WO2008044499A1 - Hydrogen generation device - Google Patents

Hydrogen generation device Download PDF

Info

Publication number
WO2008044499A1
WO2008044499A1 PCT/JP2007/069040 JP2007069040W WO2008044499A1 WO 2008044499 A1 WO2008044499 A1 WO 2008044499A1 JP 2007069040 W JP2007069040 W JP 2007069040W WO 2008044499 A1 WO2008044499 A1 WO 2008044499A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
generated
compartment
pure water
hydrogen
Prior art date
Application number
PCT/JP2007/069040
Other languages
French (fr)
Japanese (ja)
Inventor
Yukinobu Mori
Original Assignee
Yukinobu Mori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukinobu Mori filed Critical Yukinobu Mori
Priority to JP2008538647A priority Critical patent/JPWO2008044499A1/en
Publication of WO2008044499A1 publication Critical patent/WO2008044499A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator, and more particularly to a hydrogen generator that supplies hydrogen to a fuel cell that burns hydrogen to obtain electric energy.
  • Hydrogen energy is generated by burning hydrogen, that is, in a process opposite to the electrolysis of water, by chemically reacting hydrogen and oxygen to be taken out as electric energy.
  • Several methods have already been proposed to generate this hydrogen. The performance depends largely on the electrolyte used, especially the content of the solid electrolyte. Conditions for generating hydrogen that is safe and low cost are always established. It has not been.
  • a polymer membrane that is usually used at a high temperature as a solid electrolyte is difficult to maintain due to the rapid deterioration of the ion exchange membrane electrode.
  • Patent Document 1 hydrogen produced by electrolysis of high-pressure hydrogen gas and pure water is used in combination, and the solid polymer electrolyte membrane part and the oxidation part are integrated into a cell shape.
  • pure water is produced by purifying circulating water using the high pressure of high-pressure hydrogen gas. The technology to do is disclosed!
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-149971
  • the present invention was made to solve the various problems in the hydrogen generator for fuel cells as described above.
  • a hydrogen generator that does not use high-pressure hydrogen and does not require a high-pressure cylinder or a high-pressure station is provided.
  • the purpose is to provide.
  • the present invention also provides a hydrogen generator having an electrolysis system that is highly efficient, has power, consumes less parts, and is easy to maintain by using an electrolyte solution that is friendly to the global environment as a raw energy source. For the purpose.
  • oxygen and pure water which are by-products generated in the electrolysis system and the fuel cell, are circulated and used, so that only the electrolytic solution that is basically the source of energy is replenished.
  • the purpose is to provide an integrated system for fuel cells and hydrogen generators that is friendly to the global environment because it forms a Krant system.
  • a hydrogen generator according to claim 1 of the present invention includes a first tank provided with a catalyst, and a first positive electrode partitioned by a first diaphragm.
  • a second tank having a first compartment and a second compartment having a first negative electrode, wherein an acidic electrolyte is injected into the first tank, and a pure water is injected into the first compartment of the second tank.
  • a hydrogen generator includes a first tank provided with a catalyst, a first compartment provided with a first negative electrode, and a first positive electrode. District 3 with electrodes And a second tank having a second section in contact with the first and third sections through the second and first diaphragms, respectively, an alkaline electrolyte being injected into the first tank, Pure water is supplied to the first and third compartments of the second tank, an alkaline electrolyte is poured into the second compartment of the second tank, and the first compartments of the first and second tanks are supplied.
  • the alkaline electrolyte is sent from the first section of the second tank to the first tank through the first pipe, and the alkaline electrolyte is pH 9 ⁇ ; It is characterized by 14 electrolytes.
  • a hydrogen generator according to claim 3 of the present invention includes a first tank provided with a catalyst, a first compartment provided with a first positive electrode, and a first negative electrode.
  • a first pipe is provided between the first compartments of the tank, and when power energy is applied to the first positive and negative electrodes, hydrogen gas and pure water are generated in the first tank, and the second tank Oxygen gas and acidic electrolyte are generated in the first compartment of the second tank and the third compartment of the second tank.
  • a hydrogen generator according to claim 4 of the present invention includes a first compartment having a first positive electrode partitioned by a first diaphragm and a first negative electrode.
  • a second tank having an electrode and a second compartment, wherein pure water is supplied to the first compartment, alkaline electrolyte is injected into the second compartment, and power energy is supplied to the first compartment.
  • hydrogen gas is generated in the second compartment, oxygen gas and acidic electrolyte are generated in the first compartment, and the acidic electrolyte and alkaline electrolyte are each ⁇ 1 It is characterized by an electrolyte solution of ⁇ 4 and pH 9 ⁇ ;
  • a hydrogen generator according to claim 5 of the present invention provides a first negative A second section having a first section having an electrode, a third section having a first positive electrode, and a second section in contact with the first and third sections through second and first diaphragms, respectively.
  • a pure water is supplied to the first and third compartments, an alkaline electrolyte is injected into the second compartment, and when power energy is applied to the first positive and negative electrodes, Oxygen gas is generated in the third section, hydrogen gas and alkaline electrolyte are generated in the first section, and the alkaline electrolyte is an electrolyte having a pH of 9 to 14;
  • a hydrogen generator according to claim 6 of the present invention includes a first section including a first positive electrode, and a third section including a first negative electrode, A second tank having a second compartment in contact with the first and third compartments via first and second diaphragms; pure water is supplied to the first and third compartments; When an acidic electrolyte is injected and power energy is applied to the first positive and negative electrodes, oxygen gas and acidic electrolyte are generated in the first section, and hydrogen gas is generated in the third section.
  • a hydrogen generator, wherein the acidic electrolyte is an electrolyte having a pH of 1 to 4 .
  • the hydrogen generator according to claim 7 of the present invention comprises a first tank provided with a catalyst made of aluminum, and an alkaline electrolyte is injected into the first tank.
  • a catalyst made of aluminum In the first tank, hydrogen gas and aluminum hydroxide are generated, and the alkaline electrolyte has a pH of 9 to 14;
  • the first and second diaphragms are an anion exchange membrane and a cation exchange membrane, respectively.
  • a second pipe including a pump that operates by applying electric energy to the second positive and negative electrodes.
  • the pure water generated in the first tank is joined to the second pipe.
  • the catalyst in the first tank, is further provided with an electrode capable of applying a positive voltage to the alkaline electrolyte, and the progress of the reaction in the first tank is suppressed. It is characterized by.
  • the catalyst in the first tank, is further provided with an electrode capable of applying a negative voltage to the acidic electrolyte, and the progress of the reaction in the first tank is suppressed. It is characterized by. [0021] Further, as described in claims 12 and 15, in the first tank and / or the second tank,
  • V is provided with a fuel cell that is supplied with hydrogen gas generated and burns to generate electric energy and pure water, and a part of the electric energy is applied to the first, second positive and negative electrodes. It is characterized by that.
  • V is provided with a fuel cell that is supplied with hydrogen gas generated and burns to generate electric energy and pure water, and oxygen gas generated in the second tank is sent to the fuel cell. To do.
  • the fuel cell hydrogen generator according to the present invention does not use high-pressure hydrogen !, and therefore does not require a high-pressure cylinder or a high-pressure station. Therefore, it is safe and lightweight, can be easily mounted on a vehicle and refueled, and infrastructure such as a high-pressure station is not required.
  • the hydrogen generator for a fuel cell according to the present invention further has high efficiency and power by using inexpensive electrolyte solutions each having pH:! To 4 or pH 9 to 14; Maintenance is easy with little consumption. That is, it is economical.
  • the hydrogen generator for a fuel cell basically basically uses oxygen as a by-product generated in the hydrogen generator and pure water as a by-product generated in the fuel cell. It is friendly to the global environment because it forms a closed system in which only the electrolyte that is the energy source needs to be replenished.
  • FIG. 1 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the structure and operation of a hydrogen generator according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the structure and operation of a hydrogen generator according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the structure and operation of a hydrogen generator according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the structure of a hydrogen generator according to a fifth embodiment of the present invention in comparison with a comparative example.
  • FIG. 7 is a schematic diagram showing the structure and operation of a hydrogen generator according to a sixth embodiment of the present invention. Explanation of symbols
  • FIG. 1 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a first embodiment of the present invention.
  • the hydrogen generator according to the present embodiment includes a first tank 1 that is a chemical reaction tank and a second tank 2 that is an electrolysis tank.
  • the chemical reaction tank is provided with a catalyst 14, and the electrolysis tank has a first compartment 21 and a second compartment 22 separated by an anion exchange membrane 25, and each has a first positive electrode 26 and a first negative electrode. Have 24.
  • an amphoteric metal such as magnesium, aluminum, zinc, or lead is used as the catalyst 14, and the shape of the catalyst 14 is in the vertical direction in addition to the horizontally stacked plates as shown in the figure. It is possible to increase the effective reaction area as a catalyst by providing minute unevenness on the surface of these catalysts, even if they are laminated in a plate, 2D or 3D network, porous, or granular. Good.
  • the volume of the second compartment 22 is larger than that of the first compartment 21.
  • the acidic electrolyte 10 is injected into the first tank 1, pure water is injected into the first compartment 21 of the second tank 2, and the alkaline electrolyte is injected into the second compartment 22 of the second tank 2. Liquid 20 is injected.
  • a first pipe 36 and a second pipe 38 having a pump 18 are provided between the first tank 1 and the first section 21 of the second tank 2.
  • the fuel cell 50 has a power that generates power energy, as will be described later, partly through the power wirings 78 and 76, the first positive electrode 26, the first negative electrode 24, and the second positive, Hydrogen gas H and pure water HO are generated from the first tank 1 when applied to a pump 18 having a negative electrode (no number).
  • the fuel cell 50 is supplied through the combined hydrogen pipe 34.
  • Oxygen gas O and acidic electrolyte 27 are generated from the first section 21 of the second tank 2, and the oxygen gas O
  • the acidic electrolyte solution 27 is sent to the first tank 1 through the first pipe 36.
  • Pure water may be supplied to the first compartment 21 of the second tank 2 from the outside, but if such a closed system is used, it is economical and does not burden the outside.
  • the atmosphere may be used instead of oxygen gas, but oxygen gas can be about 40% more efficient.
  • the power energy is sent to the charger 56 through the power wiring 70, and is sent to the battery 57 through the power wiring 72, and the output of the battery 57 is sent to the DC—AC inverter through the power wiring 73. 59, and the output of the DC-AC inverter 59 drives the motor 60 of the vehicle via the power wiring 74, for example.
  • a part of the power energy is sent onto the power wiring 76 via the alternator 62 and further sent onto the power wiring 78 via the buffer 64.
  • the power wiring 78 is DC 5 volts and the buffer 64 can be a low voltage source of DC 5 volts.
  • the pure water H 2 O generated by the fuel cell 50 passes through the pure water pipe 35 and passes through the pure water in the second pipe 38.
  • the alkaline electrolyte 20 injected into the second section 22 of the second tank 2 is consumed as an energy source of the present system. Must be refilled accordingly! /.
  • the acidic electrolyte 10 injected into the first tank 1 is necessary only as the acidic electrolyte at the time of start-up, and when the system is activated, the first compartment 21 of the second tank 2 21 Acidic electrolyte from 2
  • the acidic electrolytic solution 10 and the alkaline electrolytic solution 20 are electrolytic solutions having pH:! ⁇ 4 and pH9 ⁇ ; 14, respectively.
  • FIG. 2 is a schematic diagram showing the structure and operation of the hydrogen generator according to the second embodiment of the present invention.
  • the hydrogen generator according to this example includes a first tank 1 that is a chemical reaction tank and a second tank 2 that is an electrolysis tank.
  • the chemical reaction tank is equipped with a catalyst 14, and the electrolysis tank has first, second and third compartments 21, 22 and 23 partitioned by a cation exchange membrane 29 and an anion exchange membrane 25, and the first Each of the third sections has a first negative electrode 24 and a first positive electrode 26 connected to the power wiring 78.
  • an amphoteric metal such as magnesium, aluminum, zinc, or lead is used as the catalyst 14, and the shape of the catalyst 14 is vertical as well as horizontally laminated plates as illustrated. It is possible to increase the effective reaction area as a catalyst by providing minute unevenness on the surface of these catalysts, even if they are laminated in a plate, 2D or 3D network, porous, or granular. Good.
  • the volume of the second compartment 22 is larger than that of the first and third compartments 21 and 23.
  • the alkaline electrolyte 11 is injected into the first tank 1, pure water is injected into the first section 21 and the third section 23 of the second tank 2, respectively, and the second tank 2 of the second tank 2 is injected.
  • the compartment 22 is injected with an alkaline electrolyte 20.
  • a first pipe 36 and a second pipe 38 having a pump 18 are provided between the first section 21 of the first tank 1 and the second tank 2.
  • the pure water pipe 35 connected to the pure water supply source joins the pure water pipe 37 from the first tank to become the second pipe 38, and the pump 18 to which the power wiring 76 is connected is connected. And connected to the first compartment 21 of the second tank 2 and to a pure water pipe 39 branched and connected to the third compartment 23.
  • the alkaline electrolyte in the second compartment is partially decomposed to generate hydrogen gas H and the alkaline electrolyte 28 from the first compartment 21.
  • the solution is output through the hydrogen pipe 34, and the alkaline electrolyte 28 is supplied to the first tank 1 through the first pipe 36.
  • Oxygen gas O is generated from the third section 23 of the second tank 2, and the oxygen gas O passes through the oxygen pipe 32.
  • the pure water generated in the first tank 1 flows through the pure water pipe 37 through the filter 16 and joins the second pipe 38 as described above.
  • the alkaline electrolyte 20 poured into the second section 22 of the second tank 2 is consumed as an energy source of the present system. Must be refilled accordingly! /.
  • the alkaline electrolyte 11 injected into the first tank 1 is necessary only as the alkaline electrolyte at the time of start-up, and when the system is activated, the first compartment 21 of the second tank 2 21 No need for replenishment as it is replaced by alkaline electrolyte 28 from
  • the platinum electrode 15 is used as the negative electrode in the alkaline electrolyte 11 and an appropriate voltage is applied to the power line 77, the progress of the reaction is suppressed, and the alkaline electrolyte 11 is consumed. Can be prevented.
  • the alkaline electrolyte 20 is an electrolyte having a pH of 9 to 14;
  • FIG. 3 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a third embodiment of the present invention.
  • the fuel cell system is above the one-dot chain line, and the hydrogen generator system is below the dashed line.
  • the atmosphere oxygen in the atmosphere
  • oxygen gas may be used instead of oxygen gas, but the efficiency of oxygen gas can be increased by about 40%.
  • the power energy is sent to the charger 56 through the power wiring 70, and is sent to the battery 57 through the power wiring 72, and the output of the battery 57 is sent to the DC—AC inverter through the power wiring 73. 59, and the output of the DC-AC inverter 59 drives the motor 60 of the vehicle via the power wiring 74, for example.
  • a part of the power energy is sent onto the power wiring 76 via the alternator 62, for example, and further sent onto the power wiring 78 via the buffer 64.
  • the power wiring 78 is DC 5 volts and the buffer 64 can be a low voltage source of DC 5 volts.
  • the direct current output of the notifier 64 may be connected to the power wiring 77 as well.
  • the pure water HO generated in the fuel cell 50 is supplied to the pure water pipe 35 as one of the pure water supply sources. Supplied.
  • the supply of pure water to the first and third compartments 21 and 23 of the second tank 2 may be supplied from the outside. If such a closed system is used, it is economical and burdens the outside. Absent.
  • Example 4
  • FIG. 4 is a schematic diagram showing the structure and operation of a hydrogen generator according to the fourth embodiment of the present invention.
  • the acidic electrolyte solution 10 is injected into the first tank, the acidic electrolyte solution 27 is injected into the second section of the second tank, and the acidic solution is injected into the first section of the second tank. Electrolyte 19 is generated and sent to the first tank through the first pipe 36.
  • the acidic electrolyte is an electrolyte with a pH of! ⁇ 4.
  • the polarity of the voltage applied to the catalyst 14 to suppress the progress of the reaction in the first tank is negative with respect to the acidic electrolyte 10.
  • FIG. 5 is a schematic diagram showing the structure and operation of the hydrogen generator according to the fifth embodiment of the present invention.
  • the second tank 2 which is an electrolysis tank without the first tank, is operated.
  • the second tank 2 has first, second, and third compartments 21, 22, 23 partitioned by a cation exchange membrane 29 and an anion exchange membrane 25, and the first Each of the third sections has a negative electrode 24 and a positive electrode 26 connected to a power line 78.
  • alkaline electrolyte 20 having a pH of 9 to 14 is injected into the second compartment 22, pure water is injected into the first compartment 21 and the third compartment 23, and power is supplied to the power wiring 78.
  • hydrogen gas H is generated in the first section 21 and oxygen gas O is generated in the third section.
  • FIG. 6 it is a schematic diagram showing the structure of the hydrogen generator according to the fifth embodiment of the present invention in comparison with the comparative example. That is, the left side in FIG. 6 (A) is a schematic diagram of the second tank 2 shown in FIG. 5 and includes the first, second, and second compartments partitioned by the cation exchange membrane 29 and the anion exchange membrane 25. It has third compartments 21, 22 and 23. The first and third compartments have a first negative electrode 24 and a first positive electrode 26, respectively, and the second compartment is filled with an alkaline electrolyte 20. .
  • FIG. 6 (A) is a schematic diagram of an electrolytic cell 102 using a solid polymer electrolyte, shown as a comparative example, with an alkaline solid polymer electrolyte layer 120 interposed therebetween and a negative electrode.
  • the internal resistance of the solid electrolyte is large and the power consumption is increased.
  • the internal resistance of the electrolytic solution is generally low, and the internal resistance can be adjusted by the concentration of the electrolytic solution.
  • the ion exchange membrane can be manufactured at a low cost, whereas in the comparative example, the solid electrolyte layer and the (solid) active material layer are expensive.
  • FIG. 6 (B) shows a modified example of the above (A) in which the negative electrode is arranged on both sides of the positive electrode.
  • the second tank 3 according to the present example is on the left and the comparative example is on the right.
  • An electrolytic cell 103 is shown. Compared with the case (A) above, an improvement in the hydrogen generation rate per volume can be expected.
  • FIG. 7 it is a schematic diagram showing the structure and operation of a hydrogen generator according to a sixth embodiment of the present invention.
  • the first tank 4 which is a chemical reaction tank without the second tank is operated.
  • the first tank 4 includes a second negative electrode 15 and a second positive electrode made of a plurality of aluminum plates 114, and the tank is filled with the alkaline electrolyte 11.
  • the aluminum hydroxide produced on the surface of the aluminum plate is hardly soluble as it is. If it is in a strong alkaline electrolyte exceeding a certain level, it is transformed into water-soluble aluminate and peels and precipitates. Just replenishing

