WO2008043227A1 - Système, appareil et procédé de transport sur un réseau de fibres optiques passives - Google Patents

Système, appareil et procédé de transport sur un réseau de fibres optiques passives Download PDF

Info

Publication number
WO2008043227A1
WO2008043227A1 PCT/CN2007/001568 CN2007001568W WO2008043227A1 WO 2008043227 A1 WO2008043227 A1 WO 2008043227A1 CN 2007001568 W CN2007001568 W CN 2007001568W WO 2008043227 A1 WO2008043227 A1 WO 2008043227A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
uplink
optical
downlink
optical channel
Prior art date
Application number
PCT/CN2007/001568
Other languages
English (en)
French (fr)
Inventor
Shimin Zou
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008043227A1 publication Critical patent/WO2008043227A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/003Medium of transmission, e.g. fibre, cable, radio
    • H04J2203/0032Fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0028Local loop
    • H04J2203/0039Topology
    • H04J2203/0041Star, e.g. cross-connect, concentrator, subscriber group equipment, remote electronics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0046User Network Interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the invention relates to the field of optical fiber signal transmission, in particular to a passive optical network (PON) signal transmission system, a device and a signal transmission method thereof.
  • PON passive optical network
  • PON is characterized by a point-to-multipoint physical topology, an optical line terminal (OLT), and an optical distribution network (ODN). ) and a plurality of Optical Network Units (ONUs).
  • the plurality of ONUs share the optical fiber resources and share the OLT port; the ODN passively connects one OLT and one or more ONUs, and the optical branch points in the ODN do not need active node devices, and only one passive optical branch is needed. Therefore, the PON has the advantages of sharing bandwidth resources, saving investment in the equipment room, high equipment security, fast network construction, and low overall network construction cost.
  • PON PON
  • ATM Asynchronous Transfer Mode
  • Broadband Passive Optical Network Broadband Passive Optical Network
  • BPON Broadband Passive Optical Network
  • EPON Ethernet-based PON
  • GFP-PON PON
  • GFP-PON GFP-PON
  • GFP Generic Framing Protocol
  • the current GPON can achieve 2.5Gbit/s (bps) downlink, and uplinks can choose 2.5Gbps, 1.5Gbps and 622Mbps.
  • GPON is a PON system initiated by the Full Service Access Network (FSAN) organization and developed by the ITU-T standardization organization.
  • FSAN Full Service Access Network
  • GPON has the following features in terms of function and performance: It can flexibly provide multiple symmetry. Or asymmetric uplink and downlink rates, such as the uplink rate of 1.244 GBPS and the downlink rate of 2.488 GBPS; the system split ratio can be 1:16, 1:32, 1:64 or even 1:128, and the forward direction supported by GPON Forward Error Correction (FEC) is relevant; GFP can be adapted to any data service; it can well support the transmission of TDM service data and provide good guarantee for timing performance; It has perfect operation, management and maintenance. And configuration (Operation, Administration, Maintenance and Provisioning, OAM&P).
  • FEC GPON Forward Error Correction
  • the Optical Transport Network is a highly reliable and interoperable high-speed optical network.
  • a backbone network or metropolitan area network that is compatible with GPON.
  • the client signals on the OTN are transmitted in the following three ways:
  • Constant Bit Rate that is, CBR2.5G, CBR10G, and CBR40G signals are mapped into the Optical Channel Payload Unit (OPUk), of which CBR2.5G is - 2488320kbit/ s 20 ppm fixed bit rate signal;
  • ATM Asynchronous Transfer Mode
  • OTUk Optical Channel Transport Unit
  • GFP General Framing Procedure
  • FIG. 1 is a GPON and an OTN in the prior art.
  • FIG. 1 Schematic diagram of the network structure.
  • user-side devices such as computer terminals, telephones, and televisions
  • OTN passive optical distribution network
  • O U1 encapsulates the MAC frame into a GEM frame (a PON generated by the GPON encapsulation method). Internal frame), the GEM frame is mapped to the payload area of the uplink optical burst packet, and the Physical Layer Overhead (PLOu) is added, and the Physical Layer Sequence upstream (referred to as the Physical Layer Sequence upstream).
  • PLOu Physical Layer Overhead
  • the transmit time slot stream is transmitted in the uplink, and the burst time slot stream is a GPON Transmission Convergence (GTC), which is located at a transmission container (T-CONT).
  • GTC GPON Transmission Convergence
  • T-CONT transmission container
  • GPON is a specific case of PON.
  • the burst slot stream transmitted by ONU1 is a GTC format signal.
  • the burst slot transmitted by ONU1 is sent out.
  • the stream is referred to as a signal in the PON frame format.
  • OLT2 is directly connected to ONU1. After receiving the uplink burst slot stream, PLOu is extracted, then the GEM frame in the payload area is extracted, and the GEM encapsulation is removed, thereby recovering the original service signal in the MAC frame format.
  • GFP adaptation protocol is adopted in OTN3
  • OLT2 needs to encapsulate the original service signal with GFP, then send it to the optical transmission device 4 in OTN3 through the Ethernet interface, and then send it to another optical transmission device 5 in OTN3.
  • the service signal is sent by the optical transmission device 5 to the network service party, that is, to the digital video network, the Internet, or the Public Switched Telephone Network (PSTN).
  • PSTN Public Switched Telephone Network
  • the processing in the downstream direction is similar to the uplink principle, and will not be described here.
  • the inventors have found that, for the transmission process of the service signal provided by the prior art, since the GEM is only an adaptation protocol inside the GPON, only the ONU and the OLT are generated and terminated; and the GFP is only the OTN.
  • the adaptation protocol within the network has a large difference between the format and function of the GEM. Therefore, it is difficult to integrate the network element. Even if it is integrated in the physical form, it is logically independent of each other, which is not conducive to transmission. The mutual penetration of the network and the access network.
  • the service signal encapsulated into the GEM frame needs to be restored to the original service signal by the OLT, and the connection can be made with the OTN, and the GPON has the disadvantages of short transmission distance and limited support users. Supporting a large number of users, it is necessary to set a large number of OLTs in geographically dispersed places, resulting in high network operation and maintenance.
  • Embodiments of the present invention provide a passive optical network signal transmission system, device, and method, which enable a signal having a PON frame format to pass through an OTN for end-to-end transmission and termination.
  • An embodiment of the present invention provides an optical network signal transmission device, including: an uplink conversion interface module, configured to convert an received uplink optical signal having a PON frame format into an uplink data stream; and an uplink optical channel data unit mapping module, Mapping the upstream data stream from the uplink conversion interface module to An upstream optical channel data unit signal, configured to convert an uplink optical channel data unit signal from the upstream optical channel data unit mapping module into an uplink signal having an optical channel transmission unit format, and transmit the optical signal to the optical The network transmits.
  • an uplink conversion interface module configured to convert an received uplink optical signal having a PON frame format into an uplink data stream
  • an uplink optical channel data unit mapping module Mapping the upstream data stream from the uplink conversion interface module to An upstream optical channel data unit signal, configured to convert an uplink optical channel data unit signal from the upstream optical channel data unit mapping module into an uplink signal having an optical channel transmission unit format, and transmit the optical signal to the optical The network transmits.
  • the embodiment of the present invention further provides an optical network signal transmission device, including: a downlink optical channel transmission unit module, configured to convert a downlink signal from an optical transmission network having an optical channel transmission unit format into a downlink optical channel data unit signal; a downlink optical channel data unit mapping module, configured to demap a downlink optical channel data unit signal from the downlink optical channel transmission unit module into a downlink frame data stream having a PON frame format; and a downlink conversion interface module, configured to The downlink frame data stream of the downlink optical channel data unit mapping module is converted into a downlink optical signal and transmitted to the PON.
  • a downlink optical channel transmission unit module configured to convert a downlink signal from an optical transmission network having an optical channel transmission unit format into a downlink optical channel data unit signal
  • a downlink optical channel data unit mapping module configured to demap a downlink optical channel data unit signal from the downlink optical channel transmission unit module into a downlink frame data stream having a PON frame format
  • a downlink conversion interface module configured to The downlink
  • the embodiment of the present invention further provides an optical line signal transmission device, including: a downlink conversion interface module, configured to convert a received downlink signal into a downlink frame data stream having a PON frame format; and a downlink optical channel data unit mapping module,
  • the downlink optical channel data unit is configured to map the downlink frame data stream from the downlink optical interface module to the downlink optical channel data unit, and the downlink optical channel data unit is configured to send the downlink optical channel data unit from the downlink optical channel data unit mapping module.
  • the signal is converted to a downstream signal having an optical channel transmission unit format and transmitted to the optical transport network.
  • the embodiment of the present invention further provides an optical line signal transmission device, including: an uplink optical channel transmission unit module, configured to convert an uplink signal from an optical transmission network having an optical channel transmission unit format into an uplink optical channel data unit signal; An uplink optical channel data unit mapping module, configured to demap an uplink optical channel data unit signal from the uplink optical channel transmission unit module into an uplink data stream having a PON frame format; and an uplink conversion interface module, configured to The uplink data stream of the uplink optical channel data unit mapping module is converted to transmit the required uplink optical signal to the optical line terminal or to transmit the required uplink service signal to the network serving party.
  • an uplink optical channel transmission unit module configured to convert an uplink signal from an optical transmission network having an optical channel transmission unit format into an uplink optical channel data unit signal
  • An uplink optical channel data unit mapping module configured to demap an uplink optical channel data unit signal from the uplink optical channel transmission unit module into an uplink data stream having a PON frame format
  • an uplink conversion interface module configured to The uplink data stream of
  • the embodiment of the present invention further provides a passive optical network signal transmission system, including an optical network signal transmission device and an optical line signal transmission device connected through an optical transmission network, where the optical network signal transmission device is configured to receive The uplink optical signal with the PON frame format is mapped as a client signal to the uplink optical channel data unit signal, and then converted into an uplink signal having the optical channel transmission unit format and transmitted to the optical line signal transmission device through the optical transmission network;
  • the uplink signal corresponding to the uplink processing processes the received downlink signal;
  • the optical line signal transmission device is configured to convert the uplink signal from the optical transmission network with the optical channel transmission unit format into the uplink optical channel data unit signal, and then decode And transmitting an uplink optical signal having a PON frame format to the optical line terminal; and processing the received downlink signal in a reverse manner corresponding to the uplink processing.
  • the embodiment of the present invention further provides a passive optical network signal transmission system, including an optical network signal transmission device and an optical line signal transmission device connected through an optical transmission network, where the optical network signal transmission device is configured to receive The uplink optical signal with the PON frame format is mapped as a client signal to the uplink optical channel data unit signal, and then converted into an uplink signal having the optical channel transmission unit format and transmitted to the optical line signal transmission device through the optical transmission network;
  • the uplink signal corresponding to the uplink processing processes the received downlink signal;
  • the optical line signal transmission device is configured to convert the uplink signal from the optical transmission network with the optical channel transmission unit format into the uplink optical channel data unit signal, and then demap And transmitting an uplink PON internal frame, and recovering the uplink PON internal frame into an uplink service signal to transmit to the network service party; and processing the received downlink signal according to a reverse manner corresponding to the uplink processing.
  • the embodiment of the present invention further provides a passive optical fiber network signal transmission method, including: mapping an received uplink optical signal having a PON frame format as a client signal to an uplink optical channel data unit signal, and then converting to an optical channel transmission
  • the uplink signal of the unit format is transmitted through the optical transport network; the uplink signal with the optical channel transmission unit format received from the optical transport network is converted into an uplink optical channel data unit signal, and then demapped to have a PON frame format
  • the upstream optical signal is transmitted to the optical line terminal.
  • the embodiment of the present invention further provides a passive optical fiber network signal transmission method, including: mapping an received uplink optical signal having a PON frame format as a client signal to an uplink optical channel data unit signal, and then converting to an optical channel transmission
  • the uplink signal of the unit format is transmitted through the optical transport network; the uplink signal with the optical channel transmission unit format received from the optical transport network is converted into an uplink optical channel data unit signal, and then the uplink PON internal frame is demapped And recovering the uplink service signal from the uplink PON internal frame to the network service party for transmission.
  • the embodiment of the invention further provides a method for transmitting a passive optical network signal, comprising: mapping a downlink optical signal with a PON frame format from an optical line terminal as a client signal to a downlink optical channel data unit signal, and converting the signal into a light
  • the downlink signal of the channel transmission unit format is transmitted through the optical transmission network; the downlink signal with the optical channel transmission unit format received from the optical transmission network is converted into a downlink optical channel data unit signal, and is demapped Downstream optical signal in PON frame format, Send to the optical network unit.
  • the embodiment of the invention further provides a passive optical network signal transmission method, which comprises: adapting a downlink service signal from a network service party to a downlink PON internal frame, mapping to a downlink optical channel data unit signal, and then converting the signal into a light a downlink signal of the channel transmission unit format is transmitted through the optical transmission network; the downlink signal with the optical channel transmission unit format received from the optical transmission network is converted into a downlink optical channel data unit signal, and is demapped The downlink optical signal in the PON frame format is sent to the optical network unit.
  • the signal with the PON frame format is directly encapsulated into the optical channel data unit signal, and then transmitted in the ONT, because the signal with the PON frame format is directly encapsulated as the OTN client signal. Therefore, the signal with the PON frame format actually passes the OTN, thereby realizing the transparent transmission of the PON frame format through the OTN.
  • FIG. 1 is a schematic structural diagram of a GPON and OTN networking in the prior art
  • FIG. 2 is a schematic diagram of a standard frame format adopted by the digital encapsulation technology
  • FIG. 3 is a schematic structural diagram of a passive optical fiber network signal transmission system according to the present invention.
  • FIG. 4 is a schematic diagram of a frame structure change when a service signal is transmitted according to the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of an optical network signal transmission device according to the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of an optical network signal transmission device according to the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 3 of an optical network signal transmission device according to the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of an optical line signal transmitting apparatus according to the present invention.
