WO2008047782A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2008047782A1
WO2008047782A1 PCT/JP2007/070148 JP2007070148W WO2008047782A1 WO 2008047782 A1 WO2008047782 A1 WO 2008047782A1 JP 2007070148 W JP2007070148 W JP 2007070148W WO 2008047782 A1 WO2008047782 A1 WO 2008047782A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever
displacement
levers
movable member
actuator
Prior art date
Application number
PCT/JP2007/070148
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Kugou
Takeshi Kogawa
Takeshi Yano
Sze Keat Chee
Original Assignee
Namiki Seimitsu Houseki Kabushikikaisha
Yuugengaisya Mechano Transformer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006281887A external-priority patent/JP5090706B2/en
Priority claimed from JP2006281888A external-priority patent/JP5090707B2/en
Application filed by Namiki Seimitsu Houseki Kabushikikaisha, Yuugengaisya Mechano Transformer filed Critical Namiki Seimitsu Houseki Kabushikikaisha
Priority to KR1020097008712A priority Critical patent/KR101085415B1/en
Priority to CN2007800384885A priority patent/CN101563540B/en
Publication of WO2008047782A1 publication Critical patent/WO2008047782A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification

Definitions

  • the present invention relates to an actuator suitable as a driving means for mechanical elements and optical elements of a small precision instrument.
  • a camera module incorporated in a mobile terminal such as a mobile phone is required to have a high-speed and high-precision autofocus function and a zoom function, as in a normal electronic camera (digital camera).
  • a force with a screw-type rotation mechanism is generally known as an actuator for moving a lens of a camera module.
  • This type of mechanism is accompanied by mechanical sliding, which increases the energy loss.
  • Patent Document 1 a movable part holding a lens is supported in a cantilevered manner so as to be movable up and down with respect to a fixed part via an elastic member such as a plate frame, and the movable part. And an actuator in which a shape memory alloy is installed between the fixed portions so that the elastic member can be deformed.
  • a lens holder is provided so as to be movable along a guide shaft and a drive shaft arranged in parallel with the lens optical axis, and the drive shaft is excited by exciting a piezo element mounted on the lens holder.
  • An actuator is shown in which a lens holder is moved along a guide shaft and a drive shaft by applying a driving force (a traveling wave due to bending vibration) to the guide shaft.
  • Patent Document 1 JP 2002-130114 A Patent Document 2: JP 2006-106797
  • the actuators disclosed in Patent Documents 1 and 2 both have a device thickness in the lens moving direction (actuator height) to ensure a sufficient lens moving distance due to structural limitations. ) Increases, and there is a problem that it cannot sufficiently cope with the miniaturization and thinning required for the lens moving mechanism for mobile terminals.
  • the object of the present invention can be reduced in size and thickness while ensuring a sufficient movement distance of mechanical elements and optical elements when applied to driving means such as mechanical elements and optical elements of small precision equipment. It is to provide a unique actuator.
  • the present inventors When applied to a driving means such as a mechanical element or an optical element of a small precision instrument, the present inventors can reduce the size and thickness while ensuring a sufficient movement distance of the mechanical element and the optical element. As a result of repeated investigations on the actuator mechanism, it is possible to identify the displacement in the uniaxial direction output from the drive member such as a piezoelectric element with multiple levers (lever) arranged along the displacement transmission direction. It has been found that the above problem can be solved by transmitting to the movable member by the displacement expansion mechanism of the structure.
  • the present invention has been made on the basis of such knowledge and has the following gist.
  • a drive member (1) that deforms with a deformation amount corresponding to the amount of energy input, and outputs the deformation as a displacement in a uniaxial direction, and the displacement output from the drive member (1)
  • An actuator including a displacement magnifying mechanism (2) for transmitting the movable member (3) to the movable member (3) while expanding the movable member (3),
  • the displacement enlarging mechanism (2) includes a plurality of levers (20) arranged along the displacement transmission direction, and a fixing portion (21) that supports the lever (20),
  • Each lever (20) is supported by the fixed portion (21) by being coupled to the fixed portion (21) via an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other.
  • an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other.
  • the distal end portion of the most downstream lever (20) in the displacement transmission direction is connected to or engaged with the movable member (3), and the movable member (3) is displaced by the displacement of the most downstream lever (20).
  • the most upstream lever (20) in the displacement transmission direction has a base end portion that is fixed to the fixed portion (21) via the fulcrum coupling portion (22). Are coupled to the displacement output part (100) of the drive member (1) via the force point coupling part (23), and the levers (20) other than the most upstream lever (20)
  • the proximal end portion is coupled to the fixing portion (21) via the fulcrum coupling portion (22), and the distal end portion of another lever (20) adjacent via the force point coupling portion (23).
  • the actuator is characterized by being coupled to the
  • a fulcrum coupling portion (22) coupled to a proximal end portion of at least one lever (20) of the plurality of levers (20) and a force point coupling portion (23 ) Is an actuator having a length of 1/4 or more of the length of the lever (20).
  • the displacement enlarging mechanism (2) is composed of a molded body or / and a laminated body made of a metal or / and a resin. A feature actuator.
  • the displacement enlarging mechanism (2) includes the first and second levers (20), and the movable member (3) includes the drive member (1) and the first lever.
  • the actuator is characterized in that the parallel direction of the connecting portion (23) is parallel to the displacement surface of the lever (20) upstream of the lever (20).
  • the displacement enlarging mechanism (2) includes first and second levers (20), and the first and second levers (20) and the drive member (1)
  • the actuator is characterized in that the fixing portion (21) to which the fulcrum coupling portion (22) of the second lever (20) is coupled is surrounded in three directions! /.
  • a drive member (1) that is deformed by a deformation amount corresponding to the amount of energy input, and outputs the force at both ends as the deformation in a uniaxial direction, and is output from the drive member (1)
  • An actuator including a displacement enlarging mechanism (2) that transmits the displacement to the movable member (3) while increasing the amount of displacement, and moves the movable member (3).
  • the displacement enlarging mechanism (2) includes a pair of lever groups (X) and (Y) including a plurality of levers (20) arranged along a displacement transmission direction, and a fixed supporting the lever (20). Connecting member (24) that is elastically deformable in the longitudinal direction, connecting the most downstream lever (20) and the movable member (3) in the displacement transmission direction of the part (21) and the two lever groups (X), ( ⁇ ). )
  • Each lever (20) is supported by the fixed portion (21) by being coupled to the fixed portion (21) via an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other.
  • an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other.
  • the connecting member (24) connects the tip end portions of the two most downstream levers (20), and the intermediate portion of the connecting member (24) is coupled to the movable member (3), so that both the most downstream levers
  • the movable member (3) is displaced by performing a displacement in which the tip side parts of (20) approach and separate.
  • a pair of connecting members (24), which are respectively installed on the distal end portions of the fixed portion (21) and the two most downstream levers (20), and the intermediate portion of both connecting members (24) is the movable member (3)
  • the movable member (3) is displaced by connecting or engaging with both sides of each of the two, and the distal end portions of the two most downstream levers (20) are displaced toward and away from the fixed portion (21). Make it work.
  • the displacement enlarging mechanism (2) other than the displacement enlarging mechanism (2) or the connecting member (24) is provided in the! / Of any of the above [11] to [14]! /
  • An actuator comprising a molded body or / and a laminated body made of metal or / and resin.
  • the pair of levers (X), (Y) is a flat surface of a plurality of levers (20).
  • the drive member (1) is a force piezoelectric element, magnetostrictive element, or shape memory alloy material
  • the actuator according to the present invention has a structure in which the uniaxial displacement output from the driving member is transmitted to the movable member by a displacement magnifying mechanism having a specific structure including a plurality of levers arranged along the displacement transmission direction. Therefore, it is possible to ensure a large amount of movement of the movable member while having a small or thin structure. For this reason, it is possible to provide an actuator that can be reduced in size and thickness while ensuring a sufficient movement distance of mechanical elements and optical elements.
  • the displacement expansion mechanism has no mechanical contact, so there is little energy loss due to almost no wear, so the life of the actuator and energy efficiency can be improved.
  • FIG. 1 to FIG. 5 show an embodiment of the actuator of the present invention, and show a case where the present invention is applied to a lens actuator incorporated in a lens module of a portable terminal.
  • 1 is an overall perspective view
  • FIG. 2 is an exploded perspective view
  • FIG. 3 is a perspective view with a movable member removed
  • FIG. 4 is a plan view
  • FIG. 5 is an explanatory view showing a function (operation form).
  • reference numeral 3 denotes a movable member to be displaced by the actuator, and in this embodiment is a lens Honoreda.
  • the actuator is deformed by a deformation amount corresponding to the input energy amount, and outputs the deformation as a displacement in a uniaxial direction, and the displacement output from the drive member 1 is converted into a displacement amount. It is transmitted to the movable member 3 while enlarging, and the movable member 3 is displaced. Equipped with a displacement magnifying mechanism 2.
  • the driving member 1 and the displacement magnifying mechanism 2 are configured to surround the movable member 3 in a plane, in other words, driven to the outer peripheral portion of the movable member 3.
  • the member 1 and the displacement magnifying mechanism 2 are arranged.
  • there is no member that obstructs the optical axis of the lens which is particularly advantageous for downsizing and thinning.
  • the drive member 1 is not particularly limited as long as it can be deformed by a deformation amount corresponding to the amount of energy input, and can output this deformation as a displacement in a uniaxial direction.
  • An element, a shape memory alloy material, or the like can be used.
  • a piezoelectric element is an element that generates dimensional distortion in accordance with an applied drive voltage
  • a magnetostrictive element is an element that generates displacement by applying a magnetic field from the outside.
  • These drive members are deformed by a deformation amount corresponding to the amount of energy such as electricity and heat, and can be output as a displacement in a uniaxial direction.
  • the driving member 1 of the present embodiment in which the piezoelectric element is particularly preferable in that it has a driving structure for taking out displacement directly from electricity, is also composed of the piezoelectric element.
  • the driving member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, generates dimensional distortion (displacement) in the longitudinal direction, and outputs the dimensional distortion from the displacement output unit 100 at the tip in a uniaxial direction.
  • a magnetostrictive element is used for the driving member 1, the same action can be obtained by providing a mechanism for generating a magnetic field separately.
  • the driving member 1 is fixed to a force that is fixed to a fixing portion 21a, which will be described later, or a vessel that supports the entire actuator.
  • the amount of displacement in the uniaxial direction that can be output from an extremely small piezoelectric element that is applied to a camera module of a portable terminal is usually about several hundred ppm in the stacked type. In the present invention, such displacement is several tens to one hundred times.
  • the objective is to enlarge the transmission to the movable member 3 and move the movable member 3 to a displacement.
  • the displacement magnifying mechanism 2 includes a plurality of levers 20 arranged along the displacement transmission direction,
  • the displacement magnifying mechanism 2 of the present embodiment has a force S provided with the fixing portion 21 that supports the lever 20 of the present invention, and the displacement enlarging mechanism 2 of the present embodiment can
  • the first lever 20a (the most upstream lever) connected in a 90 ° relationship and the second lever connected in a 90 ° relationship to the longitudinal direction of the lever 20a at the tip of the first lever 20a
  • the movable member 3 has a U-shaped structure surrounded by a drive member 1, a first lever 20a, and a second lever 20b. ing.
  • the fixing portion 21 includes a fixing portion 21a installed in parallel with the driving member 1 at an outer position of the driving member 1, and a fixing portion installed in parallel with the lever 21b below the second lever 21b. 21b, and these fixing portions 21a and 21b are fixed to a body that supports the entire actuator.
  • each lever 20 constituting the displacement magnifying mechanism 2 includes a plate-like fulcrum coupling portion 22 and a force point coupling portion 23 that are elastically deformable.
  • the fulcrum coupling part 22 and the force point coupling part 23 are both plate-shaped, so that there is little lateral deflection when the lever 20 is actuated.
  • the first lever 20a has a quadrangular prism shape, and its proximal end partial force, lever fulcrum Is coupled to the distal end of the fixing portion 21a via an elastically deformable plate-like supporting point coupling portion 22a that forms the same, and is thereby supported by the fixing portion 21a. Further, at a position slightly closer to the lever tip side than the coupling position of the fulcrum coupling portion 22a, the lever 20a and the displacement output portion 100 (driving member distal end) of the driving member 1 are not connected to the lever. Are connected by elastically deformable plate-shaped force point connecting portions 23a that form the force points.
  • the fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the first lever 20a.
  • the second lever 20b also has a quadrangular prism shape, and its base end side portion is coupled to the lower fixing portion 21b via the fulcrum coupling portion 22b, and the force point coupling portion 23b is provided.
  • the first lever 20a is coupled to the tip side portion of the first lever 20a.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b are relatively long plates, One end portion is coupled to the base end side portion of the lever 20b so as to be along the longitudinal direction of the lever 20b. Further, the other end of the force point coupling portion 23b is coupled to the lever 20a in the longitudinal direction, and the other end of the fulcrum coupling portion 22b is coupled to the fixing portion 21b.
  • the fulcrum coupling portion 22 and the force point coupling portion 23 coupled to the base end side portion of at least one lever 20 of the plurality of levers 20 It is desirable to have a length of 1/4 or more, preferably 1/3 or more, more preferably 1/2 or more of the length. In this way, by sufficiently increasing the lengths of the fulcrum coupling part 22 and the force point coupling part 23, a large deformation amount can be obtained while ensuring the rigidity of these coupling parts. This is because the displacement expansion amount of the mechanism 2 can be increased.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the base end side portion of the second lever 20b have a length that is approximately half the length of the lever 20b. ing.
  • the displacement magnifying mechanism 2 of the present embodiment converts the displacement in the horizontal direction of the drive member 1 into the vertical direction and transmits it to the movable member 3 for the purpose of converting this displacement direction.
  • the parallel direction of the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the lever 20b (the most downstream lever in the displacement transmission direction) (the direction of the arrow ( ⁇ ) in FIG. 3), the upstream side of the lever 20b
  • the structure is perpendicular to the displacement surface of the lever 20a (displacement surface in the direction of the arrow (/ 3) in Fig. 3).
  • the distal end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) is connected to or engaged with the movable member 3, and the movable member 3 is displaced by the displacement of the lever 20b. It is.
  • the lens holder that is the movable member 3 has a plate-like attachment portion 31 protruding from the upper end of the ring-shaped main body 30, and the attachment portion 31 is in contact with the upper surface of the lever 20b. Both are connected by being clamped by a U-shaped connecting member 4 (plate panel).
  • 5 and 6 are presser springs for holding the upper and lower portions of the movable member 3 (lens holder).
  • the displacement magnifying mechanism 2 of the present invention in order to increase the displacement magnifying amount as much as possible, it is preferable to increase the overall length of the plurality of levers 20, as shown in FIG. A straight line connecting the distal end pi of each lever 20 (20a, 20b) and the longitudinal center p2 of the fulcrum coupling portion 22 (22a, 22b) coupled to the proximal end portion of each lever 20 (20a, 20b) L length of all levers It is preferable that the measured force is not less than the length of the drive member 1 in the displacement output direction.
  • the displacement magnifying mechanism 2 is composed of a molded body or / and a laminated body made of metal (for example, stainless steel) and / or resin. This laminate is a laminate of thin plates.
  • the displacement magnifying mechanism 2 may be composed of a molded body or a laminated body that is integrally molded as a whole, but in this embodiment, the main portions of the fixed portion 21a and the first lever 20a are integrally molded or a one-volume layered body.
  • the distal end portion 25 of the fixed portion 21b, the second lever 20b, and the first lever 20a is composed of a molded body or an integral laminate, and the portion 25 is on the leading end side of the lever 20a.
  • levers 20 constituting the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.
  • the first lever 20a and the second lever 20b are provided between the first lever 20a and the second lever 20b.
  • One or more levers with the same principle as the one lever 20a may be provided.
  • FIG. 5 shows the function (operation form) of the actuator of the present embodiment.
  • the piezoelectric element When a predetermined driving voltage is applied to the piezoelectric element that is the driving member 1, the piezoelectric element expands in the direction of the arrow (A) due to dimensional distortion, and the uniaxial displacement from the displacement output unit 100 passes through the force point coupling unit 23a to the first point.
  • the signal is output to the lever 20a (that is, the lever 20a is pressed).
  • the first lever 20a rotates in the direction of the arrow (B) with the fulcrum coupling portion 22a being deformed as a fulcrum.
  • the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), so that the second lever 20b deforms the fulcrum coupling portion 22b.
  • this rotates (rotates upward) in the direction of the arrow (D). Therefore, the movable member 3 connected to the tip of the second lever 20b is also displaced (raised) upward.
  • the piezoelectric element that is the driving member 1 is reduced in the direction of the arrow (A)
  • the movable member 3 is displaced (lowered) downward by the reverse operation.
  • the displacement output from the drive member 1 is expanded (amplified), and is more than tens of times the output displacement amount of the drive member 1 (in some cases) A displacement of 100 times or more is transmitted to the movable member.
  • FIGS. 6 to 8 show other embodiments of the actuator of the present invention, and show a case where the present invention is applied to a lens actuator incorporated in a lens module of a portable terminal.
  • 6 is a perspective view
  • FIG. 7 is a side view
  • FIG. 8 is a perspective view with a movable member attached.
  • reference numeral 3 denotes a movable member to be displaced by the actuator, which is a lens holder in this embodiment.
  • FIGS. 1 to 5 The embodiment shown in FIGS. 1 to 5 described above has a structure in which the drive member 1 and the displacement enlarging mechanism 2 are arranged on the outer peripheral portion of the movable member 3 in order to make the actuator as thin as possible in a plane.
  • the vertical type is used, and the displacement is transmitted and expanded on the same plane.
  • This actuator is also deformed by a deformation amount corresponding to the amount of energy input, and the drive member 1 that outputs this deformation as a displacement in a uniaxial direction, and the displacement output from the drive member 1 are displaced.
  • a displacement magnifying mechanism 2 that transmits the movable member 3 to the movable member 3 while increasing the amount and moves the movable member 3 is provided.
  • the drive member 1 is composed of a piezoelectric element as in the embodiments of FIGS.
  • This drive member 1 piezoelectric element
  • This drive member 1 has a quadrangular prism shape and generates dimensional distortion (displacement) in the longitudinal direction thereof, and outputs this dimensional distortion from the displacement output unit 100 at the tip in a uniaxial direction.
  • the displacement enlarging mechanism 2 includes a plurality of levers 20 arranged along the displacement transmission direction and a fixing portion 21 that supports the levers 20.
  • the fixing portion 21 has upper and lower horizontal fixing portions 21c and 21d having an appropriate interval, and a fixing portion 21e that connects the fixing portions 21c and 21d with a part thereof.
  • the drive member 1 of the present embodiment is positioned between the upper and lower fixed portions 21c and 2 Id, and is held horizontally by the fixed portion 21e via its rear end portion.
  • the fixing portions 21c and 21d form a gap with the driving member 1 and are positioned in parallel above and below the driving member 1, respectively.
  • the upper fixing portion 21c is longer than the driving member 1.
  • the fixing portion 21 is fixed to a container that supports the entire actuator.
  • the displacement magnifying mechanism 2 of the present embodiment is connected to the distal end (displacement output portion) of the drive member 1 in a relationship of 90 ° with respect to the longitudinal direction of the drive member 1 and extends upward.
  • the lever 20a (the most upstream lever) and the tip of the first lever 20a are connected at a 90 ° relationship to the longitudinal direction of the lever 20a, and extend horizontally in a state almost parallel to the drive member 1.
  • a second lever 20b (most downstream lever) is provided!
  • the first lever 20a has a relatively short base end side portion at the distal end of the fixed portion 21d via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. Join Thus, it is supported by the fixing portion 21d. Further, at a position slightly closer to the lever tip side than the coupling position of the fulcrum coupling portion 22a, the lever power point is between the proximal end portion of the lever 20a and the displacement output portion 100 (driving member tip) of the driving member 1. Are coupled by elastically deformable plate-shaped force point coupling portions 23a.
  • the fulcrum coupling portion 22a and the force point coupling portion 23a are coupled at right angles to the longitudinal direction of the first lever 20a.
  • the second lever 20b has a relatively long quadrangular prism shape and is disposed above the fixed portion 21c.
  • the second lever 20b has a base end portion coupled to the distal end portion of the fixed portion 21c via the fulcrum coupling portion 22b and the first lever 20a via the force point coupling portion 23b. It is connected to the tip side part.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled along the longitudinal direction of the lever 20b. Further, the other end of the force point connecting portion 23b is connected to the lever 20a in the perpendicular direction, and the other end of the fulcrum connecting portion 22b is connected to the fixed portion 21c.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the base end side portion of the second lever 20b have a length that is 1/2 or more of the length of the lever 20b. ing.
  • the second lever 20b, the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the second lever 20b are arranged in parallel with the fixed portion 21c so as to form a gap.
  • the displacement enlarging mechanism 2 of the present embodiment is coupled to the second lever 20b (the most downstream lever in the displacement transmission direction) so that the displacement is transmitted and expanded on the same surface.
  • the parallel direction of the fulcrum coupling portion 22b and the force point coupling portion 23b is parallel to the displacement surface of the lever 20a upstream of the lever 20b.
  • the first lever 20a, the second lever 20b, and the driving member 1 form a gap between the fixed portion 21c to which the fulcrum coupling portion 22b of the second lever 20b is coupled.
  • it has a compact structure (folded structure) surrounded by three sides.
  • the distal end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) is connected to or engaged with the movable member 3, and the movable member 3 is displaced by the displacement of the lever 20b. It is.
  • the lens holder that is the movable member 3 is attached to the lens in the center.
  • a mounting portion 32 is formed to protrude from the upper end of the plate-like main body 30 having a hole, and this mounting portion 32 is connected (fixed) to the upper surface of the lever 20b.
  • levers 20 constituting the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.
  • the first lever 20a and the second lever 20b are provided between the first lever 20a and the second lever 20b.
  • One or more levers with the same principle as the one lever 20a may be provided.
  • the actuator of this embodiment when a predetermined drive voltage is applied to the piezoelectric element that is the drive member 1, the actuator expands in the direction of the arrow (A) due to dimensional distortion, and the displacement in the uniaxial direction from the displacement output unit 100 is the power point. Is output to the first lever 20a through the connecting portion 23a (that is, the lever 20a is pushed). As a result, the first lever 20a rotates in the outward direction (arrow (B) direction) with the fulcrum coupling portion 22a being deformed as a fulcrum.
  • the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), thereby causing the second lever 20b to deform the fulcrum coupling portion 22b.
  • it turns upward (in the direction of arrow (D)) using this as a fulcrum. Therefore, the movable member 3 connected to the tip of the second lever 20b is also displaced (raised) upward.
  • the piezoelectric element as the driving member 1 is reduced in the direction of the arrow (A)
  • the movable member 3 is displaced (lowered) downward by the reverse operation.
  • the displacement output from the drive member 1 is magnified (amplified), and is more than tens of times the output displacement amount of the drive member 1 (in some cases) Is transferred to the movable member.
  • FIG. 9 to FIG. 11 show another embodiment of the actuator of the present invention, which is a modification of the embodiment of FIG. 6 to FIG.
  • FIG. 9 is a perspective view
  • FIG. 10 is a side view
  • FIG. 11 is a perspective view with a movable member attached.
  • This embodiment is characterized by the structure of the second lever 20b and the fixing portion 21d that supports the second lever 20b with respect to the embodiments of FIGS. That is, the second lever 20b is longer than the embodiment of FIGS. 6 to 8, and has a length equal to or longer than the length of the drive member 1.
  • a step portion 200 is formed at an upper portion of an intermediate portion of the lever 20b (in the present embodiment, a substantially central portion in the longitudinal direction), and the longitudinal intermediate portion where the step portion 200 is formed and the tip of the first lever 20a. Side part and Are coupled at the power point coupling portion 23b.
  • the length of the fixed portion 21c is shorter than the length of the drive member 1 (preferably about 2/3 to 1/2 of the length of the drive member 1).
  • the partial force on the base end side of the lever 20b are coupled by a fulcrum coupling portion 22b substantially parallel to the lever 20b.
  • the second lever 20b is long and the force point coupling portion 23b and the fulcrum coupling portion 22b are sufficiently long (approximately half of the length of the lever 20b).
  • the displacement expansion mechanism 2 of this embodiment is also the first lever 20a, the second lever 20b, the driving member 1 force, and the second lever 20b.
  • the fixed portion 21c to which the fulcrum coupling portion 22b is coupled has a compact structure (folded structure) surrounded by three sides while forming a gap.
  • FIGS. 12 to 14 show another embodiment of the actuator of the present invention.
  • FIG. 12 is a perspective view
  • FIG. 13 is a plan view
  • FIG. 14 is a side view.
  • the drive member 1 and the displacement magnifying mechanism 2 form a movable member 3 in a plane.
  • the structure is such that the drive member 1 and the displacement magnifying mechanism 2 are arranged on the outer periphery of the movable member 3.
  • the driving member 1 is fixed to a force that is fixed to a fixing portion 21a, which will be described later, or a vessel that supports the entire actuator.
  • the displacement magnifying mechanism 2 includes a force S including a plurality of levers 20 arranged along the displacement transmission direction and a fixing portion 21 that supports the lever 20, and the displacement magnifying mechanism 2 of the present embodiment is In the horizontal direction, the first lever 20a (the most upstream lever) connected to the front end (displacement output portion) of the drive member 1 at a 90 ° relationship with respect to the longitudinal direction of the drive member 1, And a second lever 20b (most downstream lever) connected to the tip of the lever 20a at a 90 ° relationship with respect to the longitudinal direction of the lever 20a.
  • the first lever 20a and the second lever 20b are surrounded by a U-shape on three sides.
  • the fixing portion 21 is installed in parallel with the driving member 1 at an inner position of the driving member 1.
  • the fixed part 21a and the fixed part 21b installed in parallel to the lever 21b are provided inside the second lever 21b.
  • the fixed part 21 including these fixed parts 21a and 21b is a body that supports the entire actuator. Fixed to.
