WO2008048220A2 - Lingette de nettoyage avec surface texturée - Google Patents
Lingette de nettoyage avec surface texturée Download PDFInfo
- Publication number
- WO2008048220A2 WO2008048220A2 PCT/US2006/030033 US2006030033W WO2008048220A2 WO 2008048220 A2 WO2008048220 A2 WO 2008048220A2 US 2006030033 W US2006030033 W US 2006030033W WO 2008048220 A2 WO2008048220 A2 WO 2008048220A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- projections
- cleaning
- wipe
- head
- friction element
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/20—Mops
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/16—Cloths; Pads; Sponges
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L13/00—Implements for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L13/10—Scrubbing; Scouring; Cleaning; Polishing
- A47L13/20—Mops
- A47L13/24—Frames for mops; Mop heads
- A47L13/254—Plate frames
- A47L13/256—Plate frames for mops made of cloth
Definitions
- a disposable wipe or pad component may be attached to the mop head and configured to pick up dirt, lint, fluid, and other material from a surface when the mop head is moved over the surface.
- the disposable wipe may be designed to pick up these materials in a dry or wet state.
- the bottom surface of a conventional mop head, or other type of cleaning tool is generally flat and the attached disposable wipe is pressed flat against the surface to be cleaned, which typically is also a substantially uniform flat surface. While smaller particles may be adequately removed and retained by the mop head, cleaning in this manner is often ineffective at capturing and retaining larger particles, such as hair and accumulations of dust or lint, from the surface to be cleaned. For instance, balls of dust and/or lint may be shed from the disposable wipe either during cleaning, or after the mop head has been lifted up from the surface that was being cleaned. Also, various types of surface dirt can only be removed with at least some degree of abrasive scrubbing action.
- the cleaning surface of the wipe may be textured to include raised areas or "tufts" of increased density to provide the wipe with an abrasive characteristic, as well as a desired degree of absorbency.
- U.S. Pat. No. 6,797,357 describes a disposable cleaning wipe that may be used with a mop head, wherein the wipe has a macroscopic three-dimensional surface topography created by peaks formed in the wipe material. It is alleged that this structure provides the wipe with the enhanced ability to pick up and retain particulate dirt particles.
- the UK patent GB 2031039 discloses a disposable wipe for a dust mop made from a nonwoven fabric having areas of varying degrees of embossing. These areas possess different degrees of structural integrity and a desired cleaning characteristic for the working face of the wipe.
- U.S. Pat. No. 4,741 ,941 entitled “Nonwoven Web with Projections,” incorporated herein by reference for all purposes, discloses a nonwoven web useful as a cleaning wiper having projections separated by land areas. In some embodiments, the projections render the wipes particularly useful for scrubbing applications.
- the art is continually seeking improvements in the structure and functionality of disposable cleaning wipes that may be used as a stand-alone product, or for attachment to any manner of cleaning implement, such as a mop head. The present invention relates to just such an improvement.
- the present invention relates to a disposable cleaning wipe that may be used as a stand-alone product or attached to any manner of cleaning implement, such as a mop.
- the cleaning wipe provides a unique textured surface that provides the wipe with multiple cleaning functionalities, including an abrasive or scrubbing functionality.
- the cleaning wipe is thus useful for cleaning surfaces requiring more that a wiping action from a soft wipe to remove all undesired matter.
- the cleaning wipe may provide a generally aggressive scrubbing or abrasive functionality for removing larger adhered matter, as well as a wiping functionality for removing finer surface particulates, dust, and so forth.
- the invention encompasses any manner of cleaning tool or implement incorporating the unique textured surface as a removable wipe or integral component thereof.
- a cleaning wipe for use in cleaning any manner of surface includes a base material having an application face.
- This base material may be any one or combination of suitable materials, including a nonwoven material.
- a plurality of projections are defined on the base material and extend generally transversely from the application face, the projections having a base portion and a head portion.
- the projections provide the cleaning wipe with an additional cleaning functionality, namely an abrasive scrubbing function.
- a high friction element is applied to at least a portion of the projections.
- the high friction element may be applied to various areas of the projections, or over the entire surface area of the projections.
- the high friction element is applied to a top surface of the projection head portions.
- the high friction element may be applied to the sides of the base portion, or to select areas of the base portion sides and head portions.
- the high friction element may be any one or combination of materials.
- the high-friction element comprises a thermoplastic or silicone elastomer.
- this element is an elastomer coating applied to various surfaces of the projections by any conventional application method.
- the coating may be, for example, rubber, neoprene, polyurethanes, polyisoprenes, synthetic or natural latex, or silicone.
- Various know coatings may be selected by those skilled in the art to enhance the ability of the projections to frictionally "grip" the surface being cleaned as the wipe is moved across the surface. For many relatively smooth surfaces, such as tile or highly polished surfaces, without the high friction element, the projections would tend to merely glide across the surface without providing the desired scrubbing functionality.
- Suitable high friction element coatings may also include fluoropolymers, self- cohesive polymers, low-tack elastomers, elastomer blends, and the like.
- high-friction coatings may include the ENDUR HFG silicone coatings of Rogers Corporation (Rogers, Connecticut). Also by way of example, methods for coating silicone elastomers onto fibrous materials are disclosed in US Pat. No. 6,200,915.
- High-friction materials may also be applied uniformly or nonuniformly to a surface or selected portions of a surface using deposition of atomized droplets of a liquid that is subsequently cured or by known spray techniques, by contact coating, by printing such as inkjet printing, flexographic printing, or gravure printing, or by other known methods.
- the high-friction element may comprise or substantially consist of an elastomeric compound with a Shore-A hardness of 90 or less, 75 or less, 60 or less, or about 50 or less.
- the elastomeric compound may have a kinetic coefficient of friction (COF) in accordance with ASTM D-1894 of at least one of the following: 0.3, 0.4, 0.5, 0.6, or 0.7, such as from 0.4 to 2.5 or from 0.5 to 2. Testing should be done against a mild steel surface with a sled mass of 20Og.
- the static coefficient of friction for a substantially smooth, flat, 0.5- mm thick sample of the elastomeric material can be at least one of the following: 0.35, 0.45, 0.55, or 0.75.
- the kinetic coefficient of friction of the high-friction element can be at least 30% greater than that of the base material, and may be at least 50% greater, at least 70% greater, or at least 100% greater than the coefficient of friction of the base material.
- the high-friction element comprises a coating applied to portions of a wipe wherein the treated surface of the wipe has a coefficient of friction at least 30% greater or at least 50% greater than the original untreated wipe.