  • Embodiment 9 is a schematic structural diagram of Embodiment 2 of an optical line signal transmission device according to the present invention.
  • Embodiment 3 of an optical line signal transmitting apparatus according to the present invention.
  • Embodiment 4 is a schematic structural diagram of Embodiment 4 of an optical line signal transmitting apparatus according to the present invention.
  • Embodiment 5 is a schematic structural diagram of Embodiment 5 of an optical line signal transmitting apparatus according to the present invention.
  • Embodiment 6 is a schematic structural diagram of Embodiment 6 of an optical line signal transmitting apparatus according to the present invention.
  • Embodiment 7 of an optical line signal transmitting apparatus according to the present invention.
  • Embodiment 8 of an optical line signal transmitting apparatus according to the present invention.
  • Figure 16 is a schematic structural view of Embodiment 9 of the optical line signal transmitting apparatus of the present invention.
  • FIG. 17 is a schematic structural diagram of Embodiment 10 of an optical line signal transmitting apparatus according to the present invention
  • Figure 18 is a schematic structural view of Embodiment 11 of the optical line signal transmitting apparatus of the present invention
  • Figure 19 is a schematic structural view of Embodiment 12 of the optical line signal transmitting apparatus of the present invention
  • FIG. 21 is a schematic flowchart of a method for downlink transmission of a passive optical network signal according to the present invention.
  • the embodiment of the invention discloses a PON and OTN networking mode, and combines the digital encapsulation technology in the OTN series proposal to implement the signal in the PON (that is, the signal having the PON frame format) as the client signal in the OTN network.
  • the PON signal is transparently transmitted through the OTN network.
  • the so-called transparent pass that is, when the input or output frame format or byte bits of the signal are not changed, the integration difficulty due to the difference in format and function of the client signal in the PON and the OTN is reduced.
  • the technical solution disclosed in the embodiments of the present invention can be applied to GPON, and can also be applied to PONs such as APON and EPON. In the implementation, only the internal encapsulation of the PON network is different, and the signal with the PON frame format is used as the OTN network. The customer signal is transmitted.
  • This technology defines a special frame format, which encapsulates the client signal into the payload unit of the frame, and provides overhead bytes for OAM&P at the frame header (Overhead, OH ), and provides Forward Error Correction (FEC) bytes at the end of the frame.
  • OAM&P overhead bytes for OAM&P at the frame header (Overhead, OH ), and provides Forward Error Correction (FEC) bytes at the end of the frame.
  • FEC Forward Error Correction
  • the standard frame format adopted by digital encapsulation technology is shown in Figure 2. It can be seen that the digital envelope uses a standard frame of 4 lines and 4080 columns.
  • the header 16 is the overhead byte
  • the tail 255 is the FEC check byte
  • the middle 3808 is the optical channel Payload Unit (OPU).
  • Head overhead byte the first row 1 - 7 is the Frame Alignment Signal (FAS)
  • the 8 - 14 bytes are the channelk optical channel transport unit (OTPk) Overhead byte, where the value of k corresponds to a different rate of transmission mode,
  • FAS Frame Alignment Signal
  • OTPk channelk optical channel transport unit
  • ODUk Overhead bytes
  • columns 15 and 16 are the Kth optical channel payload unit (referred to as O Uk ) overhead bytes.
  • the seventh byte of the FAS is a Multi-Frame Alignment Signal (MFAS), which is used to indicate the allocation of overhead when multiple user service signals are carried in time division multiplexing mode.
  • MFAS Multi-Frame Alignment Signal
  • the OTUk overhead byte provides re-amplification, reassembly, and retiming in OTN. Reshaping, and Retiming, referred to as "3R"), the monitoring function of the signal state transmitted between the regenerative nodes, Section Monitoring (SM) overhead bytes, GCC0 inter-terminal communication channel overhead bytes and RES reserved bytes III Parts.
  • SM Section Monitoring
  • the ODUk overhead byte provides cascading connection monitoring, end-to-end channel monitoring and client signal adaptation via OPUk.
  • ODUk provides a wealth of overhead bytes ( ⁇ 2 - 4 rows 1 - 14 columns) to accomplish the above functions. Including Path Monitoring (PM) overhead, Tandem Connection Monitoring (TCM) overhead, General Communication Channel (GCC) byte GCC1 and GCC2 overhead, automatic protection switching and protection control channel (Auto-Protection Switching, Protection Control Channel, APS/PCC for short), overhead byte, fault type and fault location (FTFL) information, overhead bytes for experiment (experiment, cartridge called EXP), etc. .
  • PM Path Monitoring
  • TCM Tandem Connection Monitoring
  • GCC1 and GCC2 General Communication Channel
  • automatic protection switching and protection control channel Auto-Protection Switching, Protection Control Channel, APS/PCC for short
  • FTFL fault type and fault location
  • the OPUk overhead byte includes a Payload Structure Identifier (PSI), an adjustment byte, and a Mapping Specific Overhead.
  • PSI has 0 to 255 possible values under the MFAS indication.
  • the 0th byte is the customer signal type indication (Payload Type, the cylinder is called PT), and the rest is reserved (Reserved, referred to as RES), which is reserved for future expansion.
  • FIG. 3 is a schematic structural diagram of an embodiment of a passive optical fiber network signal transmission system according to the present invention, including one or several optical network units ONU1, optical line units OLT2, and light in the OTN network 3.
  • the network signal transmitting device 6 and the optical line signal transmitting device 7 are configured.
  • the ONU 1 is not directly connected to the OLT 2, but transmits the signal in the OTN through the optical network signal transmitting device 6 and the optical line signal transmitting device 7. It is sent to OLT2 before.
  • the processing process of the service signal is as shown in FIG. 4, which is a schematic diagram of the frame structure change when the service signal is transmitted under the transmission system shown in FIG. 3.
  • the ONU1 maps the uplink service signal to the PON internal frame.
  • the PON internal frame may be a GPON GEM frame, an EPON Ethernet frame, or a time division multiplexed passive optical network (TDM- Internal frame of PON).
  • the PON internal frame is formed into an uplink burst packet, and the uplink optical signal (ie, the uplink optical signal with the PON frame format) is sent to the optical network signal transmission device 6 at the allocated uplink time slot position (ie, T-CONT);
  • the optical network signal transmitting device 6 regards all received uplink optical signals from the ONU as a bit stream, performs photoelectric conversion and reception preprocessing, and then Mapping to the ODUK (ie, mapping the signal of the PON frame format as a client signal into the ODUK:), converting to OTUK and transmitting to the optical line signal transmitting device 7 through the OTN; the optical line signal transmitting device 7 receiving the optical signal of the ODUK frame packing
  • the demapping operation is performed to decode the bit data stream (that is, the uplink data stream having the PON frame format), and then sent to the OLT2; the OLT2 first demaps the PON internal frame, and finally restores the MAC frame to the MAC frame through the Ethernet interface.
  • the GPON network after the ONU1 maps the uplink service signal to the GEM frame, forms an uplink burst packet according to the uplink frame format of G.984, and transmits the device to the optical network signal transmission device at the allocated uplink time slot position (T-CONT).
  • T-CONT allocated uplink time slot position
  • the optical network signal transmission device 6 regards the optical signal of the uplink GTC frame format of all OUs as a GTC bit data stream, performs photoelectric conversion, and performs preprocessing by receiving, and then mapping to ODUK
  • the optical line signal transmitting device 7 performs a demapping operation to decode the GTC bit data stream and sends it to the OLT 2; the OLT 2 first demaps the GEM frame, and finally restores the MAC frame through The Ethernet interface is sent to the network service party.
  • the present invention discloses a specific implementation scheme of several embodiments of the optical network signal transmission device shown in FIG. 3, wherein the uplink process and the downlink process are respectively transmitted by the uplink optical network signal transmission device and the downlink optical network signal.
  • the device is completed and can also be completed using an optical network signal transmission device that integrates uplink and downlink operations.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of an optical network signal transmission device according to the present invention.
  • the optical network signal transmission device in this embodiment is composed of an uplink conversion interface module 601, an uplink optical channel data unit mapping module 602, and an upstream optical channel transmission unit module 603.
  • the uplink switching interface module 601 is configured to convert the uplink optical signal from the ONU1 into an uplink data stream. It is understood by those skilled in the art that since O U1 belongs to a part of the PON, the uplink optical signal from the ONU1 is in a PON frame format.
  • the uplink optical channel data unit mapping module 602 is connected to the uplink conversion interface module 601, and is configured to map the uplink data stream to the uplink optical channel data unit signal (ODUK); the uplink optical channel transmission unit module 603, and the uplink optical
  • the channel data unit mapping module 602 is connected to convert the upstream optical channel data unit signal (ODUK) into an uplink signal having an optical channel transmission format (OTUK) and transmit it in the optical transport network.
  • ODUK upstream optical channel data unit signal
  • OTN optical channel transmission format
  • the uplink conversion interface module 601 can be specifically divided into a photoelectric conversion unit 604 and a reception processing unit.
  • the photoelectric conversion unit 604 can convert the received uplink optical signal from the ONU1 into an uplink electrical signal, and then, through the receiving processing unit 605, adjust the phase-adjusted uplink electrical signal to a unified bit or byte clock, and send the signal to the uplink optical channel.
  • the uplink conversion interface module 601 may further include a rate detecting unit, because the rate of the uplink optical signal from the ONU1 is different, such as 2.5G, 1.25G, 622M, etc., so that for better rate matching, it is possible to Before the conversion unit 604 performs photoelectric conversion, the rate of the upstream optical signal from O U1 is first tested by the rate detecting unit.
  • the receive processing unit 605 Two specific implementations of the receive processing unit 605 are given below.
  • the first one is a multi-phase receiving unit, which can adjust the phase of the phase-up uplink electrical signal to an uplink electrical signal with a unified bit or a byte clock in a serial manner, convert it into a parallel uplink data stream, and then transmit it to the upstream optical channel.
  • the data unit mapping module 602; the second is an uplink burst receiving unit, which can re-delimit the burst packet of the uplink electrical signal, adjust to a unified byte clock, and then recover the preamble byte signal of the burst packet to form
  • the upstream data stream is sent to the upstream optical channel data unit mapping module 602.
  • the majority of the decision criteria are used to receive the data, for example, the bit "”, using the decision criterion of 2 to take 2, as long as the two decisions are "1", the received data is considered to be "1".
  • the first embodiment shown in FIG. 5 provides an optical network signal transmission device that performs only the uplink process.
  • the optical network signal transmission device that performs only the downlink process is as shown in FIG. 6 , and includes a downlink conversion interface module 611 and a downlink optical channel data unit mapping. Module 612 and downstream optical channel transfer unit module 613.
  • the downlink optical channel transmission unit module 613 demaps the downlink signal with the optical channel transmission unit format (OTUK) from the optical transmission network to the downlink optical channel data unit signal (ODUK), and then the downlink optical channel data unit mapping module 612.
  • the downlink optical channel data unit signal (ODUK) is demapped out of the downlink frame data stream, and then the downlink conversion interface module 611 converts the received downlink frame data stream into a downlink optical signal.
  • the optical network signal transmitting device 7 Since the optical line signal transmitting device 7 also maps the downlink signal having the PON frame format as a client signal to the downlink optical channel data unit signal, the optical network signal transmitting device
  • the downlink frame data stream demapped by the downlink optical channel data unit mapping module 612 also has a frame format of the PON, and further, the downlink optical signal converted by the downlink conversion interface module 611 also has a frame format of the PON.
  • the downlink conversion interface module 611 specifically includes a parallel-serial conversion unit 614 and an electro-optical conversion unit 615, and the parallel-serial conversion unit 615 converts the downlink frame data stream received from the downlink optical channel data unit mapping module 612 into a downlink electrical signal, and then The electro-optical conversion unit 614 converts the downlink electrical signal into a downstream optical signal.
  • FIG. 7 is a schematic structural diagram of Embodiment 3 of an optical network signal transmission device according to the present invention.
  • This embodiment is a device configuration of an integrated uplink and downlink process, including a conversion interface module 621, an optical channel data unit mapping module 622, and a light.
  • the channel transfer unit module 623 the module of the group cost embodiment, has the corresponding functions of the uplink in the first embodiment, and the corresponding functions in the second embodiment.
  • the conversion interface module 621 includes a photoelectric conversion unit 624 that performs an uplink process, a reception processing unit 625, and an electro-optical conversion unit 627 and a parallel-serial conversion unit 628 that perform a downstream process.
  • the optical network signal transmitting apparatus of this embodiment further includes a timing generation module capable of providing a clock signal to the multi-phase receiving unit.
  • the invention also discloses several specific implementations of the embodiment of the optical line signal transmission device shown in FIG. 3, wherein the uplink process and the downlink process can be completed by the uplink optical line signal transmission device and the downlink optical line signal transmission device, respectively. This is done using an optical line signal transmission device that combines upstream and downstream operations.
  • FIG. 8 it is a schematic structural diagram of Embodiment 1 of the optical line signal transmission device of the present invention.
  • the device in this embodiment includes only a downlink process, and is configured by a downlink conversion interface module 701, a downlink optical channel data unit mapping module 702, and a downlink.
  • the optical channel transmission unit module 704 is configured.
  • the downlink optical signal received by the downlink conversion interface module 701 in this embodiment is from the OLT 2. Therefore, the downlink optical signal has a PON frame format (for example, a GTC frame format signal).
  • the downlink conversion interface module 701 converts the received downlink optical signal into a downlink frame data stream, and then the downlink optical channel data mapping module 702 maps the downlink frame data stream to the downlink optical channel data unit signal (ODUK), and the downlink optical channel.
  • the transmitting unit module 704 replaces the downstream optical channel data unit signal (ODUK) into a downstream signal having an optical channel transport unit format (OTU) and transmits it in the optical transport network.
  • the downlink conversion interface module 701 specifically includes: a photoelectric conversion unit 705 and a serial to parallel conversion unit 706.
  • the photoelectric conversion unit 705 converts the downlink optical signal from the OLT 2 into a downlink electrical signal, and then the serial electrical signal string is converted by the serial to parallel conversion unit 706. And converted into a downlink frame data stream, and sent to the downlink optical channel data unit mapping module 702.
  • the downlink optical signal received by the optical line signal transmitting device in this embodiment has a PON frame format
  • the downlink optical signal is mapped as a client signal to the row optical channel data unit signal, and the original signal is maintained.
  • the PON frame format therefore, the PON frame format signal transparently passes through the optical transport network.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of an optical line signal transmitting apparatus according to the present invention.
  • the first embodiment shown in FIG. 8 is applicable to a single downlink optical channel data unit signal (ODUK), when there are multiple sets of downlink optical channel data unit signals.
  • ODUK downlink optical channel data unit cross-module 703 is added to perform cross-scheduling of the plurality of sets of downlink optical channel data unit signals (ODUK) mapped by the downlink optical channel data mapping module 702, and then the downlink optical channel transmission unit module
  • the 704 converts the cross-scheduled downstream optical channel data unit signal (ODUK) into a downlink signal having an optical channel transport unit format (OTUK) and transmits it in the optical transport network.
