US20070232503A1 - Soot control for diesel engine lubricants - Google Patents
Soot control for diesel engine lubricants Download PDFInfo
- Publication number
- US20070232503A1 US20070232503A1 US11/717,343 US71734307A US2007232503A1 US 20070232503 A1 US20070232503 A1 US 20070232503A1 US 71734307 A US71734307 A US 71734307A US 2007232503 A1 US2007232503 A1 US 2007232503A1
- Authority
- US
- United States
- Prior art keywords
- base
- oil
- base oil
- base stock
- stock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004071 soot Substances 0.000 title claims abstract description 39
- 239000010705 motor oil Substances 0.000 title abstract description 12
- 239000002199 base oil Substances 0.000 claims abstract description 163
- 239000000203 mixture Substances 0.000 claims abstract description 104
- 238000000034 method Methods 0.000 claims abstract description 61
- 239000002904 solvent Substances 0.000 claims abstract description 58
- 230000003197 catalytic effect Effects 0.000 claims abstract description 43
- 239000010687 lubricating oil Substances 0.000 claims abstract description 43
- 239000003921 oil Substances 0.000 claims abstract description 41
- 239000003208 petroleum Substances 0.000 claims abstract description 27
- 238000009472 formulation Methods 0.000 claims abstract description 22
- 239000000654 additive Substances 0.000 claims description 42
- 239000002480 mineral oil Substances 0.000 claims description 30
- 235000010446 mineral oil Nutrition 0.000 claims description 30
- 230000000996 additive effect Effects 0.000 claims description 14
- 230000000051 modifying effect Effects 0.000 claims description 6
- 239000004034 viscosity adjusting agent Substances 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 6
- 239000002585 base Substances 0.000 description 116
- 229930195733 hydrocarbon Natural products 0.000 description 62
- 239000000463 material Substances 0.000 description 61
- 150000002430 hydrocarbons Chemical class 0.000 description 59
- 239000001993 wax Substances 0.000 description 57
- 239000003054 catalyst Substances 0.000 description 49
- -1 e.g. Chemical class 0.000 description 46
- 230000008569 process Effects 0.000 description 38
- 239000002270 dispersing agent Substances 0.000 description 35
- 229910052751 metal Inorganic materials 0.000 description 34
- 239000002184 metal Substances 0.000 description 34
- 229910052717 sulfur Inorganic materials 0.000 description 34
- 239000003599 detergent Substances 0.000 description 33
- 239000000314 lubricant Substances 0.000 description 33
- 239000004215 Carbon black (E152) Substances 0.000 description 32
- 239000011593 sulfur Substances 0.000 description 32
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 31
- 150000001875 compounds Chemical class 0.000 description 26
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 24
- 241000282326 Felis catus Species 0.000 description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 238000009835 boiling Methods 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 20
- 239000003795 chemical substances by application Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 238000003786 synthesis reaction Methods 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 16
- 239000003607 modifier Substances 0.000 description 16
- 150000001412 amines Chemical class 0.000 description 15
- 239000003963 antioxidant agent Substances 0.000 description 15
- 235000006708 antioxidants Nutrition 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 12
- 229910052698 phosphorus Inorganic materials 0.000 description 12
- 239000011574 phosphorus Substances 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- 239000007866 anti-wear additive Substances 0.000 description 11
- 230000008719 thickening Effects 0.000 description 11
- 238000002518 distortionless enhancement with polarization transfer Methods 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 125000001183 hydrocarbyl group Chemical group 0.000 description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 150000002989 phenols Chemical class 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 229920000768 polyamine Polymers 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229910001868 water Inorganic materials 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000004480 active ingredient Substances 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 125000002947 alkylene group Chemical group 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- 238000006317 isomerization reaction Methods 0.000 description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 6
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 239000002518 antifoaming agent Substances 0.000 description 6
- 150000004982 aromatic amines Chemical class 0.000 description 6
- 239000002956 ash Substances 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 238000004517 catalytic hydrocracking Methods 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 239000002530 phenolic antioxidant Substances 0.000 description 6
- 239000010457 zeolite Substances 0.000 description 6
- 239000005069 Extreme pressure additive Substances 0.000 description 5
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 5
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical class CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000007859 condensation product Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000003879 lubricant additive Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 230000008707 rearrangement Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229940014800 succinic anhydride Drugs 0.000 description 4
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229920002367 Polyisobutene Polymers 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000012990 dithiocarbamate Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 125000005456 glyceride group Chemical group 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 150000003873 salicylate salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003900 succinic acid esters Chemical class 0.000 description 3
- 150000003460 sulfonic acids Chemical class 0.000 description 3
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- NFIDBGJMFKNGGQ-UHFFFAOYSA-N 2-(2-methylpropyl)phenol Chemical compound CC(C)CC1=CC=CC=C1O NFIDBGJMFKNGGQ-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- IHQZONJYGAQKGK-UHFFFAOYSA-N 2-tert-butyl-4-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 IHQZONJYGAQKGK-UHFFFAOYSA-N 0.000 description 2
- XCIGNJPXXAPZDP-UHFFFAOYSA-N 2-tert-butyl-4-heptylphenol Chemical compound CCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 XCIGNJPXXAPZDP-UHFFFAOYSA-N 0.000 description 2
- ZXENURKTAAQNOU-UHFFFAOYSA-N 2-tert-butyl-4-octylphenol Chemical compound CCCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 ZXENURKTAAQNOU-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 2
- 239000005749 Copper compound Substances 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical class C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 230000002152 alkylating effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052728 basic metal Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- 150000001880 copper compounds Chemical class 0.000 description 2
- 150000001924 cycloalkanes Chemical class 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 229960002377 dixanthogen Drugs 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002193 fatty amides Chemical class 0.000 description 2
- 229910001657 ferrierite group Inorganic materials 0.000 description 2
- 238000002397 field ionisation mass spectrometry Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000743 hydrocarbylene group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000005078 molybdenum compound Substances 0.000 description 2
- 150000002752 molybdenum compounds Chemical class 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003870 salicylic acids Chemical class 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 150000004867 thiadiazoles Chemical class 0.000 description 2
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 2
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 description 1
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 1
- QQWOBTZNLVCPMY-UHFFFAOYSA-N 1,2,3-benzothiadiazole-4-thiol Chemical class SC1=CC=CC2=C1N=NS2 QQWOBTZNLVCPMY-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- SZATXRHXOOLEFV-UHFFFAOYSA-N 2,6-ditert-butyl-4-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SZATXRHXOOLEFV-UHFFFAOYSA-N 0.000 description 1
- OEHMRECZRLQSRD-UHFFFAOYSA-N 2,6-ditert-butyl-4-heptylphenol Chemical compound CCCCCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 OEHMRECZRLQSRD-UHFFFAOYSA-N 0.000 description 1
- RRKBRXPIJHVKIC-UHFFFAOYSA-N 2-(2-ethylhexyl)phenol Chemical compound CCCCC(CC)CC1=CC=CC=C1O RRKBRXPIJHVKIC-UHFFFAOYSA-N 0.000 description 1
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 1
- DPEWNGIEFYPHDU-UHFFFAOYSA-L 2-ethoxyethoxymethanedithioate;nickel(2+) Chemical compound [Ni+2].CCOCCOC([S-])=S.CCOCCOC([S-])=S DPEWNGIEFYPHDU-UHFFFAOYSA-L 0.000 description 1
- LIPXCSZFXJTFSK-UHFFFAOYSA-N 2-tert-butyl-4-dodecyl-6-methylphenol Chemical compound CCCCCCCCCCCCC1=CC(C)=C(O)C(C(C)(C)C)=C1 LIPXCSZFXJTFSK-UHFFFAOYSA-N 0.000 description 1
- PMRDUCIMVOFYBX-UHFFFAOYSA-N 2-tert-butyl-4-heptyl-6-methylphenol Chemical compound CCCCCCCC1=CC(C)=C(O)C(C(C)(C)C)=C1 PMRDUCIMVOFYBX-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- HSZLIPQSBYYLOL-UHFFFAOYSA-N C1=CC=CC=C1.CC.CO.COC(C)=O Chemical compound C1=CC=CC=C1.CC.CO.COC(C)=O HSZLIPQSBYYLOL-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical class [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- FVIGODVHAVLZOO-UHFFFAOYSA-N Dixanthogen Chemical compound CCOC(=S)SSC(=S)OCC FVIGODVHAVLZOO-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 238000006612 Kolbe reaction Methods 0.000 description 1
- RVRHBLSINNOLPI-UHFFFAOYSA-N Lythridin Natural products COc1ccc(cc1OC)C2CC(CC3CCCCN23)OC(=O)CC(O)c4ccc(O)cc4 RVRHBLSINNOLPI-UHFFFAOYSA-N 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical class [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- QAPVYZRWKDXNDK-UHFFFAOYSA-N P,P-Dioctyldiphenylamine Chemical compound C1=CC(CCCCCCCC)=CC=C1NC1=CC=C(CCCCCCCC)C=C1 QAPVYZRWKDXNDK-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- REZIAHGWWSJFCN-UHFFFAOYSA-L S(N)([S-])=O.[Cu+2].S(N)([S-])=O Chemical class S(N)([S-])=O.[Cu+2].S(N)([S-])=O REZIAHGWWSJFCN-UHFFFAOYSA-L 0.000 description 1
- GLOYGJPNNKTDIG-UHFFFAOYSA-N SC=1N=NSC=1S Chemical class SC=1N=NSC=1S GLOYGJPNNKTDIG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- GMACPFCYCYJHOC-UHFFFAOYSA-N [C].C Chemical compound [C].C GMACPFCYCYJHOC-UHFFFAOYSA-N 0.000 description 1
- XYRMLECORMNZEY-UHFFFAOYSA-B [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S Chemical class [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S XYRMLECORMNZEY-UHFFFAOYSA-B 0.000 description 1
- PFRUBEOIWWEFOL-UHFFFAOYSA-N [N].[S] Chemical compound [N].[S] PFRUBEOIWWEFOL-UHFFFAOYSA-N 0.000 description 1
- TXNOGMGLAQXOQO-UHFFFAOYSA-N [di(propan-2-yl)-sulfanylidene-lambda6-sulfanylidene]-dihydroxy-sulfanyl-lambda5-phosphane Chemical compound CC(C)S(=P(O)(O)S)(=S)C(C)C TXNOGMGLAQXOQO-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910000316 alkaline earth metal phosphate Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 150000003819 basic metal compounds Chemical class 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- VBIGULIJWJPALH-UHFFFAOYSA-L calcium;2-carboxyphenolate Chemical class [Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O VBIGULIJWJPALH-UHFFFAOYSA-L 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 235000017168 chlorine Nutrition 0.000 description 1
- 125000001309 chloro group Chemical class Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- LTNZEXKYNRNOGT-UHFFFAOYSA-N dequalinium chloride Chemical compound [Cl-].[Cl-].C1=CC=C2[N+](CCCCCCCCCC[N+]3=C4C=CC=CC4=C(N)C=C3C)=C(C)C=C(N)C2=C1 LTNZEXKYNRNOGT-UHFFFAOYSA-N 0.000 description 1
- UZEFVQBWJSFOFE-UHFFFAOYSA-N dibutyl hydrogen phosphite Chemical compound CCCCOP(O)OCCCC UZEFVQBWJSFOFE-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 125000005028 dihydroxyaryl group Chemical group 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 150000004870 dithiazoles Chemical class 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000001455 metallic ions Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- BQLZCNHPJNMDIO-UHFFFAOYSA-N n-(4-octylphenyl)naphthalen-1-amine Chemical compound C1=CC(CCCCCCCC)=CC=C1NC1=CC=CC2=CC=CC=C12 BQLZCNHPJNMDIO-UHFFFAOYSA-N 0.000 description 1
- SNWVRVDHQRBBFG-UHFFFAOYSA-N n-phenyl-n-(2,4,4-trimethylpentan-2-yl)naphthalen-1-amine Chemical compound C=1C=CC2=CC=CC=C2C=1N(C(C)(C)CC(C)(C)C)C1=CC=CC=C1 SNWVRVDHQRBBFG-UHFFFAOYSA-N 0.000 description 1
- NTNWKDHZTDQSST-UHFFFAOYSA-N naphthalene-1,2-diamine Chemical class C1=CC=CC2=C(N)C(N)=CC=C21 NTNWKDHZTDQSST-UHFFFAOYSA-N 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000004707 phenolate Chemical class 0.000 description 1
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
- C10M111/02—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
- C10M111/04—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/041—Mixtures of base-materials and additives the additives being macromolecular compounds only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/041—Carbon; Graphite; Carbon black
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
- C10M2205/173—Fisher Tropsch reaction products used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
- C10N2030/041—Soot induced viscosity control
Definitions
- the present invention relates to diesel engine lubricating oils and to the control of soot induced viscosity increase of the lubricating used in such engines.
- NOx emission can be reduced by lowering the temperature at which the fuel is combusted in the engine. Typically this is achieved by retarding the combustion, i.e., by injecting the fuel shortly after the peak temperature is reached in the cylinder.
- soot may be alleviated to a significant extent by operating the diesel engine at relatively higher temperatures.
- the higher temperatures whilst mitigating the formation of soot also result in the formation of increased amounts of NOx. If, however, the engine temperature is lowered, incomplete combustion ensues and whilst this reduces the amount of NOx formed in the emissions, it also substantially increases the amount of soot generated.
- the soot so formed can manifest itself in two ways. It can either appear as a thick black smoke emitted from the exhaust of the vehicle or can be accumulated in the engine lubricant. As the soot builds up in the lubricant, the latter becomes more and more viscous and upon reaching a critical value can cause gelation of the lubricant and may eventually cause seizure of the engine.
- dispersants function by forming a coating of the dispersant on the surface of soot particles and thereby minimizing the tendency of the soot particles to agglomerate.
- the potency of the dispersants to perform this function declines with time and thus, one of the methods of improving the useful life of lubricants, particularly crankcase lubricants, would be to improve the dispersancy retention capability of crankcase lubricants. This may be achieved, e.g., by minimizing the risk of oxidation of the dispersants under the conditions prevalent in the engines during use.
- Hydrocarbon base oils have differing solvency characteristics that affect their capability to solubilize performance additives.
- Highly paraffinic hydrocarbon base oils (those having low levels of aromaticity) are known to have low-to-poor additive solubility characteristics.
- low-solvency hydrocarbon base oils include polyalpha olefins (PAO) which are 100% isoparaffinic and have essentially 0% aromatics content.
- PAO polyalpha olefins
- wax isomerate base oils in particular hydroisomerized Fischer-Tropsch (F-T) waxes, often called Gas-to-Liquids (GTL) lubricant base oils, are very highly paraffinic and have essentially 0% aromatics content.
- the base stock is derived from a waxy, F-T synthesized hydrocarbon feed fraction comprising hydrocarbons having an initial b.p. in the range of approximately 650-750° F., by a process which comprises hydroisomerizing the feed and optionally dewaxing the isomerate.
- the lubricant also contains hydrocarbonaceous and synthetic base stock material in mixture with the F-T derived base stock. Consequently, such wax isomerate base oils would be expected to have low solvency and poor additive solubility performance.
- High isoparaffinic base stocks are advantageous in soot control for diesel engine lubricants. Lower soot-induced viscosity increase and lower soot-induced wear are observed for diesel engine lubricants with higher saturate contents.
- GTL base oils are essentially sulfur-free, which is highly desirable for the next generation engine lubricants such as GF-5 and PC-10. In these new engine lubricant categories, a maximum sulfur level is defined for improved compatibility with new low emission engines equipped with aftertreatment devices.
- FIG. 1 shows the relationship between % viscosity increase due to soot and the GTL content of the base oil.
- FIG. 2 shows the relationship between thickening ability attributable to Viscosity Modifier and the GTL content of the base oil.
- FIG. 3 shows the interrelationship between % viscosity increase due to soot and the thickening ability attributable to the viscosity modifier at different GTL levels in the base oil.
- the present invention is directed to a method for controlling the soot induced viscosity increase of conventional/mineral oil derived base oil lubricating oil used in diesel engines while not adversely affecting the viscosity modifying effect of viscosity improver added to diesel engine lubricating oils.
- soot induced viscosity increase of diesel engine conventional petroleum/mineral oil derived base stock or base oil lubricating oils can be controlled in the diesel engine by adding to the diesel engine lubricant comprising a conventional petroleum/mineral oil derived base stock or base oil about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 20 to 60 wt % of a GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock or base oil based on the total base oil.
- a conventional petroleum/mineral oil derived base stock or base oil about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 20 to 60 wt % of a GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock or base oil based on the total base oil.
- the soot induced viscosity increase of diesel engine lubricating engine oils during use can be controlled by employing as the diesel engine lubricating oil a formulation comprising a base stock or base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 20 to 60 wt % of a GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerizad/catalytic (or solvent) dewaxed base stock and/or base oil in combination with about 90 to 20 wt %, preferably about 90 to 30 wt %, more preferably about 90 to 40 wt % of a conventional petroleum/mineral oil derived base stock or base oil based on the weight of the total base oil.
- a formulation comprising a base stock or base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 20 to 60 wt % of a GTL base stock and/
- the present invention is directed to a method for controlling soot is induced viscosity increase in diesel engine lubricating oil during use by using as the diesel engine lubricant an oil formulation comprising a base stock or base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 10 to 60 wt % of one or more GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) or base oil(s), preferably GTL base stock in combination with about 90 to 20 wt %, preferably about 90 to 30 wt %, more preferably about 90 to 40 wt % of a conventional, petroleum/mineral oil derived base stock or base oil.
- an oil formulation comprising a base stock or base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 10 to 60 w
- the GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerizaed/catalytic (or solvent) dewaxed base stock(s) and/or base oil(s) is (are) characterized as having a kinematic viscosity at 100° C. in the range of about 2 to 50 mm 2 /s, preferably about 3 to 40 mm 2 /s, more preferably about 3.5 to 30 mm 2 /s.
- the conventional petroleum/mineral oil derived base stock or base oil is preferably a Group I and/or Group II base stock, more preferably Group I base stock.
- Groups I and II are broad categories of base oil stocks developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils
- Group I base stocks generally have a viscosity index of between about 80 to 120 and contain greater than about 0.03 wt % sulfur and less than about 90 wt % saturates
- Group II base stocks generally have a viscosity index of between about 80 to 120 and contain less than or equal to about 0.03 wt % sulfur and grater than or equal to about 90 wt % saturates.
- the conventional/mineral oil derived base stock or base oil used in the present invention has a kinematic viscosity at 100° C. in the range of about 2 to 20 mm 2 /s, preferably about 4 to 10 mm 2 /s, more preferably about 4 to 8 mm 2 /s.
- the blend of the GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) or base oil(s) with the conventional petroleum/mineral oil derived base stock or base oil preferably exhibits an unadditized kinematic viscosity at 100° C.
- the fully formulated lubricating oil composition made using the base oil exhibits a kinematic viscosity at 100° C. in the range of about 6 to 14 mm 2 /s.
- the present invention is also directed to a diesel engine lubricating oil formulation
- a diesel engine lubricating oil formulation comprising a base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 10 to 60 wt % of one or more GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) and/or base oil(s) in combination with about 90 to 20 wt %, preferably about 90 to 30 wt %, more preferably about 90 to 40 wt % of a conventional, petroleum/mineral oil derived base stock or base oil, preferably a Group I and/or Group II base stock and a polymeric viscosity modifying additive in an amount in the range of about 1 to 25 wt % on an as received basis, preferably about 5 to 25 wt % on an as received basis based on the total weight of
- Viscosity modifiers also known as VI improvers and viscosity index improvers
- VI improvers and viscosity index improvers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
- Suitable viscosity index improvers include high molecular weight (polymeric) hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant.
- Typical molecular weights of these polymers are between about 10,000 to 1,000,000, more typically about 20,000 to 500,000, and even more typically between about 50,000 and 200,000.
- suitable viscosity index improvers are polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes.
- a suitable viscosity index improver is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
- Polyisobutylene is another example of a suitable viscosity index improver.
- suitable viscosity index improvers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, or styrene and butadiene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include olefin copolymer and styrene-hydrogenated isoprene copolymer of 50,000 to 200,000 molecular weight.
- viscosity modifiers are used in an amount of about 1 to 25 wt % on an as received basis, preferably about 5 to 25 wt % on an as-received basis.
- viscosity modifiers are usually supplied diluted in a carrier or diluent oil and constitute anywhere from about 5 to 50 wt % active ingredient in the additive concentrates as received from the manufacturer, the amount of viscosity modifiers used in the formulation on an active ingredient basis can also be expressed as being in the range of about 0.20 to about 4.0 wt % active ingredient, preferably about 0.3 to 2.5 wt % active ingredient.
- the active ingredient is in the range of about 5 to 15 wt % in the additive concentrates from the manufacturer, the amount of these viscosity modifiers used in the formulation can also be expressed as being in the range of about 0.20 to 1.9 wt % active ingredient, preferably about 0.3 to 1.5 wt % active ingredient.
- the conventional, petroleum/mineral oil derived Group I base stock or base oil has a sulfur content of about 0.2 wt % sulfur or base, more preferably about 0.15 wt % sulfur or less, even more preferably about 0.1 wt % sulfur or less.
- the GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) and/or base oil(s) useful in the present invention include one or more or a mixture of base stock(s) and/or base oil(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as hydrodewaxed, or hydroisomerized/conventional cat (or solvent) dewaxed base stock(s) and/or base oils derived from natural wax or waxy feeds, mineral and or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil,
- hydroisomerization/cat dewaxing is used to refer to catalytic processes which have the combined effect of converting normal paraffins and/or waxy hydrocarbons by rearrangement/isomerization, into more branched iso-paraffins, followed by (1) catalytic dewaxing to reduce the amount of any residual n-paraffins or slightly branched iso-paraffins present in the isomerate by cracking/fragmentation or by (2) hydrodewaxing to effect further isomerization and very selective catalytic dewaxing of the isomerate, to reduce the product pour point.
- (or solvent) is included in the recitation, the process described involves hydroisomerization followed by solvent dewaxing which effects the physical separation of wax from the hydroisomerate so as to reduce the product pour point.
- GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds, and/or elements as feedstocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
- GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons, for example waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feedstocks.
- GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range separated/fractionated from synthesized GTL materials such as for example, by distillation and subsequently a final wax processing step which is either the well-known catalytic dewaxing process, or solvent dewaxing process, to produce lube oils of reduced/low pour point; synthesized wax isomerates, comprising, for example, hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed synthesized waxy hydrocarbons; hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed F-T hydrocarbons, or hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed, F-
- GTL base stock(s) and/or base oil(s) derived from GTL materials especially, hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed wax derived base stock(s) and/or base oil(s) are characterized typically as having kinematic viscosities at 100° C.
- a GTL base stock derived by the hydrodewaxing or hydroisomerization catalytic (or solvent) dewaxing of F-T wax which has a kinematic viscosity of about 4 mm 2 /s at 100° C. and a viscosity index of about 130 or greater.
- the wax treatment process is hydrodewaxing carried out in a process using a single hydrodewaxing catalyst.
- Kinematic viscosity refers to a measurement made by ASTM method D445.
- GTL base stock(s) and/or base oil(s) derived from GTL materials especially hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed wax-derived base stock(s) and/or base oil(s), which can be used as base stock and/or base oil components of this invention are further characterized typically as having pour points of about ⁇ 5° C. or lower, preferably about ⁇ 10° C. or lower, more preferably about ⁇ 15° C. or lower, still more preferably about ⁇ 20° C.
- pour point refers to measurement made by ASTM D97 and similar automated versions.
- the GTL base stock(s) and/or base oil(s) derived from GTL materials especially hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other such wax-derived base stock(s) and/or base oil(s) which can be used in this invention are also characterized typically as having viscosity indices of 80 or greater, preferably 100 or greater, and more preferably 120 or greater. Additionally, in certain particular instances, the viscosity index of these base stocks and/or base oil(s) may be preferably 130 or greater, more preferably 135 or greater, and even more preferably 140 or greater.
- GTL base stock(s) and/or base oil(s) that derive from GTL materials preferably F-T materials especially F-T wax generally have a viscosity index of 130 or greater.
- References herein to viscosity index refer to ASTM method D2270.
- GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins multicycloparaffins in combination with non-cyclic isoparaffins.
- the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
- GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements.
- the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained by the hydroisomerization/isodewaxing of F-T material, especially F-T wax, is essentially nil.
- the GTL base stock(s) and/or base oil(s) comprises paraffinic materials that consist predominantly of non-cyclic isoparaffins and only minor amounts of cycloparaffins.
- These GTL base stock(s) and/or base oil(s) typically comprise paraffinic materials that consist of greater than 60 wt % non-cyclic isoparaffins, preferably greater than 80 wt % non-cyclic isoparaffins, more preferably greater than 85 wt % non-cyclic isoparaffins, and most preferably greater than 90 wt % non-cyclic isoparaffins.
- compositions of GTL base stock(s) and/or base oil(s), hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s), and wax-derived hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed base stock(s), such as wax isomerates or hydrodewaxates are recited in U.S. Pat. Nos. 6,080,301; 6,090,989, and 6,165,949 for example.
- Base stock(s) and/or base oil(s) derived from waxy feeds which are also suitable for use in this invention, are paraffinic fluids of lubricating viscosity derived from hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed waxy feedstocks of mineral oil, non-mineral oil, non-petroleum, or natural source origin, e.g., feedstocks such as one or more of gas oils, slack wax, waxy fuels hydrocracker bottoms, hydrocarbon raffinates, natural waxes, hyrocrackates, thermal crackates, foots oil, wax from coal liquefaction or from shale oil, or other suitable mineral oil, non-mineral oil, non-petroleum, or natural source derived waxy materials, linear or branched hydrocarbyl compounds with carbon number of about 20 or greater, preferably about 30 or greater, and mixtures of such isomerate/isodewaxate base stock(s) and/or base oil(
- Slack wax is the wax recovered from any waxy hydrocarbon oil including synthetic oil such as F-T waxy oil or petroleum oils by solvent or autorefrigerative dewaxing.
- Solvent dewaxing employs chilled solvent such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of MEK/MIBK, mixtures of MEK and toluene, while autorefrigerative dewaxing employs pressurized, liquefied low boiling hydrocarbons such as propane or butane.
- Slack wax(es) secured from synthetic waxy oils such as F-T waxy oil will usually have zero or nil sulfur and/or nitrogen containing compound content.
- Slack wax(es) secured from petroleum oils may contain sulfur and nitrogen containing compounds.
- Such heteroatom compounds must be removed by hydrotreating (and not hydrocracking), as for example by hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) so as to avoid subsequent poisoning/deactivation of the hydroisomerization catalyst.
- GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil as used herein and in the claims is to be understood as embracing individual fractions of GTL base stock and/or base oil and/or of wax-derived hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed base stock and/or base oil as recovered in the production process, mixtures of two or more GTL base stock and/or base oil fractions and/or wax-derived hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed base stocks/base oil fractions, as well as mixtures of one or two or more low viscosity GTL base stock and/or base oil fraction(s) and/or wax-derived hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed base stock and/or base oil fraction(s) with one, two or more higher viscosity GTL base stock and/or base oil fraction(s) and/or wax-derived hydrodewaxed, or hydroi
- the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
- F-T material i.e., hydrocarbons, waxy hydrocarbons, wax.
- a slurry F-T synthesis process may be beneficially used for synthesizing the feed from CO and hydrogen and particularly one employing an F-T catalyst comprising a catalytic cobalt component to provide a high Schultz-Flory kinetic alpha for producing the more desirable higher molecular weight paraffins. This process is also well known to those skilled in the art.
- a synthesis gas comprising a mixture of H 2 and CO is catalytically converted into hydrocarbons and preferably liquid hydrocarbons.
- the mole ratio of the hydrogen to the carbon monoxide may broadly range from about 0.5 to 4, but is more typically within the range of from about 0.7 to 2.75 and preferably from about 0.7 to 2.5.
- F-T synthesis processes include processes in which the catalyst is in the form of a fixed bed, a fluidized bed or as a slurry of catalyst particles in a hydrocarbon slurry liquid.
- the stoichiometric mole ratio for a F-T synthesis reaction is 2.0, but there are many reasons for using other than a stoichiometric ratio as those skilled in the art know.
- the feed mole ratio of the H 2 to CO is typically about 2.1/1.
- the synthesis gas comprising a mixture of H 2 and CO is bubbled up into the bottom of the slurry and reacts in the presence of the particulate F-T synthesis catalyst in the slurry liquid at conditions effective to form hydrocarbons, a portion of which are liquid at the reaction conditions and which comprise the hydrocarbon slurry liquid.
- the synthesized hydrocarbon liquid is separated from the catalyst particles as filtrate by means such as filtration, although other separation means such as centrifugation can be used. Some of the synthesized hydrocarbons pass out the top of the hydrocarbon synthesis reactor as vapor, along with unreacted synthesis gas and other gaseous reaction products.
- Some of these overhead hydrocarbon vapors are typically condensed to liquid and combined with the hydrocarbon liquid filtrate.
- the initial boiling point of the filtrate may vary depending on whether or not some of the condensed hydrocarbon vapors have been combined with it.
- Slurry hydrocarbon synthesis process conditions vary somewhat depending on the catalyst and desired products.
- Typical conditions effective to form hydrocarbons comprising mostly C 5+ paraffins, (e.g., C 5+ -C 200 ) and preferably C 10+ paraffins, in a slurry hydrocarbon synthesis process employing a catalyst comprising a supported cobalt component include, for example, temperatures, pressures and hourly gas space velocities in the range of from about 320-850° F., 80-600 psi and 100-40,000 V/hr/V, expressed as standard volumes of the gaseous CO and H 2 mixture (0° C., 1 atm) per hour per volume of catalyst, respectively.
- C 5+ is used herein to refer to hydrocarbons with a carbon number of greater than 4, but does not imply that material with carbon number 5 has to be present. Similarly other ranges quoted for carbon number do not imply that hydrocarbons having the limit values of the carbon number range have to be present, or that every carbon number in the quoted range is present. It is preferred that the hydrocarbon synthesis reaction be conducted under conditions in which limited or no water gas shift reaction occurs and more preferably with no water gas shift reaction occurring during the hydrocarbon synthesis. It is also preferred to conduct the reaction under conditions to achieve an alpha of at least 0.85, preferably at least 0.9 and more preferably at least 0.92, so as to synthesize more of the more desirable higher molecular weight hydrocarbons.
- a catalyst containing a catalytic cobalt component This has been achieved in a slurry process using a catalyst containing a catalytic cobalt component.
- suitable F-T reaction types of catalyst comprise, for example, one or more Group VIII catalytic metals such as Fe, Ni, Co, Ru and Re, it is preferred that the catalyst comprise a cobalt catalytic component.
- the catalyst comprises catalytically effective amounts of Co and one or more of Re, Ru, Fe, Ni, Th, Zr, Hf, U, Mg and La on a suitable inorganic support material, preferably one which comprises one or more refractory metal oxides.
- Preferred supports for Co containing catalysts comprise Titania, particularly.
- the waxy feed from which the base stock(s) and/or base oil(s) is/are derived is a wax or waxy feed from mineral oil, non-mineral oil, non-petroleum, or other natural source, especially slack wax, or GTL material, preferably F-T material, referred to as F-T wax.
- F-T wax preferably has an initial boiling point in the range of from 650-750° F. and preferably continuously boils up to an end point of at least 1050° F.
- a narrower cut waxy feed may also be used during the hydroisomerization.
- a portion of the n-paraffin waxy feed is converted to lower boiling isoparaffinic material.
- boiling range When a boiling range is quoted herein it defines the lower and/or upper distillation temperature used to separate the fraction. Unless specifically stated (for example, by specifying that the fraction boils continuously or constitutes the entire range) the specification of a boiling range does not require any material at the specified limit has to be present, rather it excludes material boiling outside that range.
- the waxy feed preferably comprises the entire 650-750° F.+ fraction formed by the hydrocarbon synthesis process, having an initial cut point between 650° F. and 750° F. determined by the practitioner and an end point, preferably above 1050° F., determined by the catalyst and process variables employed by the practitioner for the synthesis.
- Such fractions are referred to herein as “650-750° F.+ fractions”.
- 650-750° F. ⁇ fractions refers to a fraction with an unspecified initial cut point and an end point somewhere between 650° F. and 750° F.
- Waxy feeds may be processed as the entire fraction or as subsets of the entire fraction prepared by distillation or other separation techniques.
- the waxy feed also typically comprises more than 90%, generally more than 95% and preferably more than 98 wt % paraffinic hydrocarbons, most of which are normal paraffins. It has negligible amounts of sulfur and nitrogen compounds (e.g., less than 1 wppm of each), with less than 2,000 wppm, preferably less than 1,000 wppm and more preferably less than 500 wppm of oxygen, in the form of oxygenates. Waxy feeds having these properties and useful in the process of the invention have been made using a slurry F-T process with a catalyst having a catalytic cobalt component, as previously indicated.
- the process of making the lubricant oil base stocks from waxy stocks may be characterized as an isomerization process. If slack waxes are used as the feed, they may need to be subjected to a preliminary hydrotreating step under conditions already well known to those skilled in the art to reduce (to levels that would effectively avoid catalyst poisoning or deactivation) or to remove sulfur- and nitrogen-containing compounds which would otherwise deactivate the hydroisomerization or hydrodewaxing catalyst used in subsequent steps.
- F-T waxes are used, such preliminary treatment is not required because, as indicated above, such waxes have only trace amounts (less than about 10 ppm, or more typically less than about 5 ppm to nil) of sulfur or nitrogen compound content.
- some hydrodewaxing catalyst fed F-T waxes may benefit from prehydrotreatment for the removal of oxygenates while others may benefit from oxygenates treatment.
- the hydroisomerization or hydrodewaxing process may be conducted over a combination of catalysts, or over a single catalyst. Conversion temperatures range from about 150° C. to about 500° C. at pressures ranging from about 500 to 20,000 kPa. This process may be operated in the presence of hydrogen, and hydrogen partial pressures range from about 600 to 6000 kPa.
- the ratio of hydrogen to the hydrocarbon feedstock typically range from about 10 to 3500 n.l.l. ⁇ 1 (56 to 19,660 SCF/bbl) and the space velocity of the feedstock typically ranges from about 0.1 to 20 LHSV, preferably 0.1 to 10 LHSV.
- the hydroprocessing used for the production of base stocks from such waxy feeds may use an amorphous hydrocracking/hydroisomerization catalyst, such as a lube hydrocracking (LHDC) catalysts, for example catalysts containing Co, Mo, Ni, W, Mo, etc., on oxide supports, e.g., alumina, silica, silica/alumina, or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
- LHDC lube hydrocracking
- oxide supports e.g., alumina, silica, silica/alumina, or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
- Hydrocarbon conversion catalysts useful in the conversion of the n-paraffin waxy feedstocks disclosed herein to form the isoparaffinic hydro-carbon base oil are zeolite catalysts, such as ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-12, ZSM-38, ZSM-48, offretite, ferrierite, zeolite beta, zeolite theta, and zeolite alpha, as disclosed in U.S. Pat. No. 4,906,350. These catalysts are used in combination with Group VIII metals, in particular palladium or platinum. The Group VIII metals may be incorporated into the zeolite catalysts by conventional techniques, such as ion exchange.
- conversion of the waxy feedstock may be conducted over a combination of Pt/zeolite beta and Pt/ZSM-23 catalysts in the presence of hydrogen.
- the process of producing the lubricant oil base stocks comprises hydroisomerization and dewaxing over a single catalyst, such as Pt/ZSM-35.
- the waxy feed can be fed over the hydrodewaxing catalyst comprising Group VIII metal loaded ZSM-48, preferably Group VIII noble metal loaded ZSM-48, more preferably Pt/ZSM-48 in either one stage or two stages.
- useful hydrocarbon base oil products may be obtained.
- Catalyst ZSM-48 is described in U.S. Pat. No. 5,075,269. The use of the Group VIII metal loaded ZSM-48 family of catalysts, preferably platinum on ZSM-48, in the hydroisomerization of the waxy feedstock eliminates the need for any subsequent, separate dewaxing step.
- a dewaxing step when needed, may be accomplished using one or more of solvent dewaxing, catalytic dewaxing or hydrodewaxing processes and either the entire hydroisomerate or the 650-750° F.+ fraction may be dewaxed, depending on the intended use of the 650-750° F. ⁇ material present, if it has not been separated from the higher boiling material prior to the dewaxing.
- the hydroisomerate may be contacted with chilled solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of MEK/MIBK, or mixtures of MEK/toluene and the like, and further chilled to precipitate out the higher pour point material as a waxy solid which is then separated from the solvent-containing lube oil fraction which is the raffinate.
- the raffinate is typically further chilled in scraped surface chillers to remove more wax solids.
- Autorefrigerative dewaxing using low molecular weight hydrocarbons, such as propane can also be used in which the hydroisomerate is mixed with, e.g., liquid propane, a least a portion of which is flashed off to chill down the hydroisomerate to precipitate out the wax.
- the wax is separated from the raffinate by filtration, membrane separation or centrifugation.
- the solvent is then stripped out of the raffinate, which is then fractionated to produce the preferred base stocks useful in the present invention.
- catalytic dewaxing in which the hydroisomerate is reacted with hydrogen in the presence of a suitable dewaxing catalyst at conditions effective to lower the pour point of the hydroisomerate.
- Catalytic dewaxing also converts a portion of the hydroisomerate to lower boiling materials, in the boiling range, for example, 650-750° F. ⁇ , which are separated from the heavier 650-750° F.+ base stock fraction and the base stock fraction fractionated into two or more base stocks. Separation of the lower boiling material may be accomplished either prior to or during fractionation of the 650-750° F.+ material into the desired base stocks.
- dewaxing catalyst which will reduce the pour point of the hydroisomerate and preferably those which provide a large yield of lube oil base stock from the hydroisomerate may be used.
- dewaxing catalyst which include shape selective molecular sieves which, when combined with at least one catalytic metal component, have been demonstrated as useful for dewaxing petroleum oil fractions and include, for example, ferrierite, mordenite, ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-22 also known as theta one or TON, and the silicoaluminophosphates known as SAPO's.
- a dewaxing catalyst which has been found to be unexpectedly particularly effective comprises a noble metal, preferably Pt, composited with H-mordenite.
- the dewaxing may be accomplished with the catalyst in a fixed, fluid or slurry bed.
- Typical dewaxing conditions include a temperature in the range of from about 400-600° F., a pressure of 500-900 psig, H 2 treat rate of 1500-3500 SCF/B for flow-through reactors and LHSV of 0.1-10, preferably 0.2-2.0.
- the dewaxing is typically conducted to convert no more than 40 wt % and preferably no more than 30 wt % of the hydroisomerate having an initial boiling point in the range of 650-750° F. to material boiling below its initial boiling point.
- GTL base stock(s) and/or base oil(s), hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed wax-derived base stock(s) and/or base oil(s), have a beneficial kinematic viscosity advantage over conventional API Group II and Group III base stock(s) and/or base oil(s), and so may be very advantageously used with the instant invention.
- Such GTL base stock(s) and/or base oil(s) can have significantly higher kinematic viscosities, up to about 20-50 mm 2 /s at 100° C., whereas by comparison commercial Group II base oils can have kinematic viscosities up to about 15 mm 2 /s at 100° C., and commercial Group III base oils can have kinematic viscosities up to about 10 mm 2 /s at 100° C.
- the higher kinematic viscosity range of GTL base stock(s) and/or base oil(s), compared to the more limited kinematic viscosity range of Group II and Group III base stock(s) and/or base oil(s), in combination with the instant invention can provide additional beneficial advantages in formulating lubricant compositions.
- mixtures of hydrodewaxate, or hydroisomerate/cat (or solvent) dewaxate base stock(s) and/or base oil(s), mixtures of the GTL base stock(s) and/or base oil(s), or mixtures thereof, preferably mixtures of GTL base stock(s) and/or base oil(s), can constitute all or part of the base oil.
- the preferred base stock(s) and/or base oil(s) derived from GTL materials and/or from waxy feeds are characterized as having predominantly paraffinic compositions and are further characterized as having high saturates levels, low-to-nil sulfur, low-to-nil nitrogen, low-to-nil aromatics, and are essentially water-white in color.
- a preferred GTL liquid hydrocarbon composition is one comprising paraffinic hydrocarbon components in which the extent of branching, as measured by the percentage of methyl hydrogens (BI), and the proximity of branching, as measured by the percentage of recurring methylene carbons which are four or more carbons removed from an end group or branch (CH 2 ⁇ 4), are such that: (a) BI-0.5(CH 2 ⁇ 4)>15; and (b) BI+0.85 (CH 2 ⁇ 4) ⁇ 45 as measured over said liquid hydrocarbon composition as a whole.
- BI methyl hydrogens
- the preferred GTL base stock and/or base oil can be further characterized, if necessary, as having less than 0.1 wt % aromatic hydrocarbons, less than 20 wppm nitrogen containing compounds, less than 20 wppm sulfur containing compounds, a pour point of less than ⁇ 18° C., preferably less than ⁇ 30° C., a preferred BI ⁇ 25.4 and (CH 2 ⁇ 4) ⁇ 22.5. They have a nominal boiling point of 370° C. + , on average they average fewer than 10 hexyl or longer branches per 100 carbon atoms and on average have more than 16 methyl branches per 100 carbon atoms.
- the preferred GTL base stock and/or base oil is also characterized as comprising a mixture of branched paraffins characterized in that the lubricant base oil contains at least 90% of a mixture of branched paraffins, wherein said branched paraffins are paraffins having a carbon chain length of about C 20 to about C 40 , a molecular weight of about 280 to about 562, a boiling range of about 650° F. to about 1050° F., and wherein said branched paraffins contain up to four alkyl branches and wherein the free carbon index of said branched paraffins is at least about 3.
- Branching Index BI
- CH 2 ⁇ 4 Branching Proximity
- FCI Free Carbon Index
- a 359.88 MHz 1 H solution NMR spectrum is obtained on a Bruker 360 MHz AMX spectrometer using 10% solutions in CDCl 3 .
- TMS is the internal chemical shift reference.
- CDCl 3 solvent gives a peak located at 7.28. All spectra are obtained under quantitative conditions using 90 degree pulse (10.9 ⁇ s), a pulse delay time of 30 s, which is at least five times the longest hydrogen spin-lattice relaxation time (T 1 ), and 120 scans to ensure good signal-to-noise ratios.
- H atom types are defined according to the following regions:
- the branching index (BI) is calculated as the ratio in percent of non-benzylic methyl hydrogens in the range of 0.5 to 1.05 ppm, to the total non-benzylic aliphatic hydrogens in the range of 0.5 to 2.1 ppm.
- a 90.5 MHz 3 CMR single pulse and 135 Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectra are obtained on a Brucker 360 MHzAMX spectrometer using 10% solutions in CDCL 3 .
- TMS is the internal chemical shift reference.
- CDCL 3 solvent gives a triplet located at 77.23 ppm in the 1 3 C spectrum.
- All single pulse spectra are obtained under quantitative conditions using 45 degree pulses (6.3 ⁇ s), a pulse delay time of 60 s, which is at least five times the longest carbon spin-lattice relaxation time (T 1 ), to ensure complete relaxation of the sample, 200 scans to ensure good signal-to-noise ratios, and WALTZ-16 proton decoupling.
- the C atom types CH 3 , CH 2 , and CH are identified from the 135 DEPT
- FCI Free Carbon Index
- Branching measurements can be performed using any Fourier Transform NMR spectrometer.
- the measurements are performed using a spectrometer having a magnet of 7.0T or greater.
- the spectral width was limited to the saturated carbon region, about 0-80 ppm vs. TMS (tetramethylsilane).
- Solutions of 15-25 percent by weight in chloroform-d1 were excited by 45 degrees pulses followed by a 0.8 sec acquisition time.
- the proton decoupler was gated off during a 10 sec delay prior to the excitation pulse and on during acquisition. Total experiment times ranged from 11-80 minutes.
- the DEPT and APT sequences were carried out according to literature descriptions with minor deviations described in the Varian or Bruker operating manuals.
- DEPT Distortionless Enhancement by Polarization Transfer. DEPT does not show quaternaries.
- the DEPT 45 sequence gives a signal for all carbons bonded to protons.
- DEPT 90 shows CH carbons only.
- DEPT 135 shows CH and CH 3 up and CH 2 180 degrees out of phase (down).
- APT is Attached Proton Test. It allows all carbons to be seen, but if CH and CH 3 are up, then quaternaries and CH 2 are down.
- the sequences are useful in that every branch methyl should have a corresponding CH and the methyls are clearly identified by chemical shift and phase.
- the branching properties of each sample are determined by C-13 NMR using the assumption in the calculations that the entire sample is isoparaffinic. Corrections are not made for n-paraffins or cyclo-paraffins, which may be present in the oil samples in varying amounts.
- the cycloparaffins content is measured using Field Ionization Mass Spectroscopy (FIMS).
- hydroisomerized or hydrodewaxed waxy synthesized hydrocarbon e.g., Fischer-Tropsch waxy hydrocarbon base stock(s) and/or base oil(s) are of low or zero sulfur and phosphorus content.
- Such oils would rely on the use of base oils which themselves, inherently, are of low or zero initial sulfur and phosphorus content.
- Such oils when used as base oils can be formulated with additives. Even if the additive or additives included in the formulation contain sulfur and/or phosphorus the resulting formulated lubricating oils will be lower or low SAPS oils as compared to lubricating oils formulated using conventional mineral oil base stock(s) and/or base oil(s).
- low SAPS formulated oils for vehicle engines will have a sulfur content of 0.7 wt % or less, preferably 0.6 wt % or less, more preferably 0.5 wt % or less, most preferably 0.4 wt % or less, an ash content of 1.2 wt % or less, preferably 0.8 wt % or less, more preferably 0.4 wt % or less, and a phosphorus content of 0.18% or less, preferably 0.1 wt % or less, more preferably 0.09 wt % or less, most preferably 0.08 wt % or less, and in certain instances, even preferably 0.05 wt % or less.
- the instant invention can be used with additional lubricant components in effective amounts in lubricant compositions, such as for example polar and/or non-polar lubricant base oils, and performance additives such as for example, but not limited to, oxidation inhibitors, metallic and non-metallic dispersants, metallic and non-metallic detergents, corrosion and rust inhibitors, metal deactivators, anti-wear agents (metallic and non-metallic, phosphorus-containing and non-phosphorus, sulfur-containing and non-sulfur types), extreme pressure additives (metallic and non-metallic, phosphorus-containing and non-phosphorus, sulfur-containing and non-sulfur types), anti-seizure agents, pour point depressants, wax modifiers, viscosity modifiers, seal compatibility agents, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, and others.
- performance additives such as for example, but not limited to, oxidation inhibitors, metallic and
- ZDDP zinc dialkyldithio-phosphate
- ZDDP compounds generally are of the formula Zn[SP(S)(OR 1 )(OR 2 )] 2 where R 1 and R 2 are C 1 -C 18 alkyl groups, preferably C 2 -C 12 alkyl groups. These alkyl groups may be straight chain or branched.
- the ZDDP is typically used in amounts of from about 0.4 to 1.4 wt % of the total lube oil composition, although more or less can often be used advantageously.
- Sulfurized olefins are useful as antiwear and EP additives.
- Sulfur-containing olefins can be prepared by sulfurization or various organic materials including aliphatic, arylaliphatic or alicyclic olefinic hydrocarbons containing from about 3 to 30 carbon atoms, preferably 3-20 carbon atoms.
- the olefinic compounds contain at least one non-aromatic double bond. Such compounds are defined by the formula
- each of R 3 -R 6 are independently hydrogen or a hydrocarbon radical.
- Preferred hydrocarbon radicals are alkyl or alkenyl radicals. Any two of R 3 -R 6 may be connected so as to form a cyclic ring. Additional information concern-ing sulfurized olefins and their preparation can be found in U.S. Pat. No. 4,941,984.
- alkylthiocarbamoyl compounds bis(dibutyl)thiocarbamoyl, for example
- a molybdenum compound oxymolybdenum diisopropyl-phosphorodithioate sulfide, for example
- a phosphorous ester dibutyl hydrogen phosphite, for example
- U.S. Pat. No. 4,758,362 discloses use of a carbamate additive to provide improved antiwear and extreme pressure properties.
- the use of thiocarbamate as an antiwear additive is disclosed in U.S. Pat. No. 5,693,598.
- Thiocarbamate/molybdenum complexes such as moly-sulfur alkyl dithio-carbamate trimer complex (R ⁇ C 8 -C 18 alkyl) are also useful antiwear agents. The use or addition of such materials should be kept to a minimum if the object is to produce low SAP formulations.
- Esters of glycerol may be used as antiwear agents.
- mono-, di-, and tri-oleates, mono-palmitates and mono-myristates may be used.
- ZDDP is combined with other compositions that provide antiwear properties.
- U.S. Pat. No. 5,034,141 discloses that a combination of a thiodixanthogen compound (octylthiodixanthogen, for example) and a metal thiophosphate (ZDDP, for example) can improve antiwear properties.
- U.S. Pat. No. 5,034,142 discloses that use of a metal alkyoxyalkylxanthate (nickel ethoxyethylxanthate, for example) and a dixanthogen (diethoxyethyl dixanthogen, for example) in combination with ZDDP improves antiwear properties.
- a metal alkyoxyalkylxanthate nickel ethoxyethylxanthate, for example
- a dixanthogen diethoxyethyl dixanthogen, for example
- Preferred antiwear additives include phosphorus and sulfur compounds such as zinc dithiophosphates and/or sulfur, nitrogen, boron, molybdenum phosphorodithioates, molybdenum dithiocarbamates and various organo-molybdenum derivatives including heterocyclics, for example dimercaptothiadiazoles, mercaptobenzothiadiazoles, triazines, and the like, alicyclics, amines, alcohols, esters, diols, triols, fatty amides and the like can also be used.
- Such additives may be used in an amount of about 0.01 to 6 wt %, preferably about 0.01 to 4 wt %.
- ZDDP-like compounds provide limited hydroperoxide decomposition capability, significantly below that exhibited by compounds disclosed and claimed in this patent and can therefore be eliminated from the formulation or, if retained, kept at a minimal concentration to facilitate production of low SAP formulations.
- Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
- oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Pat. Nos. 4,798,684 and 5,084,197, for example, each of which is incorporated by reference herein in its entirety.
- Useful antioxidants include hindered phenols. These phenolic anti-oxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds.
- Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other.
- Typical phenolic antioxidants include the hindered phenols substituted with C 6 +alkyl groups and the alkylene coupled derivatives of these hindered phenols.
- phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t-butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol.
- Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives.
- Bis-phenolic antioxidants may also be advantageously used in combination with the instant invention.
- ortho-coupled phenols include: 2,2′-bis(4-heptyl-6-t-butyl-phenol); 2,2′-bis(4-octyl-6-t-butyl-phenol); and 2,2′-bis(4-dodecyl-6-t-butyl-phenol).
- Para-coupled bisphenols include for example 4,4′-bis(2,6-di-t-butyl phenol) and 4,4′-methylene-bis(2,6-di-t-butyl phenol).
- Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics.
- Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R 8 R 9 R 10 N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 10 is H, alkyl, aryl or R 11 S(O) x R 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2.
- the aliphatic group R 8 may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms.
- the aliphatic group is a saturated aliphatic group.
- both R 8 and R 9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
- Aromatic groups R 8 and R 9 may be joined together with other groups such as S.
- Typical aromatic amines antioxidants have alkyl substituent groups of at least about 6 carbon atoms.
- Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms.
- the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used.
- aromatic amine antioxidants useful in the present invention include: p,p′-dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha-naphthylamine.
- Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.
- oil-soluble copper compounds Another class of antioxidant used in lubricating oil compositions is oil-soluble copper compounds. Any oil-soluble suitable copper compound may be blended into the lubricating oil.
- suitable copper antioxidants include copper dihydrocarbyl thio- or dithio-phosphates and copper salts of carboxylic acid (naturally occurring or synthetic).
- Other suitable copper salts include copper dithiacarbamates, sulphonates, phenates, and acetylacetonates.
- Basic, neutral, or acidic copper Cu(I) and or Cu(II) salts derived from alkenyl succinic acids or anhydrides are know to be particularly useful.
- Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %, more preferably zero to less than 1.5 wt %, most preferably zero.
- a typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
- the anionic portion of the detergent is typically derived from an organic acid such as a sulfur acid, carboxylic acid, phosphorous acid, phenol, or mixtures thereof.
- the counterion is typically an alkaline earth or alkali metal.
- Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
- TBN total base number
- Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
- a metal compound a metal hydroxide or oxide, for example
- an acidic gas such as carbon dioxide
- Useful detergents can be neutral, mildly overbased, or highly overbased.
- the overbased material has a ratio of metallic ion to anionic portion of the detergent of about 1.05:1 to 50:1 on an equivalent basis. More preferably, the ratio is from about 4:1 to about 25:1.
- the resulting detergent is an overbased detergent that will typically have a TBN of about 150 or higher, often about 250 to 450 or more.
- the overbasing cation is sodium, calcium, or magnesium.
- a mixture of detergents of differing TBN can be used in the present invention.
- Preferred detergents include the alkali or alkaline earth metal salts of sulfonates, phenates, carboxylates, phosphates, and salicylates.
- Sulfonates may be prepared from sulfonic acids that are typically obtained by sulfonation of alkyl substituted aromatic hydrocarbons.
- Hydro-carbon examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, biphenyl and their halogenated derivatives (chlorobenzene, chlorotoluene, and chloronaphthalene, for example).
- the alkylating agents typically have about 3 to 70 carbon atoms.
- the alkaryl sulfonates typically contain about 9 to about 80 carbon or more carbon atoms, more typically from about 16 to 60 carbon atoms.
- Klamann in Lubricants and Related Products, op cit discloses a number of overbased metal salts of various sulfonic acids which are useful as detergents and dispersants in lubricants.
- Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example) with an alkyl phenol or sulfurized alkylphenol.
- alkaline earth metal hydroxide or oxide Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example
- Useful alkyl groups include straight chain or branched C 1 -C 30 alkyl groups, preferably, C 4 -C 20 . Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like.
- starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched.
- the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
- carboxylic acids are also useful as detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level.
- Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids.
- Useful salicylates include long chain alkyl salicylates.
- One useful family of compositions is of the formula
- R is a hydrogen atom or an alkyl group having 1 to about 30 carbon atoms
- n is an integer from 1 to 4
- M is an alkaline earth metal.
- Preferred R groups are alkyl chains of at least C 11 , preferably C 13 or greater. R may be optionally substituted with substituents that do not interfere with the detergent's function.
- M is preferably, calcium, magnesium, or barium. More preferably, M is calcium.
- Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction. See U.S. Pat. No. 3,595,791 for additional information on synthesis of these compounds.
- the metal salts of the hydrocarbyl-substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
- Alkaline earth metal phosphates are also used as detergents.
- Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Pat. No. 6,034,039 for example.
- Preferred detergents include calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates and other related components (including borated detergents).
- the total detergent concentration is about 0.01 to about 6.0 wt %, preferably, about 0.1 to 0.4 wt %.
- Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
- Dispersants may be ashless or ash-forming in nature.
- the dispersant is ashless.
- So called ashless dispersants are organic materials that form substantially no ash upon combustion.
- non-metal-containing or borated metal-free dispersants are considered ashless.
- metal-containing detergents discussed above form ash upon combustion.
- Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
- the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
- Typical hydrocarbon chains contain 50 to 400 carbon atoms.
- dispersants may be characterized as phenates, sulfonates, sulfurized phenates, salicylates, naphthenates, stearates, carbamates, thiocarbamates, phosphorus derivatives.
- a particularly useful class of dispersants are the alkenylsuccinic derivatives, typically produced by the reaction of a long chain substituted alkenyl succinic compound, usually a substituted succinic anhydride, with a polyhydroxy or polyamino compound.
- the long chain group constituting the oleophilic portion of the molecule which confers solubility in the oil is normally a polyisobutylene group.
- Hydrocarbyl-substituted succinic acid compounds are popular dispersants.
- succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
- Succinimides are formed by the condensation reaction between alkenyl succinic anhydrides and amines. Molar ratios can vary depending on the poly-amine. For example, the molar ratio of alkenyl succinic anhydride to TEPA can vary from about 1:1 to about 5:1. Representative examples are shown in U.S. Pat. Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Pat. No. 1,094,044.
- Succinate esters are formed by the condensation reaction between alkenyl succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of an alkenyl succinic anhydride and pentaerythritol is a useful dispersant.
- Succinate ester amides are formed by condensation reaction between alkenyl succinic anhydrides and alkanol amines.
- suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpoly-amines and polyalkenylpolyamines such as polyethylene polyamines.
- propoxylated hexamethylenediamine Representative examples are shown in U.S. Pat. No. 4,426,305.
- the molecular weight of the alkenyl succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500.
- the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid, and boron compounds such as borate esters or highly borated dispersants.
- the dispersants can be borated with from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.
- Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Pat. No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Pat. Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.
- Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this invention can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HN(R) 2 group-containing reactants.
- high molecular weight alkyl-substituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol, and other polyalkylphenols. These polyalkylphenols can be obtained by the alkylation, in the presence of an alkylating catalyst, such as BF 3 , of phenol with high molecular weight poly-propylene, polybutylene, and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average 600-100,000 molecular weight.
- an alkylating catalyst such as BF 3
- HN(R) 2 group-containing reactants are alkylene polyamines, principally polyethylene polyamines.
- Other representative organic compounds containing at least one HN(R) 2 group suitable for use in the preparation of Mannich condensation products are well known and include the mono- and di-amino alkanes and their substituted analogs, e.g., ethylamine and diethanol amine; aromatic diamines, e.g., phenylene diamine, diamino naphthalenes; heterocyclic amines, e.g., morpholine, pyrrole, pyrrolidine, imidazole, imidazolidine, and piperidine; melamine and their substituted analogs.
- alkylene polyamide reactants include ethylenediamine, diethylene triamine, triethylene tetraamine, tetraethylene pentaamine, penta-ethylene hexamine, hexaethylene heptaamine, heptaethylene octaamine, octaethylene nonaamine, nonaethylene decamine, and decaethylene undecamine and mixture of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H 2 N-(Z-NH—) n H, mentioned before, Z is a divalent ethylene and n is 1 to 10 of the foregoing formula.
- propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta-propylene tri-, tetra-, penta- and hexaamines are also suitable reactants.
- the alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes.
- the alkylene polyamines obtained from the reaction of 2 to 11 moles of ammonia with 1 to 10 moles of dichloroalkanes having 2 to 6 carbon atoms and the chlorines on different carbons are suitable alkylene polyamine reactants.
- Aldehyde reactants useful in the preparation of the high molecular products useful in this invention include the aliphatic aldehydes such as formaldehyde (also as paraformaldehyde and formalin), acetaldehyde and aldol (P-hydroxybutyraldehyde). Formaldehyde or a formaldehyde-yielding reactant is preferred.
- Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Pat. Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433; 3,822,209 and 5,084,197.
- Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000 or a mixture of such hydrocarbylene groups.
- Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components. Such additives may be used in an amount of about 0.1 to 20 wt %, preferably about 0.1 to 8 wt %.
- pour point depressants also known as lube oil flow improvers
- pour point depressants may be added to lubricating compositions of the present invention to lower the minimum temperature at which the fluid will flow or can be poured.
- suitable pour point depressants include poly-methacrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
- 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655, 479; 2,666,746; 2,721,877; 2.721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof.
- Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %.
- Corrosion inhibitors are used to reduce the degradation of metallic parts that are in contact with the lubricating oil composition.
- Suitable corrosion inhibitors include thiadiazoles. See, for example, U.S. Pat. Nos. 2,719,125; 2,719,126; and 3,087,932.
- Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %.
- Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
- Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 wt %, preferably about 0.01 to 2 wt %.
- Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 percent and often less than 0.1 percent.
- Antirust additives are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants. A wide variety of these are commercially available; they are referred to in Klamann in Lubricants and Related Products, op cit.
- antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil.
- Another type of antirust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the metal surface.
- Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface.
- suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %.
- a friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s).
- Friction modifiers also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present invention if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this invention. Friction modifiers may include metal-containing compounds or materials as well as ashless compounds or materials, or mixtures thereof.
- Metal-containing friction modifiers may include metal salts or metal-ligand complexes where the metals may include alkali, alkaline earth, or transition group metals. Such metal-containing friction modifiers may also have low-ash characteristics. Transition metals may include Mo, Sb, Sn, Fe, Cu, Zn, and others.
- Ligands may include hydrocarbyl derivative of alcohols, polyols, glycerols, partial ester glycerols, thiols, carboxylates, carbamates, thiocarbamates, dithiocarbamates, phosphates, thiophosphates, dithiophosphates, amides, imides, amines, thiazoles, thiadiazoles, dithiazoles, diazoles, triazoles, and other polar molecular functional groups containing effective amounts of O, N, S, or P, individually or in combination.
- Mo-containing compounds can be particularly effective such as for example Mo-dithiocarbamates, Mo(DTC), Mo-dithiophosphates, Mo(DTP), Mo-amines, Mo (Am), Mo-alcoholates, Mo-alcohol-amides, etc. See U.S. Pat. No. 5,824,627; U.S. Pat. No. 6,232,276; U.S. Pat. No. 6,153,564; U.S. Pat. No. 6,143,701; U.S. Pat. No. 6,110,878; U.S. Pat. No. 5,837,657; U.S. Pat. No. 6,010,987; U.S. Pat. No. 5,906,968; U.S.
- Ashless friction modifiers may have also include lubricant materials that contain effective amounts of polar groups, for example, hydroxyl-containing hydrocarbyl base oils, glycerides, partial glycerides, glyceride derivatives, and the like.
- Polar groups in friction modifiers may include hydrocarbyl groups containing effective amounts of O, N, S, or P, individually or in combination.
- Other friction modifiers that may be particularly effective include, for example, salts (both ash-containing and ashless derivatives) of fatty acids, fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates, and comparable synthetic long-chain hydrocarbyl acids, alcohols, amides, esters, hydroxy carboxylates, and the like.
- fatty organic acids, fatty amines, and sulfurized fatty acids may be used as suitable friction modifiers.
- Useful concentrations of friction modifiers may range from about 0.01 wt % to 10-15 wt % or more, often with a preferred range of about 0.1 wt % to 5 wt %. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from about 10 ppm to 3000 ppm or more, and often with a preferred range of about 20-2000 ppm, and in some instances a more preferred range of about 30-1000 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this invention. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
- additives When lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present invention are shown in Table 1 below.
- the weight amounts in the table below, as well as other amounts mentioned in this patent, unless otherwise indicated are directed to the amount of active ingredient (that is the non-solvent portion of the ingredient).
- the wt % indicated below are based on the total weight of the lubricating oil composition.
- Blends were prepared comprising only GTL 6 of nominal KV 6.0 mm 2 /s at 100° C., a mixture of only 150N and 600N Group I base oil the KV of the mixture being nominally 6.0 mm 2 /s @ 100° C., and combinations of the GTL 6 and the 150N/600N base oils. All contained 2.0 wt % (as received) dispersant Infineum C9268. The blends were tested in a soot handling screener test which adds 3 wt % carbon black to the blend replicating 3 wt % soot in the oil.
- Example 1 the blends did not contain a viscosity modifier.
- Example 2 In this Example the relationship between GTL content and the desired thickening ability of two different viscosity modifiers at two different concentrations in blends is investigated. A 6.0 mm 2 /s GTL 6 and a 6.0 mm 2 /s Group I blend were used. No carbon black was added. The GTL/Group I base stock combinations used in Example 2 are the same as those used in Example 1 above.
- Blends containing between 10 and 80 wt % GTL in the base oil, prefer-ably 20 to 60 wt % GTL in the base oil unexpectedly exhibited both a significant reduction in the viscosity increase due to soot in the oil which retaining the desired thickening effect due to the viscosity modifier.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
The present invention is directed to a method for controlling soot induced viscosity increase in diesel engines, by using as the diesel engine lubricant an oil formulation comprising a base oil containing about 10 to 80 wt % GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil in combination with 20 to 90 wt % conventional Group I petroleum derived base oil, said base oil being further combined with a polymeric viscosity modifier, and to the lubricating oil which effects such control over soot induced viscosity increase.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/788,213 filed Mar. 31, 2006.
- 1. Field of the Invention
- The present invention relates to diesel engine lubricating oils and to the control of soot induced viscosity increase of the lubricating used in such engines.
- 2. Description of the Related Art
- Internal combustion engines function by the combustion of fuels which in turn generate the power needed to propel vehicles. In the case of a diesel engine, the fuel is a diesel fuel and the combustion thereof generally results in emissions from the exhausts of such vehicles which comprise three main components. These are: soot and particulate matter, carbon monoxide and nitrogen oxides (the latter will hereafter be abbreviated as NOx for convenience). To alleviate environmental concerns, research is ongoing to reduce the levels of these emissions. NOx emission can be reduced by lowering the temperature at which the fuel is combusted in the engine. Typically this is achieved by retarding the combustion, i.e., by injecting the fuel shortly after the peak temperature is reached in the cylinder. However, this retarded combustion has the disadvantage that it causes more soot to accumulate in the engine lubricant partly due to incomplete combustion of the fuel because of the lower combustion temperature, and partly due to increased soot deposition on the cylinder wall which is drawn down into the lubricant with the downward stroke of the piston. The presence of soot in the lubricant has the adverse affects of causing viscosity increase and accelerated wear. It is important that soot induced viscosity increase be controlled such that the lubricant stays within viscosity grade in order to maintain its expected performance and to enable quick and clean drainage of the engine during servicing.
- The formation of soot may be alleviated to a significant extent by operating the diesel engine at relatively higher temperatures. However, the higher temperatures whilst mitigating the formation of soot also result in the formation of increased amounts of NOx. If, however, the engine temperature is lowered, incomplete combustion ensues and whilst this reduces the amount of NOx formed in the emissions, it also substantially increases the amount of soot generated. The soot so formed can manifest itself in two ways. It can either appear as a thick black smoke emitted from the exhaust of the vehicle or can be accumulated in the engine lubricant. As the soot builds up in the lubricant, the latter becomes more and more viscous and upon reaching a critical value can cause gelation of the lubricant and may eventually cause seizure of the engine.
- Several methods have been put forward to alleviate this problem including the use of one or more of dispersants, metal salts and solvents which may be ethers, esters and the like. The dispersants function by forming a coating of the dispersant on the surface of soot particles and thereby minimizing the tendency of the soot particles to agglomerate. However, the potency of the dispersants to perform this function, in turn, declines with time and thus, one of the methods of improving the useful life of lubricants, particularly crankcase lubricants, would be to improve the dispersancy retention capability of crankcase lubricants. This may be achieved, e.g., by minimizing the risk of oxidation of the dispersants under the conditions prevalent in the engines during use. One such method is described in U.S. Pat. No. 5,837,657 which discloses a method of improving the performance of a sooted diesel oil and controlling soot induced viscosity increase by adding to the diesel oil a minor amount of a trinuclear molybdenum compound of the generic formula MO3SkLnQz wherein L is a ligand having organo groups, n is from 1 to 4, k various from 4 through 10, Q is a neutral electron donating compound such as, e.g., water, amines, alcohols, phosphines and ethers, and z ranges from 0 to 5.
- Hydrocarbon base oils have differing solvency characteristics that affect their capability to solubilize performance additives. Highly paraffinic hydrocarbon base oils (those having low levels of aromaticity) are known to have low-to-poor additive solubility characteristics. For example, such low-solvency hydrocarbon base oils include polyalpha olefins (PAO) which are 100% isoparaffinic and have essentially 0% aromatics content. Similarly, wax isomerate base oils, in particular hydroisomerized Fischer-Tropsch (F-T) waxes, often called Gas-to-Liquids (GTL) lubricant base oils, are very highly paraffinic and have essentially 0% aromatics content. The base stock is derived from a waxy, F-T synthesized hydrocarbon feed fraction comprising hydrocarbons having an initial b.p. in the range of approximately 650-750° F., by a process which comprises hydroisomerizing the feed and optionally dewaxing the isomerate. The lubricant also contains hydrocarbonaceous and synthetic base stock material in mixture with the F-T derived base stock. Consequently, such wax isomerate base oils would be expected to have low solvency and poor additive solubility performance.
- High isoparaffinic base stocks, however, are advantageous in soot control for diesel engine lubricants. Lower soot-induced viscosity increase and lower soot-induced wear are observed for diesel engine lubricants with higher saturate contents. In addition, GTL base oils are essentially sulfur-free, which is highly desirable for the next generation engine lubricants such as GF-5 and PC-10. In these new engine lubricant categories, a maximum sulfur level is defined for improved compatibility with new low emission engines equipped with aftertreatment devices.
- It would be advantageous if a way could be found to reduce the soot induced viscosity increase experienced in diesel engine lubricating oils during use while not negatively affecting the desired viscosity modifying effect of polymeric viscosity modifier which are normally added to diesel engine lubricating oils without the need of employing cosolvents.
-
FIG. 1 shows the relationship between % viscosity increase due to soot and the GTL content of the base oil. -
FIG. 2 shows the relationship between thickening ability attributable to Viscosity Modifier and the GTL content of the base oil. -
FIG. 3 shows the interrelationship between % viscosity increase due to soot and the thickening ability attributable to the viscosity modifier at different GTL levels in the base oil. - The present invention is directed to a method for controlling the soot induced viscosity increase of conventional/mineral oil derived base oil lubricating oil used in diesel engines while not adversely affecting the viscosity modifying effect of viscosity improver added to diesel engine lubricating oils.
- It has been discovered that the soot induced viscosity increase of diesel engine conventional petroleum/mineral oil derived base stock or base oil lubricating oils can be controlled in the diesel engine by adding to the diesel engine lubricant comprising a conventional petroleum/mineral oil derived base stock or base oil about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 20 to 60 wt % of a GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock or base oil based on the total base oil. The soot induced viscosity increase of diesel engine lubricating engine oils during use can be controlled by employing as the diesel engine lubricating oil a formulation comprising a base stock or base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 20 to 60 wt % of a GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerizad/catalytic (or solvent) dewaxed base stock and/or base oil in combination with about 90 to 20 wt %, preferably about 90 to 30 wt %, more preferably about 90 to 40 wt % of a conventional petroleum/mineral oil derived base stock or base oil based on the weight of the total base oil.
- It has been discovered that the addition of the GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) or base oil(s) in the amount indicated to the conventional petroleum/mineral oil derived base stock(s) or base oil(s) results in a base oil which exhibits both the ability to control soot induced viscosity increase while not adversely affecting the desirable viscosity modifying effect of polymeric viscosity modifiers which are deliberately added to the diesel engine lubricating oil formulation.
- Thus the present invention is directed to a method for controlling soot is induced viscosity increase in diesel engine lubricating oil during use by using as the diesel engine lubricant an oil formulation comprising a base stock or base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 10 to 60 wt % of one or more GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) or base oil(s), preferably GTL base stock in combination with about 90 to 20 wt %, preferably about 90 to 30 wt %, more preferably about 90 to 40 wt % of a conventional, petroleum/mineral oil derived base stock or base oil.
- The GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerizaed/catalytic (or solvent) dewaxed base stock(s) and/or base oil(s) is (are) characterized as having a kinematic viscosity at 100° C. in the range of about 2 to 50 mm2/s, preferably about 3 to 40 mm2/s, more preferably about 3.5 to 30 mm2/s.
- The conventional petroleum/mineral oil derived base stock or base oil is preferably a Group I and/or Group II base stock, more preferably Group I base stock. Groups I and II are broad categories of base oil stocks developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils Group I base stocks generally have a viscosity index of between about 80 to 120 and contain greater than about 0.03 wt % sulfur and less than about 90 wt % saturates, Group II base stocks generally have a viscosity index of between about 80 to 120 and contain less than or equal to about 0.03 wt % sulfur and grater than or equal to about 90 wt % saturates. The conventional/mineral oil derived base stock or base oil used in the present invention has a kinematic viscosity at 100° C. in the range of about 2 to 20 mm2/s, preferably about 4 to 10 mm2/s, more preferably about 4 to 8 mm2/s. The blend of the GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) or base oil(s) with the conventional petroleum/mineral oil derived base stock or base oil preferably exhibits an unadditized kinematic viscosity at 100° C. in the range of about 4 to 12 mm2/s, preferably 4 to 10 mm2/s, more preferably 4 to 8 mm2/s while the fully formulated lubricating oil composition made using the base oil exhibits a kinematic viscosity at 100° C. in the range of about 6 to 14 mm2/s.
- The present invention is also directed to a diesel engine lubricating oil formulation comprising a base oil containing about 10 to 80 wt %, preferably about 10 to 70 wt %, more preferably about 10 to 60 wt % of one or more GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) and/or base oil(s) in combination with about 90 to 20 wt %, preferably about 90 to 30 wt %, more preferably about 90 to 40 wt % of a conventional, petroleum/mineral oil derived base stock or base oil, preferably a Group I and/or Group II base stock and a polymeric viscosity modifying additive in an amount in the range of about 1 to 25 wt % on an as received basis, preferably about 5 to 25 wt % on an as received basis based on the total weight of the formulated diesel engine lubricating oil composition.
- Viscosity modifiers (also known as VI improvers and viscosity index improvers) provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
- Suitable viscosity index improvers include high molecular weight (polymeric) hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant. Typical molecular weights of these polymers are between about 10,000 to 1,000,000, more typically about 20,000 to 500,000, and even more typically between about 50,000 and 200,000.
- Examples of suitable viscosity index improvers are polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes. A suitable viscosity index improver is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants. Polyisobutylene is another example of a suitable viscosity index improver. Other suitable viscosity index improvers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, or styrene and butadiene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include olefin copolymer and styrene-hydrogenated isoprene copolymer of 50,000 to 200,000 molecular weight.
- As previously indicated, viscosity modifiers are used in an amount of about 1 to 25 wt % on an as received basis, preferably about 5 to 25 wt % on an as-received basis.
- Because viscosity modifiers are usually supplied diluted in a carrier or diluent oil and constitute anywhere from about 5 to 50 wt % active ingredient in the additive concentrates as received from the manufacturer, the amount of viscosity modifiers used in the formulation on an active ingredient basis can also be expressed as being in the range of about 0.20 to about 4.0 wt % active ingredient, preferably about 0.3 to 2.5 wt % active ingredient. For olefin copolymer and styrene-hydrogenated isoprene copolymer viscosity modifier, the active ingredient is in the range of about 5 to 15 wt % in the additive concentrates from the manufacturer, the amount of these viscosity modifiers used in the formulation can also be expressed as being in the range of about 0.20 to 1.9 wt % active ingredient, preferably about 0.3 to 1.5 wt % active ingredient.
- Preferably the conventional, petroleum/mineral oil derived Group I base stock or base oil has a sulfur content of about 0.2 wt % sulfur or base, more preferably about 0.15 wt % sulfur or less, even more preferably about 0.1 wt % sulfur or less.
- The GTL base stock(s) and/or base oil(s) and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock(s) and/or base oil(s) useful in the present invention include one or more or a mixture of base stock(s) and/or base oil(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as hydrodewaxed, or hydroisomerized/conventional cat (or solvent) dewaxed base stock(s) and/or base oils derived from natural wax or waxy feeds, mineral and or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks and/or base oils.
- As used herein, the following terms have the indicated meanings:
- a) “wax”—hydrocarbonaceous material having a high pour point, typically existing as a solid at room temperature, i.e., at a temperature in the range from about 15° C. to 25° C., and consisting predominantly of paraffinic materials;
- b) “paraffinic” material: any saturated hydrocarbons, such as alkanes. Paraffinic materials may include linear alkanes, branched alkanes (iso-paraffins), cycloalkanes (cycloparaffins; mono-ring and/or multi-ring), and branched cycloalkanes;
- c) “hydroprocessing”: a refining process in which a feedstock is heated with hydrogen at high temperature and under pressure, commonly in the presence of a catalyst, to remove and/or convert less desirable components and to produce an improved product;
- d) “hydrotreating”: a catalytic hydrogenation process that converts sulfur- and/or nitrogen-containing hydrocarbons into hydrocarbon products with reduced sulfur and/or nitrogen content, and which generates hydrogen sulfide and/or ammonia (respectively) as byproducts; similarly, oxygen containing hydrocarbons can also be reduced to hydrocarbons and water;
- e) “catalytic dewaxing”: a conventional catalytic process in which normal paraffins (wax) and/or waxy hydrocarbons, e.g., slightly branched iso-paraffins, are converted by cracking/fragmentation into lower molecular weight species to insure that the final oil product (base stock or base oil) has the desired product pour point;
- f) “hydroisomerization” (or isomerization): a catalytic process in which normal paraffins (wax) and/or slightly branched iso-paraffins are converted by rearrangement/isomerization into branched or more branched iso-paraffins (the isomerate from such a process possibly requiring a subsequent additional wax removal step to ensure that the final oil product (base stock or base oil) has the desired product pour point);
- g) “hydrocracking”: a catalytic process in which hydrogenation accompanies the cracking/fragmentation of hydrocarbons, e.g., converting heavier hydrocarbons into lighter hydrocarbons, or converting aromatics and/or cycloparaffins (naphthenes) into non-cyclic branched paraffins.
- h) “hydrodewaxing”: (e.g., ISODEWAXING® of Chevron or MSDW™ of Exxon Mobil corporation) a very selective catalytic process which in a single step or by use of a single catalyst or catalyst mixture effects conversion of wax by isomerization/rearrangement of the n-paraffins and slightly branched isoparaffins into more heavily branched isoparaffins, the resulting product not requiring a separate conventional catalytic or solvent dewaxing step to meet the desired product pour point;
- i) the terms “hydroisomerate”, “isomerate”, “catalytic dewaxate”, and “hydrodewaxate” refer to the products produced by the respective processes, unless otherwise specifically indicated;
- j) “base stock” is a single oil secured from a single feed stock source and subjected to a single processing scheme and meeting a particular specification;
- k) “base oil” is a mixture of base stocks.
- Thus the term “hydroisomerization/cat dewaxing” is used to refer to catalytic processes which have the combined effect of converting normal paraffins and/or waxy hydrocarbons by rearrangement/isomerization, into more branched iso-paraffins, followed by (1) catalytic dewaxing to reduce the amount of any residual n-paraffins or slightly branched iso-paraffins present in the isomerate by cracking/fragmentation or by (2) hydrodewaxing to effect further isomerization and very selective catalytic dewaxing of the isomerate, to reduce the product pour point. When the term “(or solvent)”, is included in the recitation, the process described involves hydroisomerization followed by solvent dewaxing which effects the physical separation of wax from the hydroisomerate so as to reduce the product pour point.
- GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds, and/or elements as feedstocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes. GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons, for example waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feedstocks. GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range separated/fractionated from synthesized GTL materials such as for example, by distillation and subsequently a final wax processing step which is either the well-known catalytic dewaxing process, or solvent dewaxing process, to produce lube oils of reduced/low pour point; synthesized wax isomerates, comprising, for example, hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed synthesized waxy hydrocarbons; hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed F-T hydrocarbons, or hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed, F-T waxes, hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed synthesized waxes, or mixtures thereof.
- GTL base stock(s) and/or base oil(s) derived from GTL materials, especially, hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed wax derived base stock(s) and/or base oil(s) are characterized typically as having kinematic viscosities at 100° C. of from about 2 mm2/s to about 50 mm2/s, preferably from about 3 mm2/s to about 50 mm2/s, more preferably from about 3.5 mm2/s to about 30 mm2/s, as exemplified by a GTL base stock derived by the hydrodewaxing or hydroisomerization catalytic (or solvent) dewaxing of F-T wax, which has a kinematic viscosity of about 4 mm2/s at 100° C. and a viscosity index of about 130 or greater. Preferably the wax treatment process is hydrodewaxing carried out in a process using a single hydrodewaxing catalyst. Reference herein to Kinematic viscosity refers to a measurement made by ASTM method D445.
- GTL base stock(s) and/or base oil(s) derived from GTL materials, especially hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed wax-derived base stock(s) and/or base oil(s), which can be used as base stock and/or base oil components of this invention are further characterized typically as having pour points of about −5° C. or lower, preferably about −10° C. or lower, more preferably about −15° C. or lower, still more preferably about −20° C. or lower, and under some conditions may have advantageous pour points of about −25° C. or lower, with useful pour points of about −30° C. to about −40° C. or lower. If necessary, a separate dewaxing step may be practiced to achieve the desired pour point. References herein to pour point refer to measurement made by ASTM D97 and similar automated versions.
- The GTL base stock(s) and/or base oil(s) derived from GTL materials, especially hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other such wax-derived base stock(s) and/or base oil(s) which can be used in this invention are also characterized typically as having viscosity indices of 80 or greater, preferably 100 or greater, and more preferably 120 or greater. Additionally, in certain particular instances, the viscosity index of these base stocks and/or base oil(s) may be preferably 130 or greater, more preferably 135 or greater, and even more preferably 140 or greater. For example, GTL base stock(s) and/or base oil(s) that derive from GTL materials preferably F-T materials especially F-T wax generally have a viscosity index of 130 or greater. References herein to viscosity index refer to ASTM method D2270.
- In addition, the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins multicycloparaffins in combination with non-cyclic isoparaffins. The ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used. Further, GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements. The sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained by the hydroisomerization/isodewaxing of F-T material, especially F-T wax, is essentially nil.
- In a preferred embodiment, the GTL base stock(s) and/or base oil(s) comprises paraffinic materials that consist predominantly of non-cyclic isoparaffins and only minor amounts of cycloparaffins. These GTL base stock(s) and/or base oil(s) typically comprise paraffinic materials that consist of greater than 60 wt % non-cyclic isoparaffins, preferably greater than 80 wt % non-cyclic isoparaffins, more preferably greater than 85 wt % non-cyclic isoparaffins, and most preferably greater than 90 wt % non-cyclic isoparaffins.
- Useful compositions of GTL base stock(s) and/or base oil(s), hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed F-T material derived base stock(s), and wax-derived hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed base stock(s), such as wax isomerates or hydrodewaxates, are recited in U.S. Pat. Nos. 6,080,301; 6,090,989, and 6,165,949 for example.
- Base stock(s) and/or base oil(s) derived from waxy feeds, which are also suitable for use in this invention, are paraffinic fluids of lubricating viscosity derived from hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed waxy feedstocks of mineral oil, non-mineral oil, non-petroleum, or natural source origin, e.g., feedstocks such as one or more of gas oils, slack wax, waxy fuels hydrocracker bottoms, hydrocarbon raffinates, natural waxes, hyrocrackates, thermal crackates, foots oil, wax from coal liquefaction or from shale oil, or other suitable mineral oil, non-mineral oil, non-petroleum, or natural source derived waxy materials, linear or branched hydrocarbyl compounds with carbon number of about 20 or greater, preferably about 30 or greater, and mixtures of such isomerate/isodewaxate base stock(s) and/or base oil(s).
- Slack wax is the wax recovered from any waxy hydrocarbon oil including synthetic oil such as F-T waxy oil or petroleum oils by solvent or autorefrigerative dewaxing. Solvent dewaxing employs chilled solvent such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of MEK/MIBK, mixtures of MEK and toluene, while autorefrigerative dewaxing employs pressurized, liquefied low boiling hydrocarbons such as propane or butane.
- Slack wax(es) secured from synthetic waxy oils such as F-T waxy oil will usually have zero or nil sulfur and/or nitrogen containing compound content. Slack wax(es) secured from petroleum oils, may contain sulfur and nitrogen containing compounds. Such heteroatom compounds must be removed by hydrotreating (and not hydrocracking), as for example by hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) so as to avoid subsequent poisoning/deactivation of the hydroisomerization catalyst.
- The term GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil as used herein and in the claims is to be understood as embracing individual fractions of GTL base stock and/or base oil and/or of wax-derived hydrodewaxed or hydroisomerized/cat (or solvent) dewaxed base stock and/or base oil as recovered in the production process, mixtures of two or more GTL base stock and/or base oil fractions and/or wax-derived hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed base stocks/base oil fractions, as well as mixtures of one or two or more low viscosity GTL base stock and/or base oil fraction(s) and/or wax-derived hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed base stock and/or base oil fraction(s) with one, two or more higher viscosity GTL base stock and/or base oil fraction(s) and/or wax-derived hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed base stock and/or base oil fraction(s) to produce a dumbbell blend wherein the blend exhibits a kinematic viscosity within the aforesaid recited range.
- In a preferred embodiment, the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax). A slurry F-T synthesis process may be beneficially used for synthesizing the feed from CO and hydrogen and particularly one employing an F-T catalyst comprising a catalytic cobalt component to provide a high Schultz-Flory kinetic alpha for producing the more desirable higher molecular weight paraffins. This process is also well known to those skilled in the art.
- In an F-T synthesis process, a synthesis gas comprising a mixture of H2 and CO is catalytically converted into hydrocarbons and preferably liquid hydrocarbons. The mole ratio of the hydrogen to the carbon monoxide may broadly range from about 0.5 to 4, but is more typically within the range of from about 0.7 to 2.75 and preferably from about 0.7 to 2.5. As is well known, F-T synthesis processes include processes in which the catalyst is in the form of a fixed bed, a fluidized bed or as a slurry of catalyst particles in a hydrocarbon slurry liquid. The stoichiometric mole ratio for a F-T synthesis reaction is 2.0, but there are many reasons for using other than a stoichiometric ratio as those skilled in the art know. In cobalt slurry hydrocarbon synthesis process the feed mole ratio of the H2 to CO is typically about 2.1/1. The synthesis gas comprising a mixture of H2 and CO is bubbled up into the bottom of the slurry and reacts in the presence of the particulate F-T synthesis catalyst in the slurry liquid at conditions effective to form hydrocarbons, a portion of which are liquid at the reaction conditions and which comprise the hydrocarbon slurry liquid. The synthesized hydrocarbon liquid is separated from the catalyst particles as filtrate by means such as filtration, although other separation means such as centrifugation can be used. Some of the synthesized hydrocarbons pass out the top of the hydrocarbon synthesis reactor as vapor, along with unreacted synthesis gas and other gaseous reaction products. Some of these overhead hydrocarbon vapors are typically condensed to liquid and combined with the hydrocarbon liquid filtrate. Thus, the initial boiling point of the filtrate may vary depending on whether or not some of the condensed hydrocarbon vapors have been combined with it. Slurry hydrocarbon synthesis process conditions vary somewhat depending on the catalyst and desired products. Typical conditions effective to form hydrocarbons comprising mostly C5+ paraffins, (e.g., C5+-C200) and preferably C10+ paraffins, in a slurry hydrocarbon synthesis process employing a catalyst comprising a supported cobalt component include, for example, temperatures, pressures and hourly gas space velocities in the range of from about 320-850° F., 80-600 psi and 100-40,000 V/hr/V, expressed as standard volumes of the gaseous CO and H2 mixture (0° C., 1 atm) per hour per volume of catalyst, respectively. The term “C5+” is used herein to refer to hydrocarbons with a carbon number of greater than 4, but does not imply that material with
carbon number 5 has to be present. Similarly other ranges quoted for carbon number do not imply that hydrocarbons having the limit values of the carbon number range have to be present, or that every carbon number in the quoted range is present. It is preferred that the hydrocarbon synthesis reaction be conducted under conditions in which limited or no water gas shift reaction occurs and more preferably with no water gas shift reaction occurring during the hydrocarbon synthesis. It is also preferred to conduct the reaction under conditions to achieve an alpha of at least 0.85, preferably at least 0.9 and more preferably at least 0.92, so as to synthesize more of the more desirable higher molecular weight hydrocarbons. This has been achieved in a slurry process using a catalyst containing a catalytic cobalt component. Those skilled in the art know that by alpha is meant the Schultz-Flory kinetic alpha. While suitable F-T reaction types of catalyst comprise, for example, one or more Group VIII catalytic metals such as Fe, Ni, Co, Ru and Re, it is preferred that the catalyst comprise a cobalt catalytic component. In one embodiment the catalyst comprises catalytically effective amounts of Co and one or more of Re, Ru, Fe, Ni, Th, Zr, Hf, U, Mg and La on a suitable inorganic support material, preferably one which comprises one or more refractory metal oxides. Preferred supports for Co containing catalysts comprise Titania, particularly. Useful catalysts and their preparation are known and illustrative, but nonlimiting examples may be found, for example, in U.S. Pat. Nos. 4,568,663; 4,663,305; 4,542,122; 4,621,072 and 5,545,674. - As set forth above, the waxy feed from which the base stock(s) and/or base oil(s) is/are derived is a wax or waxy feed from mineral oil, non-mineral oil, non-petroleum, or other natural source, especially slack wax, or GTL material, preferably F-T material, referred to as F-T wax. F-T wax preferably has an initial boiling point in the range of from 650-750° F. and preferably continuously boils up to an end point of at least 1050° F. A narrower cut waxy feed may also be used during the hydroisomerization. A portion of the n-paraffin waxy feed is converted to lower boiling isoparaffinic material. Hence, there must be sufficient heavy n-paraffin material to yield an isoparaffin containing isomerate boiling in the lube oil range. If catalytic dewaxing is also practiced after isomerization/isodewaxing, some of the isomerate/isodewaxate will also be hydrocracked to lower boiling material during the conventional catalytic dewaxing. Hence, it is preferred that the end boiling point of the waxy feed be above 1050° F. (1050° F.+).
- When a boiling range is quoted herein it defines the lower and/or upper distillation temperature used to separate the fraction. Unless specifically stated (for example, by specifying that the fraction boils continuously or constitutes the entire range) the specification of a boiling range does not require any material at the specified limit has to be present, rather it excludes material boiling outside that range.
- The waxy feed preferably comprises the entire 650-750° F.+ fraction formed by the hydrocarbon synthesis process, having an initial cut point between 650° F. and 750° F. determined by the practitioner and an end point, preferably above 1050° F., determined by the catalyst and process variables employed by the practitioner for the synthesis. Such fractions are referred to herein as “650-750° F.+ fractions”. By contrast, “650-750° F.− fractions” refers to a fraction with an unspecified initial cut point and an end point somewhere between 650° F. and 750° F. Waxy feeds may be processed as the entire fraction or as subsets of the entire fraction prepared by distillation or other separation techniques. The waxy feed also typically comprises more than 90%, generally more than 95% and preferably more than 98 wt % paraffinic hydrocarbons, most of which are normal paraffins. It has negligible amounts of sulfur and nitrogen compounds (e.g., less than 1 wppm of each), with less than 2,000 wppm, preferably less than 1,000 wppm and more preferably less than 500 wppm of oxygen, in the form of oxygenates. Waxy feeds having these properties and useful in the process of the invention have been made using a slurry F-T process with a catalyst having a catalytic cobalt component, as previously indicated.
- The process of making the lubricant oil base stocks from waxy stocks, e.g., slack wax or F-T wax, may be characterized as an isomerization process. If slack waxes are used as the feed, they may need to be subjected to a preliminary hydrotreating step under conditions already well known to those skilled in the art to reduce (to levels that would effectively avoid catalyst poisoning or deactivation) or to remove sulfur- and nitrogen-containing compounds which would otherwise deactivate the hydroisomerization or hydrodewaxing catalyst used in subsequent steps. If F-T waxes are used, such preliminary treatment is not required because, as indicated above, such waxes have only trace amounts (less than about 10 ppm, or more typically less than about 5 ppm to nil) of sulfur or nitrogen compound content. However, some hydrodewaxing catalyst fed F-T waxes may benefit from prehydrotreatment for the removal of oxygenates while others may benefit from oxygenates treatment. The hydroisomerization or hydrodewaxing process may be conducted over a combination of catalysts, or over a single catalyst. Conversion temperatures range from about 150° C. to about 500° C. at pressures ranging from about 500 to 20,000 kPa. This process may be operated in the presence of hydrogen, and hydrogen partial pressures range from about 600 to 6000 kPa. The ratio of hydrogen to the hydrocarbon feedstock (hydrogen circulation rate) typically range from about 10 to 3500 n.l.l.−1 (56 to 19,660 SCF/bbl) and the space velocity of the feedstock typically ranges from about 0.1 to 20 LHSV, preferably 0.1 to 10 LHSV.
- Following any needed hydrodenitrogenation or hydrodesulfurization, the hydroprocessing used for the production of base stocks from such waxy feeds may use an amorphous hydrocracking/hydroisomerization catalyst, such as a lube hydrocracking (LHDC) catalysts, for example catalysts containing Co, Mo, Ni, W, Mo, etc., on oxide supports, e.g., alumina, silica, silica/alumina, or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
- Other isomerization catalysts and processes for hydrocracking, hydro-dewaxing, or hydroisomerizing GTL materials and/or waxy materials to base stock or base oil are described, for example, in U.S. Pat. Nos. 2,817,693; 4,900,407; 4,937,399; 4,975,177; 4,921,594; 5,200,382; 5,516,740; 5,182,248; 5,290,426; 5,580,442; 5,976,351; 5,935,417; 5,885,438; 5,965,475; 6,190,532; 6,375,830; 6,332,974; 6,103,099; 6,025,305; 6,080,301; 6,096,940; 6,620,312; 6,676,827; 6,383,366; 6,475,960; 5,059,299; 5,977,425; 5,935,416; 4,923,588; 5,158,671; and 4,897,178; EP 0324528 (B1), EP 0532116 (B1), EP 0532118 (B1), EP 0537815 (B1), EP 0583836 (B2), EP 0666894 (B2), EP 0668342 (B1), EP 0776959 (A3), WO 97/031693 (A1), WO 02/064710 (A2), WO 02/064711 (A1), WO 02/070627 (A2), WO 02/070629 (A1), WO 03/033320 (A1) as well as in British Patents 1,429,494; 1,350,257; 1,440,230; 1,390,359; WO 99/45085 and WO 99/20720. Particularly favorable processes are described in European Patent Applications 464546 and 464547. Processes using F-T wax feeds are described in U.S. Pat. Nos. 4,594,172; 4,943,672; 6,046,940; 6,475,960; 6,103,099; 6,332,974; and 6,375,830.
- Hydrocarbon conversion catalysts useful in the conversion of the n-paraffin waxy feedstocks disclosed herein to form the isoparaffinic hydro-carbon base oil are zeolite catalysts, such as ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-12, ZSM-38, ZSM-48, offretite, ferrierite, zeolite beta, zeolite theta, and zeolite alpha, as disclosed in U.S. Pat. No. 4,906,350. These catalysts are used in combination with Group VIII metals, in particular palladium or platinum. The Group VIII metals may be incorporated into the zeolite catalysts by conventional techniques, such as ion exchange.
- In one embodiment, conversion of the waxy feedstock may be conducted over a combination of Pt/zeolite beta and Pt/ZSM-23 catalysts in the presence of hydrogen. In another embodiment, the process of producing the lubricant oil base stocks comprises hydroisomerization and dewaxing over a single catalyst, such as Pt/ZSM-35. In yet another embodiment, the waxy feed can be fed over the hydrodewaxing catalyst comprising Group VIII metal loaded ZSM-48, preferably Group VIII noble metal loaded ZSM-48, more preferably Pt/ZSM-48 in either one stage or two stages. In any case, useful hydrocarbon base oil products may be obtained. Catalyst ZSM-48 is described in U.S. Pat. No. 5,075,269. The use of the Group VIII metal loaded ZSM-48 family of catalysts, preferably platinum on ZSM-48, in the hydroisomerization of the waxy feedstock eliminates the need for any subsequent, separate dewaxing step.
- A dewaxing step, when needed, may be accomplished using one or more of solvent dewaxing, catalytic dewaxing or hydrodewaxing processes and either the entire hydroisomerate or the 650-750° F.+ fraction may be dewaxed, depending on the intended use of the 650-750° F.− material present, if it has not been separated from the higher boiling material prior to the dewaxing. In solvent dewaxing, the hydroisomerate may be contacted with chilled solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of MEK/MIBK, or mixtures of MEK/toluene and the like, and further chilled to precipitate out the higher pour point material as a waxy solid which is then separated from the solvent-containing lube oil fraction which is the raffinate. The raffinate is typically further chilled in scraped surface chillers to remove more wax solids. Autorefrigerative dewaxing using low molecular weight hydrocarbons, such as propane, can also be used in which the hydroisomerate is mixed with, e.g., liquid propane, a least a portion of which is flashed off to chill down the hydroisomerate to precipitate out the wax. The wax is separated from the raffinate by filtration, membrane separation or centrifugation. The solvent is then stripped out of the raffinate, which is then fractionated to produce the preferred base stocks useful in the present invention. Also well known is catalytic dewaxing, in which the hydroisomerate is reacted with hydrogen in the presence of a suitable dewaxing catalyst at conditions effective to lower the pour point of the hydroisomerate. Catalytic dewaxing also converts a portion of the hydroisomerate to lower boiling materials, in the boiling range, for example, 650-750° F.−, which are separated from the heavier 650-750° F.+ base stock fraction and the base stock fraction fractionated into two or more base stocks. Separation of the lower boiling material may be accomplished either prior to or during fractionation of the 650-750° F.+ material into the desired base stocks.
- Any dewaxing catalyst which will reduce the pour point of the hydroisomerate and preferably those which provide a large yield of lube oil base stock from the hydroisomerate may be used. These include shape selective molecular sieves which, when combined with at least one catalytic metal component, have been demonstrated as useful for dewaxing petroleum oil fractions and include, for example, ferrierite, mordenite, ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-22 also known as theta one or TON, and the silicoaluminophosphates known as SAPO's. A dewaxing catalyst which has been found to be unexpectedly particularly effective comprises a noble metal, preferably Pt, composited with H-mordenite. The dewaxing may be accomplished with the catalyst in a fixed, fluid or slurry bed. Typical dewaxing conditions include a temperature in the range of from about 400-600° F., a pressure of 500-900 psig, H2 treat rate of 1500-3500 SCF/B for flow-through reactors and LHSV of 0.1-10, preferably 0.2-2.0. The dewaxing is typically conducted to convert no more than 40 wt % and preferably no more than 30 wt % of the hydroisomerate having an initial boiling point in the range of 650-750° F. to material boiling below its initial boiling point.
- GTL base stock(s) and/or base oil(s), hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed wax-derived base stock(s) and/or base oil(s), have a beneficial kinematic viscosity advantage over conventional API Group II and Group III base stock(s) and/or base oil(s), and so may be very advantageously used with the instant invention. Such GTL base stock(s) and/or base oil(s) can have significantly higher kinematic viscosities, up to about 20-50 mm2/s at 100° C., whereas by comparison commercial Group II base oils can have kinematic viscosities up to about 15 mm2/s at 100° C., and commercial Group III base oils can have kinematic viscosities up to about 10 mm2/s at 100° C. The higher kinematic viscosity range of GTL base stock(s) and/or base oil(s), compared to the more limited kinematic viscosity range of Group II and Group III base stock(s) and/or base oil(s), in combination with the instant invention can provide additional beneficial advantages in formulating lubricant compositions.
- In the present invention mixtures of hydrodewaxate, or hydroisomerate/cat (or solvent) dewaxate base stock(s) and/or base oil(s), mixtures of the GTL base stock(s) and/or base oil(s), or mixtures thereof, preferably mixtures of GTL base stock(s) and/or base oil(s), can constitute all or part of the base oil.
- The preferred base stock(s) and/or base oil(s) derived from GTL materials and/or from waxy feeds are characterized as having predominantly paraffinic compositions and are further characterized as having high saturates levels, low-to-nil sulfur, low-to-nil nitrogen, low-to-nil aromatics, and are essentially water-white in color.
- A preferred GTL liquid hydrocarbon composition is one comprising paraffinic hydrocarbon components in which the extent of branching, as measured by the percentage of methyl hydrogens (BI), and the proximity of branching, as measured by the percentage of recurring methylene carbons which are four or more carbons removed from an end group or branch (CH2≧4), are such that: (a) BI-0.5(CH2≧4)>15; and (b) BI+0.85 (CH2≧4)<45 as measured over said liquid hydrocarbon composition as a whole.
- The preferred GTL base stock and/or base oil can be further characterized, if necessary, as having less than 0.1 wt % aromatic hydrocarbons, less than 20 wppm nitrogen containing compounds, less than 20 wppm sulfur containing compounds, a pour point of less than −18° C., preferably less than −30° C., a preferred BI≧25.4 and (CH2≧4)≦22.5. They have a nominal boiling point of 370° C.+, on average they average fewer than 10 hexyl or longer branches per 100 carbon atoms and on average have more than 16 methyl branches per 100 carbon atoms. They also can be characterized by a combination of dynamic viscosity, as measured by CCS at −40° C., and kinematic viscosity, as measured at 100° C. represented by the formula: DV (at −40° C.)<2900 (KV at 100° C.)−7000.
- The preferred GTL base stock and/or base oil is also characterized as comprising a mixture of branched paraffins characterized in that the lubricant base oil contains at least 90% of a mixture of branched paraffins, wherein said branched paraffins are paraffins having a carbon chain length of about C20 to about C40, a molecular weight of about 280 to about 562, a boiling range of about 650° F. to about 1050° F., and wherein said branched paraffins contain up to four alkyl branches and wherein the free carbon index of said branched paraffins is at least about 3.
- In the above the Branching Index (BI), Branching Proximity (CH2≧4), and Free Carbon Index (FCI) are determined as follows:
- A 359.88 MHz 1 H solution NMR spectrum is obtained on a Bruker 360 MHz AMX spectrometer using 10% solutions in CDCl3. TMS is the internal chemical shift reference. CDCl3 solvent gives a peak located at 7.28. All spectra are obtained under quantitative conditions using 90 degree pulse (10.9 μs), a pulse delay time of 30 s, which is at least five times the longest hydrogen spin-lattice relaxation time (T1), and 120 scans to ensure good signal-to-noise ratios.
- H atom types are defined according to the following regions:
-
- 9.2-6.2 ppm hydrogens on aromatic rings;
- 6.2-4.0 ppm hydrogens on olefinic carbon atoms;
- 4.0-2.1 ppm benzylic hydrogens at the α-position to aromatic rings;
- 2.1-1.4 ppm paraffinic CH methine hydrogens;
- 1.4-1.05 ppm paraffinic CH2 methylene hydrogens;
- 1.05-0.5 ppm paraffinic CH3 methyl hydrogens.
- The branching index (BI) is calculated as the ratio in percent of non-benzylic methyl hydrogens in the range of 0.5 to 1.05 ppm, to the total non-benzylic aliphatic hydrogens in the range of 0.5 to 2.1 ppm.
- A 90.5 MHz3CMR single pulse and 135 Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectra are obtained on a Brucker 360 MHzAMX spectrometer using 10% solutions in CDCL3. TMS is the internal chemical shift reference. CDCL3 solvent gives a triplet located at 77.23 ppm in the 13C spectrum. All single pulse spectra are obtained under quantitative conditions using 45 degree pulses (6.3 μs), a pulse delay time of 60 s, which is at least five times the longest carbon spin-lattice relaxation time (T1), to ensure complete relaxation of the sample, 200 scans to ensure good signal-to-noise ratios, and WALTZ-16 proton decoupling.
- The C atom types CH3, CH2, and CH are identified from the 135 DEPT
- 13C NMR experiment. A major CH2 resonance in all 13C NMR spectra at ≈29.8 ppm is due to equivalent recurring methylene carbons which are four or more removed from an end group or branch (CH2>4). The types of branches are determined based primarily on the 13C chemical shifts for the methyl carbon at the end of the branch or the methylene carbon one removed from the methyl on the branch.
- Free Carbon Index (FCI). The FCI is expressed in units of carbons, and is a measure of the number of carbons in an isoparaffin that are located at least 5 carbons from a terminal carbon and 4 carbons way from a side chain. Counting the terminal methyl or branch carbon as “one” the carbons in the FCI are the fifth or greater carbons from either a straight chain terminal methyl or from a branch methane carbon. These carbons appear between 29.9 ppm and 29.6 ppm in the carbon-13 spectrum. They are measured as follows:
- a) calculate the average carbon number of the molecules in the sample which is accomplished with sufficient accuracy for lubricating oil materials by simply dividing the molecular weight of the sample oil by 14 (the formula weight of CH2);
- b) divide the total carbon-13 integral area (chart divisions or area counts) by the average carbon number from step a. to obtain the integral area per carbon in the sample;
- c) measure the area between 29.9 ppm and 29.6 ppm in the sample; and
- d) divide by the integral area per carbon from step b. to obtain FCI.
- Branching measurements can be performed using any Fourier Transform NMR spectrometer. Preferably, the measurements are performed using a spectrometer having a magnet of 7.0T or greater. In all cases, after verification by Mass Spectrometry, UV or an NMR survey that aromatic carbons were absent, the spectral width was limited to the saturated carbon region, about 0-80 ppm vs. TMS (tetramethylsilane). Solutions of 15-25 percent by weight in chloroform-d1 were excited by 45 degrees pulses followed by a 0.8 sec acquisition time. In order to minimize non-uniform intensity data, the proton decoupler was gated off during a 10 sec delay prior to the excitation pulse and on during acquisition. Total experiment times ranged from 11-80 minutes. The DEPT and APT sequences were carried out according to literature descriptions with minor deviations described in the Varian or Bruker operating manuals.
- DEPT is Distortionless Enhancement by Polarization Transfer. DEPT does not show quaternaries. The DEPT 45 sequence gives a signal for all carbons bonded to protons. DEPT 90 shows CH carbons only. DEPT 135 shows CH and CH3 up and CH2 180 degrees out of phase (down). APT is Attached Proton Test. It allows all carbons to be seen, but if CH and CH3 are up, then quaternaries and CH2 are down. The sequences are useful in that every branch methyl should have a corresponding CH and the methyls are clearly identified by chemical shift and phase. The branching properties of each sample are determined by C-13 NMR using the assumption in the calculations that the entire sample is isoparaffinic. Corrections are not made for n-paraffins or cyclo-paraffins, which may be present in the oil samples in varying amounts. The cycloparaffins content is measured using Field Ionization Mass Spectroscopy (FIMS).
- GTL base stock(s) and/or base oil(s), and hydrodewaxed, or hydroisomerized/cat (or solvent) dewaxed wax base stock(s) and/or base oil(s), for example, hydroisomerized or hydrodewaxed waxy synthesized hydrocarbon, e.g., Fischer-Tropsch waxy hydrocarbon base stock(s) and/or base oil(s) are of low or zero sulfur and phosphorus content. There is a movement among original equipment manufacturers and oil formulators to produce formulated oils of ever increasingly reduced sulfated ash, phosphorus and sulfur content to meet ever increasingly restrictive environmental regulations. Such oils, known as low SAPS oils, would rely on the use of base oils which themselves, inherently, are of low or zero initial sulfur and phosphorus content. Such oils when used as base oils can be formulated with additives. Even if the additive or additives included in the formulation contain sulfur and/or phosphorus the resulting formulated lubricating oils will be lower or low SAPS oils as compared to lubricating oils formulated using conventional mineral oil base stock(s) and/or base oil(s).
- For example, low SAPS formulated oils for vehicle engines (both spark ignited and compression ignited) will have a sulfur content of 0.7 wt % or less, preferably 0.6 wt % or less, more preferably 0.5 wt % or less, most preferably 0.4 wt % or less, an ash content of 1.2 wt % or less, preferably 0.8 wt % or less, more preferably 0.4 wt % or less, and a phosphorus content of 0.18% or less, preferably 0.1 wt % or less, more preferably 0.09 wt % or less, most preferably 0.08 wt % or less, and in certain instances, even preferably 0.05 wt % or less.
- The instant invention can be used with additional lubricant components in effective amounts in lubricant compositions, such as for example polar and/or non-polar lubricant base oils, and performance additives such as for example, but not limited to, oxidation inhibitors, metallic and non-metallic dispersants, metallic and non-metallic detergents, corrosion and rust inhibitors, metal deactivators, anti-wear agents (metallic and non-metallic, phosphorus-containing and non-phosphorus, sulfur-containing and non-sulfur types), extreme pressure additives (metallic and non-metallic, phosphorus-containing and non-phosphorus, sulfur-containing and non-sulfur types), anti-seizure agents, pour point depressants, wax modifiers, viscosity modifiers, seal compatibility agents, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, and others. For a review of many commonly used additives see Klamann in Lubricants and Related Products, Verlag Chemie, Deerfield Beach, Fla.; ISBN 0-89573-177-0, which also gives a good discussion of a number of the lubricant additives mentioned below. Reference is also made “Lubricant Additives” by M. W. Ranney, published by Noyes Data Corporation of Parkridge, N.J. (1978).
- The types and quantities of performance additives used in combination with the instant invention in lubricant compositions are not limited by the examples shown herein as illustrations.
- Internal combustion engine lubricating oils require the presence of antiwear and/or extreme pressure (EP) additives in order to provide adequate antiwear protection for the engine. Increasingly specifications for engine oil performance have exhibited a trend for improved antiwear properties of the oil. Antiwear and extreme EP additives perform this role by reducing friction and wear of metal parts.
- While there are many different types of antiwear additives, for several decades the principal antiwear additive for internal combustion engine crankcase oils is a metal alkylthiophosphate and more particularly a metal dialkyldithio-phosphate in which the primary metal constituent is zinc, or zinc dialkyldithio-phosphate (ZDDP). ZDDP compounds generally are of the formula Zn[SP(S)(OR1)(OR2)]2 where R1 and R2 are C1-C18 alkyl groups, preferably C2-C12 alkyl groups. These alkyl groups may be straight chain or branched. The ZDDP is typically used in amounts of from about 0.4 to 1.4 wt % of the total lube oil composition, although more or less can often be used advantageously.
- However, it is found that the phosphorus from these additives has a deleterious effect on the catalyst in catalytic converters and also on oxygen sensors in automobiles. One way to minimize this effect is to replace some or all of the ZDDP with phosphorus-free antiwear additives.
- A variety of non-phosphorous additives are also used as antiwear additives. Sulfurized olefins are useful as antiwear and EP additives. Sulfur-containing olefins can be prepared by sulfurization or various organic materials including aliphatic, arylaliphatic or alicyclic olefinic hydrocarbons containing from about 3 to 30 carbon atoms, preferably 3-20 carbon atoms. The olefinic compounds contain at least one non-aromatic double bond. Such compounds are defined by the formula
-
R3R4C═CR5R6 - where each of R3-R6 are independently hydrogen or a hydrocarbon radical. Preferred hydrocarbon radicals are alkyl or alkenyl radicals. Any two of R3-R6 may be connected so as to form a cyclic ring. Additional information concern-ing sulfurized olefins and their preparation can be found in U.S. Pat. No. 4,941,984.
- The use of polysulfides of thiophosphorus acids and thiophosphorus acid esters as lubricant additives is disclosed in U.S. Pat. Nos. 2,443,264; 2,471,115; 2,526,497; and 2,591,577. Addition of phosphorothionyl disulfides as an antiwear, antioxidant, and EP additive is disclosed in U.S. Pat. No. 3,770,854. Use of alkylthiocarbamoyl compounds (bis(dibutyl)thiocarbamoyl, for example) in combination with a molybdenum compound (oxymolybdenum diisopropyl-phosphorodithioate sulfide, for example) and a phosphorous ester (dibutyl hydrogen phosphite, for example) as antiwear additives in lubricants is disclosed in U.S. Pat. No. 4,501,678. U.S. Pat. No. 4,758,362 discloses use of a carbamate additive to provide improved antiwear and extreme pressure properties. The use of thiocarbamate as an antiwear additive is disclosed in U.S. Pat. No. 5,693,598. Thiocarbamate/molybdenum complexes such as moly-sulfur alkyl dithio-carbamate trimer complex (R═C8-C18 alkyl) are also useful antiwear agents. The use or addition of such materials should be kept to a minimum if the object is to produce low SAP formulations. Each of the aforementioned patents is incorporated by reference herein in its entirety.
- Esters of glycerol may be used as antiwear agents. For example, mono-, di-, and tri-oleates, mono-palmitates and mono-myristates may be used.
- ZDDP is combined with other compositions that provide antiwear properties. U.S. Pat. No. 5,034,141 discloses that a combination of a thiodixanthogen compound (octylthiodixanthogen, for example) and a metal thiophosphate (ZDDP, for example) can improve antiwear properties. U.S. Pat. No. 5,034,142 discloses that use of a metal alkyoxyalkylxanthate (nickel ethoxyethylxanthate, for example) and a dixanthogen (diethoxyethyl dixanthogen, for example) in combination with ZDDP improves antiwear properties. Each of the afore-mentioned patents is incorporated herein by reference in its entirety.
- Preferred antiwear additives include phosphorus and sulfur compounds such as zinc dithiophosphates and/or sulfur, nitrogen, boron, molybdenum phosphorodithioates, molybdenum dithiocarbamates and various organo-molybdenum derivatives including heterocyclics, for example dimercaptothiadiazoles, mercaptobenzothiadiazoles, triazines, and the like, alicyclics, amines, alcohols, esters, diols, triols, fatty amides and the like can also be used. Such additives may be used in an amount of about 0.01 to 6 wt %, preferably about 0.01 to 4 wt %. ZDDP-like compounds provide limited hydroperoxide decomposition capability, significantly below that exhibited by compounds disclosed and claimed in this patent and can therefore be eliminated from the formulation or, if retained, kept at a minimal concentration to facilitate production of low SAP formulations.
- Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant. One skilled in the art knows a wide variety of oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Pat. Nos. 4,798,684 and 5,084,197, for example, each of which is incorporated by reference herein in its entirety.
- Useful antioxidants include hindered phenols. These phenolic anti-oxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C6+alkyl groups and the alkylene coupled derivatives of these hindered phenols. Examples of phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t-butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol. Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives. Bis-phenolic antioxidants may also be advantageously used in combination with the instant invention. Examples of ortho-coupled phenols include: 2,2′-bis(4-heptyl-6-t-butyl-phenol); 2,2′-bis(4-octyl-6-t-butyl-phenol); and 2,2′-bis(4-dodecyl-6-t-butyl-phenol). Para-coupled bisphenols include for example 4,4′-bis(2,6-di-t-butyl phenol) and 4,4′-methylene-bis(2,6-di-t-butyl phenol).
- Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics. Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R8R9R10N where R8 is an aliphatic, aromatic or substituted aromatic group, R9 is an aromatic or a substituted aromatic group, and R10 is H, alkyl, aryl or R11S(O)xR12 where R11 is an alkylene, alkenylene, or aralkylene group, R12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2. The aliphatic group R8 may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms. The aliphatic group is a saturated aliphatic group. Preferably, both R8 and R9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl. Aromatic groups R8 and R9 may be joined together with other groups such as S.
- Typical aromatic amines antioxidants have alkyl substituent groups of at least about 6 carbon atoms. Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms. The general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used. Particular examples of aromatic amine antioxidants useful in the present invention include: p,p′-dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha-naphthylamine.
- Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.
- Another class of antioxidant used in lubricating oil compositions is oil-soluble copper compounds. Any oil-soluble suitable copper compound may be blended into the lubricating oil. Examples of suitable copper antioxidants include copper dihydrocarbyl thio- or dithio-phosphates and copper salts of carboxylic acid (naturally occurring or synthetic). Other suitable copper salts include copper dithiacarbamates, sulphonates, phenates, and acetylacetonates. Basic, neutral, or acidic copper Cu(I) and or Cu(II) salts derived from alkenyl succinic acids or anhydrides are know to be particularly useful.
- Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %, more preferably zero to less than 1.5 wt %, most preferably zero.
- Detergents are commonly used in lubricating compositions. A typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule. The anionic portion of the detergent is typically derived from an organic acid such as a sulfur acid, carboxylic acid, phosphorous acid, phenol, or mixtures thereof. The counterion is typically an alkaline earth or alkali metal.
- Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80. Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide). Useful detergents can be neutral, mildly overbased, or highly overbased.
- It is desirable for at least some detergent to be overbased. Overbased detergents help neutralize acidic impurities produced by the combustion process and become entrapped in the oil. Typically, the overbased material has a ratio of metallic ion to anionic portion of the detergent of about 1.05:1 to 50:1 on an equivalent basis. More preferably, the ratio is from about 4:1 to about 25:1. The resulting detergent is an overbased detergent that will typically have a TBN of about 150 or higher, often about 250 to 450 or more. Preferably, the overbasing cation is sodium, calcium, or magnesium. A mixture of detergents of differing TBN can be used in the present invention.
- Preferred detergents include the alkali or alkaline earth metal salts of sulfonates, phenates, carboxylates, phosphates, and salicylates.
- Sulfonates may be prepared from sulfonic acids that are typically obtained by sulfonation of alkyl substituted aromatic hydrocarbons. Hydro-carbon examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, biphenyl and their halogenated derivatives (chlorobenzene, chlorotoluene, and chloronaphthalene, for example). The alkylating agents typically have about 3 to 70 carbon atoms. The alkaryl sulfonates typically contain about 9 to about 80 carbon or more carbon atoms, more typically from about 16 to 60 carbon atoms.
- Klamann in Lubricants and Related Products, op cit discloses a number of overbased metal salts of various sulfonic acids which are useful as detergents and dispersants in lubricants. The book entitled “Lubricant Additives”, C. V. Smallheer and R. K. Smith, published by the Lezius-Hiles Co. of Cleveland, Ohio (1967), similarly discloses a number of overbased sulfonates that are useful as dispersants/detergents.
- Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH)2, BaO, Ba(OH)2, MgO, Mg(OH)2, for example) with an alkyl phenol or sulfurized alkylphenol. Useful alkyl groups include straight chain or branched C1-C30 alkyl groups, preferably, C4-C20. Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like. It should be noted that starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched. When a non-sulfurized alkylphenol is used, the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
- Metal salts of carboxylic acids are also useful as detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level. Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids. Useful salicylates include long chain alkyl salicylates. One useful family of compositions is of the formula
- where R is a hydrogen atom or an alkyl group having 1 to about 30 carbon atoms, n is an integer from 1 to 4, and M is an alkaline earth metal. Preferred R groups are alkyl chains of at least C11, preferably C13 or greater. R may be optionally substituted with substituents that do not interfere with the detergent's function. M is preferably, calcium, magnesium, or barium. More preferably, M is calcium.
- Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction. See U.S. Pat. No. 3,595,791 for additional information on synthesis of these compounds. The metal salts of the hydrocarbyl-substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
- Alkaline earth metal phosphates are also used as detergents.
- Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Pat. No. 6,034,039 for example.
- Preferred detergents include calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates and other related components (including borated detergents). Typically, the total detergent concentration is about 0.01 to about 6.0 wt %, preferably, about 0.1 to 0.4 wt %.
- During engine operation, oil-insoluble oxidation byproducts are produced. Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces. Dispersants may be ashless or ash-forming in nature. Preferably, the dispersant is ashless. So called ashless dispersants are organic materials that form substantially no ash upon combustion. For example, non-metal-containing or borated metal-free dispersants are considered ashless. In contrast, metal-containing detergents discussed above form ash upon combustion.
- Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain. The polar group typically contains at least one element of nitrogen, oxygen, or phosphorus. Typical hydrocarbon chains contain 50 to 400 carbon atoms.
- Chemically, many dispersants may be characterized as phenates, sulfonates, sulfurized phenates, salicylates, naphthenates, stearates, carbamates, thiocarbamates, phosphorus derivatives. A particularly useful class of dispersants are the alkenylsuccinic derivatives, typically produced by the reaction of a long chain substituted alkenyl succinic compound, usually a substituted succinic anhydride, with a polyhydroxy or polyamino compound. The long chain group constituting the oleophilic portion of the molecule which confers solubility in the oil, is normally a polyisobutylene group. Many examples of this type of dispersant are well known commercially and in the literature. Exemplary U.S. patents describing such dispersants are U.S. Pat. Nos. 3,172,892; 3,2145,707; 3,219,666; 3,316,177; 3,341,542; 3,444,170; 3,454,607; 3,541,012; 3,630,904; 3,632,511; 3,787,374 and 4,234,435. Other types of dispersant are described in U.S. Pat. Nos. 3,036,003; 3,200,107; 3,254,025; 3,275,554; 3,438,757; 3,454,555; 3,565,804; 3,413,347; 3,697,574; 3,725,277; 3,725,480; 3,726,882; 4,454,059; 3,329,658; 3,449,250; 3,519,565; 3,666,730; 3,687,849; 3,702,300; 4,100,082; 5,705,458. A further description of dispersants may be found, for example, in European Patent Application No. 471 071, to which reference is made for this purpose.
- Hydrocarbyl-substituted succinic acid compounds are popular dispersants. In particular, succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
- Succinimides are formed by the condensation reaction between alkenyl succinic anhydrides and amines. Molar ratios can vary depending on the poly-amine. For example, the molar ratio of alkenyl succinic anhydride to TEPA can vary from about 1:1 to about 5:1. Representative examples are shown in U.S. Pat. Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Pat. No. 1,094,044.
- Succinate esters are formed by the condensation reaction between alkenyl succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of an alkenyl succinic anhydride and pentaerythritol is a useful dispersant.
- Succinate ester amides are formed by condensation reaction between alkenyl succinic anhydrides and alkanol amines. For example, suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpoly-amines and polyalkenylpolyamines such as polyethylene polyamines. One example is propoxylated hexamethylenediamine. Representative examples are shown in U.S. Pat. No. 4,426,305.
- The molecular weight of the alkenyl succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500. The above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid, and boron compounds such as borate esters or highly borated dispersants. The dispersants can be borated with from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.
- Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Pat. No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Pat. Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.
- Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this invention can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HN(R)2 group-containing reactants.
- Examples of high molecular weight alkyl-substituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol, and other polyalkylphenols. These polyalkylphenols can be obtained by the alkylation, in the presence of an alkylating catalyst, such as BF3, of phenol with high molecular weight poly-propylene, polybutylene, and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average 600-100,000 molecular weight.
- Examples of HN(R)2 group-containing reactants are alkylene polyamines, principally polyethylene polyamines. Other representative organic compounds containing at least one HN(R)2 group suitable for use in the preparation of Mannich condensation products are well known and include the mono- and di-amino alkanes and their substituted analogs, e.g., ethylamine and diethanol amine; aromatic diamines, e.g., phenylene diamine, diamino naphthalenes; heterocyclic amines, e.g., morpholine, pyrrole, pyrrolidine, imidazole, imidazolidine, and piperidine; melamine and their substituted analogs.
- Examples of alkylene polyamide reactants include ethylenediamine, diethylene triamine, triethylene tetraamine, tetraethylene pentaamine, penta-ethylene hexamine, hexaethylene heptaamine, heptaethylene octaamine, octaethylene nonaamine, nonaethylene decamine, and decaethylene undecamine and mixture of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H2N-(Z-NH—)nH, mentioned before, Z is a divalent ethylene and n is 1 to 10 of the foregoing formula. Corresponding propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta-propylene tri-, tetra-, penta- and hexaamines are also suitable reactants. The alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes. Thus the alkylene polyamines obtained from the reaction of 2 to 11 moles of ammonia with 1 to 10 moles of dichloroalkanes having 2 to 6 carbon atoms and the chlorines on different carbons are suitable alkylene polyamine reactants.
- Aldehyde reactants useful in the preparation of the high molecular products useful in this invention include the aliphatic aldehydes such as formaldehyde (also as paraformaldehyde and formalin), acetaldehyde and aldol (P-hydroxybutyraldehyde). Formaldehyde or a formaldehyde-yielding reactant is preferred.
- Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Pat. Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433; 3,822,209 and 5,084,197.
- Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000 or a mixture of such hydrocarbylene groups. Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components. Such additives may be used in an amount of about 0.1 to 20 wt %, preferably about 0.1 to 8 wt %.
- Conventional pour point depressants (also known as lube oil flow improvers) may be added to the compositions of the present invention if desired. These pour point depressant may be added to lubricating compositions of the present invention to lower the minimum temperature at which the fluid will flow or can be poured. Examples of suitable pour point depressants include poly-methacrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers. U.S. Pat. Nos. 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655, 479; 2,666,746; 2,721,877; 2.721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof. Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %.
- Corrosion inhibitors are used to reduce the degradation of metallic parts that are in contact with the lubricating oil composition. Suitable corrosion inhibitors include thiadiazoles. See, for example, U.S. Pat. Nos. 2,719,125; 2,719,126; and 3,087,932. Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %.
- Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer. Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 wt %, preferably about 0.01 to 2 wt %.
- Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 percent and often less than 0.1 percent.
- Antirust additives (or corrosion inhibitors) are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants. A wide variety of these are commercially available; they are referred to in Klamann in Lubricants and Related Products, op cit.
- One type of antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil. Another type of antirust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the metal surface. Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface. Examples of suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 wt %, preferably about 0.01 to 1.5 wt %.
- A friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s). Friction modifiers, also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present invention if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this invention. Friction modifiers may include metal-containing compounds or materials as well as ashless compounds or materials, or mixtures thereof. Metal-containing friction modifiers may include metal salts or metal-ligand complexes where the metals may include alkali, alkaline earth, or transition group metals. Such metal-containing friction modifiers may also have low-ash characteristics. Transition metals may include Mo, Sb, Sn, Fe, Cu, Zn, and others. Ligands may include hydrocarbyl derivative of alcohols, polyols, glycerols, partial ester glycerols, thiols, carboxylates, carbamates, thiocarbamates, dithiocarbamates, phosphates, thiophosphates, dithiophosphates, amides, imides, amines, thiazoles, thiadiazoles, dithiazoles, diazoles, triazoles, and other polar molecular functional groups containing effective amounts of O, N, S, or P, individually or in combination. In particular, Mo-containing compounds can be particularly effective such as for example Mo-dithiocarbamates, Mo(DTC), Mo-dithiophosphates, Mo(DTP), Mo-amines, Mo (Am), Mo-alcoholates, Mo-alcohol-amides, etc. See U.S. Pat. No. 5,824,627; U.S. Pat. No. 6,232,276; U.S. Pat. No. 6,153,564; U.S. Pat. No. 6,143,701; U.S. Pat. No. 6,110,878; U.S. Pat. No. 5,837,657; U.S. Pat. No. 6,010,987; U.S. Pat. No. 5,906,968; U.S. Pat. No. 6,734,150; U.S. Pat. No. 6,730,638; U.S. Pat. No. 6,689,725; U.S. Pat. No. 6,569,820; WO 99/66013; WO 99/47629; WO 98/26030.
- Ashless friction modifiers may have also include lubricant materials that contain effective amounts of polar groups, for example, hydroxyl-containing hydrocarbyl base oils, glycerides, partial glycerides, glyceride derivatives, and the like. Polar groups in friction modifiers may include hydrocarbyl groups containing effective amounts of O, N, S, or P, individually or in combination. Other friction modifiers that may be particularly effective include, for example, salts (both ash-containing and ashless derivatives) of fatty acids, fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates, and comparable synthetic long-chain hydrocarbyl acids, alcohols, amides, esters, hydroxy carboxylates, and the like. In some instances fatty organic acids, fatty amines, and sulfurized fatty acids may be used as suitable friction modifiers.
- Useful concentrations of friction modifiers may range from about 0.01 wt % to 10-15 wt % or more, often with a preferred range of about 0.1 wt % to 5 wt %. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from about 10 ppm to 3000 ppm or more, and often with a preferred range of about 20-2000 ppm, and in some instances a more preferred range of about 30-1000 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this invention. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
- When lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present invention are shown in Table 1 below.
- Note that many of the additives are shipped from the manufacturer and used with a certain amount of base oil solvent in the formulation. Accordingly, the weight amounts in the table below, as well as other amounts mentioned in this patent, unless otherwise indicated are directed to the amount of active ingredient (that is the non-solvent portion of the ingredient). The wt % indicated below are based on the total weight of the lubricating oil composition.
-
TABLE 1 Typical Amounts of Various Lubricant Oil Components Approximate wt % Approximate wt % Compound (useful) (preferred) Detergent 0.01–6 0.01–4 Dispersant 0.1–20 0.1–8 Friction Reducer 0.01–5 0.01–1.5 Antioxidant 0.0–5 0.0–1.5 Corrosion Inhibitor 0.01–5 0.01–1.5 Anti-wear Additive 0.01–6 0.01–4 Pour Point Depressant 0.0–5 0.01–1.5 Anti-foam Agent 0.001–3 0.001–0.15 Base stock or base oil Balance Balance - Blends were prepared comprising only GTL 6 of nominal KV 6.0 mm2/s at 100° C., a mixture of only 150N and 600N Group I base oil the KV of the mixture being nominally 6.0 mm2/s @ 100° C., and combinations of the GTL 6 and the 150N/600N base oils. All contained 2.0 wt % (as received) dispersant Infineum C9268. The blends were tested in a soot handling screener test which adds 3 wt % carbon black to the blend replicating 3 wt % soot in the oil.
- The screener test is summarized below:
- 1. Prepared blend by adding designated amount of carbon black paste (20% carbon black) and test oil to a blender. Blend for 5 minutes at high speed.
- 2. Transfer mixture to beaker with magnetic stir bar. Stir at 200 rpm for 1 hour at 65° C.
- 3. Immediately after stirring, charge the mixture to the viscometer in the 100° C. KV bath. Allow sample to equilibrate for exactly 15 minutes, then measure the Kinematic viscosity.
- 4. For each oil, measure the viscosity increase at each increasing weight percent. Stop testing when viscosity increase exceeds 200%.
