WO2008041386A1 - Production device of gas barrier plastic container and its production method - Google Patents

Production device of gas barrier plastic container and its production method Download PDF

Info

Publication number
WO2008041386A1
WO2008041386A1 PCT/JP2007/058458 JP2007058458W WO2008041386A1 WO 2008041386 A1 WO2008041386 A1 WO 2008041386A1 JP 2007058458 W JP2007058458 W JP 2007058458W WO 2008041386 A1 WO2008041386 A1 WO 2008041386A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic container
gas
external electrode
frequency power
plasma
Prior art date
Application number
PCT/JP2007/058458
Other languages
French (fr)
Japanese (ja)
Inventor
Keishu Takemoto
Tsuyoshi Kage
Masahisa Oikawa
Shigekazu Tada
Takeharu Kawabe
Yuichi Sakamoto
Masaki Nakaya
Original Assignee
Mitsubishi Shoji Plastics Corporation
Youtec Co., Ltd.
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shoji Plastics Corporation, Youtec Co., Ltd., Kirin Beer Kabushiki Kaisha filed Critical Mitsubishi Shoji Plastics Corporation
Publication of WO2008041386A1 publication Critical patent/WO2008041386A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Definitions

  • the present invention relates to a gas noble plastic container manufacturing apparatus for forming a thin film having gas barrier properties on the inner wall surface of a plastic container by plasma CVD (chemical vapor deposition). Moreover, it is related with the manufacturing method of the container.
  • the present invention also relates to a plasma CVD film forming apparatus that can suppress the generation of plasma outside the reaction chamber. It also relates to the manufacturing method of the container.
  • the present invention also relates to a technique for suppressing plasma generation outside a reaction chamber when a gas noble film is formed on the inner wall surface of a plastic container by a plasma CVD method.
  • Plastic containers are difficult to use for oxygen-sensitive beverages such as beer and sparkling liquor because the odor sorbs quickly and gasno-rear is inferior to cans. Therefore, a method and apparatus for coating a hard carbon film (diamond-like carbon (DLC)) or the like that solves the problems of sorption and gas barrier properties in plastic containers are disclosed. For example, by using an external electrode having an internal space approximately similar to the outer shape of the target container and an internal electrode inserted into the container from the mouth of the container and also serving as a source gas introduction pipe, An apparatus for coating a hard carbon film on a wall surface is disclosed (for example, see Patent Document 1 or 2).
  • DLC diamond-like carbon
  • high-frequency power is applied to the external electrode while a carbon source gas such as aliphatic hydrocarbons or aromatic hydrocarbons carbon is supplied as a source gas in the container.
  • a carbon source gas such as aliphatic hydrocarbons or aromatic hydrocarbons carbon
  • the source gas is turned into plasma between both electrodes, and ions in the generated plasma are attracted to a high-frequency potential difference (self-bias) generated between the external electrode and the internal electrode, and collide with the inner wall of the container. A film is formed.
  • Patent Document 1 Japanese Patent No. 2788412
  • Patent Document 2 Japanese Patent No. 3072269
  • the present inventors have found that in such a film forming apparatus, the generation of plasma occurs not only in the external electrode in which the plastic container is accommodated, but also in the exhaust chamber communicating therewith. It has been found that some of the exhaust paths from the exhaust chamber to the vacuum pump occur.
  • Such plasma generated outside the external electrode may cause deterioration of metal parts in the exhaust chamber, metal parts such as pipes in the exhaust passage, and non-metal parts used in pipe joints, etc. Incurs shortening.
  • the plasma generated at other than the external electrode causes foreign material such as carbon-based foreign matter from the source gas to adhere to the wall surfaces of the exhaust chamber and the exhaust path. It is preferable that this carbon-based foreign matter is periodically removed.
  • an object of the present invention is to prevent the generation of carbon-based foreign matter by suppressing the generation of plasma in the exhaust chamber or the exhaust path after that in the apparatus for manufacturing a gas plastic plastic container.
  • it is not necessary to replace the external electrode when forming a film in containers having different shapes.
  • the purpose is to increase the productivity of gas barrier plastic containers by reducing the work of removing external electrodes that accompanies periodic foreign object removal and container shape change. At the same time, it aims to prevent shortening of the device life.
  • an object of the present invention is to produce a container having high uniformity of thin film thickness in the apparatus container main axis direction in the gas barrier plastic container manufacturing method. is there.
  • Another object of the present invention is to provide a method for suppressing the generation of plasma in the exhaust chamber.
  • Another object of the present invention is to provide a method for manufacturing a container in which the thickness of the gas barrier thin film is made uniform with respect to the container main axis direction by utilizing this plasma generation suppressing method.
  • an object of the present invention is to provide an apparatus for producing a gas-nore plastic container that can operate stably for a long period of time, in which the deterioration of each component in the exhaust chamber and the exhaust path is difficult to occur by using this plasma generation suppression method.
  • the impedance is not determined by the plastic container, the external electrode, and the internal electrode.
  • the plastic container, the external electrode, the exhaust chamber, the exhaust pipe, and the internal electrode The impedance is considered to be determined between the two. Therefore, as the film is deposited, the carbon-based foreign material, which is an insulator, adheres to the film, and the impedance gradually increases.
  • the high frequency power source is not directly connected to the external electrode but connected via an automatic matching device. This is because the automatic matching device can match the impedance by the inductance recapacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
  • an object of the present invention is to provide plasma in an exhaust chamber or an exhaust path thereafter so that plasma is generated only in the reaction chamber, that is, in the plastic container, in the plasma CVD film forming apparatus. This is to suppress the generation of plasma and to ignite the plasma stably at this time. Furthermore, by suppressing the generation of plasma in the exhaust chamber or in the exhaust path after that, it is possible to prevent the device life from being shortened, to prevent accidental occurrence of defective bottles due to a sudden change in impedance, and to the container main axis direction. Average thickness of gas barrier thin film The purpose is to unify.
  • Another object of the present invention is to reduce the film thickness of the gas barrier thin film relative to the container main axis direction by suppressing the generation of plasma in the exhaust chamber or the exhaust path after it in the gas barrier plastic container manufacturing method. Is to produce a uniform container stably.
  • the apparatus for producing a gas-no plastic plastic container includes an external electrode serving as a vacuum chamber that accommodates the plastic container, and a source gas supply pipe that is detachably disposed inside the plastic container.
  • a gas barrier plastic container having a chamber, an insulating member that electrically insulates the external electrode and the exhaust chamber, and forming a thin film having a gas releasability on the inner wall surface of the plastic container by a plasma CVD method
  • a spacer made of a dielectric material is disposed in a gap space between the inner wall surface of the external electrode and the outer wall surface of the plastic container;
  • the combined capacitance of the capacitance of the plastic container itself and the capacitance of its internal space is C, and the film forming unit including the internal space of the vacuum chamber and the internal space of the exhaust chamber.
  • C is the combined capacitance of the outer space of the plastic container in the inner space of the knit.
  • the power supply supplies low frequency power having a frequency of 400 kHz to 4 MHz to the external electrode.
  • the plastic container has a shape in which a mouth portion is reduced in diameter with respect to the body portion, and the external electrode is formed of the plastic container. It has a cylindrical internal space having an inner diameter slightly larger than the body diameter, and the spacer includes an outer wall surface of a portion whose diameter is reduced from the body portion to the mouth portion of the plastic container and the outer electrode. It is preferably disposed in a gap space sandwiched between cylindrical inner wall surfaces. Efficiently apply a bias voltage to plastic containers with substantially the same body diameter and different shoulder or neck shapes without replacing the external electrodes Can do.
  • the external electrode is a force having an internal space for accommodating the entire plastic container, or the whole excluding the mouth of the plastic container. The case where it has the internal space which accommodates is included.
  • a thin film having a gas barrier property can be formed on the inner wall of the mouth of the plastic container, or it can be non-deposited.
  • a method for producing a gas-nore plastic container according to the present invention includes a step of housing a plastic container in an external electrode serving as a vacuum chamber,
  • the external electrode has a frequency of 400 kHz to 4 MHz.
  • the method for producing a gas-soluble plastic container according to the present invention includes a case where a carbon film, a silicon-containing carbon film, or a SiO film is formed as the thin film having gas barrier properties.
  • the inventors of the present invention combined the insulator spacer and the internal space of the exhaust chamber as compared with the state where the manufacturing apparatus described in Patent Document 1 or 2 is in normal operation.
  • the present inventors completed the present invention by discovering that a gas barrier thin film can be formed in a state in which plasma generation in the exhaust chamber is suppressed if film formation is performed with the capacitance impedance increased intentionally.
  • the method for suppressing plasma generation outside the reaction chamber according to the present invention is a reaction method. After the plastic container is accommodated in the chamber, the vacuum pump is operated to cause the gas inside the reaction chamber to pass through an exhaust chamber that is electrically insulated from the reaction chamber by an insulator spacer.
  • the impedance B is relatively increased with the impedance A as a reference to suppress the generation of plasma in the exhaust chamber.
  • the vacuum pump is operated so that the internal gas in the reaction chamber is supplied by an insulator spacer.
  • the reaction chamber is then evacuated through an exhaust chamber that is electrically insulated from the reaction chamber, and then the reaction chamber is blown out under a predetermined reduced pressure within the plastic container.
  • Impedance B of impedance B of combined capacitance C with subspace is
  • the gas barrier thin film is formed in a relatively high state with respect to the dance A.
  • a gas barrier thin film can be formed with an increased impedance B by an electrical action without adding physical operation of the apparatus members during film formation.
  • Impedance B In the method for producing a gas barrier plastic container according to the present invention, it is preferable to increase the impedance B by increasing the volume of the exhaust chamber. Impedance B can be increased by increasing the volume of the exhaust chamber during film formation. [0024] In the method for producing a gas-soluble plastic container according to the present invention, it is preferable to increase the impedance B by changing the thickness of the insulator spacer to a thicker one. Impedance B can be increased by using a thick insulator spacer when forming the film.
  • variable capacitor having a capacitance C is connected in series between the exhaust chamber and the ground, and the combined capacitance C
  • 3 2 is the sum of the capacitance C of the variable capacitor.
  • Impedance B can be increased by adjusting the capacitance of the variable capacitor.
  • the frequency of the high frequency power is preferably 13.56 MHz.
  • the frequency of the low frequency power is preferably 100 kHz to 3 MHz. Impedance B can be sufficiently increased, and plasma generation in the exhaust chamber can be further suppressed.
  • the output of the low frequency power is preferably 20 to 80% of the total output of the high frequency power and the low frequency power. While suppressing the generation of plasma in the exhaust chamber, the generation of plasma in the reaction chamber can be produced to produce a plastic container having good gas-releasability.
  • the method for producing a gas barrier plastic container according to the present invention includes a case where a carbon film, a silicon-containing carbon film, or a SiO film is formed as the gas barrier thin film.
  • the apparatus for producing a gas-no plastic plastic container electrically isolates each of the reaction chamber, the exhaust chamber, and the reaction chamber and the exhaust chamber, which accommodates the plastic container. And an insulator spacer provided with an opening for communicating the reaction chamber and the exhaust chamber, and an internal gas of the reaction chamber connected to the exhaust chamber via the opening and the exhaust chamber.
  • a vacuum pump for exhausting gas a source gas supply pipe disposed inside the plastic container, source gas supply means for supplying source gas to the source gas supply pipe, and high frequency power for supplying high frequency power to the reaction chamber
  • a gas barrier bra In the apparatus for manufacturing a stick container, the impedance A of the combined capacitance C between the plastic container and the internal space of the reaction chamber, the insulator spacer, and the exhaust chamber
  • Impedance B of impedance B of combined capacitance C with subspace is
  • the impedance increasing means is preferably low-frequency power supply means for supplying low-frequency power superimposed on high-frequency power supplied to the reaction chamber.
  • the gas barrier thin film can be formed with the impedance B increased by an electrical action without applying physical manipulation of the apparatus members during film formation.
  • the impedance increasing means is preferably means for increasing the volume of the exhaust chamber.
  • the impedance increasing means is preferably means for changing the insulator spacer to a thicker insulator spacer. It is possible to form a gas barrier thin film with an increased impedance B by making it possible to use a thick insulator spacer when forming the film.
  • the impedance increasing means is a variable capacitor connected in series between the exhaust chamber and the ground. By adjusting the capacitance of the variable capacitor when forming the film, it is possible to form a gas noor thin film with the impedance B increased.
  • the inventors of the present invention have a device in which the combined capacitance of the inner space of the plastic container and the reaction chamber is larger than the combined capacitance of the inner space of the exhaust chamber and the insulator spacer, and
  • a low-frequency power source as a power source to turn the raw material gas into plasma
  • the impedance on the exhaust chamber side is increased, thereby suppressing the occurrence of plasma in the exhaust chamber or the exhaust path thereafter. I found that I can do it.
  • a low frequency power supply It was found that even if the plasma was not ignited or the plasma was ignited, the disappearance could occur accidentally, and as a measure against it, it was found that the incidental problem could be solved by providing auxiliary means for plasma ignition.
  • the plasma CVD film forming apparatus includes a reaction chamber containing a plastic container, an exhaust chamber, and the reaction chamber and the exhaust chamber to electrically insulate each of the reaction chamber and the reaction chamber. And an insulator spacer having an opening communicating with the exhaust chamber, and connected to the exhaust chamber, and exhausts the internal gas of the reaction chamber through the opening and the exhaust chamber.
  • the spark generating portion is disposed below the center of the height of the plastic container.
  • a gas barrier thin film is easily formed on the bottom of the container and the film thickness distribution is easily homogenized.
  • the plasma ignition means includes a high-voltage DC power source
  • the spark generation unit includes a spark electrode connected to the high-voltage DC power source, and a ground electrode.
  • high-voltage DC power is used as an energy source for generating sparks.
  • the plasma ignition means has a distributor connected to the low-frequency power supply means, and the spark generator is a spark electrode connected to the distributor. And a ground electrode, and a spark may be generated between the spark electrode and the ground electrode.
  • low-frequency power is used as an energy source for generating sparks.
  • a phase shifter is connected in series between the distributor and the spark electrode. The occurrence of sparks In this mode, low-frequency power is used as a source of energy.
  • the spark electrode is formed of molybdenum, tantalum, zirconium, niobium, nickel, iridium, platinum, a base alloy of these metals, or carbon fiber. preferable. It is possible to suppress electrode consumption and contamination of the electrode material into the container. In addition, if the electrode material is carbon fiber, there is no risk of contamination of the electrode material when a carbon film is formed as a gas barrier thin film.
  • the source gas supply pipe is formed of a conductive material, and a linear or rod-like conductor is removed from the pipe except for its tip. And a gas flow path for blowing the source gas to the tip of the conductor, the conductor as the spark electrode, and the source gas supply pipe as the ground electrode It is preferred to be with. Even if the opening of the plastic container is small, the spark generation part can be placed on the main shaft inside the container, and it is difficult to cause uneven film thickness.
  • the source gas supply pipe is formed of a conductive material and is covered with an insulator except for its tip, and the source gas supply pipe ,
  • An outer tube made of a conductive material is disposed outside thereof, and has a double tube structure.
  • the source gas supply tube is used as the spark electrode, and the outer tube is used as the ground electrode. It is also good to do. Even when the mouth of the plastic container is small, the spark generating part can be arranged on the main shaft inside the container, and it is difficult to cause non-uniform film thickness.
  • the step of accommodating the plastic container in the reaction chamber and the operation of the vacuum pump to bring the gas inside the reaction chamber into the insulator spacer Therefore, the step of exhausting through the exhaust chamber electrically insulated from the reaction chamber, the step of blowing the source gas into the plastic container under a predetermined reduced pressure, and the plastic container And C is the combined capacitance between the insulator spacer and the internal space of the exhaust chamber.
  • reaction chamber has a frequency of 100 kHz.
  • the method for producing a gas barrier plastic container according to the present invention includes forming a carbon film, a silicon-containing carbon film, or a SiO film as the gas barrier thin film.
  • the present invention can suppress the generation of carbon-based foreign matter by suppressing the generation of plasma in the exhaust chamber or the exhaust path thereafter, in the gas barrier plastic container manufacturing apparatus. .
  • the present invention when forming a film in a container having a different shape, it is not necessary to replace the external electrode. As a result, it is possible to reduce periodic foreign object removal work and external electrode replacement work associated with container shape change, and increase the productivity of gas barrier plastic containers. Furthermore, it is possible to prevent the apparatus life from being shortened.
  • the present invention provides a method for producing a gas barrier plastic container, which can increase the productivity and produce a container having a highly uniform thin film thickness in the apparatus container main axis direction. .
  • the present invention it is possible to deposit a gas barrier thin film in a state where generation of plasma in the exhaust chamber is suppressed. As a result, in the gas barrier plastic container manufacturing apparatus, it is possible to prevent the deterioration of each component in the exhaust chamber and the exhaust path, and to operate stably for a long time.
  • the plasma CVD film forming apparatus it is possible to suppress the generation of plasma in the exhaust chamber or the subsequent exhaust path so that the plasma is generated only inside the reaction chamber. It can be ignited stably. In addition, by suppressing the generation of plasma in the exhaust chamber or in the exhaust path after that, it is possible to prevent shortening of the device life, prevent accidental occurrence of defective bottles due to sudden changes in impedance, and to the container main axis direction. Thus, the film thickness of the gas barrier thin film can be made uniform.
  • FIG. 1 is a schematic configuration diagram showing a first mode (A) of a gas barrier plastic container manufacturing apparatus according to the present embodiment.
  • FIG. 2 Corresponding to the gas barrier plastic container manufacturing equipment of the first form (A) (B) (C) 2 The circuit diagram of a polar discharge type is shown.
  • FIG. 3 is a schematic configuration diagram showing a second form (A) of the gas barrier plastic container manufacturing apparatus according to the present embodiment.
  • FIG. 4 is a schematic configuration diagram showing an apparatus for producing a gas barrier plastic container according to a first embodiment (B).
  • FIG. 5 is a schematic configuration diagram showing an apparatus for producing a gas barrier plastic container according to a second embodiment (B).
  • FIG. 6 is a schematic configuration diagram showing an apparatus for producing a gas barrier plastic container according to a third embodiment (B).
  • FIG. 7 is a schematic configuration diagram showing a gas barrier plastic container manufacturing apparatus according to a fourth embodiment (B).
  • FIG. 8 A circuit diagram of a bipolar discharge type corresponding to the gas barrier plastic container manufacturing apparatus of the fourth embodiment (B) is shown.
  • FIG. 9 is a diagram showing a comparison of appearance images of a bottle formed 100 times under the conditions of Test 1 and a bottle formed 100 times in Test 4, where (a) shows Test 4 (Example), (b) Is test 1 (comparative example).
  • FIG. 10 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a first embodiment (C).
  • FIG. 11 is a diagram for explaining the details of FIG. 10, in which (a) is a cross-sectional view taken along line AA, and (b) is a partially enlarged schematic view of a spark generating portion.
  • FIG. 12 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a second embodiment (C).
  • FIG. 13 is a diagram for explaining the details of FIG. 12, in which (a) is a cross-sectional view taken along the line BB, and (b) is a partially enlarged schematic view of a spark generating portion.
  • FIG. 14 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a third embodiment (C).
  • FIG. 15 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a fourth embodiment (C).
  • FIG. 16 A diagram showing a comparison of appearance images of a bottle formed 100 times under the conditions of Test 1 and a bottle formed 100 times in Test 2, with (a) showing Test 1 (Example) and (b) Is test 2 (comparative example). Explanation of symbols
  • FIG. 1 is a schematic configuration diagram showing a first mode (A) of a gas barrier plastic container manufacturing apparatus according to the present embodiment.
  • FIG. 1 is a longitudinal sectional view, and this manufacturing apparatus has a rotationally symmetric shape about the main axis of the plastic container 8.
  • the main axis of the container almost coincides with the main axis of the internal electrode.
  • the manufacturing apparatus 100A for the gas plastic plastic container of the first form (A) is inserted into the external electrode 3 serving as a vacuum chamber for housing the plastic container 8 and the inside of the plastic container 8. It is in contact with the internal electrode 9, which is a source gas supply pipe that is detachably disposed, the vacuum pump 23 that exhausts the gas inside the external electrode 3, and the external electrode 3.
  • Spacer 36 having dielectric force is disposed in the gap space, and the combined capacitance of the capacitance of the plastic container 8 itself and the capacitance of the internal space is C, and the interior of the vacuum chamber 3 Inside space 30 and exhaust chamber 5
  • Spacer 36 made of a dielectric is provided in a gap space between the inner wall surface of external electrode 3 and the outer wall surface of plastic container 8 in order to prevent abnormal discharge when low-frequency power is applied. Deployed.
  • a spacer having a shape that substantially fills the gap space is disposed.
  • Spacer 36 made of a dielectric is preferably formed of an inorganic material such as glass or ceramics, or a heat resistant resin.
  • the spacer 36 made of a dielectric is preferably formed in a ring shape so as to surround the plastic container 8. This ring shape may be divided into several parts.
  • the external electrode 3 is formed in a hollow with a conductive material such as metal to form a vacuum chamber, and has an internal space 30 for accommodating a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin. Have.
  • the external electrode 3 consists of an upper external electrode 2 and a lower external electrode 1, and the upper part of the lower external electrode 1 is below the upper external electrode 2 with a ring.
  • the plastic container 8 can be mounted by detaching the lower external electrode 1 from the upper external electrode 2.
  • the external electrode 3 includes the 0_ring 37 disposed between the insulating member 4 and the external electrode 3 and the upper external electrode 2
  • the outer force is sealed by an O-ring 10 disposed between the outer electrode 1 and the lower outer electrode 1.
  • the external electrode 3 is divided into two parts, ie, the upper external electrode 2 and the lower external electrode 1, but it is divided into three or more parts for the sake of manufacturing and sealed with a ring. It's okay.
  • the plastic container 8 generally has a shape in which the mouth portion has a reduced diameter with respect to the body portion, but the details are not necessarily unified, and may be appropriately changed depending on the design of the container. Therefore, the shoulder shape, neck shape, or mouth shape of the container differs depending on the contents.
  • the internal space 30 formed in the external electrode 3 is a cylindrical space, for example, so that the plastic container 8 can be accommodated even if the shape and capacity are different.
  • a cylindrical or square cylindrical space is preferable. If the internal space 30 is a cylindrical space, even if the container has a different shoulder shape, neck shape, or mouth shape, it can be used in common without replacing the external electrode. As a result, the replacement work time of the external electrode and the production cost of the external electrode can be reduced.
  • Figure 1 shows the case of a cylindrical shape.
  • the external electrode 3 preferably has a cylindrical internal space 30 having an inner diameter slightly larger than the body diameter of the plastic container 8. There is no need to place a spacer 36 made of an insulator around the trunk of the plastic container 8, and self-bias is easily applied. At this time, the spacer 36a made of a dielectric material is sandwiched between the outer wall surface of the plastic container 8 whose diameter is reduced from the body portion to the mouth portion and the cylindrical inner wall surface of the external electrode 3 as shown in FIG. It is preferable that the gaps are arranged in the gap space. It is possible to effectively apply a bias voltage to plastic containers with substantially the same body diameter and different shoulder or neck shapes. In addition, as shown in FIG. 1, it is preferable to dispose a spacer 36b made of a dielectric material in a gap space between the outer wall surface of the bottom of the plastic container 8 and the cylindrical inner wall surface of the external electrode 3.
  • the spacer 36 made of a dielectric material preferably has a shape that is substantially in contact with the outer wall surface of the plastic container 8. If the container shape is different, the shape of the gap space is different. It is preferable to replace each of them correspondingly.
  • the exhaust communicating with the internal space 30 of the external electrode 3 and the opening of the plastic container 8 is provided. It is preferable that the chamber 5 is provided and the insulating member 4 for electrically insulating the external electrode 3 and the exhaust chamber 5 is disposed between the external electrode 3 and the exhaust chamber 5.
  • the gas pressure change in the internal space 30 can be moderated when the internal space 30 of the external electrode 3 is exhausted.
  • the exhaust chamber 5 adjusts the gas flow when the source gas blown from the internal electrode 9 flows through the plastic container 8 and is exhausted from the mouth.
  • the insulating member 4 prevents low frequency power from being directly applied to the exhaust chamber 5.
  • to electrically insulate means to insulate DC, and in the case of low frequency power, it becomes capacitive coupling, and very low frequency power flows through the exhaust chamber 5.
  • the insulating member 4 is disposed between the external electrode 3 and the exhaust chamber 5, and an opening 32 a is formed at a position corresponding to the position above the mouth of the plastic container 8.
  • the opening 32a allows the external electrode 3 and the exhaust chamber 5 to be in air communication.
  • the insulating member 4 is preferably formed of an inorganic material such as glass or ceramics, or a heat resistant resin.
  • the insulating member 4 is more preferably made of a dielectric material having a small dielectric loss.
  • polytetrafluoroethylene tetrafluoroethylene / barfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, polyphenylene oxide, polyimide, polyether Sulphone, polyetherimide, polyphenylene sulfide, or polyester ether ketone.
  • the exhaust chamber 5 is formed hollow with a conductive material such as metal and has an internal space 31.
  • the exhaust chamber 5 is disposed on the insulating member 4. At this time, the exhaust chamber 5 and the insulating member 4 are sealed by the O-ring 38.
  • an opening 32b having substantially the same shape is provided in the lower part of the exhaust chamber 5 in correspondence with the opening 32a.
  • the exhaust chamber 5 is connected to a vacuum pump 23 through an exhaust path including a pipe 21, a pressure gauge 20, a vacuum valve 22, and the like, and the internal space 31 is exhausted.
  • the plastic container according to the present invention is, for example, a plastic bottle, cup or tray. Includes containers used with lids or stoppers or sealed, or open without using them. The size of the opening is determined according to the contents.
  • the plastic container 8 has a predetermined thickness with moderate rigidity, and does not include soft packaging material formed from a sheet material without rigidity.
  • the filling of the plastic container according to the present invention is, for example, a beverage such as beer, sparkling liquor, carbonated beverage, fruit juice beverage, or soft drink, a pharmaceutical product, an agrochemical product, or a dry food product that dislikes moisture absorption.
  • the resin used when molding the plastic container 8 is, for example, polyethylene terephthalate resin (PET), polyethylene terephthalate-based copolyester resin (cyclohexane dimethanol instead of ethylene glycol as the alcohol component of the polyester) Copolymers that use styrene are called PETG, manufactured by Eastman Chemical), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (pp), cycloolefin copolymer resin (C0C, cyclic olefin) Copolymer), ionomer resin, poly-4-methylpentene-1 resin, polymethyl methacrylate resin, polystyrene resin, ethylene vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polysalt vinylidene resin
  • the internal electrode 9 also serves as a raw material gas supply pipe, and a gas flow path is provided therein, through which the raw material gas passes.
  • the tip of the internal electrode 9 is provided with a gas outlet 9a, that is, an opening of a gas flow path.
  • One end of the internal electrode 9 is fixed by a wall of the internal space 31 of the exhaust chamber 5, and the internal electrode 9 is disposed in the film forming unit 7.
