WO2009135415A1 - 复帧处理的方法、装置和系统 - Google Patents

复帧处理的方法、装置和系统 Download PDF

Info

Publication number
WO2009135415A1
WO2009135415A1 PCT/CN2009/071436 CN2009071436W WO2009135415A1 WO 2009135415 A1 WO2009135415 A1 WO 2009135415A1 CN 2009071436 W CN2009071436 W CN 2009071436W WO 2009135415 A1 WO2009135415 A1 WO 2009135415A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiframe
subframes
frame
onu
transmission
Prior art date
Application number
PCT/CN2009/071436
Other languages
English (en)
French (fr)
Inventor
陈志云
邹世敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009135415A1 publication Critical patent/WO2009135415A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0064Admission Control
    • H04J2203/0067Resource management and allocation

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a method, apparatus and system for multiframe processing.
  • a PON system usually includes optical line terminals (OLTs, optical line terminals), optical network units (ONUs, optical network units), and passive optical splitters. And parts such as ODN (Optical Distribution Network).
  • OLT and the passive optical splitter are connected by a trunk fiber.
  • the optical splitter enables point-to-multipoint optical power distribution and is connected to multiple ONUs through multiple branch fibers.
  • the backbone fiber, optical splitter and branch fiber between the OLT and the ONU are collectively referred to as the optical distribution network (ODN).
  • ODN optical distribution network
  • the optical branch point in the ODN does not require active node devices, and only one passive optical splitter is needed. .
  • PON has the advantages of sharing bandwidth resources, saving investment in equipment room, high equipment security, fast network construction, and low cost of integrated network construction.
  • the direction from the OLT to the ONU is called the downlink direction, and the direction from the ONU to the OLT is called the uplink direction.
  • GPON Gigabit-capable Passive Optical Network
  • GPON has the following features in terms of functions and performance: 1) It can flexibly provide multiple symmetric and asymmetric uplink and downlink rates; 2) The system split ratio can be 1:16, 1:32, 1:64 or even 1:128; 3) transmission distance is greater than 20KM; 4) can be adapted to any data service; 5) GPON can support TDM (Time) Division Multiplexing, Time Division Multiplexing) The transmission and guaranteed timing performance of the service; 6) GPON has complete OAM&P (Operation, Administration, Maintenance and Provision) capabilities.
  • OAM&P Operation, Administration, Maintenance and Provision
  • the downstream frame structure of GPON is a 125 microsecond frame structure, including a physical control block (PCB) overhead area and a payload area.
  • the physical synchronization domain uplink bandwidth mapping domain US BWmap is included in the PCB.
  • the bandwidth map (US BWmap) is used to indicate the start and end positions of the uplink time slot of each ONU, and the T-CONT (transport container) is the time slot size allocated by each ONU, and each ONU is in the assigned time slot position.
  • the OLT sends data.
  • the GPON uplink frame length is the same as the downlink frame length of 125 microseconds; each ONU sends its own burst data packet in the allocated T-CONT, and these burst data packets include an overhead area and a payload area.
  • the transmission control of the existing GPON includes the following steps:
  • the OLT broadcasts a downlink frame to each ONU, and has a frame length of 125 microseconds, including an overhead area and a payload area.
  • the overhead area further includes an overhead for indicating an uplink bandwidth and a time slot position of each ONU.
  • Each ONU receives the downlink frame of the OLT, and transmits the uplink burst data packet according to the uplink bandwidth position allocated by the downlink frame.
  • the frame period is 125 microseconds
  • All ONU uplink burst transmissions must meet the time overhead required in G.984.2; for example, the enable time and the shutdown enable time are very short, and the above 2.5G rate is calculated as 32 bits, about 13 ns;
  • the overhead indicating the uplink bandwidth is only 16 bits; the overhead SStart and SStop indicating the slot position in the US BW MAP is only 16 bits wide, and the maximum number of slots that can be indicated is 65536.
  • a multiframe indication needs to be set in the downstream frame. For example, now that the frame period is 125 microseconds, a multiframe can be set to a length of 4 subframes, that is, a 500 microsecond period; that is, the multiframe period is L times longer than the downlink single frame, L Is an integer.
  • the uplink frame is divided into time slots according to the length of the multiframe, and the T-CONT bandwidth and time position of each ONU are allocated according to the entire multiframe length. That is, the uplink frame period is equal to the multiframe period indicated by the downlink.
  • the uplink mapping bandwidth indication is extended by using a multiframe; in a multiframe (downlink), a plurality of uplink mapping bandwidth overhead zones are included, and the combination of these overheads indicates that the range indicated by the single frame overhead is more than 4 ⁇ .
  • one or more embodiments of the present invention provide a method, an apparatus, and a system for multiframe processing to implement combining bursts into multiple frames for burst transmission while preserving the processing manner of existing subframes. .
  • the difficulty of burst transmission is reduced, and equipment costs are also saved.
  • an embodiment of the present invention provides a multiframe processing method, including: an optical network unit ONU receives L subframes, where L is an integer greater than one;
  • the optical network unit ONU configures the received L subframes into a multiframe
  • the optical network unit ONU reads the bandwidth map, performs calculation based on the transmission start point and the transmission end point in the bandwidth map, and obtains a transmission start point and a transmission end point of the multiframe, and transmits the multiframe in the uplink direction.
  • An optical line terminal OLT is also provided, including:
  • a first preset unit configured to: preset a bandwidth map of each optical network unit ONU;
  • a restoring unit configured to receive the multiframe, and restore the received multiframe to the L subframes according to the bandwidth map, where the L is a positive integer greater than 1.
  • An optical network unit ONU including:
  • a configuration unit configured to configure the received L subframes into a multiframe, where L is an integer greater than one;
  • a first multiframe transmitting unit configured to: read a bandwidth map, calculate a transmission start point and a transmission end point according to a transmission start point and a transmission end point carried in the bandwidth map, and send the multiframe to an uplink direction .
  • a multi-frame processing system comprising: an optical line terminal OLT and an optical network unit ONU, wherein the optical line terminal OLT is a device according to any one of the embodiments of the present invention; the optical network unit ONU is any light of the present invention Apparatus as described in the network unit embodiment.
  • the embodiment of the invention has the following advantages:
  • the multiplex frame is used to increase the idle period between the frame and the frame, thereby reducing the difficulty of burst transmission and burst reception.
  • the performance requirements for ONU burst transmitters and OLT burst receivers are greatly relaxed, reducing system cost.
  • the method and the device proposed by the invention are simple and easy to implement, the cost is low, the market demand is met, and the application is broad.
  • Embodiment 1 is a flow chart of Embodiment 1 of the method of the present invention.
  • Embodiment 2 is a flow chart of Embodiment 2 of the method of the present invention.
  • FIG. 3 is a schematic diagram of module processing of the second implementation of the method of the present invention.
  • Embodiment 4 is a downlink data structure diagram of Embodiment 3 of the method of the present invention.
  • FIG. 5 is an uplink data structure diagram of Embodiment 3 of the method of the present invention.
  • Figure 6 is a schematic diagram of each data processing process in the processing flow of the uplink signal
  • Figure 7 is a flow chart of Embodiment 3 of the method of the present invention.
  • FIG. 8 is a block diagram of Embodiment 1 of the apparatus of the present invention.
  • FIG. 9 is a block diagram of Embodiment 1 of another apparatus of the present invention.
  • Figure 10 is a block diagram showing a first embodiment of the system of the present invention.