  • OUK optical channel transport unit format
  • Embodiment 3 of the optical line signal transmission device of the present invention is a device dedicated to the uplink process, including an uplink conversion interface module 711, an uplink optical channel data unit mapping module 712, and an uplink.
  • Optical channel transfer unit module 714 The upstream optical channel transmission unit module 714 converts the uplink signal with the optical channel transmission unit format (OTUK) from the optical transmission network into the uplink optical channel data unit signal (ODUK), and then the upstream optical channel data unit mapping module 712 transmits the upstream light.
  • the channel data unit signal demaps the uplink data stream, and finally the uplink conversion interface module 711 converts the received uplink data stream into an uplink optical signal.
  • the uplink conversion interface module 711 specifically includes an electro-optical conversion unit 715 and a parallel-to-serial conversion unit 716.
  • the parallel-serial conversion unit 716 first converts the received uplink data stream into an uplink electrical signal, and then the e-wave conversion unit 715 converts the uplink electrical signal. Converted to an upstream optical signal.
  • the optical network signal transmission device 6 can be known by the description of the optical network signal transmission device 6.
  • the client signal encapsulated in the uplink signal transmitted by the signal transmission device 6 to the optical line signal transmission device through the OTN is a signal having a PON frame format, and therefore, the light
  • the uplink data stream de-mapped from the uplink signal received by the line signal transmission device 7 also has a PON frame format, and the converted uplink optical signal correspondingly also has a PON frame format.
  • Embodiment 4 is a schematic structural diagram of Embodiment 4 of an optical line signal transmitting apparatus according to the present invention.
  • the previous embodiment is applicable to a single uplink optical channel data unit signal (ODUK) when there are multiple sets of uplink optical channel data unit signals (ODUK).
  • ODUK uplink optical channel data unit signal
  • Embodiment 5 of the optical line signal transmission device of the present invention is a device configuration of the integrated uplink and downlink processes, including a conversion interface module 721, an optical channel data unit mapping module 722, and an optical channel.
  • the transmitting unit module 724, the modules of the group cost embodiment are provided with corresponding functions in the uplink and downlink of the optical line signal transmitting apparatus, and corresponding functions in the uplink in the third embodiment of the optical line signal transmitting apparatus, wherein the switching interface module 721 includes The photoelectric conversion unit 725 that performs the upstream process, the serial-to-parallel conversion unit 726, and the electro-optical conversion unit 727 and the parallel-serial conversion unit 728 that perform the downstream process.
  • FIG. 13 is a schematic structural diagram of Embodiment 6 of an optical line signal transmitting apparatus according to the present invention.
  • the embodiment shown in FIG. 12 is applicable to a single uplink or downlink optical channel data unit signal (ODUK), when there are multiple sets of uplink or downlink optical channel data.
  • the added optical channel data unit cross module 723 cross-routes the upstream or downstream optical channel data unit signals (ODUK).
  • the OLT 2 in the system embodiment shown in Fig. 2 can be separately provided or built in the optical line signal transmitting device 7.
  • FIG. 14 which is a schematic structural diagram of Embodiment 7 of the optical line signal transmitting apparatus of the present invention, the optical line signal transmitting apparatus in this embodiment integrates the function of the OLT.
  • the optical line signal transmission device in this embodiment includes a downlink conversion interface module 731, a downlink optical channel data unit mapping module 732, and a downstream optical channel transmission unit module 734.
  • the downlink conversion interface module 731 converts the received downlink signal (that is, the downlink service signal from the network service party) into a downlink frame data stream, and then the downlink optical channel data unit mapping module 732 maps the downlink frame data stream to the downlink optical channel.
  • the data unit signal (ODUK), the downstream optical channel transmission unit module 734 transmits the number of downstream optical channels and transmits them in the optical transmission network.
  • the OLT is integrated in the downlink conversion interface module 731, and specifically includes a downlink service adaptation unit 735 and a downlink transmission aggregation unit 735.
  • the downlink service adaptation unit 735 is configured to adapt the received downlink service signal to the downlink PON internal frame, and then pass the The downlink transmission aggregation unit 736 multiplexes the downlink PON internal frame and the downlink transmission convergence layer frame format to form a downlink frame data stream in the downlink transmission convergence layer frame format.
  • Embodiment 8 of an optical line signal transmission apparatus is applicable to a single downlink optical channel data unit signal (ODUK), when there are multiple sets of downlink light.
  • ODUK downlink optical channel data unit signal
  • the downlink optical channel data unit cross module 733 is added, and the downlink optical channel data unit signal (ODUK) mapped by the downlink optical channel data unit mapping module 732 is cross-scheduled and then transmitted by the downlink optical channel.
  • the unit module 734 converts the cross-scheduled downstream optical channel data unit signal (ODUK) into a downstream signal having an optical channel transport unit format (OTUK).
  • Embodiment 9 of the optical line signal transmission device of the present invention is a built-in OLT optical signal transmission device dedicated to the uplink process, including an uplink conversion interface module 741 and uplink optical channel data.
  • the unit mapping module 742 and the upstream optical channel transmission unit module 744 demaps the upstream optical signal with the optical channel transmission unit format (OTUK) from the optical transmission network to the upstream optical channel data unit signal (ODUK), and is then used by the upstream optical channel data unit mapping module 742.
  • the upstream optical channel data unit signal (ODUK) is demapped to the upstream data stream, and finally the upstream uplink interface module 741 converts the received upstream data stream into the original traffic signal.
  • the uplink conversion interface module 741 specifically includes an uplink service adaptation unit 745 and an uplink transmission aggregation table to demap an uplink PON internal frame (such as a GEM frame), and the uplink service adaptation unit 745 is connected to the uplink transmission aggregation unit 746, and is configured to connect the The uplink PON internal frame is demapped into an original service signal (such as a signal in a MAC frame format).
  • an uplink service adaptation unit 745 and an uplink transmission aggregation table to demap an uplink PON internal frame (such as a GEM frame)
  • the uplink service adaptation unit 745 is connected to the uplink transmission aggregation unit 746, and is configured to connect the The uplink PON internal frame is demapped into an original service signal (such as a signal in a MAC frame format).
  • FIG. 17 is a schematic structural diagram of Embodiment 10 of an optical line signal transmission apparatus according to the present invention.
  • the embodiment of the optical line signal transmission apparatus shown in FIG. 16 is applicable to a single uplink optical channel data unit signal when there are multiple sets of uplink optical channel data unit signals.
  • the uplink optical channel data unit cross module 743 is required to perform cross-scheduling on the uplink optical channel data unit signal, and then the uplink optical channel data unit mapping module. 742 demaps the upstream optical channel data unit signal (ODUK) to the upstream data stream.
  • ODUK upstream optical channel data unit signal
  • Embodiment 11 of the optical line signal transmission device of the present invention is a device configuration of an integrated uplink and downlink process, including a conversion interface module 751, an optical channel data unit mapping module 752, and light.
  • the channel transfer unit module 754, the module of the group cost embodiment has the corresponding functions of the downlink in the seventh embodiment shown in FIG. 14, and the corresponding functions in the uplink of the embodiment 9 shown in FIG. 16, wherein the conversion interface module 751 includes execution.
  • the downlink service adaptation unit 755 of the downlink process, the downlink transmission aggregation unit 756, and the uplink service adaptation unit 757 and the uplink transmission aggregation unit 758 performing the uplink process.
  • Embodiment 12 of an optical line signal transmitting apparatus is a schematic structural diagram of Embodiment 12 of an optical line signal transmitting apparatus according to the present invention.
  • the embodiment shown in FIG. 18 is applicable to a single uplink or downlink optical channel data unit signal when there are multiple sets of uplink or downlink optical channel data unit signals.
  • the optical channel data unit cross module 753 needs to be added to cross-route the uplink or downlink optical channel data unit signals.
  • the present invention provides an upstream and downstream flow embodiment.
  • the basic process is: first, mapping the uplink optical signal sent by the ONU1 (the uplink optical signal has a PON frame format) to the uplink optical channel data unit signal (ODUK) (that is, mapping the uplink optical signal as a client signal to the ODUK) Medium), and converted into an uplink signal having an optical channel transmission unit format (OTUK), and then transmitted through the optical transmission network; and then converted from the optical transmission network with an optical channel transmission unit format (OTUK) It is an uplink optical channel data unit signal (ODUK), and demaps an uplink signal (such as a GTC frame format signal) having a PON frame format, and then sends it to the OLT; finally, the uplink signal is recovered by the OLT, and then provided to the network. Service party.
  • ODUK uplink optical channel data unit signal
  • the uplink service signal received from the user equipment is mapped to the PON internal frame, and then adapted to the payload area of the uplink optical signal, and the uplink time is allocated by the uplink optical signal.
  • the slot position is sent. It can be seen that the signal sent from ONU1 has a PON frame format.
  • FIG. 20 it is a specific process diagram of an embodiment of a method for uplink transmission of a passive optical network signal according to the present invention, including:
  • Step a1 Convert the uplink optical signal sent by the ONU into an uplink data stream. Specifically, the uplink optical signal sent by the ONU is first converted into an uplink electrical signal, and then the phase of the uplink electrical signal is adjusted to An uplink electrical signal with a uniform bit or byte clock and converted to an upstream data stream. There are two ways to adjust the phase of the phase.
  • the phase of the uplink electrical signal with random phase can be adjusted serially to the uplink electrical signal with unified bit or byte clock, and then converted into parallel upstream data stream. After the packet is de-bounded and adjusted to the unified bit or byte clock, the preamble byte signal of the burst packet is recovered to obtain the uplink data stream.
  • the phase adjustment can be performed according to the clock in the downlink direction;
  • step a2 the uplink data stream is mapped to an uplink optical channel data unit signal (ODUK); in step a3, the uplink optical channel data signal (ODUK) is converted into an uplink signal having an optical channel transmission unit format (OTUK), and Transfer in OTN;
  • ODUK uplink optical channel data unit signal
  • Step a4 de-mapping the uplink signal from the OTN with the optical channel transmission unit format (OTUK) to the uplink optical channel data unit signal (ODUK);
  • step a5 the uplink optical channel data unit signal (ODUK) is demapped to the uplink data stream.
  • Step a6 Convert the uplink data stream into an uplink optical signal. Specifically, the uplink data stream is first converted into an uplink electrical signal, and then the uplink electrical signal is converted into an uplink optical signal.
  • step a7 the OLT demaps the uplink PON internal frame from the upstream optical signal, and The upper industry ⁇ language number (such as the signal of the MAC frame format) is recovered through the intra-PON frame exchange.
  • ODUK upstream optical channel data unit signals
  • the optical network signal transmission device may divide the ODUK uplink channel time slot according to the uplink rate in addition to the clock phase adjustment. If the uplink rate is the STM-16 rate, the uplink data stream is mapped to Level 1 optical channel payload unit; if the uplink rate is 0.5 times the STM-16 rate, the level 1 optical channel payload unit is divided into two uplink channel slots, and the upstream data stream is mapped Up to any of the two uplink channel slots.
  • the basic process is: firstly mapping the downlink optical signal sent by the OLT to the downlink optical channel data unit signal, and converting it into a downlink signal having an optical channel transmission unit format, and then transmitting through the OTN; then receiving from the OTN
  • the downlink signal with the optical channel transmission unit format is converted into the downlink optical channel data unit signal, and then the downlink optical signal with the PON frame format is demapped and then sent to the ONU; finally, the ONU recovers the downlink optical signal, and then sends give User side device.
  • FIG. 21 it is a specific flow diagram of a method for downlink transmission of a passive optical network signal according to the present invention, including:
  • Step bl converting the downlink optical signal sent by the OLT into a downlink frame data stream.
  • the downlink optical signal from the OLT is first converted into a downlink electrical signal, and then the downlink electrical signal is converted into a downlink frame data stream and sent to the downlink optical channel data unit mapping module.
  • step b2 the downlink frame data stream is mapped to the downlink optical channel data unit signal (ODUK); in step b3, the downlink optical channel data unit signal is converted into a downlink signal having an optical channel transmission unit format (OTUK), and is performed in the OTN.
  • ODUK downlink optical channel data unit signal
  • step b3 the downlink optical channel data unit signal is converted into a downlink signal having an optical channel transmission unit format (OTUK), and is performed in the OTN.
  • Step b4 converting a downlink signal from the OTN with an optical channel transmission unit format (OTUK) into a downlink optical channel data unit signal (ODUK);
  • OTN optical channel transmission unit format
  • ODUK downlink optical channel data unit signal
  • Step b5 de-mapping the downlink optical channel data unit signal (ODUK) out of the downlink frame data stream (having a PON frame format);
  • Step b6 Convert the received downlink frame data stream into a downlink optical signal, and send the data to the ONU. Specifically, the received downlink frame data stream is first converted into a downlink electrical signal, and the downlink electrical signal is converted into a downlink optical signal, and then transmitted to O U;
  • Step b7 The ONU restores the downlink optical signal to the original service signal and sends the signal to the user equipment. If multiple sets of upstream optical channel data unit signals (ODUK) are received in the OTN, the following steps are performed in steps b4 and b5: Cross-scheduling the downstream optical channel data unit signals (ODUK).
  • ODUK upstream optical channel data unit signals
  • the processing flow is correspondingly obtained, which makes the maintenance management more convenient.
  • a plurality of options may be obtained in the planning of the clock.
  • the clock used in the uplink transmission aggregation unit 758 may be the clock sent by the uplink optical channel data mapping module 752, or may be sent by the downlink transmission aggregation unit 756.
  • the uplink signal or the downlink signal of the PON (that is, the signal having the PON frame format) is transmitted to the central office OLT through the channel layer of the transport network OTN, that is, within the PON.
  • the transmit layer data stream signal is transmitted as a client signal of the transport network OTN, and the channel layer of the transport network OTN actually becomes a service layer for transmitting the convergence layer data stream signal, thereby realizing transparent transmission of the transport convergence layer data stream signal in the transport network OTN.
  • the application of the OTN network extends from the metropolitan area network to the access network.
  • the ONU is no longer directly connected to the OLT, but the connection between the OU and the OLT is realized by transmitting the network OTN.
  • This networking mode expands the access radius of the PON by using the OTN, and overcomes the PON transmission distance in the prior art.
  • the problem of short and limited coverage can reduce the number of OLTs used, thus achieving multi-user support; and implementing PON OLT equipment in centralized management at the secondary central office (C02), thereby reducing the operation of passive optical networks Maintenance costs.
  • the form of the OTN device and the PON device can be modified to make the integration more natural and reasonable, and also to facilitate management.
  • the protection of the GPON can be implemented by the protection function of the OTN. Since the PON can only be protected by physical networking, such as dual-system backup and dual-line, the cost is high, and the protection function of the ⁇ can be utilized. Greatly improve the reliability of PON (such as GPON) networking.