  • the internal electrode 9 is inserted into the internal space 30 of the external electrode 3 through the internal space 31 and the openings 32a and 32b with the upper part of the inner wall of the exhaust chamber 5 as the base end.
  • the tip of the internal electrode 9 is disposed inside the plastic container 8.
  • the internal electrode 9 is preferably grounded.
  • the source gas supply means 16 introduces the source gas supplied from the source gas generation source 15 into the plastic container 8. That is, one side of the pipe 11 is connected to the base end of the internal electrode 9, and the other side of the pipe 11 is connected to one side of the mass flow controller 13 via the vacuum valve 12. The other side of the mass flow controller 13 is connected to a source gas generation source 15 via a pipe 14.
  • This source gas generation source 15 generates hydrocarbon gas type source gas such as acetylene.
  • the thin film having gas barrier properties in the present invention refers to a thin film that suppresses oxygen permeation, such as a carbon film including a DLC (diamond-like carbon) film, a Si-containing carbon film, or a SiO film.
  • a volatile gas containing the constituent elements of the thin film is selected.
  • a publicly known volatile raw material gas is used as the raw material gas for forming the thin film having gas barrier properties.
  • the source gas for example, when a DLC film is formed, aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons, etc. that are gaseous or liquid at room temperature are used. Is done. In particular, benzene, toluene, o-xylene, m-xylene, p-xylene, cyclohexane and the like having 6 or more carbon atoms are desirable.
  • aliphatic hydrocarbons especially ethylene hydrocarbons such as ethylene, propylene or butylene, or acetylene hydrocarbons such as acetylene, arylene or 1-butyne are used from the viewpoint of hygiene.
  • These raw materials may be used alone, but they can also be used as a mixture of two or more. Further, these gases may be diluted with a rare gas such as argon or helium. In addition, Si-containing hydrocarbon-based gas is used when depositing a silicon-containing DLC film.
  • the DLC film referred to in the present invention is an i-carbon film or a hydrogenated amorphous carbon film (a-C:
  • the DLC film is an amorphous carbon film with SP 3 bonds.
  • a hydrocarbon-based gas such as acetylene gas is used as a source gas for forming this DLC film
  • a Si-containing hydrocarbon-based gas is used as a source gas for forming a Si-containing DLC film.
  • SiO film silicon oxide film
  • a mixed gas of silane and oxygen or a mixed gas of HMDSO and oxygen is used as a source gas.
  • the vacuum pump 23 exhausts the gas inside the film forming unit 7. That is, one end of the pipe 21 is connected to the exhaust chamber 5, the other end of the pipe 21 is connected to the vacuum valve 22, and the vacuum valve 22 is connected to the vacuum pump 23 via the pipe. This vacuum pump 23 is further connected to an exhaust duct 24. A pressure gauge 20 is connected to the pipe 21 to detect the pressure in the exhaust path. By operating the vacuum pump 23, the gas in the plastic container 8 and the gas in the internal space 30 of the external electrode 3 move to the internal space 31 of the exhaust chamber 5 through the openings 32a and 32b, and the gas in the internal space 31 Is sent to the vacuum pump 23 through the exhaust path including the pipe 21.
  • the film forming unit 7 is connected to a leak pipe 17, and the pipe 17 communicates with a leak source 19 (open to the atmosphere) via a vacuum valve 18.
  • the low-frequency power supply means 35 supplies the low-frequency power to the external electrode 3 to turn the raw material gas inside the plastic container 8 into plasma.
  • the low frequency power supply means 35 includes a power source 27 and an automatic matching unit 26 connected to the power source 27, and the power source 27 is connected to the external electrode 3 via the automatic matching unit 26.
  • the frequency of the power source 27 is preferably 400 kHz to 4 MHz. As described above, the exhaust chamber 5 receives low-frequency power due to capacitive coupling.
  • the frequency force ⁇ of the power source 27 is exceeded, the low-frequency power applied to the exhaust chamber 5 increases, so that plasma is easily generated in the internal space 31 of the exhaust chamber 5, and the internal space of the external electrode 3 is increased. 30 alone makes it difficult to generate plasma. Accordingly, foreign substances derived from the raw material gas such as carbon-based foreign substances are deposited in the internal space 31 and need to be cleaned. On the other hand, if the frequency of the power supply 27 is less than 400 kHz, poor ignition is caused.
  • the combined capacitance of the capacitance of the plastic container 8 itself and the capacitance of its internal space is C, and the inside of the vacuum chamber 3 C> C, where C is the combined capacitance of the outer space of the plastic container 8 out of the inner space of the deposition unit 7 including the space 30 and the inner space 31 of the exhaust chamber 5.
  • FIG. 2 shows a bipolar discharge circuit corresponding to the gas barrier plastic container manufacturing apparatus of the first embodiment (A).
  • the AC power supply in the circuit shown in Figure 2 corresponds to power supply 27.
  • C is a plus
  • An LCR meter is a device that can measure inductance (L), capacitance (C), and resistance (R).
  • C is the internal space 30 of the vacuum chamber 3 and
  • it is the combined capacitance of the capacitance of the gap space sandwiched between the inner wall surface of the vacuum chamber 3 and the outer wall surface of the plastic container 8 and the capacitance of the inner space 31 of the exhaust chamber 5.
  • the capacitance of the internal space corresponding to the opening 32a is added to C. Spacer 36 is also in the clearance.
  • C connects an LCR meter to the inner wall of the external electrode 3 and the inner wall of the exhaust chamber 5. Can be measured.
  • Z is the impedance of the plasma generated in the plastic container 8.
  • Z represents the plasm generated outside the plastic container 8, for example, in the exhaust chamber 5.
  • f is a low frequency
  • the internal space 30 of the external electrode 3 is preferably large enough to accommodate the plastic container 8 completely, but if it is larger than that, the capacity can be changed freely. You can do it. Further, the capacity of the internal space 31 of the exhaust chamber 5 or the material and thickness of the insulating member 4 may be freely changed and designed. A capacity variable means for the internal space 31 or the internal space 30 may be provided. Provide a means for changing the material of the insulating member 4 and / or a means for changing the thickness. For example, when manufacturing the device so that the capacity of the internal space 30 of the external electrode 3 is large, the relationship of C> C should be established in advance.
  • the insulation member 4 is made thicker, or the insulation member 4 is made of a material having a small relative dielectric constant, or the device is produced so that the capacity of the internal space 31 of the exhaust chamber 5 is increased. deep.
  • low frequency power of 400 kHz is output from the power supply 27.
  • the relationship C> C preferably the relationship C >> C holds.
  • impedance B can be relatively increased with impedance A as a reference. At this time, the generation of plasma in the internal space 30 of the plastic container 8 is left as it is, and only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed. And I shown in Fig. 2 can be increased.
  • Equation 4 the result of Equation 4 is obtained from Equation 1 and Equation 2.
  • the difference (impedance B—impedance A) is f force, and when C-C is positive, that is, the relationship of C> C
  • the impedance B increases relatively with respect to the impedance A, so that the plasma in the exhaust path leading to the exhaust chamber 5 and then to the vacuum pump 23 can be obtained. Occurrence can be suppressed. As a result, damage due to plasma attack in the exhaust chamber or exhaust path can be reduced, and the amount of source gas-based foreign matter, for example, carbon-based foreign matter, can be reduced.
  • the plasma generation region can be adjusted by appropriately designing and setting the impedance in the manufacturing apparatus. Further, a magnetic field can be used to adjust the fine generation region or the density distribution of the plasma.
  • a magnetic field can be used to adjust the fine generation region or the density distribution of the plasma.
  • the plastic container 8 is inserted from the spacer 36 and / or the external electrode 3 by installing a permanent magnet or an electromagnetic magnet. A magnetic field can be applied in the direction with respect to the internal space.
  • the magnets may be arranged so that the N pole and the S pole are aligned in a direction parallel to the main axis direction of the plastic container. When a plurality of magnets are arranged, they are arranged on a circumference centered on the main axis of the plastic container 8, and preferably arranged at equal intervals.
  • the permanent magnet is, for example, Ne-Fe-B image stone.
  • a pointed portion in the internal electrode 9. More preferably, the gas outlet 9a of the internal electrode 9 is provided with a pointed head. Moreover, you may provide a forced ignition means (not shown).
  • a secondary electron emission material may be formed by coating a part of the surface of the internal electrode 9 with a secondary electron emission material. Secondary electron emission materials such as BeO, MgO, CaO, SrO, BaO etc. 2A group alkaline earth metal oxides, TiO, ZrO etc.
  • Group 4A metal oxides Group 2B metal oxides such as ZnO, Group 3A metal oxides such as Y 2 O
  • 3B group metal oxides such as AlO and GaO, and 4B group metal acids such as SiO, PbO and PbO , 3B group nitrides such as A1N, 3B group nitrides such as GaN and SiN, fluorides such as barium oxynitride, LiF, MgF and CaF, carbides such as SiC, diamond, carbon nanotube, DLC Carbon materials such as these are used alone or in combination. These compounds may be used.
  • MgO series MgO-AlO, MgO-TiO, MgO-ZrO, MgO-
  • a small amount of rare earth oxides such as NbO, LaO or SeO may be added to the layer material.
  • the secondary electron emission layer is formed by a film formation method such as MOCVD, sputtering, thermal spraying, or sol-gel method.
  • FIG. 3 is a schematic configuration diagram showing a second mode (A) of the gas barrier plastic container manufacturing apparatus according to the present embodiment.
  • Equipment for manufacturing gas plastic plastic containers shown in Fig. 1 In 10 OA external electrode 3 has an internal space 30 that accommodates the entire plastic container 8.
  • Force manufacturing equipment for gas plastic plastic containers shown in Fig. 3 Like 200A, it has an internal space 30 that accommodates the entire plastic container 8 except the mouth.
  • Gas barrier property The plastic container manufacturing apparatus 100A can uniformly form a thin film having gas barrier properties on the inner wall of the mouth of the plastic container 8.
  • the 200 A gas barrier plastic container manufacturing apparatus does not form a thin film with a gas barrier property only on the inner wall of the mouth of the plastic container 8, and uniformly applies to the remaining inner wall surface except the inner wall of the mouth of the plastic container 8.
  • a film can be formed.
  • a method for producing a gas-nore plastic container includes a step of housing a plastic container in an external electrode serving as a vacuum chamber, and an internal electrode serving as a raw material gas supply pipe disposed inside the plastic container.
  • the combined capacitance of the capacitance of the vacuum vessel itself and the capacitance of its internal space is assumed to be ⁇ , and among the internal spaces of the film forming unit including the internal space of the vacuum chamber and the internal space of the exhaust chamber, When the synthetic capacitance of the outer space of the plastic container is C,
  • the film forming unit 7 is opened to the atmosphere by opening the vacuum valve 18, and the lower external electrode 1 of the external electrode 3 is removed from the upper external electrode 2.
  • a spacer 36a made of a dielectric is put in advance from the lower side of the upper external electrode 2 and fixed.
  • the plastic container 8 is inserted into the space in the upper external electrode 2 from the lower side of the upper external electrode 2 and installed in the internal space 30 of the external electrode 3.
  • the internal electrode 9 is inserted into the plastic container 8.
  • a spacer 36b made of a dielectric is fixed to the lower external electrode 1.
  • the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the external electrode 3 is sealed with an O-ring 10.
  • the plastic container 8 is accommodated in the internal space 30 of the external electrode 3, and the internal electrode 9 is disposed inside the plastic container 8, and the inner wall surface of the external electrode 3 and the plastic container 8 are disposed.
  • a spacer 36 made of a dielectric material is disposed in a gap space between the outer wall surfaces of the substrate.
  • the inside of the plastic container 8 is replaced with a raw material gas and adjusted to a predetermined film forming pressure. That is, as shown in FIG. 1, after the vacuum valve 18 is closed, the vacuum valve 22 is opened, the vacuum pump 23 is operated, and the gas inside the external electrode 3 is electrically connected to the external electrode 3 by the insulating member 4. Exhaust through the exhaust chamber 5 insulated by Thereby, the inside of the film forming unit 7 including the inside of the plastic container 8 is exhausted through the pipe 21, and the inside of the film forming unit 7 is evacuated.
  • the pressure in the film forming unit 7 at this time is 2.6 to 66 Pa, for example.
  • the vacuum valve 12 is opened, and carbonization of acetylene gas or the like at the source gas generation source 15 is performed. Hydrogen gas is generated, this hydrocarbon gas is introduced into the pipe 14, and the hydrocarbon gas whose flow rate is controlled by the mass flow controller 13 is supplied to the gas outlet through the pipe 11 and the ground potential internal electrode (raw gas supply pipe) 9. Blow out from 9a. As a result, hydrocarbon gas is introduced into the plastic container 8.
  • the film forming unit 7 and the plastic container 8 are maintained at a pressure suitable for the film formation of the DLC film (for example, about 6.6 to 665 Pa) by the balance between the controlled gas flow rate and the exhaust capacity.
  • low frequency power for example, 1 MHz
  • low frequency power for example, 1 MHz
  • a frequency of 400 kHz to 4 MHz is supplied to the external electrode 3 while the raw material gas is blown into the plastic container 8 under a predetermined reduced pressure.
  • the raw material gas in the plastic container 8 is turned into plasma using low frequency power as an energy source.
  • a DLC film is formed on the inner wall surface of the plastic container 8. That is, by supplying low frequency power to the external electrode 3, a bias voltage is generated between the external electrode 3 and the internal electrode 9, and the raw material gas in the plastic container 8 is plasmatized to generate hydrocarbon-based plasma.
  • the DLC film is formed on the inner wall surface of the plastic container 8.
  • the automatic matching unit 26 matches the impedance by the inductance recapacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
  • the spacer 36 made of a dielectric is disposed, abnormal discharge does not occur.
  • the thickness of the DLC film on the inner wall surface of the mouth of the plastic container 8 becomes thinner compared to the conventional case, so that the DLC film is formed on the inner wall surface of the mouth.
  • the resulting coloration is reduced and the design is improved.
  • the output of the low frequency power from the power source 27 is stopped, the plasma is extinguished, and the film formation of the DLC film is completed.
  • the vacuum valve 12 is closed and the supply of the raw material gas is stopped.
  • the vacuum pump 23 exhausts the hydrocarbon gas remaining in the film forming unit 7 and the plastic container 8. Then, the vacuum valve 22 is closed and the exhaust is finished. The pressure in the film forming unit 7 at this time is 6.6 to 665 Pa. Thereafter, the vacuum valve 18 is opened. Thereby, the film forming unit 7 is opened to the atmosphere.
  • the film formation time is as short as several seconds.
  • the DLC film is formed to a thickness of 0.003-5 ⁇ m.
  • FIG. 4 is a schematic configuration diagram showing a first mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment.
  • the gas plastic plastic container manufacturing apparatus includes a reaction chamber 3B containing the plastic container 8, an exhaust chamber 5, The insulating spacer 4B provided with an opening 32 that is sandwiched between the reaction chamber 3B and the exhaust chamber 5 to electrically insulate each of the reaction chamber 3B and the exhaust chamber 5, and the exhaust chamber 5
  • a vacuum pump 23 that is connected and exhausts the internal gas of the reaction chamber 3B through the opening 32 and the exhaust chamber 5, a source gas supply pipe 9 disposed inside the plastic container 8, and a source gas supply pipe 9
  • a plastic container 8 and a raw material gas supply means 16 for supplying the raw material gas to the reaction chamber 3B and a high-frequency power supply means 360 for supplying the high-frequency power to the reaction chamber 3B.
  • reaction Chamber 3B inner space 30B combined capacitance C impedance A and insulator space
  • Impedance increasing means is provided to increase dance B relative to impedance A as a reference.
  • the impedance increasing means is a low-frequency power supply means 350 that superimposes low-frequency power on high-frequency power supplied to the reaction chamber 3B. is there.
  • the present invention there are a plurality of forms as a gas barrier plastic container manufacturing apparatus due to the difference in the configuration of the impedance increasing means.
  • the configuration other than the impedance increasing means has a common configuration, first, the common configuration is used. After the explanation, the impedance increasing means in the first embodiment will be explained.
  • the reaction chamber 3B is formed in a hollow shape with a conductive material such as metal, and has an internal space 30B for accommodating a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin.
  • the inner wall of the inner space 30B is formed in a shape that substantially contacts the outer shape of the plastic container 8. Since the reaction chamber 3B surrounds the plastic container 8, it acts as an external electrode.
  • the reaction chamber 3B includes an upper external electrode 2 and a lower external electrode 1.
  • the upper portion of the lower external electrode 1 is detachably attached to the lower portion of the upper external electrode 2 via a ring 10. .
  • the plastic container 8 can be mounted by detaching the lower external electrode 1 from the upper external electrode 2.
  • the reaction chamber 3B has an external force generated by the O-ring 37 disposed between the insulator spacer 4B and the reaction chamber 3B, and the 0_ring 10 disposed between the upper outer electrode 2 and the lower outer electrode 1. Sealed.
  • the insulator spacer 4B is disposed between the reaction chamber 3B and the exhaust chamber 5, and an opening 32a is formed at a position corresponding to the position above the mouth of the plastic container 8, The The opening 32a connects the reaction chamber 3B and the exhaust chamber 5 in air.
  • the insulator spacer 4B is preferably formed of an inorganic material such as glass or ceramics or a heat resistant resin.
  • polytetrafluoroethylene tetrafluoroethylene “barfluoroalkyl bilayer copolymer”, tetrafluoroethylene “hexafluoropropylene copolymer”, polyphenylene oxide, polyimide, polyether. Sulphone, polyetherimide, polyphenylene sulfide or polyetheretherketone.
  • the exhaust chamber 5 is formed hollow with a conductive material such as metal and has an internal space 31.
  • the exhaust chamber 5 is disposed on the insulator spacer 4B. At this time, the space between the exhaust chamber 5 and the insulator spacer 4B is sealed by the O-ring 38.
  • an opening 32b having substantially the same shape is provided below the exhaust chamber 5 so as to correspond to the opening 32a.
  • the exhaust chamber 5 is connected to a vacuum pump 23 through an exhaust path including a pipe 21, a pressure gauge 20, a vacuum valve 22, and the like, and the internal space 31 is exhausted.
  • the vacuum chamber 7B has two parts, an internal space 30B of the reaction chamber 3B and an internal space 31 of the exhaust chamber 5, which are connected through the openings 32a and 32b.
  • the source gas supply pipe 9 is made of a conductive material and also serves as an internal electrode.
  • the source gas supply pipe 9 has a tubular shape whose inside is hollow. A gas outlet 9a is provided at the tip. A gas outlet may be provided in the side cylinder of the source gas supply pipe 9. Further, the source gas supply pipe 9 (internal electrode) is grounded. One end of the raw material gas supply pipe 9 is fixed by a wall of the internal space of the exhaust chamber 5 and arranged in the vacuum chamber 7B. When the plastic container 8 is set in the reaction chamber 3B, the source gas supply pipe 9 is disposed in the reaction chamber 3B and disposed in the plastic container 8 from the mouth.
  • the source gas supply pipe 9 is inserted through the internal space 31 and the openings 32a and 32b to the internal space 30B of the reaction chamber 3B.
  • the tip of the raw material gas supply pipe 9 is disposed inside the plastic container 8.
  • the internal electrodes may be separately arranged without using the source gas supply pipe 9 and the internal electrodes. At this time, the internal electrode is grounded and inserted into the plastic container 8 in the same manner as the source gas supply pipe 9.
  • the container according to the present invention is the same as in the case of Embodiment A.
  • the resin used in molding the plastic container 8 of the present invention is the same as that in the embodiment A.
  • the source gas supply means 16 introduces the source gas supplied from the source gas generation source 15 into the plastic container 8. That is, one side of the pipe 11 is connected to the base end of the source gas supply pipe 9, and the other side of the pipe 11 is connected to one side of the mass flow controller 13 via the vacuum valve 12. . The other side of the mass flow controller 13 is connected to a source gas generation source 15 via a pipe 14. This source gas generation source 15 generates hydrocarbon gas such as acetylene.
  • the gas barrier film in the present invention refers to a thin film that suppresses oxygen permeability, such as a DLC (diamond-like carbon) film, a Si-containing DLC film, a SiO film, an alumina film, or an A1N film.
  • a volatile gas containing the constituent elements of the thin film is selected.
  • a publicly known volatile raw material gas can be used as the raw material gas for forming the gas barrier thin film.
  • the source gas for example, when forming a DLC film, it is the same as in the case of Embodiment A.
  • the DLC film is the same as in the case of Embodiment A.
  • SiO film silicon oxide film
  • a mixed gas of silane and oxygen or a mixed gas of HMDSO and oxygen is used as a source gas.
  • the vacuum pump 23 exhausts the internal gas of the vacuum chamber 7B. That is, one end of the pipe 21 is connected to the exhaust chamber 5, the other end of the pipe 21 is connected to the vacuum valve 22, and the vacuum valve 22 is connected to the vacuum pump 23 via the pipe. This vacuum pump 23 is further connected to an exhaust duct 24. A pressure gauge 20 is connected to the pipe 21 to detect the pressure in the exhaust path. By operating the vacuum pump 23, the internal gas of the plastic container 8 and the internal gas of the internal space 30B of the reaction chamber 3B move to the internal space 31 of the exhaust chamber 5 through the openings 32a and 32b, and the internal space 31 The internal gas is sent to the vacuum pump 23 through the exhaust path including the pipe 21.
  • the high frequency power supply means 360 supplies the high frequency to the reaction chamber 3B, The internal source gas is turned into plasma.
  • the high-frequency power supply means 360 includes a high-frequency power supply 29 and an automatic matching device 28 connected to the high-frequency power supply 29, and the high-frequency power supply 29 is connected to the reaction chamber 3B via the automatic matching device 28.
  • the high frequency power supply 29 generates high frequency power between the ground potential and the high frequency power is applied between the source gas supply pipe 9 (internal electrode) and the reaction chamber 3 B (external electrode). As a result, the raw material gas supplied to the inside of the plastic container 8 is turned into plasma.
  • the frequency of the high-frequency power supply is more than 3MHz and less than 100MHz, and the high-frequency power supply 29 is preferably an industrial frequency of 13.56MHz, for example.
  • the vacuum chamber 7 B is connected to a leak pipe 17, and the pipe 17 communicates with a leak source 19 (open to the atmosphere) via a vacuum valve 18.
  • the gas barrier plastic container manufacturing apparatus has impedance increasing means based on the configuration described above.
  • the impedance increasing means has a plurality of modes.
  • the low frequency power is supplied by superimposing the low frequency power on the high frequency power supplied to the reaction chamber 3B.
  • the frequency power supply means 350 is provided in the gas barrier plastic container manufacturing apparatus 100B of the first mode (B).
  • the low-frequency power supply means 350 superimposes the low-frequency power on the high-frequency power and supplies it to the reaction chamber 3B, thereby converting the raw material gas inside the plastic container 8 into plasma.
  • the low-frequency power supply means 350 includes a low-frequency power source 270 and an automatic matching unit 260 connected to the low-frequency power source 270.
  • the low-frequency power source 270 is connected to the reaction chamber 3B via the automatic matching unit 260.
  • the low frequency power supply 270 generates low frequency power between the ground potential and the low frequency power between the source gas supply pipe 9 (internal electrode) and the reaction chamber 3B (external electrode). Applied by being superimposed on (by high frequency power supply 29).
  • the frequency of the low-frequency power supply 270 indicates a relatively low frequency compared to the frequency of the high-frequency power supply 29, but if the frequency of the high-frequency power supply 29 is 13.56 MHz, the frequency of the low-frequency power supply 270 is 100 kHz to 3MHz is preferred. If the frequency of the low-frequency power supply 270 exceeds 3 MHz, the frequency difference from the frequency of the high-frequency power supply 29 (13.56 MHz) will be small, and the effect of increasing impedance B will be diminished. On the other hand, if the frequency of the low-frequency power supply 270 is less than 100 kHz, it may be difficult to discharge. [0116] In the manufacturing apparatus 100B of Fig.
  • the automatic matching device 260 Connect a Fino Tunic 25 between 28 and reaction chamber 3B.
  • Finale Tunic 25 includes HPF (High Pass Filter) and LPF (Low Pass Filter).
  • Fig. 2 shows a bipolar discharge circuit corresponding to the gas barrier plastic container manufacturing apparatus of the first embodiment (B).
  • the AC power supply of the circuit shown in Fig. 2 corresponds to the high frequency power supply 29 or the low frequency power supply 270.
  • C represents the combined capacitance of the plastic container 8 and the internal space 30B of the reaction chamber 3B.
  • LCR meter 1 can be measured by connecting an LCR meter to the plastic container 8 and the reaction chamber 3B.
  • An LCR meter is an instrument that can measure inductance (L), capacitance (C), resistance (R), and so on.
  • C is the inner space of insulator spacer 4B and exhaust chamber 5.
  • C is the LCR for insulator spacer 4B and exhaust chamber 5.
  • Z is the plasma generated in the reaction chamber 3B.
  • Z represents the impedance of the plasma generated in the reaction chamber 3B.
  • each side of Z and Z represents a sheath.
  • the impedance B of C is expressed by Equation 7. Where f is high frequency or low frequency
  • the frequency of the wave is the frequency of the wave.
  • the manufacturing apparatus 100B in Fig. 4 is designed so that the relationship of C> C is established.
  • the inner space 30B of the reaction chamber 3B is substantially in contact with the outer surface of the plastic container 8, its size is limited by the shape of the plastic container 8, but the inner space 31 or insulator of the exhaust chamber 5 is limited.
  • the material and thickness of the spacer 4B can be changed freely. Therefore, in order to establish the relationship C> C in advance, for example, insulator spacer 4
  • Equation 8 The result of Equation 8 is that if low frequency power (400 kHz) is supplied, impedance B is 33.9 times larger than when high frequency power (13.56 MHz) is supplied. As a result, a large voltage drop occurs in the internal space 31 of the exhaust chamber 5 and plasma generation occurs in the internal space 31 of the exhaust chamber 5.
  • Equation 9 The result of Equation 9 is that when low frequency power (400 kHz) is supplied, impedance A becomes relatively large compared to when high frequency power (13. 56 MHz) is supplied. This shows that a voltage drop occurs.
  • C> C preferably C >> C.
  • impedance B can be relatively increased with reference to impedance A, and plasma generation in the internal space 31 of the exhaust chamber 5 is maintained while maintaining the generation of plasma in the internal space 30B of the reaction chamber 3B. Only can be suppressed. And I shown in Fig. 2 can be increased.
  • impedance B can be relatively increased with reference to impedance A for plasma generation using high-frequency power as an energy source, and plasma is generated in internal space 30B of reaction chamber 3B. Can maintain the force to form a gas barrier thin film as it is, and tend to suppress only the generation of plasma in the internal space 31 of the exhaust chamber 5.
  • impedance B is impeded by superimposing low-frequency power on high-frequency power.
  • the increase relative to dance A is also indicated by finding the difference of impedance B minus impedance A. From Equation 6 and Equation 7, the result of Equation 12 is obtained. According to Equation 1 2, the difference (impedance B—impedance A) is f force M, then C — C
  • the manufacturing apparatus 100B of Fig. 4 is configured such that the relationship C> C, preferably the relationship C>> C holds.
