WO2008041474A1 - Magnetic encoder and rolling bearing - Google Patents

Magnetic encoder and rolling bearing Download PDF

Info

Publication number
WO2008041474A1
WO2008041474A1 PCT/JP2007/068093 JP2007068093W WO2008041474A1 WO 2008041474 A1 WO2008041474 A1 WO 2008041474A1 JP 2007068093 W JP2007068093 W JP 2007068093W WO 2008041474 A1 WO2008041474 A1 WO 2008041474A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic encoder
multipolar magnet
coating
magnetic
magnet
Prior art date
Application number
PCT/JP2007/068093
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Norimatsu
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006272161A external-priority patent/JP2008089473A/en
Priority claimed from JP2006272852A external-priority patent/JP2008089140A/en
Application filed by Ntn Corporation filed Critical Ntn Corporation
Publication of WO2008041474A1 publication Critical patent/WO2008041474A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7869Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward
    • F16C33/7879Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a further sealing ring
    • F16C33/7883Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a further sealing ring mounted to the inner race and of generally L-shape, the two sealing rings defining a sealing with box-shaped cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the present invention relates to a magnetic encoder and a rolling bearing, and more particularly to a magnetic encoder provided in a rolling bearing that supports a rotating shaft and a rolling bearing provided with such a magnetic encoder.
  • the device consists of a magnetic encoder and a rotation sensor (rotational speed detection sensor)
  • the magnetic encoder consists of a multipole magnet with alternating magnetic poles in the circumferential direction and a core metal (slinger) supporting it
  • the rotation sensor detects the alternately arranged magnetic poles of the magnetic encoder which rotates with the rotation shaft, and in this way, the rotation detection device detects the number of rotations and the like.
  • FIG. 9 is a cross-sectional view showing a part of a conventional sealed rolling bearing provided with a magnetic encoder.
  • the rolling bearing 101 detects the outer ring 102, the inner ring 103, the ball 104, the cage 105 for holding the ball 104, the seal 106 for sealing the inside of the bearing, and the rotation speed and the like.
  • a magnetic encoder 107 includes a slinger 108 fixed to the inner ring 103 and a multipolar magnet 109 mounted on the outer side of the slinger 108.
  • the multipolar magnet 109 and the slinger 108 are bonded by an adhesive at their contact surfaces 110a and 110b. Thus, the multipolar magnet 109 is held by the slinger 108.
  • a conventional magnetic encoder generally uses ferrite as a magnetic powder and a rubber multipole magnet using rubber as a binder for binding the ferrite.
  • rare earth magnetic powder with excellent magnetic properties is used as a substitute for ferrite This makes it possible to detect the rotational speed with high accuracy.
  • Plastic is used as a binder for binding such rare earth magnetic powder.
  • Such plastic multipole magnets are suitable as magnetic encoders.
  • plastic multipolar magnets have low adhesive strength with adhesives! Therefore, when included in the magnetic encoder configured as shown in FIG. 9, there is a risk that the multipolar magnet may come off the slinger. This tendency is particularly noticeable when equipped with rolling bearings used in harsh environments such as mud water, salt water, high and low temperatures, such as rolling bearings for automobiles. Disclosure of the invention
  • An object of the present invention is to provide a magnetic encoder in which the detachment of a multipole magnet is prevented.
  • Another object of the present invention is to provide a magnetic encoder having improved corrosion resistance.
  • Still another object of the present invention is to provide a rolling bearing with a reduced risk of breakage.
  • Still another object of the present invention is to provide a rolling bearing capable of achieving a long life.
  • the magnetic encoder according to the present invention has a disk shape, and has a through hole at its center, and a plastic multipole magnet in which magnetic poles are alternately arranged in the circumferential direction, a cylindrical portion, and a cylinder. And a flange extending in the outer diameter side from one end of the portion, and a flange extending in the axial direction from the end on the outer diameter side of the flange, the cross section including a slinger having a substantially inverted Z shape.
  • the multipole magnet is pressed into the inner diameter side of the buttocks and held by the slinger.
  • the multipolar magnet can be press-fitted and held by utilizing the inner diameter side portion of the collar portion provided in the slinger.
  • the holding since the holding is not by adhesion using an adhesive or the like, the holding power will not be weakened even with a plastic multipolar magnet. Therefore, the detachment of the multipolar magnet can be prevented.
  • the axial end of the collar is crimped to the inner diameter side.
  • the multipole magnet can be held also by caulking, and the detachment of the multipole magnet can be prevented more reliably.
  • the crimped portion crimped to the inner diameter side is continued in the circumferential direction. like this By doing this, the detachment of the multipolar magnet can be prevented more reliably.
  • notches extending in the axial direction are provided in the collar portion at a plurality of circumferential positions.
  • the multipolar magnet is made of a plastic including a rare earth magnetic powder and a binder as a binder for binding the rare earth magnetic powder.
  • an anti-glare coating is formed on the surface of the multipolar magnet.
  • a multipolar magnet containing rare earth magnetic powder is easy to generate.
  • a magnetic encoder when used as a bearing for an automobile, it is often exposed to salt water, muddy water, and the like. Then, there is a risk that the magnetic encoder may be generated.
  • the multipole magnet is made of a plastic containing rare earth magnetic powder and a plastic as a binder for binding the rare earth magnetic powder, and a surface of the multipole magnet is coated with a fireproofing coating.
  • a surface of the multipole magnet is coated with a fireproofing coating.
  • an anti-glare coating is formed on the surface of the magnetic encoder. This makes it possible to cover the entire surface of the magnetic encoder, including the multipolar magnet and the slinger, with a dustproof coating. Then, the corrosion resistance can be further improved. In addition, since the multipole magnet and the slinger can be integrated to form the anti-glare coating, the productivity of the magnetic encoder can be improved.
  • the antiglare coating is a coating of metal. By doing so, the corrosion resistance can be more appropriately improved.
  • the antiglare coating may be formed by electrodeposition coating.
  • the antidust-treated coating can be formed more uniformly, so dimensional accuracy can be improved.
  • the bondability between the antiglare coating and the multipolar magnet can be improved.
  • the electrodeposition coating is a cationic electrodeposition coating.
  • the electrodeposition coating is a cationic electrodeposition coating.
  • the rolling bearing includes any of the above-described magnetic encoders.
  • Such rolling bearings include magnetic encoders that prevent the multipole magnets from falling off, so there is little risk of breakage.
  • a magnetic encoder having improved corrosion resistance is included, a long life can be achieved.
  • the slinger is provided with the collar portion extending in the axial direction from the outer diameter end of the side portion, so that the inner diameter side portion of the collar portion is utilized.
  • the force S can be used to press in the multipolar magnet.
  • the plastic multipole magnet is pressed into the inner diameter of the buttocks, so it does not fall off easily. Therefore, the detachment of the multipolar magnet can be prevented
  • the surface of the multipolar magnet containing the rare earth magnetic powder can be covered with the antiglare coating, and the generation of the rare earth magnetic powder contained in the multipolar magnet can be suppressed. Therefore, the corrosion resistance of a magnetic encoder including such a multipolar magnet can be improved.
  • Such a rolling bearing includes a magnetic encoder that prevents the multipole magnet from falling off, there is little risk of breakage.
  • Such a rolling bearing since such a rolling bearing includes a magnetic encoder with improved corrosion resistance, it can exert a long life S.
  • FIG. 1 is a cross-sectional view showing a part of a rolling bearing according to an embodiment of the present invention.
  • FIG. 2 is a conceptual view showing the configuration of a multipolar magnet.
  • FIG. 3 is a cross-sectional view showing a part of the magnetic encoder before caulking the end.
  • FIG. 4 is a cross-sectional view showing a part of the magnetic encoder after the end is crimped.
  • FIG. 5 is a cross-sectional view showing a part of a magnetic encoder according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a part of a rolling bearing according to another embodiment of the present invention.
  • FIG. 7 A sectional view showing a part of a magnetic encoder according to still another embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing an axle support structure including the rolling bearing according to the present invention.
  • FIG. 9 is a cross-sectional view showing a part of a conventional rolling bearing. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view showing a part of a rolling bearing according to an embodiment of the present invention.
  • a rolling bearing 11 supports a rotating shaft (not shown).
  • the rolling bearing 11 holds a ball 12 as a rolling element, an inner member 13 arranged on the inner diameter side of the ball 12, an outer member 14 arranged on the outer diameter side of the ball 12, and the ball 12.
  • a magnetic encoder 16a for detecting the number of revolutions and the like of the rotating shaft, and a seal 17 for sealing the inside of the bearing.
  • the inner member 13 is fixed to the rotation shaft and rotates with the rotation shaft.
  • the outer member 14 is fixed to a housing (not shown).
  • the balls 12 roll on raceways 18a and 18b provided on the inner member 13 and the outer member 14 when the rotation shaft rotates.
  • the seal 17 includes a cored bar 31 having rigidity and an elastic member 32 having elasticity.
  • the cored bar 31 is attached and fixed to the outer member 14.
  • the elastic member 32 is configured to cover a part of the cored bar 31.
  • the elastic member 32 is in contact with a slinger 24a included in a magnetic encoder 16a described later at a plurality of points with an appropriate pressure. In this way, the interior 19 of the rolling bearing 11 is sealed. By doing this, it is intended to prevent the leakage of the lubricating oil sealed in the inside 19 and prevent the foreign matter from entering the inside 19 of the rolling bearing 11.
  • the rotation detection device 21 for detecting the number of rotations and the like of the rotation shaft includes a magnetic encoder 16 a included in the rolling bearing 11 and a rotation sensor 22.
  • the magnetic encoder 16a and the rotation sensor 22 are provided at mutually opposing positions.
  • the rotation sensor 22 is, for example, attached and fixed to the housing together with the outer member 14 and the like.
  • the magnetic encoder 16a includes a multipole magnet 23a in which magnetic poles are alternately arranged in the circumferential direction, and a slinger 24a holding the multipole magnet 23a.
  • the multipolar magnet 23a held by the slinger 24a rotates with the inner member 13 as the rotation shaft rotates.
  • the change of the magnetic force of the N pole and the S pole of the multipolar magnet 23a is read by the detection unit 25 of the rotation sensor 22 which is disposed axially outward and is provided at a position facing the multipolar magnet 23a.
  • the rotation detection device 21 detects the number of rotations and the like of the rotation shaft.
  • FIG. 2 is a conceptual view showing the configuration of the multipolar magnet 23a.
  • multipole magnet 23a is a disk-like member and has a through hole at its center.
  • the multipole magnet 23a is magnetized in multiple poles in the circumferential direction, and is configured to alternately arrange the N pole 27a and the S pole 27b on a PCD (Pitch Circle Diameter: 26) 26 Ru.