Abstract

Provided is a hydrogen generation device for a fuel cell not using a compressed hydrogen and not requiring a high-pressure bottle or a high-pressure station. The device uses an eco-friendly electrolytic liquid as an original energy source so as to obtain a high efficiency, reduce wear, and facilitate maintenance. The device includes a first tub containing a catalyst and a second tub partitioned by a negative ion exchange film so as to have a first section and a second section having a positive and a negative electrode. The first tub, the first and the second section contain acidic electrolyte liquid of pH 1 to 4, pure water, alkaline electrolytic liquid of pH 9 to 14, respectively. When a part of power energy generated by the fuel cell is applied to the positive and the negative electrode, a hydrogen gas and pure water are generated from the first tub; an oxygen gas and an acidic liquid are generated from the first section, and a hydrogen gas is generated from the second section. The hydrogen gas is sent to the fuel cell so that power energy and pure water are generated and the acidic electrolytic liquid is sent from the first section to the first tub.

Description

明 細 書  Specification
水素発生装置  Hydrogen generator
技術分野  Technical field
[0001] 本発明は、水素発生装置に係り、特に、水素を燃焼して電力エネルギを得る燃料 電池に水素を供給する水素発生装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a hydrogen generator, and more particularly to a hydrogen generator that supplies hydrogen to a fuel cell that burns hydrogen to obtain electric energy.
背景技術  Background art
[0002] 現在、世界で最も多く消費されているエネルギ資源は石油、石炭、天然ガスなどの 化石燃料である。しかし、化石燃料は今後のエネルギ消費量を考えると、 21世紀中 にはなくなるとさえ言われている。また、それ以上に重要な問題は化石燃料の燃焼に よって地球温暖化や酸性雨などの地球環境問題が深刻化して!/、ることである。そこで 、燃やしても二酸化炭素や窒素酸化物などの有害物質の出ない、地球環境にやさし いクリーンなエネルギである水素エネルギの需要が今後大幅に伸びると期待されて いる。  [0002] Currently, the most consumed energy resources in the world are fossil fuels such as oil, coal, and natural gas. However, fossil fuels are even said to disappear during the 21st century, considering future energy consumption. Furthermore, the more important problem is that global environmental problems such as global warming and acid rain become serious due to the combustion of fossil fuels! Therefore, the demand for hydrogen energy, which is clean energy friendly to the global environment and does not produce harmful substances such as carbon dioxide and nitrogen oxides even when burned, is expected to increase significantly in the future.
[0003] 水素エネルギの生成は、水素を燃焼させて、即ち水の電気分解とは逆の過程によ り、水素と酸素を化学反応させて電気工ネルギとして取り出す。すでに、この水素を 生成する方法がいくつか提起されている力 その性能は用いる電解質、とくに固体電 解質の内容に依存するところが大きぐ安全で低コストな水素を生成する条件が必ず しも確立されていない。  [0003] Hydrogen energy is generated by burning hydrogen, that is, in a process opposite to the electrolysis of water, by chemically reacting hydrogen and oxygen to be taken out as electric energy. Several methods have already been proposed to generate this hydrogen. The performance depends largely on the electrolyte used, especially the content of the solid electrolyte. Conditions for generating hydrogen that is safe and low cost are always established. It has not been.
例えば、固体電解質として通常高温で用いられる高分子膜は、イオン交換膜ゃ電 極の劣化が速ぐ保守が困難である。  For example, a polymer membrane that is usually used at a high temperature as a solid electrolyte is difficult to maintain due to the rapid deterioration of the ion exchange membrane electrode.
[0004] また、大規模プラントにより低コストの水素を製造する方法は確立されている力 とく に車両用として水素ガスをユーザの近くに配送し、現行のガソリン燃料車、現行のガ ソリンスタンドなみの容易さで水素を使うには、 600気圧級の超高圧水素の貯蔵タン クが必要であるが、これを安全に使える技術は確立されて!/、な!/、。  [0004] In addition, a method for producing low-cost hydrogen in a large-scale plant has been established. In particular, hydrogen gas is delivered to the user for use in vehicles. In order to use hydrogen with ease, it is necessary to have a storage tank for ultra-high pressure hydrogen at 600 atmospheres, but the technology that can be used safely is established!
[0005] これらの技術に関連して、例えば特許文献 1には、高圧水素ガスと純水の電気分解 により生成した水素を併用し、固体高分子電解質膜部と酸化部をセル状に一体化し た燃料電池におレ、て、高圧水素ガスの高圧を利用して循環水を精製し純水を生成 する技術が開示されて!/、る。 [0005] In relation to these technologies, for example, in Patent Document 1, hydrogen produced by electrolysis of high-pressure hydrogen gas and pure water is used in combination, and the solid polymer electrolyte membrane part and the oxidation part are integrated into a cell shape. In a fuel cell, pure water is produced by purifying circulating water using the high pressure of high-pressure hydrogen gas. The technology to do is disclosed!
[0006] 特許文献 1:特開 2000— 149971号公報 [0006] Patent Document 1: Japanese Unexamined Patent Publication No. 2000-149971
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記のような燃料電池の水素発生装置における諸問題を解決するため になされたものであり、高圧水素を使わず、高圧ボンベないしは高圧ステーションを 要しない、水素発生装置を提供することを目的とする。 [0007] The present invention was made to solve the various problems in the hydrogen generator for fuel cells as described above. A hydrogen generator that does not use high-pressure hydrogen and does not require a high-pressure cylinder or a high-pressure station is provided. The purpose is to provide.
[0008] 本発明は、また、地球環境にやさしい電解液を原エネルギ源とすることにより、高能 率でし力、も部品の消耗が少なく保守が容易な電解システムを有する水素発生装置を 提供することを目的とする。 [0008] The present invention also provides a hydrogen generator having an electrolysis system that is highly efficient, has power, consumes less parts, and is easy to maintain by using an electrolyte solution that is friendly to the global environment as a raw energy source. For the purpose.
[0009] 本発明は、また、各々、電解システム及び燃料電池で発生する副産物である酸素と 純水を循環利用することにより、基本的に原エネルギ源である電解液だけを補給す ればよいクローストシステムを形成するので、地球環境にやさしい、燃料電池と水素 発生装置の統合システムを提供することを目的とする。 [0009] In the present invention, oxygen and pure water, which are by-products generated in the electrolysis system and the fuel cell, are circulated and used, so that only the electrolytic solution that is basically the source of energy is replenished. The purpose is to provide an integrated system for fuel cells and hydrogen generators that is friendly to the global environment because it forms a Krant system.
課題を解決するための手段  Means for solving the problem
[0010] 上記目的を達成するために、本発明の請求項 1による水素発生装置は、 触媒を 備えた第 1槽と、第 1の隔膜に仕切られた、第 1の正電極を備えた第 1の区画と第 1の 負電極を備えた第 2の区画とを有する第 2槽とからなり、 前記第 1槽には酸性電解 液が注入され、前記第 2槽の第 1区画には純水が供給され、前記第 2槽の第 2区画に はアルカリ性電解液が注入され、前記第 1槽と前記第 2槽の第 1区画の間には第 1配 管を備え、 電力エネルギが前記第 1の正、負の電極に印加されると、前記第 1槽に おいて水素ガスと純水が発生し、前記第 2槽の第 2区画において水素ガスが発生し、 前記第 2槽の第 1区画にお!/、て酸素ガスと酸性電解液が発生し、前記酸性電解液が 前記第 2槽の第 1区画から前記第 1配管を通じ前記第 1槽に送られ、 前記酸性電解 液と前記アルカリ性電解液力 S、各々 pH;!〜 4と pH9〜; 14の電解液であることを特徴と する。 [0010] To achieve the above object, a hydrogen generator according to claim 1 of the present invention includes a first tank provided with a catalyst, and a first positive electrode partitioned by a first diaphragm. A second tank having a first compartment and a second compartment having a first negative electrode, wherein an acidic electrolyte is injected into the first tank, and a pure water is injected into the first compartment of the second tank. Water is supplied, an alkaline electrolyte is injected into the second compartment of the second tank, a first pipe is provided between the first tank and the first compartment of the second tank, and the power energy is When applied to the first positive and negative electrodes, hydrogen gas and pure water are generated in the first tank, hydrogen gas is generated in the second section of the second tank, Oxygen gas and acidic electrolyte are generated in the first section, and the acidic electrolyte is sent from the first section of the second tank to the first tank through the first pipe, Liquid and the alkaline electrolyte force S, each pH;!, Characterized in that an electrolytic solution of 14; ~ 4 and PH9~.
[0011] 上記目的を達成するために、本発明の請求項 2による水素発生装置は、 触媒を 備えた第 1槽、及び、第 1の負電極を備えた第 1区画と、第 1の正電極を備えた第 3区 画と、各々第 2、第 1の隔膜を介して前記第 1、第 3区画に接する第 2区画とを有する 第 2槽とからなり、 前記第 1槽にはアルカリ性電解液が注入され、前記第 2槽の第 1 、第 3区画には純水が供給され、前記第 2槽の第 2区画にはアルカリ性電解液が注 入され、前記第 1槽と前記第 2槽の第 1区画の間には第 1配管を備え、 電力エネル ギが前記第 1の正、負電極に印加されると、前記第 1槽において水素ガスと純水が発 生し、前記第 2槽の第 3区画において酸素ガスが発生し、前記第 2槽の第 1区画におIn order to achieve the above object, a hydrogen generator according to claim 2 of the present invention includes a first tank provided with a catalyst, a first compartment provided with a first negative electrode, and a first positive electrode. District 3 with electrodes And a second tank having a second section in contact with the first and third sections through the second and first diaphragms, respectively, an alkaline electrolyte being injected into the first tank, Pure water is supplied to the first and third compartments of the second tank, an alkaline electrolyte is poured into the second compartment of the second tank, and the first compartments of the first and second tanks are supplied. There is a first pipe in between, and when power energy is applied to the first positive and negative electrodes, hydrogen gas and pure water are generated in the first tank, and the third section of the second tank Oxygen gas is generated in the first tank of the second tank.
V、て水素ガスとアルカリ性電解液が発生し、前記アルカリ性電解液が前記第 2槽の第 1区画から前記第 1配管を通じ前記第 1槽に送られ、 前記アルカリ性電解液が、 pH 9〜; 14の電解液であることを特徴とする。 V, hydrogen gas and alkaline electrolyte are generated, the alkaline electrolyte is sent from the first section of the second tank to the first tank through the first pipe, and the alkaline electrolyte is pH 9 ~; It is characterized by 14 electrolytes.
