JP3809624B2 - Lever displacement expansion mechanism - Google Patents

Lever displacement expansion mechanism Download PDF

Info

Publication number
JP3809624B2
JP3809624B2 JP00664097A JP664097A JP3809624B2 JP 3809624 B2 JP3809624 B2 JP 3809624B2 JP 00664097 A JP00664097 A JP 00664097A JP 664097 A JP664097 A JP 664097A JP 3809624 B2 JP3809624 B2 JP 3809624B2
Authority
JP
Japan
Prior art keywords
lever
displacement
actuator element
force
hinge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00664097A
Other languages
Japanese (ja)
Other versions
JPH10201256A (en
Inventor
睦夫 宗片
晋 松野
昭一 小野
高吉 鵜沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP00664097A priority Critical patent/JP3809624B2/en
Publication of JPH10201256A publication Critical patent/JPH10201256A/en
Application granted granted Critical
Publication of JP3809624B2 publication Critical patent/JP3809624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、非対称型一段レバー変位拡大機構に関するもので、自動車、航空機、精密加工、精密測定器具等の分野で利用され、例えば、磁気ヘッド等の精密位置決めするための光学ステージの位置決め装置、などに用いられる。
【0002】
【従来の技術】
従来のレバー変位拡大機構は、圧電素子の発生する変位をレバーを介して拡大し、出力変位部に伝達している。このレバー変位拡大機構では、多くは圧電素子の変位方向に出力変位部が変位する。
【0003】
【発明が解決しようとする課題】
従来の拡大機構の多くは圧電素子の変位方向と出力部での変位方向が同一方向のため、圧電素子の長さにより変位方向の外形サイズは大きくなってしまう。
【0004】
そこで、圧電素子の発生する変位をその中心軸に対して直角方向になる様に圧電素子を配置して出力変位部に伝達することが考えられる。この機構として、次の圧電変位拡大機構が用いられている(特開平4−340777号参照)。
駆動源としての2つの圧電素子は、それぞれ一方の端面が取付基板部に設けられた固定部に固着され、他方の端面が2つのレバーアームのそれぞれの端部に設けられた第1の力点ヒンジに固着されている。それぞれの圧電素子が発生する変位は、この圧電素子が固定されている第1の力点ヒンジに伝達され、レバーアームの中間部に設けられた第2のヒンジを支点とするてこの原理により拡大され、両レバーアームの先端をブリッジ状に連結する薄板状の梁に伝達され該梁の座屈運動により変位が取り出される。
【0005】
しかし、この機構では、次の様な問題がある。
(1)この機構は、薄板状の梁をたわませて、拡大変位を与えるもので、座屈方式と呼ばれている。この方式では、梁として弾性力の小さい厚い材料を用いると、変形しにくくなり、伝達効率が悪くなる。そのため、該梁として、変形しやすい薄い材料を用いなければならないが、あまり薄い材料では、出力変位部が横振れし、精密な位置決めなどが困難となる。
【0006】
(2)座屈方式では、取り出される変位量は大きいが、取り出される力は圧電素子の発生力に比べ極端に小さくなる。
【0007】
この発明は上記事情に鑑み、出力変位部がアクチュエータ素子の変位方向と直角方向に変位できるようにすることを目的とする。又、他の目的は、従来例よりも出力変位部の力が大きくなるようにするとともに、出力変位方向の外形サイズを小さくすることである。
【0008】
【課題を解決するための手段】
前記課題を解決するための手段は、下記の通りである。
【0009】
この発明のレバー変位拡大機構は、アクチュエータ素子の後端を支持する固定部と;該アクチュエータ素子の先端に当接し、かつ、該アクチュエータ素子の変位力を受ける力点を有するレバーと;該固定部の上側と該レバーの力点より上側とを連結する支点ヒンジと;該固定部の下側と該レバーの力点より下側とを連結する作用点ヒンジと;該レバーの後端部に形成され、かつ、該アクチュエータ素子の変位方向と直交する方向に変位する出力変位部と;を備えたことを特徴とするレバー変位拡大機構、である。
【0010】
この発明のレバー変位拡大機構は、基体の中心軸方向に形成された収容部を有する固定部と;該収容部に収納され、かつ、該中心軸方向に変位するアクチューエータ素子と;該アクチュエータ素子の先端に当接し、かつ、該アクチュエータ素子の変位力を受ける力点を有するレバーと;該固定部の上側と該レバーの力点より上側とを連結する支点ヒンジと;該固定部の下側と該レバーの力点より下側とを連結する折曲げ板ばねと;該レバーの後端部に形成され、かつ、該アクチュエータ素子の変位方向と直交する方向に変位する出力変位部と;を備えたことを特徴とするレバー変位拡大機構、である。
【0011】
【発明の実施の形態】
基体の固定部は、該基体の中心軸方向に形成された収容部を備えている。この収容部に該中心軸方向に変位するアクチュエータ素子を収納し、該アクチュエータ素子の先端でレバーの力点を押圧する。このアクチュエータ素子として、例えば、圧電、電歪、磁歪などの素子が用いられる。
【0012】
このレバーの力点の上側には支点ヒンジが設けられ、又、その下側には折り曲げ板ばねで形成した作用点ヒンジが設けられている。支点ヒンジは、前記収容部の上側周壁に連結され、又、作用点ヒンジは前記収容部の下側周壁に連結されている。
【0013】
このレバーの後端部には、出力変位部が形成されている。
この出力変位部は、基体の中心軸に直交する方向に形成されている。
【0014】
このレバー変位拡大機構では、アクチュエータ素子の発生する振動的変位及び力(変位力)は、レバーの力点に加えられる。
そうすると、その変位及び力は、てこの原理によりレバーの作用点ヒンジに拡大されて伝達され、該出力変位部を支点を中心として引き上げるので、該出力変位部は、基体の中心軸と直角方向に変位する。
【0015】
【実施例】
この発明の実施例を図1、図2により説明する。フライス加工、放電加工等により、一枚の方形状板体、例えば、ステンレス製基体1の後端部に出力変位部12を形成し、その反対側にアクチュエータ素子3の収容部4を形成する。
【0016】
前記出力変位部12の中心線は、基体1の中心軸1Cに直交する対称軸3C上に位置する。前記収容部4は、底部4e、と周壁4g、4hとを備えている。
この周壁4gは固定部8の上側に設けられ、周壁4hは固定部8の下側に設けられている。
【0017】
次に、放電加工やレーザ加工等によりヒンジ溝6a、溝6bを形成し、収容部4を有する固定部8と、後端部に出力変位部が設けられているレバー9と、中心軸1Cを介して対向するレバー9の支点ヒンジ16と作用点ヒンジである折曲げ板ばね17と、を形成する。折曲げ板ばね17は必要に応じて適宜その形状、ばね定数などが選択される。
【0018】
この支点ヒンジ16は、薄板状でばね性を持つ。このレバー9のアクチュエータ素子3の当接点、即ち、力点18と支点ヒンジ16との間隔はL1に形成され、レバー9の支点ヒンジ16と対称軸3Cとの間隔はL2に形成され、このレバー9a、9bのレバー比はL2/L1である。
【0019】
従って、このレバー9によりアクチュエータ素子3の変位はL2/L1倍に拡大されることになる。
【0020】
収容部4にアクチュエータ素子3を収容させるが、このアクチュエータ素子3として、例えば、圧電、電歪、磁歪などの素子が用いられる。
【0021】
次に、本実施例の作動について説明する。アクチュエータ素子3に電圧を印加すると、中心軸1C方向、即ち、左右方向外側に伸び、発生変位および力がレバー9の力点18に伝達される。
【0022】
レバー9の力点18に伝達された前記発生変位は、支点ヒンジ16を支点としててこの原理により作用点ヒンジである折曲げ板ばね17を拡大変位させる。 この折曲げ板ばね17の反力は、アクチュエータ素子3に予圧力を与えて該素子3を保護する効果があり、該拡大機構が180゜回転した場合の保護作用も備えている。
【0023】