- the kinetic coefficient of friction (COF) for a dry wipe comprising high-friction elements as measured in accordance with ASTM D-1894 can be at least one of the following: 0.3, 0.4, 0.5, 0.6, or 0.7, such as from 0.35 to 2.5 or from 0.5 to 2.
- the high friction element may be in the form of discrete elements attached to the surface of the projections, or mixed uniformly or heterogeneously throughout the base material.
- the high friction element may comprise a grit (discrete particles of high-friction material) adhered to the projections, or distributed throughout the base material.
- Elastomeric fibers may be a component of the nonwoven material and also serve as the high friction element where exposed on the projections. It may be desired that land areas of the base material between the projections remain substantially void of the high friction element, particularly if the land areas provide a different cleaning functionality as compared to the projections.
- the projections may take on various sizes, shapes, and spacing on the application face.
- the projections may have a height relative to the land areas of the base material of at least about 1 mm, 2 mm, or 3 mm.
- the projections may have a conical or dome shaped cross section and a spacing such that the base portions of the projections are generally in contact and continuous over the application face.
- the projections may be spaced apart such that land areas are defined between the projections. The spacing, size and shape of the projections may be varied widely as a function of the desired cleaning functionality to be provided by the cleaning wipe.
- the projections have a cross-sectional shape such that the head portion extends laterally beyond and overhangs the base portion.
- An example of such a configuration is a mushroom shaped projection.
- This embodiment is unique in that the voids or spaces between the projections are particularly well suited for trapping hair and other difficult to retain materials from the surface being cleaned.
- the projections may be defined as individual dot or point-like structures on the application face.
- the projections are defined as elongated longitudinally extending structures such that an elongated channel is defined between adjacent projections. This embodiment may be particularly useful when the wipe is configured as a disposable mop head attachment.
- the projections may be oriented so as to extend longitudinally across the width of the mop head in a direction transverse to a wiping direction of the mop cleaning head.
- the projections are oriented so as to extend longitudinally along the mop head in a direction generally aligned with a wiping direction of said cleaning head (i.e., aligned with the shorter dimension of the mop head).
- the channels between adjacent elongated projections may taper in width along the length of the projections. In this manner, dirt particles, hair, or other particulate matter is pushed along the channels and becomes wedged in the tapered regions of the channels in use of the mop.
- the base material may be any material suitable for a cleaning wipe having any combination of desired cleaning functionalities and capable of being formed into and retaining the three-dimensional projections.
- the base material is a nonwoven material wherein the projections are hydroentangled into the web with use of a porous forming substrate having cavities with the desired shape of the projections. Water jets in the hydroentangling process redistribute fibers in the web to create a textured web corresponding to the negative image of the forming substrate.
- the projections will be composed essentially entirely of fibers and will have a greater basis weight as compared to the land areas of the base material between the projections. Principles of forming hydroentangled webs are given in US Pat. No. 4,939,016, "Hydraulically Entangled Nonwoven Elastomeric Web and Method of Forming the Same," issued July 3, 1990 to Radwanski et al.
- the projections can be formed by any known process for texturing a web, including embossing, pleating, molding, and so forth.
- the projections may have essentially the same thickness and basis weight as the land areas between the projections, and be essentially “hollow” and thus highly compressible. It certain cleaning situations, this is a desirable cleaning functionality. It should be appreciated that the type of base material and process used for forming the projections may vary widely within the scope and spirit of the invention.
- the projections may be defined in various patterns on the application face of the cleaning wipe.
- the projections may be defined in a uniform pattern over generally the entire surface area of the application face.
- the spacing and aspect ratio of the projections may vary widely depending on the desired degree of abrasiveness for the cleaning wipe.
- the projections may be defined in discrete regions on the application face, for example along the edges of the application face, particularly along the leading or lateral edges of a mop head, or in a discrete middle region.
- the projections may have the same or a different configuration within the different discrete regions depending on the desired cleaning functionalities of the different regions.
- the projections may have a first configuration and spacing along the leading and lateral side edges of the application face to provide a more intense scrubbing functionality as compared to a middle region of the application face that may be void of projections, or have smaller projections at a decreased aspect ratio.
- cleaning wipes according to the invention may be configured for attachment to any manner of cleaning tool, such as a mop, handheld tool, powered machine such as a buffer, and so forth.
- the unique textured surface according to the invention may be formed as an integral or non-removable component of a cleaning device.
- the textured surface could be formed directly into the application face of a disposable hand-held cleaning sponge or foam pad.
- a material layer having the textured surface may be permanently adhered to the face of such a device.
- the invention encompasses any manner of cleaning tool or implement that incorporates the novel textured surface. Aspects of the invention will be described in greater detail below by reference to particular non-limiting embodiments illustrated in the drawings.
- FIG. 1 is a perspective view of a cleaning tool configured as a mop incorporating a cleaning wipe of the present invention.
- Fig. 2 is an enlarged cross-sectional view of a portion of the wipe of Fig. 1 particularly illustrating the projections on the application face of the wipe.
- Figs. 3A through 3C are cross-sectional views of an alternative embodiment of a wipe and particularly illustrate the effect of the high friction elements on the projection surfaces.
- Fig. 4A is a perspective view of the application face of a mop head and particularly illustrates discrete regions of projections on the application face of the wipe.
- Figs. 4B and 4C are cross-sectional views of the projection configurations of the embodiment of Fig. 4A.
- Fig. 5A is a perspective view of the application face of a mop head and particularly illustrates longitudinally extending projections at the leading edge of the mop head.
- Fig. 5B is a cross-sectional view of the projection configurations of the embodiment of Fig. 5A.
- Fig. 6A is a perspective view of the application face of a mop head and particularly illustrates longitudinally extending projections along the lateral edges of the mop head oriented in a direction corresponding to a wiping direction of the mop head.
- Fig. 6B is a cross-sectional view of the projection configurations of the embodiment of Fig. 6A.
- Fig. 7 is a perspective view of a cleaning wipe embodiment in accordance with the invention that may be used as a stand-alone cleaning implement.
- Fig. 8 is a perspective view of a hand-held cleaning sponge incorporating a wipe material layer in accordance with aspects of the invention.
- the present invention relates to a unique cleaning wipe 10 intended as a stand-alone product or for incorporation with any manner of conventional cleaning tool, such as a mop.
- Various constructions of mops are well known in the art and need not be described in detail herein for an appreciation or understanding of the present invention.
- various other cleaning tools may take advantage of the invention, such as a hand-held implement, powered machine (e.g., a buffer or scrubber), and so forth.