  • the first lever 20a has a quadrangular prism shape, and a base end portion of the first lever 20a via the elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. It is coupled to the tip of 21a, and is supported by the fixing portion 21a. Further, at a position slightly closer to the rear end of the lever than the coupling position of the fulcrum coupling portion 22a, the lever force point is between the proximal end portion of the lever 20a and the displacement output portion 100 (driving member front end) of the driving member 1. Are connected by elastically deformable plate-shaped force point connecting portions 23a.
  • the positional relationship between the fulcrum coupling portion 22a and the force point coupling portion 23a with respect to the lever 20a as described above is the reverse of the embodiment shown in FIGS.
  • the fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the first lever 20a.
  • the second lever 20b also has a quadrangular prism shape, and its proximal end portion is coupled to the end portion of the fixed portion 21b near the lever 20a via the fulcrum coupling portion 22b.
  • the first lever 20a is coupled to the distal end portion of the first lever 20a through a coupling portion 23b.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled along the longitudinal direction of the lever 20b.
  • the other end of the force point coupling portion 23b is coupled perpendicularly to the longitudinal direction of the lever 20a, and the other end of the fulcrum coupling portion 22b is coupled to the fixing portion 21b via the horizontal portion 220.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the proximal end portion of the second lever 20b have a length equal to or greater than the length of the lever 20b. .
  • the displacement magnifying mechanism 2 of the present embodiment converts the horizontal displacement of the drive member 1 into the vertical direction and transmits it to the movable member 3.
  • the force in the parallel direction of the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the lever 20b (the most downstream lever in the displacement transmission direction) is the upstream lever of the lever 20b.
  • the structure is orthogonal to the displacement surface of 20a.
  • FIG. 5 The tip side portion of the second lever 20b (the most downstream lever in the displacement transmission direction) is shown in Figs. Similar to the embodiment of FIG. 5, the movable member 3 is connected to or engaged with the movable member 3, and the movable member 3 is displaced by the displacement of the lever 20b.
  • levers 20 constituting the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.
  • the first lever 20a and the second lever 20b are provided between the first lever 20a and the second lever 20b.
  • One or more levers with the same principle as the one lever 20a may be provided.
  • the actuator of the present embodiment when a predetermined drive voltage is applied to the piezoelectric element that is the drive member 1, the actuator expands in the direction of the arrow (A) due to dimensional distortion, and the displacement in the uniaxial direction from the displacement output unit 100 is the power point. Is output to the first lever 20a through the connecting portion 23a (that is, the lever 20a is pushed).
  • the force point coupling portion 23a is coupled to the lever rear end side with respect to the fulcrum coupling portion 22a
  • the first lever 20a deforms the fulcrum coupling portion 22a and uses it as a fulcrum in the inner direction ( Rotate in the direction of arrow (B).
  • the force point coupling portion 23b of the second lever 20b is pushed out in the direction of the second lever 20b (arrow (C) direction), whereby the second lever 20b is Then, while deforming the fulcrum coupling portion 22b, the fulcrum coupling portion 22b is rotated upward (in the direction of the arrow (D)) using this as a fulcrum. Therefore, the movable member 3 connected to the tip of the second lever 20b is also displaced (raised) upward. Naturally, when the piezoelectric element which is the drive member 1 is reduced in the direction of the arrow (A), the movable member 3 is displaced (lowered) downward by the reverse operation.
  • the displacement output from the drive member 1 is expanded (amplified), and is more than several tens of times the output displacement amount of the drive member 1 (100 times in some cases).
  • the above displacement amount is transmitted to the movable member.
  • FIGS. 15 to 17 show another embodiment of the actuator of the present invention, and show a case where it is applied to a lens actuator incorporated in a lens module of a portable terminal.
  • FIG. 15 is a plan view
  • FIG. 16 is a plan view showing a state where a movable member is attached
  • FIG. 17 is a schematic side view showing a state where the movable member is attached.
  • 3 is a movable member to which the actuator is to be displaced, and in this embodiment is a lens holder.
  • This actuator is also deformed by a deformation amount corresponding to the amount of energy input, and a drive member 1 that outputs this deformation as a displacement in a uniaxial direction, and a deformation output from the drive member 1
  • the displacement expanding mechanism 2 transmits the position to the movable member 3 while increasing the amount of displacement, and moves the movable member 3 to move.
  • the displacement expanding mechanism 2 is arranged along the displacement transmission direction.
  • a pair of lever groups X and Y comprising a plurality of levers 20 arranged, a fixing portion 21 that supports the lever 20, the most downstream lever 20 in the displacement transmission direction of both lever groups X and Y, and a movable member 3 and a connecting member 24 that is elastically deformable in the longitudinal direction.
  • the drive member 1 and the displacement magnifying mechanism 2 surround the movable member 3 in a planar manner, as in the embodiments of Figs.
  • the driving member 1 and the displacement magnifying mechanism 2 are arranged on the outer periphery of the movable member 3.
  • the length of the lever (lever) that constitutes the displacement enlarging mechanism 2 can be achieved simply by reducing the thickness of the actuator by using the central space as the accommodating space for the movable member 3. This is advantageous in obtaining a large displacement expansion amount.
  • the actuator of this embodiment when applied to a lens actuator, there is no member that obstructs the optical axis of the lens, which is particularly advantageous for miniaturization and thinning.
  • the feature of the actuator of this embodiment with respect to each of the above-described embodiments is that it has a pair of left and right lever groups X and Y, so that the movable member 3 can be stably held and can be displaced by force S.
  • the lever 20 not only the lever 20 but also the elastically deformable connecting member 24 has a displacement expansion function, so that the entire displacement expansion amount can be increased accordingly.
  • the drive member 1 is as described in the embodiment of FIGS. 1 to 5, and the drive member 1 of the present embodiment is also constituted by a piezoelectric element.
  • the drive member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, and causes dimensional distortion (displacement) in the longitudinal direction, and outputs this dimensional distortion from the displacement output portions 100 at both ends in a uniaxial direction.
  • the drive member 1 is fixed to a container that supports the entire actuator.
  • the fixed portion 21 is placed at the center of the actuator, and the movable member 3 is disposed above the fixed portion 21.
  • the driving member 1 is disposed on the side portion of the fixed portion 21.
  • the fixing portion 21 is fixed to a container that supports the entire actuator.
  • each lever group X, ⁇ is connected in the horizontal direction to the first lever 20a (the most upstream lever) connected to one end (displacement output part) of the drive member 1 and to the tip of the first lever 20a.
  • the second lever 20b (the most downstream lever) is provided.
  • the first lever 20a is configured in an L shape in the longitudinal direction (in the figure, 201 is an L-shaped first side, 202 is a second side), and both lever groups X, Y
  • the L-shaped lever 20a is arranged in a gate shape.
  • the first lever 20a is coupled at its proximal end portion to the fixed portion 21 via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. As a result, it is supported by the fixed portion 21.
  • a lever force point is formed between the proximal end portion of the lever 20a and the displacement output portion 100 at each end of the drive member 1. It is coupled by a plate-like force point coupling portion 23a that can be elastically deformed.
  • the fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the L-shaped first side portion 201 of the first lever 20a.
  • the second lever 20b is arranged in the horizontal direction inside the first side 201 of the first lever 20a in parallel with a part of the first side, and the base end side portion thereof is It is coupled to the fixed portion 21 via the fulcrum coupling portion 22b, and is coupled to the tip side portion of the first lever 20a via the force point coupling portion 23b.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and are arranged on the inner side of the second side portion 202 of the first lever 20a in parallel with the second side portion. Is coupled to the base end side portion of the lever 20b at a right angle to the longitudinal direction of the lever 20b. Further, the other end of the force point coupling portion 23b is coupled to the tip of the lever 20a via a horizontal portion 221. The other end of the fulcrum coupling portion 22b is fixed on the side opposite to the driving member 1. It is connected to the side of part 21.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the proximal end portion of the second lever 20b have substantially the same length as the lever 20b.
  • the distal end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) of each lever group X, Y and the movable member 3 are respectively connected by a connecting member 24 that can be elastically deformed in the longitudinal direction.
  • the member 3 is held from both sides by the lever 20b and the connecting member 24.
  • the connecting member 24 is composed of an elastically deformable member such as a plate panel, and a high-rigidity portion 240 (a portion having higher rigidity than other portions) for preventing buckling is provided in the middle portion in the longitudinal direction. Mainly, both side portions of the high-rigidity portion 240 are elastically deformed.
  • each lever group X, Y the fulcrum coupled to the tip end pi of each reno 20 (20a, 20b) and the base end side portion of each lever 20 (20a, 20b). It is preferable that the total force of all the levers of the length of the straight line L connecting the longitudinal direction center p2 of the connecting portion 22 (22a, 22b) is not less than the length in the displacement output direction of the driving member 1. .
  • levers 20 constituting the lever group X, Y of the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.
  • first lever 20a and the second lever 20 One or more levers having the same principle as the first lever 20a may be provided between the levers 20b.
  • the actuator when a predetermined driving voltage is applied to the piezoelectric element that is the driving member 1, the actuator expands in the direction of arrow (A) due to dimensional distortion, and from the displacement output portions 100 at both ends of the driving member 1.
  • the uniaxial displacement is output to the first lever 20a of both lever groups X and Y through the force point coupling portion 23a (that is, the lever 20a is pushed).
  • the force point coupling portion 23a is coupled to the rear end side of the lever with respect to the fulcrum coupling portion 22a
  • the first lever 2 Oa deforms the fulcrum coupling portion 22a while using the fulcrum coupling portion 22a as a fulcrum. Rotate in the direction of arrow (B).
  • the displacement output from the drive member 1 is magnified (amplified) in the process of displacement transmission by the displacement enlargement mechanism 2 as described above, and is more than tens of times the output displacement amount of the drive member 1 (100 times or more in some cases). ) Is transmitted to the movable member.
  • FIGS. 18 to 20 show another embodiment of the actuator of the present invention, and show a case where it is applied to a lens actuator incorporated in a lens module of a portable terminal.
  • 18 is a perspective view
  • FIG. 19 is a side view
  • FIG. 20 is a perspective view with a movable member attached.
  • reference numeral 3 denotes a movable member to be displaced by the actuator, and in this embodiment, a lens holder.
  • this actuator is also deformed by a deformation amount corresponding to the amount of input energy, and the driving member 1 outputs this deformation as a displacement in a uniaxial direction.
  • the displacement expanding mechanism 2 is provided with a displacement expanding mechanism 2 that transmits the output displacement to the movable member 3 while increasing the amount of displacement, and moves the movable member 3, and the displacement expanding mechanism 2 is arranged along the displacement transmission direction.
  • a pair of levers consisting of a plurality of levers 20 arranged, a group X, Y, a fixed portion 21 that supports the lever 20, the most downstream lever 20 in the direction of displacement transmission of both lever groups X, Y, and a movable member And a connecting member 24 that can be elastically deformed in the longitudinal direction.
  • the feature of the actuator of the present embodiment for each of the embodiments shown in FIGS. 1 to 14 is that the movable member 3 is stably held by having a pair of lever groups X and Y,
  • the lever 20 not only the lever 20 but also the elastically deformable connecting member 24 has a displacement expanding function, so that the entire displacement expansion amount can be increased.
  • the force S is structured so that the actuator can be thinned in a plane, and this embodiment is for reducing the installation area of the actuator. It is a vertical type.
  • planar shape and arrangement of the plurality of levers 20 of the pair of lever groups X and Y are made symmetrical with respect to the line, but this is made point-symmetric in the vertical direction. /!
  • the drive member 1 is as described in the embodiment of FIGS. 1 to 5, and the drive member 1 of this embodiment is also composed of a piezoelectric element.
  • the drive member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, and causes dimensional distortion (displacement) in the longitudinal direction. Output from part 100 in one axis direction.
  • the fixing portion 21 has a fixing portion 21 f located below the driving member 1 and a fixing portion 21 g located above the driving member 1.
  • the fixing portions 21f and 21g form a gap with the driving member 1 and are positioned in parallel above and below the driving member 1, respectively.
  • the fixing portion 21f is fixed to a container that supports the entire actuator.
  • the fixed part 21g may be fixed to the body supporting the entire actuator by being connected to the fixed part 21f directly or via a connecting part, or for the fulcrum of both lever groups X and Y. You may make it hold
  • the shape and arrangement of the plurality of levers 20 are point-symmetric with respect to the center of the actuator, and the levers 20 on the most downstream side are connected by a connecting member 24.
  • the movable member 3 is held by the connecting member 24.
  • Each lever group X, Y is connected to each end (displacement output portion) of the drive member 1 in the longitudinal direction at a 90 ° relationship with respect to the longitudinal direction of the drive member 1 and extends upward.
  • the first lever 20a has a base end portion that is fixed to the fixed portion via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. It is coupled to the end of 21f and is thereby supported by the fixed part 21f. Further, at a position slightly closer to the tip of the lever than the coupling position of the fulcrum coupling portion 22a, a lever force point is formed between the proximal end portion of the lever 20a and the displacement output portion 100 at each end of the drive member 1. They are connected by a plate-shaped force point connecting portion 23a that is elastically deformable.
  • the fulcrum coupling portion 22a and the force point coupling portion 23a are relatively short plate-shaped, respectively.
  • the one lever 20a is coupled at right angles to the longitudinal direction.
  • the second lever 20b is disposed above the fixing portion 21g at the end opposite to the end on the lever 20a arrangement side of each lever group X, Y in the longitudinal direction of the drive member. Yes.
  • the second lever 20b has a base end portion that is fixed to the fixing portion 21 via the fulcrum coupling portion 22b. g end (the end of each lever group X, Y in the drive member longitudinal direction on the lever 20a arrangement side) and the leading end side of the first lever 20a via the force point connecting portion 23b Is joined to the part.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled along the longitudinal direction of the lever 20b. Further, the other end of the force point connecting portion 23b is connected to the lever 20a at a right angle, and the other end of the fulcrum connecting portion 22b is connected to the fixing portion 21g.
  • the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the base end side portion of the second lever 20b have a length of several times the length of the lever 20b! /,
  • the second lever 20b, the fulcrum coupling part 22b and the force point coupling part 23b coupled thereto are arranged in parallel with the fixed part 21g so as to form a gap.
  • the first lever 20a, the second lever 20b, and the driving member 1 form a fixed portion 21g to which the fulcrum coupling portion 22b of the second lever 20b is coupled, while forming a gap. It has a compact structure (folded structure) surrounded by.
  • each lever group X and Y are connected by a connecting member 24 that can be elastically deformed in the longitudinal direction.
  • the intermediate part is coupled to the movable member 3.
  • the connecting member 24 is made of an elastically deformable member such as a plate panel and is formed in a mountain shape having a very small slope in the longitudinal direction, and has a flat portion 241 at the top of the central portion in the longitudinal direction. Both ends of the connecting member 24 are coupled to the tip end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) of each lever group X, Y, and connect the two.
  • the lens holder that is the movable member 3 has a mounting portion 32 protruding from the upper end of a plate-shaped main body 30 having a lens mounting hole in the center, and this mounting portion 32 is the longitudinal direction of the connecting member 24. It is connected (fixed) to the flat part 241 at the center in the direction!
  • the lever 20 constituting each lever group X, Y of the displacement magnifying mechanism 2 extends along the displacement transmission direction.
  • one or more levers having the same principle as the first lever 20a are provided between the first lever 20a and the second lever 20b. May be.
  • the other configurations relating to the drive member 1, the displacement magnifying mechanism 2, and the like are the same as those in the embodiment of FIGS.
  • the actuator when a predetermined driving voltage is applied to the piezoelectric element that is the driving member 1, the actuator expands in the direction of the arrow (A) due to dimensional distortion, and from the displacement output portions 100 at both ends of the driving member 1.
  • the uniaxial displacement is output to the first lever 20a of both lever groups X and Y through the force point coupling portion 23a (ie, the lever 20a is pushed).
  • the first lever 20a rotates outward (in the direction of the arrow (B)) with the fulcrum coupling portion 22a being deformed as a fulcrum.
  • the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), thereby causing the second lever 20b to deform the fulcrum coupling portion 22b.
  • it rotates in the direction of the arrow (D) using this as a fulcrum.
  • the distance between both ends of the connecting member 24 is shortened, so that the connecting member 24 is elastically deformed, the height of the flat portion 241 is raised, and the movable member 3 connected thereto is displaced (raised) upward.
  • the piezoelectric element as the driving member 1 is reduced in the direction of the arrow (A)
  • the movable member 3 is displaced (lowered) downward by the reverse operation.
  • the displacement output from the drive member 1 is enlarged (amplified) in the process of displacement transmission by the displacement enlargement mechanism 2 as described above, and is more than tens of times the output displacement amount of the drive member 1 (100 times in some cases).
  • the above displacement amount is transmitted to the movable member.
  • FIG. 21 to FIG. 23 show another embodiment of the actuator of the present invention, which is a modification of the embodiment of FIG. 18 to FIG. 21 is a perspective view
  • FIG. 22 is a plan view
  • FIG. 23 is a perspective view showing a state in which a movable member is attached.
  • reference numeral 3 denotes a movable member to be displaced by the actuator, which is a lens holder in this embodiment.
  • the driving member 1 and the displacement magnifying mechanism 2 of this embodiment are obtained by changing the configuration of the connecting member 24 from the embodiment of FIGS.
  • This actuator is also deformed with a deformation amount corresponding to the amount of energy input, and outputs the deformation as a displacement in the uniaxial direction, and the displacement output from the drive member 1 is displaced.
  • the displacement enlarging mechanism 2 is transmitted to the movable member 3 while enlarging the amount to displace the movable member 3, and the displacement enlarging mechanism 2 is arranged along the displacement transmission direction.
  • a pair of lever groups X and Y comprising a plurality of levers 20 arranged, a fixed portion 21 that supports the lever 20, the most downstream lever 20 in the displacement transmission direction of both lever groups X and Y, and a movable member 3 and a connecting member 24 that is elastically deformable in the longitudinal direction.
  • the drive member 1 is as described in the embodiments of FIGS. 1 to 5, and the drive member 1 of the present embodiment is also composed of a piezoelectric element.
  • the drive member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, and causes dimensional distortion (displacement) in the longitudinal direction, and outputs this dimensional distortion from the displacement output portions 100 at both ends in a uniaxial direction.
  • the fixed portion 21 has fixed portions 21h and 21i located on both sides in the width direction of the drive member 1, and a fixed portion 21j located opposite to the lever 20 with the installation space for the movable member interposed therebetween.
  • the fixing portions 21h and 21i form a gap with the driving member 1 and are positioned in parallel on both sides of the driving member 1, respectively.
  • at least the fixed portion 21h is fixed to the body 7 that supports the entire actuator.
  • the shape and arrangement of the plurality of levers 20 are point-symmetric with respect to the center of the actuator, and the connecting member 24 is coupled to the lever 20 on the most downstream side.
  • the movable member 3 is held by the binding member 24.
  • each lever group X, Y is connected to each end (displacement output portion) of the drive member 1 at a 90 ° relationship with respect to the longitudinal direction of the drive member 1 (first lever 20a (most upstream).
  • Side lever and a second lever 20b (most downstream lever) connected to the tip of the first lever 20a at a relationship of 90 ° with respect to the longitudinal direction of the lever 20a.
  • the first lever 20a has a base end portion that is fixed to the fixed portion via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. It is connected to the end of 21h and is supported by the fixed part 21h. Further, at a position slightly closer to the tip of the lever than the coupling position of the fulcrum coupling portion 22a, a lever force point is formed between the proximal end portion of the lever 20a and the displacement output portion 100 at each end of the drive member 1. Elastically deformable plate-shaped force point
  • the fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the first lever 20a.
  • the second lever 20b is arranged outside the fixed portion 21i at the end opposite to the end on the lever 20a arrangement side of each lever group X, Y in the longitudinal direction of the drive member.
  • the second lever 20b has a base end portion at the end of the fixing portion 21i via the fulcrum coupling portion 22b (the end on the lever 20a arrangement side of each lever group X, Y in the drive member longitudinal direction).
  • the fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled so as to substantially follow the longitudinal direction of the lever 20b. .
  • the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the proximal end portion of the second lever 20b have a length approximately twice as long as the lever 20b.
  • the connecting member 24 is made of an elastically deformable member such as a leaf spring, and is formed in a mountain shape having a small inclination in the longitudinal direction, and has a support portion 242 at the top of the central portion in the longitudinal direction.
  • the connecting member 24 is bridged between the tip side portion of the lever 20b and the fixed portion 21j so that the top of the mountain faces upward.
  • a rigid member 243 for preventing buckling is attached in the longitudinal direction of the connecting member 24 at intervals, and the connecting member 24 is elastically deformed mainly at a portion other than the rigid member 243.
  • the lens holder that is the movable member 3 has the mounting portions 33 protruding from both sides of the ring-shaped main body 30, and the mounting portion 33 is a support portion in the center in the longitudinal direction of the connecting member 24.
  • the movable member 3 is supported by the connecting member 24 by being connected to or engaged with 242.
  • levers 20 constituting each lever group X, Y of the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.
  • first lever 20a and the second lever 20 One or more levers having the same principle as the first lever 20a may be provided between the levers 20b.
  • the other configurations relating to the drive member 1, the displacement magnifying mechanism 2, and the like are the same as those in the embodiment of FIGS.
  • the actuator when a predetermined drive voltage is applied to the piezoelectric element that is the drive member 1, the actuator expands in the direction of arrow (A) due to dimensional distortion, and from the displacement output portions 100 at both ends of the drive member 1.
  • the uniaxial displacement is output to the first lever 20a of both lever groups X and Y through the force point coupling portion 23a (ie, the lever 20a is pushed).
  • the first lever 20a rotates outward (in the direction of the arrow (B)) with the fulcrum coupling portion 22a being deformed as a fulcrum.
  • the movable member 3 is displaced (lowered) downward by the reverse operation. Then, in the process of displacement transmission by the displacement enlarging mechanism 2 as described above, the displacement output from the drive member 1 is expanded (amplified), and is more than tens of times the output displacement amount of the drive member 1 (depending on the case) A displacement of 100 times or more is transmitted to the movable member.
  • FIGS. 24 to 26 show other embodiments of the actuator of the present invention, which are modifications of the embodiment of FIG. 2;!
  • FIG. 24 is a perspective view
  • FIG. 25 is a plan view
  • FIG. 26 is a perspective view showing a state in which a movable member is attached.
  • This embodiment uses a connecting member 24 (connecting member 24 that can be elastically deformed in the longitudinal direction) of a type different from the embodiment shown in FIGS.
  • This connecting member 24 is composed of a body 245 made of an elastically deformable member such as a plate panel, and has a small inclination in the longitudinal direction. It has a structure in which the support plate portion 246 that is elastically deformable is projected at the top of the central portion in the longitudinal direction.
  • a rigid member 243 for preventing buckling is attached to a part of the main body 245 of the connecting member 24, and the main body 245 is elastically deformed mainly at a portion other than the rigid member 243.
  • the pair of connecting members 24 is constructed between the distal end portion of the second lever 20b of both the lever groups X and Y and the fixing portion 21j so that the tops of the peaks face each other.
  • the support plate portions 246 of the two connecting members 24 face each other so as to face obliquely upward.
  • the movable member 3 is supported by the connecting member 24 by connecting or engaging the mounting portions 33 on both sides of the main body 30 of the movable member 3 to the support plate portion 246 at the center in the longitudinal direction of the connecting member 24.
  • the top end portions of the second levers 20b of both lever groups X and Y are displaced toward and away from the fixed portion 21j, so that the tops of both connecting members 24 approach and separate from each other. Accordingly, while the support plate 246 is elastically deformed, the movable member 3 is pushed up or down to move the movable member 3 up and down.
  • FIG. 1 is an overall perspective view showing an embodiment of an actuator of the present invention.
  • FIG. 2 is an exploded perspective view of the embodiment of FIG.
  • FIG. 3 is a perspective view showing the embodiment of FIG. 1 with a movable member removed.
  • FIG. 4 is a plan view of the embodiment of FIG.
  • FIG. 5 is an explanatory diagram showing functions (operation modes) of the embodiment of FIG.
  • FIG. 6 is a perspective view showing another embodiment of the actuator of the present invention.
  • FIG. 7 Side view of the embodiment of FIG.
  • FIG. 8 is a perspective view showing a state where a movable member is attached in the embodiment of FIG.
  • FIG. 9 is a perspective view showing another embodiment of the actuator of the present invention.
  • FIG. 10 is a side view of the embodiment of FIG.
  • FIG. 11 is a perspective view showing a state in which the movable member in the embodiment of FIG. 9 is attached.
  • FIG. 12 is a perspective view showing another embodiment of the actuator of the present invention.
  • FIG. 13 is a plan view of the embodiment of FIG.
  • FIG. 14 is a side view of the embodiment of FIG.
  • FIG. 15 is a plan view showing another embodiment of the actuator of the present invention.
  • FIG. 16 is a plan view showing a state in which the movable member is attached in the embodiment of FIG.
  • FIG. 17 is a schematic side view showing a state in which a movable member is attached in the embodiment of FIG.
  • FIG. 18 is a perspective view showing another embodiment of the actuator of the present invention.
  • FIG. 19 is a side view of the embodiment of FIG.
  • FIG. 20 is a perspective view showing a state in which a movable member is attached in the embodiment shown in FIG. 18.
  • FIG. 21 is a perspective view showing another embodiment of the actuator according to the present invention.
  • FIG. 22 is a plan view of the embodiment of FIG.
  • FIG. 23 is a perspective view showing a state in which the movable member is attached in the embodiment of FIG. 21.
  • FIG. 24 is a perspective view showing another embodiment of the actuator of the present invention.
  • FIG. 25 is a plan view of the embodiment of FIG.
  • FIG. 26 is a perspective view of the embodiment shown in FIG. 24 with the movable member attached thereto.

