WO2008044641A1 - Light oil composition - Google Patents

Light oil composition Download PDF

Info

Publication number
WO2008044641A1
WO2008044641A1 PCT/JP2007/069584 JP2007069584W WO2008044641A1 WO 2008044641 A1 WO2008044641 A1 WO 2008044641A1 JP 2007069584 W JP2007069584 W JP 2007069584W WO 2008044641 A1 WO2008044641 A1 WO 2008044641A1
Authority
WO
WIPO (PCT)
Prior art keywords
nylon
sample
paraffin
immersed
isoparaffin
Prior art date
Application number
PCT/JP2007/069584
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Hayashi
Tadao Ogawa
Eiichi Sudo
Ayako Ohshima
Keiko Fukumoto
Atsushi Murase
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/444,339 priority Critical patent/US20100012551A1/en
Priority to EP07829322A priority patent/EP2083061A4/en
Publication of WO2008044641A1 publication Critical patent/WO2008044641A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon

Definitions

  • the present invention relates to a gas oil composition, and more particularly, to a GTL (Gas to Liquid) gas oil composition.
  • GTL Gas to Liquid
  • GTL diesel oil converts natural gas and heavy oil into water gas, obtains synthetic oil by Fischer-Tropsch synthesis (FT synthesis), and fractionates high-boiling fractions in the synthetic oil. This is a fraction corresponding to the boiling range of light oil obtained by hydrocracking, isomerization and the like.
  • FT synthesis Fischer-Tropsch synthesis
  • GTL diesel oil is currently produced at 100,000 barrels per day worldwide, and 600,000 barrels per day (total consumption of Japanese diesel oil in 2010) when all the plants currently under construction are in operation. It is said that it will be produced! /, Ru (for example, see Non-Patent Document 4).
  • Non-Patent Document 1 Sweden Class-1: RF Tucker, RJ Stradling, PE Wolve ridge, KJ Rivers and A. Ubbens, The Lubricty of Deeply Hydrogen ated Diesel Fuels— The Swedish Experience, SAE942016
  • Non-Patent Document 2 Kaoru Kawada, Prospects for Next-Generation Synthetic Fuel Oil (1st) "Quality Trends of Petroleum Products and Issues of Existing Refining Technology", Petrotech, 23, (12) ppl061-1066
  • Non-Patent Document 3 Jun Fujimoto, Shizukiri Kiryu, Prospects for Next-Generation Synthetic Fuel Oil (3rd) "Technology Development Trends for FT Synthesis", Petrotech, 24, (2) ppl l3-118
  • Non-Patent Document 4 Yukihiro Tsukazaki, Recent Trends in Automotive GTL Fuel, Automotive Technology, 55, (5), pp. 67-72, (2001)
  • an object of the present invention is to solve the above problems. That is, an object of the present invention is to provide a light oil composition without deteriorating nylon materials!
  • the present invention is a light oil composition characterized in that the concentration of paraffin is 97% by mass or more and the concentration of isoparaffin having 14 or less carbon atoms contained in the paraffin is 10% by mass or less. .
  • the invention's effect is a light oil composition characterized in that the concentration of paraffin is 97% by mass or more and the concentration of isoparaffin having 14 or less carbon atoms contained in the paraffin is 10% by mass or less. .
  • FIG. 1 is a graph showing the amount of dissolved oxygen in GTL diesel oil before and after immersion.
  • FIG. 2 is a graph showing the amount of dissolved oxygen in paraffin before and after immersion.
  • FIG. 3 Thermal desorption of nylon [FIG. 3] A graph showing a GC / MS total ion chromatogram. (A) is nylon immersed in sample A, and (B) is nylon immersed in sample B.
  • FIG. 4 MALDI-MS mass spectrum of nylon, (A) is nylon that has not been treated, (B) is nylon immersed in Sample-B, (C) Is nylon immersed in Sample A, (D) is oxidized nylon, and (E) is hydrolyzed nylon.
  • FIG. 5 is a diagram showing the results of nylon depth direction analysis.
  • FIG. 6 is a diagram showing the results of analysis of the depth direction of nylon by IR imaging.
  • (A) is nylon immersed in sample—A
  • (B) is nylon immersed in sample—B.
  • FIG. 7 is a diagram showing the results of gas chromatography / mass spectrometry analysis of model fuel before and after immersion, (A) shows paraffins and (B) shows oxidation products (alcohol).
  • FIG. 8 This figure shows the results of thermal desorption and gas chromatography / mass spectrometry analysis of nylon before and after immersion.
  • FIG. 9 is a graph showing the relationship between isoparaffin concentration and elongation at break.
  • the light oil composition of the present invention is a GTL light oil or a gas oil composition containing GTL light oil, particularly having a paraffin concentration of 97% by mass or more and having no more than 14 carbon atoms contained in norafine.
  • the concentration of is less than 10% by mass. If the concentration of paraffin is less than 97% by mass, it cannot be said to be a clean fuel due to its PM emission capacity. Biodiesel oil is also acceptable, and degradation of the fuel itself and other materials becomes a problem.
  • the concentration of isoparaffin having 14 or less carbon atoms exceeds 10% by mass, the nylon material used in the fuel system oxidizes and depolymerizes to lower molecular weight, or the elongation decreases. material Will deteriorate.