[0012] 上記目的を達成するために、本発明の請求項 3による水素発生装置は、 触媒を 備えた第 1槽、及び、第 1の正電極を備えた第 1区画と、第 1の負電極を備えた第 3区 画と、各々第 1、第 2の隔膜を介して前記第 1、第 3区画に接する第 2区画を有する第 2槽とからなり、 前記第 1槽には酸性電解液が注入され、前記第 2槽の第 1、第 3区 画には純水が供給され、前記第 2槽の第 2区画には酸性電解液が注入され、前記第 1槽と前記第 2槽の第 1区画の間には第 1配管を備え、 電力エネルギが前記第 1の 正、負電極に印加されると、前記第 1槽において水素ガスと純水が発生し、前記第 2 槽の第 1区画において酸素ガスと酸性電解液が発生し、前記第 2槽の第 3区画にお In order to achieve the above object, a hydrogen generator according to claim 3 of the present invention includes a first tank provided with a catalyst, a first compartment provided with a first positive electrode, and a first negative electrode. A third compartment provided with an electrode, and a second tank having a second compartment in contact with the first and third compartments via first and second diaphragms, respectively. Liquid is injected, pure water is supplied to the first and third compartments of the second tank, an acidic electrolyte is injected into the second section of the second tank, and the first tank and the second tank are supplied. A first pipe is provided between the first compartments of the tank, and when power energy is applied to the first positive and negative electrodes, hydrogen gas and pure water are generated in the first tank, and the second tank Oxygen gas and acidic electrolyte are generated in the first compartment of the second tank and the third compartment of the second tank.
V、て水素ガスが発生し、前記酸性電解液が前記第 2槽の第 1区画から前記第 1配管 を通じ前記第 1槽に送られ、 前記酸性電解液が、 ρΗ1〜4の電解液であることを特 徴とする。 V, hydrogen gas is generated, and the acidic electrolyte is sent from the first section of the second tank to the first tank through the first pipe, and the acidic electrolyte is an electrolyte of ρΗ1 to 4 It is characterized by this.
[0013] 上記目的を達成するために、本発明の請求項 4による水素発生装置は、 第 1の隔 膜に仕切られた、第 1の正電極を備えた第 1の区画と第 1の負電極を備えた第 2の区 画とを有する第 2槽からなり、 前記第 1区画には純水が供給され、前記第 2区画に はアルカリ性電解液が注入され、 電力エネルギが前記第 1の正、負の電極に印加さ れると、前記第 2区画において水素ガスが発生し、前記第 1区画において酸素ガスと 酸性電解液が発生し、 前記酸性電解液と前記アルカリ性電解液が、各々 ρΗ1〜4 と pH9〜; 14の電解液であることを特徴とする。  [0013] In order to achieve the above object, a hydrogen generator according to claim 4 of the present invention includes a first compartment having a first positive electrode partitioned by a first diaphragm and a first negative electrode. A second tank having an electrode and a second compartment, wherein pure water is supplied to the first compartment, alkaline electrolyte is injected into the second compartment, and power energy is supplied to the first compartment. When applied to positive and negative electrodes, hydrogen gas is generated in the second compartment, oxygen gas and acidic electrolyte are generated in the first compartment, and the acidic electrolyte and alkaline electrolyte are each ρΗ1 It is characterized by an electrolyte solution of ~ 4 and pH 9 ~;
[0014] 上記目的を達成するために、本発明の請求項 5による水素発生装置は、 第 1の負 電極を備えた第 1区画と、第 1の正電極を備えた第 3区画と、各々第 2、第 1の隔膜を 介して前記第 1、第 3区画に接する第 2区画とを有する第 2槽からなり、 前記第 1、第 3区画には純水が供給され、前記第 2区画にはアルカリ性電解液が注入され、 電力 エネルギが前記第 1の正、負電極に印加されると、前記第 3区画において酸素ガスが 発生し、前記第 1区画にお!/、て水素ガスとアルカリ性電解液が発生し、 前記アル力 リ性電解液が、 pH9〜; 14の電解液であることを特徴とする。 [0014] In order to achieve the above object, a hydrogen generator according to claim 5 of the present invention provides a first negative A second section having a first section having an electrode, a third section having a first positive electrode, and a second section in contact with the first and third sections through second and first diaphragms, respectively. A pure water is supplied to the first and third compartments, an alkaline electrolyte is injected into the second compartment, and when power energy is applied to the first positive and negative electrodes, Oxygen gas is generated in the third section, hydrogen gas and alkaline electrolyte are generated in the first section, and the alkaline electrolyte is an electrolyte having a pH of 9 to 14; Features.
[0015] 上記目的を達成するために、本発明の請求項 6による水素発生装置は、 第 1の正 電極を備えた第 1区画と、第 1の負電極を備えた第 3区画と、各々第 1、第 2の隔膜を 介して前記第 1、第 3区画に接する第 2区画を有する第 2槽からなり、 前記第 1、第 3 区画には純水が供給され、前記第 2区画には酸性電解液が注入され、 電力エネル ギが前記第 1の正、負電極に印加されると、前記第 1区画において酸素ガスと酸性電 解液が発生し、前記第 3区画において水素ガスが発生し、 前記酸性電解液が、 pH 1〜4の電解液であることを特徴とする水素発生装置。 [0015] In order to achieve the above object, a hydrogen generator according to claim 6 of the present invention includes a first section including a first positive electrode, and a third section including a first negative electrode, A second tank having a second compartment in contact with the first and third compartments via first and second diaphragms; pure water is supplied to the first and third compartments; When an acidic electrolyte is injected and power energy is applied to the first positive and negative electrodes, oxygen gas and acidic electrolyte are generated in the first section, and hydrogen gas is generated in the third section. A hydrogen generator, wherein the acidic electrolyte is an electrolyte having a pH of 1 to 4 .
[0016] 上記目的を達成するために、本発明の請求項 7による水素発生装置は、 アルミ二 ゥムからなる触媒を備えた第 1槽からなり、 前記第 1槽にはアルカリ性電解液が注入 され、 前記第 1槽において水素ガスと水酸化アルミニウムが発生し、 前記アルカリ 性電解液力 pH9〜; 14の電解液であることを特徴とする。  [0016] In order to achieve the above object, the hydrogen generator according to claim 7 of the present invention comprises a first tank provided with a catalyst made of aluminum, and an alkaline electrolyte is injected into the first tank. In the first tank, hydrogen gas and aluminum hydroxide are generated, and the alkaline electrolyte has a pH of 9 to 14;
[0017] また請求項 8に記載の通り、 前記第 1、及び第 2の隔膜が各々、陰イオン交換膜、 及び陽イオン交換膜であることを特徴とする。  [0017] Further, as described in claim 8, the first and second diaphragms are an anion exchange membrane and a cation exchange membrane, respectively.
[0018] また請求項 9に記載の通り、 さらに前記第 2槽に純水を供給するために、電力エネ ルギが第 2の正、負電極に印加されて作動するポンプを備えた第 2配管を備え、前記 第 1槽において発生した純水が前記第 2配管に合流していることを特徴とする。  [0018] Further, as described in claim 9, in order to supply pure water to the second tank, a second pipe including a pump that operates by applying electric energy to the second positive and negative electrodes. The pure water generated in the first tank is joined to the second pipe.
[0019] また請求項 10に記載の通り、 前記第 1槽において、前記触媒に、前記アルカリ性 電解液に対する正電圧を与えることができる電極をさらに備え、前記第 1槽における 反応の進行を抑えることを特徴とする。  [0019] Also, as described in claim 10, in the first tank, the catalyst is further provided with an electrode capable of applying a positive voltage to the alkaline electrolyte, and the progress of the reaction in the first tank is suppressed. It is characterized by.
[0020] また請求項 11に記載の通り、 前記第 1槽において、前記触媒に、前記酸性電解 液に対する負電圧を与えることができる電極をさらに備え、前記第 1槽における反応 の進行を抑えることを特徴とする。 [0021] また請求項 12、 15に記載の通り、 さらに、前記第 1槽及び/又は前記第 2槽にお[0020] Further, as described in claim 11, in the first tank, the catalyst is further provided with an electrode capable of applying a negative voltage to the acidic electrolyte, and the progress of the reaction in the first tank is suppressed. It is characterized by. [0021] Further, as described in claims 12 and 15, in the first tank and / or the second tank,
V、て発生した水素ガスが供給され、これを燃焼して電力エネルギと純水を発生する 燃料電池を備え、前記電力エネルギの一部が前記第 1、第 2の正、負電極に印加さ れることを特徴とする。 V is provided with a fuel cell that is supplied with hydrogen gas generated and burns to generate electric energy and pure water, and a part of the electric energy is applied to the first, second positive and negative electrodes. It is characterized by that.
[0022] また請求項 13、 16に記載の通り、 さらに、前記第 1槽及び/又は前記第 2槽にお [0022] Further, as described in claims 13 and 16, in the first tank and / or the second tank,
V、て発生した水素ガスが供給され、これを燃焼して電力エネルギと純水を発生する 燃料電池を備え、前記純水が前記第 2槽に供給されることを特徴とする。 V, a hydrogen gas generated in this manner is supplied, and a fuel cell that generates electric power energy and pure water by burning it is provided, and the pure water is supplied to the second tank.
[0023] また請求項 14、 17に記載の通り、 さらに、前記第 1槽及び/又は前記第 2槽にお [0023] In addition, as described in claims 14 and 17, in the first tank and / or the second tank,
V、て発生した水素ガスが供給され、これを燃焼して電力エネルギと純水を発生する 燃料電池を備え、さらに前記第 2槽において発生した酸素ガスが前記燃料電池に送 られることを特徴とする。 V is provided with a fuel cell that is supplied with hydrogen gas generated and burns to generate electric energy and pure water, and oxygen gas generated in the second tank is sent to the fuel cell. To do.
発明の効果  The invention's effect
[0024] 本発明による燃料電池用水素発生装置は、高圧水素を使わな!/、ので、高圧ボンべ ないしは高圧ステーションを要しない。従って、安全で軽量であり、車両への搭載や 燃料の補給が容易であり、高圧ステーションなどのインフラ整備が不要である。  [0024] The fuel cell hydrogen generator according to the present invention does not use high-pressure hydrogen !, and therefore does not require a high-pressure cylinder or a high-pressure station. Therefore, it is safe and lightweight, can be easily mounted on a vehicle and refueled, and infrastructure such as a high-pressure station is not required.
[0025] 本発明による燃料電池用水素発生装置は、さらに、安価な、各々 pH;!〜 4または p H9〜; 14の電解液をエネルギ源とすることにより、高能率でし力、も部品の消耗が少な く保守が容易である。即ち、経済的である。  [0025] The hydrogen generator for a fuel cell according to the present invention further has high efficiency and power by using inexpensive electrolyte solutions each having pH:! To 4 or pH 9 to 14; Maintenance is easy with little consumption. That is, it is economical.
[0026] 本発明による燃料電池用水素発生装置は、さらに、水素発生装置で発生する副産 物である酸素と燃料電池で発生する副産物である純水とを循環利用することにより、 基本的にエネルギ源である電解液だけを補給すればよいクローズドシステムを形成 するので、地球環境にやさしい。  [0026] The hydrogen generator for a fuel cell according to the present invention basically basically uses oxygen as a by-product generated in the hydrogen generator and pure water as a by-product generated in the fuel cell. It is friendly to the global environment because it forms a closed system in which only the electrolyte that is the energy source needs to be replenished.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]本発明第 1の実施例に係る水素発生装置の、関連する燃料電池を含むシステ ムの構造、作用を示す模式図である。  FIG. 1 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a first embodiment of the present invention.
[図 2]本発明第 2の実施例に係る水素発生装置の構造、作用を示す模式図である。  FIG. 2 is a schematic diagram showing the structure and operation of a hydrogen generator according to a second embodiment of the present invention.
[図 3]本発明第 3の実施例に係る水素発生装置の、関連する燃料電池を含むシステ ムの構造、作用を示す模式図である。 [図 4]本発明第 4の実施例に係る水素発生装置の構造、作用を示す模式図である。 FIG. 3 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a third embodiment of the present invention. FIG. 4 is a schematic diagram showing the structure and operation of a hydrogen generator according to a fourth embodiment of the present invention.
[図 5]本発明第 5の実施例に係る水素発生装置の構造、作用を示す模式図である。 FIG. 5 is a schematic diagram showing the structure and operation of a hydrogen generator according to a fifth embodiment of the present invention.