  • the embodiment of the present invention forms L uplink frames into one multiframe (L is a positive integer greater than 1), and the original 125 ⁇ ⁇ uplink frame becomes one subframe in the multiframe.
  • the original 125 ⁇ ⁇ downlink frame can be transparently transmitted.
  • the multiframe period becomes L times of the original frame period, and the multiframe frame length becomes L times of the original frame length.
  • the idle period between the multiple frames also becomes L times the idle period between the original subframes.
  • the OLT allocates bandwidth to each ONU according to the subframe frame length, and the OLT saves the bandwidth map allocated by all ONUs.
  • the bandwidth map of each ONU is used to recover the subframes sent by the respective ONUs from the complex frames when the uplink multiframes of the respective ONUs are received.
  • the bandwidth map does not need to be changed by several frames, only each ONU needs to store the sum of the bandwidths of all ONUs smaller than the ONU-ID within the L frame (for determining the uplink multiframe of the ONU). Send time point).
  • the bandwidth map needs to be changed once every several frames, refer to the specific processing manner in the third embodiment. Place a "multiframe processing module" between the "original ONU service processing module” and the “original OLT service processing module”. In this way, the multiframe processing module is deployed, thereby realizing the advantages of multiframe transmission:
  • the uplink overhead increases, reducing the ON time and the shutdown time of the ONU burst sending module, thereby reducing the cost of the TDM-PON system;
  • the existing series of standards can be used.
  • the existence of the multiframe processing module is relative to the original OLT service processing module and the original ONU service processing module.
  • the two modules do not perceive the newly added multiframe processing module.
  • Embodiment 1 of the method of the present invention includes the following steps:
  • Step 101 The optical network unit ONU receives L subframes, where L is an integer greater than 1. In a specific implementation, it may be selected according to actual conditions;
  • Step 102 The optical network unit ONU configures the received L subframes into a multiframe.
  • Step 103 The optical network unit ONU reads the bandwidth map, performs calculation according to the sending start point and the sending end point in the bandwidth map, and obtains a sending start point and a sending end point of the multiframe.
  • the bandwidth map includes the current OLT connected.
  • Receiving bandwidth maps for individual ONUs can employ various implementations in the prior art.
  • Step 104 The optical network unit ONU sends the multiframe in the uplink direction.
  • the optical network unit ONU configures the received L subframes into a multiframe, where L is an integer greater than 1; the optical network unit ONU reads the bandwidth.
  • the map is calculated according to the transmission start point and the transmission end point in the bandwidth map, and the transmission start point and the transmission end point of the multiframe are obtained, and the optical network unit ONU transmits the multiframe in the uplink direction.
  • the merging subframe as a multiframe, in the burst transmission and the burst reception, the multiframe is used, thereby reducing the difficulty of burst transmission and burst reception, and greatly relaxing the performance of the ONU burst transmitter. Requires that system costs are reduced.
  • the method and the device proposed by the invention are simple and easy to implement, the cost is low, the market demand is met, and the application is broad.
  • the method may further include the following steps:
  • the configuration may be specifically: combining the payload areas of the L subframes into a multi-frame payload area, and merging the overhead areas of the L subframes into a multi-frame overhead area;
  • the payload area and the overhead area of each of the subframes are combined into a subframe.
  • the configuration may be specifically: combining the payload areas of the L subframes into a multi-frame payload area, and merging the overhead areas of the L subframes into a multi-frame overhead area;
  • the method before the configuring, the method further includes:
  • sending the multi-frame according to the sending start point and the sending end point carried in the bandwidth map is specifically:
  • sending the multi-frame according to the sending start point and the sending end point carried in the bandwidth map is specifically:
  • Each ONU determines the multiframe transmission start point and the transmission end point of the ONU to transmit the multiframe according to the sum of bandwidths of all ONUs smaller than the ONU-ID.
  • Embodiment 2 provides a whole process of including each functional module to process a multi-frame.
  • the specific functional modules are shown in FIG. Of course, other functional module division manners are also feasible for those skilled in the art, and should also be within the protection scope of the present invention.
  • Embodiment 2 includes the steps:
  • Step 201 The downlink signal from the SNI (Service Network Interface) passes through the original OLT service processing module, and the original OLT service processing module defines a downlink GTC (GPON Transmission Convergence) frame defined by the existing standard. This document is referred to as a downlink subframe) for protocol processing;
  • SNI Service Network Interface
  • GTC GPON Transmission Convergence
  • Step 202 The OLT side multiframe processing module transparently transmits the downlink subframe, and saves the bandwidth map of each subframe.
  • Step 203 The ONU side multiframe processing module transparently transmits the downlink subframe, and calculates and saves less than the ONU in the L subframe. The sum of all ONU bandwidths of the ID (Ttotal), and the sum of the bandwidth allocated by the ONU within the L subframe (T);
  • the bandwidth allocated to the first L frame of the ONU0 (ie, the first 4 frames) is 50 microseconds, and the bandwidth allocated to the first L frames of the ONU1 (ie, the first 4 frames) is 40 microseconds, and the first L frames (ie, the first 4 frames) of the ONU2 are allocated.
  • Step 204 The downlink GTC frame defined by the original ONU service processing module to the existing standard (this article) Called as a downlink subframe) for protocol processing;
  • Step 205 The uplink signal from the UNI (User Network Interface) passes through the original ONT service processing module, the ONU side multiframe processing module, the OLT side multiframe processing module, and the original OLT service processing module to reach the SNI.
  • the original ONT service processing module performs protocol processing on the uplink GTC frame (herein referred to as an uplink subframe) defined by the existing standard;
  • Step 206 The ONU side multiframe processing module determines the ONU multiframe transmission start time point according to the Ttotal value saved in step 203 plus a certain idle time (Sstart—the payload of the ONU uplink frame is sent at this time point. Payload), and then determine the ONU multiframe transmission end time point (Sstop) according to the T value, and the sum of the bandwidth allocated by the ONU in the L subframes obtains the T value; at the transmission start time point and the transmission end time point Data transmission between;
  • the idle time after ONU1 is composed of multiframes is also 20 microseconds
  • the ONU2 idle time after the multiframe is also 20 microseconds
  • Step 207 The OLT side multiframe processing module decomposes the multiframe according to the bandwidth map of each subframe that has been saved in step 202, and finally forms a subframe that the original OLT service processing module can process;
  • Step 208 The original OLT service processing module: performs protocol processing on an uplink GTC frame (herein referred to as an uplink subframe) defined by the existing standard.
  • an uplink subframe (herein referred to as an uplink subframe) defined by the existing standard.
  • the downlink frame and the uplink in Embodiment 3 of the method of the present invention are respectively The structure of the frame, this embodiment describes the implementation process in the 10G-GPON system.
  • the English interpretation in Figure 4 is as follows:
  • PCBd Physical Control Block downstream
  • Payload payload
  • PSync Physical Synchronization
  • Ident indication
  • PLOAMd Physical Layer OAM Operations, Administration and Maintenance
  • BIP Bit Interleaved Parity
  • Plend Physical Length downstream
  • US BW Map Upstream BandWidth Ma
  • FEC Ind Forward Error Correction Indication, Forward
  • Super-frame Counter AllocID (Allocation ID field)
  • Send PLS Send Power Levelling sequence
  • Send PLOAMu Send Up PLOAM indication
  • Use FEC User
  • Send DBRu Send Dynamic Bandwidth Report upstream
  • SStart StartTime field start time field
  • SStop StopTime field, end time field
  • CRC Cyclic Redundancy Check, cyclic redundancy
  • the uplink frame length is 155,520 bytes (at a speed of 10 Gb/s), as shown in FIG. 4, 6 bits of the reserved 7 bits of the Reserved field of the downlink frame can be combined with the S Stop and S Start fields to form a 19-bit SStart. Domain and 19bits SStop domain (19bit maximum support 524288). Therefore, the SStart domain and the SStop domain are extended by using the reserved bits of the Flag field in the downlink GPON frame format, and the slot position indication problem existing when the GPON is upgraded to 10G is solved.