  • the gas barrier thin film can be formed with the impedance B increased by an electrical action that does not control the physical operation of the apparatus members during film formation.
  • FIG. 5 is a schematic configuration diagram showing a second mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. Differences from the manufacturing apparatus 100B of the first form (B) will be described.
  • a high frequency power source 51 is connected to a reaction chamber 3B (external electrode) via an automatic matching unit 50.
  • a mechanism in which a low-frequency power source is connected and the low-frequency power is superimposed on the high-frequency power may be combined as in the manufacturing apparatus 100B of the first mode (B).
  • the sub chamber 52 communicates with the exhaust chamber 5 through the opening 54 as an impedance increasing means.
  • a movable partition 53 is provided in the sub chamber 52. It is possible to adjust the volume V of the sub chamber 52 by moving the movable partition 53 closer to or away from the opening 54.
  • the impedance increasing means is means 55 for increasing the volume of the exhaust chamber 5, and comprises a sub chamber 52 and a movable partition 53.
  • the present invention is not limited to the form in which the sub chamber 52 and the movable partition 53 are provided, and the volume of the exhaust chamber 5 is variable. Any structure can be used as long as it can.
  • the volume of the internal space 31 of the exhaust chamber 5 (including V here) is 2.5 to 10 times the volume of the internal space 30B of the reaction chamber 3B.
  • the volume of the sub chamber 52 it is preferable to design the volume of the sub chamber 52. If the volume of the exhaust chamber 5 is less than 2.5 times, the effect may be small, and if it exceeds 10 times, the sub chamber 52 will be too large.
  • the bipolar discharge type circuit corresponding to the manufacturing apparatus 200 B in FIG. 5 is the same as the circuit shown in FIG. In this case, the AC power supply of the circuit shown in FIG. C with plastic container 8
  • C is an insulator spacer
  • the internal space 31 of the exhaust chamber 5 includes the internal space of the sub chamber 52 (a space equivalent to V). Ie V
  • the volume of the internal space 31 can be increased by increasing it.
  • the impedance A of C is expressed by Equation 6.
  • the impedance B of C is the number 7
  • Equation 13 the capacitance C of a capacitor is expressed by Equation 13. ⁇ is the dielectric constant, S is the electrode area, and d is the distance between the electrodes.
  • Peedance B increases.
  • the impedance A is constant
  • the impedance B can be relatively increased with reference to the impedance A, and the gas barrier thin film is formed while maintaining the generation of plasma in the internal space 30B of the reaction chamber 3B.
  • a film can be formed, and only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed.
  • the damage caused by the attack of the plasma in the exhaust chamber 5 and the exhaust path can be reduced, and the generation amount of the raw material gas dust can be reduced.
  • FIG. 6 is a schematic configuration diagram showing a third mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. Differences from the manufacturing apparatus 100B of the first form (B) will be described.
  • a high frequency power supply 51 is connected to a reaction chamber 3B (external electrode) via an automatic matching unit 50.
  • a mechanism for connecting a low-frequency power source and superimposing the low-frequency power on the high-frequency power may be combined as in the manufacturing apparatus 100B of the first mode (B).
  • the insulator spacer 4B (thickness t) is used as the impedance increasing means, and the thicker insulator spacer 4B a (thickness is used). Insulator spacer changing means 60 for changing to t) is provided. Insulation here
  • the thickness of the body spacer 4B corresponds to the average distance between the reaction chamber 3B and the exhaust chamber 5.
  • the optimum thickness of the insulator spacer 4B varies depending on conditions such as the capacity of the container and the applied high frequency power and low frequency power, for example, 5 to 80 mm.
  • the third mode (B) not only when the insulator spacer 4B is completely replaced with the thicker insulator spacer 4Ba, but also the insulator spacer 4B is replaced with a separate insulator spacer. Including thicker insulator spacer 4Ba equivalent by stacking spacers. When changing the thickness of the insulator spacer 4B, the average distance between the reaction chamber 3B and the exhaust chamber 5 is also changed accordingly.
  • the bipolar discharge circuit corresponding to the manufacturing apparatus 300B in FIG. 6 is the same as the circuit shown in FIG. In this case, the AC power supply of the circuit shown in FIG. C
  • 1 represents the combined capacitance of the plastic container 8 and the internal space 30B of the reaction chamber 3B.
  • C represents the combined capacitance of the insulator spacer 4B and the internal space 31 of the exhaust chamber 5.
  • Impedance B is given by Equation 7.
  • F is a high frequency and is constant. Therefore, impedance A is constant.
  • One dance B increases.
  • impedance A is constant
  • impedance B can be relatively increased with reference to impedance A, and a gas barrier thin film is formed while maintaining the generation of plasma in the internal space 30B of the reaction chamber 3B.
  • only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed.
  • damage due to plasma attack in the exhaust chamber or exhaust path can be reduced, and the amount of dust in the source gas system can be reduced.
  • FIG. 7 is a schematic configuration diagram showing a fourth mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. Differences from the manufacturing apparatus 100B of the first form (B) will be described.
  • a high frequency power source 51 is connected to a reaction chamber 3B (external electrode) via an automatic matching unit 50.
  • a mechanism for connecting a low-frequency power source and superimposing the low-frequency power on the high-frequency power may be combined as in the manufacturing apparatus 100B of the first mode (B).
  • variable capacitor 70 connected in series is provided between the connection of the exhaust chamber 5 and the ground as an impedance increasing means. .
  • FIG. 8 shows a bipolar discharge type circuit corresponding to the gas barrier plastic container manufacturing apparatus of the fourth embodiment (B).
  • C is a variable capacitor 7
  • a capacitance of 0 is shown.
  • C is the capacitance of insulator spacer 4B, C
  • each side of Z and Z represents a sheath.
  • impedance A of ⁇ is expressed by Equation 6.
  • f is a high frequency and is constant. Therefore, impedance A is constant.
  • Impedance B increases by reducing the capacitance C of variable capacitor 70.
  • impedance A is constant
  • impedance B can be relatively increased with impedance A as a reference.
  • the inside of the vacuum chamber 7B is opened to the atmosphere by opening the vacuum valve 18, and the lower external electrode 1 of the reaction chamber 3B is removed from the upper external electrode 2.
  • a plastic container 8 is inserted into the space in the upper external electrode 2 from the lower side of the upper external electrode 2 and installed in the internal space 30B of the reaction chamber 3B.
  • the source gas supply pipe 9 is inserted into the plastic container 8.
  • the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the reaction chamber 3 B is sealed by the 0-ring 10.
  • the inside of the plastic container 8 is replaced with a raw material gas and adjusted to a predetermined film forming pressure. That is, as shown in FIG. 4, after the vacuum valve 18 is closed, the vacuum valve 22 is opened, the vacuum pump 23 is operated, and the gas in the reaction chamber 3B is separated from the reaction chamber 3B by the insulator spacer 4B. Exhaust through the electrically insulated exhaust chamber 5. As a result, the inside of the vacuum chamber 7B including the inside of the plastic container 8 is exhausted through the pipe 21, and the inside of the vacuum chamber 7B becomes a vacuum.
  • the pressure in the vacuum chamber 7B at this time is, for example, 2.6 to 66Pa.
  • the vacuum valve 12 is opened, a hydrocarbon gas such as acetylene gas is generated at the source gas generation source 15, this hydrocarbon gas is introduced into the pipe 14, and the hydrocarbon gas whose flow rate is controlled by the mass flow controller 13. Is blown out from the gas outlet 9a through the pipe 11 and the source gas supply pipe (internal electrode) 9 of the ground potential.
  • hydrocarbon gas is introduced into the plastic container 8.
  • the vacuum chamber 7B and the plastic container 8 are maintained at a pressure suitable for the formation of the DLC film (for example, about 6.6 to 665 Pa) by the balance between the controlled gas flow rate and the exhaust capacity.
  • the output of the low frequency power is preferably 20 to 80% of the total output of the high frequency power and the low frequency power. If the output of the low frequency power is less than 20%, the effect of suppressing the plasma generation in the exhaust chamber 5 is reduced, while if it exceeds 80%, the film formation rate may be slow.
  • the supply timing of the high frequency power and the low frequency power may be shifted within the film formation time.
  • the filter unit 25 since the filter unit 25 is connected, the high frequency power supply 29 is not affected by the low frequency, and the low frequency power supply 270 is not affected by the high frequency. Then, the raw material gas in the plastic container 8 is made into a plasma using high frequency power and low frequency power as energy sources. As a result, a DLC film is formed on the inner surface of the plastic container 8. That is, by supplying high frequency power and low frequency power to the reaction chamber 3B, a bias voltage is generated between the reaction chamber 3B and the source gas supply pipe 9 (internal electrode) 9, and the source gas in the plastic container 8 is plasma. Hydrocarbon plasma is generated and a DLC film is formed on the inner surface of the plastic container 8. At this time, the automatic matching devices 260 and 28 match the impedance by the inductance capacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
  • impedance B is based on impedance A.
  • the gas barrier thin film is formed in a relatively high state. As a result, the generation of plasma in the exhaust chamber 5 and the subsequent exhaust path to the vacuum pump 23 is suppressed. As a result, the damage caused by the attack of the plasma in the exhaust chamber 5 and the exhaust path is small, and the generation amount of the raw material gas dust can be reduced.
  • the following secondary effects can be obtained by superimposing low-frequency power on high-frequency power.
  • the deposition rate is reduced compared to when only high-frequency power is supplied.
  • the deposition rate is equivalent when the low frequency of 400 kHz is superimposed and the total power is equal compared to the conventional discharge of 13.56 MHz alone. Or rise.
  • the film thickness distribution along the main axis direction of the container is made uniform.
  • the boundary at which ions in the plasma can follow the high-frequency electric field can be evaluated by the ion plasma frequency.
  • the ion plasma frequency is determined by the plasma density. As shown in Fig. 4, in the case of capacitively coupled plasma with bipolar discharge, the frequency is calculated to be approximately:! ⁇ 3 MHz. Therefore, with a high frequency discharge of 13.56 MHz, ions cannot follow the high frequency field. On the other hand, it can follow a 400kHz low frequency discharge. As in the device described in Patent Document 1, in 13.56MHz single discharge, ions are accelerated and incident on the bottle surface by self-bias.
  • ions can be accelerated by the high-frequency electric field (Vpp) with the superposition of 400 kHz.
  • Vpp high-frequency electric field
  • the central part is the part that reaches the shoulder mouth of the plastic container 8, it moves to the trunk that is the center of the plastic container 8. Therefore, the film thickness distribution along the main axis direction of the container is made uniform, and the film forming speed is improved or equivalent.
  • the film thickness distribution of the DLC film on the inner wall surface of the mouth of the plastic container 8 becomes thinner compared to the conventional case by making the film thickness distribution uniform, the DLC film is formed on the inner wall surface of the mouth. Origin of coloring Is reduced, and the design is improved.
  • both the output of the high frequency power from the high frequency power supply 29 and the output of the low frequency power from the low frequency power supply 270 are stopped, the plasma is extinguished, and the film formation of the DLC film is completed. Almost at the same time, the vacuum valve 12 is closed to stop supplying the raw material gas.
  • the vacuum pump 23 exhausts the hydrocarbon gas remaining in the vacuum chamber 7B and the plastic container 8. After that, the vacuum valve 22 is closed and the exhaust is finished. The pressure in the vacuum chamber 7B at this time is 6.6 to 665 Pa. After this, the vacuum valve 18 is opened. Thereby, the vacuum chamber 7B is opened to the atmosphere.
  • a manufacturing method according to the second embodiment (B) will be described with reference to FIG.
  • the volume of the exhaust chamber 5 is increased in order to increase the impedance B.
  • the difference from the manufacturing method according to the first embodiment (B) will be mainly described.
  • the movable partition 53 of the sub chamber 52 is powered to increase the volume of V. Increase the volume of the exhaust chamber 5.
  • the position of the movable partition 53 is changed so that the volume of the exhaust chamber 5 is 2.5 to 10 times the volume. If the volume of the exhaust chamber 5 is less than 2.5 times, the effect may be small, and if it exceeds 10 times, the sub chamber 52 will be too large. Further, the volume including V in the internal space 31 of the exhaust chamber 5 with respect to the volume of the internal space 30B in the reaction chamber 3B is
  • the volume of the exhaust chamber 5 It is preferable to increase the volume of the exhaust chamber 5 to be 5 times or more. Thereafter, high-frequency power (for example, 13.56 MHz) is supplied to the reaction chamber 3B.
  • the timing for moving the movable partition 53 may be any time before supplying high-frequency power.
  • Guidelines for increasing the volume of the exhaust chamber 5 are as follows. For example, when film formation is performed on a container having a small capacity of 0.3 L as the plastic container 8, the reaction chamber 3B in which the internal space 30B of the reaction chamber 3B is small can be formed of a small metal member. . As a result, C becomes smaller. You
  • impedance A increases. Therefore, increase V to increase the volume of exhaust chamber 5.
  • the raw material gas in the plastic container 8 is turned into plasma using high frequency power as an energy source.
  • a bias voltage is generated between the reaction chamber 3B and the raw material gas supply pipe 9 (internal electrode), and the raw material gas in the plastic container 8 is turned into plasma to generate hydrocarbon-based plasma.
  • the automatic matching unit 50 matches the impedance by the inductance capacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
  • the film formation time at this time is as short as several seconds.
  • the gas barrier thin film can be formed in a state where the impedance B is relatively increased with the impedance A as a reference.
  • the generation of plasma in the exhaust path leading to the exhaust chamber 5 and then to the vacuum pump 23 is suppressed.
  • the damage due to the plasma attack in the exhaust chamber 5 and the exhaust path is reduced, and the generation amount of the raw material gas dust can be reduced.
  • energy consumption is diverted to the generation of plasma in the internal space 30B of the reaction chamber 3B.
  • the center where the plasma is generated is the part from the shoulder to the mouth of the plastic container 8, it moves to the trunk which is the center of the plastic container 8. Therefore, the film thickness distribution along the main axis direction of the container is made uniform. By making the film thickness distribution uniform, the color derived from the DLC film on the inner wall surface of the mouth is reduced, and the design is improved.
  • a manufacturing method according to the third embodiment (B) will be described with reference to FIG.
  • the insulator spacer 4B is changed to a thicker insulator spacer 4Ba.
  • the difference from the manufacturing method according to the first embodiment (B) will be mainly described.
  • the process until the plastic container 8 is accommodated in the reaction chamber 3B and adjusted to a pressure suitable for the formation of the DLC film is the same as that in the manufacturing method according to the first embodiment (B).
  • the insulator spacer 4B is changed to a thicker insulator spacer 4Ba.
  • the insulator spacer is changed to 4Ba having a thickness of 3 to 6 times. If the thickness is changed to less than 3 times, the effect may be small. If the thickness is changed to more than 6 times, the device will expand in the longitudinal direction and become larger.
  • high-frequency power for example, 13.56 MHz
  • Insulator spacers 4Ba can be changed anytime before high-frequency power is supplied.
  • the guidelines for thickening the insulator spacer 4B are as follows. For example, when a film is formed in a small container having a capacity of 0.3 liter as the plastic container 8, the reaction chamber 3B in which the internal space 30B of the reaction chamber 3B is small can be formed of a small metal member. . As a result, C becomes smaller. Snow
  • impedance A increases. Therefore, by increasing the thickness of insulator spacer 4B, C
  • a DLC film is formed on the inner surface of the plastic container 8 using high-frequency power as an energy source, as in the manufacturing method according to the second mode (B).
  • the gas barrier thin film is formed in a state where the impedance B is relatively increased with the impedance A as a reference. .
  • the damage due to the attack of the plasma in the exhaust chamber 5 and the exhaust path is suppressed, the amount of dust generated in the source gas system is reduced, and the main axis direction of the container is aligned. Uniform film thickness distribution and reduction of coloring derived from the DL C film on the inner wall of the mouth can be realized.
  • variable capacitor 70 having a capacitance C is connected in series between the connection between the exhaust chamber 5 and the ground, and the combined capacitance C (
  • variable capacitor 70 having a capacitance C is connected in series between the connection between the exhaust chamber 5 and the ground, and the combined capacitance C (
  • Impedance B is increased by reducing the capacitance (capacitance C of the capacitor).
  • the source gas is blown out into the plastic container 8 under a predetermined reduced pressure.
  • variable capacitor 70 is adjusted to be small.
  • the guidelines for adjusting the amount are as follows. For example, when film formation is performed in a small container having a capacity of 0.3 liter as the plastic container 8, the internal space 30B of the reaction chamber 3B is small.
  • the reaction chamber 3B can be formed of a small metal member. As a result, C becomes smaller
  • the optimum capacity of the variable capacitor 70 is a force that varies depending on the capacity of the target plastic container 8, for example, 5 to: 100 pF, preferably 10 to 80 pF.
  • the timing of adjusting the capacity of the variable capacitor 70 can be any time before or during the supply of high-frequency power.
  • a DLC film is formed on the inner surface of the plastic container 8 using high-frequency power as an energy source, as in the manufacturing method according to the second mode (B). .
  • the impedance B can be reduced by adjusting the capacitance C of the variable capacitor 70 to be small.
  • the gas barrier thin film is formed in a relatively high state with respect to the flow rate A.
  • the damage due to the plasma attack in the exhaust chamber 5 and the exhaust path is suppressed, the amount of dust generated in the source gas system is reduced, the main shaft of the container Uniform film thickness distribution along the direction and reduction of coloring derived from the DLC film on the inner wall of the mouth.
  • the film formation time is as short as several seconds.
  • the DLC film is formed to a thickness of 0.003 to 5 xm.
  • FIG. 10 is a schematic configuration diagram showing a first mode (C) of the plasma CVD film forming apparatus according to the present embodiment.
  • FIGS. 11A and 11B are diagrams for explaining the details of FIG. 10, where FIG. 11A is a cross-sectional view taken along the line AA, and FIG.
  • the plasma CVD film forming apparatus 100C of the first embodiment (C) includes a reaction chamber 3C that accommodates a plastic container 8, an exhaust chamber 5, and a reaction chamber 3C.
  • An insulating spacer 4C provided with an opening 32 for electrically insulating each of the reaction chamber 3C and the exhaust chamber 5 between the exhaust chamber 5 and the exhaust chamber 5 connected to the exhaust chamber 5.
  • the vacuum pump 23 that exhausts the gas inside the reaction chamber 3C via the 32 and the exhaust chamber 5, the source gas supply pipe 9 arranged inside the plastic container 8, and the low frequency of 100 kHz to 3 MHz in the reaction chamber 3C
  • the plasma ignition means having the spark generator 40 is a DC discharge system using a high-voltage DC power supply 290.
  • the reaction chamber 3C is formed hollow with a conductive material such as metal, and has an internal space 30C for accommodating a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin.
  • the inner wall of the internal space 30C is outside the plastic container 8. It is formed in a shape that substantially contacts the wall surface. Since the reaction chamber 3C surrounds the plastic container 8, it acts as an external electrode.
  • the reaction chamber 3C includes an upper external electrode 2 and a lower external electrode 1, and is configured such that the upper portion of the lower external electrode 1 is detachably attached to the lower portion of the upper external electrode 2 via a ring 10. .
  • the plastic container 8 can be mounted by detaching the lower external electrode 1 from the upper external electrode 2.
  • Reaction chamber 3C is sealed with external force by 0 ring 37 placed between insulator spacer 4C and reaction chamber 3C, and 0_ring 10 placed between upper outer electrode 2 and lower outer electrode 1. It has been.
  • the insulator spacer 4C is disposed between the reaction chamber 3C and the exhaust chamber 5, and an opening 32a is formed at a position corresponding to the position above the mouth of the plastic container 8, The The opening 32a connects the reaction chamber 3C and the exhaust chamber 5 in air.
  • the insulator spacer 4C is preferably formed of an inorganic material such as glass or ceramics or a heat resistant resin.
  • polytetrafluoroethylene tetrafluoroethylene “verfluoroalkylbierethenole copolymer”, tetrafluoroethylene “hexafluoropropylene copolymer”, polyphenylene oxide, polyimide, Polyethersulfone, polyetherimide, polyphenylene sulfide or polyetheretherketone.
  • the exhaust chamber 5 is formed hollow with a conductive material such as metal, and has an internal space 31.
  • the exhaust chamber 5 is disposed on the insulator spacer 4C. At this time, the space between the exhaust chamber 5 and the insulator spacer 4C is sealed by the O-ring 38.
  • an opening 32b having substantially the same shape is provided in the lower portion of the exhaust chamber 5 in correspondence with the opening 32a.
  • the exhaust chamber 5 is connected to a vacuum pump 23 through an exhaust path including a pipe 21, a pressure gauge 20, a vacuum valve 22, and the like, and the internal space 31 is exhausted.
  • the vacuum chamber 7C has two parts, an internal space 30C of the reaction chamber 3C and an internal space 31 of the exhaust chamber 5, which are connected through the openings 32a and 32b.
  • the container according to the present invention is the same as in the case of Embodiment A.
  • the resin used in molding the plastic container 8 of the present invention is the same as that in the embodiment A.
  • the raw material gas supply pipe 9 is provided with a gas flow path therein, through which the raw material gas passes.
  • a gas outlet 9a that is, an opening of a gas flow path is provided at the tip of the source gas supply pipe 9.
  • One end of the source gas supply pipe 9 is fixed by the wall of the internal space 31 of the exhaust chamber 5 and is disposed in the vacuum chamber 7C.
  • the source gas supply pipe 9 is disposed in the reaction chamber 3C and disposed in the plastic container 8 from the mouth. That is, the raw material gas supply pipe 9 is inserted from the upper part of the inner wall of the exhaust chamber 5 to the inner space 30C of the reaction chamber 3C through the inner space 31 and the openings 32a and 32b.
  • the tip of the source gas supply pipe 9 is disposed inside the plastic container 8.
  • the raw material gas supply pipe 9 holds the force to be an electrode itself or an electrode of another part, which will be described later.
  • the raw material gas supply means 16 introduces the raw material gas supplied from the raw material gas generation source 15 into the plastic container 8. That is, one side of the pipe 11 is connected to the base end of the source gas supply pipe 9, and the other side of the pipe 11 is connected to one side of the mass flow controller 13 via the vacuum valve 12. . The other side of the mass flow controller 13 is connected to a source gas generation source 15 via a pipe 14. This source gas generation source 15 generates hydrocarbon gas source gas such as acetylene.
  • the gas barrier film refers to a thin film that suppresses oxygen permeability, such as a DLC (diamond-like carbon) film, a Si-containing DLC film, a SiO film, an alumina film, or an A1N film.
  • a volatile gas containing the constituent elements of the thin film is selected.
  • a publicly known volatile raw material gas can be used as the raw material gas for forming the gas barrier thin film.
  • the source gas for example, when forming a DLC film, it is the same as in the case of Embodiment A.
  • the DLC film is the same as in the case of Embodiment A.
  • SiO film silicon oxide film
  • a mixed gas of silane and oxygen Alternatively, a mixed gas of HMDSO and oxygen is used as the source gas.
  • the vacuum pump 23 exhausts the internal gas of the vacuum chamber 7C. That is, one end of the pipe 21 is connected to the exhaust chamber 5, the other end of the pipe 21 is connected to the vacuum valve 22, and the vacuum valve 22 is connected to the vacuum pump 23 via the pipe. This vacuum pump 23 is further connected to an exhaust duct 24. A pressure gauge 20 is connected to the pipe 21 to detect the pressure in the exhaust path. By operating the vacuum pump 23, the internal gas of the plastic container 8 and the internal gas of the internal space 30C of the reaction chamber 3C move to the internal space 31 of the exhaust chamber 5 through the openings 32a and 32b. The internal gas is sent to the vacuum pump 23 through the exhaust path including the pipe 21.
  • the vacuum chamber 7C is connected to a leak pipe 17, and the pipe 17 is connected to a leak source 19 (open to the atmosphere) via a vacuum valve 18.
  • the low-frequency power supply means 350 supplies the low-frequency power to the reaction chamber 3C to turn the raw material gas inside the plastic container 8 into plasma.
  • the low-frequency power supply means 350 includes a low-frequency power source 270 and an automatic matching device 260 connected to the low-frequency power source 270, and the low-frequency power source 270 is connected to the reaction chamber 3C via the automatic matching device 260. .
  • the low-frequency power generated by the low-frequency power source 270 is applied between the raw material gas supply pipe 9 (internal electrode) and the reaction chamber 3C (external electrode), so that the raw material gas supplied into the plastic container 8 is Zuma.
  • the frequency of the low frequency power supply 270 is preferably 100 kHz to 3 MHz.
  • the frequency of the low-frequency power supply 270 exceeds 3 MHz, it will be difficult to generate plasma only in the internal space 30C of the reaction chamber 3C. On the other hand, if the frequency of the low frequency power supply 270 is less than lOOkHz, it may be difficult to discharge.
  • Figure 2 shows a bipolar discharge-type circuit corresponding to the plasma CVD film-forming system of the first form (C).
  • the AC power supply in the circuit shown in Fig. 2 corresponds to the low-frequency power supply 270.
  • C is the internal space of plastic container 8 and reaction chamber 3C
  • C represents the combined capacitance with 30C.
  • C can be measured by connecting an LCR meter to the plastic container 8 and the reaction chamber 3C.
  • An LCR meter is a device that can measure inductance (L), capacitance (C), resistance (R), and the like.
  • C is insulation It represents the combined capacitance of the body spacer 4C and the internal space 31 of the exhaust chamber 5.
  • Z represents the impedance of the plasma generated in the reaction chamber 3C, and Z is pi p2 in the exhaust chamber 5.
  • the impedance A of C is given by Equation 15.
  • the impedance B of C is given by Equation 15.
  • the film deposition system 100C in Fig. 10 is designed so that the relationship C> C is established.
  • the inner space 30C of the reaction chamber 3C is substantially in contact with the outer surface of the plastic container 8, its size is limited by the shape of the plastic container 8, but the inner space 31 or insulator of the exhaust chamber 5 is limited.
  • the material and thickness of the spacer 4C can be changed freely. Therefore, in order to establish the relationship of C> C in advance, for example, insulator spacer 4
  • impedance B By designing so as to hold, impedance B can be relatively increased with impedance A as a reference, as shown in Eq. At this time, the generation of plasma in the internal space 30 C of the reaction chamber 3 C is left as it is, and only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed. And I shown in Fig. 2 can be increased.
  • the relationship C> C preferably the relationship C>> C holds.
  • the spark generating part 40 is disposed inside the plastic container 8 to ensure the plasma ignitability or its sustainability. At this time, it is preferable that the spark generating portion 40 is disposed below the center of the height of the plastic container 8. It is easy to form a gas barrier thin film on the bottom of the container and immediately homogenize the film thickness distribution.
  • the plasma CVD film forming apparatus is provided with plasma ignition means having the spark generating section 40 based on the configuration described above.
  • the plasma ignition means (idanator unit) having the spark generating section 40 has a plurality of forms, and the plasma CVD film forming apparatus 100C of the first form (C) is provided with a DC ignition type plasma ignition means. Yes.