作用点ヒンジ17の変位により、レバー9は支点ヒンジ16の囲りで回転し、前記発生変位及び力を拡大しながらレバー9の後端部9Aを矢印A20方向に引き上げる。この後端部9Aが引き上げられると、出力変位部12が同方向に変位する。
【0024】
レバー9のレバー比をL2/L1、とすれば、変位はアクチュエータ素子3の変位に対してL2/L1に比例した値となり、例えば、アクチュエータ素子3の発生変位10ミクロンに対して出力変位部での変位を数10ミクロンとすることができる。
【0025】
前記印加電圧を零にすると、アクチュエータ素子3は元の状態に戻るとともに、前記出力変位部12はヒンジのばね力により復元する。
【0026】
この発明の実施例は上記に限定されるものではなく、例えば、自動車、航空機等の軸受等の精密加工、顕微鏡等の測定器具、非球面加工機、精密位置決め用微動ステージ等にも利用することができる。
【0027】
【発明の効果】
この発明は、以上の様に構成したので従来例と異なり、出力変位部がアクチュエータ素子の変位方向と直角方向に変位する。
又、出力変位方向の外形サイズをコンパクトにすることができる。
更に、機構全体を一体型ヒンジ構造にしているので、出力変位部でも大きな力を取り出すことができ、又、該出力変位部に外部負荷を直接取りつけることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す正面図である。
【図2】本発明の第1実施例を示す平面図である。
【符号の説明】
3 アクチュエータ素子
8 固定部
9 レバー
12 出力変位部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an asymmetric single-stage lever displacement enlarging mechanism, and is used in the fields of automobiles, aircraft, precision machining, precision measuring instruments, etc., for example, an optical stage positioning device for precise positioning of a magnetic head, etc. Used for.
[0002]
[Prior art]
The conventional lever displacement enlargement mechanism enlarges the displacement generated by the piezoelectric element through the lever and transmits it to the output displacement portion. In this lever displacement enlarging mechanism, in many cases, the output displacement portion is displaced in the displacement direction of the piezoelectric element.
[0003]
[Problems to be solved by the invention]
In many of the conventional enlargement mechanisms, the displacement direction of the piezoelectric element is the same as the displacement direction at the output portion, so that the outer size of the displacement direction becomes large depending on the length of the piezoelectric element.
[0004]
Therefore, it is conceivable to dispose the piezoelectric element so that the displacement generated by the piezoelectric element is perpendicular to the central axis and transmit the displacement to the output displacement portion. As this mechanism, the following piezoelectric displacement enlarging mechanism is used (see Japanese Patent Laid-Open No. 4-340777).
The two piezoelectric elements as the driving sources are each fixed at one end surface to a fixing portion provided on the mounting substrate portion, and the other end surface is a first force point hinge provided at each end portion of the two lever arms. It is fixed to. The displacement generated by each piezoelectric element is transmitted to the first force point hinge to which the piezoelectric element is fixed, and is enlarged by this principle using the second hinge provided at the intermediate portion of the lever arm as a fulcrum. The lever arms are transmitted to a thin plate-like beam connecting the ends of the lever arms in a bridge shape, and the displacement is taken out by the buckling motion of the beam.
[0005]
However, this mechanism has the following problems.
(1) This mechanism deflects a thin plate beam to give an enlarged displacement, and is called a buckling method. In this method, if a thick material having a small elastic force is used as the beam, the beam becomes difficult to be deformed and the transmission efficiency is deteriorated. For this reason, a thin material that is easily deformed must be used as the beam. However, if the material is too thin, the output displacement portion will sway, making precise positioning difficult.
[0006]
(2) In the buckling method, the amount of displacement that is extracted is large, but the force that is extracted is extremely small compared to the force generated by the piezoelectric element.
[0007]
In view of the above circumstances, an object of the present invention is to enable an output displacement portion to be displaced in a direction perpendicular to a displacement direction of an actuator element. Another object is to make the force of the output displacement portion larger than in the conventional example and to reduce the outer size in the output displacement direction.