  • the OLT passes the BWMAP of the downlink GTC (that is, the bandwidth map: including the start of the uplink transmission data of the OLT. Time and end time;
  • the original OLT service processing module detects that the lowest two bits of the Super-frame Counter field in the downlink frame are all 0, update the bandwidth map again to implement the bandwidth map change every 4 subframes (that is, according to the multiframe period). .
  • the ONUs that have allocated bandwidth in any one of the corresponding uplink signals have the same SStart time point and the same SStop time point in the four subframes, and are used to decompose the multiframe in the uplink; for the ONU side multiframe
  • the processing module only the SStart and SStop values of the ONU-ID need to be saved, which further reduces the implementation of the multiframe processing module. Degree.
  • the uplink signal from the UNI because the bandwidth map of the downlink frame is guaranteed to change once in the multiframe period (ie, four subframes), any ONU in which a bandwidth is allocated in one multiframe in the uplink signal is
  • the four sub-frames have the same SStart time point and the same SStop time point, so that the first guarantees that each time there are four sub-frames to form a multi-frame, and the second guarantees the time of ⁇ , t 2 , t 3 , t 4 the same.
  • the English interpretation in Figure 5 is as follows:
  • PLOu uplink physical layer overhead field
  • Preamble preamble field
  • Delimiter delimiter field
  • 0NU-ID (0NU ID, ID field of 0NU)
  • Ind indicator field
  • the PLOu of the frame constitutes a multi-frame PLOu. From the uplink multiframe structure of Figure 5, it can be seen that the preamble (Preamble) and delimiter (Delimiter) overhead in PLOu is increased by 4 times.
  • a flow diagram of a third implementation of the method of the present invention includes the steps of:
  • Step 701 The ONU service processing module sends the subframe GTC to the ONU side multiframe processing module.
  • Step 703 The ONU side sends data according to the indication of the saved bandwidth map.
  • the downlink OLT is specified to change the bandwidth map BWMAP every four frames, and the start time SStart and the end time SStop of the uplink transmission data of the four subframes are the same, so that the time point transmitted in the multiframe is 4*SStart and transmitted.
  • the gap value between the multiframes is also four times that of the previous one. In this way, the time period that each ONU can be sent in the multiframe transmission Give it apart.
  • the uplink subframe passes the ONU side multiframe processing module, and the multiframe processing module uses the four times of the saved SStart value of the ONU bandwidth map as the uplink multiframe transmission start time point, and presses the SStop of the saved ONU bandwidth information. Four times the value is used as the end time of the uplink multiframe transmission;
  • Step 704 The multiframe data sent by the ONU passes through the optical splitter to reach the OLT.
  • Step 705 The OLT side multi-frame processing module parses the multi-frame according to the bandwidth map of the ONU, recovers the sub-frame, and then transmits the sub-frame to the OLT service processing module for processing according to the existing standard protocol.
  • the OLT side multiframe processing module receives the multiframe transmitted by the ONU side multiframe processing module, and decomposes the multiframe data into four subframe data, and extracts the subframe PLOu from the multiframe PLOu, and presses the saved subframe.
  • the SStart and SStop of the bandwidth map send the sub-frames of the four sub-frame data plus the PLOu of the sub-frame to the original service processing module of the OLT.
  • the original ONU service processing module and the OLT service processing module of the system do not need to be modified, and are still processed in the original manner.
  • FIG. 8 it is a first embodiment of the device of the present invention.
  • the present embodiment is mainly used as an OLT, and includes:
  • a first preset unit 801 configured to: preset a bandwidth map of each optical network unit ONU; a restore unit 802, configured to receive a multiframe, and restore the received multiframe to L subframes according to the bandwidth map, Wherein L is a positive integer greater than one.
  • the existing sub-frame processing is preserved, and there is no need to change the existing technical standards; it is transparent to the G.984 sub-frame processing module and does not violate existing standards.
  • This scheme can be extended to the technical field of burst transmission and burst reception of all TDM PONs.
  • the multiframe is used, thereby reducing the difficulty of burst reception, greatly relaxing the performance requirements of the OLT burst receiver, and reducing the system cost.
  • the method and the device proposed by the invention are simple and easy to implement, the cost is low, the market demand is met, and the application is broad.
  • the foregoing embodiment may further include: a subframe sending unit, configured to: send, according to the bandwidth map, a downlink subframe to an optical network unit ONU, where the downlink subframe carries a preset bandwidth map.
  • a subframe sending unit configured to: send, according to the bandwidth map, a downlink subframe to an optical network unit ONU, where the downlink subframe carries a preset bandwidth map.
  • the restoring unit includes: a first restoration module, configured to restore the multi-frame payload area to a payload area of L subframes, and a second restoration module, configured to restore the multi-frame overhead area to an overhead area of L subframes; And, according to the sending start point and the sending end point of the ONU uplink subframe of each optical network unit carried in the bandwidth map, the original payload area of each subframe and the corresponding overhead area are combined and restored into L subframes.
  • the method further includes:
  • the merging unit is configured to combine the 6 bits of the 7 bits reserved by the Reserved field of the subframe with the original SStop field and the original SStart field to form a 19-bit SStart field and a 19-bit SStop field.
  • FIG. 9 is a first embodiment of the multiframe processing apparatus of the present invention, including:
  • the configuration unit 901 is configured to configure the received L subframes into a multiframe, where L is an integer greater than one;
  • the first multiframe sending unit 902 is configured to: read a bandwidth map, calculate a sending start point and a sending end point of the multiframe according to the sending start point and the sending end point carried in the bandwidth map, and send the complex to the uplink direction. frame.
  • the device embodiment of the present invention has the following advantages,
  • the existing sub-frame processing is preserved, and there is no need to change the existing technical standards; it is transparent to the G.984 sub-frame processing module and does not violate existing standards.
  • This scheme can be applied to the technical field of burst transmission and burst reception of all TDM P0Ns.
  • the multiframe is used, thereby reducing the difficulty of burst transmission, greatly relaxing the performance requirements of the 0NU burst transmitter, and reducing the system cost.
  • the method and the device proposed by the invention are simple and easy to implement, the cost is low, the market demand is met, and the application is broad.
  • the first multi-frame sending unit is specifically:
  • a second multi-frame transmitting unit configured to: start transmitting the multi-frame at an L times time point of a transmission start point of the subframe carried in the bandwidth map; and send the end point of the subframe to be carried in the bandwidth map L times the time point, the transmission of the multiframe is ended.
  • the configuration unit includes: a first configuration module, configured to merge the payload areas of the L subframes into a multi-frame payload area; and a second configuration module, configured to merge the overhead areas of the L subframes into a multi-frame overhead area.