- the wipe 10 may be incorporated into a cleaning glove useful, for example, in grooming animals or cleaning soiled carpet. Referring to Fig.
- a cleaning wipe 10 is illustrated as it might be incorporated with a cleaning tool 46, for example a conventional mop 40 having a handle 42 attached to a cleaning head 32 by any conventional pivotal connection 44.
- the wipe 10 may be held on the cleaning head 32 by any conventional means, such as the clips 43, slits defined in the top of the cleaning head 32, releasable adhesives, hook and loop material, and so forth.
- the cleaning wipe 10 is intended as a disposable element that can be readily removed from the mop 44 and replaced with an additional wipe 10.
- the wipe 10 includes a base material 12 and a plurality of projections 14 defined on the base material so as to extend generally transversely from the application face 15 of the wipe 10. An embodiment of the projections 14 is illustrated particularly in Fig.
- the projections 14 generally include a head portion 20, and a base portion 22. As described in greater detail below, the projections 14 may be defined in any desired pattern, spacing, and so forth, so as to provide the wipe 10 with a particularly desired cleaning functionality, namely an abrasive or scrubbing function.
- the base material 12 is illustrated in the figures as a nonwoven material having the projections 14 formed integral on the application face 15.
- Various embodiments of a suitable base material 12 are described in greater detail below. Also, various methods for forming the projections 14 on the base material 12 are also discussed in detail below.
- a high friction element 24 is applied to at least a portion of the projections 14.
- the high friction element 24 is applied generally to the sides of the projections 14, with the head portion 20 of the projections 14 being essentially free of the high friction element 24.
- the high friction element 24 essentially covers the head portion 20 and sides of the base portion 22.
- the high friction element 24 is provided on the head portion 20 and to a limited area of the sides of the base portion 22.
- the high friction element 24 is applied to only one side of the base portion 22, as discussed in greater detail below.
- the high friction element 24 may be provided on the protrusions 14 in any desired manner or pattern.
- the base material 12 defines a land area 18 between the projections 14.
- the land areas 18 may be thought of as the regions of the base material 12 that are void of projections 14. It may be desired that these land areas 18 are void of the high friction element 24 so that a desired separate functionality of the base material (separate from the projections 14) is not inhibited by the high friction element 24.
- the base material 12 be a highly absorbent material. It would thus not be desired to cover the surface area of the base material 12 with the high friction element 24.
- the high friction element 24 may be any one or combination of materials.
- this element 24 is an elastomer coating applied to various surfaces of the projections 14 by any conventional application method, such as spraying, dipping, coating, etc.
- the coating may be, for example, rubber, neoprene, synthetic or natural latex, or silicone.
- Suitable high friction elements 24 may also include coatings of fluoropolymers, self-cohesive polymers, low-tack elastomers, elastomer blends, and the like.
- the high friction elements 24 may be discrete elements attached to the surface of the projections 14, or mixed uniformly or heterogeneously throughout the base material 12.
- the high friction element 24 may be a grit or other particulate matter adhered to the projections 14, or distributed throughout the base material.
- the high friction element 24 may also be defined by elastomeric fibers that constitute a component of the nonwoven material. These fibers may be homogeneous throughout the material 12, or selectively present near the application face 15 of the base material 12.
- the high friction material 24 provides the protrusions 14 with the ability to more securely "grip" the surface being cleaned as the wipe is moved in a to-and- fro direction.
- the protrusions 14 are illustrated with the high friction element 24 applied along one side of the base portion 22 of the protrusions.
- Fig. 3B illustrates the cleaning head 32 being moved in the direction of the arrow. Because the high friction element 24 is not present on the leading edge sides of the protrusions 14, the protrusions will move along the surface with a first degree of frictional interface. Referring to Fig.
- the cleaning head 32 is moved in an opposite direction wherein the high friction elements 24 are now on the leading edge of the protrusions 14.
- the high friction elements 24 frictionally engage with the surface being cleaned with a second degree of frictional interface that is greater than the uncoated protrusions 14, as represented in Fig. 3B.
- This increased frictional interface results in an enhanced scrubbing or abrasive functionality. This may be particularly useful for cleaning of relatively smooth surfaces, such as tile or highly polished surfaces. Without the high friction elements 24, the projections 14 would tend to glide across the surface without providing the desired scrubbing or abrasive functionality.
- the projections 14 may take on various sizes, shapes, and spacing on the application face 15 of the wipe 10. All such characteristics will affect the cleaning functionality provided by the projections 14.
- the projections 14 may have any desired height relative to the land areas 18 of the base material 12. In a particular embodiment, the head portions 20 of the projections 14 extend at least about 2 mm above the land areas 18.
- the projections 14 may have a conical or dome shaped cross section, such as illustrated in Figs. 3A and 4B.
- the sides of the projections 14 may merge such that the base portions 22 of the projections are generally in contact and continuous over the application face 15.
- distinct land areas 18 may not be present between the projections 14.
- the projections 14 may be spaced apart such that the land areas 18 are defined between the projections 14.
- the projections 14 have a cross- sectional shape such that the head portion 20 extends laterally beyond and overhangs the base portion 22. Referring to Figs. 2 and 4C, such a configuration may be, for example, a mushroom-shaped projection.
- This embodiment is particularly unique in that the voids or spaces between the projections 14 are particularly well suited for trapping hair and other difficult to retain materials from the surface being cleaned.
- the tapered voids (tapered from the head portion of the projections 14 towards the land areas 18) allow for hair and other relatively larger particulate matter to become essentially "wedged" into the void spaces, with the tapered profile of the projections serving to "lock” the particulate matter within the voids.
- the projections 14 may be defined as individual dot or point-like structures over the surface of the application face 15, as illustrated in Fig. 1.
- the projections 14 are defined as elongated longitudinally extending structures that define an elongated channel 26 between adjacent projections 14. This embodiment may be particularly useful when the wipe 10 is configured as a disposable attachment to a cleaning head 32 of a mop 40, as illustrated in the figures.
- the projections 14 may be oriented so as to extend longitudinally across the width of the mop head 32 in a direction that is transverse to the wiping direction of the head 32.
- the projections 14 may extend transversely between the lateral sides 36 of the mop head 32.
- the projections 14 may be oriented at the leading edge 34 of the mop head 32 so as to provide an initial scraping functionality as the mop head 32 is pushed in a forward direction.
- the projections 14 may be disposed along the trailing edge 38 of the mop head 32 so as to provide a squeegee-type of functionality.
- Fig. 5B illustrates a cross-sectional view of the projections 14 that may be used to define channels 26.