- Results show that as more GTL is added, there is less increase in viscosity. Dispersancy, which relates to soot control capability, increases with increasing amounts of GTL:
-
TABLE 2 Viscosity of % Viscosity % base oil and Viscosity with increase with % Low S % dispersant Carbon Black, carbon black GTL 150N 600N blend, mm2/s mm2/s added as soot 0.0 83.0 17.0 6.661 20.490 208% 20.0 66.4 13.6 6.580 11.360 73% 40.0 49.8 10.2 6.543 9.250 41% 60.0 33.2 6.8 6.543 8.480 30% 80.0 16.6 3.4 6.451 7.970 24% 100.0 0.0 0.0 6.451 7.440 15% - In this Example the relationship between GTL content and the desired thickening ability of two different viscosity modifiers at two different concentrations in blends is investigated. A 6.0 mm2/s GTL 6 and a 6.0 mm2/s Group I blend were used. No carbon black was added. The GTL/Group I base stock combinations used in Example 2 are the same as those used in Example 1 above.
-
TABLE 3 % GTL/% Group I Blend 0/100 20/80 40/60 60/40 80/20 100/0 Viscosity: Blend with 15 wt 16.0 15.5 15.2 14.8 14.5 14.2 % (as received) Paratone 8011 (mm2/s) Thickening parameter: % 1.50 1.57 1.64 1.70 1.77 1.82 Paratone 8011/change in KV100 Viscosity: Blend with 25 wt 15.4 14.8 14.2 13.7 13.3 12.9 % (as received) Infineum SVs 151 (mm2/s) Thickening parameter: % 2.65 2.85 3.05 3.25 3.44 3.64 Shellvis 151/change in KV100 - Larger ratios of % viscosity modifier to change in viscosity represent less thickening ability or solubilizing power of the base stock of the deliberately added viscosity modifier. Smaller values, i.e., lower ratio values are indicative of better thickening due to the viscosity modifiers. As more GTL is added, the thickening ability of the viscosity modifier in the blend decreases. The results are presented graphically in
FIG. 2 . - When one plots the % viscosity increase from FIG. 1/Table 2 against the polymer thickener parameter of FIG. 2/Table 3 one sees that there is an unexpected optional regime of GTL content within which one achieves not only a significant reduction in viscosity increase due to soot but still obtains the desirable thickening due to soot but still obtains the desirable thickening due to the viscosity modifiers. The results are presented in Table 4 and
FIG. 3 . -
TABLE 4 % GTL/% Group I Blend 0/100 20/80 40/60 60/40 80/20 100/0 wt % Sulfur 0.183 0.147 0.110 0.073 0.037 0.000 % Viscosity Increase from 208% 73% 41% 30% 24% 15% Soot Viscosity: Blend with 16.0 15.5 15.2 14.8 14.5 14.2 15 wt % (as received) Paratone 8011 (cSt) % Paratone/delta KV100 1.50 1.57 1.64 1.70 1.77 1.82 - Blends containing between 10 and 80 wt % GTL in the base oil, prefer-ably 20 to 60 wt % GTL in the base oil unexpectedly exhibited both a significant reduction in the viscosity increase due to soot in the oil which retaining the desired thickening effect due to the viscosity modifier.
Claims (18)
1. A method for controlling the soot induced viscosity increase of conventional/mineral oil derived base stock or base oil lubricating oils used in diesel engines during use by adding to the lubricating oil about 10 to 80 wt % of a GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock or base oil, based on the weight of the total base oil.
2. A method for controlling the soot induced viscosity increase of lubricating oils used in diesel engines during use by employing as the diesel engine lubricating oil an oil formulation comprising a base stock or base oil containing about 10 to 80 wt % of a GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil in combination with about 90 to 20 wt % of a conventional petroleum/mineral oil derived base stock, based on the weight of the total base oil.
3. The method of claim 1 or 2 wherein the amount of GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil is in the range of about 10 to 70 wt % based on the weight of the total base oil.
4. The method of claim 1 or 2 wherein the conventional petroleum/mineral oil derived base stock is a Group I and/or Group II base stock.
5. The method of claim 4 wherein the conventional petroleum/mineral oil derived base stock is a Group I base stock.
6. The method of claim 1 or 2 wherein the GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil has a kinematic viscosity at 100° C. in the range of about 2 to 50 mm2/s.
7. The method of claim 1 or 2 wherein the GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil has a kinematic viscosity at 100° C. in the range of about 3 to 40 mm2/s.
8. The method of claim 1 or 2 wherein the GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil has a kinematic viscosity at 100° C. in the range of about 3.5 to 30 mm2/s.
9. The method of claim 2 wherein the conventional petroleum/mineral oil derived base stock has a kinematic viscosity at 100° C. in the range of about 2 to 20 mm2/s.
10. The method of claim 4 wherein the conventional petroleum/mineral oil derived base stock has a kinematic viscosity at 100° C. in the range of about 4 to 10 mm2/s.
11. The method of claim 5 wherein the conventional petroleum/mineral oil derived base stock has a kinematic viscosity at 100° C. in the range of about 4 to 8 mm2/s.
12. The method of claim 1 or 2 wherein the GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil has a kinematic viscosity at 100° C. in the range of about 3.5 to 30 mm2/s and the conventional petroleum/mineral oil derived stock is a Group I and/or Group II stock which has a kinematic viscosity at 100° C. in the range of about 4 to 8 mm2/s.
13. A diesel engine lubricating oil formulation resistant to soot induced viscosity increase during use comprising a base oil containing about 10 to 80 wt % GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil, about 90 to 20 wt % of a conventional petroleum/mineral oil derived base oil, based on the weight of the total base oil and about 1 to 25 wt % on an as received basis of a polymeric viscosity modifying additive, based on the total weight of the lubricating oil formulation.
14. The diesel engine lubricating oil formulation of claim 13 wherein the GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil comprises about 10 to 70 wt % of the total base oil.
15. The diesel engine lubricating oil formulation of claim 13 wherein the GTL base stock and/or base oil and/or hydrodewaxed or hydroisomerized/catalytic (or solvent) dewaxed base stock and/or base oil comprises about 10 to 60 wt % of the total base oil.
16. The diesel engine lubricating oil formulation of claim 13 , 14 or 15 wherein the conventional petroleum/mineral oil derived base oil is a Group I and/or Group II base oil.
17. The diesel engine lubricating oil formulation of claim 16 wherein the base oil is a Group I base oil.
18. The diesel engine lubricating oil formulation of claim 13 , 14 or 15 wherein the polymeric viscosity modifying additive is present in an amount in the range of about 5 to 25 wt % on an as received base, based on the total weight of the lubricating oil formulation.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/717,343 US20070232503A1 (en) | 2006-03-31 | 2007-03-13 | Soot control for diesel engine lubricants |
| PCT/US2007/007767 WO2007126953A2 (en) | 2006-03-31 | 2007-03-28 | Soot control for diesel engine lubricants |
| EP07754308A EP2004779A2 (en) | 2006-03-31 | 2007-03-28 | Soot control for diesel engine lubricants |
| US13/649,491 US8642524B2 (en) | 2006-03-31 | 2012-10-11 | Soot control for diesel engine lubricants |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US78821306P | 2006-03-31 | 2006-03-31 | |
| US11/717,343 US20070232503A1 (en) | 2006-03-31 | 2007-03-13 | Soot control for diesel engine lubricants |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/649,491 Continuation US8642524B2 (en) | 2006-03-31 | 2012-10-11 | Soot control for diesel engine lubricants |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070232503A1 true US20070232503A1 (en) | 2007-10-04 |
Family
ID=38511396
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/717,343 Abandoned US20070232503A1 (en) | 2006-03-31 | 2007-03-13 | Soot control for diesel engine lubricants |
| US13/649,491 Expired - Fee Related US8642524B2 (en) | 2006-03-31 | 2012-10-11 | Soot control for diesel engine lubricants |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/649,491 Expired - Fee Related US8642524B2 (en) | 2006-03-31 | 2012-10-11 | Soot control for diesel engine lubricants |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20070232503A1 (en) |
| EP (1) | EP2004779A2 (en) |
| WO (1) | WO2007126953A2 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080026970A1 (en) * | 2006-07-28 | 2008-01-31 | Wright Kelli H | Novel application of thickeners to achieve favorable air release in lubricants |
| US20090054285A1 (en) * | 2007-08-21 | 2009-02-26 | Marc-Andre Poirier | Lubricant composition with low deposition tendency |
| US20100012551A1 (en) * | 2006-10-06 | 2010-01-21 | Toyota Jidosha Kabushiki Kaisha | Light oil composition |
| US20140038867A1 (en) * | 2012-08-06 | 2014-02-06 | Exxonmobil Research And Engineering Company | Migration of air release in lubricant base stocks |
| US20140171299A1 (en) * | 2012-12-14 | 2014-06-19 | Julie Chabot | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
| RU2526620C1 (en) * | 2013-05-23 | 2014-08-27 | Сергей Михайлович Мамыкин | Liquid fuel composition |
| US20190316057A1 (en) * | 2013-05-30 | 2019-10-17 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
| US11193082B2 (en) * | 2018-03-27 | 2021-12-07 | Eneos Corporation | Wax isomerized oil |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE536057C2 (en) * | 2011-08-25 | 2013-04-16 | Scania Cv Ab | Device comprising cation exchanger for reducing the acidity of engine oil and engine with such device |
Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837657A (en) * | 1997-12-02 | 1998-11-17 | Fang; Howard L. | Method for reducing viscosity increase in sooted diesel oils |
| US5898023A (en) * | 1998-03-24 | 1999-04-27 | Exxon Research And Engineering Co. | Lubricant additive composition for inhibiting viscosity increase and dispersency decrease |
| US6080301A (en) * | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
| US6150309A (en) * | 1998-08-04 | 2000-11-21 | Exxon Research And Engineering Co. | Lubricant formulations with dispersancy retention capability (law684) |
| US6475960B1 (en) * | 1998-09-04 | 2002-11-05 | Exxonmobil Research And Engineering Co. | Premium synthetic lubricants |
| US20020193646A1 (en) * | 2001-06-15 | 2002-12-19 | O'rear Dennis J. | Inhibiting oxidation of a fischer-tropsch product using petroleum-derived products |
| US20030100453A1 (en) * | 2001-09-27 | 2003-05-29 | O'rear Dennis J. | Lube base oils with improved stability |
| US6689725B1 (en) * | 1999-10-19 | 2004-02-10 | Exxonmobil Research And Engineering Company | Lubricant composition for diesel engines |
| US20040038833A1 (en) * | 2002-01-31 | 2004-02-26 | Deckman Douglas E. | Lubricating oil compositions for internal combustion engines with improved wear performance |
| US20040048753A1 (en) * | 2002-09-10 | 2004-03-11 | Ritchie Andrew J.D. | Lubricating oil compositions |
| US6713438B1 (en) * | 1999-03-24 | 2004-03-30 | Mobil Oil Corporation | High performance engine oil |
| US6734150B2 (en) * | 2000-02-14 | 2004-05-11 | Exxonmobil Research And Engineering Company | Lubricating oil compositions |
| US20040094453A1 (en) * | 2002-11-20 | 2004-05-20 | Lok Brent K. | Blending of low viscosity fischer-tropsch base oils with conventional base oils to produce high quality lubricating base oils |
| US20040121920A1 (en) * | 2000-02-14 | 2004-06-24 | Gao Jason Zhisheng | Lubricant composition comprising a dispersant, a trinuclear molybdenum compound and a different other antioxidant |
| US20050098476A1 (en) * | 2003-11-07 | 2005-05-12 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms |
| US20050279669A1 (en) * | 2003-10-24 | 2005-12-22 | Schaberg Paul W | Crude oil derived and gas-to-liquids diesel fuel blends |
| US20060052255A1 (en) * | 2004-09-07 | 2006-03-09 | The Lubrizol Corporation, A Corporation Of The State Of Ohio | Aromatic diblock copolymers for lubricant and concentrate compositions and methods thereof |
| US20060189492A1 (en) * | 2005-02-18 | 2006-08-24 | Bera Tushar K | Soot dispersants and lubricating oil compositions containing same |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL193379C (en) * | 1980-09-09 | 1999-08-03 | Shell Int Research | Basic lubricating oil composition. |
| US6458750B1 (en) * | 1999-03-04 | 2002-10-01 | Rohmax Additives Gmbh | Engine oil composition with reduced deposit-formation tendency |
| US7195706B2 (en) * | 2003-12-23 | 2007-03-27 | Chevron U.S.A. Inc. | Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins |
| US7981270B2 (en) * | 2005-03-11 | 2011-07-19 | Chevron U.S.A. Inc. | Extra light hydrocarbon liquids |
| US8318002B2 (en) * | 2005-12-15 | 2012-11-27 | Exxonmobil Research And Engineering Company | Lubricant composition with improved solvency |
-
2007
- 2007-03-13 US US11/717,343 patent/US20070232503A1/en not_active Abandoned
- 2007-03-28 EP EP07754308A patent/EP2004779A2/en not_active Withdrawn
- 2007-03-28 WO PCT/US2007/007767 patent/WO2007126953A2/en active Application Filing
-
2012
- 2012-10-11 US US13/649,491 patent/US8642524B2/en not_active Expired - Fee Related
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837657A (en) * | 1997-12-02 | 1998-11-17 | Fang; Howard L. | Method for reducing viscosity increase in sooted diesel oils |
| US5898023A (en) * | 1998-03-24 | 1999-04-27 | Exxon Research And Engineering Co. | Lubricant additive composition for inhibiting viscosity increase and dispersency decrease |
| US6150309A (en) * | 1998-08-04 | 2000-11-21 | Exxon Research And Engineering Co. | Lubricant formulations with dispersancy retention capability (law684) |
| US6080301A (en) * | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
| US6475960B1 (en) * | 1998-09-04 | 2002-11-05 | Exxonmobil Research And Engineering Co. | Premium synthetic lubricants |
| US6713438B1 (en) * | 1999-03-24 | 2004-03-30 | Mobil Oil Corporation | High performance engine oil |
| US6689725B1 (en) * | 1999-10-19 | 2004-02-10 | Exxonmobil Research And Engineering Company | Lubricant composition for diesel engines |
| US6734150B2 (en) * | 2000-02-14 | 2004-05-11 | Exxonmobil Research And Engineering Company | Lubricating oil compositions |
| US20040121920A1 (en) * | 2000-02-14 | 2004-06-24 | Gao Jason Zhisheng | Lubricant composition comprising a dispersant, a trinuclear molybdenum compound and a different other antioxidant |
| US20020193646A1 (en) * | 2001-06-15 | 2002-12-19 | O'rear Dennis J. | Inhibiting oxidation of a fischer-tropsch product using petroleum-derived products |
| US20030100453A1 (en) * | 2001-09-27 | 2003-05-29 | O'rear Dennis J. | Lube base oils with improved stability |
| US20040038833A1 (en) * | 2002-01-31 | 2004-02-26 | Deckman Douglas E. | Lubricating oil compositions for internal combustion engines with improved wear performance |
| US20040048753A1 (en) * | 2002-09-10 | 2004-03-11 | Ritchie Andrew J.D. | Lubricating oil compositions |
| US20040094453A1 (en) * | 2002-11-20 | 2004-05-20 | Lok Brent K. | Blending of low viscosity fischer-tropsch base oils with conventional base oils to produce high quality lubricating base oils |
| US20050279669A1 (en) * | 2003-10-24 | 2005-12-22 | Schaberg Paul W | Crude oil derived and gas-to-liquids diesel fuel blends |
| US20050098476A1 (en) * | 2003-11-07 | 2005-05-12 | Chevron U.S.A. Inc. | Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms |
| US20060052255A1 (en) * | 2004-09-07 | 2006-03-09 | The Lubrizol Corporation, A Corporation Of The State Of Ohio | Aromatic diblock copolymers for lubricant and concentrate compositions and methods thereof |
| US20060189492A1 (en) * | 2005-02-18 | 2006-08-24 | Bera Tushar K | Soot dispersants and lubricating oil compositions containing same |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080026970A1 (en) * | 2006-07-28 | 2008-01-31 | Wright Kelli H | Novel application of thickeners to achieve favorable air release in lubricants |
| US20100012551A1 (en) * | 2006-10-06 | 2010-01-21 | Toyota Jidosha Kabushiki Kaisha | Light oil composition |
| US20090054285A1 (en) * | 2007-08-21 | 2009-02-26 | Marc-Andre Poirier | Lubricant composition with low deposition tendency |
| US20140038867A1 (en) * | 2012-08-06 | 2014-02-06 | Exxonmobil Research And Engineering Company | Migration of air release in lubricant base stocks |
| US9359573B2 (en) * | 2012-08-06 | 2016-06-07 | Exxonmobil Research And Engineering Company | Migration of air release in lubricant base stocks |
| US20140171299A1 (en) * | 2012-12-14 | 2014-06-19 | Julie Chabot | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
| US9687823B2 (en) * | 2012-12-14 | 2017-06-27 | Chevron U.S.A. Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
| RU2526620C1 (en) * | 2013-05-23 | 2014-08-27 | Сергей Михайлович Мамыкин | Liquid fuel composition |
| US20190316057A1 (en) * | 2013-05-30 | 2019-10-17 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
| US10988701B2 (en) * | 2013-05-30 | 2021-04-27 | The Lubrizol Corporation | Lubricating composition containing an oxyalkylated hydrocarbyl phenol |
| US11193082B2 (en) * | 2018-03-27 | 2021-12-07 | Eneos Corporation | Wax isomerized oil |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2007126953A2 (en) | 2007-11-08 |
| US20130045905A1 (en) | 2013-02-21 |
| US8642524B2 (en) | 2014-02-04 |
| EP2004779A2 (en) | 2008-12-24 |
| WO2007126953A3 (en) | 2008-02-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8383563B2 (en) | Method for enhancing the oxidation and nitration resistance of natural gas engine oil compositions and such compositions | |
| US8642524B2 (en) | Soot control for diesel engine lubricants | |
| US8318002B2 (en) | Lubricant composition with improved solvency | |
| EP2087076B1 (en) | Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes | |
| US7863227B2 (en) | High performance lubricant containing high molecular weight aromatic amine antioxidant and low boron content dispersant | |
| CA2632753C (en) | Aviation piston engine oil compositions | |
| US8236741B2 (en) | Method for haze mitigation and filterability improvement for gas-to-liquid hydroisomerized base stocks | |
| US7662757B2 (en) | Stable defoamant composition containing GTL fluid and/or hydrodewaxate and/or hydroisomerized/catalytic (and/or solvent) dewaxed fluid as diluent | |
| US20140274849A1 (en) | Lubricating composition providing high wear resistance | |
| CA2654923C (en) | Synthetic phenolic ether lubricant base stocks and lubricating oils comprising such base stocks mixed with co-base stocks and/or additives |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