[図 6]本発明第 5の実施例に係る水素発生装置の構造を、比較例と対比して示す略 図である。 FIG. 6 is a schematic diagram showing the structure of a hydrogen generator according to a fifth embodiment of the present invention in comparison with a comparative example.
[図 7]本発明第 6の実施例に係る水素発生装置の構造、作用を示す模式図である。 符号の説明  FIG. 7 is a schematic diagram showing the structure and operation of a hydrogen generator according to a sixth embodiment of the present invention. Explanation of symbols
1 , 4 第 1槽  1, 4 1st tank
2 3 第 2槽  2 3 Second tank
10 19 酸性電解液  10 19 Acidic electrolyte
11 20 アルカリ性電解液  11 20 Alkaline electrolyte
14 触媒  14 Catalyst
15  15
16 フィルタ  16 filters
18  18
21 第 2槽の第 1区画  21 1st section of 2nd tank
22 第 2槽の第 2区画  22 Second section of tank 2
23 第 2槽の第 3区画  23 3rd section of 2nd tank
24 (第 1の)負電極  24 (First) negative electrode
25 陰イオン交換膜  25 Anion exchange membrane
26 (第 1の)正電極  26 (first) positive electrode
27 酸性電解液  27 Acidic electrolyte
28 アルカリ性電解液  28 Alkaline electrolyte
29 陽イオン交換膜  29 Cation exchange membrane
31、 33、 34 水素配管  31, 33, 34 Hydrogen piping
32  32
35、 37、 39 純水配管  35, 37, 39 Pure water piping
36 第 1配管  36 1st piping
38 第 2配管 50 燃料電池 38 Second piping 50 Fuel cell
56 充電器  56 Charger
57 バッテリ  57 battery
59 DC— ACインバータ  59 DC—AC inverter
60 モータ  60 motor
62 オルタネータ  62 Alternator
64 バッファ  64 buffers
70、 72、 73、 74、 76、 77、 78 電力酉己線  70, 72, 73, 74, 76, 77, 78
102、 103 電解槽(比較例)  102, 103 electrolytic cell (comparative example)
114 アルミニウム板  114 aluminum plate
214 水酸化アルミニウム  214 Aluminum hydroxide
H 水素ガス  H Hydrogen gas
2  2
H O 純水  H O pure water
2  2
o 酸素ガス  o Oxygen gas
2  2
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明に係る実施の形態を、図面を参照して具体的に説明する。  Hereinafter, embodiments according to the present invention will be specifically described with reference to the drawings.
実施例 1  Example 1
[0030] 図 1を参照すると、本発明第 1の実施例に係る水素発生装置の、関連する燃料電 池を含むシステムの構造、作用を示す模式図である。  FIG. 1 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a first embodiment of the present invention.
[0031] 図 1において、本実施例に係る水素発生装置は、化学反応槽である第 1槽 1と、電 気分解槽である第 2槽 2からなる。 In FIG. 1, the hydrogen generator according to the present embodiment includes a first tank 1 that is a chemical reaction tank and a second tank 2 that is an electrolysis tank.
化学反応槽は触媒 14を備え、電気分解槽は、陰イオン交換膜 25により仕切られた 第 1区画 21、第 2区画 22を有し、各々、第 1の正電極 26、第 1の負電極 24を有する。  The chemical reaction tank is provided with a catalyst 14, and the electrolysis tank has a first compartment 21 and a second compartment 22 separated by an anion exchange membrane 25, and each has a first positive electrode 26 and a first negative electrode. Have 24.
[0032] 触媒 14としては具体的には、マグネシウム、アルミニウム、亜鉛、鉛などの両性金属 を用い、また触媒 14の形状は、図示したような水平に積層した板状の他に、垂直方 向に積層した板状、 2次元又は 3次元の網状、多孔質状、又は粒状としてもよぐさら にこれらの触媒の表面に微小な凹凸を持たせて触媒としての有効反応面積をさらに 増やしてもよい。 第 2の区画 22の容積は第 1の区画 21のよりも大きい。 [0032] Specifically, an amphoteric metal such as magnesium, aluminum, zinc, or lead is used as the catalyst 14, and the shape of the catalyst 14 is in the vertical direction in addition to the horizontally stacked plates as shown in the figure. It is possible to increase the effective reaction area as a catalyst by providing minute unevenness on the surface of these catalysts, even if they are laminated in a plate, 2D or 3D network, porous, or granular. Good. The volume of the second compartment 22 is larger than that of the first compartment 21.
[0033] 最初に、第 1槽 1には酸性電解液 10が注入され、第 2槽 2の第 1区画 21には純水が 注入され、第 2槽 2の第 2区画 22にはアルカリ性電解液 20が注入される。 First, the acidic electrolyte 10 is injected into the first tank 1, pure water is injected into the first compartment 21 of the second tank 2, and the alkaline electrolyte is injected into the second compartment 22 of the second tank 2. Liquid 20 is injected.
第 1槽 1と、第 2槽 2の第 1区画 21の間には第 1配管 36と、ポンプ 18を有する第 2配 管 38とを備える。  A first pipe 36 and a second pipe 38 having a pump 18 are provided between the first tank 1 and the first section 21 of the second tank 2.
[0034] そこで、燃料電池 50は後述のように電力エネルギを発生する力 その一部が電力 配線 78、 76を通じて、第 1の正電極 26、第 1の負電極 24と、第 2の正、負電極(符番 無し)を有するポンプ 18に印加されると、第 1槽 1から水素ガス Hと純水 H Oが発生  [0034] Therefore, the fuel cell 50 has a power that generates power energy, as will be described later, partly through the power wirings 78 and 76, the first positive electrode 26, the first negative electrode 24, and the second positive, Hydrogen gas H and pure water HO are generated from the first tank 1 when applied to a pump 18 having a negative electrode (no number).
2 2 し、第 2槽 2の第 2区画 22から水素ガス Hが発生し、水素ガス Hは各々、水素配管 3  2 2 and hydrogen gas H is generated from the second section 22 of the second tank 2, and each of the hydrogen gas H is separated from the hydrogen pipe 3.
2 2  twenty two
3、 31を通じ、合体された水素配管 34を通じて燃料電池 50に供給される。  Through 3 and 31, the fuel cell 50 is supplied through the combined hydrogen pipe 34.
第 2槽 2の第 1区画 21からは酸素ガス Oと酸性電解液 27が発生し、酸素ガス Oは  Oxygen gas O and acidic electrolyte 27 are generated from the first section 21 of the second tank 2, and the oxygen gas O
2 2 酸素配管 32を通じて燃料電池 50に送られる。  2 2 It is sent to the fuel cell 50 through the oxygen pipe 32.
[0035] その際、酸性電解液 27は、第 1配管 36を通じて第 1槽 1へ送られる。 At that time, the acidic electrolyte solution 27 is sent to the first tank 1 through the first pipe 36.
また、その際、第 1槽 1には水が発生し、フィルタ 16を介して純水 H Oとなり第 2配  At that time, water is generated in the first tank 1 and becomes pure water H 2 O through the filter 16, and the second distribution.
2  2
管 38を流れ、後述のように燃料電池で発生した純水 H Oと合流して、ポンプ 18によ  It flows through the pipe 38 and joins with pure water H 2 O generated in the fuel cell as described later.
2  2
り循環されて純水 H Oとして第 2槽 2の第 1区画 21に補給される。  Circulated and supplied to the first section 21 of the second tank 2 as pure water H 2 O.
2  2
第 2槽 2の第 1区画 21への純水の補給は外部からの供給によってもよいが、このよう にクローズドシステムにすれば、経済的でかつ外部に負担をかけない。  Pure water may be supplied to the first compartment 21 of the second tank 2 from the outside, but if such a closed system is used, it is economical and does not burden the outside.
[0036] 燃料電池 50では、前記水素配管 34の水素ガス Hと前記酸素配管 32の酸素ガス  In the fuel cell 50, the hydrogen gas H in the hydrogen pipe 34 and the oxygen gas in the oxygen pipe 32
2  2
Oを使って電力エネルギと純水 H Oを発生する。  O is used to generate power energy and pure water H 2 O.
2 2  twenty two
酸素ガスではなく大気(中の酸素)を使ってもよいが、酸素ガスの方が効率が 40% 程度高くできる。  The atmosphere (oxygen in the atmosphere) may be used instead of oxygen gas, but oxygen gas can be about 40% more efficient.
[0037] そのうち、電力エネルギは、電力配線 70を介して充電器 56に送られ、電力配線 72 を介してバッテリ 57に送られ、バッテリ 57の出力は電力配線 73を介して DC— ACィ ンバータ 59に送られ、 DC— ACインバータ 59の出力は電力配線 74を介して、例え ば車両のモータ 60を駆動する。  [0037] Among them, the power energy is sent to the charger 56 through the power wiring 70, and is sent to the battery 57 through the power wiring 72, and the output of the battery 57 is sent to the DC—AC inverter through the power wiring 73. 59, and the output of the DC-AC inverter 59 drives the motor 60 of the vehicle via the power wiring 74, for example.
[0038] 電力エネルギの一部は、例えばオルタネータ 62を介して電力配線 76上に送られ、 さらにバッファ 64を介して電力配線 78上に送られる。 本実施例では電力配線 78は直流 5ボルトでよぐバッファ 64には直流 5ボルトの低 電圧源が使える。 A part of the power energy is sent onto the power wiring 76 via the alternator 62 and further sent onto the power wiring 78 via the buffer 64. In this embodiment, the power wiring 78 is DC 5 volts and the buffer 64 can be a low voltage source of DC 5 volts.
[0039] また、燃料電池 50の発生した純水 H Oは純水配管 35を通じて、第 2配管 38の純  [0039] The pure water H 2 O generated by the fuel cell 50 passes through the pure water pipe 35 and passes through the pure water in the second pipe 38.
2  2
水 H Oに合流する。  Merge into water H 2 O.
2  2
[0040] このように、本発明による水素発生装置が作動すると、第 2槽 2の第 2区画 22に注 入されたアルカリ性電解液 20は、本システムのエネルギ源として消耗するので、作動 状況に応じて補充しなければならな!/、。  [0040] As described above, when the hydrogen generator according to the present invention is operated, the alkaline electrolyte 20 injected into the second section 22 of the second tank 2 is consumed as an energy source of the present system. Must be refilled accordingly! /.
[0041] これに対して、第 1槽 1に注入された酸性電解液 10は、起動の際の酸性電解液とし てのみ必要であり、システムが作動すると、第 2槽 2の第 1区画 21からの酸性電解液 2[0041] On the other hand, the acidic electrolyte 10 injected into the first tank 1 is necessary only as the acidic electrolyte at the time of start-up, and when the system is activated, the first compartment 21 of the second tank 2 21 Acidic electrolyte from 2
7によって代替されるので、補充を要しない。 Since it is replaced by 7, no replenishment is required.
ただし、蒸発、微小漏洩などに対しては、定期的保守作業として酸性電解液 10を 補充する必要がある。  However, it is necessary to replenish the acidic electrolyte 10 as a regular maintenance work for evaporation, minute leakage, etc.
また、触媒 14も反応残渣付着などにより触媒能力が低下するので、同様に定期的 保守作業として洗浄または取替えを要する。  In addition, since the catalytic capacity of the catalyst 14 is reduced due to adhesion of reaction residues, etc., cleaning or replacement is also required as regular maintenance work.
[0042] なお、酸性電解液 27の流れる第 1配管 36と、純水 H Oの流れる純水配管 35、 37 [0042] The first pipe 36 through which the acidic electrolyte 27 flows and the pure water pipes 35, 37 through which pure water H 2 O flows.
2  2
、 39、及び第 2配管 38には各々、図示しない逆支弁を備えて、それらの逆流を防ぐ こと力 Sでさる。  , 39 and the second pipe 38 are each provided with a reverse support valve (not shown), and a force S for preventing the backflow thereof is used.
[0043] 以上の実施例では、第 2槽 2やポンプ 18への電力印加を止めても、第 1槽 1に酸性 電解液 10 (以下、その代替である、第 1槽内に送られた酸性電解液 27を含む)があ る限り水素ガス Hの発生が進み、酸性電解液 10を消耗してしまう。  [0043] In the above embodiment, even when the power application to the second tank 2 and the pump 18 is stopped, the acidic electrolyte solution 10 (hereinafter referred to as an alternative to the first tank 1 was sent to the first tank 1) As long as there is acidic electrolyte 27), generation of hydrogen gas H proceeds and the acidic electrolyte 10 is consumed.
2  2