[0008]
[Means for Solving the Problems]
Means for solving the problems are as follows.
[0009]
The lever displacement enlarging mechanism according to the present invention includes: a fixing portion that supports a rear end of the actuator element; a lever that has a force point that contacts the tip of the actuator element and receives a displacement force of the actuator element; A fulcrum hinge connecting the upper side and the upper side of the lever's force point; an action point hinge connecting the lower side of the fixed portion and the lower side of the lever's force point; formed at the rear end of the lever; And an output displacement portion that is displaced in a direction orthogonal to the displacement direction of the actuator element.
[0010]
The lever displacement enlarging mechanism according to the present invention includes: a fixed portion having a housing portion formed in the central axis direction of the base; an actuator element housed in the housing portion and displaced in the central axis direction; A lever abutting on the tip of the element and having a force point for receiving the displacement force of the actuator element; a fulcrum hinge connecting the upper side of the fixed part and the upper side of the force point of the lever; and a lower side of the fixed part A bent leaf spring connecting the lower side of the force point of the lever; and an output displacement portion formed at the rear end portion of the lever and displaced in a direction perpendicular to the displacement direction of the actuator element. And a lever displacement enlarging mechanism.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The fixing portion of the base includes an accommodating portion formed in the central axis direction of the base. An actuator element that is displaced in the direction of the central axis is housed in the housing portion, and the lever force point is pressed by the tip of the actuator element. As this actuator element, for example, an element such as piezoelectric, electrostrictive, or magnetostrictive is used.
[0012]
A fulcrum hinge is provided above the lever's force point, and an action point hinge formed of a bent leaf spring is provided below the lever. The fulcrum hinge is connected to the upper peripheral wall of the accommodating part, and the action point hinge is connected to the lower peripheral wall of the accommodating part.
[0013]
An output displacement portion is formed at the rear end portion of the lever.
The output displacement portion is formed in a direction orthogonal to the central axis of the base.
[0014]
In this lever displacement enlarging mechanism, the vibrational displacement and force (displacement force) generated by the actuator element is applied to the force point of the lever.
Then, the displacement and force are expanded and transmitted to the lever operating point hinge by the lever principle, and the output displacement portion is pulled up around the fulcrum, so that the output displacement portion is perpendicular to the central axis of the base. Displace.
[0015]
【Example】
An embodiment of the present invention will be described with reference to FIGS. The output displacement portion 12 is formed at the rear end portion of a single rectangular plate, for example, the stainless steel base 1, by milling, electric discharge machining, or the like, and the accommodating portion 4 of the actuator element 3 is formed on the opposite side.
[0016]
The center line of the output displacement portion 12 is located on the symmetry axis 3 </ b> C orthogonal to the center axis 1 </ b> C of the base 1. The said accommodating part 4 is provided with the bottom part 4e and the surrounding walls 4g and 4h.
The peripheral wall 4g is provided on the upper side of the fixed portion 8, and the peripheral wall 4h is provided on the lower side of the fixed portion 8.
[0017]