  • the multipolar magnet 23a is a plastic magnet using a plastic as a binder for the rare earth magnetic powder.
  • the rare earth magnetic powder include samarium iron (SmFeN) magnetic powder and neodymium iron (NdFeB) magnetic powder. With such a rare earth magnetic powder, it is possible to obtain a multipolar magnet 23a capable of efficiently detecting the magnetic force.
  • the magnetic powder may be a combination of the above-mentioned materials. Specifically, a mixture of samarium iron-based magnetic powder and neodymium iron-based magnetic powder may, for example, be mentioned.
  • the slinger 24a includes a cylindrical portion 28a, a flange 28b extending to the outer diameter side from one end of the cylindrical portion 28a, and a flange portion 28c axially extending from the outer diameter end of the flange 28b.
  • the inner diameter of the ridge portion 28c is configured to be slightly smaller than the maximum outer diameter of the multipolar magnet 23a. By this, it is possible to press-fit the multipolar magnet 23a to the inside diameter side of the flange portion 28c.
  • the slinger 24a is made of metal.
  • the slinger 24 a is fixed to the inner member 13 such that the inner diameter surface of the cylindrical portion 28 a is press-fitted to the outer diameter surface of the inner member 13.
  • the multipolar magnet 23a is attached to the slinger 24a. Specifically, of the multipole magnet 23a, the surface 29a located on the inner side and the surface 29b located on the outer side of the flange 28b are mounted in contact with each other.
  • the multipolar magnet 23a is press-fitted to the inner diameter side of the flange portion 28c and held by the slinger 24a. Further, the axial end 28d of the flange portion 28c is bent to the inner diameter side and crimped. That is, at the time of press-fitting, as shown in FIG. 3, the axial end 28d of the flange 28c is straight in the axial direction. After the multipolar magnet 23a is press-fit into the slinger 24a, the end 28d is bent to the inner diameter side and crimped to make it the state shown in FIG. Such caulking is formed continuously in the circumferential direction.
  • the force S of pressing in the multipolar magnet 23a can be obtained by utilizing the inner diameter side portion of the flange portion 28c. Since the multipolar magnet 23a is press-fitted to the inner diameter side of the flange portion 28c, it does not fall off easily. In this case, since the holding is not by adhesion using an adhesive or the like, the holding power does not become weak even with a plastic multipolar magnet. Therefore, the detachment of the multipolar magnet 23a can be prevented. In addition, since the rolling bearing 11 including such a magnetic encoder 16a is prevented from falling off the multipolar magnet 23a, there is little risk of breakage.
  • the axial end portion 28d of the flange portion 28c is crimped to the inner diameter side, so that the multipolar magnet 23a can be more reliably prevented from falling off.
  • the ridge portion 28c may not extend in the circumferential direction. That is, notches extending in the axial direction may be provided at a plurality of circumferential positions of the collar portion 28c, and the notches may be press-fitted on the inner diameter side of the claw-like portion located between the notches. By doing this, it is possible to reduce the force required at the time of press-in, and it is possible to easily press-in S. In this case, the multipole magnet can be more properly held by providing the notches in the circumferential direction substantially equidistantly and positioning the claw-like portions in the circumferential direction without bias.
  • the claws may be bent to the inner diameter side and crimped.
  • the claw-like portion is not continuous in the circumferential direction, it can be easily crimped with a force S.
  • the multipole magnet 23a may have the following configuration. That is, the multipolar magnet 23a is made of plastic including rare earth magnetic powder and plastic as a binder for binding the rare earth magnetic powder.
  • the multipolar magnet 23a uses a thermoplastic resin, a thermosetting resin or the like as a binder for the rare earth magnetic powder!
  • the rare earth magnetic powder include the above-described samarium iron magnetic powder and neodymium iron magnetic powder. With such a rare earth magnetic powder, as described above, the force S can be obtained to obtain the multipole magnet 23a capable of efficiently detecting the magnetic force.
  • the magnetic powder may be a combination of the above-mentioned materials, specifically, a mixture of samarium iron-based magnetic powder and neodymium iron-based magnetic powder.
  • a plastic as a binder for binding the rare earth magnetic powder is PPS (polyphenylene sulfide). It may be a thermoplastic resin such as PA (polyamide), or a thermosetting resin such as epoxy resin or phenol resin! /.
  • a thermoplastic resin is used as a binder, a predetermined amount of rare earth magnetic powder is added to the thermoplastic resin, kneaded, dispersed, and molded by injection molding or the like to form the final shape of the multipolar magnet 23a. What can you do?
  • thermosetting resin When a thermosetting resin is used, a predetermined amount of rare earth magnetic powder is added to the thermosetting resin, kneaded, dispersed, and molded by heat compression molding or the like to obtain a final multipolar electrode. It can be in the shape of a magnet 23a.
  • a coating of a stick may be formed as a mildew-resistant coating.
  • the surface of the multipolar magnet 23a can be covered with a film of metal having good corrosion resistance. Then, it is possible to suppress the generation of the rare earth magnetic powder contained in the multipolar magnet 23a. Therefore, the force S can be made to improve the corrosion resistance of the multipolar magnet 23a. As a result, it is possible to improve the corrosion resistance of the magnetic encoder including the multipolar magnet 23a.
  • a metal include metal such as zinc metal, nickel metal, zinc metal and the like. The thickness of the film is about several meters to several tens of meters, and the illustration thereof is omitted in FIG.
  • the antiglare coating may be formed by electrodeposition coating.
  • the bondability between the antiglare coating and the multipolar magnet is improved.
  • the film thickness of the antiglare treatment film can be formed uniformly. Therefore, the dimensional accuracy of the multipolar magnet can be improved.
  • an object to be coated that is, an anion-type electrodeposition coating in which the force S serving as a multipolar magnet here is the positive pole side, and the multipolar magnet side is used.
  • the multipolar magnet side There are two types of cation type that make it to the negative pole side.
  • cationic electrodeposition coating in which the multipolar magnet side is the negative electrode side is preferable. By doing this, it is possible to prevent the elution of the metal ions on the multipolar magnet side, and therefore, it is possible to properly form a mildew-proof coating.
  • FIG. 5 is a cross-sectional view showing a part of the magnetic encoder 16e in this case.
  • Figure 6 shows a rolling including such a magnetic encoder 16e
  • FIG. 2 is a cross-sectional view showing a part of a bearing 11;
  • the rolling bearing 11 shown in FIG. 6 includes an inner ring as the inner member 13, an outer ring as the outer member 14, and a rubber portion as the elastic member 32.
  • the basic configuration of the rolling bearing 11 shown in FIG. 6 is the same as that of the rolling bearing 11 shown in FIG. In FIG. 5 and the like, the film thickness of the film 30 of the resin is shown as thick in view of easy understanding.
  • the slinger 24e includes a cylindrical portion 28e and a flange 28f extending outward from one end of the cylindrical portion 28e.
  • the cross section of the slinger 24e is substantially L-shaped.
  • the cylindrical portion 28 e of the slinger 24 e is press-fitted to the inner ring as the inner member 13.
  • the multipolar magnet 23e is held by the slinger 24e by bonding the inner surface 29f of the bearing and the outer surface 29e of the bearing of the flange 28f with an adhesive or the like. In this case, the multipolar magnet 23e is held by the slinger 24e through the coating 30 of the metal.
  • the multipolar magnet 23e held by the slinger 24e rotates with the inner ring as the inner member 13 as the rotation shaft rotates.
  • the change in the magnetic force of the N pole 27a and the S pole 27b of the multipole magnet 23e is detected by the detection sensor of the rotation sensor 22 disposed on the axially outer side and provided at the position facing the multipole magnet 23e. Read.
  • the rotation detection device 21 detects the number of rotations and the like of the rotation shaft.
  • a coating 30 of a stick as a fireproofing coating is formed on the surface of the multipolar magnet 23e.
  • the surface of the multipolar magnet 23e can be covered with the coating 30 with good corrosion resistance. Then, the generation of the rare earth magnetic powder contained in the multipolar magnet 23e can be suppressed. Therefore, the force S can be made to improve the corrosion resistance of the multipolar magnet 23e. As a result, the corrosion resistance of the magnetic encoder including the multipolar magnet 23e is improved by the force S.
  • the force of forming the coating of the film only on the multipolar magnet included in the magnetic encoder is not limited to this.
  • the coating of the film is formed on the entire surface of the magnetic encoder. It may be formed. That is, after the multipolar magnet and the slinger are bonded and integrated, a coating film of metal may be formed on this surface.
  • the inner surface 39a of the bearing of the multipolar magnet 37 and the outer surface 39b of the bearing of the ringer 38 are bonded and integrated.
  • a metal coating 40 is formed on the surface of the multipole magnet 37 and the slinger 38 integrated with each other. in this way By configuring, the entire surface of the magnetic encoder 36 can be covered with the coating 40 of plastic. Then, the corrosion resistance of the magnetic encoder 36 can be further improved.
  • FIG. 8 is a schematic cross-sectional view showing an axle support structure.
  • an axle support structure 61 includes a hub wheel 62 rotating with an axle (not shown) and a rolling bearing 71 supporting the axle.
  • the flange 64 of the hub wheel 62 is fixed by bolts 63 to the wheel (not shown).
  • the rolling bearing 71 is a double-row angyura ball bearing, and includes a double-row ball 72, an inner ring 73, an outer ring 74, a cage 75, a seal 76, and a magnetic encoder (not shown). .
  • the inner ring 73 is fixed to the hub ring 62 and constitutes an inner member together with the hub ring 62 and rotates with the rotation of the axle.
  • the outer ring 74 is fixed to a housing (not shown) disposed on the outer diameter side, and constitutes an outer member.
  • the seal 76 includes a magnetic encoder including a multipolar magnet and a slinger, and the rotation sensor 77 can detect the number of rotations.
  • axle support structure 61 is configured. Such an axle support structure 61 can prevent the multipolar magnet included in the magnetic encoder from falling off from the slinger.
  • axle support structure 61 includes a magnetic encoder with improved corrosion resistance, a long life can be achieved.
  • the shape of the slinger may be substantially L-shaped or substantially Z-shaped in cross section. Furthermore, the cylindrical portion may extend in the circumferential direction, or may be in the shape of a tongue partially provided with a notch.
  • the present invention is also applicable to the case where tapered rollers are used as the rolling elements.
  • the present invention is also applicable to rolling bearings of a type not including a seal, and rolling bearings including races such as an outer ring and an inner ring.
  • the magnetic encoder described above is not limited to the force included in the rolling bearing, and may be included in the sliding bearing.
  • the present invention may be applied not only to the rotation shaft and the like but also to detect the rotation speed of other rotation members, etc., and together with the detection sensor, a rotation detection device may be configured to detect the rotation speed etc. .
  • the magnetic encoder according to the present invention is effectively used for rolling bearings and the like for automobiles because the corrosion resistance is improved.
  • the rolling bearing according to the present invention is effectively used when a long life is required because it is provided with a magnetic encoder such as for an automobile with a reduced risk of breakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