しかしながら、触媒 14に図示しない銅(Cu)電極をつなぎ、酸性電解液内に図示し ないプラチナ (Pt)電極を入れ、両者間に銅電極側を正電位とする適当な電圧を与 えると、反応の進行を抑え、酸性電解液 10の消耗を防ぐことができる。  However, when a copper (Cu) electrode (not shown) is connected to the catalyst 14, a platinum (Pt) electrode (not shown) is placed in the acidic electrolyte, and an appropriate voltage with the copper electrode side as a positive potential is applied between them, The progress of the reaction can be suppressed and consumption of the acidic electrolyte 10 can be prevented.
[0044] 酸性電解液 10とアルカリ性電解液 20は各々 pH;!〜 4と pH9〜; 14の電解液である[0044] The acidic electrolytic solution 10 and the alkaline electrolytic solution 20 are electrolytic solutions having pH:! ~ 4 and pH9 ~; 14, respectively.
Yes
実施例 2  Example 2
[0045] 図 2を参照すると、本発明第 2の実施例に係る水素発生装置の構造、作用を示す 模式図である。 [0046] 図 2において、本実施例に係る水素発生装置は、化学反応槽である第 1槽 1と、電 気分解槽である第 2槽 2からなる。 FIG. 2 is a schematic diagram showing the structure and operation of the hydrogen generator according to the second embodiment of the present invention. In FIG. 2, the hydrogen generator according to this example includes a first tank 1 that is a chemical reaction tank and a second tank 2 that is an electrolysis tank.
化学反応槽は触媒 14を備え、電気分解槽は陽イオン交換膜 29、陰イオン交換膜 2 5により仕切られた第 1、第 2、第 3の区画 21、 22、 23を有し、第 1、第 3区画は各々、 電力配線 78に接続された、第 1の負電極 24、第 1の正電極 26を有する。  The chemical reaction tank is equipped with a catalyst 14, and the electrolysis tank has first, second and third compartments 21, 22 and 23 partitioned by a cation exchange membrane 29 and an anion exchange membrane 25, and the first Each of the third sections has a first negative electrode 24 and a first positive electrode 26 connected to the power wiring 78.
[0047] 触媒 14としては具体的には、マグネシウム、アルミニウム、亜鉛、鉛などの両性金属 を用い、また触媒 14の形状は、図示したような水平に積層した板状の他に、垂直方 向に積層した板状、 2次元又は 3次元の網状、多孔質状、又は粒状としてもよぐさら にこれらの触媒の表面に微小な凹凸を持たせて触媒としての有効反応面積をさらに 増やしてもよい。  [0047] Specifically, an amphoteric metal such as magnesium, aluminum, zinc, or lead is used as the catalyst 14, and the shape of the catalyst 14 is vertical as well as horizontally laminated plates as illustrated. It is possible to increase the effective reaction area as a catalyst by providing minute unevenness on the surface of these catalysts, even if they are laminated in a plate, 2D or 3D network, porous, or granular. Good.
第 2区画 22の容積は第 1、第 3区画 21、 23のよりも大きい。  The volume of the second compartment 22 is larger than that of the first and third compartments 21 and 23.
[0048] 最初に、第 1槽 1にはアルカリ性電解液 11が注入され、第 2槽 2の第 1区画 21及び 第 3区画 23には各々純水が注入され、第 2槽 2の第 2区画 22にはアルカリ性電解液 20が注入される。  [0048] First, the alkaline electrolyte 11 is injected into the first tank 1, pure water is injected into the first section 21 and the third section 23 of the second tank 2, respectively, and the second tank 2 of the second tank 2 is injected. The compartment 22 is injected with an alkaline electrolyte 20.
第 1槽 1と第 2槽 2の第 1区画 21の間には第 1配管 36と、ポンプ 18を有する第 2配 管 38とを備える。  A first pipe 36 and a second pipe 38 having a pump 18 are provided between the first section 21 of the first tank 1 and the second tank 2.
[0049] また、純水供給源(図示せず)に繋がる純水配管 35は第 1槽からの純水配管 37と 合流して第 2配管 38となり、電力配線 76が接続されたポンプ 18を介して、第 2槽 2の 第 1区画 21に接続されると共に、分岐して第 3区画 23に接続される純水配管 39とな  [0049] Further, the pure water pipe 35 connected to the pure water supply source (not shown) joins the pure water pipe 37 from the first tank to become the second pipe 38, and the pump 18 to which the power wiring 76 is connected is connected. And connected to the first compartment 21 of the second tank 2 and to a pure water pipe 39 branched and connected to the third compartment 23.
[0050] 電力エネルギが電力配線 78、 76を通じて、第 1の正電極 26、第 1の負電極 24と、 第 2の正、負電極 (符番無し)を有するポンプ 18に印加されると、第 1槽 1では、アル カリ性電解液が触媒 14に接して分解されて、水素ガス Hと純水 H Oが発生し、第 2 [0050] When power energy is applied through power wiring 78, 76 to a pump 18 having a first positive electrode 26, a first negative electrode 24, and a second positive and negative electrode (no number), In the first tank 1, the alkaline electrolyte is decomposed in contact with the catalyst 14 to generate hydrogen gas H and pure water HO.
2 2  twenty two
槽 2では、第 2区画のアルカリ性電解液が一部分解されて、第 1区画 21から水素ガス Hとアルカリ性電解液 28が発生する。  In the tank 2, the alkaline electrolyte in the second compartment is partially decomposed to generate hydrogen gas H and the alkaline electrolyte 28 from the first compartment 21.
2  2
[0051] 第 1槽と第 2槽で発生した水素ガス Hは各々、水素配管 33、 31を通じ、合体された  [0051] The hydrogen gas H generated in the first tank and the second tank was combined through hydrogen pipes 33 and 31, respectively.
2  2
水素配管 34を通じて出力され、アルカリ性電解液 28は第 1配管 36を通じて第 1槽 1 に供給される。 第 2槽 2の第 3区画 23からは酸素ガス Oが発生し、酸素ガス Oは酸素配管 32を通 The solution is output through the hydrogen pipe 34, and the alkaline electrolyte 28 is supplied to the first tank 1 through the first pipe 36. Oxygen gas O is generated from the third section 23 of the second tank 2, and the oxygen gas O passes through the oxygen pipe 32.
2 2  twenty two
じて出力される。  Are output.
一方、第 1槽 1で発生した純水は、フィルタ 16を介して純水配管 37を流れ、上述の ように第 2配管 38に合流する。  On the other hand, the pure water generated in the first tank 1 flows through the pure water pipe 37 through the filter 16 and joins the second pipe 38 as described above.
[0052] このように、本発明による水素発生装置が作動すると、第 2槽 2の第 2区画 22に注 入されたアルカリ性電解液 20は、本システムのエネルギ源として消耗するので、作動 状況に応じて補充しなければならな!/、。 [0052] As described above, when the hydrogen generator according to the present invention is operated, the alkaline electrolyte 20 poured into the second section 22 of the second tank 2 is consumed as an energy source of the present system. Must be refilled accordingly! /.
[0053] これに対して、第 1槽 1に注入されたアルカリ性電解液 11は、起動の際のアルカリ 性電解液としてのみ必要であり、システムが作動すると、第 2槽 2の第 1区画 21からの アルカリ性電解液 28によって代替されるので、補充を要しない。 [0053] On the other hand, the alkaline electrolyte 11 injected into the first tank 1 is necessary only as the alkaline electrolyte at the time of start-up, and when the system is activated, the first compartment 21 of the second tank 2 21 No need for replenishment as it is replaced by alkaline electrolyte 28 from
ただし、蒸発、微小漏洩などに対しては、定期的保守作業としてアルカリ性電解液 11を補充する必要がある。  However, it is necessary to replenish the alkaline electrolyte 11 as regular maintenance work for evaporation, minute leakage, and the like.
また、触媒 14も反応残渣付着などにより触媒能力が低下するので、同様に定期的 保守作業として洗浄または取替えを要する。  In addition, since the catalytic capacity of the catalyst 14 is reduced due to adhesion of reaction residues, etc., cleaning or replacement is also required as regular maintenance work.
[0054] なお、アルカリ性電解液 28の流れる第 1配管 36と、純水 H Oの流れる純水配管 35 [0054] A first pipe 36 through which the alkaline electrolyte 28 flows and a pure water pipe 35 through which pure water H 2 O flows.
2  2
、 37、 39、及び第 2配管 38には各々、図示しない逆支弁を備えて、それらの逆流を 防ぐこと力 Sできる。  37, 39, and the second pipe 38 are each provided with a counter-support valve (not shown), and the force S can be prevented to prevent such back flow.
[0055] 以上の実施例では、第 2槽 2やポンプ 18への電力エネルギ印加を止めても、第 1槽  In the above embodiment, even if the application of power energy to the second tank 2 and the pump 18 is stopped, the first tank
1にアルカリ性電解液 11 (以下、その代替である、第 1槽内に送られたアルカリ性電 解液 28を含む)がある限り水素ガス Hの発生が進み、アルカリ性電解液 11を消耗し  As long as there is an alkaline electrolyte 11 in 1 (hereinafter, including the alkaline electrolyte 28 sent into the first tank, which is an alternative), the generation of hydrogen gas H proceeds and the alkaline electrolyte 11 is consumed.
2  2
てしまう。  End up.
しかしながら、触媒 14を正電極とし、アルカリ性電解液 11にプラチナ電極 15を入れ て負電極とし、その電力配線 77に適当な電圧を与えると、反応の進行を抑えアル力 リ性電解液 11の消耗を防ぐことができる。  However, if the catalyst 14 is used as the positive electrode, the platinum electrode 15 is used as the negative electrode in the alkaline electrolyte 11 and an appropriate voltage is applied to the power line 77, the progress of the reaction is suppressed, and the alkaline electrolyte 11 is consumed. Can be prevented.
[0056] アルカリ性電解液 20は pH9〜; 14の電解液である。 [0056] The alkaline electrolyte 20 is an electrolyte having a pH of 9 to 14;
[0057] 本実施例のうち、第 2槽単独の場合、即ち図 5に示す第 2槽 2についての具体的な 実験結果を以下に示す。  In the present example, the specific experimental results for the second tank 2 alone, that is, the second tank 2 shown in FIG. 5 are shown below.
実験では、アルカリ性電解液 20として、 2%— NaOH水溶液 400mlと 3%— NaCl 水溶液 200mlの混合液を用いた。 In the experiment, as alkaline electrolyte 20, 20% 2% NaOH aqueous solution and 3% NaCl A mixture of 200 ml of an aqueous solution was used.
印加電力は 1 = 0. 1A固定の定電流駆動を用い、ちなみにその際に電力配線 78で 観測された第 1の正電極 26と第 1の負電極 25の間の電圧 Vは 6. 0V〜7. 0Vであつ た。  The applied power is 1 = 0. Constant current drive of 1A is used. Incidentally, the voltage V between the first positive electrode 26 and the first negative electrode 25 observed in the power wiring 78 at that time is 6.0V ~ 7. It was 0V.
[0058] 経過電解時間に対する酸素と水素の累積発生量は次の通りであった。  [0058] Cumulative generation amounts of oxygen and hydrogen with respect to the elapsed electrolysis time were as follows.
電解時間 酸素量 水素量  Electrolysis time Oxygen amount Hydrogen amount
10分 約 12ml 約 21ml  10 minutes About 12ml About 21ml
20分 約 15ml 約 31ml  20 minutes About 15ml About 31ml
30分 約 18ml 約 37ml  30 minutes About 18ml About 37ml
実施例 3  Example 3
[0059] 図 3を参照すると、本発明第 3の実施例に係る水素発生装置の、関連する燃料電 池を含むシステムの構造、作用を示す模式図である。  [0059] FIG. 3 is a schematic diagram showing the structure and operation of a system including a related fuel cell in a hydrogen generator according to a third embodiment of the present invention.
図 3において、一点鎖線より上部は燃料電池系、下部は水素発生装置系であり、下 部の水素発生装置の構造 ·作用は上記実施例 2と同一である。  In FIG. 3, the fuel cell system is above the one-dot chain line, and the hydrogen generator system is below the dashed line.
[0060] 燃料電池 50では、前記水素配管 34の水素ガス Hと前記酸素配管 32の酸素ガス [0060] In the fuel cell 50, the hydrogen gas H in the hydrogen pipe 34 and the oxygen gas in the oxygen pipe 32
2  2
Oを使って電力エネルギと純水 H Oを発生する。  O is used to generate power energy and pure water H 2 O.
2 2  twenty two
酸素ガスではなく大気(中の酸素)を使ってもよいが、酸素ガスの方が、効率が 40 %程度高くできる。  The atmosphere (oxygen in the atmosphere) may be used instead of oxygen gas, but the efficiency of oxygen gas can be increased by about 40%.