- Fig. 5B illustrates a cross-sectional view of the projections 14 that may be used to define channels 26.
- the projections 14 are oriented at the lateral sides of the mop head 32 so as to extend longitudinally along the mop head in a direction generally aligned with the wiping direction of the head 32.
- the projections 14 may extend longitudinally between the leading edge 34 and trailing edge 38 of the mop head 32.
- This embodiment may be desired in that the formed channels 26 would tend to pick-up and retain particulate matter and hair along that accumulates, for example, along a floor board.
- the channels 26 may taper in width along the length of the projections 14 so as to define a tapered region 28. In these tapered regions 28, dirt particles, hair, or other particulate matter is pushed along the channels and becomes essentially wedged into the tapered width portions of the channels 26.
- Composition of the base material 12 may vary widely within the scope and spirit of the invention depending on the desired cleaning functionality of the material, including softness or loft, abrasiveness, absorbency, particulate retention properties, and so forth.
- the base material 12 may be a material formed into an open, porous structure that has sufficient structural integrity for use as a cleaning wipe and also for maintaining the shape and integrity of the projections 14 formed therein. Suitable materials are abundant and may be either natural or synthetic materials. Possible exemplary materials may include any known abrasive materials formed into the desired open structure. Possible synthetic materials may be polymeric materials, such as, for instance, meltspun nonwoven webs formed of molten or uncured polymer which may then harden to form the desired abrasive layer.
- the base material 12 may include a meltspun web, such as may be formed using a thermoplastic polymer material.
- a suitable thermoplastic polymer that may be used to form meltblown nonwoven webs may be used for the abrasive layer of the scrubbing pads.
- the material may include meltblown nonwoven webs formed with a polyethylene or a polypropylene thermoplastic polymer.
- Polymer alloys may also be used in the abrasive layer, such as alloy fibers of polypropylene and other polymers such as PET. Compatibilizers may be needed for some polymer combinations to provide an effective blend.
- the abrasive polymer is substantially free of halogenated compounds.
- the abrasive polymer is not a polyolefin, but comprises a material that is more abrasive than say, polypropylene or polyethylene (e.g. having flexural modulus of about 1200 MPa and greater, or a Shore D hardness of 85 or greater).
- Thermosetting polymers may also be used, as well as photocurable polymers and other curable polymers.
- the base material layer 12 may be a web comprising fibers of any suitable cross-section.
- the fibers of the abrasive layer may include coarse fibers with circular or non-circular cross-sections.
- non-circular cross- sectional fibers may include grooved fibers or multi-lobal fibers such as, for example, "4DG" fibers (specialty PET deep grooved fibers, with an eight-legged cross-section shape).
- the fibers may be single component fibers, formed of a single polymer or copolymer, or may be multi-component fibers.
- nonwoven polymeric fabrics made from multi-component or bicomponent filaments and fibers may be used.
- Bicomponent or multi-component polymeric fibers or filaments include two or more polymeric components which remain distinct.
- the various components of multi-component filaments are arranged in substantially distinct zones across the cross-section of the filaments and extend continuously along the length of the filaments.
- bicomponent filaments may have a side-by-side or core and sheath arrangement.
- one component exhibits different properties than the other so that the filaments exhibit properties of the two components.
- one component may be polypropylene which is relatively strong and the other component may be polyethylene which is relatively soft. The end result is a strong yet soft nonwoven fabric.
- the base material layer 12 comprises metallocene polypropylene or "single site" polyolefins for improved strength and abrasiveness.
- Exemplary single-site materials are available from H. B. Fuller Company, Vadnais Heights, Minnesota.
- the base material layer 12 may include a precursor web comprising a planar nonwoven substrate having a distribution of attenuated meltable thermoplastic fibers such as polypropylene fibers thereon. The precursor web may be heated to cause the thermoplastic fibers to shrink and form nodulated fiber remnants that impart an abrasive character to the resultant web material.
- the nodulated fiber remnants may comprise between about 10% and about 50% by weight of the total fiber content of the web and may have an average particle size of about 100 micrometers or greater.
- the precursor web may contain cellulosic fibers and synthetic fibers having at least one component with a higher melting point than polypropylene to provide strength.
- the precursor web may be wet laid, air laid, or made by other methods.
- the precursor web is substantially free of papermaking fibers.
- the precursor web may be a fibrous nylon web containing polypropylene fibers (e.g., a bonded carded web comprising both nylon fibers and polypropylene fibers).
- the material used to form the base material layer 12 may also contain various additives as desired.
- various stabilizers may be added to a polymer, such as light stabilizers, heat stabilizers, processing aides, and additives that increase the thermal aging stability of the polymer.
- auxiliary wetting agents such as hexanol
- antistatic agents such as a potassium alkyl phosphate
- alcohol repellants such as various fluoropolymers (e.g., DuPont Repellent 9356H) may also be present.
- Desired additives may be included in the abrasive layer either through inclusion of the additive to a polymer in the die or alternatively through addition to the abrasive layer after formation, such as through a spraying process.
- the invention also encompasses any manner of multiple layer construction wherein one or more layers of material form a composite structure, with at least one of the layers incorporating the unique textured surface.
- the base material 12 may be a high loft nonwoven material adhered to a relatively dense, high strength layer, such as a sponge, foam, or the like.
- the base material 12 may be apertured to expose the underlying layer.
- Various means may be utilized to form the projections 14 into the base material 12, including any known conventional method for texturing a web of material, such as pleating, embossing, molding, and so forth.
- a particularly efficient method involves forming a porous customized hydroentangling substrate having a pattern of cavities formed therein corresponding to the negative image of the protrusions.
- the base material web is placed adjacent to this substrate and then subjected to a hydroentangling process wherein the water jets cause a redistribution of the fibers in the web into the cavities in the substrate to create the projections in the web.
- the resulting projections are composed entirely of the redistributed fibers and will have a greater basis weight than the adjacent land areas of the base material.
- PGI Polymer Group Inc. of Washington, South Carolina, USA has developed customized hydroentangling substrate technology that may be useful in forming process described above.
- the PGI technology allows for the creation of complex hydroentangled textures in webs based on CAD drawings used to create a porous spunlace substrate onto which the web is hydroentangled.
- PGI's CLC-248 NOB web (a 3.5 osy PET web material).
- This material includes a uniform pattern of dome-shaped projections that could be coated on any portion thereof with a suitable high friction element. Additionally, the dome-shaped projections could be flattened by, for example a calendaring process, to form mushroom-shaped protrusions. In the alternative, a "cap" structure could be added to the domes to create mushroom-shaped protrusions.