A magnetic encoder (16a) comprises a plastic multipolar magnet (23a) which is formed in a disk shape and has a through hole at its center and magnetic poles alternately arranged in the circumferential direction and a slinger (24a) which has a cylindrical part (28a), a flange (28b) extending from one end of the cylindrical part (28a) radially outwardly, and a flange part (28c) extending from the radial outer end of the flange (28b) in the radial direction and the cross section of which is formed in a generally inverted Z-shape. The multipolar magnet (23a) is press-fitted into the radial inner side of the flange part (28c) and held by the slinger (24a).

Description

明 細 書  Specification
磁気エンコーダおよび転がり軸受  Magnetic encoder and rolling bearing
技術分野  Technical field
[0001] この発明は、磁気エンコーダおよび転がり軸受に関し、特に、回転軸を支持する転 力 Sり軸受に備えられる磁気エンコーダおよびこのような磁気エンコーダを備える転がり 軸受に関するものである。  The present invention relates to a magnetic encoder and a rolling bearing, and more particularly to a magnetic encoder provided in a rolling bearing that supports a rotating shaft and a rolling bearing provided with such a magnetic encoder.
背景技術  Background art
[0002] 従来、自動車の ABS (Antilock Brake System)装置に使用される軸受として、 磁気エンコーダを備えたシール付きの転がり軸受がある。このような転がり軸受は、例 え (ま、、特開 2001— 255337号公幸 こ開示されて!/ヽる。特開 2001— 255337号公 報によると、回転数や回転方向を検出する回転検出装置は、磁気エンコーダと回転 センサ(回転数検出センサー)とから構成される。磁気エンコーダは、周方向に交互 に磁極を形成した多極磁石と、これを支持する芯金 (スリンガー)とからなる。回転セ ンサは、回転軸と共に回転する磁気エンコーダの交互に配置される磁極を検出する 。このようにして、回転検出装置は、回転数等を検出している。  [0002] Conventionally, as a bearing used for an ABS (Antilock Brake System) device of a car, there is a rolling bearing with a seal provided with a magnetic encoder. Such a rolling bearing is disclosed, for example, in Japanese Patent Laid-Open Publication No. 2001-255337. According to Japanese Patent Laid-Open Publication No. 2001-255337, rotation detection for detecting the number of rotations and the direction of rotation is disclosed. The device consists of a magnetic encoder and a rotation sensor (rotational speed detection sensor) The magnetic encoder consists of a multipole magnet with alternating magnetic poles in the circumferential direction and a core metal (slinger) supporting it The rotation sensor detects the alternately arranged magnetic poles of the magnetic encoder which rotates with the rotation shaft, and in this way, the rotation detection device detects the number of rotations and the like.
[0003] ここで、従来における磁気エンコーダを備えたシール付き転がり軸受の基本的な構 成について、簡単に説明する。図 9は、従来における磁気エンコーダを備えたシール 付きの転がり軸受の一部を示す断面図である。図 9を参照して、転がり軸受 101は、 外輪 102と、内輪 103と、玉 104と、玉 104を保持する保持器 105と、軸受内部を密 封するシール 106と、回転数等を検出するための磁気エンコーダ 107とを含む。磁気 エンコーダ 107は、内輪 103に固定されたスリンガ 108と、スリンガ 108の外方側に取 り付けられた多極磁石 109とを含む。多極磁石 109とスリンガ 108は、それぞれの接 触面 110a、 110bにおいて、接着剤によって接着されている。このようにして、多極磁 石 109は、スリンガ 108に保持されている。  [0003] Here, a basic configuration of a conventional sealed rolling bearing provided with a magnetic encoder will be briefly described. FIG. 9 is a cross-sectional view showing a part of a conventional sealed rolling bearing provided with a magnetic encoder. Referring to FIG. 9, the rolling bearing 101 detects the outer ring 102, the inner ring 103, the ball 104, the cage 105 for holding the ball 104, the seal 106 for sealing the inside of the bearing, and the rotation speed and the like. And a magnetic encoder 107. The magnetic encoder 107 includes a slinger 108 fixed to the inner ring 103 and a multipolar magnet 109 mounted on the outer side of the slinger 108. The multipolar magnet 109 and the slinger 108 are bonded by an adhesive at their contact surfaces 110a and 110b. Thus, the multipolar magnet 109 is held by the slinger 108.
[0004] 従来の磁気エンコーダとしては、磁性粉としてフェライトを使用し、フェライトを結着 するバインダとしてゴムを使用するゴム製の多極磁石を使用するの力 一般的であつ た。ここで、磁気特性の優れた希土類系の磁性粉を、フェライトの代替として使用する ことにより、回転数を高精度に検出することが可能になる。このような希土類系磁性粉 を結着するバインダには、プラスチックが使用される。このようなプラスチック製の多極 磁石は、磁気エンコーダとして好適である。 A conventional magnetic encoder generally uses ferrite as a magnetic powder and a rubber multipole magnet using rubber as a binder for binding the ferrite. Here, rare earth magnetic powder with excellent magnetic properties is used as a substitute for ferrite This makes it possible to detect the rotational speed with high accuracy. Plastic is used as a binder for binding such rare earth magnetic powder. Such plastic multipole magnets are suitable as magnetic encoders.
[0005] しかし、プラスチック製の多極磁石は、接着剤との接着強度が低!/、。したがって、図 9に示すような構成の磁気エンコーダに含まれる場合、多極磁石がスリンガから脱落 する恐れがある。特に、自動車用の転がり軸受など、泥水や塩水、高低温等の苛酷 な環境で使用される転がり軸受に備えられる場合には、その傾向は顕著である。 発明の開示 However, plastic multipolar magnets have low adhesive strength with adhesives! Therefore, when included in the magnetic encoder configured as shown in FIG. 9, there is a risk that the multipolar magnet may come off the slinger. This tendency is particularly noticeable when equipped with rolling bearings used in harsh environments such as mud water, salt water, high and low temperatures, such as rolling bearings for automobiles. Disclosure of the invention
[0006] この発明の目的は、多極磁石の脱落を防止した磁気エンコーダを提供することであ  An object of the present invention is to provide a magnetic encoder in which the detachment of a multipole magnet is prevented.
[0007] この発明の他の目的は、防食性を向上した磁気エンコーダを提供することである。 [0007] Another object of the present invention is to provide a magnetic encoder having improved corrosion resistance.
[0008] この発明のさらに他の目的は、破損の恐れを低減した転がり軸受を提供することで ある。 [0008] Still another object of the present invention is to provide a rolling bearing with a reduced risk of breakage.
[0009] この発明のさらに他の目的は、長寿命を図ることができる転がり軸受を提供すること である。  [0009] Still another object of the present invention is to provide a rolling bearing capable of achieving a long life.
[0010] この発明に係る磁気エンコーダは、円板状であって、その中央に貫通孔を有し、周 方向に交互に磁極が配置されるプラスチック製の多極磁石と、円筒部と、円筒部の 一方の端部から外径側に延びるフランジと、フランジの外径側の端部から軸方向に 延びる鍔部とを備え、その断面が略逆 Z字状であるスリンガとを含む。ここで、多極磁 石は、鍔部の内径側に圧入され、スリンガに保持されている。  The magnetic encoder according to the present invention has a disk shape, and has a through hole at its center, and a plastic multipole magnet in which magnetic poles are alternately arranged in the circumferential direction, a cylindrical portion, and a cylinder. And a flange extending in the outer diameter side from one end of the portion, and a flange extending in the axial direction from the end on the outer diameter side of the flange, the cross section including a slinger having a substantially inverted Z shape. Here, the multipole magnet is pressed into the inner diameter side of the buttocks and held by the slinger.
[0011] このように構成することにより、スリンガに設けられた鍔部の内径側部分を利用して、 多極磁石を圧入して保持することができる。この場合、接着剤等を利用した接着によ る保持ではないため、プラスチック製の多極磁石であっても、保持力が弱まることはな い。したがって、多極磁石の脱落を防止することができる。  [0011] With this configuration, the multipolar magnet can be press-fitted and held by utilizing the inner diameter side portion of the collar portion provided in the slinger. In this case, since the holding is not by adhesion using an adhesive or the like, the holding power will not be weakened even with a plastic multipolar magnet. Therefore, the detachment of the multipolar magnet can be prevented.
[0012] 好ましくは、鍔部の軸方向の端部は、内径側に加締められている。こうすることによ り、圧入に加えて、加締めによっても多極磁石を保持することができ、より確実に多極 磁石の脱落を防止することができる。  [0012] Preferably, the axial end of the collar is crimped to the inner diameter side. In this way, in addition to press-fitting, the multipole magnet can be held also by caulking, and the detachment of the multipole magnet can be prevented more reliably.
[0013] さらに好ましくは、内径側に加締められた加締め部は、周方向に連なっている。こう することにより、さらに確実に多極磁石の脱落を防止することができる。 More preferably, the crimped portion crimped to the inner diameter side is continued in the circumferential direction. like this By doing this, the detachment of the multipolar magnet can be prevented more reliably.