Description

无源光纤网络信号传送系统、 设备及方法
本申请要求于 2006 年 10 月 8 日提交中国专利局、 申请号为 200610139090.8、 发明名称为"无源光纤网络中信号传送系统及方法"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光纤信号传送领域,尤其是一种应用于无源光纤网络( Passive Optical Network, 简称 PON )信号传送系统、 设备及其信号传送方法。
背景技术
PON作为一种宽带光接入技术, 其特点是点到多点的物理拓朴结构, 由 光线路终端 (Optical Line Terminal, 筒称 OLT )、 无源光分配网络 ( Optical Distribution Network, 筒称 ODN )和多个光网给单元( Optical Network Unit, 简称 ONU )组成。 其中, 多个 ONU共享光纤资源、 共享 OLT端口; ODN以 无源方式连接一个 OLT和一个或多个 ONU, ODN中的光分支点不需要有源 的节点设备, 只需一个无源的光分支器即可, 因此, PON具有带宽资源共享、 节省机房投资、 设备安全性高、 建网速度快、 综合建网成本低等优点。
随着宽带业务需求的增长, PON技术正在不断演进, 从基于异步传送模 式(Asynchronous Transfer Mode,筒称 ATM )的 PON( ATM-PON,简称 APON ) 到宽带无源光纤网络(Broadband Passive Optical Network, 简称 BPON ), 再从 基于以太网的 PON( Ethemet-PON,筒称 EPON )到基于通用成帧协议( Generic Framing Protocol, 筒称 GFP )的 PON ( GFP-PON, 简称 GPON ), 传送带宽不 断增加 , 当前的 GPON可达到下行 2.5G比特 /秒 ( bps ), 上行可选择 2.5Gbps、 1.5Gbps以及 622Mbps等多种速率。
GPON是由全业务接入网络( Full Service Access Network, 简称 FSAN ) 组织发起并由 ITU-T标准化组织制定的一种 PON体制,在功能和性能上 GPON 具有以下特点: 能够灵活地提供多种对称或非对称的上下行速率,如上行速率 为 1.244 GBPS、 下行速率为 2.488 GBPS; 系统分路比可为 1:16、 1 :32、 1:64 乃至 1:128,与 GPON所支持的前向纠错(Forward Error Correction,简称 FEC ) 是相关的; GFP可适合任何数据业务的适配; 能够很好地支持 TDM业务数据 的传送并为定时性能提供良好保证; 具有完善的操作、 管理、 维护和配置 ( Operation, Administration, Maintenance and Provisioning, 简称 OAM&P ) 能 力。
由于 GPON作为接入网络具有许多优点, 但还需要适当的传送体制与之 相配合,其中光传送网(Optical Transport Network,简称 OTN )是一种高可靠、 可互操作的高速光网络, 可作为与 GPON相配合的骨干网络或城域网络。
对于 OTN网络, 在 OTN上的客户信号通过以下三种方式传送:
( 1 )恒定比特率( Constant Bit Rate, 简称 CBR ), 即 CBR2.5G、 CBR10G、 CBR40G信号映射入光通道净荷单元(Optical channel Payload Unit, 筒称 OPUk ), 其中 CBR2.5G即 - 2488320kbit/s士 20ppm的定比特率信号;
( 2 )异步传送方式( Asynchronous Transfer Mode,筒称 ATM ),即将 ATM 信元复用成与光通道传送单元( Optical channel Transport Unit, 筒称 OTUk ) 的净荷容量匹配的固定比特流, 并映射到 OPUk中,在复用中通过插入空闲信 元或丟掉信元来调整速率, 其中 ATM信元的信息在映射前要扰码;
( 3 )通用成帧规程 ( General Framing Procedure, 筒称 GFP ), 即在进行 GFP帧映射时, 在打包阶段插入空闲帧来达到与 OPUk相匹配的连续比特流, 在此过程中也进行扰码。还有其它的一些信号可以映射进 OPUk中,如客户信 号, 测试信号, 普通的客户比特流信号等。
鉴于 GPON和 OTN是不同的传送体制, 其帧格式和开销都不同, 应用场 景也不相同, 现有技术提供了一种组网方式, 如图 1 所示, 其为现有技术中 GPON和 OTN组网的结构示意图, 在无源光分配网络(ODN ) 中, 用户侧设 备(例如计算机终端、 电话机以及电视机等) 与 ONU1 进行连接, 可以进行 业务信号的发送和接收。
在上行方向, 当用户侧设备通过以太网帧 (如媒体访问控制器 MAC帧) 将业务信号发送给 ONU1时, O U1会将该 MAC帧封装成 GEM帧 (一种采 用 GPON封装方法生成的 PON内部帧), 再将所述 GEM帧映射到上行光突发 包的净荷区,通过加上物理层上行开销( Physical Layer Overhead,简称 PLOu ), 上行功率电平序列( Physical Layer Sequence upstream, 简称 PLSu )、 上 4亍物理 层运行维护管理( Physical Layer OAM upstream, 筒称 PLOAMu ) 以及上行动 态带宽才艮告 ( Dynamic Bandwidth Report upstream, 简称 DBRu ), 组成上行突 发时隙流在上行线路中传送, 所述突发时隙流即为 GPON传送汇聚(GTC, GPON Transmission Convergence ), 位于传送容器 ( Transmission Container, 简 称 T-CONT ) 的位置。 需要说明的是, GPON是 PON的一种具体情况, 对于 GPON而言, ONU1传送出去的突发时隙流为 GTC格式的信号, 对于广义上 的 PON而言, ONU1传送出去的突发时隙流统称为 PON帧格式的信号。
OLT2与 ONU1直接相连, 当接收到上行突发时隙流后提取 PLOu, 然后 提取净荷区中的 GEM帧, 并去掉 GEM封装, 从而将 MAC帧格式的原始业 务信号恢复出来。 OTN3中采用 GFP适配协议时, OLT2需要先将原始业务信 号用 GFP封装后, 再通过以太网接口发送到 OTN3中的光传送设备 4, 然后 发送到 OTN3中的另一光传送设备 5,再由光传送设备 5将业务信号发送到网 络服务方,即发送到数字 video网、 Internet或公共交换电话网(Public Switched Telephone Network, 简称 PSTN )。
其下行方向的处理与上行原理近似, 这里就不赘述了。 在实现本发明过 程中, 发明人发现, 对于现有技术提供的业务信号的传送过程, 由于 GEM仅 为 GPON内部的适配协议 , 只在 ONU和 OLT之间产生和终结; 而 GFP仅是 OTN网络内部的适配协议, 与 GEM之间格式和功能都有较大差异, 因此, 在 网元集成上较困难,即使在物理形态上进行了集成,在逻辑上也是相互独立的, 不利于传送网络与接入网络的相互渗透。
此外, 从组网方式上来看, 由于封装成 GEM帧的业务信号需要通过 OLT 还原成原始业务信号后, 才能够与 OTN进行连接, 而 GPON具有传送距离短 和支持用户数量较有限的缺点, 为了支持大量用户, 需要在地理位置很分散的 地方分别设置大量 OLT, 导致网络运营和维护的成^艮高。
发明内容
本发明实施例提出了一种无源光纤网络信号传送系统、 设备及方法, 能 够使具有 PON帧格式的信号透明通过( Pass Through ) OTN, 实现端到端的传 送和终结。
本发明实施例提供了一种光网络信号传送设备,包括:上行转换接口模块, 用于将接收到的具有 PON帧格式的上行光信号转换为上行数据流; 上行光通 道数据单元映射模块,用于将来自所述上行转换接口模块的上行数据流映射到 上行光通道数据单元信号; 上行光通道传送单元模块, 用于将来自所述上行光 通道数据单元映射模块的上行光通道数据单元信号转换为具有光通道传送单 元格式的上行信号, 并向光传送网进行传送。
本发明实施例还提供了一种光网络信号传送设备, 包括: 下行光通道传送 单元模块,用于将来自光传送网的具有光通道传送单元格式的下行信号转换为 下行光通道数据单元信号; 下行光通道数据单元映射模块,用于将来自所述下 行光通道传送单元模块的下行光通道数据单元信号解映射出具有 PON帧格式 的下行帧数据流; 下行转换接口模块,用于将来自所述下行光通道数据单元映 射模块的下行帧数据流转换为下行光信号, 并向 PON进行传送。
本发明实施例还提供了一种光线路信号传送设备, 包括: 下行转换接口模 块, 用于将接收到的下行信号转换成具有 PON帧格式的下行帧数据流; 下行 光通道数据单元映射模块,用于将来自所述下行转换接口模块的下行帧数据流 映射到下行光通道数据单元信号; 下行光通道传送单元模块, 用于将来自所述 下行光通道数据单元映射模块的下行光通道数据单元信号转换为具有光通道 传送单元格式的下行信号, 并向光传送网进行传送。
本发明实施例还提供了一种光线路信号传送设备, 包括: 上行光通道传送 单元模块,用于将来自光传送网的具有光通道传送单元格式的上行信号转换为 上行光通道数据单元信号; 上行光通道数据单元映射模块,用于将来自所述上 行光通道传送单元模块的上行光通道数据单元信号解映射出具有 PON帧格式 的上行数据流; 上行转换接口模块,用于将来自所述上行光通道数据单元映射 模块的上行数据流转换为向光线路终端传送所需的上行光信号或向网络服务 方传送所需的上行业务信号。
本发明实施例还提供了一种无源光纤网络信号传送系统, 包括通过光传送 网相连的光网络信号传送设备和光线路信号传送设备,其中, 所述光网絡信号 传送设备, 用于将接收到的具有 PON帧格式的上行光信号作为客户信号映射 到上行光通道数据单元信号,再转换为具有光通道传送单元格式的上行信号通 过光传送网传送至光线路信号传送设备;以及按照与所述上行处理对应的反向 方式处理其接收到的下行信号; 光线路信号传送设备, 用于将来自光传送网的 具有光通道传送单元格式的上行信号转换为上行光通道数据单元信号,再解映 射出具有 PON帧格式的上行光信号, 并向光线路终端进行传送; 以及按照与 所述上行处理对应的反向方式处理其接收到的下行信号。
本发明实施例还提供了一种无源光纤网络信号传送系统, 包括通过光传送 网相连的光网络信号传送设备和光线路信号传送设备,其中, 所述光网络信号 传送设备, 用于将接收到的具有 PON帧格式的上行光信号作为客户信号映射 到上行光通道数据单元信号,再转换为具有光通道传送单元格式的上行信号通 过光传送网传送至光线路信号传送设备;以及按照与所述上行处理对应的反向 方式处理其接收到的下行信号; 光线路信号传送设备, 用于将来自光传送网的 具有光通道传送单元格式的上行信号转换为上行光通道数据单元信号,再解映 射出上行 PON内部帧,并将所述上行 PON内部帧恢复成上行业务信号向网络 服务方进行传送;以及按照与所述上行处理对应的反向方式处理其接收到的下 行信号。
本发明实施例还提供了一种无源光纤网络信号传送方法, 包括: 将接收到 的具有 PON帧格式的上行光信号作为客户信号映射到上行光通道数据单元信 号,再转换为具有光通道传送单元格式的上行信号通过光传送网进行发送; 将 从所述光传送网接收到的所述具有光通道传送单元格式的上行信号转换为上 行光通道数据单元信号, 再解映射出具有 PON帧格式的上行光信号, 并向光 线路终端进行传送。
本发明实施例还提供了一种无源光纤网络信号传送方法, 包括: 将接收到 的具有 PON帧格式的上行光信号作为客户信号映射到上行光通道数据单元信 号,再转换为具有光通道传送单元格式的上行信号通过光传送网进行发送; 将 从所述光传送网接收到的所述具有光通道传送单元格式的上行信号转换为上 行光通道数据单元信号,再解映射出上行 PON内部帧, 并从所述上行 PON内 部帧恢复出上行业务信号向网络服务方进行传送。
本发明实施例还提供了一种无源光纤网络信号传送方法, 包括: 将来自光 线路终端的具有 PON帧格式的下行光信号作为客户信号映射到下行光通道数 据单元信号, 并转换成具有光通道传送单元格式的下行信号, 通过光传送网进 行发送;将从所述光传送网接收到的所述具有光通道传送单元格式的下行信号 转换为下行光通道数据单元信号,并解映射出具有 PON帧格式的下行光信号, 发送给光网络单元。
本发明实施例还提供了一种无源光纤网络信号传送方法, 包括:将来自网 络服务方的下行业务信号适配到下行 PON内部帧后映射到下行光通道数据单 元信号, 然后转换成具有光通道传送单元格式的下行信号,通过光传送网进行 发送;将从所述光传送网接收到的所述具有光通道传送单元格式的下行信号转 换为下行光通道数据单元信号, 并解映射出具有 PON帧格式的下行光信号, 发送给光网絡单元。
基于上述本发明实施例的技术方案可以看出, 由于直接将具有 PON帧格 式的信号作为 OTN客户信号予以封装,即将具有 PON帧格式的信号映射到光 通道数据单元信号中, 然后在 ONT进行传送,从而使得具有 PON帧格式的信 号真正通过了 OTN, 从而实现了 PON帧格式信号透明通过 OTN。
附图说明
图 1为现有技术中 GPON和 OTN组网的结构示意图;
图 2为数字包封技术采用的标准帧格式示意图;
图 3为本发明无源光纤网络信号传送系统的结构示意图;
图 4为本发明业务信号传送时的帧结构变化示意图;
图 5为本发明光网絡信号传送设备的实施例一的结构示意图;
图 6为本发明光网絡信号传送设备的实施例二的结构示意图;
图 7为本发明光网络信号传送设备的实施例三的结构示意图;
图 8为本发明光线路信号传送设备的实施例一的结构示意图;
图 9为本发明光线路信号传送设备的实施例二的结构示意图;
图 10为本发明光线路信号传送设备的实施例三的结构示意图;
图 11为本发明光线路信号传送设备的实施例四的结构示意图;