  • the presence of isoparaffin has the effect of lowering the cetane number of GTL light oil (lowering the cetane number of normal paraffin too high) and lowering the viscosity. Therefore, when the light oil of the present invention has a high viscosity, it is preferable to adjust the viscosity by adding a highly branched isoparaffin having 15 or more carbon atoms.
  • the content of the highly branched isoparaffin having 15 or more carbon atoms is not particularly limited as long as it has a desired viscosity and cetane number.
  • the light oil of the present invention can be produced, for example, as follows. That is, paraffin obtained by FT reaction (Fischer-Tropsch reaction) is hydrocracked on a solid acid catalyst to obtain isoparaffin. Next, this isoparaffin is analyzed by gas chromatography to examine the concentration of isoparaffin having 14 or less carbon atoms. Determine the concentration of isoparaffin having 14 or less carbon atoms analyzed by gas chromatography (consider that the concentration of isoparaffin after mixing is 10% by mass or less), determine the amount of addition, and obtain it by the above FT reaction with isoparaffin. Produced by mixing with the paraffin obtained.
  • FT reaction Fischer-Tropsch reaction
  • GTL diesel oil By making the GTL diesel oil into the composition as in the present invention, it can be used in a diesel vehicle without changing the nylon material used in the conventional fuel system.
  • GTL light oil of the present invention when the GTL light oil of the present invention is mixed with conventional light oil, it can be used in diesel vehicles without changing the nylon material.
  • Diesel vehicle exhaust can be cleaned by transferring diesel oil to GTL diesel oil or GTL diesel oil composition.
  • Sample-A was prepared to contain more low-molecular-weight paraffin than Sample-B, and its composition was confirmed by GC.
  • Nylon-66 (hereinafter simply referred to as "nylon") was immersed in each of Sample-A and Sample-B. The surface layer of each nylon after being immersed for 500 hours was cut out, heated in helium at 250 ° C., and the generated gas was analyzed by gas chromatography / mass spectrometry. The result is shown in Fig. 3.
  • nylon immersed in sample A contained (1) more low-molecular-weight paraffin than nylon immersed in sample B. It was also found that (2) the paraffin infiltrated into nylon had a higher proportion of isoparaffin than the original sample.
  • a model fuel having the composition shown in Table 1 below was prepared using a normal paraffin having 7 to 13 carbon atoms, isoparaffin having 7 to 12 carbon atoms (2 methyl paraffin) and heptane isomers (7 carbon atoms).
  • n—C7 ⁇ ! 1C13 means normal heptane, no Represents normal octane, normal nonane, normal decane, normal decane, normal dodecane, and normal tridecane.
  • 2-Methyloctane, 2-Methylnonane, 2-Methyldecane, 2-Methylundecane, "N-C7 ⁇ ! 1 C13 and 2-Me-C6-2-2-Me-C1 1” Represents a mixture. “ ⁇ ” indicates that 2 ml of normal hexadecane was obtained as an internal standard.
  • nylon is immersed in these model fuels, and the model fuels before and after immersion are gas chromatographed.
  • Figure 7 shows the results of gas chromatographic / mass spectrometry analysis of the model fuel before and after immersion.
  • Isoparaffins are more easily oxidized than normal paraffins.
  • the amount of alcohol produced from isoparaffin is about 100 times the amount of alcohol produced from normal paraffin.
  • FIG. 8 shows the results of analyzing the nylon before and after immersion by thermal desorption / gas chromatography / mass spectrometry. At this time, no oxidation product was detected from nylon immersed in normal paraffin.
  • Model fuels (light oils) A to E were prepared with the following components A and B blended as shown in Table 2 below.
  • the concentration of paraffin in any model fuel is 97% by mass or more.
  • Component A Equal mixture of normal paraffins having 8, 10, 12, 14 carbon atoms
  • Component B Mixture of isoparaffins having 8 and 9 carbon atoms (2-methylheptane: 3-methylheptane: 2-methyloctane 4: 3: 3 (volume ratio))
  • Nylon-66 was molded according to JISK7162 (IS 03167) to produce a test piece.
  • a model container of 25 Oml was placed in a pressurized container (inner diameter: 45 mm, inner height: 235 mm) having an internal volume of 300 ml, and three test pieces were immersed therein and heated at 120 ° C. for 475 hours. The specimens were dried for 4 hours at 100 ° C under vacuum prior to immersion.
  • test piece after immersion was subjected to a tensile test according to IS0527 (however, tensile speed: 50 mm / min) using a tensile test device (AG-lOkNC manufactured by Shimadzu Corporation).
  • the specimen after immersion was stored in a desiccator until immediately before the tensile test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Disclosed is a light oil composition which does not cause any deterioration in a nylon-based material. Specifically disclosed is a light oil composition containing a paraffin at a concentration of 97% by mass or more, wherein the content of an isoparaffin having 14 or less carbon atoms in the paraffin is 10% by mass or less.