Abstract

Provided is an actuator which can be reduced in size and thickness while keeping the moving distance of a mechanical element or an optical element sufficient. The unidirectional displacement, as outputted from a drive member (1) such as a piezoelectric element, is transmitted, while being enlarged in displacement, to a movable member (3) by a displacement enlarging mechanism (2) of a specific constitution, which includes a plurality levers (20a and 20b) arranged along the displacement transmitting direction, stationary portions (21a and 21b) for supporting those levers (20a and 20b), fulcrum joint portions (22a and 22b) made elastically deformable for forming the fulcrums of the levers, and elastically deformable joint portions (23a and 23b) for establishing the points of force of the levers. Although the size and thickness are reduced, the actuator can retain a large extent of movement for the movable member (3).

Description

明 細 書  Specification
ァクチユエータ  Actuator
技術分野  Technical field
[0001] 本発明は、小型精密機器の機械要素や光学要素などの駆動手段として好適なァク チユエータに関する。 背景技術  [0001] The present invention relates to an actuator suitable as a driving means for mechanical elements and optical elements of a small precision instrument. Background art
[0002] 携帯電話機などの携帯端末に組み込まれたカメラモジュールには、通常の電子力 メラ(デジカメ)と同様に、高速 ·高精度なオートフォーカス機能やズーム機能が求めら れる。  [0002] A camera module incorporated in a mobile terminal such as a mobile phone is required to have a high-speed and high-precision autofocus function and a zoom function, as in a normal electronic camera (digital camera).
これらの機能を実現するには、カメラモジュールのレンズ群を光軸方向に高速 '高精 度に移動させる必要があり、そのための機構と駆動手段が必要となる力 特に最近の 携帯端末は小型化'薄型化が進んでおり、このため上記カメラモジュールやその構 成部品にも小型化 ·薄型化が求められる。  To realize these functions, it is necessary to move the lens group of the camera module in the direction of the optical axis at high speed and high precision. 'Thinning is progressing, the camera module and its components are required to be smaller and thinner.
[0003] カメラモジュールのレンズ移動用のァクチユエータとしては、ネジ式の回転機構を備 えたものが一般に知られている力 この種の機構は、機械的摺動を伴うためにエネル ギーロスが大きぐし力、も摩擦によって摩耗粉が生じやすい難点がある。さらに、小型 化 ·薄型化しにくいという構造上の制約もある。このため省電力、高精密度、極小化- 薄型化などが要求される最近の携帯端末用レンズ移動機構には適用できない。  [0003] A force with a screw-type rotation mechanism is generally known as an actuator for moving a lens of a camera module. This type of mechanism is accompanied by mechanical sliding, which increases the energy loss. Also, there is a difficulty that abrasion powder is easily generated by friction. In addition, there are structural limitations that make it difficult to reduce the size and thickness. For this reason, it cannot be applied to the recent lens moving mechanism for mobile terminals that require power saving, high precision, miniaturization and thinning.
[0004] また、例えば、特許文献 1には、レンズを保持した可動部を、固定部に対して板バ ネなどの弾性部材を介して上下動可能に片持ち状に支持させるとともに、可動部と 固定部間に、前記弾性部材を変形可能とするように形状記憶合金を設置したァクチ ユエータが示されている。  [0004] Further, for example, in Patent Document 1, a movable part holding a lens is supported in a cantilevered manner so as to be movable up and down with respect to a fixed part via an elastic member such as a plate frame, and the movable part. And an actuator in which a shape memory alloy is installed between the fixed portions so that the elastic member can be deformed.
また、特許文献 2には、レンズホルダをレンズ光軸と平行に配置されたガイド軸と駆 動軸に沿って移動可能に設け、レンズホルダに搭載されたピエゾ素子を励磁すること で前記駆動軸に駆動力(曲げ振動による進行波)を与えることにより、レンズホルダを ガイド軸と駆動軸に沿って移動させるようにしたァクチユエータが示されている。  In Patent Document 2, a lens holder is provided so as to be movable along a guide shaft and a drive shaft arranged in parallel with the lens optical axis, and the drive shaft is excited by exciting a piezo element mounted on the lens holder. An actuator is shown in which a lens holder is moved along a guide shaft and a drive shaft by applying a driving force (a traveling wave due to bending vibration) to the guide shaft.
[0005] 特許文献 1:特開 2002— 130114号公報 特許文献 2:特開 2006— 106797号公報 [0005] Patent Document 1: JP 2002-130114 A Patent Document 2: JP 2006-106797
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、特許文献 1 , 2に示されるァクチユエータは、いずれも構造上の制約から、レ ンズの移動距離を十分に確保するにはレンズ移動方向での装置厚さ(ァクチユエ一 タ高さ)が大きくなり、携帯端末用レンズ移動機構に要求される極小化'薄型化などに 十分対応できなレ、とレ、う問題がある。 [0006] However, the actuators disclosed in Patent Documents 1 and 2 both have a device thickness in the lens moving direction (actuator height) to ensure a sufficient lens moving distance due to structural limitations. ) Increases, and there is a problem that it cannot sufficiently cope with the miniaturization and thinning required for the lens moving mechanism for mobile terminals.
したがって本発明の目的は、小型精密機器の機械要素や光学要素などの駆動手 段に適用した場合に、機械要素や光学要素などの移動距離を十分確保しつつ、小 型化 ·薄型化が可能なァクチユエータを提供することにある。  Therefore, the object of the present invention can be reduced in size and thickness while ensuring a sufficient movement distance of mechanical elements and optical elements when applied to driving means such as mechanical elements and optical elements of small precision equipment. It is to provide a unique actuator.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、小型精密機器の機械要素や光学要素などの駆動手段に適用した 場合に、機械要素や光学要素などの移動距離を十分確保しつつ小型化 ·薄型化が 可能なァクチユエータ機構につ!/、て検討を重ねた結果、圧電素子などの駆動部材か ら出力される一軸方向の変位を、変位伝達方向に沿って配置される複数のレバー( てこ)を備えた特定構造の変位拡大機構で可動部材に伝達することにより、上記課題 を解決できることを見出した。  [0007] When applied to a driving means such as a mechanical element or an optical element of a small precision instrument, the present inventors can reduce the size and thickness while ensuring a sufficient movement distance of the mechanical element and the optical element. As a result of repeated investigations on the actuator mechanism, it is possible to identify the displacement in the uniaxial direction output from the drive member such as a piezoelectric element with multiple levers (lever) arranged along the displacement transmission direction. It has been found that the above problem can be solved by transmitting to the movable member by the displacement expansion mechanism of the structure.
[0008] 本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。  [0008] The present invention has been made on the basis of such knowledge and has the following gist.
[1]入力されるエネルギー量に応じた変形量で変形し、該変形を一軸方向での変位 として出力する駆動部材(1)と、該駆動部材(1)から出力された変位を、変位量を拡 大させつつ可動部材 (3)まで伝達し、該可動部材 (3)を変位動作させる変位拡大機 構(2)とを備えたァクチユエータであって、  [1] A drive member (1) that deforms with a deformation amount corresponding to the amount of energy input, and outputs the deformation as a displacement in a uniaxial direction, and the displacement output from the drive member (1) An actuator including a displacement magnifying mechanism (2) for transmitting the movable member (3) to the movable member (3) while expanding the movable member (3),
前記変位拡大機構(2)は、変位伝達方向に沿って配置される複数のレバー(20)と 、該レバー(20)を支持する固定部(21)とを備え、  The displacement enlarging mechanism (2) includes a plurality of levers (20) arranged along the displacement transmission direction, and a fixing portion (21) that supports the lever (20),
各レバー(20)は、レバーの支点を形成する弾性変形可能な支点用結合部(22)を 介して固定部(21)に結合されることで固定部(21)に支持されるとともに、隣接するレ バー(20)間及び変位伝達方向の最上流側レバー(20)と駆動部材(1)の変位出力部 (100)間は、レバーの力点を形成する弾性変形可能な力点用結合部(23)で結合さ れ、 Each lever (20) is supported by the fixed portion (21) by being coupled to the fixed portion (21) via an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other. Between the levers (20) to be moved and between the most upstream lever (20) in the displacement transmission direction and the displacement output part (100) of the drive member (1) are elastically deformable force point coupling portions (the point of force of the lever) 23) combined And
変位伝達方向の最下流側レバー(20)の先端側部分を前記可動部材(3)に連結又 は係合させ、該最下流側レバー(20)の変位により可動部材(3)を変位動作させるよう
Figure imgf000005_0001
The distal end portion of the most downstream lever (20) in the displacement transmission direction is connected to or engaged with the movable member (3), and the movable member (3) is displaced by the displacement of the most downstream lever (20). Like
Figure imgf000005_0001
[0009] [2]上記 [1]のァクチユエータにおいて、変位伝達方向の最上流側レバー(20)は、そ の基端側部分が、支点用結合部(22)を介して固定部(21)に結合されるとともに、力 点用結合部(23)を介して駆動部材(1)の変位出力部(100)に結合され、前記最上流 側レバー(20)以外のレバー(20)は、その基端側部分が、支点用結合部(22)を介し て固定部(21)に結合されるとともに、力点用結合部(23)を介して隣接する他のレバ 一 (20)の先端側部分に結合されることを特徴とするァクチユエータ。  [0009] [2] In the actuator according to [1], the most upstream lever (20) in the displacement transmission direction has a base end portion that is fixed to the fixed portion (21) via the fulcrum coupling portion (22). Are coupled to the displacement output part (100) of the drive member (1) via the force point coupling part (23), and the levers (20) other than the most upstream lever (20) The proximal end portion is coupled to the fixing portion (21) via the fulcrum coupling portion (22), and the distal end portion of another lever (20) adjacent via the force point coupling portion (23). The actuator is characterized by being coupled to the
[3]上記 [2]のァクチユエータにおいて、複数のレバー(20)のうちの少なくとも 1つの レバー(20)の基端側部分に結合される支点用結合部(22)と力点用結合部(23)は、 当該レバー(20)の長さの 1/4以上の長さを有することを特徴とするァクチユエータ。  [3] In the actuator according to [2] above, a fulcrum coupling portion (22) coupled to a proximal end portion of at least one lever (20) of the plurality of levers (20) and a force point coupling portion (23 ) Is an actuator having a length of 1/4 or more of the length of the lever (20).
[0010] [4]上記 [1]〜 [3]のいずれかのァクチユエータにおいて、変位拡大機構(2)が、金 属又は/及び樹脂からなる成形体又は/及び積層体で構成されることを特徴とする ァクチユエータ。  [4] In the actuator according to any one of the above [1] to [3], the displacement enlarging mechanism (2) is composed of a molded body or / and a laminated body made of a metal or / and a resin. A feature actuator.
[5]上記 [1]〜 [4]の!/、ずれかのァクチユエータにお!/、て、複数のレバー (20)のうち 変位伝達方向の最下流側レバー(20)に結合された支点用結合部(22)と力点用結 合部(23)の並列方向が、当該最下流側レバー(20)よりも上流側のレバー(20)の変 位面に対して直交していることを特徴とするァクチユエータ。  [5] In the above [1] to [4]! /, Or any of the actuators! /, The fulcrum connected to the most downstream lever (20) in the displacement transmission direction among the plurality of levers (20) The parallel direction of the connecting part (22) and the force point connecting part (23) is perpendicular to the displacement surface of the lever (20) upstream from the most downstream lever (20). Characteristic feature.
[6]上記 [5]のァクチユエータにおいて、駆動部材(1)と変位拡大機構(2)が、平面的 に可動部材(3)を外囲する状態に配置されることを特徴とするァクチユエータ。  [6] The actuator according to [5], wherein the driving member (1) and the displacement magnifying mechanism (2) are arranged in a state of surrounding the movable member (3) in a planar manner.
[7]上記 [6]のァクチユエータにお!/、て、変位拡大機構(2)は第 1及び第 2のレバー( 20)を備え、可動部材 (3)は、駆動部材(1)と第 1のレバー(20)と第 2のレバー(20)と により、少なくとも 3方を囲まれていることを特徴とするァクチユエータ。  [7] In the actuator according to [6] above, the displacement enlarging mechanism (2) includes the first and second levers (20), and the movable member (3) includes the drive member (1) and the first lever. An actuator characterized by being surrounded by at least three sides by one lever (20) and second lever (20).
[0011] [8]上記 [1]〜 [4]の!/、ずれかのァクチユエータにお!/、て、複数の各レバー(20)に結 合された支点用結合部(22)と力点用結合部(23)の並列方向が、当該レバー(20)よ りも上流側のレバー(20)の変位面と平行であることを特徴とするァクチユエータ。 [9]上記 [8]のァクチユエータにお!/、て、変位拡大機構(2)は第 1及び第 2のレバー( 20)を備え、該第 1及び第 2のレバー(20)と駆動部材(1)が、前記第 2のレバー(20) の支点用結合部(22)が結合された固定部(21)を 3方で囲んで!/、ることを特徴とする ァクチユエータ。 [0011] [8] The above-mentioned [1] to [4]! /, Or any of the actuators! /, And the fulcrum coupling portion (22) coupled to each of the plurality of levers (20) and the power point The actuator is characterized in that the parallel direction of the connecting portion (23) is parallel to the displacement surface of the lever (20) upstream of the lever (20). [9] In the actuator according to [8] above, the displacement enlarging mechanism (2) includes first and second levers (20), and the first and second levers (20) and the drive member (1) The actuator is characterized in that the fixing portion (21) to which the fulcrum coupling portion (22) of the second lever (20) is coupled is surrounded in three directions! /.
[10]上記 [1]〜 [9]の!/、ずれかのァクチユエータにお!/、て、レバー(20)の先端部 pi と該レバー(20)に結合された支点用結合部(22)の長さ方向中心 p2とを結ぶ直線 L の長さの全レバーの合計力 駆動部材(1)の変位出力方向での長さ以上であること を特徴とするァクチユエータ。  [10] In the above [1] to [9] !, or any of the actuators! /, The tip pi of the lever (20) and the fulcrum coupling (22) coupled to the lever (20) ) In the direction of the displacement output direction of the drive member (1).
[0012] [11]入力されるエネルギー量に応じた変形量で変形し、該変形を一軸方向での変 位として両端力 出力する駆動部材(1)と、該駆動部材(1)から出力された変位を、 変位量を拡大させつつ可動部材(3)まで伝達し、該可動部材(3)を変位動作させる 変位拡大機構 (2)とを備えたァクチユエータであって、 [11] A drive member (1) that is deformed by a deformation amount corresponding to the amount of energy input, and outputs the force at both ends as the deformation in a uniaxial direction, and is output from the drive member (1) An actuator including a displacement enlarging mechanism (2) that transmits the displacement to the movable member (3) while increasing the amount of displacement, and moves the movable member (3).
前記変位拡大機構(2)は、変位伝達方向に沿って配置される複数のレバー(20)か らなる 1対のレバー群 (X),(Y)と、前記レバー(20)を支持する固定部(21)と、両レバ 一群 (X), (Υ)の変位伝達方向の最下流側レバー(20)と可動部材(3)とを連結する長 手方向で弾性変形可能な連結部材 (24)とを備え、  The displacement enlarging mechanism (2) includes a pair of lever groups (X) and (Y) including a plurality of levers (20) arranged along a displacement transmission direction, and a fixed supporting the lever (20). Connecting member (24) that is elastically deformable in the longitudinal direction, connecting the most downstream lever (20) and the movable member (3) in the displacement transmission direction of the part (21) and the two lever groups (X), (Υ). )
各レバー(20)は、レバーの支点を形成する弾性変形可能な支点用結合部(22)を 介して固定部(21)に結合されることで固定部(21)に支持されるとともに、隣接するレ バー(20)間及び変位伝達方向の最上流側レバー(20)と駆動部材(1)の変位出力部 (100)間は、レバーの力点を形成する弾性変形可能な力点用結合部(23)で結合さ れ、  Each lever (20) is supported by the fixed portion (21) by being coupled to the fixed portion (21) via an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other. Between the levers (20) to be moved and between the most upstream lever (20) in the displacement transmission direction and the displacement output part (100) of the drive member (1) are elastically deformable force point coupling portions (the point of force of the lever) 23)
1対のレバー群 (X), (Υ)の変位伝達方向の最下流側レバー(20)の先端側部分と 可動部材 (3)とが連結部材(24)で連結され、両最下流側レバー(20)の変位により連 結部材(24)を介して可動部材(3)を変位動作させるようにしたことを特徴とするァクチ ユエータ。  The distal end portion of the most downstream lever (20) in the displacement transmission direction of the pair of lever groups (X) and (Υ) and the movable member (3) are connected by the connecting member (24). An actuator characterized in that the movable member (3) is displaced by the displacement of (20) via the connecting member (24).
[0013] [12]上記 [11]のァクチユエータにおいて、下記(i)〜(iii)のいずれかの形態で、 1対 のレバー群 (X), (Y)の変位伝達方向の最下流側レバー(20)の先端側部分と可動部 材(3)とが連結部材(24)で連結されて!/、ることを特徴とするァクチユエータ。 (i) 1対の連結部材(24) 1、可動部材 (3)の両側部と両最下流側レバー(20)の先 端側部分とを各々連結し、両最下流側レバー(20)の先端側部分どうしが接近 ·離間 する変位を行うことにより可動部材 (3)を変位動作させる。 [0013] [12] In the actuator according to [11] above, the most downstream lever in the displacement transmission direction of the pair of lever groups (X) and (Y) in any of the following forms (i) to (iii) An activator characterized in that the tip side portion of (20) and the movable member (3) are connected by a connecting member (24)! /. (i) A pair of connecting members (24) 1, both sides of the movable member (3) and the leading end portions of the two most downstream levers (20) are connected to each other, and the two most downstream levers (20) Displacement of the movable member (3) is performed by moving the tip side parts closer to and away from each other.
(ii)連結部材(24)が両最下流側レバー(20)の先端側部分を連結するとともに、連 結部材 (24)の中間部が可動部材 (3)に結合され、両最下流側レバー(20)の先端側 部分どうしが接近 ·離間する変位を行うことにより可動部材 (3)を変位動作させる。  (ii) The connecting member (24) connects the tip end portions of the two most downstream levers (20), and the intermediate portion of the connecting member (24) is coupled to the movable member (3), so that both the most downstream levers The movable member (3) is displaced by performing a displacement in which the tip side parts of (20) approach and separate.
(iii) 1対の連結部材 (24) 、固定部(21)と両最下流側レバー(20)の先端側部分 に各々架設され、両連結部材(24)の中間部が可動部材(3)の両側部に各々連結又 は係合し、両最下流側レバー(20)の先端側部分が前記固定部(21)に対して接近- 離間する変位を行うことにより可動部材 (3)を変位動作させる。  (iii) A pair of connecting members (24), which are respectively installed on the distal end portions of the fixed portion (21) and the two most downstream levers (20), and the intermediate portion of both connecting members (24) is the movable member (3) The movable member (3) is displaced by connecting or engaging with both sides of each of the two, and the distal end portions of the two most downstream levers (20) are displaced toward and away from the fixed portion (21). Make it work.
[0014] [13]上記 [11]又は [12]のァクチユエータにお!/、て、各レバー群(X),(Y)にお!/、て、 変位伝達方向の最上流側レバー(20)は、その基端側部分が、支点用結合部(22)を 介して固定部(21)に結合されるとともに、力点用結合部(23)を介して駆動部材(1) 両端の各変位出力部(100)に各々結合され、前記最上流側レバー(20)以外のレバ 一(20)は、その基端側部分が、支点用結合部(22)を介して固定部(21)に結合され るとともに、力点用結合部(23)を介して隣接する他のレバー(20)の先端側部分に結 合されることを特徴とするァクチユエータ。  [0014] [13] The actuator according to [11] or [12] above! /, And each lever group (X), (Y)! /, The most upstream lever (20 ) Is connected to the fixed portion (21) through the fulcrum coupling portion (22) at the base end portion, and to each displacement at both ends of the drive member (1) through the force coupling portion (23). The lever (20) other than the most upstream lever (20) is coupled to the output unit (100), and the base end portion of the lever (20) is connected to the fixing unit (21) via the fulcrum coupling unit (22). The actuator is characterized in that it is coupled to the tip side portion of another adjacent lever (20) through a force point coupling portion (23).
[14]上記 [13]のァクチユエータにお!/、て、各レバー群(X), (Y)にお!/、て、複数のレ バー(20)のうちの少なくとも 1つのレバー(20)の基端側部分に結合される支点用結 合部(22)と力点用結合部(23)は、当該レバー(20)の長さの 1/4以上の長さを有す ることを特徴とするァクチユエータ。  [14] The actuator according to [13] above! /, And each lever group (X), (Y)! /, And at least one lever (20) of the plurality of levers (20) The fulcrum coupling portion (22) and the force point coupling portion (23) coupled to the base end side portion of the lever have a length of 1/4 or more of the length of the lever (20). The actuator.
[0015] [15]上記 [11]〜 [14]の!/、ずれかのァクチユエータにお!/、て、変位拡大機構(2)又は 連結部材 (24)を除く変位拡大機構 (2)が、金属又は/及び樹脂からなる成形体又は /及び積層体で構成されることを特徴とするァクチユエータ。 [15] The displacement enlarging mechanism (2) other than the displacement enlarging mechanism (2) or the connecting member (24) is provided in the! / Of any of the above [11] to [14]! / An actuator comprising a molded body or / and a laminated body made of metal or / and resin.
[16]上記 [11]〜 [15]の!/、ずれかのァクチユエータにお!/、て、 1対のレバー群(X),(Y )は、複数のレバー (20)の平面的な形状及び配置が線対称又は点対称であることを 特徴とするァクチユエータ。  [16] In the above [11] to [15] !, or to any of the actuators! /, The pair of levers (X), (Y) is a flat surface of a plurality of levers (20). An actuator characterized in that its shape and arrangement are line symmetric or point symmetric.
[17]上記 [11]〜 [16]の!/、ずれかのァクチユエータにお!/、て、各レバー群(X), (Y)に お!/、て、レバー(20)の先端部 piと該レバー(20)に結合された支点用結合部(22)の 長さ方向中心 p2とを結ぶ直線 Lの長さの全レバーの合計力 駆動部材(1)の変位出 力方向での長さ以上であることを特徴とするァクチユエータ。 [17] Above [11] to [16]! /, Any of the actuators! /, To each lever group (X), (Y) The total of all levers with a length of straight line L connecting the tip pi of the lever (20) and the longitudinal center p2 of the fulcrum coupling (22) coupled to the lever (20) The actuator is characterized in that it is longer than the length of the force drive member (1) in the displacement output direction.
[18]上記 [1]〜 [17]の!/、ずれかのァクチユエータにお!/、て、駆動部材(1)力 圧電 素子、磁歪素子、形状記憶合金材のうちのいずれかであることを特徴とするァクチュ エータ。  [18] In the above [1] to [17], or any of the actuators! /, The drive member (1) is a force piezoelectric element, magnetostrictive element, or shape memory alloy material An actuator characterized by
[19]変位伝達方向の最下流側レバー (20)の先端部分をレンズホルダ (3)に連結又は 係合させ、該最下流側レバー (20)の変位によりレンズホルダ (3)を変位動作させるよう にしたことを特徴とする、上記 [1]〜[18]に記載のァクチユエータを用いたレンズァクチ ユエータ。  [19] The tip of the most downstream lever (20) in the displacement transmission direction is connected to or engaged with the lens holder (3), and the lens holder (3) is displaced by the displacement of the most downstream lever (20). A lens actuator using the actuator according to any one of [1] to [18] above.
発明の効果  The invention's effect
[0016] 本発明のァクチユエータは、駆動部材から出力される一軸方向の変位を、変位伝 達方向に沿って配置される複数のレバーを備えた特定構造の変位拡大機構で可動 部材に伝達する構造であるため、小型又は薄型構造でありながら可動部材の大きな 移動量を確保することができる。このため機械要素や光学要素などの移動距離を十 分確保しつつ、小型化 ·薄型化が可能なァクチユエータとすることができる。また、変 位拡大機構は機械的接点がな!/、ため、摩耗が殆どなぐエネルギーロスも小さレ、の で、ァクチユエータの寿命やエネルギー効率の向上も実現できる。  [0016] The actuator according to the present invention has a structure in which the uniaxial displacement output from the driving member is transmitted to the movable member by a displacement magnifying mechanism having a specific structure including a plurality of levers arranged along the displacement transmission direction. Therefore, it is possible to ensure a large amount of movement of the movable member while having a small or thin structure. For this reason, it is possible to provide an actuator that can be reduced in size and thickness while ensuring a sufficient movement distance of mechanical elements and optical elements. In addition, the displacement expansion mechanism has no mechanical contact, so there is little energy loss due to almost no wear, so the life of the actuator and energy efficiency can be improved.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 図 1〜図 5は、本発明のァクチユエータの一実施形態を示すもので、携帯端末のレ ンズモジュールに組み込まれるレンズァクチユエータに適用した場合を示している。 図 1は全体斜視図、図 2は分解斜視図、図 3は可動部材を取り除いた状態で示す斜 視図、図 4は同じく平面図、図 5は機能(作動形態)を示す説明図である。図において 、 3はァクチユエータが変位動作させるべき可動部材であり、本実施形態ではレンズ ホノレダである。 FIG. 1 to FIG. 5 show an embodiment of the actuator of the present invention, and show a case where the present invention is applied to a lens actuator incorporated in a lens module of a portable terminal. 1 is an overall perspective view, FIG. 2 is an exploded perspective view, FIG. 3 is a perspective view with a movable member removed, FIG. 4 is a plan view, and FIG. 5 is an explanatory view showing a function (operation form). . In the figure, reference numeral 3 denotes a movable member to be displaced by the actuator, and in this embodiment is a lens Honoreda.