Next, the hinge groove 6a and the groove 6b are formed by electric discharge machining, laser machining, or the like, the fixing portion 8 having the accommodating portion 4, the lever 9 provided with the output displacement portion at the rear end portion, and the central shaft 1C. The fulcrum hinge 16 of the lever 9 and the bending leaf spring 17 which is an action point hinge are formed. The bent plate spring 17 is appropriately selected in shape, spring constant, etc. as required.
[0018]
The fulcrum hinge 16 has a thin plate shape and has a spring property. The contact point of the actuator element 3 of the lever 9, that is, the distance between the force point 18 and the fulcrum hinge 16 is formed at L 1 , and the distance between the fulcrum hinge 16 of the lever 9 and the symmetry axis 3 C is formed at L 2 , The lever ratio of the levers 9a and 9b is L 2 / L 1 .
[0019]
Therefore, the lever 9 enlarges the displacement of the actuator element 3 to L 2 / L 1 times.
[0020]
The actuator element 3 is accommodated in the accommodating portion 4. As the actuator element 3, for example, an element such as piezoelectric, electrostrictive, or magnetostrictive is used.
[0021]
Next, the operation of this embodiment will be described. When a voltage is applied to the actuator element 3, the actuator element 3 extends in the direction of the central axis 1 </ b> C, that is, outward in the left-right direction, and the generated displacement and force are transmitted to the force point 18 of the lever 9.
[0022]
The generated displacement transmitted to the force point 18 of the lever 9 expands and displaces the bending leaf spring 17 which is an action point hinge based on this principle using the fulcrum hinge 16 as a fulcrum. The reaction force of the bent leaf spring 17 has an effect of pre-pressing the actuator element 3 to protect the element 3, and also has a protective action when the expansion mechanism rotates 180 °.
[0023]
The displacement of the action point hinges 17, the lever 9 is rotated in囲Ri fulcrum hinge 16 pulls the rear end portion 9A of the lever 9 in the arrow A 20 direction while enlarging the generated displacement and force. When the rear end portion 9A is pulled up, the output displacement portion 12 is displaced in the same direction.
[0024]
If the lever ratio of the lever 9 is L 2 / L 1 , the displacement is a value proportional to L 2 / L 1 with respect to the displacement of the actuator element 3, for example, with respect to the generated displacement of 10 μm of the actuator element 3. The displacement at the output displacement portion can be several tens of microns.
[0025]
When the applied voltage is reduced to zero, the actuator element 3 returns to the original state, and the output displacement portion 12 is restored by the spring force of the hinge.
[0026]
The embodiments of the present invention are not limited to the above. For example, the present invention can be used for precision processing of bearings for automobiles, aircrafts, etc., measuring instruments such as microscopes, aspherical processing machines, fine positioning stages for precision positioning, etc. Can do.
[0027]
【The invention's effect】
Since the present invention is configured as described above, unlike the conventional example, the output displacement portion is displaced in a direction perpendicular to the displacement direction of the actuator element.
Further, the outer size in the output displacement direction can be made compact.
Furthermore, since the entire mechanism has an integral hinge structure, a large force can be taken out even at the output displacement portion, and an external load can be directly attached to the output displacement portion.
[Brief description of the drawings]
FIG. 1 is a front view showing a first embodiment of the present invention.
FIG. 2 is a plan view showing a first embodiment of the present invention.
[Explanation of symbols]
3 Actuator element 8 Fixed part 9 Lever 12 Output displacement part