Description

明 細 書  Specification
軽油組成物  Light oil composition
技術分野  Technical field
[0001] 本発明は軽油組成物に関し、特に、 GTL (Gas to Liquid)軽油組成物に関する  [0001] The present invention relates to a gas oil composition, and more particularly, to a GTL (Gas to Liquid) gas oil composition.
背景技術 Background art
[0002] 1970年代にディーゼル車から排出される粒子状物質(PM)に発癌性があることが 報告されて以来、粒子状物質 (PM)に関する多くの研究がなされてきた。そして、 P M低減対策として、車両では、燃料噴射圧の高圧化、排気の後処理システムなどが 開発され、軽油では、低硫黄化が進められてきた。 1993年から Swedenなどで使わ れる様になった都市型軽油(Class— 1)は、低硫黄軽油の代表的なものである(例え ば、非特許文献 1参照)。  [0002] Much research on particulate matter (PM) has been made since it was reported that particulate matter (PM) emitted from diesel vehicles was carcinogenic in the 1970s. As measures to reduce PM, the fuel injection pressure has been increased and exhaust aftertreatment systems have been developed for vehicles, and low sulfur has been promoted for diesel oil. Urban diesel oil (Class-1), which has been used in Sweden since 1993, is a typical low-sulfur diesel oil (see Non-Patent Document 1, for example).
[0003] 一方、 PM排出量の低減という観点から、 GTL軽油の利用が注目されている。 GTL 軽油は天然ガスや重質油を水性ガスに変換し、これをフィッシャートロプッシュ合成( FT合成)によって合成油を得、さらに該合成油中の高沸点留分を分取し、必要に応 じて水素化分解、異性化等を行って得る軽油の沸点範囲に相当する留分である。  [0003] On the other hand, the use of GTL diesel oil has attracted attention from the viewpoint of reducing PM emissions. GTL diesel oil converts natural gas and heavy oil into water gas, obtains synthetic oil by Fischer-Tropsch synthesis (FT synthesis), and fractionates high-boiling fractions in the synthetic oil. This is a fraction corresponding to the boiling range of light oil obtained by hydrocracking, isomerization and the like.
[0004] この GTL軽油は、第二次世界大戦中、ドイツで生産されていた力 その後、生産は 中止されていた。 1980年代後半に、環境汚染の問題が世界的に取り上げられるよう になって、再び、 GTL軽油が注目されるようになった。そして、 1992年、南アフリカ連 邦の Mossgas社によって、 GTL軽油の生産が開始された。 1998年、 SwRIの Melin da Sirmanが SAE国際会議で、 GTL軽油は PM排出量が最も少ないことを発表し て以来 (例えば、非特許文献 2および 3参照)、米国のエネルギー省や石油メジャー などが注目するようになり、世界各地に GTLプラントが建設されるようになった。  [0004] This GTL diesel oil was produced in Germany during the Second World War, after which production was discontinued. In the late 1980s, the problem of environmental pollution began to be addressed globally, and GTL diesel was once again attracting attention. In 1992, production of GTL diesel oil was started by Mossgas in South Africa. Since 1998, SwRI's Melin da Sirman announced at the SAE international conference that GTL diesel oil has the lowest PM emissions (see Non-Patent Documents 2 and 3, for example). Attention has been focused on and GTL plants have been built around the world.
[0005] GTL軽油は、現在、世界で 1日あたり 10万バレル生産されており、現在建設中の プラントが全て稼動する 2010年には、 1日あたり 60万バレル(日本の軽油の全消費 量に匹敵)生産されると言われて!/、る (例えば、非特許文献 4参照)。  [0005] GTL diesel oil is currently produced at 100,000 barrels per day worldwide, and 600,000 barrels per day (total consumption of Japanese diesel oil in 2010) when all the plants currently under construction are in operation. It is said that it will be produced! /, Ru (for example, see Non-Patent Document 4).
非特許文献 1 : Sweden Class - 1 : R. F. Tucker, R. J. Stradling, P. E. Wolve ridge, K. J. Rivers and A. Ubbens, The Lubricty of Deeply Hydrogen ated Diesel Fuels— The Swedish Experience, SAE942016 Non-Patent Document 1: Sweden Class-1: RF Tucker, RJ Stradling, PE Wolve ridge, KJ Rivers and A. Ubbens, The Lubricty of Deeply Hydrogen ated Diesel Fuels— The Swedish Experience, SAE942016
非特許文献 2 :川田襄、次世代合成燃料油の展望 (第 1回)「石油製品の品質動向と 既存精製技術の課題」、ペトロテック、 23, (12) ppl061 - 1066  Non-Patent Document 2: Kaoru Kawada, Prospects for Next-Generation Synthetic Fuel Oil (1st) "Quality Trends of Petroleum Products and Issues of Existing Refining Technology", Petrotech, 23, (12) ppl061-1066
非特許文献 3 :藤本薫、桐生静一、次世代合成燃料油の展望 (第 3回)「FT合成の技 術開発動向」、ペトロテック、 24, (2) ppl l3 - 118  Non-Patent Document 3: Jun Fujimoto, Shizukiri Kiryu, Prospects for Next-Generation Synthetic Fuel Oil (3rd) "Technology Development Trends for FT Synthesis", Petrotech, 24, (2) ppl l3-118
非特許文献 4 :塚崎之弘、 自動車用 GTL燃料の最近の動向、自動車技術、 55, (5) , pp. 67- 72, (2001)  Non-Patent Document 4: Yukihiro Tsukazaki, Recent Trends in Automotive GTL Fuel, Automotive Technology, 55, (5), pp. 67-72, (2001)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] GTL軽油は今後、着実に普及していくと思われる力 GTL軽油が燃料系材料に及 ぼす影響については、殆ど明らかにされていない。我々はディーゼル車の燃料系統 に用いられている樹脂、ゴムについて、 GTL軽油の影響を調べた。 GTL軽油に樹脂 、ゴムを浸漬し引張試験した結果、一般的な GTL軽油に浸漬されたナイロン 66の 伸びが大きく低下することが判った。これまで、ナイロンは炭化水素に耐える材料とし て広く認められてきたことから、 GTL軽油に浸漬されたナイロンの伸びが大きく低下 するとレ、う現象は、全く予想されなレ、結果であった。  [0006] The power that GTL diesel oil is expected to spread steadily in the future The effects of GTL diesel oil on fuel-based materials are hardly clarified. We investigated the effects of GTL diesel on the resins and rubbers used in diesel vehicle fuel systems. As a result of a tensile test with resin and rubber immersed in GTL diesel oil, it was found that the elongation of nylon 66 immersed in general GTL diesel oil was greatly reduced. Until now, nylon has been widely recognized as a material that can withstand hydrocarbons, so the elongation of nylon soaked in GTL gas oil has been greatly reduced, and the phenomenon is completely unexpected.
[0007] GTL軽油が市場で使用される様になって間がないことから、 GTL軽油が燃料系統 の材料に及ぼす影響を調査した報告は見られない。従って、ナイロンの劣化に対し、 GTL軽油が及ぼす影響につ!/、ては全く予測できず、将来の大幅な需要増を考慮す れば、ナイロンを劣化させない GTL軽油の開発が急務となる。  [0007] Since GTL diesel oil has just been used in the market, there are no reports investigating the effects of GTL diesel oil on fuel system materials. Therefore, the impact of GTL diesel oil on nylon degradation is completely unpredictable! Considering a significant future increase in demand, the development of GTL diesel oil that does not degrade nylon is urgently needed.