[0014] さらに好ましくは、鍔部には、周方向の複数の箇所に、軸方向に延びる切り欠きが 設けられている。こうすることにより、圧入時に必要な力を少なくすることができ、容易 に、圧入することができる。 More preferably, notches extending in the axial direction are provided in the collar portion at a plurality of circumferential positions. By this, the force required for press-fitting can be reduced and the press-fitting can be easily performed.
[0015] さらに好ましくは、多極磁石は、希土類系磁性粉と、希土類系磁性粉を結着するバ インダとしてのプラスチックとを含むプラスチック製である。ここで、多極磁石の表面に は、防鯖処理被膜が形成されている。 More preferably, the multipolar magnet is made of a plastic including a rare earth magnetic powder and a binder as a binder for binding the rare earth magnetic powder. Here, an anti-glare coating is formed on the surface of the multipolar magnet.
[0016] 希土類系磁性粉を含む多極磁石は、発鯖しやすい。ここで、磁気エンコーダが自 動車用軸受として使用されると、塩水や泥水等に曝される場合が多い。そうすると、 磁気エンコーダが発鯖してしまう恐れがある。 [0016] A multipolar magnet containing rare earth magnetic powder is easy to generate. Here, when a magnetic encoder is used as a bearing for an automobile, it is often exposed to salt water, muddy water, and the like. Then, there is a risk that the magnetic encoder may be generated.
[0017] ここで、多極磁石は、希土類系磁性粉と、希土類系磁性粉を結着するバインダとし てのプラスチックとを含むプラスチック製とし、多極磁石の表面には、防鯖処理被膜 が形成されるよう構成することにより、希土類系磁性粉を含む多極磁石の表面を、防 鯖処理被膜で覆うことができる。そうすると、多極磁石に含まれる希土類系磁性粉の 発鯖を抑制することができる。したがって、このような多極磁石を含む磁気エンコーダ の防食性を向上させることができる。  Here, the multipole magnet is made of a plastic containing rare earth magnetic powder and a plastic as a binder for binding the rare earth magnetic powder, and a surface of the multipole magnet is coated with a fireproofing coating. By forming so as to be formed, the surface of the multipolar magnet containing the rare earth magnetic powder can be covered with the antiglare coating. Then, it is possible to suppress the generation of the rare earth magnetic powder contained in the multipolar magnet. Therefore, the corrosion resistance of a magnetic encoder including such a multipolar magnet can be improved.
[0018] さらに好ましくは、磁気エンコーダの表面には、防鯖処理被膜が形成されている。こ うすることにより、多極磁石とスリンガとを含む磁気エンコーダの表面全体を、防鯖処 理被膜で覆うことができる。そうすると、さらに、防食性を向上させることができる。また 、多極磁石とスリンガとを一体化してから防鯖処理被膜を形成することができ、磁気ェ ンコーダの生産性を向上させることができる。  [0018] More preferably, an anti-glare coating is formed on the surface of the magnetic encoder. This makes it possible to cover the entire surface of the magnetic encoder, including the multipolar magnet and the slinger, with a dustproof coating. Then, the corrosion resistance can be further improved. In addition, since the multipole magnet and the slinger can be integrated to form the anti-glare coating, the productivity of the magnetic encoder can be improved.
[0019] さらに好ましくは、防鯖処理被膜は、メツキの被膜である。こうすることにより、より適 切に、防食性を向上させることができる。  More preferably, the antiglare coating is a coating of metal. By doing so, the corrosion resistance can be more appropriately improved.
[0020] また、防鯖処理被膜は、電着塗装により形成されていてもよい。こうすることにより、 より均一に防鯖処理被膜を形成することができるため、寸法精度を良好にすることが できる。また、防鯖処理被膜と多極磁石との結着性を向上させることもできる。 Further, the antiglare coating may be formed by electrodeposition coating. By so doing, the antidust-treated coating can be formed more uniformly, so dimensional accuracy can be improved. In addition, the bondability between the antiglare coating and the multipolar magnet can be improved.
[0021] 好ましくは、電着塗装は、カチオン電着塗装である。こうすることにより、被塗物とな る多極磁石側の金属イオンの溶出を防止することができ、より適切に防鯖処理被膜を 形成すること力でさる。 Preferably, the electrodeposition coating is a cationic electrodeposition coating. By doing this, it is possible to prevent the elution of metal ions on the side of the multipolar magnet that is the object to be coated, and it is possible to more appropriately protect the antiglare coating. It is a power to form.
[0022] この発明の他の局面においては、転がり軸受は、上記したいずれかの磁気ェンコ ーダを含む。このような転がり軸受は、多極磁石の脱落を防止した磁気エンコーダを 含むため、破損の恐れが少ない。また、防食性が向上された磁気エンコーダを含む ため、長寿命を図ることができる。  [0022] In another aspect of the present invention, the rolling bearing includes any of the above-described magnetic encoders. Such rolling bearings include magnetic encoders that prevent the multipole magnets from falling off, so there is little risk of breakage. In addition, since a magnetic encoder having improved corrosion resistance is included, a long life can be achieved.
[0023] すなわち、この発明によれば、このように、スリンガに側部の外径側の端部から軸方 向に延びる鍔部を設けることにより、鍔部の内径側部分を利用して、多極磁石を圧入 すること力 Sできる。プラスチック製の多極磁石は、鍔部の内径側に圧入されているた め、容易に脱落することはない。したがって、多極磁石の脱落を防止することができる  That is, according to the present invention, as described above, the slinger is provided with the collar portion extending in the axial direction from the outer diameter end of the side portion, so that the inner diameter side portion of the collar portion is utilized. The force S can be used to press in the multipolar magnet. The plastic multipole magnet is pressed into the inner diameter of the buttocks, so it does not fall off easily. Therefore, the detachment of the multipolar magnet can be prevented
[0024] また、希土類系磁性粉を含む多極磁石の表面を、防鯖処理被膜で覆うことができ、 多極磁石に含まれる希土類系磁性粉の発鯖を抑制することができる。したがって、こ のような多極磁石を含む磁気エンコーダの防食性を向上させることができる。 In addition, the surface of the multipolar magnet containing the rare earth magnetic powder can be covered with the antiglare coating, and the generation of the rare earth magnetic powder contained in the multipolar magnet can be suppressed. Therefore, the corrosion resistance of a magnetic encoder including such a multipolar magnet can be improved.
[0025] また、このような転がり軸受は、多極磁石の脱落を防止した磁気エンコーダを含む ため、破損の恐れが少ない。  In addition, since such a rolling bearing includes a magnetic encoder that prevents the multipole magnet from falling off, there is little risk of breakage.
[0026] また、このような転がり軸受は、防食性が向上された磁気エンコーダを含むため、長 寿命を図ること力 Sできる。  In addition, since such a rolling bearing includes a magnetic encoder with improved corrosion resistance, it can exert a long life S.
図面の簡単な説明  Brief description of the drawings
[0027] [図 1]この発明の一実施形態に係る転がり軸受の一部を示す断面図である。  FIG. 1 is a cross-sectional view showing a part of a rolling bearing according to an embodiment of the present invention.
[図 2]多極磁石の構成を示す概念図である。  FIG. 2 is a conceptual view showing the configuration of a multipolar magnet.
[図 3]端部を加締める前の磁気エンコーダの一部を示す断面図である。  FIG. 3 is a cross-sectional view showing a part of the magnetic encoder before caulking the end.
[図 4]端部を加締めた後の磁気エンコーダの一部を示す断面図である。  FIG. 4 is a cross-sectional view showing a part of the magnetic encoder after the end is crimped.
[図 5]この発明の他の実施形態に係る磁気エンコーダの一部を示す断面図である。  FIG. 5 is a cross-sectional view showing a part of a magnetic encoder according to another embodiment of the present invention.
[図 6]この発明の他の実施形態に係る転がり軸受の一部を示す断面図である。  FIG. 6 is a cross-sectional view showing a part of a rolling bearing according to another embodiment of the present invention.
[図 7]この発明のさらに他の実施形態に係る磁気エンコーダの一部を示す断面図で ある。  [FIG. 7] A sectional view showing a part of a magnetic encoder according to still another embodiment of the present invention.
[図 8]この発明に係る転がり軸受を含む車軸支持構造を示す概略断面図である。  FIG. 8 is a schematic cross-sectional view showing an axle support structure including the rolling bearing according to the present invention.
[図 9]従来における転がり軸受の一部を示す断面図である。 発明を実施するための最良の形態 FIG. 9 is a cross-sectional view showing a part of a conventional rolling bearing. BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、この発明の実施の形態を、図面を参照して説明する。図 1は、この発明の一 実施形態に係る転がり軸受の一部を示す断面図である。図 1を参照して、転がり軸受 11は、回転軸(図示せず)を支持する。転がり軸受 11は、転動体としての玉 12と、玉 12の内径側に配置される内方部材 13と、玉 12の外径側に配置される外方部材 14と 、玉 12を保持する保持器 15と、回転軸の回転数等を検出するための磁気ェンコ一 ダ 16aと、軸受内部を密封するためのシール 17とを含む。内方部材 13は、回転軸に 固定されており、回転軸と共に回転する。一方、外方部材 14は、ハウジング(図示せ ず)に固定されている。玉 12は、回転軸の回転時において、内方部材 13および外方 部材 14に設けられた軌道面 18a、 18b上を転動する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a part of a rolling bearing according to an embodiment of the present invention. Referring to FIG. 1, a rolling bearing 11 supports a rotating shaft (not shown). The rolling bearing 11 holds a ball 12 as a rolling element, an inner member 13 arranged on the inner diameter side of the ball 12, an outer member 14 arranged on the outer diameter side of the ball 12, and the ball 12. And a magnetic encoder 16a for detecting the number of revolutions and the like of the rotating shaft, and a seal 17 for sealing the inside of the bearing. The inner member 13 is fixed to the rotation shaft and rotates with the rotation shaft. On the other hand, the outer member 14 is fixed to a housing (not shown). The balls 12 roll on raceways 18a and 18b provided on the inner member 13 and the outer member 14 when the rotation shaft rotates.