- Complex hydroentangling geometries may be incorporated in a wipe for dry or wet mop applications wherein the resulting spunlace web has a macroscopically heterogeneous engineered structure with regions adapted for retention of large particles or dustballs, and other regions adapted for retention of smaller particles.
- the three- dimensional structures can include relatively deep channels near the leading edge to receive and retain large particles, with a lower textured surface depth in the central portion of the mop head for better liquid uptake, wiping of sticky or viscous materials, scrubbing, etc.
- the leading edge structure may also have a higher basis weight or other reinforcing means t increase stiffness and resiliency.
- Side edges of the application face may also be provided with distinct projection structures to assist in cleaning corners or sideboards.
- nonwoven webs and airlaid webs could be modified to have a variety of cross-sectional shapes suitable for wipes 10.
- a nonwoven web comprising thermally activated binder material and/or thermoplastic fibers could be molded into a desired wipe configuration using heated molding plates or porous molding surfaces, as described in U.S. Pat. No. 6,692,603 entitled “Method of Making Molded Cellulosic Webs for Use in Absorbent Articles" and U.S. Pat. No. 6,617,490 entitled “Absorbent Articles with Molded Cellulosic Webs.”
- the wipe may be formed by being molded with spunlace technology on a three-dimensional porous mesh having a suitable shape.
- Formation of shaped webs useful for the present invention could also be achieved by adapting the techniques for forming tissue with shaped elements described in U.S. Pat. No. 6,660,362 entitled “Deflection Members for Tissue Production” and U.S. Pat. No. 6,610,173 entitled “Three-Dimensional Tissue and Methods for Making the Same.”
- Other textured nonwoven webs that can be modified to have structures of the present invention include those of U.S. Pat. No. 4,741 ,941 entitled
- the cleaning wipe 10 may provide various functionalities in addition to presenting a surfacing having a desired cleaning functionality.
- the wipe 10 may be configured to deliver any manner of agent to the surface to be cleaned.
- the agent is a cleaning agent, such as a disinfectant, bleach, or other cleaning compound, that is contained within the wipe material and released upon use of the cleaning tool. This may be accomplished in various ways.
- the agent may be a powder, or granular composition distributed throughout the wipe material.
- agents that may be delivered by the wipe 10 include cleaning agents such as floor wax, scrubbing agents, disinfectants, deodorants, bleach, etc.
- the agent may also act as a biosensor for indicating the presence of a biological agent, such as anthrax, or chemical agents.
- the agent includes B lymphocytes that contain antibodies for the target analytes and a green fluorescent protein from jellyfish that becomes activated when the antibodies contact the target analytes.
- B lymphocytes that contain antibodies for the target analytes
- a green fluorescent protein from jellyfish that becomes activated when the antibodies contact the target analytes.
- biosensors are disclosed in U.S. Patent application number 10/277,170 filed on October 21 , 2002 and entitled “Healthcare Networks With Biosensors", which is assigned to the assignee of the present application. The entire contents of U.S. Patent application number 10/277,170 are incorporated by reference herein in their entirety for all purposes.
- the biosensor may be a fluorescent protein or a genetically engineered cell in a pathogen identification sensor that glows when the biosensor detects the presence of the particular bacterial or chemical agent.
- the wipe 10, or tool incorporating such a wipe may be electrostatically charged either uniformly, or in a pattern, in order to assist in the capture and retention of the generally smaller size particles thereon.
- electrostatic charge e.g., electrets
- Examples include US Pat. No. 6,365,088, issued April 2, 2003 to Knight et al., and in US Pat. No. 5,401 ,446 issued March 28, 1995 to Tsai et al, both of which are herein incorporated by reference.
Landscapes
- Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
Abstract
L'invention concerne une lingette de nettoyage conçue pour le nettoyage d'une surface, la lingette pouvant être utilisée en tant que produit autonome ou incorporé avec n'importe quel type d'outil de nettoyage. La lingette comprend un matériau de base comportant une face d'application et une pluralité de projections s'étendant généralement transversalement à la face d'application. Les projections peuvent prendre diverses formes, y compris une forme de champignon. Un élément à coefficient de frottement élevé est appliqué à au moins une partie des projections de telle sorte que les projections confère à la lingette de nettoyage une fonctionnalité de récurage abrasif améliorée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06851670A EP1962664A2 (fr) | 2005-12-14 | 2006-08-01 | Lingette de nettoyage avec surface texturée |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/300,602 | 2005-12-14 | ||
US11/300,602 US20070130713A1 (en) | 2005-12-14 | 2005-12-14 | Cleaning wipe with textured surface |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008048220A2 true WO2008048220A2 (fr) | 2008-04-24 |
WO2008048220A3 WO2008048220A3 (fr) | 2008-07-17 |
Family
ID=38137801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/030033 WO2008048220A2 (fr) | 2005-12-14 | 2006-08-01 | Lingette de nettoyage avec surface texturée |
Country Status (3)
Country | Link |
---|---|
US (1) | US20070130713A1 (fr) |
EP (1) | EP1962664A2 (fr) |
WO (1) | WO2008048220A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1905336A2 (fr) * | 2006-09-26 | 2008-04-02 | Tyco Healthcare Retail Services AG | Tampon de nettoyage absorbant doté d'une partie étendue à utiliser avec un ustensile de nettoyage |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120227203A1 (en) * | 2006-02-24 | 2012-09-13 | The Clorax Company | Textured wipes |
US8671500B2 (en) * | 2008-04-11 | 2014-03-18 | Ecolab USA, Inc. | Grill tool, associated pad, and associated methods |
WO2010059430A2 (fr) * | 2008-11-21 | 2010-05-27 | 3M Innovative Properties Company | Outil de nettoyage possédant des tiges en saillie et procédé de nettoyage d'une surface |
US20100144257A1 (en) * | 2008-12-05 | 2010-06-10 | Bart Donald Beaumont | Abrasive pad releasably attachable to cleaning devices |
KR101712941B1 (ko) * | 2009-10-29 | 2017-03-07 | 박문수 | 저 중심 설계의 자루걸레 |
US20110152164A1 (en) * | 2009-12-21 | 2011-06-23 | Kenneth Bradley Close | Wet Wipe Having Improved Cleaning Capabilities |
US9402454B2 (en) * | 2010-04-21 | 2016-08-02 | James Landy | Fluid application device |
US8578543B2 (en) | 2011-04-21 | 2013-11-12 | The Procter & Gamble Company | Squeegee having at least one renewable blade surface for treating a target surface |
US8495784B2 (en) | 2011-04-21 | 2013-07-30 | The Procter & Gamble Company | Device having dual renewable blades for treating a target surface and replaceable cartridge therefor |
US20120301208A1 (en) * | 2011-05-27 | 2012-11-29 | Rubbermaid Incorporated | Cleaning system |
US8578545B2 (en) * | 2012-02-24 | 2013-11-12 | Ecolab Usa Inc. | Customizable disposable mop |
US9096961B2 (en) | 2012-04-27 | 2015-08-04 | Providencia Usa, Inc. | Nonwoven wipe with bonding pattern |
US20130309439A1 (en) | 2012-05-21 | 2013-11-21 | Kimberly-Clark Worldwide, Inc. | Fibrous Nonwoven Web with Uniform, Directionally-Oriented Projections and a Process and Apparatus for Making the Same |
US9480609B2 (en) | 2012-10-31 | 2016-11-01 | Kimberly-Clark Worldwide, Inc. | Absorbent article with a fluid-entangled body facing material including a plurality of hollow projections |
US10070999B2 (en) | 2012-10-31 | 2018-09-11 | Kimberly-Clark Worldwide, Inc. | Absorbent article |
US9327473B2 (en) | 2012-10-31 | 2016-05-03 | Kimberly-Clark Worldwide, Inc. | Fluid-entangled laminate webs having hollow projections and a process and apparatus for making the same |
US9480608B2 (en) | 2012-10-31 | 2016-11-01 | Kimberly-Clark Worldwide, Inc. | Absorbent article with a fluid-entangled body facing material including a plurality of hollow projections |
US9474660B2 (en) | 2012-10-31 | 2016-10-25 | Kimberly-Clark Worldwide, Inc. | Absorbent article with a fluid-entangled body facing material including a plurality of hollow projections |
US9394637B2 (en) | 2012-12-13 | 2016-07-19 | Jacob Holm & Sons Ag | Method for production of a hydroentangled airlaid web and products obtained therefrom |
US9155440B2 (en) | 2013-03-15 | 2015-10-13 | Electrolux Home Care Products, Inc. | Steam distribution apparatus and methods for steam cleaning devices |
US20140289985A1 (en) * | 2013-03-26 | 2014-10-02 | The Procter & Gamble Company | Replaceable cleaning pads |
DK2988644T3 (da) * | 2013-04-25 | 2019-11-25 | Freudenberg Carl Kg | Rengøringsbetræk |
US9743819B2 (en) | 2013-09-24 | 2017-08-29 | Midea America, Corp. | Floor mop with concentrated cleaning feature |
US9554686B2 (en) | 2013-09-24 | 2017-01-31 | Electrolux Home Care Products, Inc. | Flexible scrubbing head for a floor mop |
US9179815B2 (en) | 2013-10-01 | 2015-11-10 | Electrolux Home Care Products, Inc. | Floor mop with removable base plate |
US9957468B2 (en) | 2015-11-06 | 2018-05-01 | The Procter & Gamble Company | Shaped particles |
WO2017106080A1 (fr) | 2015-12-16 | 2017-06-22 | Avintiv Specialty Materials Inc. | Non-tissé souple et son procédé de fabrication |
EP3389465B1 (fr) * | 2016-01-29 | 2020-07-08 | Unger Marketing International, LLC | Dispositifs de nettoyage de surfaces dures destinés à être utilisés avec des tissus de nettoyage |
US11446911B2 (en) | 2016-02-26 | 2022-09-20 | 3M Innovative Properties Company | Consumer scrubbing article with solvent-free texture layer and method of making same |
WO2017203537A1 (fr) * | 2016-05-27 | 2017-11-30 | Frank Industrial Corporation | Dispositif de nettoyage de panneaux solaires et procédé de nettoyage des panneaux solaires |
WO2018160161A1 (fr) | 2017-02-28 | 2018-09-07 | Kimberly-Clark Worldwide, Inc. | Procédé de fabrication de nappes stratifiées enchevêtrées par fluide comportant des projections creuses et des ouvertures |
US11007093B2 (en) | 2017-03-30 | 2021-05-18 | Kimberly-Clark Worldwide, Inc. | Incorporation of apertured area into an absorbent article |
KR102443763B1 (ko) * | 2019-01-30 | 2022-09-20 | 주식회사 엘지에너지솔루션 | 전극 압연롤 세정장치 및 세정방법 |
US11383479B2 (en) * | 2020-03-24 | 2022-07-12 | The Procter And Gamble Company | Hair cleaning implement |
US12004483B2 (en) | 2021-07-02 | 2024-06-11 | Towerstar Pets, Llc. | Method and apparatus for pet hair removal |
US12121939B2 (en) | 2021-07-02 | 2024-10-22 | Towerstar Pets, Llc. | Method and apparatus for pet hair removal |
USD1032136S1 (en) | 2022-07-08 | 2024-06-18 | Towerstar Pets, Llc | Apparatus for pet hair removal |
USD1032986S1 (en) | 2022-07-08 | 2024-06-25 | Towerstar Pets, Llc | Apparatus for pet hair removal |
USD1032132S1 (en) | 2022-07-08 | 2024-06-18 | Towerstar Pets, Llc | Apparatus for pet hair removal |
USD1032135S1 (en) | 2022-07-08 | 2024-06-18 | Towerstar Pets, Llc | Apparatus for pet hair removal |
USD1032137S1 (en) | 2022-07-15 | 2024-06-18 | Towerstar Pets, Llc | Apparatus for pet hair removal |
WO2024026381A1 (fr) * | 2022-07-29 | 2024-02-01 | Towerstar Pets, Llc | Procédé et appareil pour l'épilation des poils d'un animal de compagnie |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4741941A (en) | 1985-11-04 | 1988-05-03 | Kimberly-Clark Corporation | Nonwoven web with projections |
US6200915B1 (en) | 1998-04-28 | 2001-03-13 | Dow Corning Ltd | Silicone coated textile fabrics |
US6610173B1 (en) | 2000-11-03 | 2003-08-26 | Kimberly-Clark Worldwide, Inc. | Three-dimensional tissue and methods for making the same |
US6617490B1 (en) | 1999-10-14 | 2003-09-09 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with molded cellulosic webs |
US6660362B1 (en) | 2000-11-03 | 2003-12-09 | Kimberly-Clark Worldwide, Inc. | Deflection members for tissue production |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE837301C (de) * | 1950-01-25 | 1952-04-21 | Ettore Garzoni | Reinigungstuch |
US2922425A (en) * | 1957-04-24 | 1960-01-26 | Gillette Co | Applicator for applying liquid to hair |
US2918762A (en) * | 1957-05-06 | 1959-12-29 | Rexall Drug Co | Abrasive devices |
US3182346A (en) * | 1963-04-29 | 1965-05-11 | Gen Foods Corp | Cleaning article and method of manufacture |
CA1109654A (fr) * | 1978-08-21 | 1981-09-29 | Minnesota Mining And Manufacturing Company | Epoussette a tete repoussee faite d'un non tisse |
US4437269A (en) * | 1979-08-17 | 1984-03-20 | S.I.A.C.O. Limited | Abrasive and polishing sheets |
US4389442A (en) * | 1980-06-16 | 1983-06-21 | Ozite Corporation | Wall covering fabric with texturized loops |
US4477938A (en) * | 1982-02-18 | 1984-10-23 | Samuel Rogut | Material which has abrasive properties and method of making same |
US4609581A (en) * | 1985-04-15 | 1986-09-02 | Minnesota Mining And Manufacturing Company | Coated abrasive sheet material with loop attachment means |
US5002075A (en) * | 1987-08-06 | 1991-03-26 | Creative Product Resource Associates, Ltd. | Hydrophilic foam pad for hair styling, conditioning and coloring |
US4939016A (en) * | 1988-03-18 | 1990-07-03 | Kimberly-Clark Corporation | Hydraulically entangled nonwoven elastomeric web and method of forming the same |
US5254194A (en) * | 1988-05-13 | 1993-10-19 | Minnesota Mining And Manufacturing Company | Coated abrasive sheet material with loop material for attachment incorporated therein |
US4971471A (en) * | 1988-09-07 | 1990-11-20 | Sloan David B | Disposable mop |
US5098764A (en) * | 1990-03-12 | 1992-03-24 | Chicopee | Non-woven fabric and method and apparatus for making the same |
US5244711A (en) * | 1990-03-12 | 1993-09-14 | Mcneil-Ppc, Inc. | Apertured non-woven fabric |
DE69316348T2 (de) * | 1992-06-09 | 1998-08-20 | Purebred Prod Pty Ltd | Hilfsmittel zum bürsten von tieren |
US5401446A (en) * | 1992-10-09 | 1995-03-28 | The University Of Tennessee Research Corporation | Method and apparatus for the electrostatic charging of a web or film |
ZA946570B (en) * | 1993-08-30 | 1996-02-28 | Mcneil Ppc Inc | Absorbent nonwoven fabric |
AU693461B2 (en) * | 1993-09-13 | 1998-07-02 | Mcneil-Ppc, Inc. | Tricot nonwoven fabric |
US5520022A (en) * | 1993-09-27 | 1996-05-28 | Milliken Research Corporation | Tack or wiping cloth |
CA2136675C (fr) * | 1993-12-17 | 2005-02-15 | Kimberly-Clark Worldwide, Inc. | Lamines piques permeables aux liquides |
FR2723525B1 (fr) * | 1994-08-12 | 1996-10-31 | Elysees Balzac Financiere | Corps en un materiau alveolaire, combine de nettoyage et/ou recurage, procedes pour leur preparation |
US5591239A (en) * | 1994-08-30 | 1997-01-07 | Minnesota Mining And Manufacturing Company | Nonwoven abrasive article and method of making same |
US5674591A (en) * | 1994-09-16 | 1997-10-07 | James; William A. | Nonwoven fabrics having raised portions |
US5674587A (en) * | 1994-09-16 | 1997-10-07 | James; William A. | Apparatus for making nonwoven fabrics having raised portions |
US6132841A (en) * | 1997-02-06 | 2000-10-17 | Tredegar Corporation | Wiping device |
US6197928B1 (en) * | 1997-03-14 | 2001-03-06 | The Regents Of The University Of California | Fluorescent protein sensors for detection of analytes |
EP0986322B1 (fr) * | 1997-05-23 | 2001-12-05 | The Procter & Gamble Company | Structures utiles en tant que textiles d'entretien |
US6075178A (en) * | 1997-09-29 | 2000-06-13 | Kimberly-Clark Worldwide, Inc. | Absorbent article with wetness indicator |
US6140551A (en) * | 1997-09-29 | 2000-10-31 | Kimberly-Clark Worldwide, Inc. | Absorbent article with visually and tactilely distinctive outer cover |
US6375889B1 (en) * | 1998-04-17 | 2002-04-23 | Polymer Group, Inc. | Method of making machine direction stretchable nonwoven fabrics having a high degree of recovery upon elongation |
US6021542A (en) * | 1998-05-28 | 2000-02-08 | Norman; Scott A. | Self-cleaning hair brush |
US6810553B1 (en) * | 1998-05-29 | 2004-11-02 | Kao Corporation | Disposable brush |
US6365088B1 (en) * | 1998-06-26 | 2002-04-02 | Kimberly-Clark Worldwide, Inc. | Electret treatment of high loft and low density nonwoven webs |
US6663306B2 (en) * | 1998-11-09 | 2003-12-16 | The Procter & Gamble Company | Cleaning composition, pad, wipe, implement, and system and method of use thereof |
US6099603A (en) * | 1998-12-29 | 2000-08-08 | Johnson Abrasive Company, Inc. | System and method of attaching abrasive articles to backing pads |
US6610390B1 (en) * | 1999-08-13 | 2003-08-26 | First Quality Nonwovens, Inc. | Nonwoven with non-symmetrical bonding configuration |
US6306234B1 (en) * | 1999-10-01 | 2001-10-23 | Polymer Group Inc. | Nonwoven fabric exhibiting cross-direction extensibility and recovery |
US6692603B1 (en) * | 1999-10-14 | 2004-02-17 | Kimberly-Clark Worldwide, Inc. | Method of making molded cellulosic webs for use in absorbent articles |
US20020076741A1 (en) * | 2000-02-11 | 2002-06-20 | Tencza Sarah Burroughs | Peptide biosensors for anthrax protease |
AU2001236789A1 (en) * | 2000-02-11 | 2001-08-20 | Polymer Group, Inc. | Imaged nonwoven fabrics |
US6721987B2 (en) * | 2000-04-06 | 2004-04-20 | Kimberly-Clark Worldwide, Inc. | Dental wipe |