  • Embodiment 1 of a multiframe processing system including: OLT1001 and ONU1002,
  • the OLT is any device used in the embodiment of the present invention as an OLT (ie, the embodiment shown in FIG. 8 and its preferred embodiment);
  • the ONU is a device used as an ONU in any of the embodiments of the present invention (i.e., the embodiment shown in Fig. 9 and its preferred embodiment).
  • the system of the present invention has technical effects compatible with the method of the present invention and will not be repeated.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

复帧处理的方法、 装置和系统
本申请要求于 2008 年 05 月 08 日提交中国专利局、 申请号为 200810096790.2发明名称为"复帧处理的方法、装置和系统,,的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信技术领域, 特别是复帧处理的方法、 装置和系统。
背景技术
PON系统(Passive Optical Network, 无源光网络)通常包括光线路终端 ( OLT, Optical Line Terminals, 光线路终端)、 光网络单元 (ONU, Optical Network Unit, 光网络单元)、 无源光分路器和 ODN ( Optical Distribution Network, 光分配网)等部分。 OLT和无源光分路器之间由主干光纤连接。 光 分路器实现点对多点的光功率分配,通过多个分支光纤连接到多个 ONU。 OLT 和 ONU之间的主干光纤、光分路器和分支光纤统称为光分配网(ODN ), ODN 中的光分支点不需要有源的节点设备, 只需一个无源的光分支器即可。 因此 PON具有带宽资源共享、 节省机房投资、 设备安全性高、 建网速度快、 综合 建网成本低等优点。从 OLT到 ONU的方向称为下行方向,从 ONU到 OLT的 方向称为上行方向。
GPON(Gigabit-capable Passive Optical Network, G比特无源光网络)是一 种 PON体制, 在功能和性能上 GPON具有以下特点: 1 ) 可以灵活地提供多 种对称和非对称上下行速率; 2 ) 系统分路比可以为 1 : 16, 1 : 32, 1 : 64乃 至 1 : 128; 3 )传输距离大于 20KM; 4 )可适合任何数据业务的适配; 5 ) GPON 能很好支持 TDM(Time Division Multiplexing, 时分复用)业务的传送并保证的 定时性能; 6 ) GPON 具有完善的 OAM&P ( Operation, Administration, Maintenance and Provision, 运行、 管理、 维护和指配) 能力。
根据 G.984系列标准体系的规定, GPON的下行帧结构为 125微秒帧结构, 包括物理控制块(PCB )开销区和净荷区。 PCB中包括物理同步域上行带宽映 射域 US BWmap。 其中带宽地图 ( US BWmap )用来指示每个 ONU的上行时 隙开始位置和结束位置, T-CONT (传输容器)为各 ONU所分配的时隙大小, 各 ONU按所分配的时隙位置向 OLT发送数据。 GPON 上行帧长与下行帧长一样都是 125 微秒; 每个 ONU在分配的 T-CONT 中各自发送自己的突发数据包, 这些突发数据包包括开销区和净荷 区。
现有 GPON的传送控制包括如下步骤:
OLT对各 ONU广播下行帧, 帧长为 125微秒, 包括开销区和净荷区; 开 销区又包括用于指示各 ONU上行带宽和时隙位置的开销;
各 ONU接收 OLT的下行帧, 按下行帧所分配的上行带宽位置发送上行 突发数据包。
上述传输过程的特点在于:
1 ) 无论是下行帧还是上行帧、及无论上行为何种速率,帧周期都为 125 微秒;
2 ) 所有 ONU必须在 125微秒内完成接收处理;
3 ) 所有 ONU必须在 125微秒中在所分配的 T-CONT 时间位置完成突 发发送;
4 ) 所有 ONU上行突发发送必须满足 G.984.2中所要求的时间开销; 例 如使能时间和关断使能时间非常短, 以上行 2.5G速率来计算为 32 比特, 约 13ns;
5 ) 所述指示上行带宽的开销只有 16比特; 在 US BW MAP中 指示时 隙位置的开销 SStart 和 SStop 只有 16 比特宽, 能指示的最大时隙数量为 65536。
现有技术对于上述传送控制方式进行了改进, 其具体做法是:
首先,需要在下行帧中设置复帧指示。例如,现在是每帧周期为 125微秒, 可以设置一个复帧为 4个子帧的长度, 也就是 500微秒周期; 也就是说, 所述 复帧周期是下行单帧的 L倍长, L为整数。
然后,将上行帧按复帧长度来划分时隙, 同时按整个复帧长度来分配给各 ONU的 T-CONT带宽和时间位置。 也就是说, 上行帧周期与下行所指示的复 帧周期相等。 上行映射带宽指示利用复帧来进行扩展; 一个复帧中 (下行)包 含多个上行映射带宽开销区 ,这些开销的组合起来指示比单帧开销所指示的范 围大 4艮多。 现有技术中至少存在如下问题:
1 ) 改变了现有 G.984系列标准体系规定的传送控制方式和帧结构。
2 ) 由于传送控制方式和帧结构的改变, 就相应地需要对现有的 OLT 和 ONU的业务处理模块做较大改动, 技术方案复杂。
发明内容
有鉴于此, 本发明一个或多个实施例提供复帧处理的方法、 装置和系统, 以实现在保留了现有子帧的处理方式的情况下,将子帧合并成复帧进行突发发 送。 从而以最小的系统改动, 既降低了突发发送的难度, 也节约了设备成本。
为解决上述问题, 本发明实施例提供了一种复帧处理方法, 包括: 光网络单元 ONU接收 L个子帧, 其中 L为大于 1的整数;
光网络单元 ONU将接收到的 L个子帧配置成复帧;
光网络单元 ONU读取带宽地图, 根据所述带宽地图中的发送开始点和发 送结束点进行计算, 获得复帧的发送开始点和发送结束点, 向上行方向发送所 述复帧。
还提供了一种光线路终端 OLT, 包括:
第一预置单元, 用于: 预置各个光网络单元 ONU的带宽地图;
还原单元, 用于接收复帧,根据所述带宽地图将接收到的所述复帧还原为 L个子帧, 其中, 所述 L为大于 1的正整数。
还提供了一种光网络单元 ONU, 包括:
配置单元, 用于将接收到的 L个子帧配置成复帧, 其中 L为大于 1的整 数;
第一复帧发送单元, 用于: 读取带宽地图, 根据带宽地图中携带的发送开 始点和发送结束点,计算获得复帧的发送开始点和发送结束点, 向上行方向发 送所述复帧。
一种复帧处理系统, 包括: 光线路终端 OLT和光网络单元 ONU , 所述光线路终端 OLT为本发明任一个光线终端实施例所述的装置; 所述光网络单元 ONU为本发明任一个光网络单元实施例所述的装置。 与现有技术相比, 本发明实施例具有以下优点:
首先, 保留了现有子帧的处理方式, 不需要改变现有的技术标准的规定; 对 G.984子帧处理模块是透明的, 也不违反现有的标准。 该方案可以推广到所 有 TDM PON的突发发送和突发接收的技术领域中应用。
其次, 利用合并子帧成复帧, 在突发发送和突发接收时, 釆用复帧的方式 增加了帧与帧之间的空闲期,从而降低了突发发送和突发接收的难度,极大地 放宽了对 ONU突发发射机和 OLT突发接收机的性能要求, 降低了系统成本。
再次, 本发明提出的方法及其设备简单易实现, 成本低廉, 契合了市场需 求, 应用面广阔。
附图说明