[0061] そのうち、電力エネルギは、電力配線 70を介して充電器 56に送られ、電力配線 72 を介してバッテリ 57に送られ、バッテリ 57の出力は電力配線 73を介して DC— ACィ ンバータ 59に送られ、 DC— ACインバータ 59の出力は電力配線 74を介して、例え ば車両のモータ 60を駆動する。  [0061] Among them, the power energy is sent to the charger 56 through the power wiring 70, and is sent to the battery 57 through the power wiring 72, and the output of the battery 57 is sent to the DC—AC inverter through the power wiring 73. 59, and the output of the DC-AC inverter 59 drives the motor 60 of the vehicle via the power wiring 74, for example.
[0062] 電力エネルギの一部は、例えばオルタネータ 62を介して電力配線 76上に送られ、 さらにバッファ 64を介して電力配線 78上に送られる。  [0062] A part of the power energy is sent onto the power wiring 76 via the alternator 62, for example, and further sent onto the power wiring 78 via the buffer 64.
本実施例では電力配線 78は直流 5ボルトでよぐバッファ 64には直流 5ボルトの低 電圧源が使える。  In this embodiment, the power wiring 78 is DC 5 volts and the buffer 64 can be a low voltage source of DC 5 volts.
ノ ッファ 64の直流出力は、図示していないが、電力配線 77にも接続されてもよい。  Although not shown, the direct current output of the notifier 64 may be connected to the power wiring 77 as well.
[0063] また、燃料電池 50で発生した純水 H Oは純水供給源の一つとして純水配管 35に 供給される。 [0063] Further, the pure water HO generated in the fuel cell 50 is supplied to the pure water pipe 35 as one of the pure water supply sources. Supplied.
[0064] 第 2槽 2の第 1、第 3区画 21、 23への純水の補給は外部からの供給によってもよい 力 このようにクローズドシステムにすれば、経済的でかつ外部に負担をかけない。 実施例 4  [0064] The supply of pure water to the first and third compartments 21 and 23 of the second tank 2 may be supplied from the outside. If such a closed system is used, it is economical and burdens the outside. Absent. Example 4
[0065] 図 4を参照すると、本発明第 4の実施例に係る水素発生装置の構造、作用を示す 模式図である。  FIG. 4 is a schematic diagram showing the structure and operation of a hydrogen generator according to the fourth embodiment of the present invention.
本実施例では、上記実施例 2と異なり、第 1槽には酸性電解液 10が注入され、第 2 槽の第 2区画に酸性電解液 27が注入され、第 2槽の第 1区画では酸性電解液 19が 発生し、第 1配管 36を介して第 1槽に送られる。  In this example, unlike Example 2 above, the acidic electrolyte solution 10 is injected into the first tank, the acidic electrolyte solution 27 is injected into the second section of the second tank, and the acidic solution is injected into the first section of the second tank. Electrolyte 19 is generated and sent to the first tank through the first pipe 36.
酸性電解液は pH;!〜 4の電解液である。  The acidic electrolyte is an electrolyte with a pH of! ~ 4.
また、第 1槽における反応の進行を抑えるために触媒 14に印加する電圧の極性が 、酸性電解液 10に対して負になる。  In addition, the polarity of the voltage applied to the catalyst 14 to suppress the progress of the reaction in the first tank is negative with respect to the acidic electrolyte 10.
[0066] 以上の点を除いて、本実施例の構造、作用は上記実施例 1の場合と同一である。 Except for the above points, the structure and operation of the present embodiment are the same as those of the first embodiment.
従って、上記実施例 2の場合と同様に、燃料電池と組み合わせることができる。 実施例 5  Therefore, it can be combined with the fuel cell as in the case of Example 2. Example 5
[0067] 図 5を参照すると、本発明第 5の実施例に係る水素発生装置の構造、作用を示す 模式図である。  FIG. 5 is a schematic diagram showing the structure and operation of the hydrogen generator according to the fifth embodiment of the present invention.
本実施例では、上記実施例 2と異なり、第 1槽が無ぐ電気分解槽である第 2槽 2の みが運転される。  In the present embodiment, unlike the second embodiment, only the second tank 2, which is an electrolysis tank without the first tank, is operated.
上記実施例 2と同様に、第 2槽 2は、陽イオン交換膜 29、陰イオン交換膜 25により 仕切られた第 1、第 2、第 3の区画 21、 22、 23を有し、第 1、第 3区画は各々、電力配 線 78に接続された、負電極 24、正電極 26を有する。  As in Example 2 above, the second tank 2 has first, second, and third compartments 21, 22, 23 partitioned by a cation exchange membrane 29 and an anion exchange membrane 25, and the first Each of the third sections has a negative electrode 24 and a positive electrode 26 connected to a power line 78.
上記実施例 2と同様に、第 2区画 22に pH9〜; 14のアルカリ性電解液 20が注入され 、第 1区画 21及び第 3区画 23には各々純水が注入され、電力配線 78に電力が印加 されると、第 1区画 21では水素ガス Hが発生し、第 3区画では酸素ガス Oが発生す  As in Example 2 above, alkaline electrolyte 20 having a pH of 9 to 14 is injected into the second compartment 22, pure water is injected into the first compartment 21 and the third compartment 23, and power is supplied to the power wiring 78. When applied, hydrogen gas H is generated in the first section 21 and oxygen gas O is generated in the third section.
2 2  twenty two
[0068] 図 6を参照すると、本発明第 5の実施例に係る水素発生装置の構造を、比較例と対 比して示す略図である。 即ち、図 6 (A)において左側の図は、上記図 5に示した第 2槽 2の略図であって、陽 イオン交換膜 29、陰イオン交換膜 25により仕切られた第 1、第 2、第 3の区画 21、 22 、 23を有し、第 1、第 3区画には各々、第 1の負電極 24、第 1の正電極 26があり、第 2 区画はアルカリ性電解液 20で満たされる。 [0068] Referring to FIG. 6, it is a schematic diagram showing the structure of the hydrogen generator according to the fifth embodiment of the present invention in comparison with the comparative example. That is, the left side in FIG. 6 (A) is a schematic diagram of the second tank 2 shown in FIG. 5 and includes the first, second, and second compartments partitioned by the cation exchange membrane 29 and the anion exchange membrane 25. It has third compartments 21, 22 and 23. The first and third compartments have a first negative electrode 24 and a first positive electrode 26, respectively, and the second compartment is filled with an alkaline electrolyte 20. .
これに対して、図 6 (A)において右側の図は、比較例として示す、固体高分子電解 質を用いた電解槽 102の略図であって、アルカリ性固体高分子電解質層 120を挟ん で、負極活物質層 121と正極活物質層 123があり、各々に負電極 24、正電極 26が 接している。  On the other hand, the diagram on the right side in FIG. 6 (A) is a schematic diagram of an electrolytic cell 102 using a solid polymer electrolyte, shown as a comparative example, with an alkaline solid polymer electrolyte layer 120 interposed therebetween and a negative electrode. There are an active material layer 121 and a positive electrode active material layer 123, and a negative electrode 24 and a positive electrode 26 are in contact with each.
[0069] 両者の比較実測結果は次の通りであった。  [0069] The results of comparison between the two were as follows.
本実施例 比較例  This example Comparative example
電極のサイズ(mm2) 150 X 120 150 X 120 Electrode size (mm 2 ) 150 X 120 150 X 120
負電極の個数 1 1  Number of negative electrodes 1 1
正電極の個数 1 1  Number of positive electrodes 1 1
電力量(Wh) 480 1100  Electric energy (Wh) 480 1100
水素発生率 (ml/分) 7. 9 1. 0  Hydrogen generation rate (ml / min) 7. 9 1. 0
[0070] 以上により、本実施例では、比較例である固体高分子電解質電解槽の場合と比較 して、 44%の消費電力で 7. 9倍の水素発生率が得られ、高効率である。  [0070] As described above, in this example, compared to the case of the solid polymer electrolyte electrolytic cell as a comparative example, a hydrogen generation rate of 7.9 times can be obtained with a power consumption of 44%, which is highly efficient. .
比較例では固体電解質の内部抵抗が大きぐ消費電力を増大させているのに対し て、本実施例では電解液の内部抵抗が一般に低い上に、電解液の濃度により内部 抵抗を調節できる。  In the comparative example, the internal resistance of the solid electrolyte is large and the power consumption is increased. In contrast, in this embodiment, the internal resistance of the electrolytic solution is generally low, and the internal resistance can be adjusted by the concentration of the electrolytic solution.
また、本実施例ではイオン交換膜を含め安価に製造できるのに対して、比較例で は、固体電解質層、(固体)活物質層を含めて高価である。  In addition, in this example, the ion exchange membrane can be manufactured at a low cost, whereas in the comparative example, the solid electrolyte layer and the (solid) active material layer are expensive.
[0071] 一方、図 6 (B)は、上記 (A)の変形例として正極の両側に負極を配したものであり、 左側に本実施例に係る第 2槽 3を、右側に比較例として示す電解槽 103を示す。上 記 (A)の場合よりも、容積あたりの水素発生率の向上が期待できる。 On the other hand, FIG. 6 (B) shows a modified example of the above (A) in which the negative electrode is arranged on both sides of the positive electrode. The second tank 3 according to the present example is on the left and the comparative example is on the right. An electrolytic cell 103 is shown. Compared with the case (A) above, an improvement in the hydrogen generation rate per volume can be expected.
両者の比較実測結果は次の通りであった。  The comparison measurement result of both was as follows.
本実施例 比較例  This example Comparative example
電極のサイズ(mm2) 150 X 120 150 X 120 負電極の個数 2 2 Electrode size (mm 2 ) 150 X 120 150 X 120 Number of negative electrodes 2 2
正電極の個数 1 1  Number of positive electrodes 1 1
電力量(Wh) 720 1840  Electric power (Wh) 720 1840
水素発生率(ml/分) 8. 6 1. 65  Hydrogen generation rate (ml / min) 8. 6 1. 65
実施例 6  Example 6
[0072] 図 7を参照すると、本発明第 6の実施例に係る水素発生装置の構造、作用を示す 模式図である。  [0072] Referring to FIG. 7, it is a schematic diagram showing the structure and operation of a hydrogen generator according to a sixth embodiment of the present invention.
本実施例では、上記実施例 1、 2と異なり、第 2槽が無ぐ化学反応槽である第 1槽 4 のみが運転される。  In the present embodiment, unlike the first and second embodiments, only the first tank 4 which is a chemical reaction tank without the second tank is operated.
第 1槽 4は、第 2の負電極 15と、複数のアルミニウム板 114からなる第 2の正電極を 備え、槽内はアルカリ性電解液 11で満たされる。  The first tank 4 includes a second negative electrode 15 and a second positive electrode made of a plurality of aluminum plates 114, and the tank is filled with the alkaline electrolyte 11.
反応が始まると、水素ガスが発生すると共に、水酸化アルミニウム 214が沈殿する。 本方式によれば、燃料電池用の水素ガスが得られると同時に、水酸化アルミニウム が副産物として安価に得られることになる。  When the reaction starts, hydrogen gas is generated and aluminum hydroxide 214 is precipitated. According to this method, hydrogen gas for fuel cells can be obtained, and at the same time, aluminum hydroxide can be obtained as a by-product at a low cost.
[0073] 3%— NaOH液を用いた、本実施例の水素発生実験結果は次の通りであった。 [0073] The hydrogen generation experiment results of this example using 3% -NaOH solution were as follows.
反応時間 (分) 水素量 (ml)  Reaction time (min) Hydrogen content (ml)
1 186  1 186
2 535  2 535
3 822  3 822
4 833  4 833
5 835  5 835
6 898  6 898
7 916  7 916
8 938  8 938
アルミニウム板の表面に生成された水酸化アルミニウムはそのままでは難溶性であ る力 ある程度以上の強アルカリ性電解液内であれば、一旦水溶性のアルミン酸に 変形されて剥離、沈殿するので、水 H Oを第 1配管 36から補給するだけで反応が継  The aluminum hydroxide produced on the surface of the aluminum plate is hardly soluble as it is. If it is in a strong alkaline electrolyte exceeding a certain level, it is transformed into water-soluble aluminate and peels and precipitates. Just replenishing
2  2
feeする。  fee.