[0029] シール 17は、剛性を有する芯金 31と、弾性を有する弾性部材 32とを含む。芯金 3 1は、外方部材 14に取り付けられ、固定されている。弾性部材 32は、芯金 31の一部 を覆うように構成されている。弾性部材 32は、後述する磁気エンコーダ 16aに含まれ るスリンガ 24aと適当な圧力で、複数の箇所において接触している。このようにして、 転がり軸受 11の内部 19を密封する。こうすることにより、内部 19に封入された潤滑油 の漏れの防止や、転がり軸受 11の内部 19内への異物の混入の防止を図っている。  The seal 17 includes a cored bar 31 having rigidity and an elastic member 32 having elasticity. The cored bar 31 is attached and fixed to the outer member 14. The elastic member 32 is configured to cover a part of the cored bar 31. The elastic member 32 is in contact with a slinger 24a included in a magnetic encoder 16a described later at a plurality of points with an appropriate pressure. In this way, the interior 19 of the rolling bearing 11 is sealed. By doing this, it is intended to prevent the leakage of the lubricating oil sealed in the inside 19 and prevent the foreign matter from entering the inside 19 of the rolling bearing 11.
[0030] 回転軸の回転数等を検出する回転検出装置 21は、転がり軸受 11に含まれる磁気 エンコーダ 16aと、回転センサ 22とを含む。磁気エンコーダ 16aと回転センサ 22は、 互いに対向する位置に設けられている。回転センサ 22は、例えば、外方部材 14等と 共にハウジングに取り付けられ、固定されている。磁気エンコーダ 16aは、周方向に 交互に磁極が配置された多極磁石 23aと、多極磁石 23aを保持するスリンガ 24aとを 含む。  The rotation detection device 21 for detecting the number of rotations and the like of the rotation shaft includes a magnetic encoder 16 a included in the rolling bearing 11 and a rotation sensor 22. The magnetic encoder 16a and the rotation sensor 22 are provided at mutually opposing positions. The rotation sensor 22 is, for example, attached and fixed to the housing together with the outer member 14 and the like. The magnetic encoder 16a includes a multipole magnet 23a in which magnetic poles are alternately arranged in the circumferential direction, and a slinger 24a holding the multipole magnet 23a.
[0031] スリンガ 24aに保持された多極磁石 23aは、回転軸の回転に伴って、内方部材 13と 共に回転する。このとき、軸方向外側に配置され、多極磁石 23aに対向する位置に 設けられた回転センサ 22の検出部 25により、多極磁石 23aの N極および S極の磁力 の変化を読取る。このようにして、回転検出装置 21は、回転軸の回転数等を検出す  The multipolar magnet 23a held by the slinger 24a rotates with the inner member 13 as the rotation shaft rotates. At this time, the change of the magnetic force of the N pole and the S pole of the multipolar magnet 23a is read by the detection unit 25 of the rotation sensor 22 which is disposed axially outward and is provided at a position facing the multipolar magnet 23a. Thus, the rotation detection device 21 detects the number of rotations and the like of the rotation shaft.
[0032] ここで、磁気エンコーダ 16aを構成する各部材について説明する。まず、多極磁石 23aの構成について説明する。図 2は、多極磁石 23aの構成を示す概念図である。 図 1および図 2を参照して、多極磁石 23aは、円板状の部材であり、その中央に貫通 孔を有する。多極磁石 23aは、周方向において多極に磁化されており、 PCD (Pitch Circle Diameter:ピッチ円直径) 26上において、 N極 27aおよび S極 27bを交互 に配置するように構成されてレ、る。 Here, respective members constituting the magnetic encoder 16a will be described. First, multipolar magnets The configuration of 23a will be described. FIG. 2 is a conceptual view showing the configuration of the multipolar magnet 23a. Referring to FIGS. 1 and 2, multipole magnet 23a is a disk-like member and has a through hole at its center. The multipole magnet 23a is magnetized in multiple poles in the circumferential direction, and is configured to alternately arrange the N pole 27a and the S pole 27b on a PCD (Pitch Circle Diameter: 26) 26 Ru.
[0033] 多極磁石 23aは、希土類系の磁性粉に、バインダとしてプラスチックを用いたプラス チック製の磁石である。希土類系の磁性粉は、例えば、サマリウム鉄(SmFeN)系磁 性粉やネオジゥム鉄 (NdFeB)系磁性粉が挙げられる。このような希土類系の磁性粉 により、効率的に磁力を検出することができる多極磁石 23aを得ることができる。  The multipolar magnet 23a is a plastic magnet using a plastic as a binder for the rare earth magnetic powder. Examples of the rare earth magnetic powder include samarium iron (SmFeN) magnetic powder and neodymium iron (NdFeB) magnetic powder. With such a rare earth magnetic powder, it is possible to obtain a multipolar magnet 23a capable of efficiently detecting the magnetic force.
[0034] さらに、磁性粉は、上記した材料の組合せであってもよい。具体的には、サマリウム 鉄系磁性粉とネオジゥム鉄系磁性粉とを混合したもの等が挙げられる。  Furthermore, the magnetic powder may be a combination of the above-mentioned materials. Specifically, a mixture of samarium iron-based magnetic powder and neodymium iron-based magnetic powder may, for example, be mentioned.
[0035] 次に、スリンガ 24aの構成について説明する。スリンガ 24aは、円筒部 28aと、円筒 部 28aの一方の端部から外径側に延びるフランジ 28bと、フランジ 28bの外径側の端 部から軸方向に延びる鍔部 28cとを備え、その断面が略逆 Z字状である。ここで、鍔 部 28cの内径を、多極磁石 23aの最大の外径よりも若干小さくするよう構成する。こう することにより、多極磁石 23aを鍔部 28cの内径側に圧入することができる。スリンガ 2 4aは、金属製である。スリンガ 24aは、円筒部 28aの内径面を内方部材 13の外径面 に圧入するようにして、内方部材 13に固定される。  Next, the configuration of the slinger 24a will be described. The slinger 24a includes a cylindrical portion 28a, a flange 28b extending to the outer diameter side from one end of the cylindrical portion 28a, and a flange portion 28c axially extending from the outer diameter end of the flange 28b. There is a substantially reverse Z-shape. Here, the inner diameter of the ridge portion 28c is configured to be slightly smaller than the maximum outer diameter of the multipolar magnet 23a. By this, it is possible to press-fit the multipolar magnet 23a to the inside diameter side of the flange portion 28c. The slinger 24a is made of metal. The slinger 24 a is fixed to the inner member 13 such that the inner diameter surface of the cylindrical portion 28 a is press-fitted to the outer diameter surface of the inner member 13.
[0036] 次に、多極磁石 23aとスリンガ 24aとの配置状態について説明する。多極磁石 23a は、スリンガ 24aに取り付けられている。具体的には、多極磁石 23aのうち、内方側に 位置する面 29aと、フランジ 28bの外方側に位置する面 29bとが接するように取り付 けられる。  Next, the arrangement of the multipolar magnet 23a and the slinger 24a will be described. The multipolar magnet 23a is attached to the slinger 24a. Specifically, of the multipole magnet 23a, the surface 29a located on the inner side and the surface 29b located on the outer side of the flange 28b are mounted in contact with each other.
[0037] ここで、多極磁石 23aは、鍔部 28cの内径側に圧入され、スリンガ 24aに保持されて いる。また、鍔部 28cの軸方向の端部 28dは、内径側に折り曲げられ、加締められて いる。すなわち、圧入時においては、図 3に示すように、鍔部 28cの軸方向の端部 28 dは、軸方向に真直ぐである。多極磁石 23aをスリンガ 24aに圧入した後に、この端部 28dを内径側に折り曲げて加締め、図 4に示す状態にする。このような加締めは、周 方向に連なって形成されている。 [0038] このように構成することにより、鍔部 28cの内径側部分を利用して、多極磁石 23aを 圧入すること力 Sできる。多極磁石 23aは、鍔部 28cの内径側に圧入されているため、 容易に脱落することはない。この場合、接着剤等を利用した接着による保持ではない ため、プラスチック製の多極磁石であっても、保持力が弱まることはない。したがって 、多極磁石 23aの脱落を防止することができる。また、このような磁気エンコーダ 16a を含む転がり軸受 11は、多極磁石 23aの脱落が防止されているため、破損の恐れが 少ない。 Here, the multipolar magnet 23a is press-fitted to the inner diameter side of the flange portion 28c and held by the slinger 24a. Further, the axial end 28d of the flange portion 28c is bent to the inner diameter side and crimped. That is, at the time of press-fitting, as shown in FIG. 3, the axial end 28d of the flange 28c is straight in the axial direction. After the multipolar magnet 23a is press-fit into the slinger 24a, the end 28d is bent to the inner diameter side and crimped to make it the state shown in FIG. Such caulking is formed continuously in the circumferential direction. With such a configuration, the force S of pressing in the multipolar magnet 23a can be obtained by utilizing the inner diameter side portion of the flange portion 28c. Since the multipolar magnet 23a is press-fitted to the inner diameter side of the flange portion 28c, it does not fall off easily. In this case, since the holding is not by adhesion using an adhesive or the like, the holding power does not become weak even with a plastic multipolar magnet. Therefore, the detachment of the multipolar magnet 23a can be prevented. In addition, since the rolling bearing 11 including such a magnetic encoder 16a is prevented from falling off the multipolar magnet 23a, there is little risk of breakage.