[0018] ァクチユエータは、入力されるエネルギー量に応じた変形量で変形し、この変形を 一軸方向での変位として出力する駆動部材 1と、この駆動部材 1から出力された変位 を、変位量を拡大させつつ前記可動部材 3まで伝達し、可動部材 3を変位動作させ る変位拡大機構 2とを備えてレ、る。 [0018] The actuator is deformed by a deformation amount corresponding to the input energy amount, and outputs the deformation as a displacement in a uniaxial direction, and the displacement output from the drive member 1 is converted into a displacement amount. It is transmitted to the movable member 3 while enlarging, and the movable member 3 is displaced. Equipped with a displacement magnifying mechanism 2.
本実施形態では、ァクチユエータをできるだけ薄型化するために、駆動部材 1と変 位拡大機構 2とが平面的に可動部材 3を外囲するような構造、換言すると、可動部材 3の外周部に駆動部材 1と変位拡大機構 2を配置した構造としてある。このような構造 では、中央のスペースを可動部材 3の収容スペースにしてァクチユエ一タの薄型化が 図れるだけでなぐ変位拡大機構 2を構成するレバー(てこ)の長さを十分に確保する ことができるので、大きな変位拡大量を得る上で有利である。また、例えば、レンズァ クチユエータに適用した場合に、レンズの光軸を邪魔するような部材がないため、小 型化 ·薄型化に特に有利である。  In this embodiment, in order to make the actuator as thin as possible, the driving member 1 and the displacement magnifying mechanism 2 are configured to surround the movable member 3 in a plane, in other words, driven to the outer peripheral portion of the movable member 3. The member 1 and the displacement magnifying mechanism 2 are arranged. In such a structure, it is possible to sufficiently secure the length of the lever (lever) constituting the displacement enlarging mechanism 2 that only requires the central space to be the accommodating space for the movable member 3 to reduce the thickness of the actuator. This is advantageous in obtaining a large displacement expansion amount. For example, when applied to a lens actuator, there is no member that obstructs the optical axis of the lens, which is particularly advantageous for downsizing and thinning.
[0019] 前記駆動部材 1は、入力されるエネルギー量に応じた変形量で変形し、この変形を 一軸方向での変位として出力できるものであれば特に種類は問わず、例えば、圧電 素子、磁歪素子、形状記憶合金材などを用いることができる。圧電素子とは、印加さ れた駆動電圧に応じて寸法歪を発生する素子であり、磁歪素子とは、外部から磁界 をかけることよって変位を発生する素子である。これらの駆動部材は、電気や熱など のエネルギー量に応じた変形量で変形し、一軸方向での変位として出力できる。た だし、これらのなかでも、電気から直接変位を取り出す駆動構造を有するという点で 特に圧電素子が好ましぐ本実施形態の駆動部材 1も圧電素子で構成されている。 [0019] The drive member 1 is not particularly limited as long as it can be deformed by a deformation amount corresponding to the amount of energy input, and can output this deformation as a displacement in a uniaxial direction. An element, a shape memory alloy material, or the like can be used. A piezoelectric element is an element that generates dimensional distortion in accordance with an applied drive voltage, and a magnetostrictive element is an element that generates displacement by applying a magnetic field from the outside. These drive members are deformed by a deformation amount corresponding to the amount of energy such as electricity and heat, and can be output as a displacement in a uniaxial direction. However, among these, the driving member 1 of the present embodiment, in which the piezoelectric element is particularly preferable in that it has a driving structure for taking out displacement directly from electricity, is also composed of the piezoelectric element.
[0020] 本発明の駆動部材 1 (圧電素子)は四角柱状の形状を有し、その長手方向で寸法 歪(変位)を生じ、この寸法歪を先端の変位出力部 100から一軸方向に出力する。な お、例えば、駆動部材 1に磁歪素子を使用する場合には、別途磁界を発生する機構 を設けることで、同様の作用を得ることができる。  [0020] The driving member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, generates dimensional distortion (displacement) in the longitudinal direction, and outputs the dimensional distortion from the displacement output unit 100 at the tip in a uniaxial direction. . For example, when a magnetostrictive element is used for the driving member 1, the same action can be obtained by providing a mechanism for generating a magnetic field separately.
なお、駆動部材 1は、後述する固定部 21aに固定される力、、若しくはァクチユエータ 全体を支持する器体に固定される。  The driving member 1 is fixed to a force that is fixed to a fixing portion 21a, which will be described later, or a vessel that supports the entire actuator.
携帯端末のカメラモジュールに適用するような極小型の圧電素子から出力できる一 軸方向の変位量は、積層タイプで通常数百 ppm程度であり、本発明ではこのような 変位量を数十〜百倍程度に拡大して可動部材 3まで伝達し、可動部材 3を変位動作 させることを狙いとしている。  The amount of displacement in the uniaxial direction that can be output from an extremely small piezoelectric element that is applied to a camera module of a portable terminal is usually about several hundred ppm in the stacked type. In the present invention, such displacement is several tens to one hundred times. The objective is to enlarge the transmission to the movable member 3 and move the movable member 3 to a displacement.
[0021] 前記変位拡大機構 2は、変位伝達方向に沿って配置される複数のレバー 20と、こ のレバー 20を支持する固定部 21とを備える力 S、本実施形態の変位拡大機構 2は、水 平方向において、駆動部材 1の先端 (変位出力部)に駆動部材 1の長手方向に対し て 90° の関係で接続された第 1のレバー 20a (最上流側レバー)と、この第 1のレバ 一 20aの先端に、レバー 20aの長手方向に対して 90° の関係で接続された第 2のレ バー 20b (最下流側レバー)とを備え、可動部材 3は、駆動部材 1と第 1のレバー 20a と第 2のレバー 20bとにより、 3方をコ字状に囲まれた構造となっている。 [0021] The displacement magnifying mechanism 2 includes a plurality of levers 20 arranged along the displacement transmission direction, The displacement magnifying mechanism 2 of the present embodiment has a force S provided with the fixing portion 21 that supports the lever 20 of the present invention, and the displacement enlarging mechanism 2 of the present embodiment can The first lever 20a (the most upstream lever) connected in a 90 ° relationship and the second lever connected in a 90 ° relationship to the longitudinal direction of the lever 20a at the tip of the first lever 20a The movable member 3 has a U-shaped structure surrounded by a drive member 1, a first lever 20a, and a second lever 20b. ing.
また、前記固定部 21としては、駆動部材 1の外側位置に駆動部材 1と平行に設置さ れた固定部 21aと、第 2のレバー 21bの下側にレバー 21bと平行に設置された固定 部 21bとが設けられ、これら固定部 21a, 21bは、ァクチユエータ全体を支持する器体 に固定される。  The fixing portion 21 includes a fixing portion 21a installed in parallel with the driving member 1 at an outer position of the driving member 1, and a fixing portion installed in parallel with the lever 21b below the second lever 21b. 21b, and these fixing portions 21a and 21b are fixed to a body that supports the entire actuator.
[0022] 本実施形態を含め以下に述べる本発明の各実施形態では、変位拡大機構 2を構 成する各レバー 20は、弾性変形可能な板状の支点用結合部 22と力点用結合部 23 によって支持され且つ変位させられる構造となって!/、る力 これら支点用結合部 22と 力点用結合部 23はいずれも板状であるため、レバー 20が作動する際の横振れが少 なぐこのため変位拡大機構 2による変位の伝達 ·拡大を安定して行わせることができ 本実施形態において、前記第 1のレバー 20aは四角柱状の形状を有し、その基端 側部分力、レバーの支点を形成する弾性変形可能な板状の支点用結合部 22aを介 して前記固定部 21aの先端に結合され、これにより固定部 21aに支持されている。さ らに、支点用結合部 22aの結合位置よりも少しレバー先端側寄りの位置において、レ バー 20aの基端側部分と駆動部材 1の変位出力部 100 (駆動部材先端)間は、レバ 一の力点を形成する弾性変形可能な板状の力点用結合部 23aで結合されている。 前記支点用結合部 22aと力点用結合部 23aは比較的短い板状であり、それぞれ第 1のレバー 20aの長手方向に対して直角に結合されている。  In each embodiment of the present invention described below including this embodiment, each lever 20 constituting the displacement magnifying mechanism 2 includes a plate-like fulcrum coupling portion 22 and a force point coupling portion 23 that are elastically deformable. The fulcrum coupling part 22 and the force point coupling part 23 are both plate-shaped, so that there is little lateral deflection when the lever 20 is actuated. Therefore, displacement transmission and expansion by the displacement enlarging mechanism 2 can be stably performed.In the present embodiment, the first lever 20a has a quadrangular prism shape, and its proximal end partial force, lever fulcrum Is coupled to the distal end of the fixing portion 21a via an elastically deformable plate-like supporting point coupling portion 22a that forms the same, and is thereby supported by the fixing portion 21a. Further, at a position slightly closer to the lever tip side than the coupling position of the fulcrum coupling portion 22a, the lever 20a and the displacement output portion 100 (driving member distal end) of the driving member 1 are not connected to the lever. Are connected by elastically deformable plate-shaped force point connecting portions 23a that form the force points. The fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the first lever 20a.
[0023] 前記第 2のレバー 20bも四角柱状の形状を有し、その基端側部分が、支点用結合 部 22bを介して下方の固定部 21bに結合されるとともに、力点用結合部 23bを介して 前記第 1のレバー 20aの先端側部分に結合されている。 [0023] The second lever 20b also has a quadrangular prism shape, and its base end side portion is coupled to the lower fixing portion 21b via the fulcrum coupling portion 22b, and the force point coupling portion 23b is provided. The first lever 20a is coupled to the tip side portion of the first lever 20a.
前記支点用結合部 22bと力点用結合部 23bは比較的長い板状であり、それぞれの 一端部がレバー 20bの基端側部分に対してレバー 20bの長手方向に沿うように結合 されている。また、力点用結合部 23bの他端部はレバー 20aの長手方向に対して直 角に結合され、また、支点用結合部 22bの他端部は固定部 21bに結合されている。 The fulcrum coupling portion 22b and the force point coupling portion 23b are relatively long plates, One end portion is coupled to the base end side portion of the lever 20b so as to be along the longitudinal direction of the lever 20b. Further, the other end of the force point coupling portion 23b is coupled to the lever 20a in the longitudinal direction, and the other end of the fulcrum coupling portion 22b is coupled to the fixing portion 21b.
[0024] 本発明の変位拡大機構 2では、複数のレバー 20のうちの少なくとも 1つのレバー 20 の基端側部分に結合される支点用結合部 22と力点用結合部 23は、当該レバー 20 の長さの 1/4以上、好ましくは 1/3以上、さらに好ましくは 1/2以上の長さを有する ことが望ましい。このように支点用結合部 22と力点用結合部 23の長さを十分に大きく することにより、これら結合部の剛性を確保しつつ大きな変形量を得ることができ、ひ V、ては変位拡大機構 2の変位拡大量を大きくすることができるからである。本実施形 態では、前記第 2のレバー 20bの基端側部分に結合された支点用結合部 22bと力点 用結合部 23bが、レバー 20bの長さの 1/2程度の長さを有している。  In the displacement magnifying mechanism 2 of the present invention, the fulcrum coupling portion 22 and the force point coupling portion 23 coupled to the base end side portion of at least one lever 20 of the plurality of levers 20 It is desirable to have a length of 1/4 or more, preferably 1/3 or more, more preferably 1/2 or more of the length. In this way, by sufficiently increasing the lengths of the fulcrum coupling part 22 and the force point coupling part 23, a large deformation amount can be obtained while ensuring the rigidity of these coupling parts. This is because the displacement expansion amount of the mechanism 2 can be increased. In the present embodiment, the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the base end side portion of the second lever 20b have a length that is approximately half the length of the lever 20b. ing.
[0025] ここで、本実施形態の変位拡大機構 2は、駆動部材 1の水平方向の変位を垂直方 向に変換して可動部材 3に伝達するものであり、この変位方向の変換を行うために、 レバー 20b (変位伝達方向の最下流側レバー)に結合された支点用結合部 22bと力 点用結合部 23bの並列方向(図 3の矢印( α )方向) 、当該レバー 20bの上流側の レバー 20aの変位面(図 3の矢印( /3 )方向での変位面)に対して直交した構造となつ ている。  Here, the displacement magnifying mechanism 2 of the present embodiment converts the displacement in the horizontal direction of the drive member 1 into the vertical direction and transmits it to the movable member 3 for the purpose of converting this displacement direction. The parallel direction of the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the lever 20b (the most downstream lever in the displacement transmission direction) (the direction of the arrow (α) in FIG. 3), the upstream side of the lever 20b The structure is perpendicular to the displacement surface of the lever 20a (displacement surface in the direction of the arrow (/ 3) in Fig. 3).
[0026] 前記第 2のレバー 20b (変位伝達方向の最下流側レバー)の先端側部分は可動部 材 3に連結又は係合し、このレバー 20bの変位により可動部材 3を変位動作させるよ うにしてある。本実施形態では、可動部材 3であるレンズホルダは、リング状の本体 30 の上端に板状の取付部 31が張り出し形成されており、この取付部 31がレバー 20bの 上面に当接した状態で、両者がコ字状の連結部材 4 (板パネ)でクランプされることに より連結されている。その他、 5, 6は可動部材 3 (レンズホルダ)の上部及び下部を押 さえ、これを保持するための押え用スプリングである。  [0026] The distal end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) is connected to or engaged with the movable member 3, and the movable member 3 is displaced by the displacement of the lever 20b. It is. In the present embodiment, the lens holder that is the movable member 3 has a plate-like attachment portion 31 protruding from the upper end of the ring-shaped main body 30, and the attachment portion 31 is in contact with the upper surface of the lever 20b. Both are connected by being clamped by a U-shaped connecting member 4 (plate panel). In addition, 5 and 6 are presser springs for holding the upper and lower portions of the movable member 3 (lens holder).
[0027] 本発明の変位拡大機構 2では、変位拡大量をなるベく大きくするために、複数のレ バー 20の全長を長くとることが好ましぐ具体的には図 4に示すように、各レバー 20 ( 20a, 20b)の先端部 piと各レバー 20 (20a、 20b)の基端側部分に結合された支点 用結合部 22 (22a、 22b)の長さ方向中心 p2とを結ぶ直線 Lの長さの全レバーの合 計力、駆動部材 1の変位出力方向での長さ以上であることが好ましい。 [0027] In the displacement magnifying mechanism 2 of the present invention, in order to increase the displacement magnifying amount as much as possible, it is preferable to increase the overall length of the plurality of levers 20, as shown in FIG. A straight line connecting the distal end pi of each lever 20 (20a, 20b) and the longitudinal center p2 of the fulcrum coupling portion 22 (22a, 22b) coupled to the proximal end portion of each lever 20 (20a, 20b) L length of all levers It is preferable that the measured force is not less than the length of the drive member 1 in the displacement output direction.
[0028] 前記変位拡大機構 2は、金属(例えば、ステンレス鋼)又は/及び樹脂からなる成 形体又は/及び積層体で構成される。この積層体とは、薄板を積層させたものであ る。変位拡大機構 2は、全体を一体成形された成形体や積層体で構成してもよいが、 本実施形態では固定部 21aと第 1のレバー 20aの主要部が一体成形体又は一体積 層体で構成されるとともに、固定部 21bと第 2のレバー 20bと第 1のレバー 20aの先端 側の部分 25がー体成形体又は一体積層体で構成され、部分 25がレバー 20aの先 端側に固着されることにより、変位拡大機構 2が構成されている。 [0028] The displacement magnifying mechanism 2 is composed of a molded body or / and a laminated body made of metal (for example, stainless steel) and / or resin. This laminate is a laminate of thin plates. The displacement magnifying mechanism 2 may be composed of a molded body or a laminated body that is integrally molded as a whole, but in this embodiment, the main portions of the fixed portion 21a and the first lever 20a are integrally molded or a one-volume layered body. The distal end portion 25 of the fixed portion 21b, the second lever 20b, and the first lever 20a is composed of a molded body or an integral laminate, and the portion 25 is on the leading end side of the lever 20a. By being fixed, the displacement enlarging mechanism 2 is configured.
変位拡大機構 2を構成するレバー 20は、変位伝達方向に沿って 3つ以上設けても よぐ例えば、本実施形態の例では、第 1のレバー 20aと第 2のレバー 20bの間に、第 1のレバー 20aと同様の原理のレバーを 1つ以上設けてもよい。  Three or more levers 20 constituting the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.For example, in the example of the present embodiment, the first lever 20a and the second lever 20b are provided between the first lever 20a and the second lever 20b. One or more levers with the same principle as the one lever 20a may be provided.
[0029] 図 5は、本実施形態のァクチユエータの機能(作動形態)を示すものである。 FIG. 5 shows the function (operation form) of the actuator of the present embodiment.
駆動部材 1である圧電素子に所定の駆動電圧が印加されると、寸法歪により矢印( A)方向で伸長し、変位出力部 100から一軸方向の変位が力点用結合部 23aを通じ て第 1のレバー 20aに出力される(すなわち、レバー 20aを押す)。これにより第 1のレ バー 20aは、支点用結合部 22aを変形させつつこれを支点として矢印(B)方向に回 動する。この第 1のレバー 20aの回動により、第 2のレバー 20bの力点用結合部 23b が矢印(C)方向に引っ張られ、これにより第 2のレバー 20bは、支点用結合部 22bを 変形させつつこれを支点として矢印(D)方向に回動(上方に回動)する。したがって、 この第 2のレバー 20bの先端に連結された可動部材 3も上方に変位(上昇)する。当 然、駆動部材 1である圧電素子が矢印 (A)方向で縮小すれば、上記と逆の動作によ つて可動部材 3が下方に変位(下降)する。そして、以上のような変位拡大機構 2によ る変位伝達の過程で、駆動部材 1から出力された変位が拡大(増幅)され、駆動部材 1の出力変位量の数十倍以上 (場合によっては 100倍以上)の変位量が可動部材に 伝達される。  When a predetermined driving voltage is applied to the piezoelectric element that is the driving member 1, the piezoelectric element expands in the direction of the arrow (A) due to dimensional distortion, and the uniaxial displacement from the displacement output unit 100 passes through the force point coupling unit 23a to the first point. The signal is output to the lever 20a (that is, the lever 20a is pressed). As a result, the first lever 20a rotates in the direction of the arrow (B) with the fulcrum coupling portion 22a being deformed as a fulcrum. By the rotation of the first lever 20a, the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), so that the second lever 20b deforms the fulcrum coupling portion 22b. Using this as a fulcrum, it rotates (rotates upward) in the direction of the arrow (D). Therefore, the movable member 3 connected to the tip of the second lever 20b is also displaced (raised) upward. Naturally, when the piezoelectric element that is the driving member 1 is reduced in the direction of the arrow (A), the movable member 3 is displaced (lowered) downward by the reverse operation. Then, in the process of displacement transmission by the displacement enlarging mechanism 2 as described above, the displacement output from the drive member 1 is expanded (amplified), and is more than tens of times the output displacement amount of the drive member 1 (in some cases) A displacement of 100 times or more is transmitted to the movable member.
[0030] 図 6〜図 8は、本発明のァクチユエータの他の実施形態を示すもので、携帯端末の レンズモジュールに組み込まれるレンズァクチユエータに適用した場合を示している 。図 6は斜視図、図 7は側面図、図 8は可動部材を取り付けた状態で示す斜視図であ る。図において、 3はァクチユエータが変位動作させるべき可動部材であり、本実施 形態ではレンズホルダである。 FIGS. 6 to 8 show other embodiments of the actuator of the present invention, and show a case where the present invention is applied to a lens actuator incorporated in a lens module of a portable terminal. 6 is a perspective view, FIG. 7 is a side view, and FIG. 8 is a perspective view with a movable member attached. The In the figure, reference numeral 3 denotes a movable member to be displaced by the actuator, which is a lens holder in this embodiment.
先に挙げた図 1〜図 5の実施形態は、ァクチユエータを平面的にできるだけ薄型化 するために、可動部材 3の外周部に駆動部材 1と変位拡大機構 2を配置した構造とし たものであるが、本実施形態は、ァクチユエータの設置面積を極力小さくするために 縦型とし、且つ変位が同じ面上で伝達 ·拡大されるようにしたものである。  The embodiment shown in FIGS. 1 to 5 described above has a structure in which the drive member 1 and the displacement enlarging mechanism 2 are arranged on the outer peripheral portion of the movable member 3 in order to make the actuator as thin as possible in a plane. However, in this embodiment, in order to minimize the installation area of the actuator, the vertical type is used, and the displacement is transmitted and expanded on the same plane.
[0031] このァクチユエータも、入力されるエネルギー量に応じた変形量で変形し、この変形 を一軸方向での変位として出力する駆動部材 1と、この駆動部材 1から出力された変 位を、変位量を拡大させつつ前記可動部材 3まで伝達し、可動部材 3を変位動作さ せる変位拡大機構 2とを備えて!/、る。  [0031] This actuator is also deformed by a deformation amount corresponding to the amount of energy input, and the drive member 1 that outputs this deformation as a displacement in a uniaxial direction, and the displacement output from the drive member 1 are displaced. A displacement magnifying mechanism 2 that transmits the movable member 3 to the movable member 3 while increasing the amount and moves the movable member 3 is provided.
前記駆動部材 1は、図 1〜図 5の実施形態と同様に圧電素子で構成されている。こ の駆動部材 1 (圧電素子)は四角柱状の形状を有し、その長手方向で寸法歪(変位) を生じ、この寸法歪を先端の変位出力部 100から一軸方向に出力する。  The drive member 1 is composed of a piezoelectric element as in the embodiments of FIGS. This drive member 1 (piezoelectric element) has a quadrangular prism shape and generates dimensional distortion (displacement) in the longitudinal direction thereof, and outputs this dimensional distortion from the displacement output unit 100 at the tip in a uniaxial direction.
[0032] 前記変位拡大機構 2は、変位伝達方向に沿って配置される複数のレバー 20と、こ のレバー 20を支持する固定部 21とを備えている。この固定部 21は、適当な間隔を 有する上下の水平な固定部 21c, 21 dと、これら固定部 21c, 21dをその一部で連結 する固定部 21eとを有している。本実施形態の駆動部材 1は、上下の固定部 21c, 2 Id間に位置し、その後端部を介して固定部 21eに水平状に保持されている。前記固 定部 21c, 21dは、駆動部材 1との間で間隙を形成して、駆動部材 1の上下に各々平 行に位置している。上側の固定部 21cは駆動部材 1よりも長尺である。なお、固定部 21は、ァクチユエータ全体を支持する器体に固定される。  The displacement enlarging mechanism 2 includes a plurality of levers 20 arranged along the displacement transmission direction and a fixing portion 21 that supports the levers 20. The fixing portion 21 has upper and lower horizontal fixing portions 21c and 21d having an appropriate interval, and a fixing portion 21e that connects the fixing portions 21c and 21d with a part thereof. The drive member 1 of the present embodiment is positioned between the upper and lower fixed portions 21c and 2 Id, and is held horizontally by the fixed portion 21e via its rear end portion. The fixing portions 21c and 21d form a gap with the driving member 1 and are positioned in parallel above and below the driving member 1, respectively. The upper fixing portion 21c is longer than the driving member 1. The fixing portion 21 is fixed to a container that supports the entire actuator.
本実施形態の変位拡大機構 2は、縦方向において、駆動部材 1の先端 (変位出力 部)に駆動部材 1の長手方向に対して 90° の関係で接続され、上方に延出する第 1 のレバー 20a (最上流側レバー)と、この第 1のレバー 20aの先端にレバー 20aの長 手方向に対して 90° の関係で接続され、駆動部材 1とほぼ平行な状態で水平に延 出する第 2のレバー 20b (最下流側レバー)とを備えて!/、る。  In the longitudinal direction, the displacement magnifying mechanism 2 of the present embodiment is connected to the distal end (displacement output portion) of the drive member 1 in a relationship of 90 ° with respect to the longitudinal direction of the drive member 1 and extends upward. The lever 20a (the most upstream lever) and the tip of the first lever 20a are connected at a 90 ° relationship to the longitudinal direction of the lever 20a, and extend horizontally in a state almost parallel to the drive member 1. A second lever 20b (most downstream lever) is provided!
[0033] 前記第 1のレバー 20aは比較的短ぐその基端側部分が、レバーの支点を形成す る弾性変形可能な板状の支点用結合部 22aを介して前記固定部 21dの先端に結合 され、これにより固定部 21dに支持されている。さらに、支点用結合部 22aの結合位 置よりも少しレバー先端側寄りの位置において、レバー 20aの基端側部分と駆動部 材 1の変位出力部 100 (駆動部材先端)間は、レバーの力点を形成する弾性変形可 能な板状の力点用結合部 23aで結合されている。 [0033] The first lever 20a has a relatively short base end side portion at the distal end of the fixed portion 21d via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. Join Thus, it is supported by the fixing portion 21d. Further, at a position slightly closer to the lever tip side than the coupling position of the fulcrum coupling portion 22a, the lever power point is between the proximal end portion of the lever 20a and the displacement output portion 100 (driving member tip) of the driving member 1. Are coupled by elastically deformable plate-shaped force point coupling portions 23a.