  • the plasma ignition means has a high-voltage DC power supply 290
  • the spark generating unit 40 includes a spark electrode connected to the high-voltage DC power supply 290 and a ground electrode that is opposed to the spark electrode. And a spark is generated between the spark electrode and the ground electrode.
  • the spark electrode and the ground electrode are separated by 2 to 5 mm, for example.
  • the high-voltage DC power supply 290 is preferably a DC high-voltage power supply of about 1 to:! Spark is generated in the plastic container 8 by applying a voltage to the spark electrode. The spark may be generated at least for the time required for the plasma to ignite, but may be continuously generated throughout the film formation time. This spark assists the ignition of the plasma.
  • the source gas supply pipe 9 is formed of a conductive material, and a linear or rod-like conductor 41 is placed in the pipe at the tip. Removal And a gas channel 43 that is housed in a state of being covered with an insulator 42 and that blows a source gas to the tip of the conductor 41.
  • the conductor 41 is a spark electrode
  • the source gas supply pipe 9 is a ground electrode.
  • the ground electrode serves as the counter electrode
  • the conductor 41 becomes a spark electrode, the conductor 41 is made of molybdenum, tantalum, zirconium, niobium, nickel, iridium, platinum, a base alloy of these metals, or carbon fiber. Is preferred. It is possible to suppress electrode consumption and contamination of the electrode material into the container. Further, if the electrode material is carbon fiber, there is no fear of electrode material contamination when a carbon film is formed as a gas barrier thin film.
  • FIG. 13 shows a diagram for explaining the details of FIG.
  • FIG. 13 (a) is a BB cross-sectional view
  • FIG. 13 (b) is a partially enlarged schematic view of the spark generating portion 40.
  • the source gas supply pipe 9 is formed of a conductive material and is covered with an insulator 42 except for the tip thereof, and the source gas supply pipe 9 is used as an inner pipe.
  • An outer tube 44 made of a conductive material is disposed outside the structure to form a double tube structure.
  • the outer tube 44 is a ground electrode, and the source gas supply tube 9 is a spark electrode.
  • the ground electrode serves as the counter electrode (internal electrode) of the reaction chamber 3C that serves as the external electrode.
  • the on / off of the high-voltage DC power supply 290 is switched by the switch 280.
  • the source gas supply pipe 9 serves as a spark electrode, the same material as in the case of the plasma CVD film forming apparatus 100C is selected.
  • FIG. 14 an AA cross-sectional view and a partially enlarged schematic view of the spark generating portion 40 are as shown in FIG.
  • the plasma ignition means has a distributor 250 connected to the low-frequency power supply means 350, and the spark generator 40 has a distributor 250.
  • the spark electrode and the ground electrode are separated by 2-5 mm, for example.
  • the low frequency power supply means 350 of the low frequency power supply means 350 is also used.
  • Another low frequency power supply may be connected. Spark is generated inside the plastic container 8 by applying low-frequency power to the spark generator 40. The on / off of the supply of the low-frequency power to the spark generator 40 is switched by the switch 280.
  • the spark is generated through the film formation time.
  • the supply of low-frequency power to the spark generation unit 40 is stopped by the force switch 280, and plasma is generated at least for the time required for the plasma to ignite. As good as it is. This spark assists the ignition of the plasma.
  • a phase shifter 45 is preferably connected in series between the distributor 250 and the spark electrode. This increases the sustainability of the low frequency discharge.
  • the plasma CVD film forming apparatus 300C of the third form (C) has the source gas supply pipe 9 having the same structure as the film forming apparatus 100C of the first form (C), and the source gas supply pipe 9 is grounded.
  • the conductor 41 is a spark electrode. The material for the spark electrode is selected in the same way.
  • FIG. 15 Another form of film forming apparatus provided with a low-frequency discharge type plasma ignition means is a plasma CVD film forming apparatus 400C shown in FIG.
  • a BB cross-sectional view and a partial enlarged schematic view of the spark generating portion 40 are as shown in FIG.
  • low-frequency power is supplied to the spark generating unit 40 in the same manner as the film forming apparatus 300C shown in FIG.
  • a source gas supply pipe having the same structure as that of the source gas supply pipe 9 of the film forming apparatus 200C shown in FIG. 12 is provided, and the outer pipe 44 is a ground electrode and the source gas supply pipe 9 is a spark electrode.
  • the material for the spark electrode is selected in the same manner.
  • the insulator 42 is preferably an insulator.
  • the vacuum chamber 7C is opened to the atmosphere by opening the vacuum valve 18, and the lower external electrode 1 of the reaction chamber 3C is removed from the upper external electrode 2.
  • a plastic container 8 is inserted into the space inside the upper external electrode 2 from the lower side of the upper external electrode 2 and installed in the internal space 30C of the reaction chamber 3C.
  • the source gas supply pipe 9 is inserted into the plastic container 8.
  • the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the reaction chamber 3 C is sealed with a ring 10.
  • the inside of the plastic container 8 is replaced with a raw material gas and adjusted to a predetermined film forming pressure. That is, as shown in FIG. 10, after the vacuum valve 18 is closed, the vacuum valve 22 is opened, the vacuum pump 23 is operated, and the gas in the reaction chamber 3C is electrically connected to the reaction chamber 3C by the insulator spacer 4C. Exhaust through the electrically insulated exhaust chamber 5. As a result, the inside of the vacuum chamber 7C including the inside of the plastic container 8 is exhausted through the pipe 21, and the inside of the vacuum chamber 7C is evacuated. The pressure in the vacuum chamber 7C at this time is 2.6 to 66 Pa, for example.
  • the vacuum valve 12 is opened, a hydrocarbon gas such as acetylene gas is generated in the source gas generation source 15, this hydrocarbon gas is introduced into the pipe 14, and the hydrocarbon gas whose flow rate is controlled by the mass flow controller 13. Is blown out from the gas outlet 9a through the pipe 11 and the source gas supply pipe (internal electrode) 9 at ground potential. As a result, hydrocarbon gas is introduced into the plastic container 8.
  • the vacuum chamber 7 C and the plastic container 8 are maintained at a pressure suitable for the formation of the DLC film (for example, about 6.6 to 665 Pa) and stabilized by controlling the balance between the gas flow rate and the exhaust capacity.
  • low frequency power (eg, 400 kHz) is supplied to the reaction chamber 3C.
  • the raw material gas in the plastic container 8 is turned into plasma using low frequency power as an energy source.
  • a DLC film is formed on the inner surface of the plastic container 8.
  • reaction chamber 3C By supplying the low frequency power, a bias voltage is generated between the reaction chamber 3C and the raw material gas supply pipe 9, and the raw material gas in the plastic container 8 is turned into plasma to generate hydrocarbon-based plasma.
  • a film is formed on the inner surface of the plastic container 8.
  • the automatic matching device 260 matches the impedance by the inductance recapacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
  • Switch 280 is turned on almost simultaneously with the supply of low-frequency power.
  • the plasma ignition means is activated, and the spark generating part 40 is connected to the conductor 41 (spark electrode) and grounded, and sparks are generated between the source gas supply pipe 9 and the DC gas discharge.
  • sparks are generated between the source gas supply pipe 9 and the DC gas discharge.
  • the relationship C> C preferably the relationship C>> C,
  • the film thickness of the DLC film on the inner wall of the mouth of the plastic container 8 becomes thinner compared to the conventional one.
  • the resulting coloration is reduced and the design is improved.
  • the output of the low frequency power from the low frequency power supply 270 is stopped, the plasma is extinguished, and the film formation of the DLC film is completed.
  • the vacuum valve 12 is closed and the supply of the raw material gas is stopped.
  • the vacuum pump 23 exhausts the air.
  • the vacuum valve 22 is closed and the exhaust is finished.
  • the pressure in the vacuum chamber 7C is 6.6 to 665 Pa.
  • the vacuum valve 18 is opened. Thereby, the vacuum chamber 7C is opened to the atmosphere.
  • the film formation time is as short as several seconds.
  • the DLC film is formed to a thickness of 0.003 to 5 ⁇ m.
  • the switch 280 is turned on at the same time as the supply of the low frequency power.
  • the plasma ignition means is activated, and a spark is generated by a direct current discharge between the source gas supply pipe 9 as a spark electrode and the outer pipe 44 as a ground electrode in the spark generation section 40.
  • ignition failure is reduced and ignition sustainability is imparted.
  • detection means such as an ignition monitor. The spark may be stopped immediately after the plasma is ignited.
  • the switch 280 is turned on at the same time as the supply of the low frequency power.
  • the plasma ignition means is activated, and a spark due to the low frequency discharge is generated between the conductor 41 as the spark electrode and the source gas supply pipe 9 as the ground electrode in the spark generator 40.
  • ignition failure is reduced and ignition sustainability is imparted. Presence or absence of ignition is determined by detection means (not shown) such as an ignition monitor. The spark may be stopped immediately after the plasma is ignited.
  • the switch 280 is turned on at the same time as the supply of the low-frequency power.
  • the plasma ignition means is activated, and a spark is generated by the low frequency discharge between the source gas supply tube 9 as the spark electrode and the outer tube 44 as the ground electrode in the spark generation unit 40.
  • ignition failure is reduced and ignition sustainability is imparted.
  • Presence or absence of ignition is determined by detection means (not shown) such as an ignition monitor. The spark may be stopped immediately after the plasma is ignited.
  • the plastic container used in the examples has a capacity of 500 ml, a container height of 207 mm, a container monthly diameter of 68 mm, a mouth opening inner diameter of 21.74 mm, a mouth opening outer diameter of 24.94 mm, and a mouth height. 21.
  • This is a round PET (polyethylene terephthalate) bottle with Omm, container body thickness of 0.3mm, and resin amount of 30g / piece.
  • the film formation uniformity was determined as follows. Measure the film thickness at 3 locations in the circumferential direction, 2cm above (bottom), 8cm above (trunk), and 16cm above (shoulder) above the bottom of the container. The film thickness was measured with a stylus type step gauge of Tenchol alpha_step500. By averaging them, the average film thickness of the bottom, the trunk and the shoulder is obtained. From the average film thickness at the bottom, torso and shoulder, select the result with the largest average film thickness (average film thickness A) and the result with the smallest average film thickness (average film thickness B). Obtain film formation uniformity (%). The lower the deposition uniformity (%), the higher the uniformity.
  • Film uniformity (%) (Average film thickness A—Average film thickness B) / (Average film thickness A + Average film thickness B) X 100
  • one end (light incident part) of the optical fiber is installed in the internal space and the other end of the optical fiber is connected to a discharge sensor (photo diode, (Yamatake photoelectric sensor, HPX-MA-063)
  • a discharge sensor photo diode, (Yamatake photoelectric sensor, HPX-MA-063)
  • the light incident on the optical fiber was monitored.
  • the position of the light incident portion of the optical fiber is, for example, the location indicated by “D” in the film forming apparatus of FIG.
  • the presence or absence and degree of plasma generation in the exhaust chamber were evaluated based on the output value (V) of the discharge sensor. The larger the output value, the greater the amount of plasma generated in the exhaust chamber.
  • Luminous emission 0.3 V or less ( ⁇ ) No generation of plasma in the exhaust chamber and good continuous operation for a long time.
  • Amount of emitted light More than 0.3 V and 0.5 V or less: ( ⁇ ) Plasma is slightly generated in the exhaust chamber, but this is a problem in continuous operation for a long time.
  • Silicon chip A is attached to the wall surface of the opening 32b (for example, the location indicated as E in FIG. 1), and silicon chip B is attached to the wall surface near the exhaust port of the exhaust chamber 5 (eg, the location indicated as F in FIG. 1).
  • the film was formed in a container 20 times under the same conditions, and then taken out and weighed with an electronic balance (manufactured by Shinko Denshi, high-precision electronic balance AF-R220). The amount of adhering foreign matter was determined from the weight difference before and after film formation.
  • Amount of adhering foreign matter More than 0.2 mg 0.4 mg or less: ( ⁇ ) Foreign matter adhering slightly, but no problem in continuous operation for a long time.
  • Oxygen permeability is 22 ° CX 60 with Oxtran manufactured by Modern Control. /. Measurement was performed one week after the start of measurement under the RH conditions.
  • the oxygen permeability is calculated per container. When this is converted per area (m 2 ), it may be converted in consideration of the inner surface area of the container. Since there is almost no gas permeation from the mouth lid, the area is not taken into consideration.
  • Oxygen permeability 0.015ml Z day Over Z container (X) There is a problem as an oxygen barrier container.
  • a DLC film was formed on the inner wall of the PET bottle.
  • the film forming conditions are as follows: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 is 1.2 liters, and the thickness of the insulating member 4 (made of polyester ether ketone) is set.
  • the output of 10 mm, power supply 27 (3. OMHz) was 600 W, and the film formation time was 2 seconds.
  • an outer electrode 3 having an inner space 30 having a cylindrical shape was used, and a spacer 36 made of polyetheretherketone was installed in a gap space when the PET bottle was inserted.
  • the inner diameter of the cylindrical shape of the inner space 30 is such that the outer wall surface of the body of the PET bottle and the inner wall surface of the inner space 30 are substantially in contact with each other.
  • the combined capacitance of the PET bottle 8 and the inner space 30 of the outer electrode 3 is C
  • the combined capacitance of the insulating member 4 and the inner space 31 of the exhaust chamber 5 is C.
  • C> C the relationship was established. Generation of foreign matter
  • a DLC film was deposited on the inner wall of the PET bottle as in Test 1, except that the low frequency was 0.4 MHz. The results are shown in Table 1.
  • a DLC film was deposited on the inner wall of the PET bottle in the same manner as in Test 1, except that a high-frequency power supply (frequency 13.56 MHz) was used instead of the low-frequency power supply.
  • a high-frequency power supply frequency 13.56 MHz
  • the results are shown in Table 1.
  • a DLC film was deposited on the inner wall of the PET bottle as in Test 1, except that the low frequency was 0.1 MHz. The results are shown in Table 1.
  • a DLC film was formed on the inner wall of the PET bottle in the same way as in Test 2 except that the spacer 36 made of polyetheretherketone was not used. The results are shown in Table 1.
  • the PET bottle coated with the thin film having gas barrier properties obtained in Tests 1 to 4 had oxygen barrier properties and suppressed generation of plasma in the exhaust chamber. Abnormal discharge was suppressed by the spacer made of polyetheretherketone. In addition, there was little unevenness in film formation in the height direction of the container. Furthermore, in Test 8, it was found that PET bottles with different shapes can be similarly formed without causing abnormal discharge. Therefore, it was found that the cleaning work time for removing foreign substances and the external electrode replacement work time can be reduced, and as a result, the production efficiency of the film forming apparatus can be maintained high.
  • the plastic container used in the examples has a capacity of 500 ml, a container height of 207 mm, a container body diameter of 68 mm, a mouth opening inner diameter of 21.74 mm, a mouth opening outer diameter of 24.94 mm, and a mouth height of 21. It is a PET (polyethylene terephthalate) container with Omm, container body thickness of 0.3 mm, and resin amount of 30 g / bottle. [0235] The evaluation was performed as follows.
  • the film formation uniformity was determined as follows. Measure the film thickness at 3 locations in the circumferential direction, 2cm above (bottom), 8cm above (trunk), and 16cm above (shoulder) above the bottom of the container. The film thickness was measured with a stylus type step gauge of Tenchol alpha_step500. By averaging them, the average film thickness of the bottom, the trunk and the shoulder is obtained. From the average film thickness of the bottom, trunk, and shoulder, the average film thickness is the result of the thick layer (average film thickness A) and the thinnest average film thickness is the result (average film thickness B). The film formation uniformity (%) is obtained by Equation 14. The lower the deposition uniformity (%), the higher the uniformity.
  • one end of the optical fiber (light incident part) is installed in the internal space, and the other end of the optical fiber is connected to a discharge sensor (photo diode, Connected to a Yamatake photoelectric sensor, HPX-MA-063), the light incident on the optical fiber was monitored.
  • the position of the light incident part of the optical fiber is, for example, the location indicated by “D” in the manufacturing apparatus of FIG.
  • the presence or absence and degree of plasma generation in the exhaust chamber were evaluated based on the output value (V) of the discharge sensor. The larger the output value, the greater the amount of plasma generated in the exhaust chamber.
  • Silicon chip A is attached to the wall surface of the opening 32b (for example, the location indicated as E in FIG. 4), and silicon chip B is attached to the wall surface near the exhaust port of the exhaust chamber 5 (eg, the location indicated as F in FIG. 4).
  • an electronic balance manufactured by Shinko Denshi, high-precision electronic balance AF-R220. The amount of adhering dust was determined from the difference in weight before and after film formation. [0239] (Exam 1)
  • a DLC film was deposited on the inner wall of the PET bottle.
  • the deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 in the exhaust chamber 5 is 1.2 litter, and the thickness of the insulator spacer 4B (made of polyetheretherketone).
  • the output of the high-frequency power supply 29 13. 56 MHz is 600 W, the output of the low-frequency power supply 270 (0.4 MHz) is 0 W, and the deposition time is 2 seconds.
  • the amount of dust generated was evaluated after film formation 20 times under these conditions. The evaluation results are shown in Table 2.
  • a DLC film was formed on the inner wall of the PET bottle.
  • the deposition conditions are acetylene as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 in the exhaust chamber 5 is 3.6 litter, the thickness of the insulator spacer 4B is 10 mm, and the high frequency power supply (13 The output of 56 MHz) was 600 W and the film formation time was 2 seconds. The amount of dust generated was evaluated after film formation 20 times under these conditions. Comment The results are shown in Table 2.
  • a DLC film was deposited on the inner wall of the PET bottle.
  • the deposition conditions were as follows: acetylene was used as the source gas, the source gas flow rate was 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 was 1.2 liters, the thickness of the insulator spacer 4B was 40 mm, and a high frequency power source (13 The output of 56 MHz) was 600 W and the film formation time was 2 seconds. Note that the amount of dust generated was evaluated after film formation 20 times under these conditions. The evaluation results are shown in Table 2.
  • a DLC film was deposited on the inner wall of the PET bottle.
  • a variable capacitor 70 is connected.
  • the deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 is 1.2 liters, the thickness of the insulator spacer 4B is 10 mm, and the high frequency power supply 29
  • the output of (13 ⁇ 56 MHz) was 600 W, the film formation time was 2 seconds, and the capacitance of the variable capacitor 70 was 50 pF.
  • the amount of dust generated was evaluated after film formation 20 times under these conditions. The evaluation results are shown in Table 2.
  • Fig. 9 shows a comparison of the appearance images of the bottle (Fig. 9 (b)) formed 100 times under the conditions of Test 1 and the bottle (Fig. 9 (a)) formed 100 times in Test 4. .
  • Test 4 shows that film formation at the container mouth was suppressed. This is probably because the central part of the plasma generation has shifted downward.
  • Test 14 in which the thickness of the insulator spacer 4B was increased was found to be less than the test 1 in that the amount of light emitted from the exhaust chamber was reduced and plasma generation in the exhaust chamber was suppressed. As a result, the amount of dust attached to the exhaust chamber has also been reduced.
  • variable capacitor 70 When the variable capacitor 70 is connected in series between the exhaust chamber 5 and the ground as shown in Fig. 7, the insulator spacer 4B, the exhaust chamber 5 and the variable capacitor 70 are connected from the reaction chamber 3C. If the impedance of the current path that is grounded is defined as G, the impedance due to the combined capacitance C in the current path is B, and the capacity of the variable capacitor 70 is reduced.
  • Test 15 and Test 16 with the variable capacitor 70 connected, by adjusting the capacity of the variable capacitor 70 in comparison with the impedance A of the synthetic capacitance C between the plastic container 8 and the internal space 30B of the reaction chamber 3B, Since the impedance B was increased, it was found that the amount of light emitted from the exhaust chamber decreased compared to Test 1, and the generation of plasma in the exhaust chamber was suppressed. As a result, the amount of dust attached to the exhaust chamber has also been reduced. In Test 15 and Test 16, Test 15 in which the capacity of the variable capacitor 70 was reduced further suppressed plasma generation in the exhaust chamber.
  • the plastic container used in the examples has a capacity of 500 ml, a container height of 207 mm, a container body diameter of 68 mm, a mouth opening inner diameter of 21.74 mm, a mouth opening outer diameter of 24.94 mm, and a mouth height of 21.
  • the film formation uniformity was determined as follows. Measure the film thickness at 3 locations in the circumferential direction, 2cm above (bottom), 8cm above (trunk), and 16cm above (shoulder) above the bottom of the container. The film thickness was measured with a stylus type step gauge of Tenchol alpha_step500. By averaging them, the average film thickness of the bottom, the trunk and the shoulder is obtained. From the average film thickness at the bottom, torso, and shoulder, select the average film thickness results (average film thickness A) and the thinnest average film thickness results (average film thickness B). To obtain the film formation uniformity (%). The lower the deposition uniformity (%), the higher the uniformity.
  • one end of the optical fiber (light incident part) is installed in the internal space, and the other end of the optical fiber is connected to a discharge sensor (photo diode, Connected to a Yamatake photoelectric sensor, HPX-MA-063), the light incident on the optical fiber was monitored.
  • a discharge sensor photo diode, Connected to a Yamatake photoelectric sensor, HPX-MA-063
  • the position of the light incident part of the optical fiber is the part indicated by “D”.
  • the presence or absence and degree of plasma generation in the exhaust chamber were evaluated based on the output value (V) of the discharge sensor. The larger the output value, the greater the amount of plasma generated in the exhaust chamber.
  • a silicon chip A is attached to the wall surface of the opening 32b (for example, the location indicated as E in FIG. 10), and the silicon chip B is disposed near the exhaust port of the exhaust chamber 5 (for example, the location indicated as F in FIG. 10).
  • the film was formed in a container 20 times under the same conditions, then taken out and weighed with an electronic balance (manufactured by Shinko Denshi, high-precision electronic balance AF-R220). The amount of dust attached was determined from the difference in weight before and after film formation. [0265] (Exam 1)
  • a DL C film was formed on the inner wall surface of the PET bottle.
  • the deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 is 1.2 litter, and the insulator spacer 4C (made of polyetheretherketone) is used.
  • the thickness was 10 mm, the output of the low-frequency power supply 270 (0.4 MHz) was 600 W, and the film formation time was 2 seconds.
  • the plasma ignition means was activated. The amount of dust generated was evaluated after 20 film formations under these conditions. The amount of light emitted from the exhaust chamber 5 was 0V and no light was emitted.
  • the amount of dust generated (A) was 0.1 mg or less, and (B) was 0.1 mg or less, and plasma was generated only in the internal space of the reaction chamber 3C.
  • the film formation uniformity was 8%, and the film formation rate was 143 A / s.
  • a plasma CVD film-forming device (not shown) with a high-frequency power supply (13.56 MHz) connected instead of low-frequency power and a source gas supply pipe as an internal electrode was used on the inner wall surface of the PET bottle.
  • a DLC film was formed.
  • the deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space of the exhaust chamber is 1.2 liters, the thickness of the insulator spacer (made of polyetheretherketone) is 10 mm,
  • the output of the high frequency power supply (13 ⁇ 56MHz) was 600W and the film formation time was 2 seconds.
  • Plasma ignition means are not equipped.
  • the amount of dust generated was evaluated after film formation 20 times under these conditions.
  • the amount of light generated in exhaust chamber 5 is 1 ⁇ 8V
  • the amount of dust generated (A) is 1 ⁇ 0mg
  • (B) is 0 ⁇ 6mg.
  • Both the internal space of reaction chamber 3C and the internal space of exhaust chamber 5 are Plasma was generated.
  • the film formation uniformity was 36% and the film formation rate was 176 A / s.
  • test 2 that supplied high-frequency power was compared with test 1 that supplied low-frequency power
  • the amount of light emitted from the exhaust chamber did not emit at 0V, and It was found that the generation of plasma was suppressed. Along with this, the amount of dust attached to the exhaust chamber has also been reduced. It was also found that the film formation uniformity was improved.
  • Fig. 16 shows a comparison of the appearance images of a bottle (Fig. 16 (a)) 100 times deposited under the conditions of Test 1 and a bottle (Fig. 16 (b)) 100 times deposited in Test 2.
  • Test 1 shows that film formation at the container mouth was suppressed. This is probably because the central part of the plasma generation has shifted downward.
  • (Trial 3) shows that film formation at the container mouth was suppressed. This is probably because the central part of the plasma generation has shifted downward.
  • the plasma ignition means was activated, sparks were always generated at the spark generator 40, and the sparks were extinguished almost simultaneously with the ignition of the plasma.
  • the number of times of film formation was 30,00 0 times, the plasma non-ignition trouble was 0 times.
  • the tips of the outer surface of the raw material gas supply pipe 9 (inner electrode) and the linear or rod-like conductor 41 as a spark electrode were also cleaned at an appropriate time.
  • the film formation was repeated under the conditions of Test 1 without operating the plasma ignition means.
  • Test 1 the conditions of Test 1 without operating the plasma ignition means.
  • the tips of the outer surface of the source gas supply pipe 9 (inner electrode) and the linear or rod-like conductor 41 as the spark electrode were cleaned.
  • Test 4 plasma is generated by supplying low-frequency power. Therefore, considering the results of Test 1, it can be seen that the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed. Trouble with poor ignition or poor ignition persistence occurred. On the other hand, in Test 3, the gas barrier plastic container manufactured in Test 1 that eliminates such troubles was stably manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Abstract

A production device of a gas barrier plastic container in which productivity of a gas barrier plastic container is enhanced by reducing the periodic foreign matter removing work in an exhaust chamber and the subsequent exhaust passage and the replacing work of an external electrode incident to changing the profile of the container. In the device for forming a thin film having gas barrier properties on the inner wall face of a plastic container by a plasma CVD method, a dielectric spacer is arranged in a gap space defined between the inner wall face of an external electrode and the outer wall face of the plastic container. Assuming the combined capacitance of the capacitance of the plastic container itself and the capacitance of its internal space is C1, and the combined capacitance of the outer space of the plastic container out of the internal space of a film deposition unit including the internal space of a vacuum chamber and the internal space of the exhaust chamber is C2, the following relation is satisfied; C1>C2, and low frequency power of 400kHz-4MHz is supplied to the external electrode.

Description

明 細 書  Specification
ガスバリア性プラスチック容器の製造装置及びその製造方法  Gas barrier plastic container manufacturing apparatus and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、プラズマ CVD (chemical vapor deposition)法によってガスバリア性 を有する薄膜をプラスチック容器の内壁面に成膜するガスノ リア性プラスチック容器 の製造装置に関する。また、その容器の製造方法に関する。また、反応室外でのプ ラズマ発生を抑制できるプラズマ CVD成膜装置に関する。また、その容器の製造方 法に関する。  TECHNICAL FIELD [0001] The present invention relates to a gas noble plastic container manufacturing apparatus for forming a thin film having gas barrier properties on the inner wall surface of a plastic container by plasma CVD (chemical vapor deposition). Moreover, it is related with the manufacturing method of the container. The present invention also relates to a plasma CVD film forming apparatus that can suppress the generation of plasma outside the reaction chamber. It also relates to the manufacturing method of the container.