[0008] 以上から、本発明は、上記課題を解決することを目的とする。すなわち、本発明は、 ナイロン系材料を劣化させな!/、軽油組成物を提供することを目的とする。  [0008] From the above, an object of the present invention is to solve the above problems. That is, an object of the present invention is to provide a light oil composition without deteriorating nylon materials!
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決すべく鋭意検討した結果、本発明者らは、下記本発明に想到し当 該課題を解決できることを見出した。すなわち、本発明は、パラフィンの濃度が 97質 量%以上であり、かつ、前記パラフィンに含まれる炭素数 14以下のイソパラフィンの 濃度が 10質量%以下であることを特徴とする軽油組成物である。 発明の効果 [0009] As a result of intensive studies to solve the above problems, the present inventors have conceived the following present invention and found that the problems can be solved. That is, the present invention is a light oil composition characterized in that the concentration of paraffin is 97% by mass or more and the concentration of isoparaffin having 14 or less carbon atoms contained in the paraffin is 10% by mass or less. . The invention's effect
[0010] 本発明によれば、ナイロン系材料を劣化させな!/、軽油組成物を提供することができ 図面の簡単な説明  [0010] According to the present invention, it is possible to provide a light oil composition without degrading a nylon-based material!
[0011] [図 1]浸漬前後の GTL軽油中の溶存酸素量を示す図である。  [0011] FIG. 1 is a graph showing the amount of dissolved oxygen in GTL diesel oil before and after immersion.
[図 2]浸漬前後のパラフィン中の溶存酸素量を示す図である。  FIG. 2 is a graph showing the amount of dissolved oxygen in paraffin before and after immersion.
[図 3]ナイロンの熱脱着 'GC/MSの全イオンクロマトグラムを示す図であり、 (A)は 試料 Aに浸漬したナイロンであり、 (B)は試料 Bに浸漬したナイロンである。  [FIG. 3] Thermal desorption of nylon [FIG. 3] A graph showing a GC / MS total ion chromatogram. (A) is nylon immersed in sample A, and (B) is nylon immersed in sample B.
[図 4]ナイロンの MALDI— MSのマススペクトルを示す図であり、(A)は何も処理を 施していないナイロンであり、(B)は試料—Bに浸漬したナイロンであり、(C)は試料 Aに浸漬したナイロンであり、(D)は酸化処理を施したナイロンであり、(E)は加水 分解処理を施したナイロンである。  [Fig. 4] MALDI-MS mass spectrum of nylon, (A) is nylon that has not been treated, (B) is nylon immersed in Sample-B, (C) Is nylon immersed in Sample A, (D) is oxidized nylon, and (E) is hydrolyzed nylon.
[図 5]ナイロンの深さ方向分析の結果を示す図である。  FIG. 5 is a diagram showing the results of nylon depth direction analysis.
[図 6]IRイメージングによるナイロンの深さ方向分析の結果を示す図であり、 (A)は試 料—Aに浸漬したナイロンであり、 (B)は試料—Bに浸漬したナイロンである。  FIG. 6 is a diagram showing the results of analysis of the depth direction of nylon by IR imaging. (A) is nylon immersed in sample—A, and (B) is nylon immersed in sample—B.
[図 7]浸漬前後のモデル燃料をガスクロ/質量分析法で分析した結果を示す図であ り、(A)はパラフィン類、(B)は酸化生成物(アルコール)を示す。  FIG. 7 is a diagram showing the results of gas chromatography / mass spectrometry analysis of model fuel before and after immersion, (A) shows paraffins and (B) shows oxidation products (alcohol).
[図 8]浸漬前後のナイロンを、熱脱着,ガスクロ/質量分析法で分析した結果を示す 図である。  [Fig. 8] This figure shows the results of thermal desorption and gas chromatography / mass spectrometry analysis of nylon before and after immersion.
[図 9]イソパラフィンの濃度と破断時伸びとの関係を示す図である。  FIG. 9 is a graph showing the relationship between isoparaffin concentration and elongation at break.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の軽油組成物は、特に GTL軽油または GTL軽油を含む軽油組成物であつ て、パラフィンの濃度が 97質量%以上であり、かつ、ノ ラフィンに含まれる炭素数 14 以下のイソパラフィンの濃度が 10質量%以下となっている。パラフィンの濃度が 97質 量%未満では、 PM排出能などでクリーンな燃料とはいえなくなる。また、バイオ軽油 でも可となり、燃料自身の劣化や他材料の劣化が問題となる。また、炭素数 14以下 のイソパラフィンの濃度が 10質量%を超えると、燃料系統に用いられているナイロン 材料が酸化し、解重合して低分子化したり、伸びが低下したりして、ナイロン系材料 が劣化してしまう。 [0012] The light oil composition of the present invention is a GTL light oil or a gas oil composition containing GTL light oil, particularly having a paraffin concentration of 97% by mass or more and having no more than 14 carbon atoms contained in norafine. The concentration of is less than 10% by mass. If the concentration of paraffin is less than 97% by mass, it cannot be said to be a clean fuel due to its PM emission capacity. Biodiesel oil is also acceptable, and degradation of the fuel itself and other materials becomes a problem. In addition, if the concentration of isoparaffin having 14 or less carbon atoms exceeds 10% by mass, the nylon material used in the fuel system oxidizes and depolymerizes to lower molecular weight, or the elongation decreases. material Will deteriorate.
[0013] ところで、イソパラフィンの存在は、 GTL軽油のセタン価を下げる(ノルマルパラフィ ンの高すぎるセタン価を下げる)とともに、粘度を下げる効果を有する。従って、本発 明の軽油の粘度が高くなる場合、炭素数 15以上の高分岐イソパラフィンを加えて、 粘度調整を行うことが好ましい。炭素数 15以上の高分岐イソパラフィンの含有量は、 所望の粘度とセタン価を持てば特に限定されない。  By the way, the presence of isoparaffin has the effect of lowering the cetane number of GTL light oil (lowering the cetane number of normal paraffin too high) and lowering the viscosity. Therefore, when the light oil of the present invention has a high viscosity, it is preferable to adjust the viscosity by adding a highly branched isoparaffin having 15 or more carbon atoms. The content of the highly branched isoparaffin having 15 or more carbon atoms is not particularly limited as long as it has a desired viscosity and cetane number.