Claims (2)

アクチュエータ素子の後端を支持する固定部と;該アクチュエータ素子の先端に当接し、かつ、該アクチュエータ素子の変位力を受ける力点を有するレバーと;該固定部の上側と該レバーの力点より上側とを連結する支点ヒンジと;該固定部の下側と該レバーの力点より下側とを連結する作用点ヒンジと;該レバーの後端部に形成され、かつ、該アクチュエータ素子の変位方向と直交する方向に変位する出力変位部と;を備えたことを特徴とするレバー変位拡大機構。 A fixed portion that supports the rear end of the actuator element ; a lever that has a power point that contacts the tip of the actuator element and receives a displacement force of the actuator element ; and an upper side of the fixed portion and an upper side of the force point of the lever A fulcrum hinge that connects the lower side of the fixed portion and the lower side of the force point of the lever; and a hinge that is formed at the rear end of the lever and orthogonal to the displacement direction of the actuator element An output displacement portion that is displaced in a direction to perform the lever displacement enlargement mechanism. 基体の中心軸方向に形成された収容部を有する固定部と;該収容部に収納され、かつ、該中心軸方向に変位するアクチューエータ素子と;該アクチュエータ素子の先端に当接し、かつ、該アクチュエータ素子の変位力を受ける力点を有するレバーと;該固定部の上側と該レバーの力点より上側とを連結する支点ヒンジと;該固定部の下側と該レバーの力点より下側とを連結する折曲げ板ばねと;該レバーの後端部に形成され、かつ、該アクチュエータ素子の変位方向と直交する方向に変位する出力変位部と;を備えたことを特徴とするレバー変位拡大機構。 A fixed portion having a housing portion formed in the central axis direction of the base ; an actuator element housed in the housing portion and displaced in the central axis direction; abutting on the tip of the actuator element ; and A lever having a force point for receiving a displacement force of the actuator element; a fulcrum hinge connecting the upper side of the fixed part and the upper side of the force point of the lever; a lower side of the fixed part and a lower side of the force point of the lever A lever displacement enlarging mechanism comprising: a bent leaf spring to be coupled; and an output displacement portion formed at a rear end portion of the lever and displaced in a direction orthogonal to a displacement direction of the actuator element. .
JP00664097A 1997-01-17 1997-01-17 Lever displacement expansion mechanism Expired - Fee Related JP3809624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00664097A JP3809624B2 (en) 1997-01-17 1997-01-17 Lever displacement expansion mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00664097A JP3809624B2 (en) 1997-01-17 1997-01-17 Lever displacement expansion mechanism