图 1所示, 是本发明的方法的实施例一的流程图;
图 2所示, 是本发明的方法的实施例二的流程图;
图 3所示, 是本发明的方法的实施二的模块处理示意图;
图 4所示, 是本发明的方法的实施例三的下行数据结构图;
图 5所示, 是本发明的方法的实施例三的上行数据结构图;
图 6所示, 是上行信号的处理流程中各个数据处理过程的示意图;
图 7所示, 是本发明的方法的实施例三的流程图;
图 8所示, 是本发明的装置的实施例一的框图;
图 9所示, 是本发明的另一种装置的实施例一的框图;
图 10所示 , 是本发明的系统的实施例一的框图。
具体实施方式
下面结合附图对本发明具体实施方式做进一步的详细阐述。
首先,本发明的实施例将 L个上行帧组成一个复帧( L为大于 1的正整数 ), 原有的 125μδ上行帧变为复帧中的一个子帧。 原有的 125μδ下行帧可以透传。 复帧周期变为原有帧周期的 L倍, 复帧帧长变为原有帧长的 L倍。 复帧之间 的空闲期也变为原有子帧之间空闲期的 L倍。
OLT按子帧帧长给每个 ONU分配带宽, OLT保存所有 ONU分配的带宽 地图。 所述各个 ONU的带宽地图用于在收到各个 ONU的上行复帧时, 从复 帧中恢复各个 ONU所发送的子帧。
对于不需要隔若干帧变化带宽地图的情况, 只需要每个 ONU分别保存 L 帧之内小于本 ONU-ID所有 ONU的带宽总和(用于确定本 ONU的上行复帧 发送时间点)。 而对于需要隔若干帧变化一次带宽地图的情况, 则可以参见实 施例三中的具体处理方式。 在"原有 ONU业务处理模块 "和"原有 OLT业务处 理模块 "之间放置"复帧处理模块"。 这样布放复帧处理模块, 从而实现复帧传 输的好处有:
1、 上行开销增长, 降低对 ONU 突发发送模块的开启时间和关断时间, 从而使 TDM-PON系统成本降低;
2、 可以沿用现有系列标准, 复帧处理模块的存在相对于原有的 OLT业务 处理模块和原有的 ONU业务处理模块而言, 这两个模块感知不到新增加的复 帧处理模块的存在, 所以只需要在原有 GPON设备上增加本发明的 "复帧处理 模块"就能实现复帧方案;
3、不需要对 GPON帧结构做任何更改,只需要在 ONU的上行出口和 OLT 的上行入口分别增加一个独立、可选的模块,通过緩存子帧的带宽地图和数据 包, 在复帧周期内, 重新编排各 ONU数据包的位置, 减少突发接收的难度。 即使在复帧内, 子帧的带宽发生变化, 仍然能够实现。
在上述原理的基础上,以本发明的各个实施例来展现本发明的各种实现过 程。 参考图 1所示, 是本发明的方法的实施例一的流程图, 包括步骤:
步骤 101、 光网络单元 ONU接收 L个子帧, 其中 L为大于 1的整数, 在 具体实现中, 可以根据实际情况选择;
步骤 102、 光网络单元 ONU将接收到的 L个子帧配置成复帧;
步骤 103、 光网络单元 ONU读取带宽地图, 根据所述带宽地图中的发送 开始点和发送结束点进行计算, 获得复帧的发送开始点和发送结束点; 所述带 宽地图包括当前 OLT所连接的所有 ONU上行子帧的发送开始点和发送结束 点。 接收各个 ONU的带宽地图可以釆用现有技术中的各种实现方式。
步骤 104、 光网络单元 ONU向上行方向发送所述复帧。
利用本发明的方法的实施例, 光网络单元 ONU接收 L个子帧后, 光网络 单元 ONU将接收到的 L个子帧配置成复帧, 其中 L为大于 1的整数; 光网络 单元 ONU读取带宽地图, 根据所述带宽地图中的发送开始点和发送结束点进 行计算, 获得复帧的发送开始点和发送结束点, 光网络单元 ONU向上行方向 发送所述复帧。 从而实现了: 首先, 保留了现有子帧的处理方式, 不需要改变现有的技术标准的规定; 对 G.984子帧处理模块是透明的, 也不违反现有的标准。 该方案可以推广到所 有 TDM PON的突发发送技术领域中应用。
其次, 利用合并子帧成复帧, 在突发发送和突发接收时, 釆用复帧, 从而 降低了突发发送和突发接收的难度, 极大地放宽了对 ONU突发发射机的性能 要求, 降低了系统成本。
再次, 本发明提出的方法及其设备简单易实现, 成本低廉, 契合了市场需 求, 应用面广阔。
其中, 上述实施例中, 还可以包括步骤:
根据所述带宽地图, 将接收到的所述复帧还原为所述 L个子帧。
其中, 上述实施例中, 所述配置可以具体为: 将所述 L个子帧的净荷区合 并为复帧净荷区, 将所述 L个子帧的开销区合并为复帧开销区;
则所述还原具体为:
将所述复帧净荷区还原为 L个子帧的净荷区,将所述复帧开销区还原为 L 个子帧的开销区;
再将所述各个子帧的净荷区和开销区合并为子帧。
其中, 上述实施例中, 所述配置还可以具体为: 将所述 L个子帧的净荷区 合并为复帧净荷区, 将所述 L个子帧的开销区合并为复帧开销区;
则所述还原具体为:
将所述复帧净荷区还原为 L个子帧的净荷区,将所述复帧开销区还原为 L 个子帧的开销区;
根据所述带宽地图中所述所有 ONU上行子帧的发送开始点和发送结束 点, 将所述各个子帧的净荷区和所述开销区合并为子帧。
其中, 上述实施例中, 在所述配置之前, 还包括:
接收所述 L个子帧。
其中, 上述实施例中,根据所述带宽地图中携带的发送开始点和发送结束 点发送所述复帧具体为:
在所述带宽地图中携带的子帧发送开始点的 L倍时间点,开始发送所述复 帧; 在所述带宽地图中携带的子帧发送结束点的 L倍时间点 ,结束发送所述复 帧。
其中, 上述实施例中,根据所述带宽地图中携带的发送开始点和发送结束 点发送所述复帧具体为:
每个 ONU根据小于本 ONU-ID的所有 ONU的带宽总和,确定本 ONU的 复帧发送开始点和发送结束点后发送所述复帧。
其中, 上述实施例中, 将所述子帧的 Reserved域保留的 7位中 6位分别 和原 SStop域和原 SStart域合并形成 19bits的 SStart域和 19bits的 SStop域。 参考图 2所示,是本发明的方法的实施例二的流程图, 实施例二给出了一 种包含各功能模块以对复帧进行处理的全过程, 具体的功能模块见图 3所示, 当然, 对于所属领域的技术人员而言, 其他的功能模块划分方式也是可行的, 也应该在本发明的保护范围之内, 实施例二包括步骤:
步骤 201、 来自 SNI ( Service Network Interface, 服务网络接口) 的下行 信号经过原有 OLT业务处理模块, 原有 OLT业务处理模块对现有标准定义的 下行 GTC ( GPON Transmission Convergence, GPON传输汇聚)帧(本文称为 下行子帧)进行协议处理;
步骤 202、 OLT侧复帧处理模块透传下行子帧,保存各个子帧的带宽地图; 步骤 203、 ONU侧复帧处理模块透传下行子帧, 计算并保存 L子帧之内 小于本 ONU-ID的所有 ONU带宽之和( Ttotal ), 以及本 ONU在 L子帧之内 所分配的带宽之和(T );
假设本实施例中,有 3个 ONU,分别为 ONU0、 ONU1、 ONU2,则 ONU-ID 为 0, 1 , 2; 并且 L=4。 给 ONU0前 L帧(即前 4帧)分配的带宽是 50微秒, 给 ONU1前 L帧(即前 4帧)分配的带宽是 40微秒, 给 ONU2前 L帧(即前 4 帧)分配的带宽是 60 微秒。 若确定本实施例中的本 ONU 为 ONU2, 则 Ttotal=50+40=90微秒, 且 T=60微秒。 对于所属领域的技术人员而言, 可以根 据本实施例中的计算方法, 毫无困难地得到在其他的 ONU数量及带宽分配的 情况下, 得到本 ONU的 Ttotal和 T值。
步骤 204、原有 ONU业务处理模块对现有标准定义的下行 GTC帧(本文 称为下行子帧)进行协议处理;
步骤 205、 来自 UNI ( User Network Interface, 用户网络接口) 的上行信 号依次经过原有 ONT业务处理模块、 ONU侧复帧处理模块、 OLT侧复帧处理 模块、 原有 OLT业务处理模块到达 SNI。 首先, 原有 ONT业务处理模块对现 有标准定义的上行 GTC帧 (本文称为上行子帧)进行协议处理;