[0014] 本発明の軽油は、例えば、下記のようにして製造すること力 Sできる。すなわち、 FT 反応(Fischer— Trospch反応)で得られるパラフィンを固体酸触媒上で水素化分解 してイソパラフィンを得る。次に、このイソパラフィンをガスクロマトグラフィーで分析し て、炭素数 14以下のイソパラフィンの濃度を調べる。ガスクロマトグラフィーで分析し た炭素数 14以下のイソパラフィンの濃度を考慮 (混合後のイソパラフィンの濃度が 10 質量%以下になるように考慮)してその添加量を決め、上記イソパラフィンと FT反応 で得られたパラフィンとを混合して製造する。  [0014] The light oil of the present invention can be produced, for example, as follows. That is, paraffin obtained by FT reaction (Fischer-Tropsch reaction) is hydrocracked on a solid acid catalyst to obtain isoparaffin. Next, this isoparaffin is analyzed by gas chromatography to examine the concentration of isoparaffin having 14 or less carbon atoms. Determine the concentration of isoparaffin having 14 or less carbon atoms analyzed by gas chromatography (consider that the concentration of isoparaffin after mixing is 10% by mass or less), determine the amount of addition, and obtain it by the above FT reaction with isoparaffin. Produced by mixing with the paraffin obtained.
[0015] 以上のような本発明の軽油には、下記のような利点がある。  [0015] The light oil of the present invention as described above has the following advantages.
(1) GTL軽油を本発明のような組成にすることによって、従来の燃料系統に用いられ ているナイロン系材料を変更することなぐディーゼル車で使用することができる。  (1) By making the GTL diesel oil into the composition as in the present invention, it can be used in a diesel vehicle without changing the nylon material used in the conventional fuel system.
(2)また、本発明の GTL軽油を従来の軽油に混合した場合も、ナイロン系材料を変 更することなぐディーゼル車で使用することができる。  (2) Also, when the GTL light oil of the present invention is mixed with conventional light oil, it can be used in diesel vehicles without changing the nylon material.
(3)軽油を GTL軽油または GTL軽油組成物に移行させることにより、ディーゼル車 の排気をクリーンにできる。  (3) Diesel vehicle exhaust can be cleaned by transferring diesel oil to GTL diesel oil or GTL diesel oil composition.
実施例  Example
[0016] 以下、実験例および実施例により本発明を具体的に説明するが、本発明はこれら に限定されるものではない。  Hereinafter, the present invention will be specifically described with reference to experimental examples and examples, but the present invention is not limited thereto.
[0017] [実験例 1] [0017] [Experiment 1]
低分子量 (低炭素数)のパラフィンの濃度が異なる GTL軽油(模擬試料 Aおよび 模擬試料— B)を 2種類用意した。試料— Aは、試料— Bに比べて、低分子量のパラ フィンを多く含むように調製し、その組成を GC法で確認した。  Two types of GTL diesel oil (simulated sample A and simulated sample B) with different concentrations of low molecular weight (low carbon number) paraffin were prepared. Sample-A was prepared to contain more low-molecular-weight paraffin than Sample-B, and its composition was confirmed by GC.
[0018] 次に、試料—Aおよび試料—Bのそれぞれに溶存する酸素の量を、モレキュラーシ ーブ 13Xを充填した 3mの長さのカラムを用いて、ガスクロマトグラフ法(熱伝導度検 出器搭載)により、求めた。結果を図 1に示す。図 1から、試料 Aは試料 Bに比べ て溶存酸素が多いことがわかった。これは、試料 Aは、試料 Bに比べて、低分子 量のイソパラフィンを多く含むためと考えられる。 [0018] Next, the amount of oxygen dissolved in each of the sample-A and the sample-B is determined by molecular sieve. Using a 3 m long column packed with probe 13X, the gas chromatographic method (with thermal conductivity detector) was used. The results are shown in Figure 1. Figure 1 shows that Sample A has more dissolved oxygen than Sample B. This is probably because sample A contains more low-molecular-weight isoparaffin than sample B.
[0019] 炭素数 8〜 12のノルマルパラフィンとイソパラフィン(2 メチルパラフィン)について 、溶存酸素量を測定した。その結果を図 2に示す。なお、図 2の縦軸は、室温での溶 存酸素濃度である(図 1も同様)。図 2から、(1)イソパラフィンはノルマルパラフィンに 比べて、酸素を多く含むこと、(2)同じタイプのパラフィンでは、炭素数が小さいほど 酸素を多く含むこと、がわかった。  [0019] The amount of dissolved oxygen was measured for normal paraffins and isoparaffins (2 methyl paraffins) having 8 to 12 carbon atoms. The result is shown in Fig.2. The vertical axis in FIG. 2 is the dissolved oxygen concentration at room temperature (same for FIG. 1). Figure 2 shows that (1) isoparaffin contains more oxygen than normal paraffin, and (2) the same type of paraffin contains more oxygen as the carbon number decreases.
[0020] 試料— Aおよび試料— Bのそれぞれに、ナイロン— 66 (以下、単に「ナイロン」という )を浸漬した。 500時間浸漬後のそれぞれのナイロンの表面層を切り取り、ヘリウム中 、 250°Cで加熱し、発生したガスをガスクロ '質量分析法で分析した。結果を図 3示す [0020] Nylon-66 (hereinafter simply referred to as "nylon") was immersed in each of Sample-A and Sample-B. The surface layer of each nylon after being immersed for 500 hours was cut out, heated in helium at 250 ° C., and the generated gas was analyzed by gas chromatography / mass spectrometry. The result is shown in Fig. 3.
Yes
[0021] 図 3から、試料 Aに浸漬されたナイロンは、試料 Bに浸漬されたナイロンに比べ て、(1)低分子量のパラフィンを多く含むことがわかった。また、(2)ナイロンに侵入し たパラフィンは元の試料に比べて、イソパラフィンの割合が高いこと、がわかった。  [0021] From Fig. 3, it was found that nylon immersed in sample A contained (1) more low-molecular-weight paraffin than nylon immersed in sample B. It was also found that (2) the paraffin infiltrated into nylon had a higher proportion of isoparaffin than the original sample.
[0022] 上記それぞれのナイロンの表面より採取した試料をマトリックス支援レーザー脱離 質量分析法(MALDI— MS)で分析した。また、何も処理を施していないナイロン( 図 4 (A) )、酸化処理を施したナイロン(図 4 (D) )、および加水分解処理を施したナイ ロン(図 4 (E) )のそれぞれについても同様の分析を行った。結果を図 4に示す。図 4 から、試料 Aに浸漬されたナイロンのマススペクトルは、大気中で強制的に酸化さ せたナイロンのマススペクトルとほぼ一致することがわかった。即ち、試料 Aに浸漬 されたナイロンは酸化していることがわかった。なお、図 4 (B)は試料一 Bに浸漬した ナイロンであり、図 4 (C)は試料 Aに浸漬したナイロンである。  [0022] Samples collected from the respective nylon surfaces were analyzed by matrix-assisted laser desorption mass spectrometry (MALDI-MS). Nylon without any treatment (Fig. 4 (A)), nylon with oxidation treatment (Fig. 4 (D)), and nylon with hydrolysis treatment (Fig. 4 (E)), respectively. The same analysis was conducted for. The results are shown in Fig. 4. From Fig. 4, it was found that the mass spectrum of nylon immersed in Sample A almost coincided with the mass spectrum of nylon that was forcibly oxidized in the atmosphere. That is, it was found that the nylon immersed in Sample A was oxidized. Fig. 4 (B) shows nylon immersed in Sample 1B, and Fig. 4 (C) shows nylon immersed in Sample A.