前記支点用結合部 22aと力点用結合部 23aは、それぞれ第 1のレバー 20aの長手 方向に対して直角に結合されてレ、る。  The fulcrum coupling portion 22a and the force point coupling portion 23a are coupled at right angles to the longitudinal direction of the first lever 20a.
[0034] 前記第 2のレバー 20bは比較的長い四角柱状の形状を有し、固定部 21cの上方に 配置されている。この第 2のレバー 20bは、その基端側部分が、支点用結合部 22bを 介して固定部 21cの先端部に結合されるとともに、力点用結合部 23bを介して前記 第 1のレバー 20aの先端側部分に結合されている。  [0034] The second lever 20b has a relatively long quadrangular prism shape and is disposed above the fixed portion 21c. The second lever 20b has a base end portion coupled to the distal end portion of the fixed portion 21c via the fulcrum coupling portion 22b and the first lever 20a via the force point coupling portion 23b. It is connected to the tip side part.
前記支点用結合部 22bと力点用結合部 23bは比較的長い板状であり、それぞれの 一端部がレバー 20bの基端側部分に対してレバー 20bの長手方向に沿うように結合 されている。また、力点用結合部 23bの他端部はレバー 20aの長手方向に対して直 角に結合され、また、支点用結合部 22bの他端部は固定部 21cに結合されている。 本実施形態では、前記第 2のレバー 20bの基端側部分に結合された支点用結合部 2 2bと力点用結合部 23bが、レバー 20bの長さの 1/2以上の長さを有している。  The fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled along the longitudinal direction of the lever 20b. Further, the other end of the force point connecting portion 23b is connected to the lever 20a in the perpendicular direction, and the other end of the fulcrum connecting portion 22b is connected to the fixed portion 21c. In this embodiment, the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the base end side portion of the second lever 20b have a length that is 1/2 or more of the length of the lever 20b. ing.
この第 2のレバー 20bとこれに結合した支点用結合部 22b及び力点用結合部 23b は、固定部 21cと間隙を形成して平行に配置されている。  The second lever 20b, the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the second lever 20b are arranged in parallel with the fixed portion 21c so as to form a gap.
[0035] ここで、本実施形態の変位拡大機構 2は、変位が同じ面上で伝達 '拡大されるよう にするため、第 2のレバー 20b (変位伝達方向の最下流側レバー)に結合された支点 用結合部 22bと力点用結合部 23bの並列方向が、当該レバー 20bの上流側のレバ 一 20aの変位面と平行な構造となっている。また、このような構造において、第 1のレ バー 20aと第 2のレバー 20bと駆動部材 1が、第 2のレバー 20bの支点用結合部 22b が結合された固定部 21cを、間隙を形成しつつ 3方で囲んだコンパクトな構造 (折り 畳み構造)となっている。  Here, the displacement enlarging mechanism 2 of the present embodiment is coupled to the second lever 20b (the most downstream lever in the displacement transmission direction) so that the displacement is transmitted and expanded on the same surface. The parallel direction of the fulcrum coupling portion 22b and the force point coupling portion 23b is parallel to the displacement surface of the lever 20a upstream of the lever 20b. In such a structure, the first lever 20a, the second lever 20b, and the driving member 1 form a gap between the fixed portion 21c to which the fulcrum coupling portion 22b of the second lever 20b is coupled. However, it has a compact structure (folded structure) surrounded by three sides.
[0036] 前記第 2のレバー 20b (変位伝達方向の最下流側レバー)の先端側部分は可動部 材 3に連結又は係合し、このレバー 20bの変位により可動部材 3を変位動作させるよ うにしてある。本実施形態では、可動部材 3であるレンズホルダは、中央にレンズ取付 孔を有する板状の本体 30の上端に取付部 32が張り出し形成されており、この取付 部 32がレバー 20bの上面に連結(固定)されている。 [0036] The distal end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) is connected to or engaged with the movable member 3, and the movable member 3 is displaced by the displacement of the lever 20b. It is. In the present embodiment, the lens holder that is the movable member 3 is attached to the lens in the center. A mounting portion 32 is formed to protrude from the upper end of the plate-like main body 30 having a hole, and this mounting portion 32 is connected (fixed) to the upper surface of the lever 20b.
変位拡大機構 2を構成するレバー 20は、変位伝達方向に沿って 3つ以上設けても よぐ例えば、本実施形態の例では、第 1のレバー 20aと第 2のレバー 20bの間に、第 1のレバー 20aと同様の原理のレバーを 1つ以上設けてもよい。  Three or more levers 20 constituting the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.For example, in the example of the present embodiment, the first lever 20a and the second lever 20b are provided between the first lever 20a and the second lever 20b. One or more levers with the same principle as the one lever 20a may be provided.
なお、駆動部材 1、変位拡大機構 2等に関するその他の構成については、図 1〜図 5の実施形態と同様であり、さきに述べたとおりであるので、詳細な説明は省略する。  The other configurations relating to the drive member 1, the displacement magnifying mechanism 2, and the like are the same as those in the embodiment of FIGS.
[0037] 本実施形態のァクチユエータでは、駆動部材 1である圧電素子に所定の駆動電圧 が印加されると寸法歪により矢印 (A)方向に伸長し、変位出力部 100から一軸方向 の変位が力点用結合部 23aを通じて第 1のレバー 20aに出力される(すなわち、レバ 一 20aを押す)。これにより第 1のレバー 20aは、支点用結合部 22aを変形させつつこ れを支点として外側方向(矢印(B)方向)に回動する。この第 1のレバー 20aの回動 により、第 2のレバー 20bの力点用結合部 23bが矢印(C)方向に引っ張られ、これに より第 2のレバー 20bは、支点用結合部 22bを変形させつつこれを支点として上方( 矢印(D)方向)に回動する。したがって、この第 2のレバー 20bの先端に連結された 可動部材 3も上方に変位(上昇)する。当然、駆動部材 1である圧電素子が矢印 (A) 方向で縮小すれば、上記と逆の動作によって可動部材 3が下方に変位(下降)する。 そして、以上のような変位拡大機構 2による変位伝達の過程で、駆動部材 1から出力 された変位が拡大 (増幅)され、駆動部材 1の出力変位量の数十倍以上 (場合によつ ては 100倍以上)の変位量が可動部材に伝達される。 In the actuator of this embodiment, when a predetermined drive voltage is applied to the piezoelectric element that is the drive member 1, the actuator expands in the direction of the arrow (A) due to dimensional distortion, and the displacement in the uniaxial direction from the displacement output unit 100 is the power point. Is output to the first lever 20a through the connecting portion 23a (that is, the lever 20a is pushed). As a result, the first lever 20a rotates in the outward direction (arrow (B) direction) with the fulcrum coupling portion 22a being deformed as a fulcrum. By the rotation of the first lever 20a, the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), thereby causing the second lever 20b to deform the fulcrum coupling portion 22b. However, it turns upward (in the direction of arrow (D)) using this as a fulcrum. Therefore, the movable member 3 connected to the tip of the second lever 20b is also displaced (raised) upward. Naturally, when the piezoelectric element as the driving member 1 is reduced in the direction of the arrow (A), the movable member 3 is displaced (lowered) downward by the reverse operation. Then, in the process of displacement transmission by the displacement magnifying mechanism 2 as described above, the displacement output from the drive member 1 is magnified (amplified), and is more than tens of times the output displacement amount of the drive member 1 (in some cases) Is transferred to the movable member.
[0038] 図 9〜図 11は、本発明のァクチユエータの他の実施形態を示すもので、図 6〜図 8 の実施形態の変形例である。図 9は斜視図、図 10は側面図、図 11は可動部材を取 り付けた状態で示す斜視図である。 FIG. 9 to FIG. 11 show another embodiment of the actuator of the present invention, which is a modification of the embodiment of FIG. 6 to FIG. FIG. 9 is a perspective view, FIG. 10 is a side view, and FIG. 11 is a perspective view with a movable member attached.
この実施形態は、図 6〜図 8の実施形態に対して、第 2のレバー 20bとこれを支持 する固定部 21dの構造に特徴がある。すなわち、第 2のレバー 20bは図 6〜図 8の実 施形態よりも長尺であり、駆動部材 1の長さ以上の長さを有している。このレバー 20b の中間部(本実施形態では長手方向のほぼ中央部)の上部には段部 200が形成さ れ、この段部 200が形成された長手方向中間部と第 1のレバー 20aの先端側部分と が力点用結合部 23bで結合されている。一方、固定部 21cの長さは駆動部材 1の長 さよりも力、なり短く(好ましくは、駆動部材 1の長さの 2/3〜1/2程度)、このような固 定部 21cの先端とレバー 20bの基端側部分力 レバー 20bとほぼ平行な支点用結合 部 22bで結合されている。 This embodiment is characterized by the structure of the second lever 20b and the fixing portion 21d that supports the second lever 20b with respect to the embodiments of FIGS. That is, the second lever 20b is longer than the embodiment of FIGS. 6 to 8, and has a length equal to or longer than the length of the drive member 1. A step portion 200 is formed at an upper portion of an intermediate portion of the lever 20b (in the present embodiment, a substantially central portion in the longitudinal direction), and the longitudinal intermediate portion where the step portion 200 is formed and the tip of the first lever 20a. Side part and Are coupled at the power point coupling portion 23b. On the other hand, the length of the fixed portion 21c is shorter than the length of the drive member 1 (preferably about 2/3 to 1/2 of the length of the drive member 1). And the partial force on the base end side of the lever 20b are coupled by a fulcrum coupling portion 22b substantially parallel to the lever 20b.
[0039] このような実施形態は、第 2のレバー 20bが長ぐ且つ力点用結合部 23b及び支点 用結合部 22bも十分に長いため(レバー 20bの長さのほぼ 1/2程度)、変位拡大量 を大きくとれる利点がある。 [0039] In such an embodiment, the second lever 20b is long and the force point coupling portion 23b and the fulcrum coupling portion 22b are sufficiently long (approximately half of the length of the lever 20b). There is an advantage that the enlargement amount can be greatly increased.
なお、図 6〜図 8の実施形態ほどコンパクトではないが、この本実施形態の変位拡 大機構 2も、第 1のレバー 20aと第 2のレバー 20bと駆動部材 1力 第 2のレバー 20b の支点用結合部 22bが結合された固定部 21cを、間隙を形成しつつ 3方で囲んだコ ンパタトな構造 (折り畳み構造)となっている。  Although not as compact as the embodiment of FIGS. 6 to 8, the displacement expansion mechanism 2 of this embodiment is also the first lever 20a, the second lever 20b, the driving member 1 force, and the second lever 20b. The fixed portion 21c to which the fulcrum coupling portion 22b is coupled has a compact structure (folded structure) surrounded by three sides while forming a gap.
その他の構成および基本的な機能は、図 6〜図 8の実施形態と同様である。  Other configurations and basic functions are the same as those of the embodiment of FIGS.
[0040] 図 12〜図 14は、本発明のァクチユエータの他の実施形態を示すもので、図 1〜図[0040] FIGS. 12 to 14 show another embodiment of the actuator of the present invention.
5の実施形態の変形例である。図 12は斜視図、図 13は平面図、図 14は側面図であ 本実施形態も、ァクチユエータをできるだけ薄型化するために、駆動部材 1と変位 拡大機構 2とが平面的に可動部材 3を外囲するような構造、すなわち、可動部材 3の 外周部に駆動部材 1と変位拡大機構 2を配置した構造としてある。 It is a modification of 5 embodiment. FIG. 12 is a perspective view, FIG. 13 is a plan view, and FIG. 14 is a side view. In this embodiment as well, in order to make the actuator as thin as possible, the drive member 1 and the displacement magnifying mechanism 2 form a movable member 3 in a plane. The structure is such that the drive member 1 and the displacement magnifying mechanism 2 are arranged on the outer periphery of the movable member 3.
なお、駆動部材 1は、後述する固定部 21aに固定される力、、若しくはァクチユエータ 全体を支持する器体に固定される。  The driving member 1 is fixed to a force that is fixed to a fixing portion 21a, which will be described later, or a vessel that supports the entire actuator.
[0041] 前記変位拡大機構 2は、変位伝達方向に沿って配置される複数のレバー 20と、こ のレバー 20を支持する固定部 21とを備える力 S、本実施形態の変位拡大機構 2は、水 平方向において、駆動部材 1の先端 (変位出力部)に駆動部材 1の長手方向に対し て 90° の関係で接続された第 1のレバー 20a (最上流側レバー)と、この第 1のレバ 一 20aの先端に、レバー 20aの長手方向に対して 90° の関係で接続された第 2のレ バー 20b (最下流側レバー)とを備え、可動部材 3は、駆動部材 1と第 1のレバー 20a と第 2のレバー 20bとにより、 3方をコ字状に囲まれた構造となっている。 [0041] The displacement magnifying mechanism 2 includes a force S including a plurality of levers 20 arranged along the displacement transmission direction and a fixing portion 21 that supports the lever 20, and the displacement magnifying mechanism 2 of the present embodiment is In the horizontal direction, the first lever 20a (the most upstream lever) connected to the front end (displacement output portion) of the drive member 1 at a 90 ° relationship with respect to the longitudinal direction of the drive member 1, And a second lever 20b (most downstream lever) connected to the tip of the lever 20a at a 90 ° relationship with respect to the longitudinal direction of the lever 20a. The first lever 20a and the second lever 20b are surrounded by a U-shape on three sides.
また、前記固定部 21としては、駆動部材 1の内側位置に駆動部材 1と平行に設置さ れた固定部 21aと、第 2のレバー 21bの内側にレバー 21bと平行に設置された固定 部 21bとが設けられ、これら固定部 21a, 21bを含む固定 21は、ァクチユエータ全体 を支持する器体に固定される。 Further, the fixing portion 21 is installed in parallel with the driving member 1 at an inner position of the driving member 1. The fixed part 21a and the fixed part 21b installed in parallel to the lever 21b are provided inside the second lever 21b. The fixed part 21 including these fixed parts 21a and 21b is a body that supports the entire actuator. Fixed to.
[0042] 前記第 1のレバー 20aは四角柱状の形状を有し、その基端側部分が、レバーの支 点を形成する弾性変形可能な板状の支点用結合部 22aを介して前記固定部 21aの 先端に結合され、これにより固定部 21aに支持されている。さらに、支点用結合部 22 aの結合位置よりも少しレバー後端部寄りの位置において、レバー 20aの基端側部分 と駆動部材 1の変位出力部 100 (駆動部材先端)間は、レバーの力点を形成する弾 性変形可能な板状の力点用結合部 23aで結合されている。以上のようなレバー 20a に対する支点用結合部 22aと力点用結合部 23aの結合位置関係は、図 1〜図 5の実 施形態と逆である。 前記支点用結合部 22aと力点用結合部 23aは比較的短い板状 であり、それぞれ第 1のレバー 20aの長手方向に対して直角に結合されている。  [0042] The first lever 20a has a quadrangular prism shape, and a base end portion of the first lever 20a via the elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. It is coupled to the tip of 21a, and is supported by the fixing portion 21a. Further, at a position slightly closer to the rear end of the lever than the coupling position of the fulcrum coupling portion 22a, the lever force point is between the proximal end portion of the lever 20a and the displacement output portion 100 (driving member front end) of the driving member 1. Are connected by elastically deformable plate-shaped force point connecting portions 23a. The positional relationship between the fulcrum coupling portion 22a and the force point coupling portion 23a with respect to the lever 20a as described above is the reverse of the embodiment shown in FIGS. The fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the first lever 20a.
[0043] 前記第 2のレバー 20bも四角柱状の形状を有し、その基端側部分が、支点用結合 部 22bを介して固定部 21bのレバー 20a寄りの端部に結合されるとともに、力点用結 合部 23bを介して前記第 1のレバー 20aの先端側部分に結合されている。  [0043] The second lever 20b also has a quadrangular prism shape, and its proximal end portion is coupled to the end portion of the fixed portion 21b near the lever 20a via the fulcrum coupling portion 22b. The first lever 20a is coupled to the distal end portion of the first lever 20a through a coupling portion 23b.
前記支点用結合部 22bと力点用結合部 23bは比較的長い板状であり、それぞれの 一端部がレバー 20bの基端側部分に対してレバー 20bの長手方向に沿うように結合 されている。また、力点用結合部 23bの他端部はレバー 20aの長手方向に対して直 角に結合され、また、支点用結合部 22bの他端部は固定部 21bに横架部 220を介し て結合されている。  The fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled along the longitudinal direction of the lever 20b. In addition, the other end of the force point coupling portion 23b is coupled perpendicularly to the longitudinal direction of the lever 20a, and the other end of the fulcrum coupling portion 22b is coupled to the fixing portion 21b via the horizontal portion 220. Has been.
[0044] 本実施形態では、前記第 2のレバー 20bの基端側部分に結合された支点用結合 部 22bと力点用結合部 23bが、レバー 20bの長さ以上の長さを有している。  [0044] In the present embodiment, the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the proximal end portion of the second lever 20b have a length equal to or greater than the length of the lever 20b. .
また、図 1〜図 5の実施形態と同様に、本実施形態の変位拡大機構 2は、駆動部材 1の水平方向の変位を垂直方向に変換して可動部材 3に伝達するものであり、この変 位方向の変換を行うために、レバー 20b (変位伝達方向の最下流側レバー)に結合 された支点用結合部 22bと力点用結合部 23bの並列方向力 当該レバー 20bの上 流側のレバー 20aの変位面に対して直交した構造となっている。  Similarly to the embodiment of FIGS. 1 to 5, the displacement magnifying mechanism 2 of the present embodiment converts the horizontal displacement of the drive member 1 into the vertical direction and transmits it to the movable member 3. In order to convert the displacement direction, the force in the parallel direction of the fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the lever 20b (the most downstream lever in the displacement transmission direction) is the upstream lever of the lever 20b. The structure is orthogonal to the displacement surface of 20a.
[0045] 前記第 2のレバー 20b (変位伝達方向の最下流側レバー)の先端側部分は、図 1〜 図 5の実施形態と同様に、可動部材 3に連結又は係合し、このレバー 20bの変位によ り可動部材 3を変位動作させるようにしてある。 [0045] The tip side portion of the second lever 20b (the most downstream lever in the displacement transmission direction) is shown in Figs. Similar to the embodiment of FIG. 5, the movable member 3 is connected to or engaged with the movable member 3, and the movable member 3 is displaced by the displacement of the lever 20b.
変位拡大機構 2を構成するレバー 20は、変位伝達方向に沿って 3つ以上設けても よぐ例えば、本実施形態の例では、第 1のレバー 20aと第 2のレバー 20bの間に、第 1のレバー 20aと同様の原理のレバーを 1つ以上設けてもよい。  Three or more levers 20 constituting the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.For example, in the example of the present embodiment, the first lever 20a and the second lever 20b are provided between the first lever 20a and the second lever 20b. One or more levers with the same principle as the one lever 20a may be provided.
なお、駆動部材 1、変位拡大機構 2等に関するその他の構成については、図 1〜図 5の実施形態と同様であり、さきに述べたとおりであるので、詳細な説明は省略する。  The other configurations relating to the drive member 1, the displacement magnifying mechanism 2, and the like are the same as those in the embodiment of FIGS.
[0046] 本実施形態のァクチユエータでは、駆動部材 1である圧電素子に所定の駆動電圧 が印加されると寸法歪により矢印 (A)方向に伸長し、変位出力部 100から一軸方向 の変位が力点用結合部 23aを通じて第 1のレバー 20aに出力される(すなわち、レバ 一 20aを押す)。ここで、力点用結合部 23aは支点用結合部 22aよりもレバー後端側 に結合されているため、第 1のレバー 20aは、支点用結合部 22aを変形させつつこれ を支点として内側方向(矢印(B)方向)に回動する。この第 1のレバー 20aの回動によ り、第 2のレバー 20bの力点用結合部 23bが第 2のレバー 20b方向(矢印(C)方向) に押し出され、これにより第 2のレバー 20bは、支点用結合部 22bを変形させつつこ れを支点として上方(矢印(D)方向)に回動する。したがって、この第 2のレバー 20b の先端に連結された可動部材 3も上方に変位(上昇)する。当然、駆動部材 1である 圧電素子が矢印 (A)方向で縮小すれば、上記と逆の動作によって可動部材 3が下 方に変位(下降)する。そして、以上のような変位拡大機構 2による変位伝達の過程で 、駆動部材 1から出力された変位が拡大 (増幅)され、駆動部材 1の出力変位量の数 十倍以上 (場合によっては 100倍以上)の変位量が可動部材に伝達される。  In the actuator of the present embodiment, when a predetermined drive voltage is applied to the piezoelectric element that is the drive member 1, the actuator expands in the direction of the arrow (A) due to dimensional distortion, and the displacement in the uniaxial direction from the displacement output unit 100 is the power point. Is output to the first lever 20a through the connecting portion 23a (that is, the lever 20a is pushed). Here, since the force point coupling portion 23a is coupled to the lever rear end side with respect to the fulcrum coupling portion 22a, the first lever 20a deforms the fulcrum coupling portion 22a and uses it as a fulcrum in the inner direction ( Rotate in the direction of arrow (B). By the rotation of the first lever 20a, the force point coupling portion 23b of the second lever 20b is pushed out in the direction of the second lever 20b (arrow (C) direction), whereby the second lever 20b is Then, while deforming the fulcrum coupling portion 22b, the fulcrum coupling portion 22b is rotated upward (in the direction of the arrow (D)) using this as a fulcrum. Therefore, the movable member 3 connected to the tip of the second lever 20b is also displaced (raised) upward. Naturally, when the piezoelectric element which is the drive member 1 is reduced in the direction of the arrow (A), the movable member 3 is displaced (lowered) downward by the reverse operation. Then, in the process of displacement transmission by the displacement enlarging mechanism 2 as described above, the displacement output from the drive member 1 is expanded (amplified), and is more than several tens of times the output displacement amount of the drive member 1 (100 times in some cases). The above displacement amount is transmitted to the movable member.
[0047] 図 15〜図 17は、本発明のァクチユエータの他の実施形態を示すもので、携帯端末 のレンズモジュールに組み込まれるレンズァクチユエータに適用した場合を示してい る。図 15は平面図、図 16は可動部材を取り付けた状態で示す平面図、図 17は可動 部材を取り付けた状態の模式側面図である。図において、 3はァクチユエータが変位 動作させるべき可動部材であり、本実施形態ではレンズホルダである。  FIGS. 15 to 17 show another embodiment of the actuator of the present invention, and show a case where it is applied to a lens actuator incorporated in a lens module of a portable terminal. FIG. 15 is a plan view, FIG. 16 is a plan view showing a state where a movable member is attached, and FIG. 17 is a schematic side view showing a state where the movable member is attached. In the figure, 3 is a movable member to which the actuator is to be displaced, and in this embodiment is a lens holder.
このァクチユエータも、入力されるエネルギー量に応じた変形量で変形し、この変形 を一軸方向での変位として出力する駆動部材 1と、この駆動部材 1から出力された変 位を、変位量を拡大させつつ前記可動部材 3まで伝達し、可動部材 3を変位動作さ せる変位拡大機構 2とを備えるものであるが、この変位拡大機構 2は、変位伝達方向 に沿って配置される複数のレバー 20からなる 1対のレバー群 X, Yと、前記レバー 20 を支持する固定部 21と、両レバー群 X, Yの変位伝達方向の最下流側レバー 20と可 動部材 3とを連結する長手方向で弾性変形可能な連結部材 24とを備える。 This actuator is also deformed by a deformation amount corresponding to the amount of energy input, and a drive member 1 that outputs this deformation as a displacement in a uniaxial direction, and a deformation output from the drive member 1 The displacement expanding mechanism 2 transmits the position to the movable member 3 while increasing the amount of displacement, and moves the movable member 3 to move. The displacement expanding mechanism 2 is arranged along the displacement transmission direction. A pair of lever groups X and Y comprising a plurality of levers 20 arranged, a fixing portion 21 that supports the lever 20, the most downstream lever 20 in the displacement transmission direction of both lever groups X and Y, and a movable member 3 and a connecting member 24 that is elastically deformable in the longitudinal direction.
[0048] 本実施形態も、図 1〜図 5の実施形態と同様に、ァクチユエータをできるだけ薄型化 するために、駆動部材 1と変位拡大機構 2とが平面的に可動部材 3を外囲するような 構造、すなわち可動部材 3の外周部に駆動部材 1と変位拡大機構 2を配置した構造 としてある。さきに述べたように、このような構造では、中央のスペースを可動部材 3の 収容スペースにしてァクチユエ一タの薄型化が図れるだけでなぐ変位拡大機構 2を 構成するレバー(てこ)の長さを十分に確保することができるので、大きな変位拡大量 を得る上で有利である。また、例えば、レンズァクチユエータに適用した場合に、レン ズの光軸を邪魔するような部材がないため、小型化 ·薄型化に特に有利である。 一方、さきに挙げた各実施形態に対する本実施形態のァクチユエータの特徴は、 左右 1対のレバー群 X, Yを有することにより可動部材 3を安定して保持し、変位動作 させること力 Sできること、レバー 20だけでなく弾性変形可能な連結部材 24も変位拡大 機能を有するため、その分全体の変位拡大量を大きくできること、などが挙げられる。 前記駆動部材 1は、図 1〜図 5の実施形態で述べたとおりであり、本実施形態の駆 動部材 1も圧電素子で構成されている。本発明の駆動部材 1 (圧電素子)は四角柱状 の形状を有し、その長手方向で寸法歪(変位)を生じ、この寸法歪を両端の変位出力 部 100から一軸方向に出力する。なお、この駆動部材 1はァクチユエータ全体を支持 する器体に固定される。 [0048] In the present embodiment as well, in order to make the actuator as thin as possible, the drive member 1 and the displacement magnifying mechanism 2 surround the movable member 3 in a planar manner, as in the embodiments of Figs. In other words, the driving member 1 and the displacement magnifying mechanism 2 are arranged on the outer periphery of the movable member 3. As described above, in such a structure, the length of the lever (lever) that constitutes the displacement enlarging mechanism 2 can be achieved simply by reducing the thickness of the actuator by using the central space as the accommodating space for the movable member 3. This is advantageous in obtaining a large displacement expansion amount. For example, when applied to a lens actuator, there is no member that obstructs the optical axis of the lens, which is particularly advantageous for miniaturization and thinning. On the other hand, the feature of the actuator of this embodiment with respect to each of the above-described embodiments is that it has a pair of left and right lever groups X and Y, so that the movable member 3 can be stably held and can be displaced by force S. Not only the lever 20 but also the elastically deformable connecting member 24 has a displacement expansion function, so that the entire displacement expansion amount can be increased accordingly. The drive member 1 is as described in the embodiment of FIGS. 1 to 5, and the drive member 1 of the present embodiment is also constituted by a piezoelectric element. The drive member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, and causes dimensional distortion (displacement) in the longitudinal direction, and outputs this dimensional distortion from the displacement output portions 100 at both ends in a uniaxial direction. The drive member 1 is fixed to a container that supports the entire actuator.
[0049] 前記固定部 21はァクチユエータの中央部に据えられ、その上方に可動部材 3が配 置される。前記駆動部材 1は、この固定部 21の側部に配置される。この固定部 21は 、ァクチユエータ全体を支持する器体に固定される。 [0049] The fixed portion 21 is placed at the center of the actuator, and the movable member 3 is disposed above the fixed portion 21. The driving member 1 is disposed on the side portion of the fixed portion 21. The fixing portion 21 is fixed to a container that supports the entire actuator.
前記 1対のレバー群 X, Yは、複数のレバー 20の平面的な形状及び配置がァクチ ユエータ中心に対して線対称であり、最下流側のレバー 20が連結部材 24を介して 可動部材 3を両側から保持する構造となっている。 各レバー群 X, γは、水平方向において、駆動部材 1の一端(変位出力部)に接続 された第 1のレバー 20a (最上流側レバー)と、この第 1のレバー 20aの先端に接続さ れた第 2のレバー 20b (最下流側レバー)とを備えてレ、る。 In the pair of lever groups X and Y, the planar shape and arrangement of the plurality of levers 20 are axisymmetric with respect to the center of the actuator, and the lever 20 on the most downstream side is movable through the connecting member 24. Is structured to hold from both sides. Each lever group X, γ is connected in the horizontal direction to the first lever 20a (the most upstream lever) connected to one end (displacement output part) of the drive member 1 and to the tip of the first lever 20a. The second lever 20b (the most downstream lever) is provided.
[0050] 前記第 1のレバー 20aは長手方向で L字状に構成され(図中、 201は L字状の第 1 辺部, 202は同じく第 2辺部)、両レバー群 X, Yの L字状のレバー 20aが門型形状を なすように配置されている。各レバー群 X, Yにおいて、第 1のレバー 20aは、その基 端側部分が、レバーの支点を形成する弾性変形可能な板状の支点用結合部 22aを 介して前記固定部 21に結合され、これにより固定部 21に支持されている。さらに、支 点用結合部 22aの結合位置よりも少しレバー後端寄りの位置において、レバー 20a の基端側部分と駆動部材 1の各端の変位出力部 100間は、レバーの力点を形成す る弾性変形可能な板状の力点用結合部 23aで結合されている。  [0050] The first lever 20a is configured in an L shape in the longitudinal direction (in the figure, 201 is an L-shaped first side, 202 is a second side), and both lever groups X, Y The L-shaped lever 20a is arranged in a gate shape. In each lever group X, Y, the first lever 20a is coupled at its proximal end portion to the fixed portion 21 via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. As a result, it is supported by the fixed portion 21. Further, at a position slightly closer to the rear end of the lever than the coupling position of the fulcrum coupling portion 22a, a lever force point is formed between the proximal end portion of the lever 20a and the displacement output portion 100 at each end of the drive member 1. It is coupled by a plate-like force point coupling portion 23a that can be elastically deformed.
前記支点用結合部 22aと力点用結合部 23aは比較的短い板状であり、それぞれ第 1のレバー 20aの L字状の第 1辺部 201の長手方向に対して直角に結合されている。  The fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the L-shaped first side portion 201 of the first lever 20a.
[0051] 前記第 2のレバー 20bは、水平方向において、第 1のレバー 20aの第 1辺部 201の 内側に当該第 1辺部の一部と平行に配置され、その基端側部分が、支点用結合部 2 2bを介して固定部 21に結合されるとともに、力点用結合部 23bを介して前記第 1の レバー 20aの先端側部分に結合されて!/、る。  [0051] The second lever 20b is arranged in the horizontal direction inside the first side 201 of the first lever 20a in parallel with a part of the first side, and the base end side portion thereof is It is coupled to the fixed portion 21 via the fulcrum coupling portion 22b, and is coupled to the tip side portion of the first lever 20a via the force point coupling portion 23b.
前記支点用結合部 22bと力点用結合部 23bは比較的長い板状であり、第 1のレバ 一 20aの第 2辺部 202の内側に当該第 2辺部と平行に配され、それぞれの一端部が レバー 20bの基端側部分に対してレバー 20bの長手方向と直角に結合されている。 また、力点用結合部 23bの他端部はレバー 20aの先端に横架部 221を介して結合さ れ、また、支点用結合部 22bの他端部は、駆動部材 1とは反対側の固定部 21の側部 に結合されている。  The fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and are arranged on the inner side of the second side portion 202 of the first lever 20a in parallel with the second side portion. Is coupled to the base end side portion of the lever 20b at a right angle to the longitudinal direction of the lever 20b. Further, the other end of the force point coupling portion 23b is coupled to the tip of the lever 20a via a horizontal portion 221. The other end of the fulcrum coupling portion 22b is fixed on the side opposite to the driving member 1. It is connected to the side of part 21.
前記第 2のレバー 20bの基端側部分に結合された支点用結合部 22bと力点用結合 部 23bは、レバー 20bの長さとほぼ同じ長さを有している。  The fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the proximal end portion of the second lever 20b have substantially the same length as the lever 20b.
[0052] 各レバー群 X, Yの第 2のレバー 20b (変位伝達方向の最下流側レバー)の先端側 部分と可動部材 3は長手方向で弾性変形可能な連結部材 24でそれぞれ連結され、 可動部材 3はレバー 20bと連結部材 24で両側から保持されている。 前記連結部材 24は板パネなどの弾性変形可能な部材で構成され、長手方向の中 間部には座屈防止用の高剛性部 240 (他の部分よりも剛性が高い部分)が設けられ 、主にこの高剛性部 240の両側部分が弾性変形するように構成されている。本実施 形態では、両レバー群 X, Yの最下流側レバー 20bの先端側部分どうしが接近 ·離間 する変位を行うことにより、連結部材 24が弾性変形しつつ可動部材 3を押し上げ又は 押し下げ、可動部材 3を上下に変位動作させる。 [0052] The distal end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) of each lever group X, Y and the movable member 3 are respectively connected by a connecting member 24 that can be elastically deformed in the longitudinal direction. The member 3 is held from both sides by the lever 20b and the connecting member 24. The connecting member 24 is composed of an elastically deformable member such as a plate panel, and a high-rigidity portion 240 (a portion having higher rigidity than other portions) for preventing buckling is provided in the middle portion in the longitudinal direction. Mainly, both side portions of the high-rigidity portion 240 are elastically deformed. In this embodiment, when the distal end portions of the most downstream levers 20b of both lever groups X and Y are moved toward and away from each other, the connecting member 24 is elastically deformed and the movable member 3 is pushed up or down to move. Move member 3 up and down.
[0053] 本実施形態においても、各レバー群 X, Yにおいて、各レノ一 20 (20a、 20b)の先 端部 piと各レバー 20 (20a、 20b)の基端側部分に結合された支点用結合部 22 (22 a、 22b)の長さ方向中心 p2とを結ぶ直線 Lの長さの全レバーの合計力 駆動部材 1 の変位出力方向での長さ以上であることが好ましレ、。 [0053] Also in this embodiment, in each lever group X, Y, the fulcrum coupled to the tip end pi of each reno 20 (20a, 20b) and the base end side portion of each lever 20 (20a, 20b). It is preferable that the total force of all the levers of the length of the straight line L connecting the longitudinal direction center p2 of the connecting portion 22 (22a, 22b) is not less than the length in the displacement output direction of the driving member 1. .
なお、変位拡大機構 2のレバー群 X, Yを構成するレバー 20は、変位伝達方向に 沿って 3つ以上設けてもよぐ例えば、本実施形態の例では、第 1のレバー 20aと第 2 のレバー 20bの間に、第 1のレバー 20aと同様の原理のレバーを 1つ以上設けてもよ い。  Note that three or more levers 20 constituting the lever group X, Y of the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.For example, in the example of this embodiment, the first lever 20a and the second lever 20 One or more levers having the same principle as the first lever 20a may be provided between the levers 20b.
なお、駆動部材 1、変位拡大機構 2等に関するその他の構成については、図 1〜図 5の実施形態と同様であり、さきに述べたとおりであるので、詳細な説明は省略する。  The other configurations relating to the drive member 1, the displacement magnifying mechanism 2, and the like are the same as those in the embodiment of FIGS.
[0054] 本実施形態のァクチユエータでは、駆動部材 1である圧電素子に所定の駆動電圧 が印加されると寸法歪により矢印 (A)方向に伸長し、駆動部材 1両端の変位出力部 1 00から一軸方向の変位が力点用結合部 23aを通じて両レバー群 X, Yの第 1のレバ 一 20aにそれぞれ出力される(すなわち、レバー 20aを押す)。ここで、力点用結合部 23aは支点用結合部 22aよりもレバー後端側に結合されているため、第 1のレバー 2 Oaは、支点用結合部 22aを変形させつつこれを支点として内側方向(矢印(B)方向) に回動する。この第 1のレバー 20aの回動により、第 2のレバー 20bの力点用結合部 23bが矢印(C)方向に引っ張られ、これにより第 2のレバー 20bは、支点用結合部 22 bを変形させつつこれを支点として外側方向(矢印(D)方向)に回動する。これにより 両連結部材 24が外側に引っ張られるので、この連結部材 24に保持された可動部材 3が下方に変位(下降)する。当然、駆動部材 1である圧電素子が矢印 (A)方向で縮 小すれば、上記と逆の動作によって可動部材 3が上方に変位(上昇)する。そして、 以上のような変位拡大機構 2による変位伝達の過程で、駆動部材 1から出力された変 位が拡大 (増幅)され、駆動部材 1の出力変位量の数十倍以上 (場合によっては 100 倍以上)の変位量が可動部材に伝達される。 In the actuator of the present embodiment, when a predetermined driving voltage is applied to the piezoelectric element that is the driving member 1, the actuator expands in the direction of arrow (A) due to dimensional distortion, and from the displacement output portions 100 at both ends of the driving member 1. The uniaxial displacement is output to the first lever 20a of both lever groups X and Y through the force point coupling portion 23a (that is, the lever 20a is pushed). Here, since the force point coupling portion 23a is coupled to the rear end side of the lever with respect to the fulcrum coupling portion 22a, the first lever 2 Oa deforms the fulcrum coupling portion 22a while using the fulcrum coupling portion 22a as a fulcrum. Rotate in the direction of arrow (B). By the rotation of the first lever 20a, the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), whereby the second lever 20b deforms the fulcrum coupling portion 22b. On the other hand, it rotates in the outward direction (arrow (D) direction) using this as a fulcrum. As a result, both connecting members 24 are pulled outward, so that the movable member 3 held by the connecting member 24 is displaced (lowered) downward. Naturally, when the piezoelectric element that is the driving member 1 is contracted in the direction of the arrow (A), the movable member 3 is displaced (raised) upward by the reverse operation. And The displacement output from the drive member 1 is magnified (amplified) in the process of displacement transmission by the displacement enlargement mechanism 2 as described above, and is more than tens of times the output displacement amount of the drive member 1 (100 times or more in some cases). ) Is transmitted to the movable member.
[0055] 図 18〜図 20は、本発明のァクチユエータの他の実施形態を示すもので、携帯端末 のレンズモジュールに組み込まれるレンズァクチユエータに適用した場合を示してい る。図 18は斜視図、図 19は側面図、図 20は可動部材を取り付けた状態で示す斜視 図である。図において、 3はァクチユエータが変位動作させるべき可動部材であり、本 実施形態ではレンズホルダである。 FIGS. 18 to 20 show another embodiment of the actuator of the present invention, and show a case where it is applied to a lens actuator incorporated in a lens module of a portable terminal. 18 is a perspective view, FIG. 19 is a side view, and FIG. 20 is a perspective view with a movable member attached. In the figure, reference numeral 3 denotes a movable member to be displaced by the actuator, and in this embodiment, a lens holder.
図 15〜図 17の実施形態と同様、このァクチユエータも、入力されるエネルギー量に 応じた変形量で変形し、この変形を一軸方向での変位として出力する駆動部材 1と、 この駆動部材 1から出力された変位を、変位量を拡大させつつ前記可動部材 3まで 伝達し、可動部材 3を変位動作させる変位拡大機構 2とを備えるとともに、この変位拡 大機構 2は、変位伝達方向に沿って配置される複数のレバー 20からなる 1対のレバ 一群 X, Yと、前記レバー 20を支持する固定部 21と、両レバー群 X, Yの変位伝達方 向の最下流側レバー 20と可動部材 3とを連結する長手方向で弾性変形可能な連結 部材 24とを備える。  Similarly to the embodiment of FIGS. 15 to 17, this actuator is also deformed by a deformation amount corresponding to the amount of input energy, and the driving member 1 outputs this deformation as a displacement in a uniaxial direction. The displacement expanding mechanism 2 is provided with a displacement expanding mechanism 2 that transmits the output displacement to the movable member 3 while increasing the amount of displacement, and moves the movable member 3, and the displacement expanding mechanism 2 is arranged along the displacement transmission direction. A pair of levers consisting of a plurality of levers 20 arranged, a group X, Y, a fixed portion 21 that supports the lever 20, the most downstream lever 20 in the direction of displacement transmission of both lever groups X, Y, and a movable member And a connecting member 24 that can be elastically deformed in the longitudinal direction.
[0056] したがって、図 1〜図 14に挙げた各実施形態に対する本実施形態のァクチユエ一 タの特徴も、 1対のレバー群 X, Yを有することにより可動部材 3を安定して保持し、変 位動作させること力 Sできること、レバー 20だけでなく弾性変形可能な連結部材 24も変 位拡大機能を有するため、その分全体の変位拡大量を大きくできること、などである。 ただし、先に挙げた図 15〜図 17の実施形態は、ァクチユエータを平面的に薄型化 できるような構造としたものである力 S、本実施形態は、ァクチユエータの設置面積を小 さくするために縦型としたものである。  Therefore, the feature of the actuator of the present embodiment for each of the embodiments shown in FIGS. 1 to 14 is that the movable member 3 is stably held by having a pair of lever groups X and Y, For example, not only the lever 20 but also the elastically deformable connecting member 24 has a displacement expanding function, so that the entire displacement expansion amount can be increased. However, in the embodiment shown in FIGS. 15 to 17 mentioned above, the force S is structured so that the actuator can be thinned in a plane, and this embodiment is for reducing the installation area of the actuator. It is a vertical type.
また、図 15〜図 17の実施形態では、 1対のレバー群 X, Yの複数のレバー 20の平面 的な形状及び配置を線対称としたのに対して、これを縦方向で点対称にして!/、る。  Further, in the embodiment of FIGS. 15 to 17, the planar shape and arrangement of the plurality of levers 20 of the pair of lever groups X and Y are made symmetrical with respect to the line, but this is made point-symmetric in the vertical direction. /!
[0057] 前記駆動部材 1は、図 1〜図 5の実施形態で述べたとおりであり、本実施形態の駆 動部材 1も圧電素子で構成されている。本発明の駆動部材 1 (圧電素子)は四角柱状 の形状を有し、その長手方向で寸法歪(変位)を生じ、この寸法歪を両端の変位出力 部 100から一軸方向に出力する。 The drive member 1 is as described in the embodiment of FIGS. 1 to 5, and the drive member 1 of this embodiment is also composed of a piezoelectric element. The drive member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, and causes dimensional distortion (displacement) in the longitudinal direction. Output from part 100 in one axis direction.
前記固定部 21は、駆動部材 1の下方に位置する固定部 21 fと駆動部材 1の上方に 位置する固定部 21gを有する。前記固定部 21f, 21gは、駆動部材 1との間で間隙を 形成して、駆動部材 1の上下に各々平行に位置している。  The fixing portion 21 has a fixing portion 21 f located below the driving member 1 and a fixing portion 21 g located above the driving member 1. The fixing portions 21f and 21g form a gap with the driving member 1 and are positioned in parallel above and below the driving member 1, respectively.
なお、固定部 21fは、ァクチユエータ全体を支持する器体に固定される。一方、固 定部 21gは、直接或いは連結部を介して固定部 21fに連結されることでァクチユエ一 タ全体を支持する器体に固定されてもよいし、両レバー群 X, Yの支点用結合部 22b に両持ち状に保持されるようにしてもよい。  Note that the fixing portion 21f is fixed to a container that supports the entire actuator. On the other hand, the fixed part 21g may be fixed to the body supporting the entire actuator by being connected to the fixed part 21f directly or via a connecting part, or for the fulcrum of both lever groups X and Y. You may make it hold | maintain at both ends in the coupling | bond part 22b.
[0058] 前記 1対のレバー群 X, Yは、複数のレバー 20の形状及び配置がァクチユエータ中 心に対して点対称であり、最下流側のレバー 20どうしが連結部材 24で連結され、こ の連結部材 24に可動部材 3が保持される構造となっている。 [0058] In the pair of lever groups X and Y, the shape and arrangement of the plurality of levers 20 are point-symmetric with respect to the center of the actuator, and the levers 20 on the most downstream side are connected by a connecting member 24. The movable member 3 is held by the connecting member 24.
各レバー群 X, Yは、縦方向において、駆動部材 1の各一端(変位出力部)に駆動 部材 1の長手方向に対して 90° の関係で接続され、上方に延出する第 1のレバー 2 Each lever group X, Y is connected to each end (displacement output portion) of the drive member 1 in the longitudinal direction at a 90 ° relationship with respect to the longitudinal direction of the drive member 1 and extends upward. 2
0a (最上流側レバー)と、この第 1のレバー 20aの先端にレバー 20aの長手方向に対 して 90° の関係で接続され、駆動部材 1とほぼ平行な状態で水平に延出する第 2の レバー 20b (最下流側レバー)とを備えて!/、る。 0a (the most upstream lever) and the first lever 20a are connected to the tip of the first lever 20a in a 90 ° relationship with respect to the longitudinal direction of the lever 20a, and extend horizontally in a state substantially parallel to the drive member 1. 2 lever 20b (the most downstream lever)!
[0059] 各レバー群 X, Yにおいて、第 1のレバー 20aは、その基端側部分が、レバーの支 点を形成する弾性変形可能な板状の支点用結合部 22aを介して前記固定部 21fの 端部に結合され、これにより固定部 21fに支持されている。さらに、支点用結合部 22 aの結合位置よりも少しレバー先端寄りの位置において、レバー 20aの基端側部分と 駆動部材 1の各端部の変位出力部 100間は、レバーの力点を形成する弾性変形可 能な板状の力点用結合部 23aで結合されている。 [0059] In each of the lever groups X and Y, the first lever 20a has a base end portion that is fixed to the fixed portion via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. It is coupled to the end of 21f and is thereby supported by the fixed part 21f. Further, at a position slightly closer to the tip of the lever than the coupling position of the fulcrum coupling portion 22a, a lever force point is formed between the proximal end portion of the lever 20a and the displacement output portion 100 at each end of the drive member 1. They are connected by a plate-shaped force point connecting portion 23a that is elastically deformable.
前記支点用結合部 22aと力点用結合部 23aは比較的短い板状であり、それぞれ第 The fulcrum coupling portion 22a and the force point coupling portion 23a are relatively short plate-shaped, respectively.
1のレバー 20aの長手方向に対して直角に結合されている。 The one lever 20a is coupled at right angles to the longitudinal direction.
[0060] 前記第 2のレバー 20bは、駆動部材長手方向における各々のレバー群 X, Yのレバ 一 20a配置側の端部とは反対側の端部において、固定部 21gの上方に配置されて いる。 [0060] The second lever 20b is disposed above the fixing portion 21g at the end opposite to the end on the lever 20a arrangement side of each lever group X, Y in the longitudinal direction of the drive member. Yes.
この第 2のレバー 20bは、その基端側部分が、支点用結合部 22bを介して固定部 21 gの端部(駆動部材長手方向における各々のレバー群 X, Yのレバー 20a配置側の 端部)に結合されるとともに、力点用結合部 23bを介して前記第 1のレバー 20aの先 端側部分に結合されている。 The second lever 20b has a base end portion that is fixed to the fixing portion 21 via the fulcrum coupling portion 22b. g end (the end of each lever group X, Y in the drive member longitudinal direction on the lever 20a arrangement side) and the leading end side of the first lever 20a via the force point connecting portion 23b Is joined to the part.
前記支点用結合部 22bと力点用結合部 23bは比較的長い板状であり、それぞれの 一端部がレバー 20bの基端側部分に対してレバー 20bの長手方向に沿うように結合 されている。また、力点用結合部 23bの他端部はレバー 20aの長手方向に対して直 角に結合され、また、支点用結合部 22bの他端部は固定部 21gに結合されている。  The fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled along the longitudinal direction of the lever 20b. Further, the other end of the force point connecting portion 23b is connected to the lever 20a at a right angle, and the other end of the fulcrum connecting portion 22b is connected to the fixing portion 21g.
[0061] 前記第 2のレバー 20bの基端側部分に結合された支点用結合部 22bと力点用結合 部 23bは、レバー 20bの長さの数倍程度の長さを有して!/、る。 [0061] The fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the base end side portion of the second lever 20b have a length of several times the length of the lever 20b! /, The
第 2のレバー 20bとこれに結合した支点用結合部 22b及び力点用結合部 23bは、 固定部 21gと間隙を形成して平行に配置されている。  The second lever 20b, the fulcrum coupling part 22b and the force point coupling part 23b coupled thereto are arranged in parallel with the fixed part 21g so as to form a gap.
本実施形態では、第 1のレバー 20aと第 2のレバー 20bと駆動部材 1が、第 2のレバ 一 20bの支点用結合部 22bが結合された固定部 21gを、間隙を形成しつつ 3方で囲 んだコンパクトな構造 (折り畳み構造)となっている。  In this embodiment, the first lever 20a, the second lever 20b, and the driving member 1 form a fixed portion 21g to which the fulcrum coupling portion 22b of the second lever 20b is coupled, while forming a gap. It has a compact structure (folded structure) surrounded by.
[0062] 各レバー群 X, Yの第 2のレバー 20b (変位伝達方向の最下流側レバー)の先端側 部分どうしが長手方向で弾性変形可能な連結部材 24で連結され、この連結部材 24 の中間部が可動部材 3に結合されている。 [0062] The distal end portions of the second levers 20b (the most downstream levers in the displacement transmission direction) of each lever group X and Y are connected by a connecting member 24 that can be elastically deformed in the longitudinal direction. The intermediate part is coupled to the movable member 3.
前記連結部材 24は板パネなどの弾性変形可能な部材からなり、長手方向におい て極く小さい傾斜を有する山形状に構成され、長手方向中央部の頂部に平坦部 24 1を有している。この連結部材 24の両端が、各レバー群 X, Yの第 2のレバー 20b (変 位伝達方向の最下流側レバー)の先端側部分に結合され、両者を連結している。 本実施形態では、可動部材 3であるレンズホルダは、中央にレンズ取付孔を有する 板状の本体 30の上端に取付部 32が張り出し形成されており、この取付部 32が前記 連結部材 24の長手方向中央の平坦部 241に連結(固定)されて!/、る。  The connecting member 24 is made of an elastically deformable member such as a plate panel and is formed in a mountain shape having a very small slope in the longitudinal direction, and has a flat portion 241 at the top of the central portion in the longitudinal direction. Both ends of the connecting member 24 are coupled to the tip end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) of each lever group X, Y, and connect the two. In the present embodiment, the lens holder that is the movable member 3 has a mounting portion 32 protruding from the upper end of a plate-shaped main body 30 having a lens mounting hole in the center, and this mounting portion 32 is the longitudinal direction of the connecting member 24. It is connected (fixed) to the flat part 241 at the center in the direction!
本実施形態では、両レバー群 X, Yの最下流側レバー 20aの先端側部分どうしが接 近-離間する変位を行うことにより、連結部材 24が弾性変形してその平坦部 241の高 さ変化し、ここに保持された可動部材 3を上下に変位動作させる。  In the present embodiment, when the distal end portions of the most downstream levers 20a of both lever groups X and Y are displaced toward and away from each other, the connecting member 24 is elastically deformed to change the height of the flat portion 241. Then, the movable member 3 held here is displaced up and down.