[0002] また、本発明は、プラズマ CVD法によってガスノ リア膜をプラスチック容器の内壁 面に成膜する際に反応室外でのプラズマ発生を抑制する技術に関する。  [0002] The present invention also relates to a technique for suppressing plasma generation outside a reaction chamber when a gas noble film is formed on the inner wall surface of a plastic container by a plasma CVD method.
背景技術  Background art
[0003] プラスチック容器は、臭いが収着しやすぐまたガスノくリア性が壜ゃ缶と比較して劣 るため、ビールや発泡酒等の酸素に鋭敏な飲料には用いることが難しかった。そこで 、プラスチック容器における収着性やガスバリア性の問題点を解決すベぐ硬質炭素 膜 (ダイヤモンドライクカーボン (DLC) )等をコーティングする方法と装置が開示され ている。例えば、対象とする容器の外形とほぼ相似形の内部空間を有する外部電極 と、容器の内側に容器の口部から揷入され、原料ガス導入管を兼ねた内部電極を用 いて、容器の内壁面に硬質炭素膜をコーティングする装置が開示されている (例えば 特許文献 1又は 2を参照。)。このような装置では、容器内に原料ガスとして脂肪族炭 化水素類,芳香族炭化水素類炭素等の炭素源ガスを供給した状態で、外部電極に 高周波電力を印加する。このとき、原料ガスが両電極間においてプラズマ化し、発生 したプラズマ中のイオンは外部電極と内部電極との間で発生する高周波由来の電位 差(自己バイアス)に誘引され、容器内壁に衝突し、膜が形成される。  [0003] Plastic containers are difficult to use for oxygen-sensitive beverages such as beer and sparkling liquor because the odor sorbs quickly and gasno-rear is inferior to cans. Therefore, a method and apparatus for coating a hard carbon film (diamond-like carbon (DLC)) or the like that solves the problems of sorption and gas barrier properties in plastic containers are disclosed. For example, by using an external electrode having an internal space approximately similar to the outer shape of the target container and an internal electrode inserted into the container from the mouth of the container and also serving as a source gas introduction pipe, An apparatus for coating a hard carbon film on a wall surface is disclosed (for example, see Patent Document 1 or 2). In such an apparatus, high-frequency power is applied to the external electrode while a carbon source gas such as aliphatic hydrocarbons or aromatic hydrocarbons carbon is supplied as a source gas in the container. At this time, the source gas is turned into plasma between both electrodes, and ions in the generated plasma are attracted to a high-frequency potential difference (self-bias) generated between the external electrode and the internal electrode, and collide with the inner wall of the container. A film is formed.
[0004] 特許文献 1 :特許第 2788412号公報  [0004] Patent Document 1: Japanese Patent No. 2788412
特許文献 2:特許第 3072269号公報  Patent Document 2: Japanese Patent No. 3072269
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] しかし、本発明者らは、このような成膜装置において、プラズマの発生は、プラスチ ック容器が収容されている外部電極内のみならず、それと連通する排気室まで生じ、 さらに場合によっては、排気室から真空ポンプに至るまでの排気経路まで生ずること をつきとめた。 Problems to be solved by the invention However, the present inventors have found that in such a film forming apparatus, the generation of plasma occurs not only in the external electrode in which the plastic container is accommodated, but also in the exhaust chamber communicating therewith. It has been found that some of the exhaust paths from the exhaust chamber to the vacuum pump occur.
[0006] このような外部電極以外で発生したプラズマは、排気室の金属部品、排気経路の 配管等の金属部品及び配管継ぎ手等で使用される非金属部品を劣化させる原因と なり、装置寿命の短縮を招く。  [0006] Such plasma generated outside the external electrode may cause deterioration of metal parts in the exhaust chamber, metal parts such as pipes in the exhaust passage, and non-metal parts used in pipe joints, etc. Incurs shortening.
[0007] また外部電極以外で発生したプラズマは、排気室及び排気経路の壁面に原料ガス 由来の異物、例えば炭素系異物を付着させる原因となる。この炭素系異物は定期的 に除去されることが好ましい。  [0007] In addition, the plasma generated at other than the external electrode causes foreign material such as carbon-based foreign matter from the source gas to adhere to the wall surfaces of the exhaust chamber and the exhaust path. It is preferable that this carbon-based foreign matter is periodically removed.
[0008] さらに外部電極以外で発生したプラズマは、外部電極で発生するプラズマの中心 部分を排気室側にシフトさせてしまうので、プラスチック容器の肩部及び口部に厚い 薄膜が成膜され、容器主軸方向に対して膜厚の不均一の原因となっていた。このよう な容器主軸方向に対して膜厚の不均一な容器は、美観上好まれない場合がある。  [0008] Further, since the plasma generated outside the external electrode shifts the central portion of the plasma generated at the external electrode toward the exhaust chamber, a thick thin film is formed on the shoulder and mouth of the plastic container. This was the cause of non-uniform film thickness with respect to the main axis direction. Such a container having a non-uniform film thickness with respect to the container main axis direction may not be aesthetically pleasing.
[0009] また、特許文献 1又は 2で開示された成膜装置のように、対象とする容器の外形とほ ぼ相似形の内部空間を有する外部電極を用いる限り、容器の形状が異なればそれ に対応する外部電極を成膜装置に装着しなければならず、装置のコストが高くなる。 また、外部電極の交換に時間を要するため、成膜装置の稼働率が低下する。  [0009] Further, as long as an external electrode having an internal space that is almost similar to the outer shape of the target container is used as in the film forming apparatus disclosed in Patent Document 1 or 2, if the shape of the container differs, The external electrode corresponding to the above must be mounted on the film forming apparatus, which increases the cost of the apparatus. In addition, since it takes time to replace the external electrode, the operating rate of the film forming apparatus decreases.
[0010] そこで、本発明の目的は、ガスノくリア性プラスチック容器の製造装置において、排 気室又はそれ以降の排気経路でのプラズマの発生を抑制することで炭素系異物の 発生の防止を図ることであり、かつ、形状が異なる容器に成膜する場合において外 部電極の交換を不要とすることである。そして、定期的な異物除去作業と容器形状換 えに伴う外部電極の交換作業を低減することでガスバリア性プラスチック容器の生産 性を高めることを目的とする。併せて、装置寿命の短縮の防止を図ることを目的とす る。  [0010] Therefore, an object of the present invention is to prevent the generation of carbon-based foreign matter by suppressing the generation of plasma in the exhaust chamber or the exhaust path after that in the apparatus for manufacturing a gas plastic plastic container. In addition, it is not necessary to replace the external electrode when forming a film in containers having different shapes. The purpose is to increase the productivity of gas barrier plastic containers by reducing the work of removing external electrodes that accompanies periodic foreign object removal and container shape change. At the same time, it aims to prevent shortening of the device life.
[0011] また、本発明の目的は、ガスバリア性プラスチック容器の製造方法において、生産 性を高め、かつ、装置容器主軸方向に対して薄膜の膜厚の均一性が高い容器を製 造することである。 [0012] また、本発明の目的は、排気室でのプラズマの発生を抑制する方法を提供すること である。また、このプラズマ発生抑制方法を利用して、容器主軸方向に対してガスバ リア薄膜の膜厚の均一化を図った容器の製造方法を提供することを目的とする。さら に、このプラズマ発生抑制方法を利用して、排気室及び排気経路での各部品の劣化 が生じにくぐ長期安定稼動をすることができるガスノ リア性プラスチック容器の製造 装置を提供することを目的とする。 [0011] Further, an object of the present invention is to produce a container having high uniformity of thin film thickness in the apparatus container main axis direction in the gas barrier plastic container manufacturing method. is there. [0012] Another object of the present invention is to provide a method for suppressing the generation of plasma in the exhaust chamber. Another object of the present invention is to provide a method for manufacturing a container in which the thickness of the gas barrier thin film is made uniform with respect to the container main axis direction by utilizing this plasma generation suppressing method. Furthermore, an object of the present invention is to provide an apparatus for producing a gas-nore plastic container that can operate stably for a long period of time, in which the deterioration of each component in the exhaust chamber and the exhaust path is difficult to occur by using this plasma generation suppression method. And
[0013] さらに、反応室の外にプラズマが漏れていると、プラスチック容器、外部電極及び内 部電極によってインピーダンスが決まらず、実際にはプラスチック容器、外部電極、 排気室、排気配管及び内部電極との間でインピーダンスが決まると考えられる。した がって、成膜を重ねるごとに絶縁物である前記炭素系異物が付着してレ、くので、イン ピーダンスは徐々に増加していく。例えば、特許文献 1、特許文献 2等に開示された 成膜装置では、高周波電源を外部電極に直接に接続せずに、 自動整合器を介して 接続している。これは自動整合器が、出力供給している電極全体からの反射波が最 小になるように、インダクタンスレキャパシタンス Cによってインピーダンスを合わせる ことができるためである。炭素系異物は壁に徐々に堆積するので、ある成膜時とその 次の成膜時のインピーダンスの変化はかなり小さい。このような場合、 自動整合器は 固定整合器とほぼ同じ使われ方となる。一方、インピーダンスの長期的変化について は自動整合で対応させる。ところが、前記炭素系異物が厚くなり、内部応力によって 壁から剥離する場合がある。このような剥離が発生するとインピーダンスの急激な変 化を引き起こしプラズマの着火が起こらなくなる場合があり、その結果、全く成膜がさ れないか、或いは着火したとしても非常に不安定となる場合がある。こうなると、ガス バリア性が不十分なボトルが予測できずに発生してしまうこととなる。  [0013] Further, if plasma leaks outside the reaction chamber, the impedance is not determined by the plastic container, the external electrode, and the internal electrode. Actually, the plastic container, the external electrode, the exhaust chamber, the exhaust pipe, and the internal electrode The impedance is considered to be determined between the two. Therefore, as the film is deposited, the carbon-based foreign material, which is an insulator, adheres to the film, and the impedance gradually increases. For example, in the film forming apparatus disclosed in Patent Document 1, Patent Document 2, and the like, the high frequency power source is not directly connected to the external electrode but connected via an automatic matching device. This is because the automatic matching device can match the impedance by the inductance recapacitance C so that the reflected wave from the entire electrode supplying the output is minimized. Since carbon-based foreign matter gradually accumulates on the wall, the change in impedance from one film formation to the next is very small. In such a case, the automatic matching unit is used in the same way as the fixed matching unit. On the other hand, long-term changes in impedance are handled by automatic matching. However, the carbon-based foreign matter may become thick and peel from the wall due to internal stress. When such delamination occurs, the impedance may change suddenly and plasma ignition may not occur. As a result, film formation may not occur at all, or even if ignition occurs, it may become very unstable. is there. If this happens, bottles with insufficient gas barrier properties will be unpredictably generated.
[0014] そこで、本発明の目的は、プラズマ CVD成膜装置において、プラズマの発生が反 応室の内部、すなわちプラスチック容器の内部のみで起こるように、排気室又はそれ 以降の排気経路でのプラズマの発生を抑制することであり、このときプラズマを安定し て着火させることである。さらに、排気室又はそれ以降の排気経路でのプラズマの発 生を抑制することで、装置寿命の短縮の防止、インピーダンスの急激な変化に起因 する不良ボトルの偶発の防止及び容器主軸方向に対してガスバリア薄膜の膜厚の均 一化を図ることを目的とする。また本発明の他の目的は、ガスバリア性プラスチック容 器の製造方法において、排気室又はそれ以降の排気経路でのプラズマの発生を抑 制することで、容器主軸方向に対してガスバリア薄膜の膜厚が均一な容器を安定し て製造することである。 [0014] Therefore, an object of the present invention is to provide plasma in an exhaust chamber or an exhaust path thereafter so that plasma is generated only in the reaction chamber, that is, in the plastic container, in the plasma CVD film forming apparatus. This is to suppress the generation of plasma and to ignite the plasma stably at this time. Furthermore, by suppressing the generation of plasma in the exhaust chamber or in the exhaust path after that, it is possible to prevent the device life from being shortened, to prevent accidental occurrence of defective bottles due to a sudden change in impedance, and to the container main axis direction. Average thickness of gas barrier thin film The purpose is to unify. Another object of the present invention is to reduce the film thickness of the gas barrier thin film relative to the container main axis direction by suppressing the generation of plasma in the exhaust chamber or the exhaust path after it in the gas barrier plastic container manufacturing method. Is to produce a uniform container stably.
課題を解決するための手段  Means for solving the problem
[0015] 本発明に係るガスノ リア性プラスチック容器の製造装置は、プラスチック容器を収 容する真空チャンバとなる外部電極と、前記プラスチック容器の内部に挿脱自在に 配置される原料ガス供給管となる内部電極と、前記外部電極の内部のガスを排気す る真空ポンプと、前記外部電極に接続された電源と、前記外部電極の内部空間と前 記プラスチック容器の口部の上方にて連通する排気室と、前記外部電極と前記排気 室とを電気的に絶縁させる絶縁部材とを有し、前記プラスチック容器の内壁面にブラ ズマ CVD法によってガスノくリア性を有する薄膜を形成するガスバリア性プラスチック 容器の製造装置において、  The apparatus for producing a gas-no plastic plastic container according to the present invention includes an external electrode serving as a vacuum chamber that accommodates the plastic container, and a source gas supply pipe that is detachably disposed inside the plastic container. An internal electrode, a vacuum pump for exhausting the gas inside the external electrode, a power source connected to the external electrode, an exhaust space communicating with the internal space of the external electrode and above the opening of the plastic container A gas barrier plastic container having a chamber, an insulating member that electrically insulates the external electrode and the exhaust chamber, and forming a thin film having a gas releasability on the inner wall surface of the plastic container by a plasma CVD method In the manufacturing equipment of
前記外部電極の内壁面と前記プラスチック容器の外壁面とに挟まれた隙間空間に 誘電体からなるスぺーサ一が配置されており、かつ、  A spacer made of a dielectric material is disposed in a gap space between the inner wall surface of the external electrode and the outer wall surface of the plastic container; and
前記プラスチック容器自体の静電容量とその内部空間の静電容量との合成静電容 量を Cとし、前記真空チャンバの内部空間と前記排気室の内部空間とを含む成膜ュ The combined capacitance of the capacitance of the plastic container itself and the capacitance of its internal space is C, and the film forming unit including the internal space of the vacuum chamber and the internal space of the exhaust chamber.
1 1
ニットの内部空間のうち前記プラスチック容器の外側空間の合成静電容量を Cとした  C is the combined capacitance of the outer space of the plastic container in the inner space of the knit.
2 とき、 c >cの関係が成立し、かつ、  2 when c> c holds, and
1 2  1 2
前記電源が周波数 400kHz〜4MHzの低周波電力を前記外部電極に供給するこ とを特徴とする。  The power supply supplies low frequency power having a frequency of 400 kHz to 4 MHz to the external electrode.
[0016] 本発明に係るガスバリア性プラスチック容器の製造装置では、前記プラスチック容 器は、胴部に対して口部が縮径した形状を有しており、前記外部電極は、前記プラス チック容器の胴径よりもわずかに大きな内径を持つ筒形状の内部空間を有しており、 前記スぺーサ一は、前記プラスチック容器の胴部から口部にかけて縮径した部分の 外壁面と前記外部電極の筒形状の内壁面とに挟まれた隙間空間に配置されている ことが好ましい。胴径が略同一で、肩部又は首部の形状が異なるプラスチック容器に 対して、外部電極を交換しなくても、いずれも効率的にバイアス電圧を印加すること ができる。 [0016] In the gas barrier plastic container manufacturing apparatus according to the present invention, the plastic container has a shape in which a mouth portion is reduced in diameter with respect to the body portion, and the external electrode is formed of the plastic container. It has a cylindrical internal space having an inner diameter slightly larger than the body diameter, and the spacer includes an outer wall surface of a portion whose diameter is reduced from the body portion to the mouth portion of the plastic container and the outer electrode. It is preferably disposed in a gap space sandwiched between cylindrical inner wall surfaces. Efficiently apply a bias voltage to plastic containers with substantially the same body diameter and different shoulder or neck shapes without replacing the external electrodes Can do.
[0017] 本発明に係るガスノくリア性プラスチック容器の製造装置では、前記外部電極は、前 記プラスチック容器の全体を収容する内部空間を有する力、或いは、前記プラスチッ ク容器の口部を除く全体を収容する内部空間を有する場合が包含される。プラスチッ ク容器の口部の内壁にガスバリア性を有する薄膜を成膜することができ、或いは、非 成膜とすることができる。  In the apparatus for producing a gas plastic plastic container according to the present invention, the external electrode is a force having an internal space for accommodating the entire plastic container, or the whole excluding the mouth of the plastic container. The case where it has the internal space which accommodates is included. A thin film having a gas barrier property can be formed on the inner wall of the mouth of the plastic container, or it can be non-deposited.
[0018] 本発明に係るガスノ リア性プラスチック容器の製造方法は、真空チャンバとなる外 部電極にプラスチック容器を収容する工程と、 [0018] A method for producing a gas-nore plastic container according to the present invention includes a step of housing a plastic container in an external electrode serving as a vacuum chamber,
前記プラスチック容器の内部に原料ガス供給管となる内部電極を配置する工程と、 前記外部電極の内壁面と前記プラスチック容器の外壁面とに挟まれた隙間空間に 誘電体からなるスぺーサーを配置する工程と、  A step of disposing an internal electrode serving as a source gas supply pipe inside the plastic container, and a spacer made of a dielectric in a gap space between the inner wall surface of the external electrode and the outer wall surface of the plastic container And a process of
真空ポンプを作動させて前記外部電極の内部のガスを排気する工程と、 前記プラスチック容器の内部に原料ガスを減圧下で吹き出させる工程と、 前記プラスチック容器自体の静電容量とその内部空間の静電容量との合成静電容 量を Cとし、前記真空チャンバの内部空間と排気室の内部空間とを含む成膜ュニッ A step of evacuating a gas inside the external electrode by operating a vacuum pump; a step of blowing a raw material gas into the plastic container under reduced pressure; a capacitance of the plastic container itself and a static of the internal space thereof; The combined capacitance with the capacitance is C, and the film formation unit including the internal space of the vacuum chamber and the internal space of the exhaust chamber.
1 1
トの内部空間のうち前記プラスチック容器の外側空間の合成静電容量を Cとしたとき  When the combined capacitance of the outer space of the plastic container is C
2 2
、C > Cの関係が成立する条件下で、前記外部電極に周波数 400kHz〜4MHzのAnd C> C, the external electrode has a frequency of 400 kHz to 4 MHz.
1 2 1 2
低周波電力を供給し、前記原料ガスをプラズマ化して、前記プラスチック容器の内壁 面にガスバリア性を有する薄膜を成膜する工程と、  Supplying low-frequency power, converting the source gas into plasma, and forming a thin film having gas barrier properties on the inner wall surface of the plastic container;
を有することを特徴とする。  It is characterized by having.
[0019] 本発明に係るガスノくリア性プラスチック容器の製造方法では、前記ガスバリア性を 有する薄膜として、炭素膜、珪素含有炭素膜又は Si〇膜を成膜する場合が包含され る。 [0019] The method for producing a gas-soluble plastic container according to the present invention includes a case where a carbon film, a silicon-containing carbon film, or a SiO film is formed as the thin film having gas barrier properties.
[0020] また、本発明者らは、特許文献 1又は 2に記載された製造装置が通常運転をしてい る状態と比較して、絶縁体スぺーサ一と排気室の内部空間との合成静電容量のイン ピーダンスを意図的に高めた状態にて成膜を行なうと、排気室内でのプラズマ発生 を抑制した状態で、ガスバリア薄膜を成膜することができることを見出し、本発明を完 成させた。すなわち、本発明に係る反応室外でのプラズマ発生の抑制方法は、反応 室にプラスチック容器を収容した後、真空ポンプを作動させて前記反応室の内部ガ スを、絶縁体スぺーサ一によつて前記反応室と電気的に絶縁されている排気室を経 由して排気し、続いて前記プラスチック容器の内部に原料ガスを減圧された所定圧 力下で吹き出させているときに前記反応室に高周波電力を供給して前記原料ガスを プラズマ化させ、前記プラスチック容器の内壁面にガスバリア薄膜を成膜するときに、 前記プラスチック容器と前記反応室の内部空間との合成静電容量 Cのインピーダン ス Aと前記絶縁体スぺーサ一と前記排気室の内部空間との合成静電容量 Cのインピ [0020] In addition, the inventors of the present invention combined the insulator spacer and the internal space of the exhaust chamber as compared with the state where the manufacturing apparatus described in Patent Document 1 or 2 is in normal operation. The present inventors completed the present invention by discovering that a gas barrier thin film can be formed in a state in which plasma generation in the exhaust chamber is suppressed if film formation is performed with the capacitance impedance increased intentionally. I let you. That is, the method for suppressing plasma generation outside the reaction chamber according to the present invention is a reaction method. After the plastic container is accommodated in the chamber, the vacuum pump is operated to cause the gas inside the reaction chamber to pass through an exhaust chamber that is electrically insulated from the reaction chamber by an insulator spacer. When the raw material gas is blown out under a predetermined reduced pressure inside the plastic container, high-frequency power is supplied to the reaction chamber to turn the raw material gas into plasma, and the plastic container When the gas barrier thin film is formed on the inner wall surface, the impedance A of the synthetic capacitance C between the plastic container and the internal space of the reaction chamber, the insulator spacer 1, and the internal space of the exhaust chamber Composite capacitance of C impi
2 一ダンス Bのうち、インピーダンス Bを、インピーダンス Aを基準として相対的に高めて 、前記排気室におけるプラズマの発生を抑制することを特徴とする。  2 Of the dances B, the impedance B is relatively increased with the impedance A as a reference to suppress the generation of plasma in the exhaust chamber.
[0021] 本発明に係るガスノ リア性プラスチック容器の製造方法は、反応室にプラスチック 容器を収容した後、真空ポンプを作動させて前記反応室の内部ガスを、絶縁体スぺ ーサ一によつて前記反応室と電気的に絶縁されている排気室を経由して排気し、続 レ、て前記プラスチック容器の内部に原料ガスを減圧された所定圧力下で吹き出させ ているときに前記反応室に高周波電力を供給して前記原料ガスをプラズマ化させ、 前記プラスチック容器の内壁面にガスバリア薄膜を成膜させてガスバリア性プラスチ ック容器を製造する方法において、前記プラスチック容器と前記反応室の内部空間と の合成静電容量 Cのインピーダンス Aと前記絶縁体スぺーサ一と前記排気室の内 [0021] In the method for producing a gas-noreous plastic container according to the present invention, after the plastic container is accommodated in the reaction chamber, the vacuum pump is operated so that the internal gas in the reaction chamber is supplied by an insulator spacer. The reaction chamber is then evacuated through an exhaust chamber that is electrically insulated from the reaction chamber, and then the reaction chamber is blown out under a predetermined reduced pressure within the plastic container. In the method of producing a gas barrier plastic container by supplying a high frequency power to a plasma to form the raw material gas and forming a gas barrier thin film on the inner wall surface of the plastic container, the plastic container and the reaction chamber Combined capacitance with space C impedance A, insulator spacer and exhaust chamber
1  1
部空間との合成静電容量 Cのインピーダンス Bのうち、インピーダンス Bを、インピー  Impedance B of impedance B of combined capacitance C with subspace is
2  2
ダンス Aを基準として相対的に高めた状態として前記ガスバリア薄膜を成膜すること を特徴とする。  The gas barrier thin film is formed in a relatively high state with respect to the dance A.
[0022] 本発明に係るガスノくリア性プラスチック容器の製造方法では、 C >Cとし、且つ、  [0022] In the method for producing a gas-soluble plastic container according to the present invention, C> C, and
1 2  1 2
前記高周波電力に低周波電力を重畳させて供給することにより、インピーダンス Bを 高めることが好ましい。これにより、成膜時において装置の部材の物理的な操作を加 えることなく、電気的な作用によって、インピーダンス Bを高めた状態でガスバリア薄 膜を成膜することができる。  It is preferable to increase the impedance B by supplying low frequency power superimposed on the high frequency power. As a result, a gas barrier thin film can be formed with an increased impedance B by an electrical action without adding physical operation of the apparatus members during film formation.
[0023] 本発明に係るガスバリア性プラスチック容器の製造方法では、前記排気室の容積を 増加させることにより、インピーダンス Bを高めることが好ましい。成膜する際に排気室 の容積を増加させておくことにより、インピーダンス Bを高めることができる。 [0024] 本発明に係るガスノくリア性プラスチック容器の製造方法では、前記絶縁体スぺーサ 一の厚さをより厚いものへ変更することにより、インピーダンス Bを高めることが好まし レ、。成膜する際に絶縁体スぺーサ一の厚さが大きなものを使用することにより、インピ 一ダンス Bを高めることができる。 In the method for producing a gas barrier plastic container according to the present invention, it is preferable to increase the impedance B by increasing the volume of the exhaust chamber. Impedance B can be increased by increasing the volume of the exhaust chamber during film formation. [0024] In the method for producing a gas-soluble plastic container according to the present invention, it is preferable to increase the impedance B by changing the thickness of the insulator spacer to a thicker one. Impedance B can be increased by using a thick insulator spacer when forming the film.
[0025] 本発明に係るガスバリア性プラスチック容器の製造方法では、前記排気室と接地と の接続の間に直列で静電容量 Cの可変コンデンサを接続し、前記合成静電容量 C  In the method for manufacturing a gas barrier plastic container according to the present invention, a variable capacitor having a capacitance C is connected in series between the exhaust chamber and the ground, and the combined capacitance C
3 2 は前記可変コンデンサの静電容量 Cを加えたものとするとき、前記可変コンデンサの  3 2 is the sum of the capacitance C of the variable capacitor.
3  Three
静電容量 Cを小さくすることにより、インピーダンス Bを高めることが好ましい。成膜す  It is preferable to increase the impedance B by reducing the capacitance C. Deposit
3  Three
る際に可変コンデンサの容量を調整することにより、インピーダンス Bを高めることが できる。  Impedance B can be increased by adjusting the capacitance of the variable capacitor.
[0026] 本発明に係るガスバリア性プラスチック容器の製造方法では、前記高周波電力の 周波数が 13. 56MHzであることが好ましい。  In the method for producing a gas barrier plastic container according to the present invention, the frequency of the high frequency power is preferably 13.56 MHz.
[0027] 本発明に係るガスバリア性プラスチック容器の製造方法では、前記低周波電力の 周波数が 100kHz〜3MHzであることが好ましレ、。インピーダンス Bを十分に高める ことができ、排気室でのプラズマ発生をより抑制することができる。  [0027] In the method for manufacturing a gas barrier plastic container according to the present invention, the frequency of the low frequency power is preferably 100 kHz to 3 MHz. Impedance B can be sufficiently increased, and plasma generation in the exhaust chamber can be further suppressed.