[0023] 上記それぞれのナイロンの表面を斜めに切削し、その断面を試料の実際の深さに して、約 4 111の間隔で、赤外分光分析した。結果を図 5に示す。なお、縦軸は、酸 化で生じたカルボニル基の吸収(171 Ocm"1)とナイロン主鎖のメチレンに由来する 吸収(2930cm—1)との強度比を示す。 [0024] 図 5から、試料 Aに浸漬されたナイロンは、表面から 400 mの深さまで、酸化し ていること、一方、試料 Bに浸漬されたナイロンは、表面から数 mのみ酸化してい ることがわかった。 [0023] The surface of each of the above nylons was cut obliquely, and the cross-section was made to the actual depth of the sample, and infrared spectroscopic analysis was performed at intervals of about 4111. The results are shown in FIG. The vertical axis shows the intensity ratio between the absorption of carbonyl groups generated by oxidation (171 Ocm " 1 ) and the absorption derived from methylene in the nylon main chain (2930 cm- 1 ). [0024] From FIG. 5, nylon immersed in sample A is oxidized to a depth of 400 m from the surface, while nylon immersed in sample B is oxidized only a few meters from the surface. I understood it.
[0025] 試料 Aに浸漬されたナイロンと試料 Bに浸漬されたナイロンの断面を赤外分光 イメージングで分析した。結果を図 6に示す。なお、縦軸は、酸化で生じたカルボ二 ル基の吸収(1710cm— とナイロン主鎖のアミド結合に由来する吸収(Ι δ δΟ π 1) との強度比を示す。図 6から、試料 Αの GTL軽油に浸漬されたナイロンは、表面か ら 400 mの深さまで、酸化していることがわかる。これらの結果から、試料一 Aに浸 漬されたナイロンは、次の(1 )〜(6)のようにして劣化した可能性が高!/、ことが判った[0025] Cross sections of nylon immersed in sample A and nylon immersed in sample B were analyzed by infrared spectroscopic imaging. The result is shown in FIG. The vertical axis shows the intensity ratio between the absorption of the carbonyl group generated by oxidation (1710 cm— and the absorption derived from the amide bond of the nylon main chain (Ι δ δ π π 1 ). It can be seen that the nylon immersed in the GTL diesel oil is oxidized from the surface to a depth of 400 m. From these results, the nylon immersed in Sample A is the following (1) to ( It was found that there was a high possibility of deterioration as shown in 6)!
Yes
[0026] (1)試料 Aに含まれる低分子量のパラフィンがナイロンに侵入する。  [0026] (1) Low molecular weight paraffin contained in Sample A enters nylon.
(2)それと共に、ノ ラフィンに溶存して!/、る水と酸素とがナイロンに侵入する。  (2) At the same time, it dissolves in norafin! /, And water and oxygen enter the nylon.
(3)侵入したパラフィンが酸化し、ラジカルを生成する。  (3) The invading paraffin is oxidized to generate radicals.
(4)パラフィンが酸化したラジカルは分子内水素引き抜き反応によって、さらに、多数 のラジカルを生ずる。当該内容の詳細については、「Sabrina Carroccio, Conce tto Puglisi and Giorgio Montaudo, MALDI Investigation of the P hotooxidation of Nylon— 66, Macromolecules 2004, 37, (16) , 6037 6049」を参照、すること力 Sできる。  (4) Radicals oxidized from paraffins generate many more radicals by intramolecular hydrogen abstraction reaction. For details of the contents, see “Sabrina Carroccio, Concerto Puglisi and Giorgio Montaudo, MALDI Investigation of the Photooxidation of Nylon—66, Macromolecules 2004, 37, (16), 6037 6049”.
(5)これらのラジカルがナイロン分子のアミド結合に隣接する炭素を酸化し、分子鎖 を切断する。  (5) These radicals oxidize the carbon adjacent to the amide bond of the nylon molecule and break the molecular chain.
(6)酸化と低分子化したナイロン分子間の水素結合が低下し、伸びが低下する。  (6) The hydrogen bond between the oxidized and low molecular weight nylon molecules decreases, and the elongation decreases.
[0027] 以上より、試料中の炭素数 14以下のパラフィンがナイロンを膨潤させ、炭素数 14以 下のイソパラフィン力 S、ナイロン内部で酸化して、ナイロンを酸化させていることがわか つた。 [0027] From the above, it was found that the paraffin having a carbon number of 14 or less in the sample swells the nylon, oxidizes the isoparaffinic force S having a carbon number of 14 or less, and oxidizes inside the nylon, thereby oxidizing the nylon.
[0028] [実験例 2] [0028] [Experiment 2]
炭素数 7から 13のノルマルパラフィンと炭素数 7から 12のイソパラフィン(2 メチル パラフィン)およびヘプタンの異性体(炭素数 7)の試薬で、下記表 1に示す組成のモ デル燃料を調製した。なお、表 1中の「n— C7〜!!一C13」は、ノルマルヘプタン、ノ ルマルオクタン、ノルマルノナン、ノルマルデカン、ノルマルゥンデカン、ノルマルドデ カン、ノルマルトリデカンを表し、「2— Me— C6〜2— Me— C l l」は、 2—メチルへキ サン、 2—メチルヘプタン、 2—メチルオクタン、 2—メチルノナン、 2—メチルデカン、 2 —メチルゥンデカンを表し、「n— C7〜!!一 C 13および 2— Me— C6〜2— Me— C 1 1 」は、上記両者の混合物を表す。また、「〇」は、内部標準として、ノルマルへキサデ カンを 2mlカロえたことを表す。 A model fuel having the composition shown in Table 1 below was prepared using a normal paraffin having 7 to 13 carbon atoms, isoparaffin having 7 to 12 carbon atoms (2 methyl paraffin) and heptane isomers (7 carbon atoms). In Table 1, “n—C7 ~! 1C13” means normal heptane, no Represents normal octane, normal nonane, normal decane, normal decane, normal dodecane, and normal tridecane. , 2-Methyloctane, 2-Methylnonane, 2-Methyldecane, 2-Methylundecane, "N-C7 ~! 1 C13 and 2-Me-C6-2-2-Me-C1 1" Represents a mixture. “◯” indicates that 2 ml of normal hexadecane was obtained as an internal standard.
[0029] [表 1] [0029] [Table 1]
Figure imgf000008_0001
Figure imgf000008_0001
[0030] そして、これらのモデル燃料にナイロンを浸漬し、浸漬前後のモデル燃料をガスクロ[0030] Then, nylon is immersed in these model fuels, and the model fuels before and after immersion are gas chromatographed.
/質量分析法で、浸漬前後のナイロンを熱脱着 ·ガスクロ Z質量分析法で分析した。 浸漬前後のモデル燃料をガスクロ/質量分析法で分析した結果を図 7に示す。 / Nylon before and after immersion was analyzed by thermal desorption and gas chromatography Z mass spectrometry by mass spectrometry. Figure 7 shows the results of gas chromatographic / mass spectrometry analysis of the model fuel before and after immersion.
[0031] 図 7から、以下のことがわかった。 [0031] From Fig. 7, the following was found.
( 1 )イソパラフィンは、ノルマルパラフィンに比べて酸化し易い。  (1) Isoparaffins are more easily oxidized than normal paraffins.
(2)イソパラフィンから生じるアルコールの量は、ノルマルパラフィンから生じるアルコ ールの量の約 100倍である。  (2) The amount of alcohol produced from isoparaffin is about 100 times the amount of alcohol produced from normal paraffin.
(3)異性体の構造によって、生成するアルコールの量が異なる。即ち、酸化し易さが 異なる。  (3) The amount of alcohol produced varies depending on the structure of the isomer. In other words, the ease of oxidation is different.