[0063] 変位拡大機構 2の各レバー群 X, Yを構成するレバー 20は、変位伝達方向に沿つ て 3つ以上設けてもよぐ例えば、本実施形態の例では、第 1のレバー 20aと第 2のレ バー 20bの間に、第 1のレバー 20aと同様の原理のレバーを 1つ以上設けてもよい。 なお、駆動部材 1、変位拡大機構 2等に関するその他の構成については、図 1〜図 5の実施形態と同様であり、さきに述べたとおりであるので、詳細な説明は省略する。 [0063] The lever 20 constituting each lever group X, Y of the displacement magnifying mechanism 2 extends along the displacement transmission direction. For example, in the example of this embodiment, one or more levers having the same principle as the first lever 20a are provided between the first lever 20a and the second lever 20b. May be. The other configurations relating to the drive member 1, the displacement magnifying mechanism 2, and the like are the same as those in the embodiment of FIGS.
[0064] 本実施形態のァクチユエータでは、駆動部材 1である圧電素子に所定の駆動電圧 が印加されると寸法歪により矢印 (A)方向に伸長し、駆動部材 1両端の変位出力部 1 00から一軸方向の変位が力点用結合部 23aを通じて両レバー群 X, Yの第 1のレバ 一 20aにそれぞれ出力される(すなわち、レバー 20aを押す)。これにより第 1のレバ 一 20aは、支点用結合部 22aを変形させつつこれを支点として外側方向(矢印(B) 方向)に回動する。この第 1のレバー 20aの回動により、第 2のレバー 20bの力点用結 合部 23bが矢印(C)方向に引っ張られ、これにより第 2のレバー 20bは、支点用結合 部 22bを変形させつつこれを支点として矢印(D)方向に回動する。これにより連結部 材 24の両端間の距離が縮まるので連結部材 24が弾性変形して平坦部 241の高さ が上昇し、ここに連結された可動部材 3が上方に変位(上昇)する。当然、駆動部材 1 である圧電素子が矢印 (A)方向で縮小すれば、上記と逆の動作によって可動部材 3 が下方に変位(下降)する。そして、以上のような変位拡大機構 2による変位伝達の 過程で、駆動部材 1から出力された変位が拡大 (増幅)され、駆動部材 1の出力変位 量の数十倍以上 (場合によっては 100倍以上)の変位量が可動部材に伝達される。  In the actuator of this embodiment, when a predetermined driving voltage is applied to the piezoelectric element that is the driving member 1, the actuator expands in the direction of the arrow (A) due to dimensional distortion, and from the displacement output portions 100 at both ends of the driving member 1. The uniaxial displacement is output to the first lever 20a of both lever groups X and Y through the force point coupling portion 23a (ie, the lever 20a is pushed). Thus, the first lever 20a rotates outward (in the direction of the arrow (B)) with the fulcrum coupling portion 22a being deformed as a fulcrum. By the rotation of the first lever 20a, the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), thereby causing the second lever 20b to deform the fulcrum coupling portion 22b. However, it rotates in the direction of the arrow (D) using this as a fulcrum. As a result, the distance between both ends of the connecting member 24 is shortened, so that the connecting member 24 is elastically deformed, the height of the flat portion 241 is raised, and the movable member 3 connected thereto is displaced (raised) upward. Naturally, when the piezoelectric element as the driving member 1 is reduced in the direction of the arrow (A), the movable member 3 is displaced (lowered) downward by the reverse operation. The displacement output from the drive member 1 is enlarged (amplified) in the process of displacement transmission by the displacement enlargement mechanism 2 as described above, and is more than tens of times the output displacement amount of the drive member 1 (100 times in some cases). The above displacement amount is transmitted to the movable member.
[0065] 図 21〜図 23は、本発明のァクチユエータの他の実施形態を示すもので、図 18〜 図 20の実施形態の変形例である。図 21は斜視図、図 22は平面図、図 23は可動部 材を取り付けた状態で示す斜視図である。図において、 3はァクチユエータが変位動 作させるべき可動部材であり、本実施形態ではレンズホルダである。  FIG. 21 to FIG. 23 show another embodiment of the actuator of the present invention, which is a modification of the embodiment of FIG. 18 to FIG. 21 is a perspective view, FIG. 22 is a plan view, and FIG. 23 is a perspective view showing a state in which a movable member is attached. In the figure, reference numeral 3 denotes a movable member to be displaced by the actuator, which is a lens holder in this embodiment.
この実施形態の駆動部材 1と変位拡大機構 2は、図 18〜図 20の実施形態のものを 横型にし、且つ連結部材 24の構成を変えたものである。  The driving member 1 and the displacement magnifying mechanism 2 of this embodiment are obtained by changing the configuration of the connecting member 24 from the embodiment of FIGS.
[0066] このァクチユエータも、入力されるエネルギー量に応じた変形量で変形し、この変形 を一軸方向での変位として出力する駆動部材 1と、この駆動部材 1から出力された変 位を、変位量を拡大させつつ可動部材 3まで伝達し、可動部材 3を変位動作させる 変位拡大機構 2とを備えるとともに、この変位拡大機構 2は、変位伝達方向に沿って 配置される複数のレバー 20からなる 1対のレバー群 X, Yと、前記レバー 20を支持す る固定部 21と、両レバー群 X, Yの変位伝達方向の最下流側レバー 20と可動部材 3 とを連結する長手方向で弾性変形可能な連結部材 24とを備える。 [0066] This actuator is also deformed with a deformation amount corresponding to the amount of energy input, and outputs the deformation as a displacement in the uniaxial direction, and the displacement output from the drive member 1 is displaced. The displacement enlarging mechanism 2 is transmitted to the movable member 3 while enlarging the amount to displace the movable member 3, and the displacement enlarging mechanism 2 is arranged along the displacement transmission direction. A pair of lever groups X and Y comprising a plurality of levers 20 arranged, a fixed portion 21 that supports the lever 20, the most downstream lever 20 in the displacement transmission direction of both lever groups X and Y, and a movable member 3 and a connecting member 24 that is elastically deformable in the longitudinal direction.
[0067] 前記駆動部材 1は、図 1〜図 5の実施形態で述べたとおりであり、本実施形態の駆 動部材 1も圧電素子で構成されている。本発明の駆動部材 1 (圧電素子)は四角柱状 の形状を有し、その長手方向で寸法歪(変位)を生じ、この寸法歪を両端の変位出力 部 100から一軸方向に出力する。 The drive member 1 is as described in the embodiments of FIGS. 1 to 5, and the drive member 1 of the present embodiment is also composed of a piezoelectric element. The drive member 1 (piezoelectric element) of the present invention has a quadrangular prism shape, and causes dimensional distortion (displacement) in the longitudinal direction, and outputs this dimensional distortion from the displacement output portions 100 at both ends in a uniaxial direction.
前記固定部 21は、駆動部材 1の幅方向両側に位置する固定部 21h, 21iと、可動 部材の設置スペースを挟んでレバー 20と対向して位置する固定部 21jを有する。前 記固定部 21h, 21iは、駆動部材 1との間で間隙を形成して、駆動部材 1の両側に各 々平行に位置している。これら固定部 21h, 21iのうち少なくとも固定部 21hはァクチ ユエータ全体を支持する器体 7に固定される。 The fixed portion 21 has fixed portions 21h and 21i located on both sides in the width direction of the drive member 1, and a fixed portion 21j located opposite to the lever 20 with the installation space for the movable member interposed therebetween. The fixing portions 21h and 21i form a gap with the driving member 1 and are positioned in parallel on both sides of the driving member 1, respectively. Of these fixed portions 21h and 21i, at least the fixed portion 21h is fixed to the body 7 that supports the entire actuator.
[0068] 前記 1対のレバー群 X, Yは、複数のレバー 20の形状及び配置がァクチユエータ中 心に対して点対称であり、最下流側のレバー 20に連結部材 24が結合され、この連 結部材 24に可動部材 3が保持される構造となっている。  [0068] In the pair of lever groups X and Y, the shape and arrangement of the plurality of levers 20 are point-symmetric with respect to the center of the actuator, and the connecting member 24 is coupled to the lever 20 on the most downstream side. The movable member 3 is held by the binding member 24.
各レバー群 X, Yは、水平方向において、駆動部材 1の各一端(変位出力部)に駆 動部材 1の長手方向に対して 90° の関係で接続される第 1のレバー 20a (最上流側 レバー)と、この第 1のレバー 20aの先端にレバー 20aの長手方向に対して 90° の関 係で接続される第 2のレバー 20b (最下流側レバー)とを備えて!/、る。  In the horizontal direction, each lever group X, Y is connected to each end (displacement output portion) of the drive member 1 at a 90 ° relationship with respect to the longitudinal direction of the drive member 1 (first lever 20a (most upstream). Side lever) and a second lever 20b (most downstream lever) connected to the tip of the first lever 20a at a relationship of 90 ° with respect to the longitudinal direction of the lever 20a. .
[0069] 各レバー群 X, Yにおいて、第 1のレバー 20aは、その基端側部分が、レバーの支 点を形成する弾性変形可能な板状の支点用結合部 22aを介して前記固定部 21hの 端部に結合され、これにより固定部 21hに支持されている。さらに、支点用結合部 22 aの結合位置よりも少しレバー先端寄りの位置において、レバー 20aの基端側部分と 駆動部材 1の各端部の変位出力部 100間は、レバーの力点を形成する弾性変形可 能な板状の力点  [0069] In each of the lever groups X and Y, the first lever 20a has a base end portion that is fixed to the fixed portion via an elastically deformable plate-shaped fulcrum coupling portion 22a that forms a fulcrum of the lever. It is connected to the end of 21h and is supported by the fixed part 21h. Further, at a position slightly closer to the tip of the lever than the coupling position of the fulcrum coupling portion 22a, a lever force point is formed between the proximal end portion of the lever 20a and the displacement output portion 100 at each end of the drive member 1. Elastically deformable plate-shaped force point
用結合部 23aで結合されて!/、る。  Combined at the connecting part 23a!
前記支点用結合部 22aと力点用結合部 23aは比較的短い板状であり、それぞれ第 1のレバー 20aの長手方向に対して直角に結合されている。 [0070] 前記第 2のレバー 20bは、駆動部材長手方向における各々のレバー群 X, Yのレバ 一 20a配置側の端部とは反対側の端部において、固定部 21iの外側に配置されてい この第 2のレバー 20bは、その基端側部分が、支点用結合部 22bを介して固定部 21i の端部(駆動部材長手方向における各々のレバー群 X, Yのレバー 20a配置側の端 部)に結合されるとともに、力点用結合部 23bを介して前記第 1のレバー 20aの先端 側部分に結合されている。 The fulcrum coupling portion 22a and the force point coupling portion 23a have a relatively short plate shape, and are coupled at right angles to the longitudinal direction of the first lever 20a. [0070] The second lever 20b is arranged outside the fixed portion 21i at the end opposite to the end on the lever 20a arrangement side of each lever group X, Y in the longitudinal direction of the drive member. The second lever 20b has a base end portion at the end of the fixing portion 21i via the fulcrum coupling portion 22b (the end on the lever 20a arrangement side of each lever group X, Y in the drive member longitudinal direction). ) And a tip end portion of the first lever 20a through a force point connecting portion 23b.
前記支点用結合部 22bと力点用結合部 23bは比較的長い板状であり、それぞれの 一端部がレバー 20bの基端側部分に対してレバー 20bの長手方向にほぼ沿うように 結合されている。  The fulcrum coupling portion 22b and the force point coupling portion 23b have a relatively long plate shape, and one end portions of the fulcrum coupling portion 22b and the proximal end side portion of the lever 20b are coupled so as to substantially follow the longitudinal direction of the lever 20b. .
前記第 2のレバー 20bの基端側部分に結合された支点用結合部 22bと力点用結合 部 23bは、レバー 20bの長さの 2倍程度の長さを有して!/、る。  The fulcrum coupling portion 22b and the force point coupling portion 23b coupled to the proximal end portion of the second lever 20b have a length approximately twice as long as the lever 20b.
[0071] レバー群 X, Yの第 2のレバー 20b (変位伝達方向の最下流側レバー)の先端側部 分と固定部 21jとの間には、長手方向で弾性変形可能な 1対の連結部材 24が架設さ れている。 [0071] A pair of couplings that can be elastically deformed in the longitudinal direction between the distal end portion of the second lever 20b (the most downstream lever in the displacement transmission direction) of the lever group X and Y and the fixing portion 21j. Member 24 is installed.
この連結部材 24は板バネなどの弾性変形可能な部材からなり、長手方向において 小さい傾斜を有する山形状に構成され、長手方向中央部の頂部に支持部 242を有 している。  The connecting member 24 is made of an elastically deformable member such as a leaf spring, and is formed in a mountain shape having a small inclination in the longitudinal direction, and has a support portion 242 at the top of the central portion in the longitudinal direction.
この連結部材 24は山の頂部が上向きになるように、レバー 20bの先端側部分と固定 部 21j間に架け渡されている。なお、連結部材 24の長手方向には間隔をおいて座屈 防止用の剛性部材 243が取り付けられ、連結部材 24は主にこの剛性部材 243以外 の部分で弾性変形する。  The connecting member 24 is bridged between the tip side portion of the lever 20b and the fixed portion 21j so that the top of the mountain faces upward. A rigid member 243 for preventing buckling is attached in the longitudinal direction of the connecting member 24 at intervals, and the connecting member 24 is elastically deformed mainly at a portion other than the rigid member 243.
本実施形態では、可動部材 3であるレンズホルダは、リング状の本体 30の両側に取 付部 33が張り出し形成されており、この取付部 33が前記連結部材 24の長手方向中 央の支持部 242に連結又は係合することにより、可動部材 3が連結部材 24により支 持されている。  In the present embodiment, the lens holder that is the movable member 3 has the mounting portions 33 protruding from both sides of the ring-shaped main body 30, and the mounting portion 33 is a support portion in the center in the longitudinal direction of the connecting member 24. The movable member 3 is supported by the connecting member 24 by being connected to or engaged with 242.
[0072] 本実施形態では、両レバー群 X, Yの第 2のレバー 20aの先端側部分が固定部 21j に対して接近 ·離間する変位を行うことにより、連結部材 24が弾性変形してその支持 部 242の高さ変化し、ここに保持された可動部材 3を上下に変位動作させる。 [0072] In this embodiment, when the distal end portion of the second lever 20a of both lever groups X and Y is displaced toward and away from the fixed portion 21j, the connecting member 24 is elastically deformed and support The height of the portion 242 changes, and the movable member 3 held here is displaced up and down.
変位拡大機構 2の各レバー群 X, Yを構成するレバー 20は、変位伝達方向に沿つ て 3つ以上設けてもよぐ例えば、本実施形態の例では、第 1のレバー 20aと第 2のレ バー 20bの間に、第 1のレバー 20aと同様の原理のレバーを 1つ以上設けてもよい。 なお、駆動部材 1、変位拡大機構 2等に関するその他の構成については、図 1〜図 5の実施形態と同様であり、さきに述べたとおりであるので、詳細な説明は省略する。  Three or more levers 20 constituting each lever group X, Y of the displacement enlarging mechanism 2 may be provided along the displacement transmission direction.For example, in the example of this embodiment, the first lever 20a and the second lever 20 One or more levers having the same principle as the first lever 20a may be provided between the levers 20b. The other configurations relating to the drive member 1, the displacement magnifying mechanism 2, and the like are the same as those in the embodiment of FIGS.
[0073] 本実施形態のァクチユエータでは、駆動部材 1である圧電素子に所定の駆動電圧 が印加されると寸法歪により矢印 (A)方向に伸長し、駆動部材 1両端の変位出力部 1 00から一軸方向の変位が力点用結合部 23aを通じて両レバー群 X, Yの第 1のレバ 一 20aにそれぞれ出力される(すなわち、レバー 20aを押す)。これにより第 1のレバ 一 20aは、支点用結合部 22aを変形させつつこれを支点として外側方向(矢印(B) 方向)に回動する。この第 1のレバー 20aの回動により、第 2のレバー 20bの力点用結 合部 23bが矢印(C)方向に引っ張られ、これにより第 2のレバー 20bは、支点用結合 部 22bを変形させつつこれを支点として矢印(D)方向に回動する。これにより第 2の レバー 20bの先端側部分と固定部 21j間の距離が縮まるので連結部材 24が弾性変 形して支持部 242の高さが上昇し、ここに保持された可動部材 3が上方に変位(上昇 )する。 In the actuator of the present embodiment, when a predetermined drive voltage is applied to the piezoelectric element that is the drive member 1, the actuator expands in the direction of arrow (A) due to dimensional distortion, and from the displacement output portions 100 at both ends of the drive member 1. The uniaxial displacement is output to the first lever 20a of both lever groups X and Y through the force point coupling portion 23a (ie, the lever 20a is pushed). Thus, the first lever 20a rotates outward (in the direction of the arrow (B)) with the fulcrum coupling portion 22a being deformed as a fulcrum. By the rotation of the first lever 20a, the force point coupling portion 23b of the second lever 20b is pulled in the direction of the arrow (C), thereby causing the second lever 20b to deform the fulcrum coupling portion 22b. However, it rotates in the direction of the arrow (D) using this as a fulcrum. As a result, the distance between the distal end portion of the second lever 20b and the fixed portion 21j is shortened, so that the connecting member 24 is elastically deformed and the height of the support portion 242 is increased, and the movable member 3 held here is moved upward. Displaces (rises).
当然、駆動部材 1である圧電素子が矢印 (A)方向で縮小すれば、上記と逆の動作に よって可動部材 3が下方に変位(下降)する。そして、以上のような変位拡大機構 2に よる変位伝達の過程で、駆動部材 1から出力された変位が拡大(増幅)され、駆動部 材 1の出力変位量の数十倍以上 (場合によっては 100倍以上)の変位量が可動部材 に伝達される。  Naturally, when the piezoelectric element as the driving member 1 is reduced in the direction of the arrow (A), the movable member 3 is displaced (lowered) downward by the reverse operation. Then, in the process of displacement transmission by the displacement enlarging mechanism 2 as described above, the displacement output from the drive member 1 is expanded (amplified), and is more than tens of times the output displacement amount of the drive member 1 (depending on the case) A displacement of 100 times or more is transmitted to the movable member.
[0074] 図 24〜図 26は、本発明のァクチユエータの他の実施形態を示すもので、図 2;!〜 図 23の実施形態の変形例である。図 24は斜視図、図 25は平面図、図 26は可動部 材を取り付けた状態で示す斜視図である。  FIGS. 24 to 26 show other embodiments of the actuator of the present invention, which are modifications of the embodiment of FIG. 2;! To FIG. 24 is a perspective view, FIG. 25 is a plan view, and FIG. 26 is a perspective view showing a state in which a movable member is attached.
この実施形態は、図 21〜図 23の実施形態とは異なる形式の連結部材 24 (長手方 向で弾性変形可能な連結部材 24)を用いたものである。この連結部材 24は、本体 2 45が板パネなどの弾性変形可能な部材からなり、長手方向において小さい傾斜を 有する山形状に構成されるとともに、長手方向中央部の頂部に弾性変形可能な支持 板部 246が突設された構造を有している。なお、連結部材 24の本体 245の一部には 座屈防止用の剛性部材 243が取り付けられ、本体 245は主にこの剛性部材 243以 外の部分で弾性変形する。 This embodiment uses a connecting member 24 (connecting member 24 that can be elastically deformed in the longitudinal direction) of a type different from the embodiment shown in FIGS. This connecting member 24 is composed of a body 245 made of an elastically deformable member such as a plate panel, and has a small inclination in the longitudinal direction. It has a structure in which the support plate portion 246 that is elastically deformable is projected at the top of the central portion in the longitudinal direction. Note that a rigid member 243 for preventing buckling is attached to a part of the main body 245 of the connecting member 24, and the main body 245 is elastically deformed mainly at a portion other than the rigid member 243.
[0075] 1対の連結部材 24は山の頂部が互いに対向するようにして、両レバー群 X, Yの第 2のレバー 20bの先端側部分と固定部 21jとの間に架設されている。この状態で、両 連結部材 24の支持板部 246は、斜め上方を向くようにして対向している。そして、可 動部材 3の本体 30両側の取付部 33が連結部材 24の長手方向中央の支持板部 246 に連結又は係合することにより、可動部材 3が連結部材 24により支持されている。 本実施形態では、両レバー群 X, Yの第 2のレバー 20bの先端側部分が固定部 21j に対して接近 ·離間する変位を行うことにより、両連結部材 24の頂部どうしが接近 ·離 間し、これに伴って支持板部 246が弾性変形しつつ可動部材 3を押し上げ又は押し 下げ、可動部材 3を上下に変位動作させる。 [0075] The pair of connecting members 24 is constructed between the distal end portion of the second lever 20b of both the lever groups X and Y and the fixing portion 21j so that the tops of the peaks face each other. In this state, the support plate portions 246 of the two connecting members 24 face each other so as to face obliquely upward. The movable member 3 is supported by the connecting member 24 by connecting or engaging the mounting portions 33 on both sides of the main body 30 of the movable member 3 to the support plate portion 246 at the center in the longitudinal direction of the connecting member 24. In the present embodiment, the top end portions of the second levers 20b of both lever groups X and Y are displaced toward and away from the fixed portion 21j, so that the tops of both connecting members 24 approach and separate from each other. Accordingly, while the support plate 246 is elastically deformed, the movable member 3 is pushed up or down to move the movable member 3 up and down.
図面の簡単な説明  Brief Description of Drawings
[0076] [図 1]本発明のァクチユエータの一実施形態を示す全体斜視図  FIG. 1 is an overall perspective view showing an embodiment of an actuator of the present invention.
[図 2]図 1の実施形態の分解斜視図  FIG. 2 is an exploded perspective view of the embodiment of FIG.
[図 3]図 1の実施形態において可動部材を取り除いた状態で示す斜視図  FIG. 3 is a perspective view showing the embodiment of FIG. 1 with a movable member removed.
[図 4]図 1の実施形態の平面図  FIG. 4 is a plan view of the embodiment of FIG.
[図 5]図 1の実施形態の機能 (作動形態)を示す説明図  FIG. 5 is an explanatory diagram showing functions (operation modes) of the embodiment of FIG.
[図 6]本発明のァクチユエータの他の実施形態を示す斜視図  FIG. 6 is a perspective view showing another embodiment of the actuator of the present invention.
[図 7]図 6の実施形態の側面図  [FIG. 7] Side view of the embodiment of FIG.
[図 8]図 6の実施形態における可動部材を取り付けた状態の斜視図  FIG. 8 is a perspective view showing a state where a movable member is attached in the embodiment of FIG.
[図 9]本発明のァクチユエータの他の実施形態を示す斜視図  FIG. 9 is a perspective view showing another embodiment of the actuator of the present invention.
[図 10]図 9の実施形態の側面図  FIG. 10 is a side view of the embodiment of FIG.
[図 11]図 9の実施形態における可動部材を取り付けた状態の斜視図  FIG. 11 is a perspective view showing a state in which the movable member in the embodiment of FIG. 9 is attached.
[図 12]本発明のァクチユエータの他の実施形態を示す斜視図  FIG. 12 is a perspective view showing another embodiment of the actuator of the present invention.
[図 13]図 12の実施形態の平面図  FIG. 13 is a plan view of the embodiment of FIG.
[図 14]図 12の実施形態の側面図 [図 15]本発明のァクチユエータの他の実施形態を示す平面図 FIG. 14 is a side view of the embodiment of FIG. FIG. 15 is a plan view showing another embodiment of the actuator of the present invention.
[図 16]図 15の実施形態における可動部材を取り付けた状態の平面図 FIG. 16 is a plan view showing a state in which the movable member is attached in the embodiment of FIG.
[図 17]図 15の実施形態における可動部材を取り付けた状態の模式側面図FIG. 17 is a schematic side view showing a state in which a movable member is attached in the embodiment of FIG.
[図 18]本発明のァクチユエータの他の実施形態を示す斜視図 FIG. 18 is a perspective view showing another embodiment of the actuator of the present invention.
[図 19]図 18の実施形態の側面図  FIG. 19 is a side view of the embodiment of FIG.
[図 20]図 18の実施形態における可動部材を取り付けた状態の斜視図 [図 21]本発明のァクチユエータの他の実施形態を示す斜視図  20 is a perspective view showing a state in which a movable member is attached in the embodiment shown in FIG. 18. FIG. 21 is a perspective view showing another embodiment of the actuator according to the present invention.
[図 22]図 21の実施形態の平面図 FIG. 22 is a plan view of the embodiment of FIG.
[図 23]図 21の実施形態における可動部材を取り付けた状態の斜視図 [図 24]本発明のァクチユエータの他の実施形態を示す斜視図  FIG. 23 is a perspective view showing a state in which the movable member is attached in the embodiment of FIG. 21. FIG. 24 is a perspective view showing another embodiment of the actuator of the present invention.
[図 25]図 24の実施形態の平面図 FIG. 25 is a plan view of the embodiment of FIG.
[図 26]図 24の実施形態における可動部材を取り付けた状態の斜視図 符号の説明  FIG. 26 is a perspective view of the embodiment shown in FIG. 24 with the movable member attached thereto.
1 駆動部材  1 Drive member
2 変位拡大機構  2 Displacement magnification mechanism
3 可動部材  3 Moving member
4 連結部材  4 Connecting member
5, 6 押え用スプリング  5, 6 Presser spring
7 器体  7 body
20a, 20b レノ一  20a, 20b Leno
21 , 21a~21j 固定部  21, 21a ~ 21j Fixed part
22a, 22b 支点用結合部  22a, 22b Joint for fulcrum
23a, 23b 力点用結合部  23a, 23b Joint for force point
24 連結部材  24 Connecting members
25 部分  25 pieces
30 本体  30 body
31 , 32, 33 取付部  31, 32, 33 Mounting part
100 変位出力部 200 段部 100 Displacement output section 200 steps
201 第 1辺部 201 1st side
202 第 2辺部202 2nd side
220, 221 横架部220, 221 Horizontal section
240 高剛性部240 High rigidity part
241 平坦部 241 Flat part
242 支持部  242 Support part
243 剛性部材 243 rigid member
245 本体 245 body
246 支持板部 246 Support plate
X, Y レノ 一群 X, Y reno group