[0028] 本発明に係るガスバリア性プラスチック容器の製造方法では、前記低周波電力の 出力を、前記高周波電力と前記低周波電力の合計出力の 20〜80%とすることが好 ましい。排気室でのプラズマ発生を抑制しつつ、反応室でのプラズマ発生を生じさせ 、ガスノくリア性の良好なプラスチック容器を製造することができる。  [0028] In the method for producing a gas barrier plastic container according to the present invention, the output of the low frequency power is preferably 20 to 80% of the total output of the high frequency power and the low frequency power. While suppressing the generation of plasma in the exhaust chamber, the generation of plasma in the reaction chamber can be produced to produce a plastic container having good gas-releasability.
[0029] 本発明に係るガスバリア性プラスチック容器の製造方法では、前記ガスバリア薄膜 として、炭素膜、珪素含有炭素膜又は Si〇膜を成膜する場合が含まれる。  [0029] The method for producing a gas barrier plastic container according to the present invention includes a case where a carbon film, a silicon-containing carbon film, or a SiO film is formed as the gas barrier thin film.
[0030] 本発明に係るガスノ リア性プラスチック容器の製造装置は、プラスチック容器を収 容する反応室と、排気室と、前記反応室と前記排気室に挟まれて各々を電気的に絶 縁させるとともに前記反応室と前記排気室とを連通させる開口部を設けた絶縁体スぺ ーサ一と、前記排気室に接続され、前記開口部と前記排気室を経由して前記反応室 の内部ガスを排気する真空ポンプと、前記プラスチック容器の内部に配置された原料 ガス供給管と、該原料ガス供給管に原料ガスを供給する原料ガス供給手段と、前記 反応室に高周波電力を供給する高周波電力供給手段と、を備えたガスバリア性ブラ スチック容器の製造装置において、前記プラスチック容器と前記反応室の内部空間 との合成静電容量 Cのインピーダンス Aと前記絶縁体スぺーサ一と前記排気室の内 [0030] The apparatus for producing a gas-no plastic plastic container according to the present invention electrically isolates each of the reaction chamber, the exhaust chamber, and the reaction chamber and the exhaust chamber, which accommodates the plastic container. And an insulator spacer provided with an opening for communicating the reaction chamber and the exhaust chamber, and an internal gas of the reaction chamber connected to the exhaust chamber via the opening and the exhaust chamber. A vacuum pump for exhausting gas, a source gas supply pipe disposed inside the plastic container, source gas supply means for supplying source gas to the source gas supply pipe, and high frequency power for supplying high frequency power to the reaction chamber And a gas barrier bra In the apparatus for manufacturing a stick container, the impedance A of the combined capacitance C between the plastic container and the internal space of the reaction chamber, the insulator spacer, and the exhaust chamber
1  1
部空間との合成静電容量 Cのインピーダンス Bのうち、インピーダンス Bを、インピー  Impedance B of impedance B of combined capacitance C with subspace is
2  2
ダンス Aを基準として相対的に高めるインピーダンス増加手段を設けたことを特徴と する。  It is characterized by the provision of an impedance increase means that is relatively high with respect to Dance A.
[0031] 本発明に係るガスノ リア性プラスチック容器の製造装置では、 C >Cであり、且つ  [0031] In the gas no plastic container manufacturing apparatus according to the present invention, C> C, and
1 2  1 2
、前記インピーダンス増加手段は、前記反応室に供給される高周波電力に、低周波 電力を重畳させて供給する低周波電力供給手段であることが好ましい。これにより、 成膜時において装置の部材の物理的な操作を加えることなぐ電気的な作用によつ て、インピーダンス Bを高めた状態でガスバリア薄膜を成膜することが可能である。  The impedance increasing means is preferably low-frequency power supply means for supplying low-frequency power superimposed on high-frequency power supplied to the reaction chamber. As a result, the gas barrier thin film can be formed with the impedance B increased by an electrical action without applying physical manipulation of the apparatus members during film formation.
[0032] 本発明に係るガスバリア性プラスチック容器の製造装置では、前記インピーダンス 増加手段は、前記排気室の容積を増加させる手段であることが好ましい。成膜する 際に排気室の容積を増加させておくことにより、インピーダンス Bを高めた状態でガス バリア薄膜を成膜することが可能である。 In the gas barrier plastic container manufacturing apparatus according to the present invention, the impedance increasing means is preferably means for increasing the volume of the exhaust chamber. By increasing the volume of the exhaust chamber at the time of film formation, it is possible to form a gas barrier thin film with increased impedance B.
[0033] 本発明に係るガスノくリア性プラスチック容器の製造装置では、前記インピーダンス 増加手段は、前記絶縁体スぺーサーを、より厚い絶縁体スぺーサ一に変更する手段 であることが好ましい。成膜する際に絶縁体スぺーサ一の厚さが大きなものを使用で きるようにすることにより、インピーダンス Bを高めた状態でガスバリア薄膜を成膜する ことが可能である。  [0033] In the gas-containing plastic container manufacturing apparatus according to the present invention, the impedance increasing means is preferably means for changing the insulator spacer to a thicker insulator spacer. It is possible to form a gas barrier thin film with an increased impedance B by making it possible to use a thick insulator spacer when forming the film.
[0034] 本発明に係るガスノくリア性プラスチック容器の製造装置では、前記インピーダンス 増加手段は、前記排気室と接地との接続の間に直列で接続された可変コンデンサで あることが好ましい。成膜する際に可変コンデンサの容量を調整することにより、イン ピーダンス Bを高めた状態でガスノ リア薄膜を成膜することが可能である。  [0034] In the apparatus for producing a gas plastic plastic container according to the present invention, it is preferable that the impedance increasing means is a variable capacitor connected in series between the exhaust chamber and the ground. By adjusting the capacitance of the variable capacitor when forming the film, it is possible to form a gas noor thin film with the impedance B increased.
[0035] さらに本発明者らは、プラスチック容器と反応室の内部空間の合成静電容量を、排 気室の内部空間と絶縁体スぺーサ一の合成静電容量よりも大きな装置とし、且つ、 原料ガスをプラズマ化させるための電源として低周波電源を使用することで、排気室 側のインピーダンスを高くし、これによつて排気室又はそれ以降の排気経路でのブラ ズマの発生を抑制することができることを見出した。他方、低周波電源を使用すると プラズマの不着火又はプラズマが着火したとしても消失が偶発的に生じうることが判 明し、それに対する策として、プラズマ着火の補助手段を設けることで、当該偶発的 問題を解決できることを見出した。これにより本発明を完成させるに至った。すなわち 、本発明に係るプラズマ CVD成膜装置は、プラスチック容器を収容する反応室と、排 気室と、前記反応室と前記排気室に挟まれて各々を電気的に絶縁させるとともに前 記反応室と前記排気室とを連通させる開口部を設けた絶縁体スぺーサ一と、前記排 気室に接続され、前記開口部と前記排気室を経由して前記反応室の内部ガスを排 気する真空ポンプと、前記プラスチック容器の内部に配置された原料ガス供給管と、 該原料ガス供給管に原料ガスを供給する原料ガス供給手段と、前記反応室に周波 数 100kHz〜3MHzの低周波電力を供給する低周波電力供給手段と、前記プラス チック容器の内部に配置されたスパーク発生部を有するプラズマ着火手段と、を備え 、前記プラスチック容器と前記反応室の内部空間との合成静電容量を Cとし、前記 [0035] Further, the inventors of the present invention have a device in which the combined capacitance of the inner space of the plastic container and the reaction chamber is larger than the combined capacitance of the inner space of the exhaust chamber and the insulator spacer, and By using a low-frequency power source as a power source to turn the raw material gas into plasma, the impedance on the exhaust chamber side is increased, thereby suppressing the occurrence of plasma in the exhaust chamber or the exhaust path thereafter. I found that I can do it. On the other hand, when using a low frequency power supply It was found that even if the plasma was not ignited or the plasma was ignited, the disappearance could occur accidentally, and as a measure against it, it was found that the incidental problem could be solved by providing auxiliary means for plasma ignition. Thus, the present invention has been completed. That is, the plasma CVD film forming apparatus according to the present invention includes a reaction chamber containing a plastic container, an exhaust chamber, and the reaction chamber and the exhaust chamber to electrically insulate each of the reaction chamber and the reaction chamber. And an insulator spacer having an opening communicating with the exhaust chamber, and connected to the exhaust chamber, and exhausts the internal gas of the reaction chamber through the opening and the exhaust chamber. A vacuum pump, a raw material gas supply pipe disposed inside the plastic container, a raw material gas supply means for supplying a raw material gas to the raw material gas supply pipe, and a low frequency power of a frequency of 100 kHz to 3 MHz in the reaction chamber. Low-frequency power supply means for supplying, and plasma ignition means having a spark generating portion disposed inside the plastic container, and the combined capacitance of the plastic container and the internal space of the reaction chamber is C age Said
1 絶縁体スぺーサ一と前記排気室の内部空間との合成静電容量を Cとしたとき、 C >  1 If the combined capacitance of the insulator spacer and the internal space of the exhaust chamber is C, C>
2 1 cの関係が成立することを特徴とする。  It is characterized by the fact that 2 1 c is established.
2  2
[0036] 本発明に係るプラズマ CVD成膜装置では、前記スパーク発生部を、前記プラスチ ック容器の高さの中央より下方側に配置することが好ましい。容器の底面にガスバリ ァ薄膜を成膜させやすぐ膜厚分布を均質化しやすい。  [0036] In the plasma CVD film forming apparatus according to the present invention, it is preferable that the spark generating portion is disposed below the center of the height of the plastic container. A gas barrier thin film is easily formed on the bottom of the container and the film thickness distribution is easily homogenized.
[0037] 本発明に係るプラズマ CVD成膜装置では、前記プラズマ着火手段は高圧直流電 源を有し、前記スパーク発生部は、前記高圧直流電源に接続されたスパーク電極と 、接地電極とを有し、且つ、前記スパーク電極と前記接地電極との間でスパークを発 生させることが好ましい。スパークの発生のエネルギー源として、高圧直流電力を使 用する形態である。  [0037] In the plasma CVD film forming apparatus according to the present invention, the plasma ignition means includes a high-voltage DC power source, and the spark generation unit includes a spark electrode connected to the high-voltage DC power source, and a ground electrode. In addition, it is preferable to generate a spark between the spark electrode and the ground electrode. In this configuration, high-voltage DC power is used as an energy source for generating sparks.
[0038] 本発明に係るプラズマ CVD成膜装置では、前記プラズマ着火手段は前記低周波 電力供給手段に接続された分配器を有し、前記スパーク発生部は、前記分配器に 接続されたスパーク電極と、接地電極とを有し、且つ、前記スパーク電極と前記接地 電極との間でスパークを発生させることとしても良レ、。スパークの発生のエネルギー源 として、低周波電力を使用する形態である。ここで、前記分配器と前記スパーク電極 との接続の間に、位相シフタを直列に接続することが好ましい。スパークの発生のェ ネルギ一源として、低周波電力を使用する形態である。 [0038] In the plasma CVD film forming apparatus according to the present invention, the plasma ignition means has a distributor connected to the low-frequency power supply means, and the spark generator is a spark electrode connected to the distributor. And a ground electrode, and a spark may be generated between the spark electrode and the ground electrode. In this mode, low-frequency power is used as an energy source for generating sparks. Here, it is preferable that a phase shifter is connected in series between the distributor and the spark electrode. The occurrence of sparks In this mode, low-frequency power is used as a source of energy.
[0039] 本発明に係るプラズマ CVD成膜装置では、前記スパーク電極は、モリブデン、タン タル、ジルコニウム、ニオブ、ニッケル、イリジウム又は白金或いはこれらの金属の基 合金或いは炭素繊維で形成されていることが好ましい。電極の消耗及び電極物質の 容器への汚染を抑制できる。また、電極の材質を炭素繊維とすれば、ガスバリア薄膜 として炭素膜を成膜する場合に電極物質の汚染の心配がない。  In the plasma CVD film forming apparatus according to the present invention, the spark electrode is formed of molybdenum, tantalum, zirconium, niobium, nickel, iridium, platinum, a base alloy of these metals, or carbon fiber. preferable. It is possible to suppress electrode consumption and contamination of the electrode material into the container. In addition, if the electrode material is carbon fiber, there is no risk of contamination of the electrode material when a carbon film is formed as a gas barrier thin film.
[0040] 本発明に係るプラズマ CVD成膜装置では、前記原料ガス供給管は、導電性材料 で形成され、且つ、その管内に、線状若しくは棒状の導電体をその先端を除いて絶 縁体で被覆した状態として収容し、且つ、前記導電体の先端に前記原料ガスを吹き 付けるガス流路を有し、且つ、前記導電体を前記スパーク電極とし、前記原料ガス供 給管を前記接地電極とすることが好ましレ、。プラスチック容器の口が小さレ、場合にお レ、ても、 スパーク発生部を容器の内部の主軸上に配置でき、膜厚の不均一を生じさ せにくい。  [0040] In the plasma CVD film forming apparatus according to the present invention, the source gas supply pipe is formed of a conductive material, and a linear or rod-like conductor is removed from the pipe except for its tip. And a gas flow path for blowing the source gas to the tip of the conductor, the conductor as the spark electrode, and the source gas supply pipe as the ground electrode It is preferred to be with. Even if the opening of the plastic container is small, the spark generation part can be placed on the main shaft inside the container, and it is difficult to cause uneven film thickness.
[0041] 本発明に係るプラズマ CVD成膜装置では、前記原料ガス供給管は、導電性材料 で形成され、且つ、その先端を除いて絶縁体で被覆されてなり、且つ、前記原料ガス 供給管を内管として、その外側に導電性材料で形成された外管を配置して二重管の 構造を有し、且つ、前記原料ガス供給管を前記スパーク電極とし、前記外管を前記 接地電極とすることとしても良い。プラスチック容器の口が小さい場合においても、ス パーク発生部を容器の内部の主軸上に配置でき、膜厚の不均一を生じさせにくい。  In the plasma CVD film forming apparatus according to the present invention, the source gas supply pipe is formed of a conductive material and is covered with an insulator except for its tip, and the source gas supply pipe , An outer tube made of a conductive material is disposed outside thereof, and has a double tube structure. The source gas supply tube is used as the spark electrode, and the outer tube is used as the ground electrode. It is also good to do. Even when the mouth of the plastic container is small, the spark generating part can be arranged on the main shaft inside the container, and it is difficult to cause non-uniform film thickness.
[0042] 本発明に係るガスノくリア性プラスチック容器の製造方法は、反応室にプラスチック 容器を収容する工程と、真空ポンプを作動させて前記反応室の内部ガスを、絶縁体 スぺーサ一によつて前記反応室と電気的に絶縁されている排気室を経由して排気す る工程と、前記プラスチック容器の内部に原料ガスを減圧された所定圧力下で吹き 出させる工程と、前記プラスチック容器と前記反応室の内部空間との合成静電容量 を Cとし、前記絶縁体スぺーサ一と前記排気室の内部空間との合成静電容量を Cと [0042] In the method for producing a gas-soluble plastic container according to the present invention, the step of accommodating the plastic container in the reaction chamber and the operation of the vacuum pump to bring the gas inside the reaction chamber into the insulator spacer Therefore, the step of exhausting through the exhaust chamber electrically insulated from the reaction chamber, the step of blowing the source gas into the plastic container under a predetermined reduced pressure, and the plastic container And C is the combined capacitance between the insulator spacer and the internal space of the exhaust chamber.
1 2 したとき、 C >Cの関係が成立する状態において、前記反応室に周波数 100kHz 1 2 When the relationship C> C is established, the reaction chamber has a frequency of 100 kHz.
1 2  1 2
〜3MHzの低周波電力を供給し、且つ、前記プラスチック容器の内部で強制スパー クを行なって前記原料ガスをプラズマ化させ、前記プラスチック容器の内壁面にガス バリア薄膜を成膜する工程と、を有することを特徴とする。容器主軸方向に対してガ スバリア薄膜の膜厚が均一な容器を安定して製造できる。 Supply low frequency power of ˜3 MHz and perform a forced spark inside the plastic container to make the source gas into plasma, and gas is applied to the inner wall of the plastic container. And a step of forming a barrier thin film. Containers with uniform gas barrier thin film thickness in the container main axis direction can be manufactured stably.
[0043] 本発明に係るガスバリア性プラスチック容器の製造方法では、前記ガスバリア薄膜 として、炭素膜、珪素含有炭素膜又は Si〇膜を成膜することが含まれる。  [0043] The method for producing a gas barrier plastic container according to the present invention includes forming a carbon film, a silicon-containing carbon film, or a SiO film as the gas barrier thin film.
発明の効果  The invention's effect
[0044] 本発明は、ガスバリア性プラスチック容器の製造装置において、排気室又はそれ以 降の排気経路でのプラズマの発生を抑制することで、炭素系異物の発生の防止を図 ること力 Sできる。また、形状が異なる容器に成膜する場合において外部電極の交換を 不要とすることができる。その結果、定期的な異物除去作業と容器形状換えに伴う外 部電極の交換作業を低減することができ、ガスバリア性プラスチック容器の生産性を 高めることができる。さらに装置寿命の短縮の防止を図ることができる。  [0044] The present invention can suppress the generation of carbon-based foreign matter by suppressing the generation of plasma in the exhaust chamber or the exhaust path thereafter, in the gas barrier plastic container manufacturing apparatus. . In addition, when forming a film in a container having a different shape, it is not necessary to replace the external electrode. As a result, it is possible to reduce periodic foreign object removal work and external electrode replacement work associated with container shape change, and increase the productivity of gas barrier plastic containers. Furthermore, it is possible to prevent the apparatus life from being shortened.
[0045] また、本発明は、ガスバリア性プラスチック容器の製造方法において、生産性を高 め、かつ、装置容器主軸方向に対して薄膜の膜厚の均一性が高い容器を製造する こと力 Sできる。  [0045] Further, the present invention provides a method for producing a gas barrier plastic container, which can increase the productivity and produce a container having a highly uniform thin film thickness in the apparatus container main axis direction. .
[0046] 本発明により、排気室でのプラズマの発生を抑制した状態でガスバリア薄膜を成膜 すること力 Sできる。これによつて、ガスバリア性プラスチック容器の製造装置において、 排気室及び排気経路での各部品の劣化を生じにくくし、長期安定稼動をすることが できる。  [0046] According to the present invention, it is possible to deposit a gas barrier thin film in a state where generation of plasma in the exhaust chamber is suppressed. As a result, in the gas barrier plastic container manufacturing apparatus, it is possible to prevent the deterioration of each component in the exhaust chamber and the exhaust path, and to operate stably for a long time.
[0047] 本発明に係るプラズマ CVD成膜装置では、プラズマの発生が反応室の内部のみ で起こるように、排気室又はそれ以降の排気経路でのプラズマの発生を抑制でき、こ のときプラズマを安定して着火させることができる。さらに、排気室又はそれ以降の排 気経路でのプラズマの発生を抑制することで、装置寿命の短縮の防止、インピーダン スの急激な変化に起因する不良ボトルの偶発の防止及び容器主軸方向に対してガ スバリア薄膜の膜厚の均一化を図ることができる。  [0047] In the plasma CVD film forming apparatus according to the present invention, it is possible to suppress the generation of plasma in the exhaust chamber or the subsequent exhaust path so that the plasma is generated only inside the reaction chamber. It can be ignited stably. In addition, by suppressing the generation of plasma in the exhaust chamber or in the exhaust path after that, it is possible to prevent shortening of the device life, prevent accidental occurrence of defective bottles due to sudden changes in impedance, and to the container main axis direction. Thus, the film thickness of the gas barrier thin film can be made uniform.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1]本実施形態に係るガスバリア性プラスチック容器の製造装置の第 1形態 (A)を 示す概略構成図である。  FIG. 1 is a schematic configuration diagram showing a first mode (A) of a gas barrier plastic container manufacturing apparatus according to the present embodiment.
[図 2]第 1形態 (A) (B) (C)のガスバリア性プラスチック容器の製造装置に対応する 2 極放電型の回路図を示す。 [Fig. 2] Corresponding to the gas barrier plastic container manufacturing equipment of the first form (A) (B) (C) 2 The circuit diagram of a polar discharge type is shown.
[図 3]本実施形態に係るガスバリア性プラスチック容器の製造装置の第 2形態 (A)を 示す概略構成図である。  FIG. 3 is a schematic configuration diagram showing a second form (A) of the gas barrier plastic container manufacturing apparatus according to the present embodiment.
[図 4]第 1形態 (B)のガスバリア性プラスチック容器の製造装置を示す概略構成図で ある。  FIG. 4 is a schematic configuration diagram showing an apparatus for producing a gas barrier plastic container according to a first embodiment (B).
[図 5]第 2形態 (B)のガスバリア性プラスチック容器の製造装置を示す概略構成図で ある。  FIG. 5 is a schematic configuration diagram showing an apparatus for producing a gas barrier plastic container according to a second embodiment (B).
[図 6]第 3形態 (B)のガスバリア性プラスチック容器の製造装置を示す概略構成図で ある。  FIG. 6 is a schematic configuration diagram showing an apparatus for producing a gas barrier plastic container according to a third embodiment (B).
[図 7]第 4形態 (B)のガスバリア性プラスチック容器の製造装置を示す概略構成図で ある。  FIG. 7 is a schematic configuration diagram showing a gas barrier plastic container manufacturing apparatus according to a fourth embodiment (B).
[図 8]第 4形態(B)のガスバリア性プラスチック容器の製造装置に対応する 2極放電型 の回路図を示す。  [FIG. 8] A circuit diagram of a bipolar discharge type corresponding to the gas barrier plastic container manufacturing apparatus of the fourth embodiment (B) is shown.
[図 9]試験 1の条件で 100回成膜したボトルと試験 4で 100回成膜したボトルの外観 画像の比較を示す図であり、(a)が試験 4 (実施例)、(b)が試験 1 (比較例)である。  FIG. 9 is a diagram showing a comparison of appearance images of a bottle formed 100 times under the conditions of Test 1 and a bottle formed 100 times in Test 4, where (a) shows Test 4 (Example), (b) Is test 1 (comparative example).
[図 10]第 1形態(C)のプラズマ CVD成膜装置を示す概略構成図である。 FIG. 10 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a first embodiment (C).
[図 11]図 10の詳細を説明するための図であって、(a)は A-A断面図、(b)はスパーク 発生部の部分拡大概略図、を示す。 FIG. 11 is a diagram for explaining the details of FIG. 10, in which (a) is a cross-sectional view taken along line AA, and (b) is a partially enlarged schematic view of a spark generating portion.
[図 12]第 2形態(C)のプラズマ CVD成膜装置を示す概略構成図である。  FIG. 12 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a second embodiment (C).
[図 13]図 12の詳細を説明するための図であって、(a)は B-B断面図、(b)はスパーク 発生部の部分拡大概略図、を示す。  FIG. 13 is a diagram for explaining the details of FIG. 12, in which (a) is a cross-sectional view taken along the line BB, and (b) is a partially enlarged schematic view of a spark generating portion.
[図 14]第 3形態 (C)のプラズマ CVD成膜装置を示す概略構成図である。  FIG. 14 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a third embodiment (C).
[図 15]第 4形態(C)のプラズマ CVD成膜装置を示す概略構成図である。  FIG. 15 is a schematic configuration diagram showing a plasma CVD film forming apparatus of a fourth embodiment (C).
[図 16]試験 1の条件で 100回成膜したボトルと試験 2で 100回成膜したボトルの外観 画像の比較を示す図であり、(a)が試験 1 (実施例)、(b)が試験 2 (比較例)である。 符号の説明  [FIG. 16] A diagram showing a comparison of appearance images of a bottle formed 100 times under the conditions of Test 1 and a bottle formed 100 times in Test 2, with (a) showing Test 1 (Example) and (b) Is test 2 (comparative example). Explanation of symbols
1 下部外部電極 1 Lower external electrode
2 上部外部電極 外部電極(真空チャンバ) 2 Upper external electrode External electrode (vacuum chamber)
絶縁部材  Insulation material
排気室  Exhaust chamber
 Lid
成膜ユニット  Deposition unit
プラスチック容器 (PETボトル)  Plastic container (PET bottle)
内部電極 (原料ガス供給管) Internal electrode (Raw gas supply pipe)
a ガス吹き出し口a Gas outlet
0, 37, 38 O—リング0, 37, 38 O-ring
1 , 14, 17, 21 酉己管1, 14, 17, 21
2, 18, 22,真空/ノレブ2, 18, 22, Vacuum / Noreb
3 マスフローコントローラー3 Mass flow controller
5 原料ガス発生源5 Source gas generation source
6 原料ガス供給手段6 Raw material gas supply means
9 リーク源9 Leakage source
0 圧力ゲージ0 Pressure gauge
3 真空ポンプ3 Vacuum pump
4 排気ダクト4 Exhaust duct
6 自動整合器 (マッチングボックス, M. BOX)6 Automatic matcher (matching box, M. BOX)
7 電源7 Power supply
0 外部電極(真空チャンバ)の内部空間0 Internal space of external electrode (vacuum chamber)
1 排気室の内部空間1 Internal space of exhaust chamber
2, 32a, 32b 開口部2, 32a, 32b opening
5 低周波電力供給手段5 Low frequency power supply means
6, 36a, 36b スぺーサー6, 36a, 36b Spacer
00A 第 1形態 (A)のガスノ リア性プラスチック容器の製造装置00A 第 2形態 (A)のガスノ リア性プラスチック容器の製造装置B 反応室 B, 4Ba 絶縁体スぺーサー00A Gas formable plastic container manufacturing apparatus of the first form (A) 00A Gas formable plastic container manufacturing apparatus B of the second form (A) Reaction chamber B, 4Ba insulator spacer
B 真空チャンバB Vacuum chamber
5 フィグレタユニット5 Figureta unit
60 自動整合器60 Automatic aligner
70 低周波電源70 Low frequency power supply
8 自動整合器8 Automatic matching device
9 高周波電源9 High frequency power supply
0B 反応室の内部空間0B Internal space of reaction chamber
50 低周波電力供給手段50 Low frequency power supply means
60 高周波電力供給手段60 High-frequency power supply means
0 自動整合器0 Automatic matching device
1 高周波電源1 High frequency power supply
2 副室2 Sub-room
3 可動式仕切り3 Movable partition
4 開口部4 opening
5 排気室の容積を増加させる手段5 Means to increase the volume of the exhaust chamber
0 絶縁体スぺーサー変更手段0 Insulator spacer changer
0 可変コンデンサ0 Variable capacitor
00B 第 1形態(B)のガスバリア性プラスチック容器の製造装置00B 第 2形態(B)のガスバリア性プラスチック容器の製造装置00B 第 3形態(B)のガスバリア性プラスチック容器の製造装置00B 第 4形態(B)のガスノ リア性プラスチック容器の製造装置C 反応室00B Gas barrier plastic container manufacturing apparatus of the first form (B) 00B Gas barrier plastic container manufacturing apparatus of the second form (B) 00B Gas barrier plastic container manufacturing apparatus of the third form (B) 00B Fourth form ( B) Gas-nolia plastic container manufacturing equipment C Reaction chamber
C 絶縁体スぺーサーC Insulator spacer
C 真空チャンバC Vacuum chamber
50 分配器50 distributor
60 自動整合器60 Automatic aligner
70 低周波電源 280 スィッチ 70 Low frequency power supply 280 switches
290 高圧直流電源  290 High voltage DC power supply
30C 反応室の内部空間  Internal space of 30C reaction chamber
350 低周波電力供給手段  350 Low frequency power supply means
40 スパーク発生部  40 Spark generator
41 導電体  41 Conductor
42 絶縁体(絶縁碍子)  42 Insulator (insulator)
43 ガス流路  43 Gas flow path
44 外管  44 outer pipe
45 位相シフタ  45 Phase shifter
100C 第 1形態(C)のプラズマ CVD成膜装置  100C Plasma CVD deposition system of the first form (C)
200C 第 2形態(C)のプラズマ CVD成膜装置  200C Plasma CVD film deposition system of the second form (C)
300C 第 3形態(C)のプラズマ CVD成膜装置  300C Plasma CVD film deposition system of 3rd form (C)
400C 第 4形態(C)のプラズマ CVD成膜装置  400C Plasma CVD deposition system of 4th form (C)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0050] 以下本発明について実施形態を示して詳細に説明するが本発明はこれらの記載 に限定して解釈されない。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention should not be construed as being limited to these descriptions.