[0032] また、浸漬前後のナイロンを、熱脱着'ガスクロ/質量分析法で分析した結果を図 8 に示す。なお、このとき、ノルマルパラフィンに浸漬されたナイロンから、酸化生成物 は検出されなかった。  [0032] FIG. 8 shows the results of analyzing the nylon before and after immersion by thermal desorption / gas chromatography / mass spectrometry. At this time, no oxidation product was detected from nylon immersed in normal paraffin.
[0033] 図 8から、以下のことがわかった。  [0033] From Fig. 8, the following was found.
( 1 )イソパラフィン、ノルマルパラフィン共に、低分子量のパラフィンほど、ナイロンに 侵入し易い。 (1) For both paraffins and normal paraffins, the lower molecular weight paraffin Easy to penetrate.
(2)同じ炭素数のノルマルパラフィンとイソパラフィンを比較した場合、イソパラフィン の方が侵入しやすい。  (2) When normal paraffin and isoparaffin with the same carbon number are compared, isoparaffin is easier to penetrate.
(3)イソパラフィンに浸漬されたナイロンからアルコールが認められる力 ノルマルパ ラフィンに浸漬されたナイロンにアルコールは認められない。  (3) Force that alcohol can be recognized from nylon immersed in isoparaffin No alcohol is detected in nylon immersed in normal paraffin.
[0034] 以上、ナイロンの膨潤を抑えるためには、 GTL軽油から、炭素数 14以下のパラフィ ンを少なくすること、そして、ナイロンの酸化および伸びの低下を抑えるためには、 G TL軽油から、炭素数 14以下のイソパラフィンを少なくすることが重要であることがわ かった。  [0034] As described above, in order to suppress the swelling of nylon, from GTL diesel oil, to reduce the number of paraffins having 14 or less carbon atoms, and to suppress the reduction of nylon oxidation and elongation, from GTL diesel oil, It was found that it is important to reduce the number of isoparaffins with 14 or less carbon atoms.
[0035] [実施例]  [0035] [Example]
下記成分 Aおよび成分 Bを下記表 2に示す配合でモデル燃料 (軽油) A〜Eを作製 した。なお、いずれのモデル燃料中のパラフィンの濃度は 97質量%以上である。  Model fuels (light oils) A to E were prepared with the following components A and B blended as shown in Table 2 below. The concentration of paraffin in any model fuel is 97% by mass or more.
[0036] 成分 A:炭素数 8, 10, 12, 14のノルマルパラフィンの等量混合物 [0036] Component A: Equal mixture of normal paraffins having 8, 10, 12, 14 carbon atoms
成分 B :炭素数 8および 9のイソパラフィンの混合物(2—メチルヘプタン: 3—メチル ヘプタン: 2—メチルオクタン 4 : 3 : 3 (体積比) )  Component B: Mixture of isoparaffins having 8 and 9 carbon atoms (2-methylheptane: 3-methylheptane: 2-methyloctane 4: 3: 3 (volume ratio))
[0037] 上記各モデル燃料につ!/、て、下記のようにして、作製した試験片を浸漬処理した後[0037] After each of the above model fuels! /, After immersing the prepared test piece as follows:
、引張試験を行った。 A tensile test was performed.
[0038] (1)試験片の作製: [0038] (1) Preparation of test piece:
ナイロン— 66を JISK7162 (IS〇3167)に準じて成形し、試験片を作製した。  Nylon-66 was molded according to JISK7162 (IS 03167) to produce a test piece.
[0039] (2)浸漬処理: [0039] (2) Immersion treatment:
内容積 300mlの加圧容器(内径: 45mm、内側の高さ: 235mm)にモデル燃料 25 Omlを入れ、この中に試験片 3本を浸漬し、 120°Cで 475時間、加熱した。なお、試 験片は、浸漬に先立ち、真空下、 100°Cで 4時間乾燥しておいた。  A model container of 25 Oml was placed in a pressurized container (inner diameter: 45 mm, inner height: 235 mm) having an internal volume of 300 ml, and three test pieces were immersed therein and heated at 120 ° C. for 475 hours. The specimens were dried for 4 hours at 100 ° C under vacuum prior to immersion.
[0040] (3)引張試験: [0040] (3) Tensile test:
浸漬後の試験片を、引張試験装置(島津製作所製 AG— lOkNC)で、 IS0527 に準じて引張試験 (但し、引張速度: 50mm/min)を行った。なお、浸漬後の試験 片は、引張試験の直前まで、デシケータ内に保存しておいた。  The test piece after immersion was subjected to a tensile test according to IS0527 (however, tensile speed: 50 mm / min) using a tensile test device (AG-lOkNC manufactured by Shimadzu Corporation). The specimen after immersion was stored in a desiccator until immediately before the tensile test.
[0041] (4)結果: 引張試験の結果を下記表 2に示す。表 2は試験片 3本にっレ、て測定した破断時伸 びの平均値を示す。表 2の結果をプロットした図を、図 9に示す。図 9から、イソバラフ インの濃度が 10質量%を超えると、ナイロンの試験片の伸びが急激に低下すること がわかった。 [0041] (4) Results: The results of the tensile test are shown in Table 2 below. Table 2 shows the average elongation at break measured by three test pieces. A plot of the results in Table 2 is shown in Figure 9. From Fig. 9, it was found that the elongation of the nylon specimen decreases rapidly when the concentration of isobarafine exceeds 10% by mass.
[表 2] [Table 2]
Figure imgf000010_0001
Figure imgf000010_0001
なお、 日本出願の特願 2006— 275311号の開示は、その全体が参照により本明 細書に取り込まれる。 The entire disclosure of Japanese Patent Application No. 2006-275311, filed in Japan, is incorporated herein by reference.
また、本明細書に記載された全ての文献、特許出願、および技術規格は、個々の 文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々 に記された場合と同程度に、本明細書中に参照により取り込まれる。  In addition, all documents, patent applications, and technical standards described in this specification are the same as if each document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Which is incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] ノ ラフィンの濃度が 97質量%以上であり、かつ、前記パラフィンに含まれる炭素数 1 4以下のイソパラフィンの濃度が 10質量%以下であることを特徴とする軽油組成物。  [1] A gas oil composition, wherein the concentration of norafin is 97% by mass or more and the concentration of isoparaffin having 14 or less carbon atoms contained in the paraffin is 10% by mass or less.
[2] 炭素数 15以上の高分岐イソパラフィンを含有することを特徴とする請求項 1に記載 の軽油組成物。  [2] The light oil composition according to claim 1, comprising a highly branched isoparaffin having 15 or more carbon atoms.
PCT/JP2007/069584 2006-10-06 2007-10-05 Light oil composition WO2008044641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/444,339 US20100012551A1 (en) 2006-10-06 2007-10-05 Light oil composition
EP07829322A EP2083061A4 (en) 2006-10-06 2007-10-05 Light oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-275311 2006-10-06
JP2006275311A JP2008094879A (en) 2006-10-06 2006-10-06 Light oil composition