Publications (2)

Publication Number Publication Date
JPH10201256A JPH10201256A (en) 1998-07-31
JP3809624B2 true JP3809624B2 (en) 2006-08-16

Family

ID=11643976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00664097A Expired - Fee Related JP3809624B2 (en) 1997-01-17 1997-01-17 Lever displacement expansion mechanism

Country Status (1)

Country Link
JP (1) JP3809624B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9901718D0 (en) * 1999-01-26 1999-03-17 Westwind Air Bearings Ltd High speed drill holders
JP4085936B2 (en) 2003-09-05 2008-05-14 ソニー株式会社 Lever arm displacement enlargement device
JP2007154965A (en) * 2005-12-02 2007-06-21 Shimadzu Corp Displacement increasing mechanism
CN110504861A (en) * 2019-08-05 2019-11-26 包头稀土研究院 Second level micro displacement magnifying mechanism and its amplification method
CN113941899B (en) * 2021-05-18 2022-12-16 齐鲁工业大学 Fast cutter servo device and application thereof in high-speed high-precision curved surface machining

Also Published As

Publication number Publication date
JPH10201256A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
US7466474B2 (en) Micromechanical device with tilted electrodes
EP2419370B1 (en) Long travel range mems actuator
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
US20060108523A1 (en) Scanning mechanism for scanning probe microscope and scanning probe microscope
WO2003062899A1 (en) Optical switch and production method therefor, information transmission device using it
JP3809624B2 (en) Lever displacement expansion mechanism
JP4085936B2 (en) Lever arm displacement enlargement device
JP2004048955A (en) Direct action type displacement enlarging mechanism and manufacturing method thereof
KR100396021B1 (en) Ultra-precision moving apparatus
Kawabata et al. The 2-dimensional micro scanner integrated with PZT thin film actuator
JP5090706B2 (en) Actuator
Furukawa et al. Development of a flexure-hinged translation mechanism driven by two piezoelectric stacks
JP3809623B2 (en) Lever displacement expansion mechanism
JP3049522B2 (en) Positioning device with displacement enlargement mechanism
JP2630301B2 (en) Piezoelectric clamp mechanism
JP2960112B2 (en) Micro displacement device
JP2001022445A (en) Displacement enlarging mechanism
US20230100424A1 (en) Cantilever device for shifting optically nonlinear crystal
JPH07136888A (en) Displacement enlarging mechanism for precision positioning device
JPH05305574A (en) Piezoelectric cramping mechanism
JP2003194976A (en) Small displacement device
Lin et al. Micromachined multi-lever linkage angular motion amplifier
JPH0746908B2 (en) Positioning device
JPH01192182A (en) Actuator
EP1549458A1 (en) Two-dimensional displacement apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees