピーダンスの実測データと、下側給電回路におけるメイン電源 30と下 側給電部 20bとの間のインピーダンスの実測データとが予め格納されて 、る。パルス 発振制御部 95eは、記憶部 85に格納されて 、る上記各インピーダンスの実測データ を直接比較して、または基準値と比較して、上側給電回路および下側給回路それぞ れでのインピーダンスの大小関係を求める。そして、記憶部 85から読み出した給電 制御データをインピーダンスの小さい給電回路での放電電流値力 Sインピーダンスの 大きい給電回路での放電電流値に近づくように例えば演算により改変し、該改変し た給電制御データを基に当該パルス発振制御部 95eが第 1パルス発振器 35aおよび 第 2パルス発振器 35bそれぞれの動作を制御する。なお、上記の基準値としては給 電制御データの作成時に想定して 、たインピーダンスが用いられ、当該基準値は例 えば記憶部 85に予め格納される。  A wire discharge power machine 190 shown in FIG. 9 includes a control device 11 OF having a pulse oscillation control unit 95e, and the storage unit 85 has a manufacturer or user of the wire discharge power machine 190 The impedances of the upper and lower power supply circuits measured in advance are stored in advance. Specifically, the actual measurement data of the impedance between the main power supply 30 and the upper power supply unit 20a in the upper power supply circuit, and the actual measurement data of the impedance between the main power supply 30 and the lower power supply unit 20b in the lower power supply circuit. And are stored in advance. The pulse oscillation control unit 95e is stored in the storage unit 85 and directly compares the measured data of each of the impedances described above or compared with a reference value, so that the impedance of each of the upper feeding circuit and the lower feeding circuit is compared. Find the magnitude relationship. Then, the power supply control data read from the storage unit 85 is modified by, for example, calculation so as to approach the discharge current value in the power supply circuit having a large impedance S, and the power supply control data thus modified Based on the data, the pulse oscillation control unit 95e controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b. As the reference value, an impedance that is assumed when power supply control data is created is used, and the reference value is stored in advance in the storage unit 85, for example.
[0060] 上述した各ワイヤ放電力卩ェ機 180, 190においては、上側給電回路自体のインピ 一ダンスと下側給電回路自体のインピーダンスとに応じて各給電回路への高周波パ ルス電圧の供給条件が調節されるので、給電回路間でのインピーダンスの偏り(大小 関係)に起因するワイヤ断線を防止することが容易である。したがって、これらのワイ ャ放電力卩工機 180, 190は、実施の形態 3で説明した各ワイヤ放電加工機 150, 16 0, 170と同様の技術的効果を奏する。 [0061] 実施の形態 5. [0060] In each of the wire discharge power machines 180 and 190 described above, the supply condition of the high-frequency pulse voltage to each power supply circuit depends on the impedance of the upper power supply circuit itself and the impedance of the lower power supply circuit itself. Therefore, it is easy to prevent wire breakage due to impedance deviation (magnitude relationship) between the feeder circuits. Therefore, these wire electric discharge machine 180, 190 has the same technical effect as each wire electric discharge machine 150, 160, 170 described in the third embodiment. [0061] Embodiment 5.
本発明のワイヤ放電カ卩工機には、ワイヤ断線の予兆(以下、「断線予兆」という。)が 検出されたときに第 1パルス発振器および第 2パルス発振器それぞれの動作をワイヤ 断線が防止されるように制御するワイヤ断線回避機能を付加することができる。  The wire discharge machine according to the present invention prevents the wire breakage of the operations of the first pulse oscillator and the second pulse oscillator when a wire breakage sign (hereinafter referred to as a “breakage sign”) is detected. It is possible to add a wire breakage avoiding function for controlling the above.
[0062] 図 10は、ワイヤ断線回避機能が付加されたワイヤ放電加工機の一例を概略的に示 す構成図である。同図に示すワイヤ放電加工機 200は、断線予兆検出部 75を有す る加工機本体 80Cと、パルス発振制御部 95fを有する制御装置 110Gとを備えており 、記憶部 85には、実施の形態 1〜4で説明した給電制御データ(以下、本実施の形 態においては「基本給電制御データ」という。)の他に、断線予兆があったときにワイ ャ断線を回避するための給電制御データ (以下、「断線回避用給電制御データ」とい う。)が更に格納されている。図 10に示す構成部材のうちで図 1に示した構成部材と 共通するものについては、図 1で用いた参照符号と同じ参照符号を付してその説明 を省略する。  FIG. 10 is a configuration diagram schematically showing an example of a wire electric discharge machine to which a wire breakage avoiding function is added. The wire electric discharge machine 200 shown in the figure includes a processing machine main body 80C having a disconnection sign detection unit 75 and a control device 110G having a pulse oscillation control unit 95f. In addition to the power supply control data described in Embodiments 1 to 4 (hereinafter referred to as “basic power supply control data” in this embodiment), power supply control for avoiding wire disconnection when there is a sign of disconnection Data (hereinafter referred to as “power supply control data for disconnection avoidance”) is further stored. Of the constituent members shown in FIG. 10, those common to the constituent members shown in FIG. 1 are given the same reference numerals as those used in FIG. 1, and description thereof is omitted.
[0063] 上記の断線予兆検出部 75は、上側給電部 20aと下側給電部 20bと被加工物 Wと に電気的に接続されて、例えば上側給電回路と下側給電回路とでの電流の分流比 力も放電点の位置を求め、放電点が一箇所に集中する集中放電が検出されたときに ワイヤ断線の予兆があったものと判断して、所定の信号 (以下、「断線予兆検出信号」 という。)をパルス発振制御部 95fに送る。  [0063] The disconnection sign detection unit 75 is electrically connected to the upper power supply unit 20a, the lower power supply unit 20b, and the workpiece W, and for example, currents in the upper power supply circuit and the lower power supply circuit are detected. The shunt ratio also determines the position of the discharge point, and when a concentrated discharge with a single discharge point is detected, it is determined that there is a sign of wire breakage. Is sent to the pulse oscillation controller 95f.
[0064] 断線予兆検出信号を受けたパルス発振制御部 95fは、記憶部 85から断線回避用 給電制御データを読み出すことで給電制御データを改変し、この断線回避用給電制 御データを基に第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれの動作 を制御してワイヤ断線を回避する。例えば、上側給電状態と下側給電状態とが交互 に出現するように第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれを動 作制御し、これにより放電点の位置を経時的に分散させてワイヤ断線を回避する。  [0064] Upon receiving the disconnection sign detection signal, the pulse oscillation control unit 95f modifies the feed control data by reading the disconnection avoidance power supply control data from the storage unit 85, and based on this disconnection avoidance feed control data, Wire breakage is avoided by controlling the operation of the 1-pulse oscillator 35a and the second-pulse oscillator 35b. For example, each of the first pulse oscillator 35a and the second pulse oscillator 35b is operated and controlled so that the upper power supply state and the lower power supply state appear alternately, thereby dispersing the position of the discharge point with the passage of time. Avoid disconnection.
[0065] ワイヤ放電力卩工機 200は上述のワイヤ断線回避機能を有しているので、実施の形 態 1〜4で説明した各ワイヤ放電加工機に比べてワイヤ断線を防止することが容易で ある。したがって、当該ワイヤ放電力卩ェ機 200によれば、図 1に示したワイヤ放電カロェ 機 130と同様に上側給電状態と下側給電状態と両側給電状態とを所定のパターン で混在させることによってワイヤ電極 1と被力卩ェ物 wとの短絡を防止することができる と共に、ワイヤ放電力卩ェ機 130に比べてワイヤ断線を抑制することが容易になる。そ の結果として、ワイヤ放電力卩ェ機 130に比べて生産性を向上させることが容易になる [0065] Since the wire electrical discharge machine 200 has the above-described wire disconnection avoidance function, it is easier to prevent wire disconnection than the wire electrical discharge machines described in Embodiments 1 to 4. It is. Therefore, according to the wire discharge force machine 200, the upper power supply state, the lower power supply state, and the both-side power supply state are set in a predetermined pattern as in the wire discharge calorie machine 130 shown in FIG. By mixing them together, it is possible to prevent a short circuit between the wire electrode 1 and the workpiece w, and it is easier to suppress wire breakage than the wire discharge force machine 130. As a result, it becomes easier to improve productivity compared to the wire discharge power machine 130.
[0066] なお、ワイヤ放電加工機にワイヤ断線回避機能を付加する場合、パルス発振制御 部には、長期的(1〜2秒程度)な視野にたったときの給電比率を所定の比率、すな わち基本給電制御データを基に第 1パルス発振器および第 2パルス発振器それぞれ の動作を制御したときの上側給電状態、下側給電状態、および両側給電状態それぞ れによる給電比率に戻す機能 (以下、「給電比率復帰機能」という。)を付加すること ができる。 [0066] When a wire breakage avoidance function is added to the wire electric discharge machine, the pulse oscillation control unit is provided with a power supply ratio when a long-term view (about 1 to 2 seconds) is reached. In other words, the function to return the power supply ratio to the upper power supply state, lower power supply state, and both-side power supply state when the operations of the first and second pulse oscillators are controlled based on the basic power supply control data (hereinafter referred to as the power supply ratio). "Power supply ratio recovery function") can be added.
[0067] 図 11は、上述したパルス発振制御部 95fに給電比率復帰機能を付加したときの給 電パターンの一例を示す概略図である。同図に示す例では、時刻 Tまでは基本給  FIG. 11 is a schematic diagram showing an example of a power supply pattern when a power supply ratio return function is added to the pulse oscillation control unit 95f described above. In the example shown in the figure, until the time T
1  1
電制御データを基にパルス発振制御部 95fが第 1パルス発振器 35aおよび第 2パル ス発振器 35bそれぞれの動作を制御して 、る。当該基本給電制御データの下では、 上側給電状態および下側給電状態を 1周期ずつ行った後に両側給電状態を 2周期 分行うという動作が繰り返される。  Based on the electric control data, the pulse oscillation controller 95f controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b. Under the basic power supply control data, the operation of performing the upper power supply state and the lower power supply state for each cycle and then performing the both-side power supply state for two cycles is repeated.
[0068] 時刻 Tで断線予兆検出部 75からパルス発振制御部 95fに断線予兆検出信号が送 [0068] At time T, a disconnection sign detection unit 75 sends a disconnection sign detection signal to the pulse oscillation control unit 95f.
1  1
られてくると、パルス発振制御部 95fは断線回避用給電制御データを基に第 1パルス 発振器 35aおよび第 2パルス発振器 35bそれぞれの動作を制御し始め、上側給電状 態と下側給電状態とが交互に出現するように第 1パルス発振器 35aおよび第 2パルス 発振器 35bそれぞれの動作を制御する。そして、断線予兆検出部 75からの断線予 兆検出信号が時刻 Tで止むと、パルス発振制御部 95fは給電比率復帰機能を発現  Then, the pulse oscillation control unit 95f starts controlling the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the disconnection avoidance power supply control data, and the upper power supply state and the lower power supply state are changed. The operations of the first pulse oscillator 35a and the second pulse oscillator 35b are controlled so that they appear alternately. When the disconnection sign detection signal from the disconnection sign detection unit 75 stops at time T, the pulse oscillation control unit 95f exhibits the power supply ratio recovery function.
2  2
させて、上側給電状態、下側給電状態、および両側給電状態それぞれによる給電比 率が基本給電制御データの下での給電比率となるように、第 1パルス発振器 35aおよ び第 2パルス発振器 35bそれぞれの動作を制御する。  Therefore, the first pulse oscillator 35a and the second pulse oscillator 35b are set so that the power supply ratios in the upper power supply state, the lower power supply state, and the both-side power supply state become the power supply ratios under the basic power supply control data. Control each action.
[0069] 具体的には、時刻 Tから時刻 Tまでの間で両側給電状態を 1周期も行って 、な ヽ [0069] Specifically, the both-side power supply state is performed for one cycle from time T to time T, and
1 2  1 2
ので、上側給電状態と下側給電状態と両側給電状態との比率が 1: 1: 2となるように 第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれの動作を制御し、時刻 Tから時刻 Tまでの間で上側給電状態および下側給電状態をそれぞれ 1周期ずつTherefore, the operation of each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled so that the ratio of the upper power supply state, the lower power supply state, and the both-side power supply state is 1: 1: 2, and the time Between T and time T, the upper power supply state and the lower power supply state are each one cycle.
2 3 twenty three
出現させ、かつ両側給電状態を 8周期分出現させる。これにより、上側給電状態、下 側給電状態、および両側給電状態それぞれによる給電比率が基本給電制御データ の下での給電比率に戻される。  Appear, and the power supply state on both sides appears for 8 cycles. As a result, the power supply ratio in each of the upper power supply state, the lower power supply state, and the both-side power supply state is returned to the power supply ratio under the basic power supply control data.
[0070] パルス発振制御部 95fに付与された給電比率復帰機能は、基本給電制御データ の下での給電比率を算出する機能と、断線回避用給電制御データの下での上側給 電状態、下側給電状態、および両側給電状態それぞれの出現回数を計数する機能 と、断線回避用給電制御データの下で給電を行うことにより生じた給電比率のズレ、 すなわち基本給電制御データの下での給電比率力 のズレを算出する機能と、当該 ズレを補正する機能とを含んでいる。パルス発振制御部 95fは、時刻 T以後は再び  [0070] The power supply ratio recovery function assigned to the pulse oscillation control unit 95f includes a function for calculating a power supply ratio under the basic power supply control data, an upper power supply state under the power supply control data for disconnection avoidance, The difference between the power supply ratio caused by power supply under the power supply control data for disconnection avoidance, that is, the power supply ratio under the basic power supply control data It includes a function to calculate the force deviation and a function to correct the deviation. After the time T, the pulse oscillation control unit 95f
3  Three
基本給電制御データを基に第 1パルス発振器 35aおよび第 2パルス発振器 35bそれ ぞれの動作を制御する。  The operation of each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled based on the basic power supply control data.
[0071] 実施の形態 6.  [0071] Embodiment 6.
本発明のワイヤ放電カ卩工機には、ワイヤ電極と被カ卩ェ物との短絡の予兆または短 絡が検出されたときに上記の短絡が防止されるように、または上記の短絡が解消され るように第 1パルス発振器および第 2パルス発振器それぞれの動作を制御する機能( 以下、「短絡防止機能」という。)を付加することができる。  In the wire discharge machine of the present invention, the short circuit is prevented or the short circuit is eliminated when a short circuit sign or short circuit between the wire electrode and the workpiece is detected. As described above, a function for controlling the operations of the first pulse oscillator and the second pulse oscillator (hereinafter referred to as “short-circuit prevention function”) can be added.
[0072] 図 12は、短絡防止機能が付加されたワイヤ放電加工機の一例を概略的に示す構 成図である。同図に示すワイヤ放電加工機 210は、演算 ·制御部 90dとパルス発振 制御部 95gとを有する制御装置 110Hを備えており、記憶部 85には上記短絡の予兆 または短絡があつたときに短絡を防止するか、または短絡を解消するための給電制 御データ(以下、「短絡防止用給電制御データ」という。)が更に格納されている。図 1 2に示す構成部材のうちで図 1に示した構成部材と共通するものについては、図 1で 用いた参照符号と同じ参照符号を付してその説明を省略する。  FIG. 12 is a configuration diagram schematically showing an example of a wire electric discharge machine to which a short circuit prevention function is added. The wire electric discharge machine 210 shown in the figure includes a control device 110H having a calculation / control unit 90d and a pulse oscillation control unit 95g, and the storage unit 85 is short-circuited when a short-circuit sign or short circuit occurs. In addition, power supply control data (hereinafter referred to as “short-circuit prevention power supply control data”) for preventing a short circuit or eliminating a short circuit is stored. Of the constituent members shown in FIG. 12, those common to the constituent members shown in FIG. 1 are given the same reference numerals as those used in FIG.
[0073] 上記の演算.制御部 90dは、電圧検出装置 50によって検出される各給電部 20a, 2 Obと被力卩ェ物 Wとの電位差を基にワイヤ電極 1と被力卩ェ物 Wとの短絡の予兆または 短絡を検出する。具体的には、電圧検出装置 50によって検出される各給電部 20a, 20bと被力卩ェ物 Wとの電位差力も放電電圧値を算出し、この値がワイヤ電極 1の材質 、被加工物 Wの材質、加工液の液質、およびワイヤ電極 1に印加する高周波パルス 電圧の大きさ等を基に予め設定される平均放電電圧値を下回ったときには短絡の予 兆または短絡の発生であると判断する。そして、短絡の予兆または短絡を検出すると[0073] The above calculation. The control unit 90d determines that the wire electrode 1 and the driven object W are based on the potential difference between the power supply units 20a, 2 Ob and the driven object W detected by the voltage detection device 50. Detects short circuit or short circuit. Specifically, the potential difference force between each of the power feeding units 20a, 20b detected by the voltage detection device 50 and the object W is also calculated as a discharge voltage value, and this value is the material of the wire electrode 1. When the average discharge voltage falls below a preset average discharge voltage based on the material of the workpiece W, the quality of the machining fluid, the magnitude of the high-frequency pulse voltage applied to the wire electrode 1, etc. It is determined that it has occurred. And when a short circuit sign or short circuit is detected
、当該演算,制御部 90dは所定の信号 (以下、「短絡,予兆検出信号」という。)をパル ス発振制御部 95gに送る。なお、上記の平均放電電圧値は、ワイヤ放電加工機 210 のメーカまたはユーザによって求められて予め記憶部 85に格納される。 The calculation / control unit 90d sends a predetermined signal (hereinafter referred to as a “short circuit / prediction detection signal”) to the pulse oscillation control unit 95g. The average discharge voltage value is obtained by the manufacturer or user of the wire electric discharge machine 210 and stored in the storage unit 85 in advance.
[0074] 演算,制御部 90dから短絡,予兆検出信号を受けたパルス発振制御部 95gは、記 憶部 85から短絡防止用給電制御データを読み出すことで給電制御データを改変し 、この短絡防止用給電制御データを基に第 1パルス発振器 35aおよび第 2パルス発 振器 35bそれぞれの動作を制御して、ワイヤ電極 1と被加工物 Wとの短絡を防止する 力 またはワイヤ電極 1と被加工物 Wとの短絡を解消させる。例えば、両側給電状態 となるように第 1パルス発振器 35aおよび第 2パルス発振器 35bそれぞれの動作を制 御することでワイヤ電極 1と被力卩ェ物 Wとの間の放電を安定させ、これによりワイヤ電 極 1と被カ卩ェ物 Wとの短絡を防止するか、またはワイヤ電極 1と被カ卩工物 Wとの短絡 を解消させる。 [0074] The pulse oscillation control unit 95g that has received the short circuit / predictive detection signal from the arithmetic / control unit 90d modifies the power supply control data by reading the power supply control data for short circuit prevention from the storage unit 85, and this short circuit prevention Based on the power supply control data, the operation of each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled to prevent a short circuit between the wire electrode 1 and the workpiece W or the wire electrode 1 and the workpiece Eliminate the short circuit with W. For example, by controlling the operations of the first pulse oscillator 35a and the second pulse oscillator 35b so as to be in a double-sided power supply state, the discharge between the wire electrode 1 and the target object W is stabilized, thereby Prevent short circuit between wire electrode 1 and workpiece W or eliminate short circuit between wire electrode 1 and workpiece W.
[0075] ワイヤ放電加工機 210は上述の短絡防止機能を有しているので、実施の形態 1〜 5で説明した各ワイヤ放電カ卩工機に比べてワイヤ断線 1と被力卩ェ物 Wとの短絡を防止 することが容易である。したがって、当該ワイヤ放電力卩工機 210によれば、図 1に示し たワイヤ放電加工機 130と同様に上側給電状態と下側給電状態と両側給電状態とを 所定のパターンで混在させることによってワイヤ電極 1と被力卩ェ物 Wとの短絡を防止 することができると共に、ワイヤ放電力卩工機 130に比べてワイヤ電極 1と被力卩ェ物 Wと の短絡を抑制することが容易になる。その結果として、ワイヤ放電力卩工機 130に比べ て生産性を向上させることが容易になる。なお、ワイヤ放電加工機に短絡防止機能を 付加する場合も、パルス発振制御部には実施の形態 5で説明した給電比率復帰機 能を付加することができる。  [0075] Since the wire electric discharge machine 210 has the above-described short-circuit prevention function, the wire breakage 1 and the load W are compared with the wire electric discharge machine described in the first to fifth embodiments. It is easy to prevent short circuit. Therefore, according to the wire electric discharge machine 210, the upper electric supply state, the lower electric supply state, and the both-side electric supply state are mixed in a predetermined pattern in the same manner as the wire electric discharge machine 130 shown in FIG. It is possible to prevent a short circuit between the electrode 1 and the workpiece W and to easily suppress a short circuit between the wire electrode 1 and the workpiece W compared to the wire discharge power machine 130. Become. As a result, it becomes easier to improve productivity as compared with the wire discharge power machine 130. Even when a short-circuit prevention function is added to the wire electric discharge machine, the power supply ratio return function described in the fifth embodiment can be added to the pulse oscillation control unit.
[0076] 実施の形態 7.  Embodiment 7.
本発明のワイヤ放電加工機には、加工液供給装置から上側ノズルおよび下側ノズ ルの各々に供給される加工液の流量に応じて第 1パルス発振器および第 2パルス発 振器それぞれの動作を制御する機能を付加することができる。 The wire electric discharge machine of the present invention includes a first pulse oscillator and a second pulse generator according to the flow rate of the machining liquid supplied from the machining liquid supply device to each of the upper nozzle and the lower nozzle. A function for controlling the operation of each vibrator can be added.
[0077] 図 13は、上記の機能が付加されたワイヤ放電加工機の一例を概略的に示す構成 図である。同図に示すワイヤ放電力卩ェ機 220は、演算 ·制御部 90e、パルス発振制御 部 95h、および流量比較部 105を有する制御装置 1101を備えている。図 13に示す 構成部材のうちで図 1に示した構成部材と共通するものにつ!、ては、図 1で用いた参 照符号と同じ参照符号を付してその説明を省略する。  FIG. 13 is a configuration diagram schematically showing an example of a wire electric discharge machine to which the above function is added. The wire discharge force machine 220 shown in the figure includes a control device 1101 having a calculation / control unit 90e, a pulse oscillation control unit 95h, and a flow rate comparison unit 105. Of the constituent members shown in FIG. 13, those common to the constituent members shown in FIG. 1 are designated by the same reference numerals as those used in FIG. 1, and description thereof is omitted.
[0078] 上記の演算 ·制御部 90eは、記憶部 85に格納されている数値制御データ (加工液 供給装置 60用の数値制御データ)に基づいて加工液供給装置 60の動作を制御し たときに当該力卩工液供給装置 60から上側ノズル 65aに供給される加工液の流量、お よび下側ノズル 65bに供給される加工液の流量それぞれについてのデータを流量比 較部 105に送る。これらのデータを送られた流量比較部 105は各データを基準値と 比較し、その結果をパルス発振制御部 95hに送る。流量比較部 105は、例えば給電 制御データの作成時に想定していた加工液の流量のデータを上記の基準値として 有している。  When the calculation / control unit 90e controls the operation of the machining fluid supply device 60 based on the numerical control data (numerical control data for the machining fluid supply device 60) stored in the storage unit 85. In addition, data on the flow rate of the machining fluid supplied to the upper nozzle 65 a from the force working fluid supply device 60 and the flow rate of the machining fluid supplied to the lower nozzle 65 b are sent to the flow rate comparison unit 105. The flow rate comparison unit 105 to which these data are sent compares each data with the reference value and sends the result to the pulse oscillation control unit 95h. The flow rate comparison unit 105 has, for example, data on the flow rate of the machining fluid assumed when the power supply control data is created as the reference value.
[0079] パルス発振制御部 95hは、記憶部 85から給電制御データを読み出して第 1パルス 発振器 35aおよび第 2パルス発振器 35bそれぞれの動作を制御する一方で、流量比 較部 105による比較結果力も加工液の流量が基準値を超えていると判断されるノズ ルがあったときには、上記の給電制御データを例えば演算により改変する。すなわち 、上側給電部 20aおよび下側給電部 20bのうちでカ卩ェ液の流量が基準値を超えて ヽ ると判断されるノズルと同じ側にある給電部力 ワイヤ電極 1に供給される高周波パ ルス電圧の給電比率が低くなるように、上記の給電制御データを改変する。そして、 改変された給電制御データを基に第 1パルス発振器 35aおよび第 2パルス発振器 35 bそれぞれの動作を制御する。  [0079] The pulse oscillation control unit 95h reads the power supply control data from the storage unit 85 to control the operations of the first pulse oscillator 35a and the second pulse oscillator 35b, while processing the comparison result force by the flow rate comparison unit 105. When there is a nozzle for which the flow rate of the liquid is determined to exceed the reference value, the power supply control data is modified by, for example, calculation. That is, in the upper power feeding unit 20a and the lower power feeding unit 20b, the power feeding unit force on the same side as the nozzle that is determined that the flow rate of the kale solution exceeds the reference value is the high frequency supplied to the wire electrode 1 The above power supply control data is modified so that the power supply ratio of the pulse voltage is lowered. Then, the operation of each of the first pulse oscillator 35a and the second pulse oscillator 35b is controlled based on the modified power supply control data.
[0080] 被加工物をワイヤ放電加工する場合、加工液供給装置から上側ノズルおよび下側 ノズルの各々に供給される加工液の流量は放電力卩ェの全過程で一定と 、うわけでは なぐ例えばワイヤ電極の相対的な移動経路が直線状の箇所と円弧状の箇所とでは 上記加工液の流量が異なる。また、上側ノズル 65aと下側ノズル 65bとでカ卩工液の流 量が異なることもある。そして、上側ノズル 65aと下側ノズル 65bとでカ卩工液の流量が 異なっているときには、加工液の流量が多いノズルから力卩工溝 (ワイヤ電極 1と被カロェ 物 Wとの間隙)に流入する加工液の液量の方が、加工液の流量が少ないノズルから 加工溝に流入する加工液の液量よりも少なくなり、加工液の流量が多!ゾズル側で 加工溝に加工屑等が溜まり易くなる。その結果として、加工液の流量が多いノズル側 で放電周波数が高くなつてワイヤ断線が起こり易くなる。 [0080] When the workpiece is subjected to wire electric discharge machining, the flow rate of the machining fluid supplied from the machining fluid supply device to each of the upper nozzle and the lower nozzle is constant throughout the entire discharge force. For example, the flow rate of the machining fluid differs between a location where the relative movement path of the wire electrode is linear and a location where the arc is circular. In addition, the flow rate of the cutting liquid may be different between the upper nozzle 65a and the lower nozzle 65b. And the upper nozzle 65a and the lower nozzle 65b make the flow rate of the cutting liquid If they are different, the amount of machining fluid flowing from the nozzle with a high machining fluid flow rate into the force working groove (gap between the wire electrode 1 and the workpiece W) is from the nozzle with a low machining fluid flow rate. The amount of machining fluid flowing into the machining groove is less, and the machining fluid flow rate is high. Machining debris and the like are likely to accumulate in the machining groove on the nozzle side. As a result, wire breakage is likely to occur due to the high discharge frequency on the nozzle side where the flow rate of the machining fluid is large.
[0081] 図 13に示したワイヤ放電力卩工機 220では、加工液の流量が基準値を超えていると 判断されるノズルがあつたときに、該ノズルと同じ側にある給電部カゝらワイヤ電極 1に 供給される高周波パルス電圧の給電比率が低くなるように第 1パルス発振器 35aおよ び第 2パルス発振器 35bそれぞれの動作が制御されるので、上側ノズル 65aおよび 下側ノズル 65bの各々に供給される加工液の流量が変動したときでもワイヤ断線が 抑制される。  In the wire discharge power machine 220 shown in FIG. 13, when there is a nozzle for which the flow rate of the machining fluid is determined to exceed the reference value, the power feeding unit car on the same side as the nozzle is detected. Since the operations of the first pulse oscillator 35a and the second pulse oscillator 35b are controlled so that the feeding ratio of the high-frequency pulse voltage supplied to the wire electrode 1 is lowered, the upper nozzle 65a and the lower nozzle 65b Wire breakage is suppressed even when the flow rate of the machining fluid supplied to each fluctuates.
[0082] したがって、当該ワイヤ放電力卩工機 220によれば、図 1に示したワイヤ放電力卩工機 1 30と同様に上側給電状態と下側給電状態と両側給電状態とを所定のパターンで混 在させることによってワイヤ電極 1と被力卩ェ物 Wとの短絡を防止することができると共 に、ワイヤ放電力卩工機 130に比べてワイヤ断線を抑制することが容易になる。その結 果として、ワイヤ放電力卩ェ機 130に比べて生産性を向上させることが容易になる。  Therefore, according to the wire discharge power machine 220, the upper power supply state, the lower power supply state, and the both-side power supply state are set in a predetermined pattern in the same manner as the wire discharge power machine 130 shown in FIG. In addition to preventing the short circuit between the wire electrode 1 and the workpiece W, the wire breakage can be easily suppressed as compared with the wire discharge power machine 130. As a result, it becomes easier to improve productivity as compared with the wire discharge power machine 130.
[0083] 以上、 7つの形態を例示して本発明のワイヤ放電加工機について説明した力 本 発明は上述した 7つの形態に限定されるものではない。例えば、所望の給電制御デ ータをユーザが記憶部に容易に格納することができるように、上側給電状態と下側給 電状態と両側給電状態との混在パターン(出現パターン)を入力部から入力するだけ で所望の給電制御データが記憶部に格納されるように、制御装置にデータ変換部を 設けることちでさる。  [0083] As described above, the force explained for the wire electric discharge machine of the present invention by exemplifying the seven embodiments. The present invention is not limited to the seven embodiments described above. For example, a mixed pattern (appearance pattern) of the upper power supply state, the lower power supply state, and the both-side power supply state is displayed from the input unit so that the user can easily store desired power supply control data in the storage unit. It is possible to provide a data conversion unit in the control device so that desired power supply control data can be stored in the storage unit simply by inputting.
[0084] 図 14は、上記のデータ変換部が制御装置に設けられたワイヤ放電加工機の一例 を概略的に示す構成図である。同図に示すワイヤ放電加工機 230の制御装置 110J には、上側給電状態と下側給電状態と両側給電状態との混在パターン(出現パター ン)が入力部力も入力されたときに、当該出現パターンに応じた給電制御データを作 成するデータ変換部 108が設けられている。このデータ変換部 108により作成された 給電制御データは、演算 ·制御部 90fを介して記憶部 85に格納される。パルス発振 制御部 95は、上記の給電制御データを基に第 1パルス発振器 35aおよび第 2パルス 発振器 35bそれぞれの動作を制御する。なお、図 14に示す構成部材のうちで図 1〖こ 示した構成部材と共通するものについては、図 1で用いた参照符号と同じ参照符号 を付してその説明を省略する。 FIG. 14 is a configuration diagram schematically showing an example of a wire electric discharge machine in which the data conversion unit is provided in the control device. In the control device 110J of the wire electric discharge machine 230 shown in the figure, when the mixed pattern (appearance pattern) of the upper power supply state, the lower power supply state, and the both-side power supply state is also input, the appearance pattern A data conversion unit 108 for generating power supply control data corresponding to the data is provided. The power supply control data created by the data conversion unit 108 is stored in the storage unit 85 via the calculation / control unit 90f. Pulse oscillation The control unit 95 controls the operations of the first pulse oscillator 35a and the second pulse oscillator 35b based on the power supply control data. 14 that are the same as those shown in FIG. 1 are assigned the same reference numerals as those used in FIG. 1, and descriptions thereof are omitted.
[0085] また、図示を省略する力 本発明のワイヤ放電カ卩工機においては、メイン電源が接 続される第 1スイッチング素子部と第 2スイッチング素子部とを当該メイン電源とは別 の部材とすることもできるし、メイン電源の一構成部材とすることもできる。同様に、サ ブ電源が接続される第 3スイッチング素子部と第 4スイッチング素子部とを当該サブ電 源とは別の部材とすることもできるし、サブ電源の一構成部材とすることもできる。第 1 パルス発振器および第 2パルス発振器の各々についても同様であり、これらはメイン 電源またはサブ電源の一構成部材とすることもできる他、パルス発振制御の一構成 咅材とすることちでさる。  In addition, in the wire discharge machine of the present invention, the first switching element unit and the second switching element unit to which the main power source is connected are separated from the main power source. Or a component of the main power source. Similarly, the third switching element unit and the fourth switching element unit to which the sub power source is connected can be separate members from the sub power source, or can be a constituent member of the sub power source. . The same applies to each of the first pulse oscillator and the second pulse oscillator, which can be used as one component of the main power supply or sub power supply, or can be used as one component of the pulse oscillation control.
[0086] さらには、スイッチング素子部を 1つの給電部に 1つのみ設けることもできる。図 15 は、スイッチング素子部が 1つの給電部に 1つのみ設けられたワイヤ放電カ卩工機の一 例を概略的に示す構成図である。同図に示すワイヤ放電加工機 240の加工機本体 80Dでは、上側給電部 20aに対応して 1つのスイッチング素子部 28a (以下、「第 1ス イッチング素子部 28a」という。)が設けられ、該第 1スイッチング素子部 28a以外のス イッチング素子部は上側給電部 20aに接続されていない。同様に、下側給電部 20b に対応して 1つのスイッチング素子部 28b (以下、「第 2スイッチング素子部 28b」とい う。)が設けられ、該第 2スイッチング素子部 28b以外のスイッチング素子部は下側給 電部 20bに接続されていない。個々のスイッチング素子部 28a, 28bは、メイン電源 3 0とサブ電源 40とにより共用される。第 1スイッチング素子部 28aには第 1パルス発振 器 35aが接続されており、第 2スイッチング素子部 28bには第 2パルス発振器 35bが 接続されている。  [0086] Furthermore, only one switching element unit can be provided in one power feeding unit. FIG. 15 is a configuration diagram schematically showing an example of a wire discharge molding machine in which only one switching element unit is provided in one power feeding unit. In the processing machine main body 80D of the wire electric discharge machine 240 shown in the figure, one switching element part 28a (hereinafter referred to as “first switching element part 28a”) is provided corresponding to the upper power feeding part 20a. The switching element parts other than the first switching element part 28a are not connected to the upper power feeding part 20a. Similarly, one switching element portion 28b (hereinafter referred to as “second switching element portion 28b”) is provided corresponding to the lower power feeding portion 20b, and switching element portions other than the second switching element portion 28b are provided. Not connected to the lower power supply unit 20b. The individual switching element units 28a and 28b are shared by the main power source 30 and the sub power source 40. A first pulse oscillator 35a is connected to the first switching element section 28a, and a second pulse oscillator 35b is connected to the second switching element section 28b.
[0087] 上記の第 1スイッチング素子部 28aは、メイン電源 30およびサブ電源 40のいずれと も別個の部材とすることもできるし、メイン電源 30またはサブ電源 40の一構成部材と することもできる。同様に、第 2スイッチング素子部 28bは、メイン電源 30およびサブ 電源 40の 、ずれとも別個の部材とすることもできるし、メイン電源 30またはサブ電源 40の一構成部材とすることもできる。 [0087] The first switching element section 28a may be a separate member from either the main power supply 30 or the sub power supply 40, or may be a constituent member of the main power supply 30 or the sub power supply 40. . Similarly, the second switching element portion 28b can be a separate member for the main power supply 30 and the sub power supply 40, or the main power supply 30 or the sub power supply 40. It can also be a component of 40.
[0088] 1つの給電部に幾つのスイッチング素子部を設けるかに拘わらず、本発明のワイヤ 放電加工機では、放電加工の期間中に上側給電状態と下側給電状態と両側給電状 態とを任意に混在(出現)させることが可能であるので、ワイヤ電極と被加工物との短 絡やワイヤ断線を防止しつつ被加工物の板厚方向での放電加工量を適宜変化させ て、当該板厚方向での加工精度を向上させることも可能である。上側給電状態での 給電比率を高めれば被加工物における板厚方向上部での放電加工を進行させるこ とができ、下側給電状態での給電比率を高めれば被加工物における板厚方向下部 での放電加工を進行させることができるので、これらの給電状態を適宜組み合わせる ことにより被加工物の板厚方向での加工精度を向上させることができる。  [0088] Regardless of how many switching element units are provided in one power supply unit, the wire electric discharge machine of the present invention can perform the upper power supply state, the lower power supply state, and the both-side power supply state during the electric discharge machining. Since it is possible to mix (appear) arbitrarily, the electrical discharge machining amount in the plate thickness direction of the workpiece is appropriately changed while preventing the short circuit between the wire electrode and the workpiece and the wire breakage, and It is also possible to improve the processing accuracy in the plate thickness direction. Increasing the power supply ratio in the upper power supply state allows electric discharge machining to proceed in the upper part in the plate thickness direction of the workpiece, and increasing the power supply ratio in the lower power supply state causes the lower part in the plate thickness direction in the work piece. Therefore, the machining accuracy in the plate thickness direction of the workpiece can be improved by appropriately combining these power supply states.
[0089] また、放電加工箇所での被加工物の板厚は、図 7に示したワイヤ放電加工機 170 のように被加工物の 3次元データを用いて求めることができるので、当該 3次元デー タを用いて放電加工箇所での被加工物の板厚を求める機能を有するワイヤ放電カロ 工機では、ワイヤ電極力も被カ卩ェ物に印加される高周波パルス電圧のエネルギーと 加工速度等とから被加工物の板厚を算出する機能を省略することも可能である。本 発明のワイヤ放電カ卩工機については、上述した以外にも種々の変形、修飾、組合せ 等が可能である。  [0089] Further, the thickness of the workpiece at the electric discharge machining location can be obtained using the three-dimensional data of the workpiece as in the wire electric discharge machine 170 shown in FIG. In a wire electric discharge calorie machine that has the function of obtaining the thickness of the workpiece at the electrical discharge machining location using data, the wire electrode force is also applied to the energy of the high-frequency pulse voltage applied to the workpiece, the machining speed, etc. It is also possible to omit the function of calculating the plate thickness of the workpiece from the above. The wire discharge machine according to the present invention can be variously modified, modified and combined in addition to the above.

Claims

請求の範囲 The scope of the claims
[1] 被加工物の板厚方向に走行するワイヤ電極と前記被加工物との間に加工液を供 給しながら、前記被加工物の上下に配置された一対の給電部を介して前記ワイヤ電 極に高周波パルス電圧を印加し、前記ワイヤ電極と前記被カ卩ェ物との間に生じる放 電により前記被加工物を加工するワイヤ放電加工機であって、  [1] While supplying a machining liquid between a wire electrode that travels in the plate thickness direction of the workpiece and the workpiece, the pair of power feeding units disposed above and below the workpiece are used to supply the machining fluid. A wire electric discharge machine that applies a high-frequency pulse voltage to a wire electrode and processes the workpiece by discharge generated between the wire electrode and the workpiece,
前記一対の給電部のうちで前記被加工物の上側に配置された上側給電部には第 Of the pair of power feeding units, the upper power feeding unit disposed above the workpiece is not
1スイッチング素子部を介して高周波パルス電圧を印加し、前記被加工物の下側に 配置された下側給電部には第 2スイッチング素子部を介して高周波パルス電圧を印 加するメイン電源と、 前記第 1スイッチング素子部に該第 1スイッチング素子部の開 閉動作を制御するパルス信号を供給する第 1パルス発振器と、 A main power source that applies a high-frequency pulse voltage via a switching element unit, and applies a high-frequency pulse voltage to a lower power feeding unit disposed below the workpiece via a second switching element unit; A first pulse oscillator for supplying a pulse signal for controlling an opening / closing operation of the first switching element unit to the first switching element unit;
前記第 2スイッチング素子部に該第 2スイッチング素子部の開閉動作を制御するパ ルス信号を供給する第 2パルス発振器と、  A second pulse oscillator for supplying a pulse signal for controlling the opening / closing operation of the second switching element unit to the second switching element unit;
前記第 1スイッチング素子部および前記第 2スイッチング素子部それぞれの開閉動 作を規定して、前記上側給電部のみ力 前記ワイヤ電極に高周波パルス電圧を印加 する上側給電状態と、前記下側給電部のみから前記ワイヤ電極に高周波パルス電 圧を印加する下側給電状態と、前記上側給電部と前記下側給電部との両方から互 いに同期して前記ワイヤ電極に高周波パルス電圧を印加する両側給電状態とが混 在するように給電制御する給電制御データが格納されて!、る記憶部と、  The switching operation of each of the first switching element unit and the second switching element unit is defined, and only the upper power feeding unit is used. The upper power feeding state in which a high-frequency pulse voltage is applied to the wire electrode, and only the lower power feeding unit. A both-side power feeding state in which a high-frequency pulse voltage is applied to the wire electrode in synchronism with each other from a lower power feeding state in which a high-frequency pulse voltage is applied to the wire electrode The power supply control data for controlling the power supply to be mixed with the state is stored!
前記給電制御データを基に前記第 1パルス発振器および前記第 2パルス発振器そ れぞれの動作を制御するパルス発振制御部と、  A pulse oscillation control unit for controlling the operation of each of the first pulse oscillator and the second pulse oscillator based on the power supply control data;
を有することを特徴とするワイヤ放電加工機。  A wire electric discharge machine characterized by comprising:
[2] 前記メイン電源は、 [2] The main power supply is
前記第 1スイッチング素子部を介して前記上側給電部に接続されると共に前記被 加工物における板厚方向上部に接続される第 1メイン電源と、  A first main power source connected to the upper power feeding portion via the first switching element portion and connected to the upper part in the plate thickness direction of the workpiece;
前記第 2スイッチング素子部を介して前記下側給電部に接続されると共に前記被 加工物における板厚方向下部に接続される第 2メイン電源と、  A second main power source connected to the lower power feeding unit via the second switching element unit and connected to a lower part in the plate thickness direction of the workpiece;
を有することを特徴とする請求項 1に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 1, characterized by comprising:
[3] 前記パルス発振制御部は、前記メイン電源から前記第 1スイッチング素子部および 前記上側給電部を経て放電点に達する上側給電回路でのメイン電源 上側給電部 間のインピーダンスと、前記メイン電源から前記第 2スイッチング素子部および前記下 側給電部を経て放電点に達する下側給電回路でのメイン電源 下側給電部間のィ ンピーダンスとに応じて、インピーダンスの小さ 、方の給電回路での放電電流値がィ ンピーダンスの大き \、方の給電回路での放電電流値に近づくように前記給電制御デ ータを改変し、該改変した給電制御データを基に前記第 1パルス発振器および前記 第 2パルス発振器それぞれの動作を制御することを特徴とする請求項 1に記載のワイ ャ放電加工機。 [3] The pulse oscillation control unit receives from the main power supply the first switching element unit and Impedance between the main power supply and the upper power supply unit in the upper power supply circuit that reaches the discharge point through the upper power supply unit, and the lower power supply that reaches the discharge point from the main power supply through the second switching element unit and the lower power supply unit Depending on the impedance between the main power supply in the circuit and the lower power supply section, the impedance is small, the discharge current value in the one power supply circuit is large, and the discharge current value in the other power supply circuit is close to 2. The wire according to claim 1, wherein the power supply control data is modified to control operations of the first pulse oscillator and the second pulse oscillator based on the modified power supply control data. Electric discharge machine.
[4] 前記記憶部には、前記給電制御データの作成時に想定して 、た Z軸高さにっ 、て のデータが更に格納されており、  [4] The storage unit further stores all data according to the height of the Z axis, which is assumed when the power supply control data is created.
前記パルス発振制御部は、前記被加工物を放電加工して 、るときの Z軸高さと前記 記憶部に格納されている前記 Z軸高さについてのデータとを基に、上側給電回路で の前記インピーダンスと下側給電回路での前記インピーダンスとの大小関係を判断 する、  The pulse oscillation control unit performs electrical discharge machining on the workpiece, and based on the Z-axis height when stored and data on the Z-axis height stored in the storage unit, Determining the magnitude relationship between the impedance and the impedance in the lower power supply circuit;
ことを特徴とする請求項 3に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 3.
[5] 前記被加工物を載置した状態で 2軸方向に移動することができるテーブルと、 前記テーブルを 2軸方向に移動させるテーブル駆動装置と、 [5] A table capable of moving in the biaxial direction with the workpiece placed thereon, a table driving device for moving the table in the biaxial direction,
前記テーブルの駆動速度を計測する速度計測装置と、  A speed measuring device for measuring the driving speed of the table;
前記上側給電部および前記下側給電部の各々と前記被加工物との電位差を検出 する電圧検出装置と、  A voltage detection device for detecting a potential difference between each of the upper power supply unit and the lower power supply unit and the workpiece;
前記速度計測装置により計測される前記テーブルの駆動速度を基に加工速度を 算出すると共に、前記電圧検出装置により検出される電位差を基に前記ワイヤ電極 カゝら前記被加工物に印加される高周波パルス電圧のエネルギーを算出し、前記加工 速度と前記高周波パルス電圧のエネルギーとを用いて前記被加工物の板厚を算出 する演算,制御部と、  A machining speed is calculated based on the driving speed of the table measured by the speed measurement device, and a high frequency applied to the workpiece from the wire electrode based on a potential difference detected by the voltage detection device. A calculation and control unit for calculating the energy of the pulse voltage and calculating the plate thickness of the workpiece using the processing speed and the energy of the high-frequency pulse voltage;
を更に有し、  Further comprising
前記パルス発振制御部は、前記演算,制御部が算出した前記被加工物の板厚を 基に、上側給電回路での前記インピーダンスと下側給電回路での前記インピーダン スとの大小関係を判断する、 The pulse oscillation control unit is configured to determine the impedance in the upper feeding circuit and the impedance in the lower feeding circuit based on the thickness of the workpiece calculated by the calculation and control unit. To determine the size relationship with
ことを特徴とする請求項 3に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 3.
[6] 前記被加工物を載置した状態で 2軸方向に移動することができるテーブルと、 前記テーブルを 2軸方向に移動させるテーブル駆動装置と、 [6] A table capable of moving in the biaxial direction with the workpiece placed thereon, a table driving device for moving the table in the biaxial direction,
前記テーブル駆動装置の動作を制御する演算 ·制御部と、  A calculation / control unit for controlling the operation of the table driving device;
放電加工している箇所での前記被加工物の板厚を算出する板厚決定部と、 を更に有すると共に、前記記憶部には、前記テーブル駆動装置の動作を数値制御 するための数値制御データと前記被加工物の 3次元データとが更に格納されており 前記演算'制御部は前記数値制御データを基に前記テーブル駆動装置の動作を 制御し、  A plate thickness determining unit that calculates a plate thickness of the workpiece at a location where electric discharge machining is performed, and in the storage unit, numerical control data for numerically controlling the operation of the table driving device And 3D data of the workpiece are further stored, and the calculation control unit controls the operation of the table driving device based on the numerical control data,
前記板厚決定部は、放電加工して!/ヽる箇所での前記被加工物の板厚を前記数値 制御データと前記 3次元データとを基に算出し、  The plate thickness determining unit calculates the plate thickness of the workpiece at the point where the electric discharge machining is performed based on the numerical control data and the three-dimensional data,
前記パルス発振制御部は、前記板厚決定部が算出した前記被加工物の板厚を基 に、上側給電回路での前記インピーダンスと下側給電回路での前記インピーダンスと の大小関係を判断する、  The pulse oscillation control unit determines a magnitude relationship between the impedance in the upper feeding circuit and the impedance in the lower feeding circuit based on the thickness of the workpiece calculated by the plate thickness determining unit.
ことを特徴とする請求項 3に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 3.
[7] 上側給電回路での前記インピーダンスと下側給電回路での前記インピーダンスとを 実測するインピーダンス計測部を更に有し、 [7] It further includes an impedance measuring unit that actually measures the impedance in the upper feeding circuit and the impedance in the lower feeding circuit,
前記パルス発振制御部は、前記インピーダンス計測部の実測結果を基に上側給電 回路での前記インピーダンスと下側給電回路の前記インピーダンスとの大小関係を 判断する、  The pulse oscillation control unit determines a magnitude relationship between the impedance of the upper power supply circuit and the impedance of the lower power supply circuit based on an actual measurement result of the impedance measurement unit;
ことを特徴とする請求項 3に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 3.
[8] 前記記憶部には、上側給電回路での前記インピーダンスおよび下側給電回路での 前記インピーダンスそれぞれの実測データが予め格納されており、 [8] The storage unit stores in advance the measured data of the impedance in the upper power supply circuit and the impedance in the lower power supply circuit,
前記パルス発振制御部は、前記記憶部に格納されて!、る上側給電回路での前記 インピーダンスおよび下側給電回路での前記インピーダンスそれぞれの実測データ を基に、上側給電回路での前記インピーダンスと下側給電回路での前記インピーダ ンスとの大小関係を判断する、 The pulse oscillation control unit is stored in the storage unit, and based on the measured data of the impedance in the upper power supply circuit and the impedance in the lower power supply circuit, and the impedance in the upper power supply circuit. Said impeder in the side power feeding circuit To determine the magnitude relationship
ことを特徴とする請求項 3に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 3.
[9] 前記上側給電部と前記下側給電部と前記被加工物とに接続されてワイヤ断線の予 兆を検出する断線予兆検出部を更に有し、 [9] It further includes a disconnection sign detection unit that is connected to the upper power supply unit, the lower power supply unit, and the workpiece and detects a wire disconnection sign,
前記パルス発振制御部は、前記断線予兆検出部がワイヤ断線の予兆を検出したと きに、前記ワイヤ電極と前記被加工物との間での放電の位置が経時的に分散するよ うに前記給電制御データを改変し、該改変した給電制御データを基に前記第 1パル ス発振器および前記第 2パルス発振器それぞれの動作を制御する、  The pulse oscillation control unit is configured to cause the position of discharge between the wire electrode and the workpiece to be dispersed over time when the disconnection predictor detection unit detects a sign of wire disconnection. Modifying the control data and controlling the operations of the first pulse oscillator and the second pulse oscillator based on the modified power supply control data;
ことを特徴とする請求項 1に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 1, wherein:
[10] 前記パルス発振制御部は、前記断線予兆検出部がワイヤ断線の予兆を検出したと きに、前記上側給電状態と前記下側給電状態とが交互に出現するように前記給電制 御データを改変することを特徴とする請求項 9に記載のワイヤ放電加工機。 [10] The pulse oscillation control unit may include the power supply control data so that the upper power supply state and the lower power supply state appear alternately when the wire breakage detection unit detects a wire breakage sign. 10. The wire electric discharge machine according to claim 9, wherein the wire electric discharge machine is modified.
[11] 前記上側給電部および前記下側給電部の各々と前記被加工物との電位差を検出 する電圧検出装置と、 [11] A voltage detection device that detects a potential difference between each of the upper power supply unit and the lower power supply unit and the workpiece;
前記電圧検出装置による検出結果を基に前記ワイヤ電極と前記被加工物との短絡 または該短絡の予兆がある力否かを判断する演算 ·制御部と、  A calculation / control unit that determines whether the wire electrode and the workpiece are short-circuited based on the detection result by the voltage detection device or whether there is a sign of the short-circuit,
を更に有し、  Further comprising
前記パルス発振制御部は、前記演算'制御部が前記短絡または該短絡の予兆が あると判断したときに、前記ワイヤ電極と前記被加工物との間での放電が安定するよ うに前記給電制御データを改変し、該改変した給電制御データを基に前記第 1パル ス発振器および前記第 2パルス発振器それぞれの動作を制御する、  The pulse oscillation control unit controls the power supply control so that the discharge between the wire electrode and the workpiece is stabilized when the arithmetic control unit determines that the short circuit or the sign of the short circuit is present. Modifying the data and controlling the operations of the first pulse oscillator and the second pulse oscillator based on the modified power supply control data;
ことを特徴とする請求項 1に記載のワイヤ放電加工機。  The wire electric discharge machine according to claim 1, wherein:
[12] 前記パルス発振制御部は、前記演算,制御部が前記短絡または該短絡の予兆が あると判断したときに、前記両側給電状態となるように前記給電制御データを改変す ることを特徴とする請求項 11に記載のワイヤ放電加工機。 [12] The pulse oscillation control unit modifies the power supply control data so that the both-side power supply state is obtained when the calculation / control unit determines that the short circuit or the short circuit is predicted. The wire electric discharge machine according to claim 11.
[13] 前記被加工物の上方に配置された上側ノズルと、 [13] an upper nozzle disposed above the workpiece;
前記被加工物の下方に配置された下側ノズルと、  A lower nozzle disposed below the workpiece;
前記上側ノズルおよび前記下側ノズルの各々に加工液を供給する加工液供給装 置と、 A machining fluid supply device that supplies a machining fluid to each of the upper nozzle and the lower nozzle And
前記加工液供給装置の動作を制御して、該加工液供給装置から前記上側ノズル および前記下側ノズルの各々に所定流量の加工液を供給させる演算 ·制御部と、 前記上側ノズルおよび前記下側ノズルの各々への加工液の供給量と前記給電制 御データの作成時に想定していた加工液の供給量との大小関係を求める流量比較 部と、  An operation / control unit for controlling the operation of the machining fluid supply device to supply a predetermined flow rate of the machining fluid from the machining fluid supply device to each of the upper nozzle and the lower nozzle, and the upper nozzle and the lower side A flow rate comparison unit for determining the magnitude relationship between the amount of machining fluid supplied to each of the nozzles and the amount of machining fluid assumed when creating the power supply control data;
を更に有すると共に、  And further having
前記記憶部には、前記加工液供給装置の動作を数値制御するための数値制御デ ータが更に格納されており、  The storage unit further stores numerical control data for numerically controlling the operation of the machining fluid supply device,
前記演算 ·制御部は前記数値制御データを基に前記加工液供給装置の動作を制 御し、  The calculation / control unit controls the operation of the machining fluid supply device based on the numerical control data,
前記パルス発振制御部は、前記流量比較部による比較の結果、前記給電制御デ ータの作成時に想定して 、た加工液の供給量よりも加工液の供給量が多 ヽノズルが あったときには、該ノズルと同じ側の給電部力 前記ワイヤ電極への給電比率が低く なるように前記給電制御データを改変し、該改変した給電制御データを基に前記第 As a result of comparison by the flow rate comparison unit, the pulse oscillation control unit assumes that the amount of machining fluid supplied is greater than the amount of machining fluid supplied, assuming that the power supply control data is created. The power supply force on the same side as the nozzle is modified so that the power supply ratio to the wire electrode is low, and the power supply control data is modified based on the modified power supply control data.
1パルス発振器および前記第 2パルス発振器それぞれの動作を制御する、 ことを特徴とする請求項 1に記載のワイヤ放電加工機。 The wire electric discharge machine according to claim 1, wherein the operation of each of the one-pulse oscillator and the second pulse oscillator is controlled.
PCT/JP2006/321179 2006-10-24 2006-10-24 Wire discharge processing machine WO2008050405A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200680011788.XA CN101282812B (en) 2006-10-24 2006-10-24 Discharging processor for line electrode
PCT/JP2006/321179 WO2008050405A1 (en) 2006-10-24 2006-10-24 Wire discharge processing machine
DE112006004082T DE112006004082T5 (en) 2006-10-24 2006-10-24 Wire discharge machining apparatus
JP2007513126A JP5031555B2 (en) 2006-10-24 2006-10-24 Wire electric discharge machine
TW095146203A TWI335848B (en) 2006-10-24 2006-12-11 Wire discharge processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321179 WO2008050405A1 (en) 2006-10-24 2006-10-24 Wire discharge processing machine

Publications (1)

Publication Number Publication Date
WO2008050405A1 true WO2008050405A1 (en) 2008-05-02

Family

ID=39324219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321179 WO2008050405A1 (en) 2006-10-24 2006-10-24 Wire discharge processing machine

Country Status (5)

Country Link
JP (1) JP5031555B2 (en)
CN (1) CN101282812B (en)
DE (1) DE112006004082T5 (en)
TW (1) TWI335848B (en)
WO (1) WO2008050405A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092081A1 (en) 2009-02-12 2010-08-19 Kringlan Composites Ag Method and apparatus for producing parts of fiber reinforced plastics
JP2020075321A (en) * 2018-11-08 2020-05-21 ファナック株式会社 Wire disconnection predictor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9010673B2 (en) * 2011-05-16 2015-04-21 Mitsubishi Electric Corporation Wire electric discharge machining apparatus
JP5578223B2 (en) * 2012-03-01 2014-08-27 キヤノンマーケティングジャパン株式会社 Multi-wire electric discharge machining system, multi-wire electric discharge machining apparatus, power supply device, semiconductor substrate or solar cell substrate manufacturing method, electric discharge machining method
TWI500466B (en) 2012-09-25 2015-09-21 Ind Tech Res Inst Apparatus and method for electrical discharge machining modulation control
CN104339045B (en) * 2013-07-25 2017-07-11 佳能市场营销日本株式会社 Wire electric discharge machine, its control method and program
JP5800923B2 (en) * 2014-01-15 2015-10-28 ファナック株式会社 Power supply device for wire electric discharge machine
JP6875361B2 (en) * 2018-12-25 2021-05-26 ファナック株式会社 Control method of wire electric discharge machine and wire electric discharge machine
TWI715977B (en) * 2019-05-08 2021-01-11 國立高雄科技大學 Vibration-assisted wire-electrical discharge machining modules
JP7173921B2 (en) * 2019-05-10 2022-11-16 ファナック株式会社 Wire electric discharge machine and wire electric discharge machining method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947123A (en) * 1982-09-03 1984-03-16 Inoue Japax Res Inc Electric discharge machine
JPH0197525A (en) * 1987-10-06 1989-04-17 Inoue Japax Res Inc Wire cut electric discharge machine
JP6061663B2 (en) * 2012-12-19 2017-01-18 三菱電機株式会社 Power flow control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH662075A5 (en) * 1984-10-17 1987-09-15 Charmilles Technologies ELECTROEROSIVE CUTTING PROCESS AND DEVICE FOR ITS IMPLEMENTATION.
JPH0661663A (en) 1992-08-06 1994-03-04 Nec Eng Ltd Connection confirming apparatus for circuit board
EP1498206B1 (en) * 2002-04-22 2011-07-20 Mitsubishi Electric Corporation Machining power supply of wire electric discharge machine and power supply method
CN2810852Y (en) * 2005-03-28 2006-08-30 谭启仁 Wire break protector with built-in A/D converter for linear cutting machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947123A (en) * 1982-09-03 1984-03-16 Inoue Japax Res Inc Electric discharge machine
JPH0197525A (en) * 1987-10-06 1989-04-17 Inoue Japax Res Inc Wire cut electric discharge machine
JP6061663B2 (en) * 2012-12-19 2017-01-18 三菱電機株式会社 Power flow control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092081A1 (en) 2009-02-12 2010-08-19 Kringlan Composites Ag Method and apparatus for producing parts of fiber reinforced plastics
JP2020075321A (en) * 2018-11-08 2020-05-21 ファナック株式会社 Wire disconnection predictor
US11630440B2 (en) 2018-11-08 2023-04-18 Fanuc Corporation Wire disconnection prediction device

Also Published As

Publication number Publication date
JP5031555B2 (en) 2012-09-19
CN101282812B (en) 2013-09-18
CN101282812A (en) 2008-10-08
DE112006004082T5 (en) 2009-08-06
JPWO2008050405A1 (en) 2010-02-25
TW200819231A (en) 2008-05-01
TWI335848B (en) 2011-01-11

Similar Documents

Publication Publication Date Title
WO2008050405A1 (en) Wire discharge processing machine
US7928337B2 (en) Apparatus for machining a workpiece using wire discharge including an upper and lower power supply unit
JP5037941B2 (en) Wire electric discharge machining apparatus and wire electric discharge machining method
US7039490B2 (en) Controller for wire electric discharge machine
JP4772138B2 (en) Wire-cut electric discharge machine with a function to suppress the occurrence of local streaks in finishing
US6774334B1 (en) Wire electric discharge machining of corners
US9272349B2 (en) Numerical control device, wire electric discharge machining apparatus using the same, and wire electric discharge machining method using the same
EP2617506B1 (en) Wire electrical discharge machine carrying out electrical discharge machining by inclining wire electrode
EP1533065B1 (en) Wire electric discharge machining apparatus.
JP2009226504A (en) Wire electric discharge machining device
JP4921484B2 (en) Wire electrical discharge machine
JPH03478A (en) Method and device for plasma cutting
US6803537B2 (en) Wire electric discharge machine including profile adjusting mechanism
JP4569973B2 (en) Electric discharge machining apparatus and method, and method for determining occurrence of electric discharge
KR100823551B1 (en) Apparatus and method for pipe automatic welding
KR20080044200A (en) Wire-discharge machining apparatus
JP4921483B2 (en) Wire electrical discharge machine
JP2000084743A (en) Wire cut electrical discharge machining method and device
JP3367345B2 (en) Wire electric discharge machine
JPWO2002034443A1 (en) Wire electric discharge machine
JPH11170118A (en) Wire-cut electric discharge machining method, and device therefor
JP4973436B2 (en) EDM machine
KR100579075B1 (en) Dry Run Control Unit of Wire Discharging Manufacturer
JPS63245328A (en) Wire-cut electric discharge machining device
JPS63185522A (en) Electric discharge machining device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680011788.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007513126

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11883999

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077019757

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120060040820

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006004082

Country of ref document: DE

Date of ref document: 20090806

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06822159

Country of ref document: EP

Kind code of ref document: A1