Claims

請求の範囲 The scope of the claims
[1] 入力されるエネルギー量に応じた変形量で変形し、該変形を一軸方向での変位と して出力する駆動部材(1)と、該駆動部材(1)から出力された変位を、変位量を拡大 させつつ可動部材 (3)まで伝達し、該可動部材 (3)を変位動作させる変位拡大機構( 2)とを備えたァクチユエータであって、  [1] A drive member (1) that is deformed by a deformation amount corresponding to the input energy amount and outputs the deformation as a displacement in a uniaxial direction, and a displacement output from the drive member (1), An actuator comprising a displacement magnifying mechanism (2) that transmits the movable member (3) to the movable member (3) while increasing the amount of displacement, and moves the movable member (3).
前記変位拡大機構(2)は、変位伝達方向に沿って配置される複数のレバー(20)と 、該レバー(20)を支持する固定部(21)とを備え、  The displacement enlarging mechanism (2) includes a plurality of levers (20) arranged along the displacement transmission direction, and a fixing portion (21) that supports the lever (20),
各レバー(20)は、レバーの支点を形成する弾性変形可能な支点用結合部(22)を 介して固定部(21)に結合されることで固定部(21)に支持されるとともに、隣接するレ バー(20)間及び変位伝達方向の最上流側レバー(20)と駆動部材(1)の変位出力部 (100)間は、レバーの力点を形成する弾性変形可能な力点用結合部(23)で結合さ れ、  Each lever (20) is supported by the fixed portion (21) by being coupled to the fixed portion (21) via an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other. Between the levers (20) to be moved and between the most upstream lever (20) in the displacement transmission direction and the displacement output part (100) of the drive member (1) are elastically deformable force point coupling portions (the point of force of the lever) 23)
変位伝達方向の最下流側レバー(20)の先端側部分を前記可動部材(3)に連結又 は係合させ、該最下流側レバー(20)の変位により可動部材(3)を変位動作させるよう にしたことを特徴とするァクチユエータ。  The distal end portion of the most downstream lever (20) in the displacement transmission direction is connected to or engaged with the movable member (3), and the movable member (3) is displaced by the displacement of the most downstream lever (20). An actuator characterized by the above.
[2] 変位伝達方向の最上流側レバー(20)は、その基端側部分が、支点用結合部(22) を介して固定部(21)に結合されるとともに、力点用結合部(23)を介して駆動部材(1) の変位出力部(100)に結合され、前記最上流側レバー(20)以外のレバー(20)は、そ の基端側部分が、支点用結合部(22)を介して固定部(21)に結合されるとともに、力 点用結合部(23)を介して隣接する他のレバー(20)の先端側部分に結合されることを 特徴とする請求項 1に記載のァクチユエータ。 [2] The most upstream lever (20) in the displacement transmission direction has its proximal end portion coupled to the fixed portion (21) via the fulcrum coupling portion (22) and the force point coupling portion (23 ) Is coupled to the displacement output part (100) of the drive member (1), and the lever (20) other than the most upstream lever (20) has a base end part at the fulcrum coupling part (22 ) And a fixed portion (21), and is connected to a distal end portion of another adjacent lever (20) via a force coupling portion (23). The actuator described in 1.
[3] 複数のレバー(20)のうちの少なくとも 1つのレバー(20)の基端側部分に結合される 支点用結合部(22)と力点用結合部(23)は、当該レバー(20)の長さの 1/4以上の長 さを有することを特徴とする請求項 2に記載のァクチユエータ。 [3] The fulcrum coupling portion (22) and the force point coupling portion (23) coupled to the proximal end portion of at least one lever (20) of the plurality of levers (20) are connected to the lever (20) The actuator according to claim 2, wherein the actuator has a length equal to or greater than 1/4 of the length.
[4] 変位拡大機構(2)が、金属又は/及び樹脂からなる成形体又は/及び積層体で 構成されることを特徴とする請求項 1〜3のいずれかに記載のァクチユエータ。 [4] The displacement enlarging mechanism (2) is a molded body or / and a laminated body made of metal or / and resin. The activator according to any one of claims 1 to 3, wherein the activator is configured.
[5] 複数のレバー(20)のうち変位伝達方向の最下流側レバー(20)に結合された支点 用結合部(22)と力点用結合部(23)の並列方向が、当該最下流側レバー(20)よりも 上流側のレバー(20)の変位面に対して直交していることを特徴とする請求項 1〜4の V、ずれかに記載のァクチユエータ。 [5] Of the plurality of levers (20), the parallel direction of the fulcrum coupling portion (22) and the force point coupling portion (23) coupled to the most downstream lever (20) in the displacement transmission direction is the most downstream side. 5. The actuator according to claim 1, wherein the actuator is perpendicular to the displacement surface of the lever (20) on the upstream side of the lever (20).
[6] 駆動部材(1)と変位拡大機構 (2)が、平面的に可動部材 (3)を外囲する状態に配 置されることを特徴とする請求項 5に記載のァクチユエータ。 6. The actuator according to claim 5, wherein the drive member (1) and the displacement enlarging mechanism (2) are arranged in a state of surrounding the movable member (3) in a planar manner.
[7] 変位拡大機構 (2)は第 1及び第 2のレバー(20)を備え、可動部材 (3)は、駆動部材 [7] The displacement enlarging mechanism (2) includes first and second levers (20), and the movable member (3) is a drive member.
(1)と第 1のレバー(20)と第 2のレバー(20)とにより、少なくとも 3方を囲まれていること を特徴とする請求項 6に記載のァクチユエータ。  The actuator according to claim 6, characterized in that at least three sides are surrounded by (1), the first lever (20), and the second lever (20).
[8] 複数の各レバー(20)に結合された支点用結合部(22)と力点用結合部(23)の並列 方向が、当該レバー(20)よりも上流側のレバー(20)の変位面と平行であることを特徴 とする請求項 1〜4のいずれかに記載のァクチユエータ。 [8] The parallel direction of the fulcrum coupling portion (22) and the force point coupling portion (23) coupled to each of the plurality of levers (20) indicates the displacement of the lever (20) upstream of the lever (20). The actuator according to any one of claims 1 to 4, wherein the actuator is parallel to a surface.
[9] 変位拡大機構(2)は第 1及び第 2のレバー(20)を備え、該第 1及び第 2のレバー(2 0)と駆動部材(1) 、前記第 2のレバー(20)の支点用結合部(22)が結合された固定 部(21)を 3方で囲んでいることを特徴とする請求項 8に記載のァクチユエータ。 [9] The displacement enlarging mechanism (2) includes first and second levers (20), the first and second levers (20), the drive member (1), and the second lever (20). 9. The actuator according to claim 8, wherein the fixed portion (21) to which the fulcrum coupling portion (22) is coupled is surrounded in three directions.
[10] レバー(20)の先端部 piと該レバー(20)に結合された支点用結合部(22)の長さ方 向中心 p2とを結ぶ直線 Lの長さの全レバーの合計力 S、駆動部材(1)の変位出力方向 での長さ以上であることを特徴とする請求項 1〜9いずれかに記載のァクチユエータ。 [10] The total force S of all the levers with the length of the straight line L connecting the tip pi of the lever (20) and the center p2 in the length direction of the fulcrum joint (22) connected to the lever (20) S The actuator according to any one of claims 1 to 9, wherein the actuator is not less than the length in the displacement output direction of the drive member (1).
[11] 入力されるエネルギー量に応じた変形量で変形し、該変形を一軸方向での変位と して両端から出力する駆動部材(1)と、該駆動部材(1)から出力された変位を、変位 量を拡大させつつ可動部材(3)まで伝達し、該可動部材(3)を変位動作させる変位 拡大機構 (2)とを備えたァクチユエータであって、 [11] A drive member (1) that is deformed by a deformation amount corresponding to the input energy amount, and outputs the deformation as a displacement in one axial direction from both ends, and a displacement output from the drive member (1) The displacement An actuator comprising a displacement magnifying mechanism (2) that transmits the movable member (3) to the movable member (3) while enlarging the amount, and moves the movable member (3).
前記変位拡大機構(2)は、変位伝達方向に沿って配置される複数のレバー(20)か らなる 1対のレバー群 (X),(Y)と、前記レバー(20)を支持する固定部(21)と、両レバ 一群 (X), (Υ)の変位伝達方向の最下流側レバー(20)と可動部材(3)とを連結する長 手方向で弾性変形可能な連結部材 (24)とを備え、  The displacement enlarging mechanism (2) includes a pair of lever groups (X) and (Y) including a plurality of levers (20) arranged along a displacement transmission direction, and a fixed supporting the lever (20). Connecting member (24) that is elastically deformable in the longitudinal direction, connecting the most downstream lever (20) and the movable member (3) in the displacement transmission direction of the part (21) and the two lever groups (X), (Υ). )
各レバー(20)は、レバーの支点を形成する弾性変形可能な支点用結合部(22)を 介して固定部(21)に結合されることで固定部(21)に支持されるとともに、隣接するレ バー(20)間及び変位伝達方向の最上流側レバー(20)と駆動部材(1)の変位出力部 (100)間は、レバーの力点を形成する弾性変形可能な力点用結合部(23)で結合さ れ、  Each lever (20) is supported by the fixed portion (21) by being coupled to the fixed portion (21) via an elastically deformable fulcrum coupling portion (22) that forms the fulcrum of the lever, and adjacent to each other. Between the levers (20) to be moved and between the most upstream lever (20) in the displacement transmission direction and the displacement output part (100) of the drive member (1) are elastically deformable force point coupling portions (the point of force of the lever) 23)
1対のレバー群 (X), (Υ)の変位伝達方向の最下流側レバー(20)の先端側部分と 可動部材 (3)とが連結部材(24)で連結され、両最下流側レバー(20)の変位により連 結部材(24)を介して可動部材(3)を変位動作させるようにしたことを特徴とするァクチ ユエータ。 下記 ω〜( )のいずれかの形態で、 1対のレバー群 (X), (γ)の変位伝達方向の最 下流側レバー(20)の先端側部分と可動部材(3)とが連結部材(24)で連結されて!/、る ことを特徴とする請求項 11に記載のァクチユエータ。  The distal end portion of the most downstream lever (20) in the displacement transmission direction of the pair of lever groups (X) and (Υ) and the movable member (3) are connected by the connecting member (24). An actuator characterized in that the movable member (3) is displaced by the displacement of (20) via the connecting member (24). In the form of any of the following ω to (), the distal end portion of the most downstream lever (20) in the displacement transmission direction of the pair of lever groups (X), (γ) and the movable member (3) are connected members. The activator according to claim 11, wherein the activator is connected at (24)! /.
(i) 1対の連結部材(24) 、可動部材 (3)の両側部と両最下流側レバー(20)の先 端側部分とを各々連結し、両最下流側レバー(20)の先端側部分どうしが接近 ·離間 する変位を行うことにより可動部材 (3)を変位動作させる。  (i) A pair of connecting members (24), both sides of the movable member (3) and the leading end portions of the two most downstream levers (20) are respectively connected to the leading ends of the two most downstream levers (20). The movable member (3) is displaced by moving the side parts closer to and away from each other.
(ii)連結部材(24)が両最下流側レバー(20)の先端側部分を連結するとともに、連 結部材 (24)の中間部が可動部材 (3)に結合され、両最下流側レバー(20)の先端側 部分どうしが接近 ·離間する変位を行うことにより可動部材 (3)を変位動作させる。  (ii) The connecting member (24) connects the tip end portions of the two most downstream levers (20), and the intermediate portion of the connecting member (24) is coupled to the movable member (3), so that both the most downstream levers The movable member (3) is displaced by performing a displacement in which the tip side parts of (20) approach and separate.
(iii) 1対の連結部材 (24) 、固定部(21)と両最下流側レバー(20)の先端側部分 に各々架設され、両連結部材(24)の中間部が可動部材(3)の両側部に各々連結又 は係合し、両最下流側レバー(20)の先端側部分が前記固定部(21)に対して接近- 離間する変位を行うことにより可動部材 (3)を変位動作させる。 (iii) A pair of connecting members (24), which are respectively installed on the distal end portions of the fixed portion (21) and the two most downstream levers (20), and the intermediate portion of both connecting members (24) is the movable member (3) Are connected to or engaged with both sides of each of the two levers, and the most downstream levers (20) are close to the fixed part (21). The movable member (3) is displaced by moving away from it.
[13] 各レバー群 (X),(Y)において、変位伝達方向の最上流側レバー(20)は、その基端 側部分が、支点用結合部(22)を介して固定部(21)に結合されるとともに、力点用結 合部(23)を介して駆動部材(1)両端の各変位出力部(100)に各々結合され、前記最 上流側レバー(20)以外のレバー(20)は、その基端側部分が、支点用結合部(22)を 介して固定部(21)に結合されるとともに、力点用結合部(23)を介して隣接する他の レバー(20)の先端側部分に結合されることを特徴とする請求項 11又は 12に記載の ァクチユエータ。 [13] In each lever group (X), (Y), the most upstream lever (20) in the displacement transmission direction has its base end portion fixed via a fulcrum coupling (22) Are coupled to the displacement output portions (100) at both ends of the drive member (1) via the force point coupling portion (23), and the levers (20) other than the upstream lever (20). The base end side portion is coupled to the fixing portion (21) via the fulcrum coupling portion (22), and the tip of the other lever (20) adjacent via the force point coupling portion (23). 13. The actuator according to claim 11 or 12, wherein the actuator is coupled to a side portion.
[14] 各レバー群(X), (Υ)にお!/、て、複数のレバー(20)のうちの少なくとも 1つのレバー( 20)の基端側部分に結合される支点用結合部(22)と力点用結合部(23)は、当該レ バー(20)の長さの 1/4以上の長さを有することを特徴とする請求項 13に記載のァク チユエータ。 [14] For each lever group (X), (Υ)! /, A fulcrum coupling portion coupled to the proximal end portion of at least one lever (20) of the plurality of levers (20) ( 14. The actuator according to claim 13, wherein the force point coupling portion (23) has a length of 1/4 or more of the length of the lever (20).
[15] 変位拡大機構 (2)又は連結部材 (24)を除く変位拡大機構 (2)が、金属又は/及び 樹脂からなる成形体又は/及び積層体で構成されることを特徴とする請求項 11〜1 4の!/、ずれかに記載のァクチユエータ。 [15] The displacement enlarging mechanism (2) excluding the displacement enlarging mechanism (2) or the connecting member (24) is composed of a molded body or / and a laminate made of metal or / and resin. 11 ~ 14! / Activators as described in somewhere.
[16] 1対のレバー群 (X), (Υ)は、複数のレバー (20)の平面的な形状及び配置が線対称 又は点対称であることを特徴とする請求項 11〜; 15のいずれかに記載のァクチユエ一 タ。 [16] The pair of lever groups (X), (Υ) is characterized in that the planar shape and arrangement of the plurality of levers (20) are line symmetric or point symmetric. The actuator according to any one of the above.
[17] 各レバー群 (Χ),(Υ)において、レバー(20)の先端部 piと該レバー(20)に結合され た支点用結合部(22)の長さ方向中心 p2とを結ぶ直線 Lの長さの全レバーの合計が、 駆動部材(1)の変位出力方向での長さ以上であることを特徴とする請求項 11〜; 16い ずれかに記載のァクチユエータ。 [18] 駆動部材(1)が、圧電素子、磁歪素子、形状記憶合金材のうちのいずれかであるこ とを特徴とする請求項 1〜; 17のいずれかに記載のァクチユエータ。 [17] In each lever group (Χ), (Υ), a straight line connecting the tip pi of the lever (20) and the longitudinal center p2 of the fulcrum coupling (22) coupled to the lever (20) 17. The actuator according to claim 11, wherein the total length of all the levers of L is equal to or greater than the length of the drive member (1) in the displacement output direction. [18] The actuator according to any one of [1] to [17], wherein the driving member (1) is one of a piezoelectric element, a magnetostrictive element, and a shape memory alloy material.
[19] 変位伝達方向の最下流側レバー(20)の先端側部分をレンズホルダ (3)に連結又 は係合させ、該最下流側レバー(20)の変位によりレンズホルダ(3)を変位動作させる ようにしたことを特徴とする、請求項;!〜 18に記載のァクチユエータを用いたレンズァ クチユエータ。 [19] The distal end portion of the most downstream lever (20) in the displacement transmission direction is connected to or engaged with the lens holder (3), and the lens holder (3) is displaced by the displacement of the most downstream lever (20). A lens actuator using the actuator according to any one of claims 18 to 18, wherein the lens actuator is operated.
PCT/JP2007/070148 2006-10-16 2007-10-16 Actuator WO2008047782A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020097008712A KR101085415B1 (en) 2006-10-16 2007-10-16 Actuator and lens actuator using the same
CN2007800384885A CN101563540B (en) 2006-10-16 2007-10-16 Actuator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006281887A JP5090706B2 (en) 2006-10-16 2006-10-16 Actuator
JP2006281888A JP5090707B2 (en) 2006-10-16 2006-10-16 Lens actuator
JP2006-281887 2006-10-16
JP2006-281888 2006-10-16

Publications (1)

Publication Number Publication Date
WO2008047782A1 true WO2008047782A1 (en) 2008-04-24

Family

ID=39314010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070148 WO2008047782A1 (en) 2006-10-16 2007-10-16 Actuator

Country Status (2)

Country Link
KR (1) KR101085415B1 (en)
WO (1) WO2008047782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813063B2 (en) 2008-08-01 2010-10-12 Sharp Kabushiki Kaisha Driving unit and optical pick-up device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292529B2 (en) 2008-04-15 2013-09-18 並木精密宝石株式会社 Lens actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168367A (en) * 1989-11-28 1991-07-22 Toki Corp Kk Linear motion type actuator
JP2003247485A (en) * 2002-02-20 2003-09-05 Toshiba Corp Variable-structure actuator
JP2006038891A (en) * 2004-07-22 2006-02-09 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2007058076A (en) * 2005-08-26 2007-03-08 Konica Minolta Opto Inc Actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168367A (en) * 1989-11-28 1991-07-22 Toki Corp Kk Linear motion type actuator
JP2003247485A (en) * 2002-02-20 2003-09-05 Toshiba Corp Variable-structure actuator
JP2006038891A (en) * 2004-07-22 2006-02-09 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2007058076A (en) * 2005-08-26 2007-03-08 Konica Minolta Opto Inc Actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813063B2 (en) 2008-08-01 2010-10-12 Sharp Kabushiki Kaisha Driving unit and optical pick-up device including the same

Also Published As

Publication number Publication date
KR101085415B1 (en) 2011-11-21
KR20090086526A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
CN100446291C (en) Driving device
EP1821399A1 (en) Piezoelectric actuator, and image pickup element moving device and image pickup device using such piezoelectric actuator
JP5090706B2 (en) Actuator
JP5090707B2 (en) Lens actuator
US8792051B2 (en) Driving device, lens barrel, and optical apparatus including the lens barrel
JP2014018027A (en) Vibration type actuator, imaging apparatus, and stage
JP2008289350A (en) Driving method for driving device
JPWO2002015378A1 (en) Folding type piezoelectric stator, folding type piezoelectric actuator and their applications
KR101601871B1 (en) Displacement member, driving member, actuator, and driving apparatus
EP2270893B1 (en) Ultrasonic motor
WO2008047782A1 (en) Actuator
JP2007181261A (en) Drive unit and camera module
JP2009050142A (en) Drive unit
KR101159171B1 (en) Lens actuator
JP2008289349A (en) Drive device
JP2008211864A (en) Driver, image pickup unit, and image pickup apparatus
KR20110039255A (en) Piezoelectric actuator, lens barrel and optical device
JP2008278727A (en) Drive unit
JP2017195713A (en) Vibration wave motor and optical equipment equipped with the same
JP3809624B2 (en) Lever displacement expansion mechanism
JP5521553B2 (en) Actuator mechanism
KR100683934B1 (en) Micro piezoelectric linear motor
JP2010233404A (en) Bending displacement element, driving device having the bending displacement element, and use of the same
KR100728374B1 (en) Micro piezoelectric linear motor
KR100683932B1 (en) Micro piezoelectric linear motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038488.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020097008712

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3173/DELNP/2009

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07829882

Country of ref document: EP

Kind code of ref document: A1