[0039] なお、鍔部 28cの軸方向の端部 28dは、内径側に加締められているため、より確実 に多極磁石 23aの脱落を防止することができる。  The axial end portion 28d of the flange portion 28c is crimped to the inner diameter side, so that the multipolar magnet 23a can be more reliably prevented from falling off.
[0040] また、鍔部 28cは、周方向に連なっていなくともよい。すなわち、鍔部 28cの周方向 の複数の位置に軸方向に延びる切り欠きを設け、この切り欠き間に位置する爪状の 部分の内径側に圧入するようにしてもよい。こうすることにより、圧入時に必要な力を 少なくすることができ、容易に、圧入すること力 Sできる。なお、この場合、切り欠きを周 方向に略等配に設け、爪状の部分を周方向に偏りなく位置させることにより、多極磁 石をより適切に保持することができる。  Further, the ridge portion 28c may not extend in the circumferential direction. That is, notches extending in the axial direction may be provided at a plurality of circumferential positions of the collar portion 28c, and the notches may be press-fitted on the inner diameter side of the claw-like portion located between the notches. By doing this, it is possible to reduce the force required at the time of press-in, and it is possible to easily press-in S. In this case, the multipole magnet can be more properly held by providing the notches in the circumferential direction substantially equidistantly and positioning the claw-like portions in the circumferential direction without bias.
[0041] また、この場合も同様に、圧入後において爪部を内径側に折り曲げ、加締めること にしてもよい。この場合、爪状の部分は、周方向に連なっていないため、容易に加締 めること力 Sでさる。  Also in this case, similarly, after the press-fitting, the claws may be bent to the inner diameter side and crimped. In this case, since the claw-like portion is not continuous in the circumferential direction, it can be easily crimped with a force S.
[0042] なお、多極磁石 23aは、具体的には、以下のような構成であってもよい。すなわち、 多極磁石 23aは、希土類系磁性粉と、希土類系磁性粉を結着するバインダとしての プラスチックとを含むプラスチック製である。多極磁石 23aは、希土類系の磁性粉に、 バインダとして熱可塑性樹脂や熱硬化性樹脂等を用いて!/、る。希土類系の磁性粉は 、例えば、上記したサマリウム鉄系磁性粉やネオジゥム鉄系磁性粉が挙げられる。こ のような希土類系の磁性粉により、上記したように、効率的に磁力を検出することがで きる多極磁石 23aを得ること力 Sできる。また、磁性粉は、上記した材料の組合せ、具体 的には、サマリウム鉄系磁性粉とネオジゥム鉄系磁性粉とを混合したものであってもよ い。  Specifically, the multipole magnet 23a may have the following configuration. That is, the multipolar magnet 23a is made of plastic including rare earth magnetic powder and plastic as a binder for binding the rare earth magnetic powder. The multipolar magnet 23a uses a thermoplastic resin, a thermosetting resin or the like as a binder for the rare earth magnetic powder! Examples of the rare earth magnetic powder include the above-described samarium iron magnetic powder and neodymium iron magnetic powder. With such a rare earth magnetic powder, as described above, the force S can be obtained to obtain the multipole magnet 23a capable of efficiently detecting the magnetic force. The magnetic powder may be a combination of the above-mentioned materials, specifically, a mixture of samarium iron-based magnetic powder and neodymium iron-based magnetic powder.
[0043] なお、希土類系磁性粉を結着するバインダとしてのプラスチックは、 PPS (ポリフエ 二レンスルフイド)や、 PA (ポリアミド)のような熱可塑性樹脂でもよいし、エポキシ樹脂 やフエノール樹脂等の熱硬化性樹脂であってもよ!/、。バインダとして熱可塑性樹脂を 用いる場合には、所定量の希土類系磁性粉を熱可塑性樹脂に添加して混練、分散 し、射出成形等によって成形することにより、最終的な多極磁石 23aの形状とすること 力 Sできる。また、熱硬化性樹脂を用いる場合には、所定量の希土類系磁性粉を熱硬 化性樹脂に添加して混練、分散し、加熱圧縮成形等によって成形することにより、最 終的な多極磁石 23aの形状とすることができる。 Incidentally, a plastic as a binder for binding the rare earth magnetic powder is PPS (polyphenylene sulfide). It may be a thermoplastic resin such as PA (polyamide), or a thermosetting resin such as epoxy resin or phenol resin! /. When a thermoplastic resin is used as a binder, a predetermined amount of rare earth magnetic powder is added to the thermoplastic resin, kneaded, dispersed, and molded by injection molding or the like to form the final shape of the multipolar magnet 23a. What can you do? When a thermosetting resin is used, a predetermined amount of rare earth magnetic powder is added to the thermosetting resin, kneaded, dispersed, and molded by heat compression molding or the like to obtain a final multipolar electrode. It can be in the shape of a magnet 23a.
[0044] ここで、多極磁石 23aの表面には、防鯖処理被膜としてのメツキの被膜が形成され ていてもよい。このように構成することにより、多極磁石 23aの表面を、防食性が良好 なメツキの被膜で覆うことができる。そうすると、多極磁石 23aに含まれる希土類系磁 性粉の発鯖を抑制することができる。したがって、多極磁石 23aの防食性を向上させ ること力 Sできる。その結果、多極磁石 23aを含む磁気エンコーダの防食性を向上させ ること力 Sできる。このようなメツキには、例えば、亜鉛メツキ、ニッケルメツキ、亜鉛一二ッ ケルメツキ等の金属メツキがある。なお、メツキの被膜は、数 m〜数十 m程度の膜 厚であり、図 1等において、その図示を省略している。  Here, on the surface of the multipolar magnet 23a, a coating of a stick may be formed as a mildew-resistant coating. By configuring in this manner, the surface of the multipolar magnet 23a can be covered with a film of metal having good corrosion resistance. Then, it is possible to suppress the generation of the rare earth magnetic powder contained in the multipolar magnet 23a. Therefore, the force S can be made to improve the corrosion resistance of the multipolar magnet 23a. As a result, it is possible to improve the corrosion resistance of the magnetic encoder including the multipolar magnet 23a. Examples of such a metal include metal such as zinc metal, nickel metal, zinc metal and the like. The thickness of the film is about several meters to several tens of meters, and the illustration thereof is omitted in FIG.
[0045] なお、防鯖処理被膜は、電着塗装により形成することにしてもよい。電着塗装によつ て防鯖処理被膜を形成することで、防鯖処理被膜と多極磁石との結着性が良好とな る。さらに、防鯖処理被膜の膜厚を均一に形成することができる。したがって、多極磁 石の寸法精度を良好にすることができる。  Note that the antiglare coating may be formed by electrodeposition coating. By forming the antiglare coating by electrodeposition coating, the bondability between the antiglare coating and the multipolar magnet is improved. Furthermore, the film thickness of the antiglare treatment film can be formed uniformly. Therefore, the dimensional accuracy of the multipolar magnet can be improved.
[0046] ここで、電着塗装には、被塗物、すなわち、ここでは多極磁石となる力 S、多極磁石側 をプラス極側とするァニオンタイプの電着塗装と、多極磁石側をマイナス極側にする カチオンタイプの 2つがある。この場合、電着塗装を行うには、多極磁石側をマイナス 極側とするカチオン電着塗装が好ましい。こうすることにより、多極磁石側の金属ィォ ンの溶出を防止することができるため、適切に防鯖処理被膜を形成することができる Here, in the electrodeposition coating, an object to be coated, that is, an anion-type electrodeposition coating in which the force S serving as a multipolar magnet here is the positive pole side, and the multipolar magnet side is used. There are two types of cation type that make it to the negative pole side. In this case, in order to perform electrodeposition coating, cationic electrodeposition coating in which the multipolar magnet side is the negative electrode side is preferable. By doing this, it is possible to prevent the elution of the metal ions on the multipolar magnet side, and therefore, it is possible to properly form a mildew-proof coating.
Yes
[0047] また、多極磁石の表面に、防鯖処理皮膜としてのメツキの被膜を形成し、断面略 L 字状のスリンガに保持させるようにしてもよい。図 5は、この場合の、磁気エンコーダ 1 6eの一部を示す断面図である。図 6は、このような磁気エンコーダ 16eを含む転がり 軸受 11の一部を示す断面図である。図 6に示す転がり軸受 11は、内方部材 13とし ての内輪と、外方部材 14としての外輪と、弾性部材 32としてのゴム部とを含む。なお 、図 6に示す転がり軸受 11の基本的な構成については、図 1等に示す転がり軸受 11 と同様であるため、その説明を省略する。なお、図 5等においては、理解の容易の観 点から、メツキの被膜 30の膜厚を厚くして図示している。 In addition, a coating of metal as a mildew-proof coating may be formed on the surface of the multipolar magnet, and may be held by a slinger having a substantially L-shaped cross section. FIG. 5 is a cross-sectional view showing a part of the magnetic encoder 16e in this case. Figure 6 shows a rolling including such a magnetic encoder 16e FIG. 2 is a cross-sectional view showing a part of a bearing 11; The rolling bearing 11 shown in FIG. 6 includes an inner ring as the inner member 13, an outer ring as the outer member 14, and a rubber portion as the elastic member 32. The basic configuration of the rolling bearing 11 shown in FIG. 6 is the same as that of the rolling bearing 11 shown in FIG. In FIG. 5 and the like, the film thickness of the film 30 of the resin is shown as thick in view of easy understanding.
[0048] スリンガ 24eは、円筒部 28eと、円筒部 28eの一方端から外径側に延びるフランジ 2 8fとを含む。スリンガ 24eの断面は、略 L字状である。スリンガ 24eの円筒部 28eは、 内方部材 13としての内輪に圧入されている。  The slinger 24e includes a cylindrical portion 28e and a flange 28f extending outward from one end of the cylindrical portion 28e. The cross section of the slinger 24e is substantially L-shaped. The cylindrical portion 28 e of the slinger 24 e is press-fitted to the inner ring as the inner member 13.