图 12为本发明光线路信号传送设备的实施例五的结构示意图;
图 13为本发明光线路信号传送设备的实施例六的结构示意图;
图 14为本发明光线路信号传送设备的实施例七的结构示意图;
图 15为本发明光线路信号传送设备的实施例八的结构示意图;
图 16为本发明光线路信号传送设备的实施例九的结构示意图;
图 17为本发明光线路信号传送设备的实施例十的结构示意图; 图 18为本发明光线路信号传送设备的实施例十一的结构示意图; 图 19为本发明光线路信号传送设备的实施例十二的结构示意图; 图 20为本发明无源光纤网络信号上行传送方法的具体流程示意图; 图 21为本发明无源光纤网络信号下行传送方法的具体流程示意图。
具体实施方式
下面结合附图, 对本发明各实施例的技术方案做进一步的详细描述。
本发明实施例公开了一种 PON和 OTN组网方式, 并结合 OTN系列建议 中的数字包封技术,将 PON中的信号(即具有 PON帧格式的信号)作为 OTN 网络中的客户信号, 实现了 PON信号透明通过 OTN网络,所谓透明通过即当 信号的输入和输出的帧格式或字节比特没有发生改变, 降低了由于 PON和 OTN 中客户信号在格式和功能上的差异带来的集成难度。 本发明实施例公开 的技术方案既可以应用在 GPON中,也可以应用在 APON和 EPON等 PON中, 在实现上只有 PON网络内部封装的区别, 在 OTN网上都是将具有 PON帧格 式的信号作为客户信号进行传送的。
首先对数字包封技术进行介绍, 这种技术定义了一种特殊的帧格式, 将客 户信号封装入帧的净荷单元, 在帧头部提供用于 OAM&P 的开销字节 ( Overhead, 筒称 OH ), 并在帧尾提供了前向纠错( Forward Error Correction, 简称 FEC )字节。
数字包封技术采用的标准帧格式如图 2所示。 可以看出, 数字包封采用标 准帧是 4行 4080列帧格式。 头部 16列为开销字节, 尾部 255列为 FEC校验 字节, 中间 3808 列为光通道净荷单元(Optical channel Payload Unit, 简称 OPU )。头部开销字节,第 1行 1 - 7列为帧定位字节(Frame Alignment Signal, 简称 FAS ), 8 - 14字节为笫 k种光通道传送单元(Optical channel Transport Unit, 筒称 OTUk )开销字节, 这里 k的值不同对应不同速率的传送模式, 第
ODUk )开销字节, 第 15、 16列为第 K种光通道净荷单元(简称 O Uk )开 销字节。 FAS 的第 7字节为复帧指示(Multi-Frame Alignment Signal, 简称 MFAS ), 用于指示以时分复用方式^ ^载多个用户业务信号时的开销分配。
OTUk开销字节提供了 OTN中重放大、 重组、 重定时(Reamplification, Reshaping, and Retiming, 简称" 3R" )再生节点之间传送信号状态的监测功 能, 包舍段监测( Section Monitoring, 简称 SM )开销字节、 GCC0终端间通 信信道开销字节及 RES保留字节三个部分。
ODUk开销字节提供级联连接监测、端到端的通道监测和通过 OPUk提供 客户信号适配。 ODUk提供了丰富的开销字节 (笫 2 - 4行 1 - 14列) 以完成 上述功能。 包括通道监测 (Path Monitoring, 简称 PM )开销、 串联连接监测 ( Tandem Connection Monitoring, 简称 TCM )开销、 通用通信信道 ( General Communication Channel, 简称 GCC )字节 GCC1和 GCC2开销、 自动保护切 换和保护控制信道 ( Auto-Protection Switching, Protection Control Channel, 简称 APS/PCC )开销字节、 故障类型和故障定位 ( Fault Type Fault Location, 简称 FTFL )信息、 供实验使用的开销字节 (Experiment, 筒称 EXP )等。
OPUk开销字节包括净荷结构标识( Payload Structure Identifier,筒称 PSI )、 调整字节及映射相关开销 (Mapping Specific Overhead )等组成, 其中 PSI在 MFAS指示下分别对应有 0 ~ 255个可能值, 其中第 0字节为客户信号类型指 示(Payload Type, 筒称 PT )、 其余为保留字节(Reserved, 简称 RES ), 留做 未来扩展使用。
本发明的组网方式实施例参见图 3, 其为本发明无源光纤网络信号传送系 统实施例的结构示意图,包括一个或数个光网络单元 ONU1 ,光线路单元 OLT2 以及 OTN网络 3中的光网絡信号传送设备 6和光线路信号传送设备 7构成, 与现有技术不同的是, ONU1并不是与 OLT2直接连接, 而是通过光网络信号 传送设备 6和光线路信号传送设备 7将信号在 OTN中传递后才发送到 OLT2。
相对于上述无源光纤网絡信号传送系统,业务信号的处理过程如图 4所示, 其为图 3 所示传送系统下业务信号传送时的帧结构变化示意图。 ONU1接收 MAC帧格式的上行业务信号后,将该上行业务信号映射到 PON内部帧,这种 PON内部帧可以为 GPON的 GEM帧、 EPON的以太网帧或者时分复用无源光 网络 (TDM-PON)的内部帧。 然后再将 PON内部帧组成上行突发包, 在所分配 的上行时隙位置(即 T-CONT )向光网络信号传送设备 6发送该上行光信号(即 具有 PON帧格式的上行光信号);光网络信号传送设备 6将接收到的所有来自 ONU的上行光信号视为比特数据流, 并进行光电转换以及接收预处理, 然后 映射到 ODUK中 (即将 PON帧格式的信号作为客户信号映射到 ODUK中:), 转换为 OTUK后通过 OTN发送至光线路信号传送设备 7; 光线路信号传送设 备 7在接收 ODUK帧封装的光信号时, 要进行解映射操作, 解出比特数据流 (即具有 PON帧格式的上行数据流), 然后发送到 OLT2; OLT2先解映射出 PON内部帧, 最后恢复成 MAC帧通过以太网接口发送给网络服务方。下行方 向与上行方向的方向相反, 但原理接近, 通过层层封装实现了 OTN网络上的 透明通过。
具体到 GPON网絡,在 ONU1将上行业务信号映射到 GEM帧后,按 G.984 的上行帧格式组成上行突发包, 在所分配的上行时隙位置(T-CONT ) 向光网 络信号传送设备 6发送该上行 GTC帧格式的光信号, 光网络信号传送设备 6 将所有 O U的上行 GTC帧格式的光信号视为 GTC比特数据流, 并进行光电 转换, 并经过接收预处理, 然后映射到 ODUK中; 光线路信号传送设备 7在 接收 ODUK帧封装的光信号时, 要进行解映射操作, 解出 GTC比特数据流, 并发送到 OLT2; OLT2先解映射出 GEM帧, 最后恢复成 MAC帧通过以太网 接口发送给网络服务方。
为了实现上述处理过程,本发明公开了几种图 3所示光网络信号传送设备 实施例的具体实现方案,其上行过程和下行过程既可分别由上行光网络信号传 送设备和下行光网络信号传送设备完成,也可使用综合上行和下行操作的光网 络信号传送设备来完成。
如图 5所示, 其为本发明光网络信号传送设备的实施例一的结构示意图。 本实施例中的光网络信号传送设备由上行转换接口模块 601、 上行光通道数据 单元映射模块 602和上行光通道传送单元模块 603构成。其中上行转换接口模 块 601 , 用于将来自 ONU1的上行光信号转换为上行数据流, 本领域技术人员 可以理解, 由于 O U1属于 PON的一部分, 因此, 来自 ONU1的上行光信号 是 PON帧格式的上行光信号; 上行光通道数据单元映射模块 602, 与上行转 换接口模块 601 相连, 用于将上行数据流映射到上行光通道数据单元信号 ( ODUK ); 上行光通道传送单元模块 603 , 与上行光通道数据单元映射模块 602相连, 用于将上行光通道数据单元信号(ODUK )转换为具有光通道传送 格式(OTUK )的上行信号, 并在光传送网中进行传送。 从上述光网络信号传 送设备对来自 ONU1 的上行光信号的一系列处理可以看出, 由于采用了将该 上行光信号作为客户信号映射到上行光通道数据单元信号(ODUK )中的技术 方案, 因此在后续 OTN传送过程中保持了 PON的原有帧格式, 进而实现了 PON透明通过 OTN。
上行转换接口模块 601可以具体分为光电转换单元 604和接收处理单元
605。 光电转换单元 604可以将接收到的来自 ONU1的上行光信号转换为上行 电信号,再经过接收处理单元 605将相位随机的上行电信号调整为统一的比特 或字节时钟, 并发送给上行光通道数据单元映射模块 602。 可选的, 上行转换 接口模块 601还可以包括速率检测单元, 因为来自 ONU1的上行光信号的速 率有很多种情况, 例如 2.5G, 1.25G, 622M等, 因此为了更好的速率匹配可 以在光电转换单元 604 进行光电转换之前, 先通过速率检测单元测试来自 O U1的上行光信号的速率。
下面给出接收处理单元 605的两种具体实现方式。 其一为多相接收单元, 能够将相位随机的上行电信号相位以串行方式调整为具有统一比特或字节时 钟的上行电信号,再转换为并行的上行数据流, 然后发送到上行光通道数据单 元映射模块 602; 其二为上行突发接收单元, 能够将上行电信号的突发包重新 定界, 调整到统一的字节时钟后, 再恢复突发包的前序字节信号, 形成上行数 据流, 并发送到上行光通道数据单元映射模块 602。
在接收数据时, 采用多数判决准则来接收数据, 例如比特" Γ, 采用 3 中 取 2的判决准则, 只要两次判决是" 1", 就认为接收到的数据为 "1"。
图 5所示的实施例一提供了只执行上行过程的光网絡信号传送设备,只执 行下行过程的光网络信号传送设备如图 6所示, 包括下行转换接口模块 611、 下行光通道数据单元映射模块 612和下行光通道传送单元模块 613。 其中, 下 行光通道传送单元模块 613 将来自光传送网的具有光通道传送单元格式 ( OTUK ) 的下行信号解映射到下行光通道数据单元信号 (ODUK ), 再由下 行光通道数据单元映射模块 612将下行光通道数据单元信号( ODUK )解映射 出下行帧数据流,然后下行转换接口模块 611将接收的下行帧数据流转换为下 行光信号。 由于光线路信号传送设备 7也是将具有 PON帧格式的下行信号作 为客户信号映射到下行光通道数据单元信号的, 因此,光网络信号传送设备中 的下行光通道数据单元映射模块 612解映射出的下行帧数据流也具有 PON的 帧格式, 进而, 经下行转换接口模块 611转换后的下行光信号也具有 PON的 帧格式。
下行转换接口模块 611具体包括并串转换单元 614和电光转换单元 615, 并串转换单元 615将自下行光通道数据单元映射模块 612接收到的下行帧数据 流并串转换为下行电信号,再由电光转换单元 614将下行电信号转换为下行光 信号。
如图 7所示, 为本发明光网络信号传送设备的实施例三的结构示意图, 本 实施例为综合上行和下行过程的设备形态, 包括转换接口模块 621、 光通道数 据单元映射模块 622、 光通道传送单元模块 623, 组成本实施例的模块都具备 与实施例一中上行的相应功能, 以及实施例二中下行的相应功能。 其中, 转换 接口模块 621包括执行上行过程的光电转换单元 624, 接收处理单元 625, 以 及执行下行过程的电光转换单元 627和并串转换单元 628。 另外, 当接收处理 单元 625具体为多相接收单元的情况下,为了使多相接收单元能够将相位随机 的上行光突发包调整为统一的比特时钟,本实施例的光网络信号传送设备还包 括一定时发生模块 629, 能够为多相接收单元提供时钟信号。
本发明还公开了几种图 3 所示光线路信号传送设备实施例的具体实现方 案,其上行过程和下行过程既可分别由上行光线路信号传送设备和下行光线路 信号传送设备完成,也可使用综合上行和下行操作的光线路信号传送设备来完 成。
如图 8所示, 其为本发明光线路信号传送设备的实施例一的结构示意图, 本实施例的设备只包括下行过程, 由下行转换接口模块 701、 下行光通道数据 单元映射模块 702、 下行光通道传送单元模块 704组成, 本实施例中的下行转 换接口模块 701接收到的下行光信号来自 OLT2, 因此, 所述下行光信号具有 PON帧格式(如为 GTC帧格式信号)。 首先下行转换接口模块 701将接收的 所述下行光信号转换成下行帧数据流,再由下行光通道数据映射模块 702将下 行帧数据流映射到下行光通道数据单元信号(ODUK ), 下行光通道传送单元 模块 704将下行光通道数据单元信号转( ODUK ) .换为具有光通道传送单元格 式(OTU ) 的下行信号, 并在光传送网中进行传送。 下行转换接口模块 701具体包括:光电转换单元 705和串并转换单元 706, 光电转换单元 705将来自 OLT2的下行光信号转换为下行电信号,再由串并转 换单元 706将所述下行电信号串并转换为下行帧数据流,并发送到下行光通道 数据单元映射模块 702。
可以看出, 由于本实施例中的光线路信号传送设备接收到的下行光信号具 有 PON帧格式, 因此将该下行光信号作为客户信号映射到行光通道数据单元 信号中后, 保持了原有的 PON帧格式, 因此, PON帧格式信号透明通过了光 传送网。
图 9为本发明光线路信号传送设备的实施例二的结构示意图, 图 8所示的 实施例一适用于单一的下行光通道数据单元信号(ODUK ), 当有多组下行光 通道数据单元信号 (ODUK ) 时, 加入下行光通道数据单元交叉模块 703, 对 下行光通道数据映射模块 702 映射出的多组下行光通道数据单元信号 ( ODUK )进行交叉调度, 然后再由下行光通道传送单元模块 704将经过交叉 调度的下行光通道数据单元信号(ODUK )转换为具有光通道传送单元格式 ( OTUK ) 的下行信号, 并在光传送网中进行传送。