步骤 206、 ONU侧复帧处理模块根据步骤 203中保存的 Ttotal值加上一定 的空闲时间来确定本 ONU复帧发送启动时间点( Sstart—在此时间点发送的是 本 ONU上行帧的净荷 Payload ), 然后根据 T值来确定本 ONU复帧发送结束 时间点 (Sstop ), 本 ONU在 L个子帧内所分配的带宽之和就得到了 T值; 在 发送启动时间点和发送结束时间点之间进行数据发送;
同样根据步骤 203 中所列举的实施例的内容, 因为每个上行子帧都由 PLOu (Physical Layer Overhead upstream, 上行物理层开销' i或 )和 Payload两"^ 分组成。 所以除了带宽 (Sstop-Sstart)指示的 Payload发送时间段之前每个子帧 之间还有一定的空闲时间值 (tfree)用于发送 PLOu, 例如 ONU0里的 4个子帧, 就有 4个空闲时间值 tfree, 假设每个空闲时间值等于 5微秒, 则当 ONU0中的 4个子帧组成一个复帧的时候,其空闲时间为 4*5微秒 =20微秒。 同理, ONU1 组成复帧后的空闲时间也为 20微秒, ONU2组成复帧后的空闲时间也有 20微 秒,则 ONU2 复帧的发送启动时间点 Sstart=Ttotal+3*20 微秒 =150 微秒, 而 ONU2复帧的发送结束时间点 Sstop=Sstart+T=210微秒。 所以, ONU2的复帧 在 150微秒〜 210微秒之间进行数据传输一发送净荷 Payload;且在空闲时间 20 微秒中发送复帧的 PLOu。 由此看出, 以前每一个子帧发送 PLOu只有 5微秒 的时间, 而形成复帧后, 发送复帧的 PLOu的时间将会增长至 20微秒。 这样 降低了突发发送的难度。
步骤 207、 OLT侧复帧处理模块按步骤 202中已经保存的各个子帧的带宽 地图分解复帧, 最终形成原有 OLT业务处理模块能够处理的子帧;
步骤 208、 原有 OLT业务处理模块: 对现有标准定义的上行 GTC帧 (本 文称为上行子帧)进行协议处理。 参考图 4和图 5所示,分别是本发明的方法的实施例三中的下行帧和上行 帧的结构, 本实施例描述了在 10G-GPON系统中的实现过程。 图 4中的英文 释义如下:
PCBd(Physical Control Block downstream,下行物理控制块), Payload (有效 载荷 ), PSync(Physical Synchronization,物理同步码), Ident(指示 ), PLOAMd(Physical Layer OAM Operations, Administration and Maintenance—下 行物理层操作管理维护字), BIP(Bit Interleaved Parity,比特交叉奇偶校验), Plend(Physical Length downstream, 下行物理长度), US BW Map(Upstream BandWidth Ma 上行带宽地图 ), FEC Ind(Forward Error Correction Indication, 前向错误修正指示), Super-frame Counter (超帧计数器), AllocID (分配 ID字 段), Send PLS(Send Power Levelling sequence,发送功率等级序列指示), Send PLOAMu (发送上行 PLOAM指示), Use FEC (使用 FEC指示), Send DBRu(Send Dynamic Bandwidth Report upstream,上行发送动态带宽才艮告指示 ) , SStart(StartTime field开始时间字段), SStop(StopTime field,结束时间字段), CRC(Cyclic Redundancy Check, 循环冗余校验)。
由于上行帧长为 155,520bytes (在速度为 10Gb/s时), 如图 4所示, 可以利 用下行帧的 Reserved域的保留 7位中 6位分别和 S Stop、 S Start域合并形成 19bits 的 SStart域和 19bits的 SStop域( 19bit最大支持 524288 )。 从而实现了利用下 行 GPON帧格式中 Flag域的保留 bit来扩充 SStart域和 SStop域,解决了 GPON 升级到 10G时所存在的时隙位置指示问题。
釆用复帧方法处理, 本实施例中仍然取 L=4进行说明, 对于来自 SNI的 下行信号, OLT通过下行 GTC的 BWMAP (即带宽地图:包含该 OLT所挂的所 的上行发送数据的开始时间和结束时间;
如果原有 OLT业务处理模块检测到下行帧中 Super-frame Counter域的最 低两 bit全为 0时, 再更新一次带宽地图, 来实现每 4子帧 (即按复帧周期) 一次变化带宽地图的话。 那么,对应的上行信号中一个复帧里任意一个分配了 带宽的 ONU在四个子帧都有相同的 SStart时间点和相同的 SStop时间点, 用 于上行时将复帧分解; 对于 ONU 侧复帧处理模块而言, 则只需要保存本 ONU-ID的 SStart和 SStop值, 这样就进一步降低了该复帧处理模块的实现难 度。
来自 UNI的上行信号, 如图 5所示, 因为下行帧的带宽地图保证了按复 帧周期(即四子帧)改变一次, 所以上行信号中一个复帧里任意一个分配了带 宽的 ONU在四个子帧都有相同的 SStart时间点和相同的 SStop时间点,这样, 第一保证了每次都有四个子帧组成一个复帧, 第二保证了 ^、 t2、 t3、 t4时间相 同。 图 5中的英文释义如下:
PLOu (上行物理层开销域), Preamble (前导码域), Delimiter (定界符域), 0NU-ID(0NU ID,0NU的 ID域), Ind (指示域)。
上行复帧里, 0NU在复帧发送时间点 tstart ( =4倍子帧 SStart域的值)发 送本 0NU重组的复帧数据(即将四个子帧的 Payload组成一份复帧的 Payload, 对应四个子帧的 PLOu组成了一份复帧的 PLOu ),从图 5的上行复帧结构可以 看出 PLOu中的前导 (Preamble )和定界(Delimiter )开销增大了 4倍。
参考图 6所示,是上行信号的处理流程中各个数据处理过程的示意图; 其 中, ^ ( i = 0,1,2 )表示 ONU-ID为 i的 ONU在子帧里的发送启动时间点 (即 下行子帧带宽地图 SStart域的值); ga 表示两个 ONU发送时间的间隔; SStart 表示上行复帧发送启动时间点。
在图 4 - 6所公开的内容的基础上, 参考图 7所示, 是本发明的方法的实 施三的流程图, 包括步骤:
步骤 701、 ONU业务处理模块发送子帧 GTC到 ONU侧复帧处理模块; 步骤 702、 ONU侧复帧处理模块每接收 4个子帧就会将 4个子帧组成一 个复帧 (4个子帧的 PLOu合并成复帧的 PLOu-这就将 PLOu扩展 4倍, 同时 将 4个子帧的数据也合并到一起)。
步骤 703、 ONU侧按保存的带宽地图的指示发送数据。这里指定下行 OLT 每隔四帧变化一次带宽地图 BWMAP,则 4个子帧的上行发送数据的开始时间 SStart和结束时间 SStop是相同的,这样,在复帧中发送的时间点就是 4*SStart 和发送结束的时间点就是 4*SStop; 例如, 子帧的开始时间 SStart为 20微秒, 结束时间 SStop 为 40 微秒; 则 4 个子帧组成的复帧的开始发送时间点为 4*20=80微秒, 发送结束时间点为 4*40=160微秒。 而且相应地, 复帧之间的 gap值也是以前的 4倍。 这样就可以在复帧发送中将各个 ONU发送的时间段 给分开来。 所述上行子帧通过 ONU侧复帧处理模块由所述复帧处理模块按保 存的本 ONU带宽地图的 SStart值的四倍作为上行复帧发送启动时间点, 按保 存的本 ONU带宽信息的 SStop值的四倍作为上行复帧发送结束时间点;
步骤 704、 ONU发送出来的复帧数据, 经过光分路器, 到达 OLT;
步骤 705、 OLT侧复帧处理模块按 ONU的带宽地图解析复帧, 恢复出子 帧后再传给 OLT业务处理模块按照现有的标准协议进行处理。 OLT侧复帧处 理模块接收到 ONU侧复帧处理模块发送过来的复帧, 则分解复帧的数据成四 份子帧数据, 并从复帧 PLOu中提取子帧 PLOu, 并按保存的子帧的带宽地图 的 SStart和 SStop将四份子帧数据加子帧的 PLOu组成子帧发送到 OLT原业务 处理模块。