[0051] (実施形態 A) [0051] (Embodiment A)
図 1〜図 3を参照しながら本実施形態を説明する。なお、共通の部位 *部品には同 一符号を付した。まず、本実施形態に係るガスバリア性プラスチック容器の製造装置 について説明する。  The present embodiment will be described with reference to FIGS. In addition, the same code | symbol was attached | subjected to the common site | part * component. First, a gas barrier plastic container manufacturing apparatus according to this embodiment will be described.
[0052] 図 1は本実施形態に係るガスバリア性プラスチック容器の製造装置の第 1形態 (A) を示す概略構成図である。図 1は縦断面図であり、この製造装置はプラスチック容器 8の主軸を中心として、回転対称の形状を有している。ここで容器の主軸は内部電極 の主軸とほぼ一致している。図 1に示すように、第 1形態 (A)のガスノくリア性プラスチ ック容器の製造装置 100Aは、プラスチック容器 8を収容する真空チャンバとなる外部 電極 3と、プラスチック容器 8の内部に挿脱自在に配置される原料ガス供給管となる 内部電極 9と、外部電極 3の内部のガスを排気する真空ポンプ 23と、外部電極 3に接 続された電源 27と、外部電極 3の内部空間 30とプラスチック容器 8の口部の上方に て連通する排気室 5と、外部電極 3と排気室 5とを電気的に絶縁させる絶縁部材 4とを 有し、プラスチック容器 8の内壁面にプラズマ CVD法によってガスバリア性を有する 薄膜を形成するガスバリア性プラスチック容器の製造装置であり、外部電極 3の内壁 面とプラスチック容器 8の外壁面とに挟まれた隙間空間に誘電体力 なるスぺーサー 36が配置されており、かつ、プラスチック容器 8自体の静電容量とその内部空間の静 電容量との合成静電容量を Cとし、真空チャンバ 3の内部空間 30と排気室 5の内部 FIG. 1 is a schematic configuration diagram showing a first mode (A) of a gas barrier plastic container manufacturing apparatus according to the present embodiment. FIG. 1 is a longitudinal sectional view, and this manufacturing apparatus has a rotationally symmetric shape about the main axis of the plastic container 8. Here, the main axis of the container almost coincides with the main axis of the internal electrode. As shown in FIG. 1, the manufacturing apparatus 100A for the gas plastic plastic container of the first form (A) is inserted into the external electrode 3 serving as a vacuum chamber for housing the plastic container 8 and the inside of the plastic container 8. It is in contact with the internal electrode 9, which is a source gas supply pipe that is detachably disposed, the vacuum pump 23 that exhausts the gas inside the external electrode 3, and the external electrode 3. A connected power source 27, an exhaust chamber 5 communicating with the internal space 30 of the external electrode 3 and the opening of the plastic container 8, and an insulating member 4 for electrically insulating the external electrode 3 and the exhaust chamber 5; Is a gas barrier plastic container manufacturing device that forms a thin film with gas barrier properties on the inner wall surface of the plastic container 8 by plasma CVD, and is sandwiched between the inner wall surface of the external electrode 3 and the outer wall surface of the plastic container 8 Spacer 36 having dielectric force is disposed in the gap space, and the combined capacitance of the capacitance of the plastic container 8 itself and the capacitance of the internal space is C, and the interior of the vacuum chamber 3 Inside space 30 and exhaust chamber 5
1  1
空間 31とを含む成膜ユニット 7の内部空間のうちプラスチック容器 8の外側空間の合 成静電容量を Cとしたとき、 C >Cの関係が成立し、かつ、電源 27が周波数 400k  When the combined capacitance of the outer space of the plastic container 8 in the inner space of the film forming unit 7 including the space 31 is C, the relationship C> C is established, and the power source 27 has a frequency of 400 k.
2 1 2  2 1 2
Hz〜4MHzの低周波電力を外部電極 3に供給する。  Supply low frequency power of Hz to 4 MHz to the external electrode 3.
[0053] 誘電体からなるスぺーサー 36は、低周波電力の印加時の異常放電を防止するた めに、外部電極 3の内壁面とプラスチック容器 8の外壁面とに挟まれた隙間空間に配 置される。好ましくは、その隙間空間を略埋める形状のスぺーサーを配置する。誘電 体からなるスぺーサー 36は、ガラスやセラミックス等の無機材料、或いは耐熱性樹脂 で形成されていることが好ましい。好ましくは、ポリ四フッ化工チレン、四フッ化工チレ ン.バーフルォロアルキルビエルエーテル共重合体、四フッ化工チレン.へキサフル ォロプロピレン共重合体、ポリフエ二レンオキサイド、ポリイミド、ポリエーテルサルホン [0053] Spacer 36 made of a dielectric is provided in a gap space between the inner wall surface of external electrode 3 and the outer wall surface of plastic container 8 in order to prevent abnormal discharge when low-frequency power is applied. Deployed. Preferably, a spacer having a shape that substantially fills the gap space is disposed. Spacer 36 made of a dielectric is preferably formed of an inorganic material such as glass or ceramics, or a heat resistant resin. Preferably, polytetrafluoroethylene, tetrafluoroethylene, bar fluoroalkyl vinyl ether copolymer, tetrafluoroethylene, hexafluoropropylene copolymer, polyphenylene oxide, polyimide, polyethersulfone.
、ポリエーテルイミド、ポリフエ二レンサルファイド又はポリエーテルエーテルケトンであ る。誘電体からなるスぺーサー 36は、プラスチック容器 8を取り囲むように配置させる ために、リング形状に形成することが好ましい。なお、このリング形状をいくつかに分 割できるようにしても良い。 , Polyetherimide, polyphenylene sulfide or polyetheretherketone. The spacer 36 made of a dielectric is preferably formed in a ring shape so as to surround the plastic container 8. This ring shape may be divided into several parts.
[0054] 外部電極 3は、金属等の導電材で中空に形成されて真空チャンバとなり、コーティ ング対象のプラスチック容器 8、例えばポリエチレンテレフタレート樹脂製の容器であ る PETボトルを収容する内部空間 30を有する。外部電極 3は、上部外部電極 2と下 部外部電極 1からなり、上部外部電極 2の下部に下部外部電極 1の上部が〇_リング [0054] The external electrode 3 is formed in a hollow with a conductive material such as metal to form a vacuum chamber, and has an internal space 30 for accommodating a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin. Have. The external electrode 3 consists of an upper external electrode 2 and a lower external electrode 1, and the upper part of the lower external electrode 1 is below the upper external electrode 2 with a ring.
10を介して着脱自在に取り付けられるよう構成されている。上部外部電極 2から下部 外部電極 1を脱着することでプラスチック容器 8を装着することができる。外部電極 3 は、絶縁部材 4と外部電極 3との間に配置された 0_リング 37並びに上部外部電極 2 と下部外部電極 1の間に配置された O リング 10によって外部力 密閉されている。 なお、外部電極 3は、図 1では上部外部電極 2と下部外部電極 1の 2分割の場合を示 したが、製作の都合上 3個以上に分割して、それぞれの間を〇 リングでシールして も良い。 It is configured to be detachably attached via 10. The plastic container 8 can be mounted by detaching the lower external electrode 1 from the upper external electrode 2. The external electrode 3 includes the 0_ring 37 disposed between the insulating member 4 and the external electrode 3 and the upper external electrode 2 The outer force is sealed by an O-ring 10 disposed between the outer electrode 1 and the lower outer electrode 1. In FIG. 1, the external electrode 3 is divided into two parts, ie, the upper external electrode 2 and the lower external electrode 1, but it is divided into three or more parts for the sake of manufacturing and sealed with a ring. It's okay.
[0055] プラスチック容器 8は、一般的に、胴部に対して口部が縮径した形状を有している が、その細部は必ずしも統一されず、容器のデザインによって適宜変更される。した がって、内容物によって容器の肩形状、首形状又は口形状が異なる。本実施形態に 係るガスバリア性プラスチック容器の製造装置では、外部電極 3に形成されている内 部空間 30は、プラスチック容器 8を形状や容量が異なっても収容できるように、筒状 の空間、例えば円筒状若しくは角筒状の空間であることが好ましい。内部空間 30が 筒形状の空間であれば、容器の肩形状、首形状又は口形状が異なる場合でも、外 部電極の交換をせずに共通に使用することができる。その結果、外部電極の交換作 業時間と外部電極の作製費用が低減できる。図 1では、円筒形状の場合を示した。  [0055] The plastic container 8 generally has a shape in which the mouth portion has a reduced diameter with respect to the body portion, but the details are not necessarily unified, and may be appropriately changed depending on the design of the container. Therefore, the shoulder shape, neck shape, or mouth shape of the container differs depending on the contents. In the gas barrier plastic container manufacturing apparatus according to this embodiment, the internal space 30 formed in the external electrode 3 is a cylindrical space, for example, so that the plastic container 8 can be accommodated even if the shape and capacity are different. A cylindrical or square cylindrical space is preferable. If the internal space 30 is a cylindrical space, even if the container has a different shoulder shape, neck shape, or mouth shape, it can be used in common without replacing the external electrode. As a result, the replacement work time of the external electrode and the production cost of the external electrode can be reduced. Figure 1 shows the case of a cylindrical shape.
[0056] さらに外部電極 3は、プラスチック容器 8の胴径よりもわずかに大きな内径を持つ筒 形状の内部空間 30を有していることが好ましい。プラスチック容器 8の胴回りには誘 電体からなるスぺーサー 36を配置する必要がなぐ自己バイアスが力かりやすレ、。こ のとき、誘電体からなるスぺーサー 36aは、図 1に示すようにプラスチック容器 8の胴 部から口部にかけて縮径した部分の外壁面と外部電極 3の筒形状の内壁面とに挟ま れた隙間空間に配置されていることが好ましい。胴径が略同一で、肩部又は首部の 形状が異なるプラスチック容器に対して、いずれも効率的にバイアス電圧を印加する こと力 Sできる。また、図 1に示すように、プラスチック容器 8の底部の外壁面と外部電極 3の筒形状の内壁面とに挟まれた隙間空間に誘電体からなるスぺーサー 36bを配置 することが好ましい。  Furthermore, the external electrode 3 preferably has a cylindrical internal space 30 having an inner diameter slightly larger than the body diameter of the plastic container 8. There is no need to place a spacer 36 made of an insulator around the trunk of the plastic container 8, and self-bias is easily applied. At this time, the spacer 36a made of a dielectric material is sandwiched between the outer wall surface of the plastic container 8 whose diameter is reduced from the body portion to the mouth portion and the cylindrical inner wall surface of the external electrode 3 as shown in FIG. It is preferable that the gaps are arranged in the gap space. It is possible to effectively apply a bias voltage to plastic containers with substantially the same body diameter and different shoulder or neck shapes. In addition, as shown in FIG. 1, it is preferable to dispose a spacer 36b made of a dielectric material in a gap space between the outer wall surface of the bottom of the plastic container 8 and the cylindrical inner wall surface of the external electrode 3.
[0057] 誘電体からなるスぺーサー 36は、プラスチック容器 8の外壁面と略接するような形 状を有していることが好ましぐ容器形状が異なれば、隙間空間の形状が異なるので 、それに対応させて各々取り替えることが好ましい。  [0057] The spacer 36 made of a dielectric material preferably has a shape that is substantially in contact with the outer wall surface of the plastic container 8. If the container shape is different, the shape of the gap space is different. It is preferable to replace each of them correspondingly.
[0058] 本実施形態に係るガスバリア性プラスチック容器の製造装置では、図 1に示すよう に、外部電極 3の内部空間 30とプラスチック容器 8の口部の上方にて連通する排気 室 5を設け、外部電極 3と排気室 5とを電気的に絶縁させる絶縁部材 4を外部電極 3と 排気室 5との間に配置することが好ましい。排気室 5を設けることで、外部電極 3の内 部空間 30の排気の際に内部空間 30におけるガス圧変化が和らげられる。また、排 気室 5は、内部電極 9から吹き出す原料ガスがプラスチック容器 8の内部を流れ、 口 部から排気される際に、ガスの流れを整える。絶縁部材 4は、低周波電力が排気室 5 に直接印加されることを防ぐ。ここで、電気的に絶縁させるとは、直流を絶縁すること であり、低周波電力の場合には、容量結合となり、排気室 5には非常に弱い低周波 電力が流れることとなる。 In the apparatus for manufacturing a gas barrier plastic container according to the present embodiment, as shown in FIG. 1, the exhaust communicating with the internal space 30 of the external electrode 3 and the opening of the plastic container 8 is provided. It is preferable that the chamber 5 is provided and the insulating member 4 for electrically insulating the external electrode 3 and the exhaust chamber 5 is disposed between the external electrode 3 and the exhaust chamber 5. By providing the exhaust chamber 5, the gas pressure change in the internal space 30 can be moderated when the internal space 30 of the external electrode 3 is exhausted. The exhaust chamber 5 adjusts the gas flow when the source gas blown from the internal electrode 9 flows through the plastic container 8 and is exhausted from the mouth. The insulating member 4 prevents low frequency power from being directly applied to the exhaust chamber 5. Here, to electrically insulate means to insulate DC, and in the case of low frequency power, it becomes capacitive coupling, and very low frequency power flows through the exhaust chamber 5.
[0059] 絶縁部材 4は、外部電極 3と排気室 5との間に配置され、プラスチック容器 8の口部 の上方の位置に相当する箇所に開口部 32aが形成されている。開口部 32aは、外部 電極 3と排気室 5とを空気的に連通させる。絶縁部材 4は、ガラスやセラミックス等の 無機材料、或いは耐熱性樹脂で形成されていることが好ましい。絶縁部材 4は誘電 損失が小さい誘電体材料で形成されていることがより好ましい。好ましくは、ポリ四フ ッ化エチレン、四フッ化工チレン'バーフルォロアルキルビニルエーテル共重合体、 四フッ化工チレン.へキサフルォロプロピレン共重合体、ポリフエ二レンオキサイド、ポ リイミド、ポリエーテルサルホン、ポリエーテルイミド、ポリフエ二レンサルファイド又はポ リエ一テルエーテルケトンである。 The insulating member 4 is disposed between the external electrode 3 and the exhaust chamber 5, and an opening 32 a is formed at a position corresponding to the position above the mouth of the plastic container 8. The opening 32a allows the external electrode 3 and the exhaust chamber 5 to be in air communication. The insulating member 4 is preferably formed of an inorganic material such as glass or ceramics, or a heat resistant resin. The insulating member 4 is more preferably made of a dielectric material having a small dielectric loss. Preferably, polytetrafluoroethylene, tetrafluoroethylene / barfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, polyphenylene oxide, polyimide, polyether Sulphone, polyetherimide, polyphenylene sulfide, or polyester ether ketone.
[0060] 排気室 5は、金属等の導電材で中空に形成されており、内部空間 31を有する。排 気室 5は、絶縁部材 4の上に配置されている。このとき、排気室 5と絶縁部材 4との間 は〇一リング 38によってシールされている。そして、内部空間 31と内部空間 30とを空 気的に連通させるために、開口部 32aに対応してほぼ同形状の開口部 32bが排気 室 5の下部に設けられている。排気室 5は、配管 21、圧力ゲージ 20、真空バルブ 22 等からなる排気経路を介して真空ポンプ 23に接続されており、その内部空間 31が排 気される。  The exhaust chamber 5 is formed hollow with a conductive material such as metal and has an internal space 31. The exhaust chamber 5 is disposed on the insulating member 4. At this time, the exhaust chamber 5 and the insulating member 4 are sealed by the O-ring 38. In order to make the internal space 31 and the internal space 30 communicate with each other in air, an opening 32b having substantially the same shape is provided in the lower part of the exhaust chamber 5 in correspondence with the opening 32a. The exhaust chamber 5 is connected to a vacuum pump 23 through an exhaust path including a pipe 21, a pressure gauge 20, a vacuum valve 22, and the like, and the internal space 31 is exhausted.
[0061] 絶縁部材 4の上に排気室 5が配置されることによって蓋 6を形成して、外部電極 3を 密封し、密閉可能な成膜ユニット 7が組み上がることとなる。このとき、成膜ユニット 7に は、外部電極 3の内部空間 30と排気室 5の内部空間 31の 2つの部屋があり、それら は開口部 32a, 32bを通してつながつている。 [0062] 本発明に係るプラスチック容器とは、例えば、プラスチック製のボトル、カップ又はト レーである。蓋若しくは栓若しくはシールして使用する容器、またはそれらを使用せ ず開口状態で使用する容器を含む。開口部の大きさは内容物に応じて決める。ブラ スチック容器 8は、剛性を適度に有する所定の肉厚を有し、剛性を有さないシート材 により形成された軟包装材は含まなレ、。本発明に係るプラスチック容器の充填物は、 例えば、ビール、発泡酒、炭酸飲料、果汁飲料若しくは清涼飲料等の飲料、医薬品 、農薬品、又は吸湿を嫌う乾燥食品である。 [0061] By disposing the exhaust chamber 5 on the insulating member 4, the lid 6 is formed, the external electrode 3 is sealed, and the film forming unit 7 that can be sealed is assembled. At this time, the film forming unit 7 has two chambers, an internal space 30 of the external electrode 3 and an internal space 31 of the exhaust chamber 5, which are connected through the openings 32a and 32b. [0062] The plastic container according to the present invention is, for example, a plastic bottle, cup or tray. Includes containers used with lids or stoppers or sealed, or open without using them. The size of the opening is determined according to the contents. The plastic container 8 has a predetermined thickness with moderate rigidity, and does not include soft packaging material formed from a sheet material without rigidity. The filling of the plastic container according to the present invention is, for example, a beverage such as beer, sparkling liquor, carbonated beverage, fruit juice beverage, or soft drink, a pharmaceutical product, an agrochemical product, or a dry food product that dislikes moisture absorption.
[0063] プラスチック容器 8を成形する際に使用する樹脂は、例えば、ポリエチレンテレフタ レート樹脂(PET)、ポリエチレンテレフタレート系コポリエステル樹脂(ポリエステルの アルコール成分にエチレングリコールの代わりに、シクロへキサンディメタノールを使 用したコポリマーを PETGと呼んでいる、イーストマンケミカル製)、ポリブチレンテレフ タレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂( pp)、シクロォレフィンコポリマー樹脂(C〇C、環状ォレフィン共重合)、アイオノマ樹 脂、ポリ- 4-メチルペンテン- 1樹脂、ポリメタクリル酸メチル樹脂、ポリスチレン樹脂、 エチレン ビエルアルコール共重合樹脂、アクリロニトリル樹脂、ポリ塩化ビエル樹脂 、ポリ塩ィ匕ビ二リデン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、 ポリカーボネート樹脂、ポリスルホン樹脂、 4弗化工チレン樹脂、アクリロニトリル-スチ レン樹脂又はアクリロニトリル-ブタジエン-スチレン樹脂である。この中で、 PETが特 に好ましい。  [0063] The resin used when molding the plastic container 8 is, for example, polyethylene terephthalate resin (PET), polyethylene terephthalate-based copolyester resin (cyclohexane dimethanol instead of ethylene glycol as the alcohol component of the polyester) Copolymers that use styrene are called PETG, manufactured by Eastman Chemical), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (pp), cycloolefin copolymer resin (C0C, cyclic olefin) Copolymer), ionomer resin, poly-4-methylpentene-1 resin, polymethyl methacrylate resin, polystyrene resin, ethylene vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polysalt vinylidene resin The Styrene resins - amide resin, polyamideimide resin, polyacetal resin, polycarbonate resin, polysulfone resin, 4 dollars modified styrene resin, acrylonitrile - styrene Ren resins or acrylonitrile - butadiene. Of these, PET is particularly preferred.
[0064] 内部電極 9は原料ガス供給管を兼ねており、その内部にガス流路が設けられており 、この中を原料ガスが通過する。内部電極 9の先端にはガス吹き出し口 9a、すなわち ガス流路の開口部が設けられている。内部電極 9の一端は、排気室 5の内部空間 31 の壁で固定され、内部電極 9は成膜ユニット 7内に配置されている。外部電極 3内に プラスチック容器 8がセットされたとき、内部電極 9は、外部電極 3内に配置され且つ プラスチック容器 8の口部からその内部に配置される。すなわち、排気室 5の内壁上 部を基端として、内部空間 31、開口部 32a、 32bを通して、外部電極 3の内部空間 3 0まで内部電極 9が差し込まれる。内部電極 9の先端はプラスチック容器 8の内部に 配置される。内部電極 9は、接地されていることが好ましい。 [0065] 原料ガス供給手段 16は、プラスチック容器 8の内部に原料ガス発生源 15から供給 される原料ガスを導入する。すなわち、内部電極 9の基端には、配管 11の一方側が 接続されており、この配管 11の他方側は真空バルブ 12を介してマスフローコントロー ラー 13の一方側に接続されている。マスフローコントローラー 13の他方側は配管 14 を介して原料ガス発生源 15に接続されている。この原料ガス発生源 15はアセチレン などの炭化水素ガス系原料ガスを発生させるものである。 [0064] The internal electrode 9 also serves as a raw material gas supply pipe, and a gas flow path is provided therein, through which the raw material gas passes. The tip of the internal electrode 9 is provided with a gas outlet 9a, that is, an opening of a gas flow path. One end of the internal electrode 9 is fixed by a wall of the internal space 31 of the exhaust chamber 5, and the internal electrode 9 is disposed in the film forming unit 7. When the plastic container 8 is set in the external electrode 3, the internal electrode 9 is disposed in the external electrode 3 and disposed inside the plastic container 8 from the mouth. That is, the internal electrode 9 is inserted into the internal space 30 of the external electrode 3 through the internal space 31 and the openings 32a and 32b with the upper part of the inner wall of the exhaust chamber 5 as the base end. The tip of the internal electrode 9 is disposed inside the plastic container 8. The internal electrode 9 is preferably grounded. The source gas supply means 16 introduces the source gas supplied from the source gas generation source 15 into the plastic container 8. That is, one side of the pipe 11 is connected to the base end of the internal electrode 9, and the other side of the pipe 11 is connected to one side of the mass flow controller 13 via the vacuum valve 12. The other side of the mass flow controller 13 is connected to a source gas generation source 15 via a pipe 14. This source gas generation source 15 generates hydrocarbon gas type source gas such as acetylene.
[0066] 本発明におけるガスバリア性を有する薄膜とは、 DLC (ダイヤモンドライクカーボン) 膜を含む炭素膜、 Si含有炭素膜又は SiO膜等の酸素透過を抑制する薄膜をいう。 原料ガス発生源 15から発生させる原料ガスは、上記薄膜の構成元素を含む揮発性 ガスが選択される。ガスバリア性を有する薄膜を形成する際の原料ガスは公知公用 の揮発性原料ガスが使用される。  The thin film having gas barrier properties in the present invention refers to a thin film that suppresses oxygen permeation, such as a carbon film including a DLC (diamond-like carbon) film, a Si-containing carbon film, or a SiO film. As the source gas generated from the source gas generation source 15, a volatile gas containing the constituent elements of the thin film is selected. As the raw material gas for forming the thin film having gas barrier properties, a publicly known volatile raw material gas is used.
[0067] 原料ガスとしては、例えば、 DLC膜を成膜する場合、常温で気体又は液体の脂肪 族炭化水素類、芳香族炭化水素類、含酸素炭化水素類、含窒素炭化水素類などが 使用される。特に炭素数が 6以上のベンゼン、トルエン、 o-キシレン、 m-キシレン、 p- キシレン、シクロへキサン等が望ましい。食品等の容器に使用する場合には、衛生上 の観点から脂肪族炭化水素類、特にエチレン、プロピレン又はブチレン等のエチレン 系炭化水素、又は、アセチレン、ァリレン又は 1 -ブチン等のアセチレン系炭化水素が 好ましレ、。これらの原料は、単独で用いても良いが、 2種以上の混合ガスとして使用 するようにしても良レ、。さらにこれらのガスをアルゴンやヘリウムの様な希ガスで希釈し て用いる様にしても良い。また、ケィ素含有 DLC膜を成膜する場合には、 Si含有炭 化水素系ガスを使用する。  [0067] As the source gas, for example, when a DLC film is formed, aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons, etc. that are gaseous or liquid at room temperature are used. Is done. In particular, benzene, toluene, o-xylene, m-xylene, p-xylene, cyclohexane and the like having 6 or more carbon atoms are desirable. When used in food containers, aliphatic hydrocarbons, especially ethylene hydrocarbons such as ethylene, propylene or butylene, or acetylene hydrocarbons such as acetylene, arylene or 1-butyne are used from the viewpoint of hygiene. Is preferred. These raw materials may be used alone, but they can also be used as a mixture of two or more. Further, these gases may be diluted with a rare gas such as argon or helium. In addition, Si-containing hydrocarbon-based gas is used when depositing a silicon-containing DLC film.
[0068] 本発明でいう DLC膜とは、 iカーボン膜又は水素化アモルファスカーボン膜(a-C :  [0068] The DLC film referred to in the present invention is an i-carbon film or a hydrogenated amorphous carbon film (a-C:
H)と呼ばれる膜のことであり、硬質炭素膜も含まれる。また DLC膜はアモルファス状 の炭素膜であり、 SP3結合も有する。この DLC膜を成膜する原料ガスとしては炭化水 素系ガス、例えばアセチレンガスを用い、 Si含有 DLC膜を成膜する原料ガスとして は Si含有炭化水素系ガスを用いる。このような DLC膜をプラスチック容器の内壁面に 形成することにより、ビール、発泡酒、炭酸飲料や発泡飲料等の容器としてワンウェイ 、リタ一ナブルに使用可能な容器を得る。 [0069] また、ケィ素含有 DLC膜を成膜する場合には、 Si含有炭化水素系ガスを使用する 。珪化炭化水素ガス又は珪化水素ガスとしては、四塩ィ匕ケィ素、シラン(SiH )、へキ H), which includes a hard carbon film. The DLC film is an amorphous carbon film with SP 3 bonds. A hydrocarbon-based gas such as acetylene gas is used as a source gas for forming this DLC film, and a Si-containing hydrocarbon-based gas is used as a source gas for forming a Si-containing DLC film. By forming such a DLC film on the inner wall surface of a plastic container, a container that can be used one-way and in a returnable manner as a container for beer, sparkling liquor, carbonated beverage, sparkling beverage or the like is obtained. [0069] Further, when forming a silicon-containing DLC film, a Si-containing hydrocarbon gas is used. Examples of silicified hydrocarbon gas or silicic acid gas include tetrasalt silicate, silane (SiH), hexene.