[0049] 多極磁石 23eは、軸受内側の面 29fとフランジ 28fの軸受外側の面 29eとを接着剤 等により接着して、スリンガ 24eに保持されている。この場合、多極磁石 23eは、メツキ の被膜 30を介してスリンガ 24eに保持されている。スリンガ 24eに保持された多極磁 石 23eは、回転軸の回転に伴って、内方部材 13としての内輪と共に回転する。このと き、軸方向外側に配置され、多極磁石 23eに対向する位置に設けられた回転センサ 22の検出咅 により、多極磁石 23eの N極 27aおよび S極 27bの磁力の変ィ匕を読取 る。このようにして、回転検出装置 21は、回転軸の回転数等を検出する。  The multipolar magnet 23e is held by the slinger 24e by bonding the inner surface 29f of the bearing and the outer surface 29e of the bearing of the flange 28f with an adhesive or the like. In this case, the multipolar magnet 23e is held by the slinger 24e through the coating 30 of the metal. The multipolar magnet 23e held by the slinger 24e rotates with the inner ring as the inner member 13 as the rotation shaft rotates. At this time, the change in the magnetic force of the N pole 27a and the S pole 27b of the multipole magnet 23e is detected by the detection sensor of the rotation sensor 22 disposed on the axially outer side and provided at the position facing the multipole magnet 23e. Read. Thus, the rotation detection device 21 detects the number of rotations and the like of the rotation shaft.
[0050] ここで、多極磁石 23eの表面には、防鯖処理被膜としてのメツキの被膜 30が形成さ れている。このように構成することにより、多極磁石 23eの表面を、防食性が良好なメ ツキの被膜 30で覆うことができる。そうすると、多極磁石 23eに含まれる希土類系磁 性粉の発鯖を抑制することができる。したがって、多極磁石 23eの防食性を向上させ ること力 Sできる。その結果、多極磁石 23eを含む磁気エンコーダの防食性を向上させ ること力 Sでさる。  Here, on the surface of the multipolar magnet 23e, a coating 30 of a stick as a fireproofing coating is formed. By configuring in this manner, the surface of the multipolar magnet 23e can be covered with the coating 30 with good corrosion resistance. Then, the generation of the rare earth magnetic powder contained in the multipolar magnet 23e can be suppressed. Therefore, the force S can be made to improve the corrosion resistance of the multipolar magnet 23e. As a result, the corrosion resistance of the magnetic encoder including the multipolar magnet 23e is improved by the force S.
[0051] なお、上記の実施の形態においては、磁気エンコーダに含まれた多極磁石にのみ 、メツキの被膜を形成することにした力 これに限らず、磁気エンコーダの表面全体に メツキの被膜を形成することにしてもよい。すなわち、多極磁石とスリンガを接着して 一体化した後、この表面にメツキの被膜を形成するよう構成することにしてもよい。  In the above-described embodiment, the force of forming the coating of the film only on the multipolar magnet included in the magnetic encoder is not limited to this. The coating of the film is formed on the entire surface of the magnetic encoder. It may be formed. That is, after the multipolar magnet and the slinger are bonded and integrated, a coating film of metal may be formed on this surface.
[0052] 図 7を参照して、磁気エンコーダ 36は、まず、多極磁石 37の軸受内側の面 39aとス リンガ 38の軸受外側の面 39bとが接着され、一体化される。この多極磁石 37とスリン ガ 38とが一体化されたものの表面に、メツキの被膜 40が形成されている。このように 構成することにより、磁気エンコーダ 36の表面全体を、メツキの被膜 40で覆うことがで きる。そうすると、さらに、磁気エンコーダ 36の防食性を向上させることができる。 Referring to FIG. 7, in the magnetic encoder 36, first, the inner surface 39a of the bearing of the multipolar magnet 37 and the outer surface 39b of the bearing of the ringer 38 are bonded and integrated. A metal coating 40 is formed on the surface of the multipole magnet 37 and the slinger 38 integrated with each other. in this way By configuring, the entire surface of the magnetic encoder 36 can be covered with the coating 40 of plastic. Then, the corrosion resistance of the magnetic encoder 36 can be further improved.
[0053] このような磁気エンコーダを含む転がり軸受は、自動車用の車軸の支持構造に備 えられる。図 8は、車軸支持構造を示す概略断面図である。図 8を参照して、車軸支 持構造 61は、車軸(図示せず)と共に回転するハブ輪 62と、車軸を支持する転がり 軸受 71とを含む。ハブ輪 62のフランジ 64は、ボルト 63によって車輪(図示せず)に 固定されている。転がり軸受 71は、複列アンギユラ玉軸受であり、複列に配置される 玉 72と、内輪 73と、外輪 74と、保持器 75と、シール 76と、磁気エンコーダ(図示せず )とを含む。 [0053] A rolling bearing including such a magnetic encoder is provided in a support structure of an automobile axle. FIG. 8 is a schematic cross-sectional view showing an axle support structure. Referring to FIG. 8, an axle support structure 61 includes a hub wheel 62 rotating with an axle (not shown) and a rolling bearing 71 supporting the axle. The flange 64 of the hub wheel 62 is fixed by bolts 63 to the wheel (not shown). The rolling bearing 71 is a double-row angyura ball bearing, and includes a double-row ball 72, an inner ring 73, an outer ring 74, a cage 75, a seal 76, and a magnetic encoder (not shown). .
[0054] 内輪 73はハブ輪 62に固定されてハブ輪 62と共に内方部材を構成し、車軸の回転 と共に回転する。外輪 74は、外径側に配置されるハウジング(図示せず)に固定され 、外方部材を構成する。また、シール 76には、多極磁石およびスリンガを含む磁気ェ ンコーダが含まれており、回転センサ 77により、回転数を検出することができる。  The inner ring 73 is fixed to the hub ring 62 and constitutes an inner member together with the hub ring 62 and rotates with the rotation of the axle. The outer ring 74 is fixed to a housing (not shown) disposed on the outer diameter side, and constitutes an outer member. Further, the seal 76 includes a magnetic encoder including a multipolar magnet and a slinger, and the rotation sensor 77 can detect the number of rotations.
[0055] このように、車軸支持構造 61は構成されている。このような車軸支持構造 61は、磁 気エンコーダに含まれる多極磁石のスリンガからの脱落を防止することができるため As described above, the axle support structure 61 is configured. Such an axle support structure 61 can prevent the multipolar magnet included in the magnetic encoder from falling off from the slinger.
、車軸の回転数等を確実に検出することができる。また、このような車軸支持構造 61 は、防食性を向上した磁気エンコーダを含むため、長寿命を図ることができる。 The rotational speed of the axle, etc. can be detected reliably. In addition, since such an axle support structure 61 includes a magnetic encoder with improved corrosion resistance, a long life can be achieved.
[0056] なお、スリンガの形状は、断面が略 L字状、または略 Z字状であってもよい。さらに円 筒部が周方向に連なっていてもよいし、部分的に切り欠きが設けられた舌片状であつ てもよい。 The shape of the slinger may be substantially L-shaped or substantially Z-shaped in cross section. Furthermore, the cylindrical portion may extend in the circumferential direction, or may be in the shape of a tongue partially provided with a notch.
[0057] なお、上記の実施の形態においては、転動体として玉を使用した場合について説 明したが、転動体として、円錐ころを使用した場合についても適用される。また、シー ルを含まないタイプの転がり軸受や、外輪、内輪等の軌道輪を含む転がり軸受につ いても適用される。  In the above embodiment, although the case where balls are used as the rolling elements has been described, the present invention is also applicable to the case where tapered rollers are used as the rolling elements. In addition, the present invention is also applicable to rolling bearings of a type not including a seal, and rolling bearings including races such as an outer ring and an inner ring.
[0058] また、上記した磁気エンコーダは、転がり軸受に含まれることにした力 これに限ら ず、滑り軸受に含まれることにしてもよい。さらに、回転軸等に限らず、他の回転部材 の回転数等を検出する際にも適用され、検出センサと共に、回転部材の回転数等を 検出する回転検出装置を構成することにしてもよい。 [0059] 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実 施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲 内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可 能である。 Further, the magnetic encoder described above is not limited to the force included in the rolling bearing, and may be included in the sliding bearing. Furthermore, the present invention may be applied not only to the rotation shaft and the like but also to detect the rotation speed of other rotation members, etc., and together with the detection sensor, a rotation detection device may be configured to detect the rotation speed etc. . Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same or equivalent scope of the present invention.
産業上の利用可能性  Industrial applicability
[0060] この発明に係る磁気エンコーダは、防食性の向上等がなされているため、自動車用 の転がり軸受等に有効に利用される。 [0060] The magnetic encoder according to the present invention is effectively used for rolling bearings and the like for automobiles because the corrosion resistance is improved.
[0061] この発明に係る転がり軸受は、自動車用等、破損の恐れを低減した磁気ェンコ一 ダを備えるため、長寿命が要求される場合に、有効に利用される。 [0061] The rolling bearing according to the present invention is effectively used when a long life is required because it is provided with a magnetic encoder such as for an automobile with a reduced risk of breakage.