Publications (1)

Publication Number Publication Date
WO2008044641A1 true WO2008044641A1 (en) 2008-04-17

Family

ID=39282837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069584 WO2008044641A1 (en) 2006-10-06 2007-10-05 Light oil composition

Country Status (4)

Country Link
US (1) US20100012551A1 (en)
EP (1) EP2083061A4 (en)
JP (1) JP2008094879A (en)
WO (1) WO2008044641A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10540729B1 (en) 2015-12-30 2020-01-21 Wells Fargo Bank, N.A. Mobile wallets with packaged travel services
US10853783B1 (en) 2015-12-30 2020-12-01 Wells Fargo Bank, N.A. Processing online transactions with an intermediary system
US10902405B1 (en) 2016-05-11 2021-01-26 Wells Fargo Bank, N.A. Transient mobile wallets
US11080685B1 (en) 2017-06-12 2021-08-03 Weils Fargo Bank, N.A. Direct payment authorization path

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217575A (en) * 1997-11-07 1999-08-10 Toyota Central Res & Dev Lab Inc Light oil for reducing particulate emission

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958845A (en) * 1995-04-17 1999-09-28 Union Oil Company Of California Non-toxic, inexpensive synthetic drilling fluid
US5814109A (en) * 1997-02-07 1998-09-29 Exxon Research And Engineering Company Diesel additive for improving cetane, lubricity, and stability
EP1121401A1 (en) * 1998-10-05 2001-08-08 Sasol Technology (Proprietary) Limited Biodegradable middle distillates and production thereof
US7217852B1 (en) * 1998-10-05 2007-05-15 Sasol Technology (Pty) Ltd. Process for producing middle distillates and middle distillates produced by that process
JP3824490B2 (en) * 1998-10-05 2006-09-20 セイソル テクノロジー (プロプライエタリー) リミテッド Synthetic middle distillate fraction
GB2415436B (en) * 2003-04-11 2007-01-31 Sasol Technology Low sulphur diesel fuel and aviation turbine fuel
US8053614B2 (en) * 2005-12-12 2011-11-08 Neste Oil Oyj Base oil
US20070142242A1 (en) * 2005-12-15 2007-06-21 Gleeson James W Lubricant oil compositions containing GTL base stock(s) and/or base oil(s) and having improved resistance to the loss of viscosity and weight and a method for improving the resistance to loss of viscosity and weight of GTL base stock(s) and/or base oil(s) lubricant oil formulations
EP2420550B1 (en) * 2006-03-30 2013-07-03 JX Nippon Oil & Energy Corporation Light oil composition
EP2011851A4 (en) * 2006-03-31 2011-05-25 Nippon Oil Corp Light oil compositions
US20070232503A1 (en) * 2006-03-31 2007-10-04 Haigh Heather M Soot control for diesel engine lubricants
JP5393372B2 (en) * 2008-09-25 2014-01-22 昭和シェル石油株式会社 Hydrocarbon fuel oil for paraffin-based fuel cell systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217575A (en) * 1997-11-07 1999-08-10 Toyota Central Res & Dev Lab Inc Light oil for reducing particulate emission

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OGAWA T. ET AL.: "Influence of Properties and Composition of Diesel Fuels on Particulate Emissions Part 2. Fuels for Single -Cylinder Engine Test in the Combustion Analysis for the WG of JCAP", R&D REVIEW OF TOYOTA CRDL, vol. 38, no. 4, 2003, pages 54 - 67, XP003022302 *
OUCHI H.: "Diesel Jidoshayo Nenryo to Haishutsu Busshitsu", JARI RESEARCH JOURNAL, vol. 7, no. 4, 1985, pages 127 - 131, XP003022303 *
See also references of EP2083061A4 *
TSUJIMURA T. ET AL.: "GTL Nenryo no Bussei to Engine.Sharyo Hai-gas Tokusei", JOURNAL OF THE JAPAN INSTITUTE OF MARINE ENGINEERING, vol. 40, no. 6, 2005, pages 771 - 776, XP003022304 *

Also Published As

Publication number Publication date
JP2008094879A (en) 2008-04-24
EP2083061A1 (en) 2009-07-29
EP2083061A4 (en) 2013-03-20
US20100012551A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
Lin et al. Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test
Westerholm et al. Comparison of exhaust emissions from Swedish environmental classified diesel fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) reference fuel: a chemical and biological characterization, with viewpoints on cancer risk
Jaecker-Voirol et al. Glycerin for new biodiesel formulation
Haas et al. Engine performance of biodiesel fuel prepared from soybean soapstock: a high quality renewable fuel produced from a waste feedstock
Lee et al. Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol–biodiesel–diesel blend of fuels
CA2692459C (en) A biofuel composition, process of preparation and a method of fueling thereof
Lin et al. Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends
JP2006028493A (en) Fuel oil composition for premix compression self-ignition engine
JPWO2009075249A1 (en) Diesel fuel composition
WO2008044641A1 (en) Light oil composition
KR20090105931A (en) Novel single phase hydrous hydrocarbon?based fuel, methods for producing the same and compositions for use in such method
US20060156620A1 (en) Fuels for compression-ignition engines
JP2005023136A (en) Gas oil composition
JP4567948B2 (en) Light oil composition and method for producing the same
JP2004269685A (en) Gas oil composition and its manufacturing method
Shah et al. Carbonyls emission comparison of a turbocharged diesel engine fuelled with diesel, biodiesel, and biodieselediesel blend
Yuan et al. Reducing carbonyl emissions from a heavy-duty diesel engine at US transient cycle test by use of paraffinic/biodiesel blends
Tsietsi et al. Reduction of sulphur in crude tyre oil by gas-liquid phase oxidative adsorption
Karavalakis et al. Diesel/soy methyl ester blends emissions profile from a passenger vehicle operated on the European and the Athens driving cycles
JP5615214B2 (en) Light oil composition and method for producing the same
CZArNOCKA et al. Characterization of the polycyclic aromatic hydrocarbons emitted from a compression ignition engine powered with biofuels of the 1st and 2nd generation
Karavalakis et al. Effect of biodiesel origin on the regulated and PAH emissions from a modern passenger car
Gopalan et al. The impact of biodiesel and alternative diesel fuel components on filter blocking through accelerated testing on a novel high pressure common rail non-firing rig
Karavalakis et al. Regulated and unregulated emissions of a Euro 4 SUV operated with diesel and soy-based biodiesel blends
JP4119190B2 (en) Light oil composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12444339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007829322

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)