US6671936B1 (en) * | 2000-06-23 | 2004-01-06 | Polymer Group, Inc. | Method of fabricating fibrous laminate structures with variable color |
EP1212972B1 (fr) * | 2000-10-13 | 2015-12-09 | Kao Corporation | Feuille de nettoyage pour nettoyer des surfaces veloutées |
US6675429B2 (en) * | 2001-01-05 | 2004-01-13 | Polymer Group, Inc. | Imaged nonwoven fabric for imparting an improved aesthetic texture to surfaces |
US6789340B2 (en) * | 2001-05-11 | 2004-09-14 | C-Line Products, Inc. | Display holder for mounting items on fabric or non-woven fibrous surfaces |
DE10131878A1 (de) * | 2001-07-04 | 2003-02-27 | Freudenberg Carl Kg | Feuchtwischtuch, Schwamm oder dergleichen und Verfahren zu seiner Herstellung |
DE10151045C2 (de) * | 2001-10-16 | 2003-09-25 | Freudenberg Carl Kg | Vliesverbundstoff für mechanische Verschlusssysteme, Verfahren zu dessen Herstellung und dessen Verwendung |
US20050101841A9 (en) * | 2001-12-04 | 2005-05-12 | Kimberly-Clark Worldwide, Inc. | Healthcare networks with biosensors |
US7309182B2 (en) * | 2002-05-10 | 2007-12-18 | The Hartz Mountain Corporation | Liquid dispensing brush |
US7364380B2 (en) * | 2003-09-26 | 2008-04-29 | The Hartz Mountain Corporation | Grooming/cleaning apparatus |
US20050066457A1 (en) * | 2003-09-26 | 2005-03-31 | Mckay William D. | Grooming/cleaning apparatus |
US6723142B2 (en) * | 2002-06-05 | 2004-04-20 | Tepco Ltd. | Preformed abrasive articles and method for the manufacture of same |
US20040063369A1 (en) * | 2002-09-30 | 2004-04-01 | Jung Yeul Ahn | Nonwoven loop material and process and products relating thereto |
US20040154118A1 (en) * | 2003-02-11 | 2004-08-12 | Jamie Bohn | Stain removing device |
WO2004080265A2 (fr) * | 2003-03-11 | 2004-09-23 | The Procter & Gamble Company | Article de nettoyage |
MXPA06002511A (es) * | 2003-09-03 | 2006-06-20 | Procter & Gamble | Implemento limpiador de superficies multiples. |
US7393371B2 (en) * | 2004-04-13 | 2008-07-01 | 3M Innovative Properties Company | Nonwoven abrasive articles and methods |
WO2006070502A1 (fr) * | 2004-12-27 | 2006-07-06 | Yamada, Chiyoe | Dispositif de nettoyage et procédé de fabrication idoine |
KR20070094811A (ko) * | 2004-12-30 | 2007-09-21 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 연마성 물품 및 그의 제조 방법 |
US7258705B2 (en) * | 2005-08-05 | 2007-08-21 | 3M Innovative Properties Company | Abrasive article and methods of making same |
US7393269B2 (en) * | 2005-09-16 | 2008-07-01 | 3M Innovative Properties Company | Abrasive filter assembly and methods of making same |
-
2005
- 2005-12-14 US US11/300,602 patent/US20070130713A1/en not_active Abandoned
-
2006
- 2006-08-01 WO PCT/US2006/030033 patent/WO2008048220A2/fr active Application Filing
- 2006-08-01 EP EP06851670A patent/EP1962664A2/fr not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4741941A (en) | 1985-11-04 | 1988-05-03 | Kimberly-Clark Corporation | Nonwoven web with projections |
US6200915B1 (en) | 1998-04-28 | 2001-03-13 | Dow Corning Ltd | Silicone coated textile fabrics |
US6617490B1 (en) | 1999-10-14 | 2003-09-09 | Kimberly-Clark Worldwide, Inc. | Absorbent articles with molded cellulosic webs |
US6610173B1 (en) | 2000-11-03 | 2003-08-26 | Kimberly-Clark Worldwide, Inc. | Three-dimensional tissue and methods for making the same |
US6660362B1 (en) | 2000-11-03 | 2003-12-09 | Kimberly-Clark Worldwide, Inc. | Deflection members for tissue production |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1905336A2 (fr) * | 2006-09-26 | 2008-04-02 | Tyco Healthcare Retail Services AG | Tampon de nettoyage absorbant doté d'une partie étendue à utiliser avec un ustensile de nettoyage |
EP1905336A3 (fr) * | 2006-09-26 | 2008-07-30 | Tyco Healthcare Retail Services AG | Tampon de nettoyage absorbant doté d'une partie étendue à utiliser avec un ustensile de nettoyage |
Also Published As
Publication number | Publication date |
---|---|
US20070130713A1 (en) | 2007-06-14 |
EP1962664A2 (fr) | 2008-09-03 |
WO2008048220A3 (fr) | 2008-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070130713A1 (en) | Cleaning wipe with textured surface | |
US7690069B2 (en) | Cleaning tool with attachment projections providing additional cleaning functionalities | |
CA2426546C (fr) | Plaque d'adaptation pour outil de nettoyage | |
CA2448392C (fr) | Lingettes nettoyantes jetables comprenant une pluralite de parties saillantes pour retirer des debris situes sur des surfaces | |
US8850649B2 (en) | Cleaning tool with upstanding stems and method of cleaning a surface | |
US7451516B2 (en) | Cleaning sheet | |
EP3082547B1 (fr) | Tissus de nettoyage grand public à usages multiples et leurs procédés de fabrication | |
US20060272115A1 (en) | Disposable cleaning sheets comprising a plurality of protrusions for removing debris from surfaces | |
TW201739410A (zh) | 擦洗墊與擦洗方法 | |
CA2543506C (fr) | Plaque d'essuyage | |
WO2006119391A1 (fr) | Lingettes de nettoyage permettant de ramasser des cheveux et des particules de grande taille et procedes de fabrication associes | |
EP1841351B1 (fr) | Chiffon de nettoyage ayant une surface utile de voluminosite variable | |
WO2006065291A1 (fr) | Dispositif de nettoyage | |
WO2014160769A1 (fr) | Tampons de nettoyage remplaçables | |
US20060213535A1 (en) | Directional scrubbing and cleaning article | |
MX2008007402A (en) | Cleaning wipe with textured surface | |
CA2560230A1 (fr) | Stratifie ameliore pour tampon nettoyeur | |
JP3851894B2 (ja) | メルトブローン不織布、積層メルトブローン不織布、およびワイパー | |
JP4616450B2 (ja) | 清掃具 | |
MX2008007398A (en) | Cleaning tool with attachment projections providing additional cleaning functionalities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2006851670 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/007402 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06851670 Country of ref document: EP Kind code of ref document: A2 |