Claims

請求の範囲 The scope of the claims
[1] 円板状であって、その中央に貫通孔を有し、周方向に交互に磁極が配置されるプ ラスチック製の多極磁石と、  [1] A plastic multipole magnet having a disc shape, a through hole at the center thereof, and magnetic poles alternately arranged in the circumferential direction;
円筒部と、前記円筒部の一方の端部から外径側に延びるフランジと、前記フランジ の外径側の端部から軸方向に延びる鍔部とを備え、その断面が略逆 z字状であるス リンガとを含む磁気エンコーダであって、  A cylindrical portion, a flange extending to the outer diameter side from one end of the cylindrical portion, and a flange portion extending in the axial direction from the outer diameter end of the flange, the cross section of which is substantially reverse Z-shaped A magnetic encoder including a certain slider,
前記多極磁石は、前記鍔部の内径側に圧入され、前記スリンガに保持されている、 磁気エンコーダ。  The magnetic encoder, wherein the multipolar magnet is press-fitted to the inner diameter side of the collar and held by the slinger.
[2] 前記鍔部の軸方向の端部は、内径側に加締められている、請求項 1に記載の磁気 エンコーダ。  [2] The magnetic encoder according to claim 1, wherein an axial end of the flange portion is crimped to an inner diameter side.
[3] 内径側に加締められた加締め部は、周方向に連なっている、請求項 2に記載の磁 気エンコーダ。  [3] The magnetic encoder according to claim 2, wherein the crimped portion crimped to the inner diameter side is continued in the circumferential direction.
[4] 前記鍔部には、周方向の複数の箇所に、軸方向に延びる切り欠きが設けられてい る、請求項 1に記載の磁気エンコーダ。  [4] The magnetic encoder according to claim 1, wherein the collar portion is provided with notches extending in the axial direction at a plurality of circumferential positions.
[5] 前記多極磁石は、希土類系磁性粉と、前記希土類系磁性粉を結着するバインダと してのプラスチックとを含むプラスチック製であり、 [5] The multipolar magnet is made of a plastic including a rare earth magnetic powder and a plastic as a binder for binding the rare earth magnetic powder,
前記多極磁石の表面には、防鯖処理被膜が形成されている、請求項 1に記載の磁 気エンコーダ。  The magnetic encoder according to claim 1, wherein a anti-glare coating is formed on the surface of the multipolar magnet.
[6] 前記磁気エンコーダの表面には、防鯖処理被膜が形成されている、請求項 5に記 載の磁気エンコーダ。  [6] The magnetic encoder according to claim 5, wherein a anti-glare coating is formed on the surface of the magnetic encoder.
[7] 前記防鯖処理被膜は、メツキの被膜である、請求項 5に記載の磁気エンコーダ。  [7] The magnetic encoder according to claim 5, wherein the protection coating is a coating of metal.
[8] 前記防鯖処理被膜は、電着塗装により形成されている、請求項 5に記載の磁気ェ ンコーダ。 [8] The magnetic encoder according to claim 5, wherein the protection coating is formed by electrodeposition coating.
[9] 前記電着塗装は、カチオン電着塗装である、請求項 8に記載の磁気エンコーダ。  [9] The magnetic encoder according to claim 8, wherein the electrodeposition coating is cationic electrodeposition coating.
[10] 請求項 1に記載の磁気エンコーダを含む、転がり軸受。 [10] A rolling bearing comprising the magnetic encoder according to claim 1.
PCT/JP2007/068093 2006-10-03 2007-09-18 Magnetic encoder and rolling bearing WO2008041474A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006272161A JP2008089473A (en) 2006-10-03 2006-10-03 Magnetic encoder and rolling bearing
JP2006-272161 2006-10-03
JP2006-272852 2006-10-04
JP2006272852A JP2008089140A (en) 2006-10-04 2006-10-04 Magnetic encoder and rolling bearing

Publications (1)

Publication Number Publication Date
WO2008041474A1 true WO2008041474A1 (en) 2008-04-10

Family

ID=39268336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068093 WO2008041474A1 (en) 2006-10-03 2007-09-18 Magnetic encoder and rolling bearing

Country Status (1)

Country Link
WO (1) WO2008041474A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293622A (en) * 2003-03-26 2004-10-21 Nsk Ltd Rolling bearing unit having encoder and its manufacturing method
JP2005274436A (en) * 2004-03-25 2005-10-06 Nsk Ltd Encoder and rolling bearing equipped with encoder concerned
JP2006200921A (en) * 2005-01-18 2006-08-03 Ntn Corp Magnetic encoder and bearing for wheel having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293622A (en) * 2003-03-26 2004-10-21 Nsk Ltd Rolling bearing unit having encoder and its manufacturing method
JP2005274436A (en) * 2004-03-25 2005-10-06 Nsk Ltd Encoder and rolling bearing equipped with encoder concerned
JP2006200921A (en) * 2005-01-18 2006-08-03 Ntn Corp Magnetic encoder and bearing for wheel having the same

Similar Documents

Publication Publication Date Title
EP1041387B1 (en) Combination seal ring with encoder
US20100301847A1 (en) Wheel bearing device with rotation detector
EP1965090B1 (en) Magnetized pulsar ring, and rolling bearing device with sensor using the same
JP4372438B2 (en) Wheel bearing
JP2004257817A (en) Magnetic encoder and bearing for wheel having the same
JP4278324B2 (en) Wheel bearing
JP2004037441A (en) Magnetic encoder and wheel bearing using it
JP2013117455A (en) Wheel bearing apparatus with rotation speed detection device
JP2012107753A (en) Method for assembling rolling bearing device
JP5334820B2 (en) Wheel bearing device with rotation speed detector
JP4725020B2 (en) Rolling bearing with sensor for automobile wheel and manufacturing method thereof
JP2005233321A (en) Encoder device and roller bearing having the encoder device
JP5061652B2 (en) Magnetized pulsar ring and sensor-equipped rolling bearing device using the same
WO2008041474A1 (en) Magnetic encoder and rolling bearing
JP2007333142A (en) Rolling bearing
WO2006035616A1 (en) Magnetic encoder and bearing for wheel equipped with it
JP2007211840A (en) Bearing with sensor
JP2013053638A (en) Wheel bearing device with rotation speed detector
WO2008053663A1 (en) Magnetic encoder and rolling bearing
JP2005140334A (en) Bearing with magnetic encoder
JP2017067245A (en) Pressure-insertion method of encoder ring and pressure-insertion method of sealing device having the encoder ring
JP5321115B2 (en) Rolling bearing with rotation sensor
JP2008094243A (en) Bearing device for wheel
JP2008089140A (en) Magnetic encoder and rolling bearing
JP2009036335A (en) Wheel bearing device with rotating speed detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828246

Country of ref document: EP

Kind code of ref document: A1