如图 10所示, 为本发明光线路信号传送设备的实施例三的结构示意图, 本实施例为专用于上行过程的设备, 包括上行转换接口模块 711、 上行光通道 数据单元映射模块 712和上行光通道传送单元模块 714。 上行光通道传送单元 模块 714将来自光传送网的具有光通道传送单元格式( OTUK )的上行信号转 换为上行光通道数据单元信号( ODUK )后, 由上行光通道数据单元映射模块 712将上行光通道数据单元信号解映射出上行数据流, 最后上行转换接口模块 711将接收的上行数据流转换为上行光信号。
上行转换接口模块 711具体包括电光转换单元 715和并串转换单元 716, 并串转换单元 716先将接收的上行数据流并串转换为上行电信号,再由电光转 换单元 715将所述上行电信号转换为上行光信号。
可以理解, 由于光线路信号传送设备 7接收到的具有光通道传送单元格式 ( OTUK ) 的上行信号来自光网络信号传送设备 6, 而通过前面对光网络信号 传送设备 6的描述可知, 光网络信号传送设备 6通过 OTN传送给光线路信号 传送设备的上行信号中封装的客户信号是具有 PON帧格式的信号, 因此, 光 线路信号传送设备 7从其接收到的上行信号中解映射出的上行数据流也具有 PON帧格式, 进而转换后的上行光信号相应的也具有 PON帧格式。
图 11 为本发明光线路信号传送设备的实施例四的结构示意图, 上一实施 例适用于单一的上行光通道数据单元信号(ODUK ), 当有多组上行光通道数 据单元信号(ODUK ) 时, 加入上行光通道数据单元交叉模块 713, 对多组下 行光通道数据单元信号(ODUK )进行交叉调度, 然后由上行光通道数据单元 映射模块 712将上行光通道数据单元信号(ODUK )解映射到上行数据流, 最 后上行转换接口模块 711将接收的上行数据流转换为上行光信号。
如图 12所示, 为本发明光线路信号传送设备的实施例五的结构示意图, 本实施例为综合上行和下行过程的设备形态, 包括转换接口模块 721、 光通道 数据单元映射模块 722和光通道传送单元模块 724, 组成本实施例的模块都具 备与光线路信号传送设备实施例一中下行的相应功能,以及光线路信号传送设 备实施例三中上行的相应功能,其中,转换接口模块 721包括执行上行过程的 光电转换单元 725, 串并转换单元 726,以及执行下行过程的电光转换单元 727 和并串转换单元 728。
图 13为本发明光线路信号传送设备的实施例六的结构示意图, 图 12所示 实施例适用于单一的上行或下行光通道数据单元信号(ODUK ), 当有多组上 行或下行光通道数据单元信号 (ODUK ) 时, 加入光通道数据单元交叉模块 723对上行或下行光通道数据单元信号(ODUK )进行交叉调度。
图 2所示系统实施例中的 OLT2既可以单独设置, 也可以内置在光线路信 号传送设备 7内。 请参阅图 14所示, 其为本发明光线路信号传送设备的实施 例七的结构示意图, 该实施例中的光线路信号传送设备集成了 OLT的功能。 本实施例中的光线路信号传送设备包括下行转换接口模块 731、 下行光通道数 据单元映射模块 732和下行光通道传送单元模块 734。 首先, 下行转换接口模 块 731将接收的下行信号 (即来自网络服务方的下行业务信号)转换成下行帧 数据流,再由下行光通道数据单元映射模块 732将下行帧数据流映射为下行光 通道数据单元信号(ODUK ), 下行光通道传送单元模块 734将下行光通道数 并在光传送网中进行传送。 其中下行转换接口模块 731 中整合了 OLT, 具体包括下行业务适配单元 735和下行传送汇聚单元 736, 下行业务适配单元 735用于将接收的下行业务 信号适配到下行 PON内部帧,再通过下行传送汇聚单元 736对下行 PON内部 帧进行复用和下行传送汇聚层帧格式的组装,以形成下行传送汇聚层帧格式的 下行帧数据流。
图 15为本发明光线路信号传送设备的实施例八的结构示意图, 图 14所示 的光线路信号传送设备实施例适用于单一的下行光通道数据单元信号 ( ODUK ), 当有多组下行光通道数据单元信号 (ODUK ) 时, 加入下行光通 道数据单元交叉模块 733 , 对下行光通道数据单元映射模块 732映射出的下行 光通道数据单元信号(ODUK )进行交叉调度, 再由下行光通道传送单元模块 734将经过交叉调度的下行光通道数据单元信号(ODUK )转换为具有光通道 传送单元格式(OTUK ) 的下行信号。
如图 16所示, 为本发明光线路信号传送设备的实施例九的结构示意图, 本实施例为专用于上行过程的内置 OLT的光线信号传送设备, 包括上行转换 接口模块 741、上行光通道数据单元映射模块 742和上行光通道传送单元模块 744。 上行光通道传送单元模块 744将来自光传送网的具有光通道传送单元格 式(OTUK )的上行光信号解映射到上行光通道数据单元信号(ODUK )后, 由上行光通道数据单元映射模块 742将上行光通道数据单元信号( ODUK )解 映射到上行数据流,最后上行转换接口模块 741将接收的上行数据流转换为原 始业务信号。
上行转换接口模块 741具体包括上行业务适配单元 745和上行传送汇聚单 解映射出上行 PON内部帧 (如 GEM帧),上行业务适配单元 745与上行传送汇 聚单元 746相连, 用于将所述上行 PON 内部帧解映射成原始业务信号(如 MAC帧格式的信号)。
图 17为本发明光线路信号传送设备的实施例十的结构示意图, 图 16所示 光线路信号传送设备实施例适用于单一的上行光通道数据单元信号,当有多组 上行光通道数据单元信号时, 需要加入上行光通道数据单元交叉模块 743 , 对 上行光通道数据单元信号进行交叉调度, 再由上行光通道数据单元映射模块 742将上行光通道数据单元信号 (ODUK )解映射到上行数据流。
如图 18所示,为本发明光线路信号传送设备的实施例十一的结构示意图, 本实施例为综合上行和下行过程的设备形态, 包括转换接口模块 751、 光通道 数据单元映射模块 752和光通道传送单元模块 754, 组成本实施例的模块都具 备与图 14所示实施例七中下行的相应功能,以及图 16所示实施例九中上行的 相应功能, 其中, 转换接口模块 751 包括执行下行过程的下行业务适配单元 755, 下行传送汇聚单元 756, 以及执行上行过程的上行业务适配单元 757和 上行传送汇聚单元 758。
图 19为本发明光线路信号传送设备的实施例十二的结构示意图, 图 18所 示实施例适用于单一的上行或下行光通道数据单元信号,当有多组上行或下行 光通道数据单元信号时,需要加入光通道数据单元交叉模块 753对上行或下行 光通道数据单元信号进行交叉调度。 . 基于上述无源光纤网络信号传送系统和传送设备各实施例 ,本发明提供了 上行和下行的流程实施例。 对于上行传送过程, 基本流程是: 先将 ONU1 发 送的上行光信号(该上行光信号具有 PON帧格式) 映射到上行光通道数据单 元信号 (ODUK ) (即将该上行光信号作为客户信号映射到 ODUK中), 并转 换成具有光通道传送单元格式(OTUK )的上行信号, 然后通过光传送网进行 发送; 再将从所述光传送网接收的具有光通道传送单元格式(OTUK )的上行 信号转换为上行光通道数据单元信号( ODUK ), 并解映射出具有 PON帧格式 的上行信号(如 GTC帧格式信号), 然后发送给 OLT; 最后通过 OLT对所述 上行信号进行恢复, 再提供给网络服务方。
在 ONU1发送上行光信号之前,先将从用户侧设备接收到的上行业务信号 映射到 PON内部帧, 再适配到上行光信号的净荷区, 并通过所述上行光信号 被分配的上行时隙位置进行发送。由此可见,从 ONU1发送出的信号具有 PON 帧格式。
如图 20所示, 为本发明无源光纤网络信号上行传送方法实施例的具体流 程示意图, 包括:
步骤 al , 将 ONU发送的上行光信号转换成上行数据流。 具体来说, 就是 先将 ONU发送的上行光信号转换为上行电信号, 再将上行电信号相位调整为 具有统一比特或字节时钟的上行电信号, 并转换为上行数据流。相位调整有两 种方式,可以将相位随机的上行电信号相位以串行方式调整为具有统一比特或 字节时钟的上行电信号,再转换为并行的上行数据流; 或者将上行光信号的突 发包重新定界,调整到统一比特或字节时钟后,再恢复突发包的前序字节信号, 获得上行数据流。 在调整时可根据下行方向的时钟进行相位调整;
步驟 a2, 将所述上行数据流映射到上行光通道数据单元信号 (ODUK ); 步驟 a3, 将上行光通道数据信号(ODUK )转换为具有光通道传送单元格 式(OTUK ) 的上行信号, 并在 OTN中进行传送;
步驟 a4, 将来自 OTN的具有光通道传送单元格式(OTUK ) 的上行信号 解映射到上行光通道数据单元信号 (ODUK );
步驟 a5, 将上行光通道数据单元信号(ODUK )解映射到上行数据流。 步驟 a6, 将所述上行数据流转换为上行光信号。 具体地讲, 就是先将上行 数据流并串转换为上行电信号, 然后将所述上行电信号转换为上行光信号; 步骤 a7, OLT从所述上行光信号解映射出上行 PON内部帧, 并通过 PON 内部帧交换恢复出上行业 ^言号(如 MAC帧格式的信号)。
如果在 OTN中接收到多组上行光通道数据单元信号( ODUK ), 则需要在 步骤 a4和步骤 a5中执行以下步驟: 对上行光通道数据单元信号(ODUK )进 行交叉调度。
在上行流程中, 光网络信号传送设备除了需要进行时钟相位调整外, 还可 以根据上行速率来划分 ODUK的上行通道时隙, 如果上行速率为 STM-16速 率, 则将所述上行数据流映射到级别 1 的光通道净荷单元; 如果上行速率为 0.5倍的 STM-16速率, 则将所述级别 1的光通道净荷单元划分为两个上行通 道时隙 ,并将所述上行数据流映射到所述两个上行通道时隙中的任一上行通道 时隙。
对于下行传送过程, 基本流程是: 首先将 OLT发送的下行光信号映射到 下行光通道数据单元信号, 并转换成具有光通道传送单元格式的下行信号, 然 后通过 OTN进行发送;然后将从 OTN接收的具有光通道传送单元格式的下行 信号转换为下行光通道数据单元信号 , 再解映射出具有 PON帧格式的下行光 信号, 然后发送给 ONU; 最后由 ONU对该下行光信号进行恢复, 进而发送给 用户侧设备。
如图 21所示, 为本发明无源光纤网络信号下行传送方法的具体流程示意 图, 包括:
步驟 bl , 将 OLT发送的下行光信号转换成下行帧数据流。 具体来说, 就 是先将来自 OLT的下行光信号转换为下行电信号, 再将下行电信号串并转换 为下行帧数据流, 并发送到所述下行光通道数据单元映射模块;
步驟 b2, 将下行帧数据流映射到下行光通道数据单元信号 ( ODUK ); 步骤 b3 , 将下行光通道数据单元信号转换为具有光通道传送单元格式 ( OTUK )的下行信号, 并在 OTN中进行传送;
步骤 b4, 将来自 OTN的具有光通道传送单元格式(OTUK ) 的下行信号 转换为下行光通道数据单元信号 ( ODUK );
步骤 b5,将下行光通道数据单元信号( ODUK )解映射出下行帧数据流(具 有 PON帧格式);
步驟 b6, 将接收的下行帧数据流转换为下行光信号, 并发送给 ONU。 具 体的讲,就是将先将接收的下行帧数据流并串转换为下行电信号,将所述下行 电信号转换为下行光信号, 然后发送给 O U;
步骤 b7, ONU将下行光信号恢复成原始业务信号, 发送给用户侧设备。 如果在 OTN中接收到多组上行光通道数据单元信号( ODUK ) , 则需要在 步骤 b4和步骤 b5中执行以下步骤: 对下行光通道数据单元信号(ODUK )进 行交叉调度。
对于上述上行和下行的传送方法, 当光线路信号传送设备内置 OLT时, 其处理流程相应的得到筒化, 这种筒化使维护管理更加便利。 另外, 还可以在 时钟的规划方面获得多种选择, 例如,在上行传送汇聚单元 758中使用到的时 钟可以是上行光通道数据映射模块 752送来的时钟,也可以是下行传送汇聚单 元 756送来的时钟, 或者是将独立的数据表进行时钟恢复获得的时钟。
在处理串行数据的时候, 还需要对每个光突发包进行帧定界, 即搜索光突 发包中的定界符, 以获得数据的位置; 也可以通过流水线帧定位电路进行并行 的帧定界处理。
在本发明中的各种实施例中,相同的功能模块按实施例对附图标记进行了 重新编号, 不应理解为不同的功能模块。
通过以上本发明各实施例的技术方案可以看出, PON的上行信号或下行 信号(即具有 PON帧格式的信号)通过传送网络 OTN的通道层传送到中心局 OLT, 也就是说, PON内的传送汇聚层数据流信号作为传送网络 OTN的客户 信号, 传送网络 OTN的通道层实际成为了传送汇聚层数据流信号的服务层, 从而实现了传送汇聚层数据流信号在传送网絡 OTN内透明的传送; 同时由于 PON内的数据信号成为了 OTN的业^言号, 从而将 OTN网络的应用从城域 网向接入网延伸。
另外, ONU不再直接与 OLT相连, 而是通过传送网络 OTN实现 O U与 OLT之间的连接, 这种组网方式利用 OTN扩大了 PON的接入半径, 既克服 了现有技术中 PON传送距离短和覆盖范围有限的问题,又可以减少 OLT的使 用数, 从而实现了多用户支持; 并且实现了 PON的 OLT设备在二级中心局 ( C02 )集中管理, 从而降低了无源光纤网络的运营维护成本。
进一步, 由于采用了新的组网方式, OTN设备和 PON设备的形态可以进 行改造, 使融合更自然和合理, 也使管理更加便利。
再进一步, 还可以通过 OTN的保护功能实现对 GPON的区段保护, 由于 PON只能通过物理组网的方式进行保护, 例如双机备份、 双线路等, 代价高 昂, 而利用 ΟΊΉ的保护功能可极大的提高 PON (如 GPON )组网的可靠性。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限 制; 尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人 进行等同替换; 而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保 护的技术方案范围当中。