Claims

請求の範囲 The scope of the claims
[1] 触媒を備えた第 1槽と、第 1の隔膜に仕切られた、第 1の正電極を備えた第 1の区画 と第 1の負電極を備えた第 2の区画とを有する第 2槽とからなり、  [1] A first tank having a catalyst, a first compartment having a first positive electrode and a second compartment having a first negative electrode, which are partitioned by a first diaphragm. It consists of 2 tanks,
前記第 1槽には酸性電解液が注入され、前記第 2槽の第 1区画には純水が供給さ れ、前記第 2槽の第 2区画にはアルカリ性電解液が注入され、前記第 1槽と前記第 2 槽の第 1区画の間には第 1配管を備え、  An acidic electrolyte is injected into the first tank, pure water is supplied to the first section of the second tank, and an alkaline electrolyte is injected into the second section of the second tank. A first pipe is provided between the tank and the first section of the second tank,
電力エネルギが前記第 1の正、負の電極に印加されると、前記第 1槽において水素 ガスと純水が発生し、前記第 2槽の第 2区画において水素ガスが発生し、前記第 2槽 の第 1区画にお!/、て酸素ガスと酸性電解液が発生し、前記酸性電解液が前記第 2槽 の第 1区画から前記第 1配管を通じ前記第 1槽に送られ、  When power energy is applied to the first positive and negative electrodes, hydrogen gas and pure water are generated in the first tank, hydrogen gas is generated in the second section of the second tank, and the second Oxygen gas and acidic electrolyte are generated in the first section of the tank, and the acidic electrolyte is sent from the first section of the second tank to the first tank through the first pipe,
前記酸性電解液と前記アルカリ性電解液が、各々 pH;!〜 4と pH9〜; 14の電解液で あることを特徴とする水素発生装置。  The hydrogen generator, wherein the acidic electrolytic solution and the alkaline electrolytic solution are electrolytic solutions of pH;! -4 and pH9-; 14, respectively.
[2] 触媒を備えた第 1槽、及び、第 1の負電極を備えた第 1区画と、第 1の正電極を備え た第 3区画と、各々第 2、第 1の隔膜を介して前記第 1、第 3区画に接する第 2区画と を有する第 2槽とからなり、 [2] First tank with catalyst, first compartment with first negative electrode, third compartment with first positive electrode, via second and first diaphragms, respectively A second tank having a second compartment in contact with the first and third compartments,
前記第 1槽にはアルカリ性電解液が注入され、前記第 2槽の第 1、第 3区画には純 水が供給され、前記第 2槽の第 2区画にはアルカリ性電解液が注入され、前記第 1槽 と前記第 2槽の第 1区画の間には第 1配管を備え、  Alkaline electrolyte is injected into the first tank, pure water is supplied to the first and third compartments of the second tank, and alkaline electrolyte is injected into the second compartment of the second tank, A first pipe is provided between the first tank and the first section of the second tank,
電力エネルギが前記第 1の正、負電極に印加されると、前記第 1槽において水素ガ スと純水が発生し、前記第 2槽の第 3区画において酸素ガスが発生し、前記第 2槽の 第 1区画にお!/、て水素ガスとアルカリ性電解液が発生し、前記アルカリ性電解液が前 記第 2槽の第 1区画から前記第 1配管を通じ前記第 1槽に送られ、  When power energy is applied to the first positive and negative electrodes, hydrogen gas and pure water are generated in the first tank, oxygen gas is generated in the third section of the second tank, and the second Hydrogen gas and alkaline electrolyte are generated in the first section of the tank, and the alkaline electrolyte is sent from the first section of the second tank to the first tank through the first pipe,
前記アルカリ性電解液が、 pH9〜; 14の電解液であることを特徴とする水素発生装 置。  A hydrogen generating apparatus, wherein the alkaline electrolyte is an electrolyte having a pH of 9 to 14;
[3] 触媒を備えた第 1槽、及び、第 1の正電極を備えた第 1区画と、第 1の負電極を備え た第 3区画と、各々第 1、第 2の隔膜を介して前記第 1、第 3区画に接する第 2区画を 有する第 2槽とからなり、  [3] First tank with catalyst, first compartment with first positive electrode, third compartment with first negative electrode, via first and second diaphragms, respectively A second tank having a second compartment in contact with the first and third compartments,
前記第 1槽には酸性電解液が注入され、前記第 2槽の第 1、第 3区画には純水が供 給され、前記第 2槽の第 2区画には酸性電解液が注入され、前記第 1槽と前記第 2槽 の第 1区画の間には第 1配管を備え、 An acidic electrolyte is injected into the first tank, and pure water is supplied to the first and third compartments of the second tank. An acidic electrolyte is injected into the second compartment of the second tank, and a first pipe is provided between the first tank and the first compartment of the second tank,
電力エネルギが前記第 1の正、負電極に印加されると、前記第 1槽において水素ガ スと純水が発生し、前記第 2槽の第 1区画にぉレ、て酸素ガスと酸性電解液が発生し、 前記第 2槽の第 3区画において水素ガスが発生し、前記酸性電解液が前記第 2槽の 第 1区画から前記第 1配管を通じ前記第 1槽に送られ、  When power energy is applied to the first positive and negative electrodes, hydrogen gas and pure water are generated in the first tank, and oxygen gas and acidic electrolysis are generated in the first section of the second tank. Liquid is generated, hydrogen gas is generated in the third section of the second tank, and the acidic electrolyte is sent from the first section of the second tank to the first tank through the first pipe,
前記酸性電解液が、 ρΗ1〜4の電解液であることを特徴とする水素発生装置。  The hydrogen generator according to claim 1, wherein the acidic electrolytic solution is an electrolytic solution having ρΗ1-4.
[4] 第 1の隔膜に仕切られた、第 1の正電極を備えた第 1の区画と第 1の負電極を備え た第 2の区画とを有する第 2槽からなり、 [4] a second tank having a first compartment with a first positive electrode and a second compartment with a first negative electrode, partitioned by a first diaphragm,
前記第 1区画には純水が供給され、前記第 2区画にはアルカリ性電解液が注入さ れ、  Pure water is supplied to the first compartment, alkaline electrolyte is injected into the second compartment,
電力エネルギが前記第 1の正、負の電極に印加されると、前記第 2区画において水 素ガスが発生し、前記第 1区画におレ、て酸素ガスと酸性電解液が発生し、  When power energy is applied to the first positive and negative electrodes, hydrogen gas is generated in the second section, oxygen gas and acidic electrolyte are generated in the first section,
前記酸性電解液と前記アルカリ性電解液が、各々 pH;!〜 4と pH9〜; 14の電解液で あることを特徴とする燃料電池用水素発生装置。  The fuel cell hydrogen generator, wherein the acidic electrolyte solution and the alkaline electrolyte solution are electrolytes of pH;! -4 and pH9--14, respectively.
[5] 第 1の負電極を備えた第 1区画と、第 1の正電極を備えた第 3区画と、各々第 2、第 [5] a first compartment with a first negative electrode, a third compartment with a first positive electrode, and a second and second respectively
1の隔膜を介して前記第 1、第 3区画に接する第 2区画とを有する第 2槽からなり、 前記第 1、第 3区画には純水が供給され、前記第 2区画にはアルカリ性電解液が注 入され、  And a second tank having a second compartment in contact with the first and third compartments through one diaphragm, wherein pure water is supplied to the first and third compartments, and alkaline electrolysis is provided to the second compartment. Liquid is injected,
電力エネルギが前記第 1の正、負電極に印加されると、前記第 3区画において酸素 ガスが発生し、前記第 1区画にお!/、て水素ガスとアルカリ性電解液が発生し、 前記アルカリ性電解液が、 pH9〜; 14の電解液であることを特徴とする水素発生装 置。  When power energy is applied to the first positive and negative electrodes, oxygen gas is generated in the third section, hydrogen gas and alkaline electrolyte are generated in the first section, and the alkaline A hydrogen generating apparatus, wherein the electrolyte is an electrolyte having a pH of 9 to 14;
[6] 第 1の正電極を備えた第 1区画と、第 1の負電極を備えた第 3区画と、各々第 1、第  [6] A first compartment with a first positive electrode and a third compartment with a first negative electrode, respectively,
2の隔膜を介して前記第 1、第 3区画に接する第 2区画を有する第 2槽からなり、 前記第 1、第 3区画には純水が供給され、前記第 2区画には酸性電解液が注入さ れ、  A second tank having a second compartment in contact with the first and third compartments via two diaphragms, wherein pure water is supplied to the first and third compartments, and an acidic electrolyte is provided to the second compartment Is injected,
電力エネルギが前記第 1の正、負電極に印加されると、前記第 1区画において酸素 ガスと酸性電解液が発生し、前記第 3区画において水素ガスが発生し、 前記酸性電解液が、 ρΗ1〜4の電解液であることを特徴とする水素発生装置。 When power energy is applied to the first positive and negative electrodes, oxygen in the first compartment A hydrogen generator, characterized in that a gas and an acidic electrolyte are generated, hydrogen gas is generated in the third section, and the acidic electrolyte is an electrolyte of ρΗ1-4.
[7] アルミニウムからなる触媒を備えた第 1槽からなり、 [7] Consists of a first tank with a catalyst made of aluminum,
前記第 1槽にはアルカリ性電解液が注入され、  An alkaline electrolyte is injected into the first tank,
前記第 1槽において水素ガスと水酸化アルミニウムが発生し、  Hydrogen gas and aluminum hydroxide are generated in the first tank,
前記アルカリ性電解液が、 pH9〜; 14の電解液であることを特徴とする水素発生装 置。  A hydrogen generating apparatus, wherein the alkaline electrolyte is an electrolyte having a pH of 9 to 14;
[8] 前記第 1、及び第 2の隔膜が各々、陰イオン交換膜、及び陽イオン交換膜であるこ とを特徴とする請求項 1乃至 6のいずれかに記載の水素発生装置。  8. The hydrogen generator according to any one of claims 1 to 6, wherein the first and second diaphragms are an anion exchange membrane and a cation exchange membrane, respectively.
[9] さらに前記第 2槽に純水を供給するために、電力エネルギが第 2の正、負電極に印 加されて作動するポンプを備えた第 2配管を備え、前記第 1槽にお!/、て発生した純 水が前記第 2配管に合流していることを特徴とする請求項 1乃至 6のいずれかに記載 の水素発生装置。  [9] Further, in order to supply pure water to the second tank, the first tank is provided with a second pipe having a pump that operates by applying electric energy to the second positive and negative electrodes. The hydrogen generator according to any one of claims 1 to 6, wherein the pure water generated by! / Is joined to the second pipe.
[10] 前記第 1槽にお!/、て、前記触媒に、前記アルカリ性電解液に対する正電圧を与え ること力 Sできる電極をさらに備え、前記第 1槽における反応の進行を抑えることを特徴 とする請求項 2、又は 7に記載の水素発生装置。  [10] The first tank is further equipped with an electrode capable of applying a positive voltage to the alkaline electrolyte to the catalyst, and suppresses the progress of the reaction in the first tank. The hydrogen generator according to claim 2 or 7.
[11] 前記第 1槽において、前記触媒に、前記酸性電解液に対する負電圧を与えること ができる電極をさらに備え、前記第 1槽における反応の進行を抑えることを特徴とする 請求項 1又は 3に記載の水素発生装置。 [11] The first tank further comprises an electrode capable of applying a negative voltage to the acidic electrolyte to the catalyst, and suppresses the progress of the reaction in the first tank. The hydrogen generator described in 1.
[12] さらに、前記第 1槽及び前記第 2槽において発生した水素ガスが供給され、これを 燃焼して電力エネルギと純水を発生する燃料電池を備え、前記電力エネルギの一部 が前記第 1、第 2の正、負電極に印加されることを特徴とする請求項 1乃至 3のいずれ かに記載の水素発生装置。 [12] The fuel cell further includes a fuel cell that is supplied with hydrogen gas generated in the first tank and the second tank and burns the hydrogen gas to generate power energy and pure water, and a part of the power energy is the first tank. 4. The hydrogen generator according to claim 1, wherein the hydrogen generator is applied to the first and second positive and negative electrodes.
[13] さらに、前記第 1槽及び前記第 2槽において発生した水素ガスが供給され、これを 燃焼して電力エネルギと純水を発生する燃料電池を備え、前記純水が前記第 2槽に 供給されることを特徴とする請求項 1乃至 3のいずれかに記載の水素発生装置。 [13] The apparatus further includes a fuel cell that is supplied with the hydrogen gas generated in the first tank and the second tank and burns the hydrogen gas to generate electric energy and pure water, and the pure water is supplied to the second tank. The hydrogen generator according to claim 1, wherein the hydrogen generator is supplied.
[14] さらに、前記第 1槽及び前記第 2槽において発生した水素ガスが供給され、これを 燃焼して電力エネルギと純水を発生する燃料電池を備え、さらに前記第 2槽におい て発生した酸素ガスが前記燃料電池に送られることを特徴とする請求項 1乃至 3のい ずれかに記載の水素発生装置。 [14] The apparatus further comprises a fuel cell that is supplied with hydrogen gas generated in the first tank and the second tank and burns the hydrogen gas to generate electric energy and pure water, and further in the second tank. The hydrogen generator according to any one of claims 1 to 3, wherein the oxygen gas generated in this way is sent to the fuel cell.
[15] さらに、前記第 2槽において発生した水素ガスが供給され、これを燃焼して電力ェ ネルギと純水を発生する燃料電池を備え、前記電力エネルギの一部が前記第 1、第 2の正、負電極に印加されることを特徴とする請求項 4乃至 6の!/、ずれかに記載の水 素発生装置。 [15] The apparatus further includes a fuel cell that is supplied with hydrogen gas generated in the second tank and burns to generate electric energy and pure water, and a part of the electric energy is the first and second. 7. The hydrogen generator according to claim 4, wherein the hydrogen generator is applied to positive and negative electrodes.
[16] さらに、前記第 2槽において発生した水素ガスが供給され、これを燃焼して電力ェ ネルギと純水を発生する燃料電池を備え、前記純水が前記第 2槽に供給されることを 特徴とする請求項 4乃至 6のいずれかに記載の水素発生装置。  [16] Furthermore, a hydrogen fuel cell is provided that is supplied with hydrogen gas generated in the second tank and burns to generate electric energy and pure water, and the pure water is supplied to the second tank. The hydrogen generator according to any one of claims 4 to 6, wherein:
[17] さらに、前記第 2槽において発生した水素ガスが供給され、これを燃焼して電力ェ ネルギと純水を発生する燃料電池を備え、さらに前記第 2槽において発生した酸素 ガスが前記燃料電池に送られることを特徴とする請求項 4乃至 6のいずれかに記載 の水素発生装置。  [17] The apparatus further includes a fuel cell that is supplied with the hydrogen gas generated in the second tank and burns to generate electric energy and pure water, and the oxygen gas generated in the second tank is the fuel. The hydrogen generator according to claim 4, wherein the hydrogen generator is sent to a battery.
PCT/JP2007/069040 2006-10-06 2007-09-28 Hydrogen generation device WO2008044499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538647A JPWO2008044499A1 (en) 2006-10-06 2007-09-28 Hydrogen generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-275560 2006-10-06
JP2006275560 2006-10-06
JP2006-279671 2006-10-13
JP2006279671 2006-10-13