在本发明的各个实施例中,系统原有的 ONU业务处理模块和 OLT业务处 理模块均不需要进行任何修改, 仍然按原来的方式进行处理。
与前述的各个方法的实施例相适应, 参考图 8所示,是本发明的装置的实 施例一, 本实施例主要作为 OLT使用, 包括:
第一预置单元 801 , 用于: 预置各个光网络单元 ONU的带宽地图; 还原单元 802, 用于接收复帧, 根据所述带宽地图将接收到的所述复帧还 原为 L个子帧, 其中, 所述 L为大于 1的正整数。
本发明的装置实施例:
首先, 保留了现有子帧的处理方式, 不需要改变现有的技术标准的规定; 对 G.984子帧处理模块是透明的, 也不违反现有的标准。 该方案可以推广到所 有 TDM PON的突发发送和突发接收的技术领域中应用。
其次, 利用合并子帧成复帧, 在突发接收时, 釆用复帧, 从而降低了突发 接收的难度, 极大地放宽了对 OLT突发接收机的性能要求, 降低了系统成本。
再次, 本发明提出的方法及其设备简单易实现, 成本低廉, 契合了市场需 求, 应用面广阔。
其中, 上述实施例中, 还可以包括: 子帧发送单元, 用于: 根据所述带宽 地图, 发送下行子帧给光网络单元 ONU, 所述下行子帧携带有预置的带宽地 图。
其中, 上述实施例中, 所述还原单元包括: 第一还原模块, 用于将所述复帧净荷区还原为 L个子帧的净荷区, 第二还原模块, 用于将所述复帧开销区还原为 L个子帧的开销区; 合并模块, 用于根据所述带宽地图中携带的各个光网络单元 ONU上行子 帧的发送开始点和发送结束点,将原各个子帧的净荷区和对应的开销区合并还 原为 L个子帧。
其中, 上述实施例中, 还包括:
合并单元,用于将所述子帧的 Reserved域保留的 7位中 6位分别和原 SStop 域和原 SStart域合并形成 19bits的 SStart域和 19bits的 SStop域。
与前述的各个方法实施例及装置实施例相适应,本发明还提供了主要应用 于 ONU侧的装置, 参考图 9所示, 是本发明的复帧处理装置的实施例一, 包 括:
配置单元 901 , 用于将接收到的 L个子帧配置成复帧, 其中 L为大于 1的 整数;
第一复帧发送单元 902, 用于: 读取带宽地图, 根据带宽地图中携带的发 送开始点和发送结束点, 计算获得复帧的发送开始点和发送结束点, 向上行方 向发送所述复帧。
本发明的装置实施例具有以下优 ,
首先, 保留了现有子帧的处理方式, 不需要改变现有的技术标准的规定; 对 G.984子帧处理模块是透明的, 也不违反现有的标准。 该方案可以推广到所 有 TDM P0N的突发发送和突发接收的技术领域中应用。
其次, 利用合并子帧成复帧, 在突发发送时, 釆用复帧, 从而降低了突发 发送的难度,极大地放宽了对 0NU突发发射机的性能要求,降低了系统成本。
再次, 本发明提出的方法及其设备简单易实现, 成本低廉, 契合了市场需 求, 应用面广阔。
所述第一复帧发送单元具体为:
第二复帧发送单元, 用于: 在所述带宽地图中携带的子帧发送开始点的 L 倍时间点, 开始发送所述复帧; 在所述带宽地图中携带的子帧发送结束点的 L 倍时间点, 结束发送所述复帧。
其中, 上述实施例中, 所述配置单元包括: 第一配置模块, 用于将所述 L个子帧的净荷区合并为复帧净荷区; 第二配置模块, 用于将所述 L个子帧的开销区合并为复帧开销区。
参考图 10所示, 与前述的各个方法实施例及装置实施例相适应, 本发明 还提供了复帧处理系统的实施例一, 包括: OLT1001和 ONU1002,
所述 OLT为本发明实施例中的任一个作为 OLT使用的装置(即图 8所示 实施例及其优选实施例);
所述 ONU为本发明实施例中的任一个作为 ONU使用的装置 (即图 9所 示实施例及其优选实施例)。
本发明的系统具有与本发明的方法相适应的技术效果, 不再重复。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件,但 很多情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质 上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算 机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述 的方法。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。任何在 本发明的精神和原则之内所作的修改、等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求
1、 一种复帧处理方法, 其特征在于, 包括:
光网络单元 ONU接收 L个子帧, 其中 L为大于 1的整数;
光网络单元 ONU将接收到的 L个子帧配置成复帧;
光网络单元 ONU读取带宽地图, 根据所述带宽地图中的发送开始点和发 送结束点进行计算, 获得复帧的发送开始点和发送结束点, 向上行方向发送所 述复帧。
2、 如权利要求 1所述的方法, 其特征在于, 所述配置具体为:
将所述 L个子帧的净荷区合并为复帧净荷区, 将所述 L个子帧的开销区 合并为复帧开销区, 形成复帧。
3、 如权利要求 1或 2所述的方法, 其特征在于, 还包括:
光线路终端 OLT接收所述复帧;
光线路终端 OLT根据所述带宽地图, 将接收到的所述复帧还原为所述 L 个子帧。
4、 如权利要求 3所述的方法, 其特征在于, 所述还原包括:
将所述复帧净荷区还原为 L个子帧的净荷区,将所述复帧开销区还原为 L 个子帧的开销区;
将原各个子帧的净荷区和对应的开销区合并还原为 L个子帧。
5、 如权利要求 3所述的方法, 其特征在于, 所述还原包括:
将所述复帧净荷区还原为 L个子帧的净荷区,将所述复帧开销区还原为 L 个子帧的开销区;
根据带宽地图中所述光网络单元 ONU上行子帧的发送开始点和发送结束 点, 将原各个子帧的净荷区和对应的开销区合并, 还原为 L个子帧。
6、 如权利要求 1所述的方法, 其特征在于, 所述根据所述带宽地图中的 发送开始点和发送结束点进行计算, 获得复帧的发送开始点和发送结束点包 括:
在所述带宽地图中携带的子帧发送开始点的 L倍时间点,开始发送所述复 帧;
在所述带宽地图中携带的子帧发送结束点的 L倍时间点,结束发送所述复 帧。
7、 如权利要求 1所述的方法, 其特征在于, 所述根据所述带宽地图中的 发送开始点和发送结束点进行计算, 获得复帧的发送开始点和发送结束点包 括:
每个光网络单元 ONU根据 L帧之内小于本 ONU-ID的所有光网络单元
ONU的带宽总和,计算获得本光网络单元 ONU的复帧发送开始点和发送结束 点后发送所述复帧。
8、如权利要求 1所述的方法,其特征在于,将各所述子帧的保留 Reserved 域保留的 7 位中的 6 位分别和原开始时间字段 SStart域和原结束时间字段 SSto 域合并形成 19bits的开始时间字段 SStart域和 19bits的结束时间字段 SSto 域。
9、 一种光线路终端 OLT, 其特征在于, 包括:
第一预置单元, 用于: 预置各个光网络单元 ONU的带宽地图;
还原单元, 用于接收复帧,根据所述带宽地图将接收到的所述复帧还原为 L个子帧, 其中, 所述 L为大于 1的正整数。
10、 如权利要求 9所述的装置, 其特征在于, 还包括: 子帧发送单元, 用 于: 根据所述带宽地图, 发送下行子帧给光网络单元 ONU, 所述下行子帧携 带有预置的带宽地图。
11、 如权利要求 9所述的装置, 其特征在于, 所述还原单元包括: 第一还原模块, 用于将所述复帧净荷区还原为 L个子帧的净荷区, 第二还原模块, 用于将所述复帧开销区还原为 L个子帧的开销区; 合并模块, 用于根据所述带宽地图中携带的各个光网络单元 ONU上行子 帧的发送开始点和发送结束点,将原各个子帧的净荷区和对应的开销区合并还 原为 L个子帧。
12、 如权利要求 9所述的装置, 其特征在于, 还包括:
合并单元, 用于将各所述子帧的保留 Reserved域保留的 7位中的 6位分 别和原开始时间字段 SStart域和原结束时间字段 SStop域合并形成 19bits的开 始时间字段 SStart域和 19bits的结束时间字段 SStop域。
13、 一种光网络单元 0NU, 其特征在于, 包括: 配置单元, 用于将接收到的 L个子帧配置成复帧, 其中 L为大于 1的整 数;
第一复帧发送单元, 用于: 读取带宽地图, 根据带宽地图中携带的发送开 始点和发送结束点,计算获得复帧的发送开始点和发送结束点, 向上行方向发 送所述复帧。
14、 如权利要求 13所述的装置, 其特征在于, 所述第一复帧发送单元具 体为:
第二复帧发送单元, 用于: 在所述带宽地图中携带的子帧发送开始点的 L 倍时间点, 开始发送所述复帧; 在所述带宽地图中携带的子帧发送结束点的 L 倍时间点, 结束发送所述复帧。
15、 如权利要求 13所述的装置, 其特征在于, 所述配置单元包括: 第一配置模块, 用于将所述 L个子帧的净荷区合并为复帧净荷区; 第二配置模块, 用于将所述 L个子帧的开销区合并为复帧开销区。
16—种复帧处理系统, 其特征在于, 包括: 光线路终端 OLT和光网络单 元 ONU,
所述光线路终端 OLT为权利要求 9 - 12任一项所述的装置;
所述光网络单元 ONU为权利要求 13 - 15任一项所述的装置。
PCT/CN2009/071436 2008-05-08 2009-04-24 复帧处理的方法、装置和系统 WO2009135415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810096790.2 2008-05-08
CN 200810096790 CN101577843B (zh) 2008-05-08 2008-05-08 复帧处理的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2009135415A1 true WO2009135415A1 (zh) 2009-11-12

Family

ID=41264433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071436 WO2009135415A1 (zh) 2008-05-08 2009-04-24 复帧处理的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN101577843B (zh)
WO (1) WO2009135415A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075825A (zh) * 2011-01-27 2011-05-25 华为技术有限公司 光通信系统中的上行带宽的管理方法和装置
CN105792030B (zh) * 2014-12-24 2020-12-11 中兴通讯股份有限公司 一种光突发传送网业务跨环的实现方法和相应的主节点
WO2017138096A1 (ja) * 2016-02-09 2017-08-17 三菱電機株式会社 通信装置およびフレーム送信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007518A2 (en) * 2001-07-10 2003-01-23 Salira Optical Network Systems, Inc Allocation of upstream bandwidth in an ethernet passive optical network
CN1741429A (zh) * 2004-08-26 2006-03-01 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
CN101136703A (zh) * 2006-09-01 2008-03-05 华为技术有限公司 一种数据传输方法、系统和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007518A2 (en) * 2001-07-10 2003-01-23 Salira Optical Network Systems, Inc Allocation of upstream bandwidth in an ethernet passive optical network
CN1741429A (zh) * 2004-08-26 2006-03-01 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
CN101136703A (zh) * 2006-09-01 2008-03-05 华为技术有限公司 一种数据传输方法、系统和装置

Also Published As

Publication number Publication date
CN101577843A (zh) 2009-11-11
CN101577843B (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
US7949255B2 (en) System, device and method for transporting signals through passive optical network
EP2058961B1 (en) A data transmission method, system and device
US9154221B2 (en) Method, system, and relay apparatus for realizing passive optical network reach extension
US8184987B2 (en) Method, system and device for realizing data transmission extension in passive optical network
US8718087B1 (en) Processing architecture for passive optical network
EP2389738B1 (en) Methods and systems for dynamic equalization delay passive optical networks
US20090304385A1 (en) Methods and apparatus for next generation access passive optical networks
US8571422B2 (en) Burst transmission method, and receiver resetting method and apparatus in a passive optical network
WO2013082936A1 (zh) 一种无源光网络系统中的上行带宽分配方法及系统
US8014481B1 (en) Upstream data recovery and data rate detection
CN101442692A (zh) 一种数据传输方法、系统和装置
US9054811B2 (en) Method and device for sending upstream transfer frame in passive optical network
WO2009135415A1 (zh) 复帧处理的方法、装置和系统
WO2012149770A1 (zh) 转换终端设备的标识符的方法、装置和系统
WO2013075507A1 (zh) 数据发送方法及系统
KR100575988B1 (ko) 기가 비트 수동 광가입자 망에서의 onu의 등록 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09741690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09741690

Country of ref document: EP

Kind code of ref document: A1