Claims

权 利 要 求
1、 一种光网络信号传送设备, 其特征在于, 包括:
上行转换接口模块, 用于将接收到的具有 PON帧格式的上行光信号转换 为上行数据流;
上行光通道数据单元映射模块,用于将来自所述上行转换接口模块的上行 数据流映射到上行光通道数据单元信号;
上行光通道传送单元模块,用于将来自所述上行光通道数据单元映射模块 的上行光通道数据单元信号转换为具有光通道传送单元格式的上行信号,并向 光传送网进行传送。
2、 根据权利要求 1所述的设备, 其特征在于, 所述上行转换接口模块具 体包括:
光电转换单元,. 用于将接收到的具有 PON帧格式的上行光信号转换为上 行电信号;
接收处理单元,用于将来自所述光电转换单元的上行电信号相位调整为具 有统一比特或字节时钟的上行电信号, 并转换为上行数据流。
3、 根据权利要求 2所述的设备, 其特征在于, 所述接收处理单元具体为: 多相接收单元,用于将来自所述光电转换单元的相位随机的上行电信号相 位以串行方式调整为具有统一比特或字节时钟的上行电信号,再转换为并行的 上行数据流;
或,
上行突发接收单元,用于将来自所述光电转换单元的上行电信号的突发包 重新定界, 调整到统一比特或字节时钟后, 再恢复突发包的前序字节信号, 形 成上行数据流。
4、 根据权利要求 2所述的设备, 其特征在于, 所述上行转换接口模块还 包括速率检测单元,用于在所述光电转换单元进行光电转换之前检测所述上行 光信号的速率。
5、 根据权利要求 1至 4中任意一项所述的设备, 其特征在于, 还包括: 下行光通道传送单元模块, 用于将来自光传送网的具有光通道传送单元 格式的下行信号转换为下行光通道数据单元信号; 下行光通道数据单元映射模块,用于将来自所述下行光通道传送单元模块 的下行光通道数据单元信号解映射出具有 PON帧格式的下行帧数据流;
下行转换接口模块,用于将来自所述下行光通道数据单元映射模块的所述 下行帧数据流转换为下行光信号, 并向 PON进行传送。
6、 根据权利要求 5所述的设备, 其特征在于, 所述下行转换接口模块具 体包括:
并串转换单元,用于将来自所述下行光通道数据单元映射模块的下行帧数 据流并串转换为下行电信号;
电光转换单元,用于将来自所述并串转换单元的下行电信号转换为下行光 信号, 并向 PON进行传送。
7、 根据权利要求 1至 4中任意一项所述的设备, 其特征在于, 所述接收 到的具有 PON 帧格式的上行光信号具体为从光网络单元接收到的上行光信 号。
8、 一种光网络信号传送设备, 其特征在于, 包括:
下行光通道传送单元模块, 用于将来自光传送网的具有光通道传送单元 格式的下行信号转换为下行光通道数据单元信号;
下行光通道数据单元映射模块,用于将来自所述下行光通道传送单元模块 的下行光通道数据单元信号解映射出具有 PON帧格式的下行帧数据流;
下行转换接口模块,用于将来自所述下行光通道数据单元映射模块的下行 帧数据流转换为下行光信号, 并向 PON进行传送。
9、 一种光线路信号传送设备, 其特征在于, 包括:
下行转换接口模块, 用于将接收到的下行信号转换成具有 PON帧格式的 下行帧数据流;
下行光通道数据单元映射模块,用于将来自所述下行转换接口模块的下行 帧数据流映射到下行光通道数据单元信号;
下行光通道传送单元模块,用于将来自所述下行光通道数据单元映射模块 的下行光通道数据单元信号转换为具有光通道传送单元格式的下行信号,并向 光传送网进行传送。
10、 根据权利要求 9所述的设备, 其特征在于, 还包括: 下行光通道数据单元交叉模块,位于所述下行光通道数据单元映射模块和 所述下行光通道传送单元模块之间,用于对来自所述下行光通道数据单元映射 模块的多组下行光通道数据单元信号进行交叉调度,然后传送至所述下行光通 道传送单元模块。
11、 根据权利要求 9所述的设备, 其特征在于, 所述下行转换模块接收到 的下行信号具体为来自光线路终端的具有 PON帧格式的下行光信号, 所述下 行转换接口模块具体包括:
光电转换单元, 用于将来自光线路终端的具有 PON帧格式的下行光信号 转换为下行电信号;
串并转换单元,用于将来自所述光电转换单元的下行电信号串并转换为下 行帧数据流。
12、 根据权利要求 9所述的设备, 其特征在于, 所述下行转换接口模块接 收到的下行信号具体为来自网络服务方的下行业务信号,所述下行转换接口模 块具体包括:
下行业务适配单元,用于将来自所述网络服务方的下行业务信号适配到下 行 PON内部帧;
下行传送汇聚单元, 用于对所述下行 PON内部帧进行复用以及进行下行 传送汇聚层帧格式的组装, 然后形成下行传送汇聚层帧格式的下行帧数据流。
13、 根据权利要求 9至 12中任意一项所述的设备, 其特征在于, 还包括: 上行光通道传送单元模块 ,用于将来自光传送网的具有光通道传送单元格 式的上行信号转换为上行光通道数据单元信号;
上行光通道数据单元映射模块,用于将来自所述上行光通道传送单元模块 的上行光通道数据单元信号解映射出具有 PON帧格式的上行数据流;
上行转换接口模块,用于将来自所述上行光通道数据单元映射模块的上行 数据流转换为后续传送所需的上行信号。
14、 根据权利要求 13所述的设备, 其特征在于, 还包括:
上行光通道数据单元交叉模块,位于所述上行光通道数据单元映射模块和 上行光通道传送单元模块之间,用于对来自所述上行光通道传送单元模块的上 行光通道数据单元信号进行交叉调度,然后传送至所述上行光通道数据单元映 射模块。
15、 根据权利要求 13所述的设备, 其特征在于, 所述上行转换接口模块 具体包括:
并串转换单元,用于将来自所述上行光通道数据映射单元模块的上行数据 流并串转换为上行电信号;
电光转换单元,用于将来自所述并串转换单元的上行电信号转换为向光线 路终端传送所需的上行光信号。
16、 根据权利要求 13所述的光线路信号传送设备, 其特征在于, 所述上 行转换接口模块包括:
上行传送汇聚单元,用于将来自所述上行光通道数据单元映射模块的上行 数据流解映射出上行 PON内部帧;
上行业务适配单元, 用于将来自所述上行传送汇聚单元的上行 PON内部 帧恢复成向网絡服务方传送所需的上行业务信号。
17、 一种光线路信号传送设备, 其特征在于, 包括:
上行光通道传送单元模块,用于将来自光传送网的具有光通道传送单元格 式的上行信号转换为上行光通道数据单元信号;
上行光通道数据单元映射模块,用于将来自所述上行光通道传送单元模块 的上行光通道数据单元信号解映射出具有 PON帧格式的上行数据流;
上行转换接口模块,用于将来自所述上行光通道数据单元映射模块的上行 数据流转换为向光线路终端传送所需的上行光信号或向网络服务方传送所需 的上行业务信号。
18、 一种无源光纤网络信号传送系统, 其特征在于, 包括通过光传送网相 连的光网络信号传送设备和光线路信号传送设备, 其中,
所述光网络信号传送设备, 用于将接收到的具有 PON帧格式的上行光信 号作为客户信号映射到上行光通道数据单元信号,再转换为具有光通道传送单 元格式的上行信号, 然后通过光传送网传送至光线路信号传送设备; 以及按照 与上述上行的处理对应的反向方式进行下行的处理;
光线路信号传送设备,用于将来自光传送网的具有光通道传送单元格式的 上行信号转换为上行光通道数据单元信号, 再解映射出具有 PON帧格式的上 行光信号, 并向光线路终端进行传送; 以及按照与上述上行的处理对应的反向 方式进行下行的处理。
19、 根据权利要求 18所述的系统, 其特征在于, 所述光网络信号传送设 备接收到的具有 PON帧格式的上行光信号具体为来自光网络单元的上行光信 号,所述系统还包括通过无源光分配网络与所述光网络信号传送设备相连的光 网络单元, 以及光线路终端,
所述光线路终端, 通过光纤与所述光线路信号传送设备相连, 用于将来自 所述光线路信号传送设备的上行光信号解映射出 PON内部帧, 并从所述 PON 内部帧中恢复出向网络服务方传送所需的上行业务信号;以及按照与上述上行 的处理对应的反向方式进行下行的处理。
20、 根据权利要求 18或 19所述的系统, 其特征在于,
所述光网络信号传送设备具体包括:
上行转换接口模块, 用于将接收到的具有 PON帧格式的上行光信号转换 为上行数据流; 上行光通道数据单元映射模块, 用于将来自所述上行转换接口 模块的上行数据流映射到上行光通道数据单元信号; 上行光通道传送单元模 块,用于将来自所述上行光通道数据单元映射模块的上行光通道数据单元信号 转换为具有光通道传送单元格式的上行信号,并通过光传送网传送至所述光线 路信号传送设备;
下行光通道传送单元模块, 用于将来自光传送网的具有光通道传送单元 格式的下行信号转换为下行光通道数据单元信号;下行光通道数据单元映射模 块,用于将来自所述下行光通道传送单元模块的下行光通道数据单元信号解映 射出具有 PON帧格式的下行帧数据流; 下行转换接口模块, 用于将来自所述 下行光通道数据单元映射模块的所述下行帧数据流转换为下行光信号, 并向 PON进行传送;
所述光线路信号传送设备具体包括:
上行光通道传送单元模块,用于将来自光传送网的具有光通道传送单元格 式的上行信号转换为上行光通道数据单元信号; 上行光通道数据单元映射模 块,用于将来自所述上行光通道传送单元模块的上行光通道数据单元信号解映 射出具有 PON帧格式的上行数据流; 上行转换接口模块, 用于将来自所述上 行光通道数据单元映射模块的上行数据流转换为上行光信号,并向光线路终端 进行传送;
下行转换接口模块,用于将来自光线路终端的下行光信号转换成具有 PON 帧格式的下行帧数据流; 下行光通道数据单元映射模块, 用于将来自所述下行 转换接口模块的下行帧数据流映射到下行光通道数据单元信号;下行光通道传 送单元模块,用于将来自所述下行光通道数据单元映射模块的下行光通道数据 单元信号转换为具有光通道传送单元格式的下行信号,并通过光传送网传送至 所述光网络信号传送设备。
21、 一种无源光紆网络信号传送系统, 其特征在于, 包括通过光传送网相 连的光网络信号传送设备和光线路信号传送设备, 其中,
所述光网络信号传送设备, 用于将接收到的具有 PON帧格式的上行光信 号作为客户信号映射到上行光通道数据单元信号,再转换为具有光通道传送单 元格式的上行信号通过光传送网传送至光线路信号传送设备;以及按照与上述 上行的处理对应的反向方式进行下行的处理;
光线路信号传送设备,用于将来自光传送网的具有光通道传送单元格式的 上行信号转换为上行光通道数据单元信号, 再解映射出上行 PON内部帧, 并 将所述上行 PON内部帧恢复成上行业务信号向网络服务方进行传送; 以及按 照与上述上行的处理对应的反向方式进行下行的处理。
22、 根据权利要求 21所述的系统, 其特征在于,
所述光网络信号传送设备具体包括:
上行转换接口模块, 用于将接收到的具有 PON帧格式的上行光信号转换 为上行数据流; 上行光通道数据单元映射模块,用于将来自所述上行转换接口 模块的上行数据流映射到上行光通道数据单元信号; 上行光通道传送单元模 块,用于将来自所述上行光通道数据单元映射模块的上行光通道数据单元信号 转换为具有光通道传送单元格式的上行信号,并通过光传送网传送至所述光线 路信号传送设备;
下行光通道传送单元模块, 用于将来自光传送网的具有光通道传送单元 格式的下行信号转换为下行光通道数据单元信号;下行光通道数据单元映射模 块,用于将来自所迷下行光通道传送单元模块的下行光通道数据单元信号解映 射出具有 PON帧格式的下行帧数据流; 下行转换接口模块, 用于将来自所述 下行光通道数据单元映射模块的所述下行帧数据流转换为下行光信号, 并向 PON进行传送;
所述光线路信号传送设备具体包括:
上行光通道传送单元模块,用于将来自光传送网的具有光通道传送单元格 式的上行信号转换为上行光通道数据单元信号; 上行光通道数据单元映射模 块,用于将来自所述上行光通道传送单元模块的上行光通道数据单元信号解映 射出具有 PON帧格式的上行数据流; 上行转换接口模块, 用于将来自所述上 行光通道数据单元映射模块的上行数据流解映射出上行 PON内部帧, 并将所 述上行 PON内部帧恢复成上行业 ^言号向网络服务方进行传送;
下行转换接口模块, 用于将来自网络服务方的下行业务信号适配到下行 PON 内部帧, 并进行复用和下行传送汇聚层帧格式的组装, 形成下行传送汇 聚层帧格式的下行帧数据流; 下行光通道数据单元映射模块, 用于将来自所述 下行转换接口模块的下行帧数据流映射到下行光通道数据单元信号;下行光通 道传送单元模块 ,用于将来自所述下行光通道数据单元映射模块的下行光通道 数据单元信号转换为具有光通道传送单元格式的下行信号,并通过光传送网传 送至所述光网络信号传送设备。
23、 一种无源光纤网络信号传送方法, 其特征在于, 包括:
将接收到的具有 PON帧格式的上行光信号作为客户信号映射到上行光通 道数据单元信号,再转换为具有光通道传送单元格式的上行信号, 并通过光传 送网进行发送;
将从所述光传送网接收到的所述具有光通道传送单元格式的上行信号转 换为上行光通道数据单元信号, 再解映射出具有 PON帧格式的上行光信号, 并向光线路终端进行传送。
24、 根据权利要求 23所述的方法, 其特征在于,
所述将接收到的具有 PON帧格式的上行光信号作为客户信号映射到上行 光通道数据单元信号的步骤具体包括: 将所述接收到的具有 PON帧格式的上 行光信号转换为上行数据流;将所述上行数据流映射到上行光通道数据单元信 号; 所述解映射出具有 PON桢格式的上行光信号步骤具体包括: 将所述上行 光通道数据信号解映射出具有 PON帧格式的上行数据流; 将所述上行数据流 转换为上行光信号。
25、 根据权利要求 24所述的方法, 其特征在于, 所述将上行数据流映射 到上行光通道数据单元信号的步骤具体包括:才艮据所述上行光信号的速率划分 光通道数据单元信号的上行通道时隙,并将上行数据流映射到相应的上行通道 时隙中。
26、 根据权利要求 23至 25中任意一项所述的方法, 其特征在于, 所述方 法还包括:光线路终端从所述上行光信号解映射出 PON内部帧,并从所述 PON 内部帧恢复出上行业务信号向网络服务方进行传送。
27、 根据权利要求 23至 25中任意一项所述的方法, 其特征在于, 所述方
28、 根据权利要求 23至 25中任意一项所述的方法, 其特征在于, 所述接 收到的具有 PON帧格式的上行光信号具体为来自光网络单元的上行光信号。
29、 一种无源光纤网络信号传送方法, 其特征在于, 包括:
将接收到的具有 PON帧格式的上行光信号作为客户信号映射到上行光通 道数据单元信号,再转换为具有光通道传送单元格式的上行信号, 并通过光传 送网进行发送;
将从所述光传送网接收到的所述具有光通道传送单元格式的上行信号转 换为上行光通道数据单元信号, 再解映射出上行 PON内部帧, 并从所述上行 PON内部帧恢复出上行业务信号向网络服务方进行传送。
30、 根据权利要求 29所述的方法, 其特征在于, 还包括: 按照与上述上 行的处理对应的反向方式进行下行的处理。
31、 一种无源光纤网络信号传送方法, 其特征在于, 包括:
将来自光线路终端的具有 PON帧格式的下行光信号作为客户信号映射到 下行光通道数据单元信号, 并转换成具有光通道传送单元格式的下行信号, 通 过光传送网进行发送;
将从所述光传送网接收到的所述具有光通道传送单元格式的下行信号转 换为下行光通道数据单元信号, 并解映射出具有 PON帧格式的下行光信号, 发送给光网络单元。
32、 根据权利要求 31所述的方法, 其特征在于,
所述将具有 PON帧格式的下行光信号作为客户信号映射到下行光通道数 据单元信号的步骤具体为: 将所述具有 PON帧格式的下行光信号转换为下行 帧数据流; 将所述下行帧数据流映射到下行光通道数据单元信号;
所述解映射出具有 PON帧格式的下行光信号的步驟具体为: 将所述下行 光通道数据信号解映射出具有 PON帧格式的下行帧数据流; 将所述下行帧数 据流转换为下行光信号。
33、 一种无源光纤网络信号传送方法, 其特征在于, 包括:
将来自网絡服务方的下行业务信号适配到下行 PON内部帧后映射到下行 光通道数据单元信号, 然后转换成具有光通道传送单元格式的下行信号,通过 光传送网进行发送;
将从所述光传送网接收到的所述具有光通道传送单元格式的下行信号转 换为下行光通道数据单元信号, 并解映射出具有 PON帧格式的下行光信号, 发送给光网络单元。
34、 根据权利要求 33所述的方法, 其特征在于, 所述将来自网络服务方 的下行业务信号适配到下行 PON内部帧后映射到下行光通道数据单元信号的 步驟具体包括:
将来自网络服务方的下行业务信号适配到下行 PON内部帧;
对所述下行 PON 内部帧进行复用以及进行下行传送汇聚层帧格式的组 装, 然后形成下行传送汇聚层帧格式的下行帧数据流;
将所述下行帧数据流映射到下行光通道数据单元信号。
PCT/CN2007/001568 2006-10-08 2007-05-15 Système, appareil et procédé de transport sur un réseau de fibres optiques passives WO2008043227A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006101390908A CN101159495B (zh) 2006-10-08 2006-10-08 无源光纤网络中信号传送系统、设备及方法
CN200610139090.8 2006-10-08