Publications (1)

Publication Number Publication Date
WO2008044499A1 true WO2008044499A1 (en) 2008-04-17

Family

ID=39282709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069040 WO2008044499A1 (en) 2006-10-06 2007-09-28 Hydrogen generation device

Country Status (2)

Country Link
JP (1) JPWO2008044499A1 (en)
WO (1) WO2008044499A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111514A (en) * 2012-12-05 2014-06-19 Toshiharu Fukai Production method of hydrogen, and production method of aluminum hydroxide
KR101648107B1 (en) * 2015-05-21 2016-08-12 주식회사 세연이엔에스 A hybrid hydrogen generating system using the reative metal fuel
KR20210000068A (en) * 2019-06-24 2021-01-04 한국에너지기술연구원 Fuel cell system based on acidic or basic waste water
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314372A (en) * 1995-05-18 1996-11-29 Nobuyuki Kamiya Water electrolysis/fuel battery device
JP2006131935A (en) * 2004-11-04 2006-05-25 Hitachi Zosen Corp Water electrolysis cell enclosed in container in water-electrolysis hydrogen-generating apparatus
JP2006185895A (en) * 2004-09-16 2006-07-13 Seiko Instruments Inc Fuel cell system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181795B2 (en) * 1994-10-28 2001-07-03 オルガノ株式会社 Electrolyzed water production equipment
JPH08246178A (en) * 1995-03-10 1996-09-24 Permelec Electrode Ltd Electrochemical recovering method of salts and device therefor
JPH0938653A (en) * 1995-07-27 1997-02-10 Nec Corp Production of electrolyzed ionic water and device therefor
JP3645636B2 (en) * 1996-01-25 2005-05-11 ペルメレック電極株式会社 3-chamber electrolytic cell
JPH108282A (en) * 1996-06-20 1998-01-13 Permelec Electrode Ltd Water electrolysis device
JPH10235358A (en) * 1997-02-28 1998-09-08 Japan Organo Co Ltd Apparatus and method for electrolytic water-making
JP3586364B2 (en) * 1997-09-01 2004-11-10 日本カーリット株式会社 Electrolytic ionic water generating apparatus, electrolytic ionic water generating method and cleaning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314372A (en) * 1995-05-18 1996-11-29 Nobuyuki Kamiya Water electrolysis/fuel battery device
JP2006185895A (en) * 2004-09-16 2006-07-13 Seiko Instruments Inc Fuel cell system
JP2006131935A (en) * 2004-11-04 2006-05-25 Hitachi Zosen Corp Water electrolysis cell enclosed in container in water-electrolysis hydrogen-generating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111514A (en) * 2012-12-05 2014-06-19 Toshiharu Fukai Production method of hydrogen, and production method of aluminum hydroxide
KR101648107B1 (en) * 2015-05-21 2016-08-12 주식회사 세연이엔에스 A hybrid hydrogen generating system using the reative metal fuel
KR20210000068A (en) * 2019-06-24 2021-01-04 한국에너지기술연구원 Fuel cell system based on acidic or basic waste water
KR102199185B1 (en) * 2019-06-24 2021-01-06 한국에너지기술연구원 Fuel cell system based on acidic or basic waste water
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes

Also Published As

Publication number Publication date
JPWO2008044499A1 (en) 2010-02-12

Similar Documents

Publication Publication Date Title
CN102597327B (en) The generating mixed gas of hydrogen and oxygen and the internal combustion engine of this device of use
ES2861451T3 (en) Method for electrolyzing alkaline water
JP5932764B2 (en) Selective catalytic reduction by electrolysis of urea.
US8562929B2 (en) Selective catalytic reduction via electrolysis of urea
JP5665976B2 (en) Hydrogen replenishment system for generating hydrogen on demand in internal combustion engines
JP5977352B2 (en) Hydrogen replenishment system for generating hydrogen on demand for internal combustion engines
JP5653452B2 (en) Natural energy storage system
JP2009007647A (en) Organic hydride manufacturing apparatus and distributed power supply and automobile using the same
KR20130108309A (en) Selective catalytic reduction via electrolysis of urea
CN102777285A (en) Fuel supply system
WO2008044499A1 (en) Hydrogen generation device
JP2017034843A (en) Hydrogen manufacturing system, hydrogen supply station, and hydrogen manufacturing method
JPH11229167A (en) Electrolytic hydrogen generating device
JP5891358B2 (en) Energy system
JP2012180571A (en) On-vehicle hydrogen addition system
WO2011004344A1 (en) Device for hydrogen enrichment of the fuel of internal combustion engine fed by ammonia, during the start-up and during the steady state
WO2016088871A1 (en) Engine cleaning method
US20220177304A1 (en) Desalination methods and devices using geothermal energy
JP2012238525A (en) Photoelectrochemical cell and energy system using the same
KR20200064375A (en) Hydrogen production equipment and hydrogen vehicle using it
JP4660853B2 (en) Hydrogen gas generating apparatus and hydrogen gas generating method
JP2009041086A (en) Hydrogen generating apparatus
CN210778814U (en) Metal fuel hydrogen power generation device
JP2009159802A (en) Automobile and fuel station
JP2000054173A (en) Battery by water electrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828781

Country of ref document: EP

Kind code of ref document: A1