Publications (1)

Publication Number Publication Date
WO2008043227A1 true WO2008043227A1 (fr) 2008-04-17

Family

ID=38969511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001568 WO2008043227A1 (fr) 2006-10-08 2007-05-15 Système, appareil et procédé de transport sur un réseau de fibres optiques passives

Country Status (7)

Country Link
US (1) US7949255B2 (zh)
EP (1) EP1909421B1 (zh)
CN (2) CN101159495B (zh)
AT (1) ATE487294T1 (zh)
DE (1) DE602007010221D1 (zh)
ES (1) ES2353256T3 (zh)
WO (1) WO2008043227A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949255B2 (en) 2006-10-08 2011-05-24 Huawei Technologies Co., Ltd. System, device and method for transporting signals through passive optical network

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872655A1 (fr) * 2004-07-01 2006-01-06 France Telecom Reseau privatif multiservices et modules d'interface permettant de vehiculer, sur un tel reseau, des donnees sous differents formats
CN101389146B (zh) * 2007-09-13 2011-01-05 华为技术有限公司 光传送网同步交叉调度的方法和装置
CN101431371B (zh) 2007-11-09 2011-12-21 华为技术有限公司 一种光网络设备信道保护倒换的方法及装置
CN101505258B (zh) * 2008-02-04 2011-04-13 华为技术有限公司 一种实现业务保护的方法及装置
CN101615967B (zh) 2008-06-26 2011-04-20 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101729358B (zh) * 2008-10-31 2012-04-04 华为技术有限公司 一种信息传递和接收方法、系统和装置
CN101729154B (zh) 2008-11-03 2012-04-18 华为技术有限公司 实现lr-pon的方法、装置及系统
US20100208747A1 (en) * 2009-02-18 2010-08-19 Telefonaktiebolaget L M Ericsson (Publ) Output demultiplexing for dynamic bandwidth allocation in passive optical networks
CN101959091B (zh) * 2009-07-15 2013-12-18 华为技术有限公司 一种数据传输方法、系统以及运营商边缘节点
CN101998184B (zh) * 2009-08-12 2015-04-01 中兴通讯股份有限公司 适配装置及方法
US8348523B1 (en) * 2009-10-09 2013-01-08 Lockheed Martin Corporation Network topology module and system
US9608755B2 (en) * 2011-02-23 2017-03-28 Ciena Corporation Network element clock synchronization systems and methods using optical transport network delay measurement
WO2013056739A1 (en) * 2011-10-20 2013-04-25 Telefonaktiebolaget L M Ericsson (Publ) Resizing existing traffic flow in optical transport network
CN103188578B (zh) * 2011-12-30 2016-06-01 北京同步科技有限公司 交换机、光通讯设备、以及数据通讯方法
WO2013120247A1 (zh) * 2012-02-14 2013-08-22 华为技术有限公司 将前向纠错码字匹配成帧结构的方法、装置和系统
ES2647894T3 (es) * 2012-05-15 2017-12-27 Huawei Technologies Co., Ltd. Método de procesamiento de datos en una red óptica de transporte, y dispositivo asociado y sistema
JP5876941B2 (ja) * 2012-11-14 2016-03-02 日本電信電話株式会社 光加入者通信システム、光加入者通信方法、上位装置及び光加入者線終端装置
US9503381B2 (en) * 2013-01-23 2016-11-22 Broadcom Corporation System and method for carrying control data in a preamble
CN104202205B (zh) * 2014-09-26 2018-01-02 烽火通信科技股份有限公司 一种板卡内实现业务保护的方法及装置
CN107409082B (zh) * 2015-03-30 2020-05-26 日本电信电话株式会社 终端站装置以及带宽分配方法
EP3654554B1 (en) * 2015-05-20 2022-05-18 Huawei Technologies Co., Ltd. Framing method and apparatus in passive optical network and system
CN107205180B (zh) 2016-03-17 2021-01-15 华为技术有限公司 消息传输方法、中继设备及消息处理器
CA3044720C (en) * 2016-11-23 2024-01-02 Huawei Technologies Co., Ltd. Passive optical network system, optical line terminal, and optical network unit
US10382167B2 (en) * 2016-12-13 2019-08-13 Ciena Corporation Flexible ethernet enhanced forward error correction
CN107465540B (zh) * 2017-07-26 2020-10-16 烽火通信科技股份有限公司 Gpon拉远系统、管理方法及存储介质
CN109936781B (zh) * 2017-12-15 2021-09-07 华为技术有限公司 一种数据传送的方法、设备和系统
CN108768508A (zh) * 2018-06-20 2018-11-06 太仓市同维电子有限公司 一种提高OLT测试Traffic效率的测试方法
CN112671462B (zh) * 2019-10-15 2023-11-17 华为技术有限公司 一种业务数据的传输方法、相关设备以及数字处理芯片
US20230100886A1 (en) * 2020-02-28 2023-03-30 Zte Corporation Bandwidth adjustment method and terminal
CN112260788B (zh) * 2020-10-19 2021-09-03 北京邮电大学 动态高精度时频同步网
CN117411789A (zh) * 2022-07-07 2024-01-16 中兴通讯股份有限公司 固定速率信号的速率恢复方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841760A (en) * 1997-04-24 1998-11-24 Northern Telecom Limited Transparent multiplexer/demultiplexer
CN1734990A (zh) * 2004-08-10 2006-02-15 华为技术有限公司 信号传送方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840692B1 (en) * 2000-08-15 2010-11-23 Ciena Corporation System, device, and method for bandwidth management in an optical communication system
US6888846B2 (en) * 2002-07-11 2005-05-03 Flexlight Networks Data transfer in an optical network communication system
US7535930B2 (en) * 2003-04-10 2009-05-19 Samsung Electronics Co., Ltd. GEM frame structure showing payload type of frame and method for processing data thereof
KR100594028B1 (ko) 2003-04-15 2006-07-03 삼성전자주식회사 Gpon에서의 ont 관리 제어 정보 전송을 위한gtc 프레임 구조와 그 전송 방법
CA2523212A1 (en) 2003-04-23 2004-11-04 Covaro Networks, Inc. Embedded management channel for sonet path terminating equipment connectivity
US20050044186A1 (en) * 2003-06-13 2005-02-24 Petrisor Gregory C. Remote interface optical network
US20070274718A1 (en) 2004-04-09 2007-11-29 Brad Bridges Method and apparatus for communicating between a legacy pon network and an upgraded pon network
CN100596043C (zh) * 2004-08-26 2010-03-24 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
JP3936721B2 (ja) * 2005-07-29 2007-06-27 株式会社日立コミュニケーションテクノロジー 光アクセスシステム、光加入者装置及び光集線装置
US7876753B2 (en) * 2005-12-13 2011-01-25 Fujitsu Limited IP multi-cast video ring distribution and protection
CN101159495B (zh) 2006-10-08 2012-07-04 华为技术有限公司 无源光纤网络中信号传送系统、设备及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841760A (en) * 1997-04-24 1998-11-24 Northern Telecom Limited Transparent multiplexer/demultiplexer
CN1734990A (zh) * 2004-08-10 2006-02-15 华为技术有限公司 信号传送方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO Z.-X.: "The Design of Subrate Transparent Multiplexer Based on G.709", STUDY ON OPTICAL COMMUNICATIONS, no. 4, 2005, pages 18 - 20 *
LANG W. ET AL.: "GPON Technology Research", COMPUTECH., no. 12, 2005, pages 129 - 134 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7949255B2 (en) 2006-10-08 2011-05-24 Huawei Technologies Co., Ltd. System, device and method for transporting signals through passive optical network

Also Published As

Publication number Publication date
EP1909421A8 (en) 2008-08-13
US20080095535A1 (en) 2008-04-24
US7949255B2 (en) 2011-05-24
CN101159495A (zh) 2008-04-09
CN101313498A (zh) 2008-11-26
DE602007010221D1 (de) 2010-12-16
EP1909421A1 (en) 2008-04-09
EP1909421B1 (en) 2010-11-03
ATE487294T1 (de) 2010-11-15
ES2353256T3 (es) 2011-02-28
CN101159495B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
US7949255B2 (en) System, device and method for transporting signals through passive optical network
EP2164221B1 (en) Method, system and device for passive optical network data transmission
US8824504B2 (en) Packet add/drop multiplexer and data transmission method of packet add/drop multiplexer
KR100751962B1 (ko) 광섬유 전송 시스템, 광섬유 전송의 실현 방법 및 단말처리 장치
US9014151B2 (en) Method and apparatus for transmitting low-rate traffic signal in optical transport network
US8126335B2 (en) Methods and apparatus for next generation access passive optical networks
US8718087B1 (en) Processing architecture for passive optical network
US20040264961A1 (en) Ethernet passive optical network system, and optical network terminal and optical line terminal provided in the same
US20090226170A1 (en) Method, system and apparatus for transmitting data
US8526818B2 (en) Optical network terminal of the gigabit passive optical network and frame treatment method of the ONT
KR20150145128A (ko) Xg-pon 링크에서 g-pon 서비스의 수용을 위한 프레임 변환 기반의 중간 경로 확장 장치 및 방법
CN101453671A (zh) 一种无源光网络数据传输的方法、系统和设备
WO2011006403A1 (zh) 一种数据传输方法、系统以及运营商边缘节点
CN101729935A (zh) 业务数据传输方法和装置
CN114866883B (zh) 一种用于宽带确定性通信的局端设备
CN107222295A (zh) Pon聚合拉远系统上行突发处理方法及远端、局端设备
WO2009135415A1 (zh) 复帧处理的方法、装置和系统
Marmur et al. GPON: the next big thing in optical access networks
Radivojević et al. PON evolution

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000266.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07721141

Country of ref document: EP

Kind code of ref document: A1