4 サメチルジシラン、ビュルトリメチルシラン、メチルシラン、ジメチルシラン、トリメチルシ ラン、ジェチルシラン、プロビルシラン、フエニルシラン、メチルトリエトキシシラン、ビニ ノレトリエトキシシラン、ビュルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラ ン、フエニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン等の 有機シラン化合物、オタタメチルシクロテトラシロキサン、 1 , 1, 3, 3—テトラメチルジ シロキサン、へキサメチルジシロキサン(HMDSO)等の有機シロキサン化合物等が 使用される。また、これらの材料以外にも、アミノシラン、シラザンなども用いられる。  4 Samethyldisilane, butyltrimethylsilane, methylsilane, dimethylsilane, trimethylsilane, jetylsilane, propylsilane, phenylsilane, methyltriethoxysilane, vinylenotriethoxysilane, butyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane , Organic trisilane compounds such as phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, otamethylcyclotetrasiloxane, 1,1,3,3-tetramethyldisiloxane, hexamethyldisiloxane (HMDSO), etc. Organosiloxane compounds are used. In addition to these materials, aminosilane, silazane and the like are also used.
[0070] SiO膜 (珪素酸化物膜)を成膜する場合には、例えば、シランと酸素の混合ガス、 又は、 HMDSOと酸素の混合ガスを原料ガスとする。 In the case of forming an SiO film (silicon oxide film), for example, a mixed gas of silane and oxygen or a mixed gas of HMDSO and oxygen is used as a source gas.
[0071] 真空ポンプ 23は、成膜ユニット 7の内部のガスを排気する。すなわち、排気室 5に 配管 21の一端が接続され、配管 21の他端は真空バルブ 22に接続され、真空バル ブ 22は配管を介して真空ポンプ 23に接続されている。この真空ポンプ 23はさらに排 気ダクト 24に接続されている。なお、配管 21には圧力ゲージ 20が接続され、排気経 路での圧力を検出する。真空ポンプ 23を作動させることによって、プラスチック容器 8 の内部ガス並びに外部電極 3の内部空間 30のガスが開口部 32a, 32bを介して排気 室 5の内部空間 31に移動し、内部空間 31のガスは配管 21を含む排気経路を通して 真空ポンプ 23に送られる。  The vacuum pump 23 exhausts the gas inside the film forming unit 7. That is, one end of the pipe 21 is connected to the exhaust chamber 5, the other end of the pipe 21 is connected to the vacuum valve 22, and the vacuum valve 22 is connected to the vacuum pump 23 via the pipe. This vacuum pump 23 is further connected to an exhaust duct 24. A pressure gauge 20 is connected to the pipe 21 to detect the pressure in the exhaust path. By operating the vacuum pump 23, the gas in the plastic container 8 and the gas in the internal space 30 of the external electrode 3 move to the internal space 31 of the exhaust chamber 5 through the openings 32a and 32b, and the gas in the internal space 31 Is sent to the vacuum pump 23 through the exhaust path including the pipe 21.
[0072] 成膜ユニット 7は、リーク用の配管 17が接続されていて、配管 17は真空バルブ 18を 介して、リーク源 19 (大気開放)と連通されている。  The film forming unit 7 is connected to a leak pipe 17, and the pipe 17 communicates with a leak source 19 (open to the atmosphere) via a vacuum valve 18.
[0073] 低周波電力供給手段 35は、低周波電力を外部電極 3に供給することで、プラスチ ック容器 8の内部の原料ガスをプラズマ化させる。低周波電力供給手段 35は、電源 2 7と、電源 27に接続された自動整合器 26とを備え、電源 27は自動整合器 26を介し て外部電極 3に接続される。電源 27で発生させた低周波電力を外部電極 3に印加し 、内部電極 9と外部電極 3との間に電位差が生ずることによってプラスチック容器 8の 内部に供給された原料ガスがプラズマ化する。電源 27の周波数は、 400kHz〜4M Hzとすることが好ましい。前述の通り、排気室 5には容量結合によって低周波電力が かかることとなるが、電源 27の周波数力 ΜΗζを超えると、排気室 5にかかる低周波 電力が大きくなるため排気室 5の内部空間 31においてもプラズマ発生が生じやすく なり、外部電極 3の内部空間 30のみにおいてプラズマ発生を生じさせることが困難と なる。したがって、内部空間 31に炭素系異物などの原料ガスに由来する異物が析出 しゃすくなり、清掃の必要が生じる。一方、電源 27の周波数が 400kHz未満であると 、着火不良を引き起こしゃすい。 [0073] The low-frequency power supply means 35 supplies the low-frequency power to the external electrode 3 to turn the raw material gas inside the plastic container 8 into plasma. The low frequency power supply means 35 includes a power source 27 and an automatic matching unit 26 connected to the power source 27, and the power source 27 is connected to the external electrode 3 via the automatic matching unit 26. When the low frequency power generated by the power source 27 is applied to the external electrode 3 and a potential difference is generated between the internal electrode 9 and the external electrode 3, the raw material gas supplied into the plastic container 8 is turned into plasma. The frequency of the power source 27 is preferably 400 kHz to 4 MHz. As described above, the exhaust chamber 5 receives low-frequency power due to capacitive coupling. However, if the frequency force ΜΗζ of the power source 27 is exceeded, the low-frequency power applied to the exhaust chamber 5 increases, so that plasma is easily generated in the internal space 31 of the exhaust chamber 5, and the internal space of the external electrode 3 is increased. 30 alone makes it difficult to generate plasma. Accordingly, foreign substances derived from the raw material gas such as carbon-based foreign substances are deposited in the internal space 31 and need to be cleaned. On the other hand, if the frequency of the power supply 27 is less than 400 kHz, poor ignition is caused.
[0074] 本実施形態に係るガスバリア性プラスチック容器の製造装置では、プラスチック容 器 8自体の静電容量とその内部空間の静電容量との合成静電容量を Cとし、真空チ ヤンバ 3の内部空間 30と排気室 5の内部空間 31とを含む成膜ユニット 7の内部空間 のうちプラスチック容器 8の外側空間の合成静電容量を Cとしたとき、 C > Cの関係 In the gas barrier plastic container manufacturing apparatus according to the present embodiment, the combined capacitance of the capacitance of the plastic container 8 itself and the capacitance of its internal space is C, and the inside of the vacuum chamber 3 C> C, where C is the combined capacitance of the outer space of the plastic container 8 out of the inner space of the deposition unit 7 including the space 30 and the inner space 31 of the exhaust chamber 5.
2 1 2 が成立することが好ましい。周波数 400kHz〜4MHzの低周波電力を印加した場合 において、排気室 5又はそれ以降の排気経路でのプラズマの発生をより抑制すること ができる。  2 1 2 is preferably satisfied. When low frequency power of 400 kHz to 4 MHz is applied, the generation of plasma in the exhaust chamber 5 or the exhaust path after it can be further suppressed.
[0075] 次に、周波数 400kHz〜4MHzの低周波電力を外部電極 3に供給した際に、排気 室 5の内部空間 31におけるプラズマの発生が抑制される原理について説明する。図 2に、第 1形態 (A)のガスバリア性プラスチック容器の製造装置に対応する 2極放電 型の回路を示す。図 2で示した回路の交流電源は電源 27に対応する。 Cは、プラス  Next, the principle by which the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed when low frequency power having a frequency of 400 kHz to 4 MHz is supplied to the external electrode 3 will be described. FIG. 2 shows a bipolar discharge circuit corresponding to the gas barrier plastic container manufacturing apparatus of the first embodiment (A). The AC power supply in the circuit shown in Figure 2 corresponds to power supply 27. C is a plus
1 チック容器 8自体の静電容量とその内部空間の静電容量との合成静電容量を表して いる。 Cは、プラスチック容器 8と内部電極 9とに LCRメーターを接続して測定するこ 1 represents the combined capacitance of the capacitance of the tic container 8 itself and the capacitance of its internal space. C is measured by connecting an LCR meter to the plastic container 8 and the internal electrode 9.
1 1
とができる。なお、 LCRメーターとは、インダクタンス(L)、キャパシタンス(C)及びレ ジスタンス(R)などを測定できる機器である。 Cは、真空チャンバ 3の内部空間 30と  You can. An LCR meter is a device that can measure inductance (L), capacitance (C), and resistance (R). C is the internal space 30 of the vacuum chamber 3 and
2  2
排気室 5の内部空間 31とを含む成膜ユニット 7の内部空間のうちプラスチック容器 8 の外側空間の合成静電容量を表している。例えば、真空チャンバ 3の内壁面とプラス チック容器 8の外壁面とに挟まれた隙間空間の静電容量と排気室 5の内部空間 31の 静電容量との合成静電容量である。絶縁部材 4が配置される場合には、開口部 32a に相当する内部空間の静電容量が Cに加わる。また隙間空間内にスぺーサー 36が  This represents the combined capacitance of the outer space of the plastic container 8 in the inner space of the film forming unit 7 including the inner space 31 of the exhaust chamber 5. For example, it is the combined capacitance of the capacitance of the gap space sandwiched between the inner wall surface of the vacuum chamber 3 and the outer wall surface of the plastic container 8 and the capacitance of the inner space 31 of the exhaust chamber 5. When the insulating member 4 is disposed, the capacitance of the internal space corresponding to the opening 32a is added to C. Spacer 36 is also in the clearance.
2  2
ほぼ占めるように配置される場合には、スぺーサ一の静電容量が隙間空間の静電容 量となる。 Cは、外部電極 3の内壁面と排気室 5の内壁面とに LCRメーターを接続し て測定することができる。 Z は、プラスチック容器 8内で発生するプラズマのインピー When arranged so as to occupy almost, the capacitance of the spacer becomes the capacitance of the gap space. C connects an LCR meter to the inner wall of the external electrode 3 and the inner wall of the exhaust chamber 5. Can be measured. Z is the impedance of the plasma generated in the plastic container 8.
pi  pi
ダンスを表し、 Z は、プラスチック容器 8の外側、例えば排気室 5内で発生するプラズ Z represents the plasm generated outside the plastic container 8, for example, in the exhaust chamber 5.
2  2
マのインピーダンスを表している。図 2の回路において、 Z と Z のそれぞれの両側  Represents the impedance of the machine. In the circuit of Figure 2, both sides of Z and Z
pi 2  pi 2
は、シースを表している。回路全体に流れる電流を I、 C側に流れる電流を I、 C側  Represents the sheath. Current flowing through the entire circuit is I, current flowing through C side is I, C side
1 1 2 に流れる電流を Iとすれば、 1=1 + 1の関係が成立している。ここで、  If the current flowing through 1 1 2 is I, the relationship 1 = 1 + 1 holds. here,
2 1 2 cのインピー  2 1 2 c imp
1  1
ダンス Aは、数 1によって示される。 Cのインピーダンス Bは、数 2によって示される。こ  Dance A is indicated by the number 1. The impedance B of C is given by Equation 2. This
2  2
こで、 fは低周波の周波数である。  Where f is a low frequency.
(数 1)インピーダンス A= 1/ (2 fC )  (Equation 1) Impedance A = 1 / (2 fC)
1  1
(数 2)インピーダンス Β = ΐΖ(2 π Κ )  (Equation 2) Impedance Β = ΐΖ (2 π Κ)
2  2
[0076] 図 1のガスバリア性プラスチック容器の製造装置 100Aでは、 C > Cの関係が成り  [0076] In the gas barrier plastic container manufacturing apparatus 100A of Fig. 1, the relationship of C> C is established.
1 2  1 2
立つように、設計されていることが好ましい。外部電極 3の内部空間 30は、プラスチッ ク容器 8を完全に又はほぼ収容しうる大きさを有することが好ましレ、が、それ以上の大 きさであれば自由に容量を変更して設計して良い。また、排気室 5の内部空間 31の 容量又は絶縁部材 4の材質や厚さを自由に変更して設計して良い。内部空間 31又 は内部空間 30の容量可変手段を設けて良い。絶縁部材 4の材質の変更手段又は厚 さの変更手段或いはその両方を設けて良レ、。例えば、外部電極 3の内部空間 30の 容量を大きくとるように装置を製作する場合、あらかじめ C > Cの関係が成り立つよう  It is preferably designed to stand. The internal space 30 of the external electrode 3 is preferably large enough to accommodate the plastic container 8 completely, but if it is larger than that, the capacity can be changed freely. You can do it. Further, the capacity of the internal space 31 of the exhaust chamber 5 or the material and thickness of the insulating member 4 may be freely changed and designed. A capacity variable means for the internal space 31 or the internal space 30 may be provided. Provide a means for changing the material of the insulating member 4 and / or a means for changing the thickness. For example, when manufacturing the device so that the capacity of the internal space 30 of the external electrode 3 is large, the relationship of C> C should be established in advance.
1 2  1 2
に絶縁部材 4の厚さを大きくする、或いは、絶縁部材 4の材質を比誘電率が小さいも ので作製する、或いは、排気室 5の内部空間 31の容量を大きくとるように装置を製作 しておく。そして、電源 27から 400kHzの低周波電力を出力した場合を考える。図 1 の製造装置 100Aにおいて、 C > Cの関係、好ましくは C > > Cの関係が成り立つ  The insulation member 4 is made thicker, or the insulation member 4 is made of a material having a small relative dielectric constant, or the device is produced so that the capacity of the internal space 31 of the exhaust chamber 5 is increased. deep. Consider the case where low frequency power of 400 kHz is output from the power supply 27. In the manufacturing apparatus 100A of FIG. 1, the relationship C> C, preferably the relationship C >> C holds.
1 2 1 2  1 2 1 2
ように設計することで、数 3で示すようにインピーダンス Bを、インピーダンス Aを基準と して相対的に高めることが可能となる。このとき、プラスチック容器 8の内部空間 30で のプラズマの発生はそのままとして、排気室 5の内部空間 31でのプラズマの発生の みを抑制することができる。そして図 2で示す Iを大きくすることができる。  By designing in this way, as shown in Equation 3, impedance B can be relatively increased with impedance A as a reference. At this time, the generation of plasma in the internal space 30 of the plastic container 8 is left as it is, and only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed. And I shown in Fig. 2 can be increased.
(数 3)インピーダンス B  (Equation 3) Impedance B
(f = 400kHz) Zインピーダンス A = C /C  (f = 400kHz) Z impedance A = C / C
(f = 400kHz) 1 2  (f = 400kHz) 1 2
[0077] 一方、数 1と数 2より、数 4の結果を得る。数 4によれば、差分 (インピーダンス B—ィ ンピーダンス A)は、 f力 、さくなると、 C - Cが正の場合、すなわち C > Cの関係が  [0077] On the other hand, the result of Equation 4 is obtained from Equation 1 and Equation 2. According to Equation 4, the difference (impedance B—impedance A) is f force, and when C-C is positive, that is, the relationship of C> C
1 2 1 2 成り立つときのみ大きくなることがわかる。 c 立てば、前記差分 1 2 1 2 It turns out that it grows only when it holds. c If so, the difference
1 > >cの関係が成り  1>> c
2  2
力 り大きくなる。  Become stronger.
(数 4)インピーダンス B—インピーダンス Α= 1/2 π ί · { (C —C ) /C C }  (Equation 4) Impedance B—Impedance Α = 1/2 π ί · {(C —C) / C C}
1 2 1 2  1 2 1 2
[0078] 図 1のガスバリア性プラスチック容器の製造装置 100Aを、 C > Cの関係、好ましく  [0078] The gas barrier plastic container manufacturing apparatus 100A of FIG.
1 2  1 2
は c > >cの関係が成り立つように設計し、且つ、原料ガスのプラズマエネルギー Is designed so that the relationship c>> c holds, and the plasma energy of the source gas
1 2 1 2
源として周波数 400kHz〜4MHzの低周波電力を供給することで、インピーダンス B が、インピーダンス Aを基準として相対的に高まるため、排気室 5、さらにはその後の 真空ポンプ 23に至る排気経路でのプラズマの発生を抑制することができる。これによ り、排気室や排気経路のプラズマのアタックによる損傷を少なくし、また、原料ガス系 の異物、例えば炭素系異物の発生量を低減することができる。  By supplying low frequency power with a frequency of 400 kHz to 4 MHz as a source, the impedance B increases relatively with respect to the impedance A, so that the plasma in the exhaust path leading to the exhaust chamber 5 and then to the vacuum pump 23 can be obtained. Occurrence can be suppressed. As a result, damage due to plasma attack in the exhaust chamber or exhaust path can be reduced, and the amount of source gas-based foreign matter, for example, carbon-based foreign matter, can be reduced.
[0079] 上述のように、製造装置内のインピーダンスを適切に設計及び設定することにより プラズマの発生領域を調整することができる。さらに、微細な発生領域或いはプラズ マの密度分布の調整には、磁場を用いることができる。磁場を用いて、プラズマ密度 分布を調整する技術は公知であるが、図 1に示す装置においては、永久磁石または 電磁磁石の設置によって、スぺーサー 36及び/又は外部電極 3からプラスチック容 器 8の内部空間に対する方向に磁場をかけることができる。或いは、図 1に示す装置 においては、磁石は N極と S極がプラスチック容器の主軸方向と平行な方向に並ぶよ うに配置されても良い。複数の磁石を配置する場合には、プラスチック容器 8の主軸 を中心とする円周上に配置し、好ましくは等間隔で配置する。永久磁石は、例えば N e— Fe— B像石 ある。 [0079] As described above, the plasma generation region can be adjusted by appropriately designing and setting the impedance in the manufacturing apparatus. Further, a magnetic field can be used to adjust the fine generation region or the density distribution of the plasma. Although the technology for adjusting the plasma density distribution using a magnetic field is well known, in the apparatus shown in FIG. 1, the plastic container 8 is inserted from the spacer 36 and / or the external electrode 3 by installing a permanent magnet or an electromagnetic magnet. A magnetic field can be applied in the direction with respect to the internal space. Alternatively, in the apparatus shown in FIG. 1, the magnets may be arranged so that the N pole and the S pole are aligned in a direction parallel to the main axis direction of the plastic container. When a plurality of magnets are arranged, they are arranged on a circumference centered on the main axis of the plastic container 8, and preferably arranged at equal intervals. The permanent magnet is, for example, Ne-Fe-B image stone.
[0080] ここで、原料ガスのプラズマの着火の安定性を改善するために、内部電極 9に尖頭 部(不図示)を設けることが好ましい。より好ましくは、内部電極 9のガス吹き出し口 9a に尖頭部を設けることが好ましい。また、強制着火手段 (不図示)を設けても良い。ま た、 2次電子放出を補助するために、内部電極 9の表面の一部に 2次電子放出材料 をコーティングして 2次電子放出層を形成しても良い。 2次電子放出材料として、 BeO 、 MgO、 Ca〇、 SrO、 Ba〇等の 2A族アルカリ土類金属系酸化物、 TiO、 Zr〇等の  [0080] Here, in order to improve the stability of the plasma ignition of the source gas, it is preferable to provide a pointed portion (not shown) in the internal electrode 9. More preferably, the gas outlet 9a of the internal electrode 9 is provided with a pointed head. Moreover, you may provide a forced ignition means (not shown). In order to assist secondary electron emission, a secondary electron emission material may be formed by coating a part of the surface of the internal electrode 9 with a secondary electron emission material. Secondary electron emission materials such as BeO, MgO, CaO, SrO, BaO etc. 2A group alkaline earth metal oxides, TiO, ZrO etc.
2 2 twenty two
4A族金属系酸化物、 ZnO等の 2B族金属系酸化物、 Y O等の 3A族金属系酸化物 Group 4A metal oxides, Group 2B metal oxides such as ZnO, Group 3A metal oxides such as Y 2 O
2 3  twenty three
、 Al〇、 Ga〇等の 3B族金属系酸化物、 Si〇、 PbO、 Pb〇等の 4B族金属系酸 化物、 A1N等の 3B族系窒化物、 GaN、 SiN等の 3B族系窒化物、バリウム酸窒化物 、 LiF、 MgF、 CaF等のフッ化物、 SiC等の炭化物、並びに、ダイヤモンド、カーボン ナノチューブ、 DLC等の炭素系材料を単独又は混合して用いる。これらの化合物と しても良い。 Mg〇系では、例えば Mg〇-Al O、 MgO-TiO、 MgO-ZrO 、 Mg〇-3B group metal oxides such as AlO and GaO, and 4B group metal acids such as SiO, PbO and PbO , 3B group nitrides such as A1N, 3B group nitrides such as GaN and SiN, fluorides such as barium oxynitride, LiF, MgF and CaF, carbides such as SiC, diamond, carbon nanotube, DLC Carbon materials such as these are used alone or in combination. These compounds may be used. In MgO series, MgO-AlO, MgO-TiO, MgO-ZrO, MgO-
2 3 2 2 2 3 2 2
V〇、 Mg〇-Zn〇、 MgO-SiO 、 MgO-SiO -TiO 、 MgO_Ru〇、 MgO-MnOx V〇, Mg〇-Zn〇, MgO-SiO, MgO-SiO-TiO, MgO_Ru〇, MgO-MnOx
2 5 2 2 2 2 5 2 2 2
、 MgO-Cr〇などがある。 BaO系では、例えば BaTiOがある。さらに 2次電子放出  , MgO-Cr〇 etc. In the BaO system, for example, there is BaTiO. Secondary electron emission
2 3 3  2 3 3
層の材料に NbO、 LaO又は SeO等の希土類酸化物を少量添加して使用しても良  A small amount of rare earth oxides such as NbO, LaO or SeO may be added to the layer material.
2 2  twenty two
レ、。上記の 2次電子放出層は、 MOCVD法、スパッタリング法、溶射、ゾルゲル法等 の成膜法により形成する。  Les. The secondary electron emission layer is formed by a film formation method such as MOCVD, sputtering, thermal spraying, or sol-gel method.
[0081] 図 3は本実施形態に係るガスバリア性プラスチック容器の製造装置の第 2形態 (A) を示す概略構成図である。図 1に示したガスノ リア性プラスチック容器の製造装置 10 OAでは、外部電極 3は、プラスチック容器 8の全体を収容する内部空間 30を有する 力 図 3に示したガスノくリア性プラスチック容器の製造装置 200Aのように、プラスチッ ク容器 8の口部を除く全体を収容する内部空間 30を有してレ、ても良レ、。ガスバリア性 プラスチック容器の製造装置 100Aはプラスチック容器 8の口部の内壁にガスバリア 性を有する薄膜を均一に成膜できる。ガスバリア性プラスチック容器の製造装置 200 Aは、プラスチック容器 8の口部の内壁のみあえてガスバリア性を有する薄膜を成膜 せず、プラスチック容器 8の口部の内壁を除く残りの内壁面には均一に成膜すること ができる。 FIG. 3 is a schematic configuration diagram showing a second mode (A) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. Equipment for manufacturing gas plastic plastic containers shown in Fig. 1 In 10 OA, external electrode 3 has an internal space 30 that accommodates the entire plastic container 8. Force manufacturing equipment for gas plastic plastic containers shown in Fig. 3 Like 200A, it has an internal space 30 that accommodates the entire plastic container 8 except the mouth. Gas barrier property The plastic container manufacturing apparatus 100A can uniformly form a thin film having gas barrier properties on the inner wall of the mouth of the plastic container 8. The 200 A gas barrier plastic container manufacturing apparatus does not form a thin film with a gas barrier property only on the inner wall of the mouth of the plastic container 8, and uniformly applies to the remaining inner wall surface except the inner wall of the mouth of the plastic container 8. A film can be formed.
[0082] 次に、本実施形態に係るガスバリア性プラスチック容器の製造方法を説明する。以 下ことわりがない限り、図 1のガスバリア性プラスチック容器の製造装置 100Aを用い て、 DLC膜を、ガスバリア性を有する薄膜として成膜する場合を説明する。  Next, a method for manufacturing the gas barrier plastic container according to this embodiment will be described. Unless otherwise noted, the case where the DLC film is formed as a thin film having gas barrier properties using the gas barrier plastic container manufacturing apparatus 100A of FIG. 1 will be described.
[0083] 本発明に係るガスノ リア性プラスチック容器の製造方法は、真空チャンバとなる外 部電極にプラスチック容器を収容する工程と、前記プラスチック容器の内部に原料ガ ス供給管となる内部電極を配置する工程と、前記外部電極の内壁面と前記プラスチ ック容器の外壁面とに挟まれた隙間空間に誘電体力 なるスぺーサーを配置するェ 程と、真空ポンプを作動させて前記外部電極の内部のガスを排気する工程と、前記 プラスチック容器の内部に原料ガスを減圧下で吹き出させる工程と、前記プラスチッ ク容器自体の静電容量とその内部空間の静電容量との合成静電容量を ^とし、前 記真空チャンバの内部空間と排気室の内部空間とを含む成膜ユニットの内部空間の うち前記プラスチック容器の外側空間の合成静電容量を Cとしたとき、 [0083] A method for producing a gas-nore plastic container according to the present invention includes a step of housing a plastic container in an external electrode serving as a vacuum chamber, and an internal electrode serving as a raw material gas supply pipe disposed inside the plastic container. A step of disposing a spacer having a dielectric force in a gap space between the inner wall surface of the external electrode and the outer wall surface of the plastic container, and operating a vacuum pump to A step of exhausting the internal gas, a step of blowing the source gas into the plastic container under reduced pressure, and the plastic The combined capacitance of the capacitance of the vacuum vessel itself and the capacitance of its internal space is assumed to be ^, and among the internal spaces of the film forming unit including the internal space of the vacuum chamber and the internal space of the exhaust chamber, When the synthetic capacitance of the outer space of the plastic container is C,
2 c 1 >cの関 2 c 1> c
2 係が成立する条件下で、前記外部電極に周波数 400kHz〜4MHzの低周波電力を 供給し、前記原料ガスをプラズマ化して、前記プラスチック容器の内壁面にガスバリ ァ性を有する薄膜を成膜する工程と、を有する。  2 Under the condition that the relationship is established, supply low frequency power with a frequency of 400 kHz to 4 MHz to the external electrode, convert the source gas into plasma, and form a thin film having gas barrier properties on the inner wall surface of the plastic container. And a process.
[0084] (プラスチック容器の収容工程、内部電極の配置工程及び誘電体からなるスぺーサ 一の配置工程) [0084] (Plastic container housing step, internal electrode placement step, and spacer placement step with a dielectric)
成膜ユニット 7内は、真空バルブ 18を開いて大気開放されており、外部電極 3の下 部外部電極 1が上部外部電極 2から取り外された状態となっている。上部外部電極 2 の下側から予め誘電体からなるスぺーサー 36aを入れて固定しておく。次に上部外 部電極 2の下側から上部外部電極 2内の空間にプラスチック容器 8を差し込み、外部 電極 3の内部空間 30内に設置する。この際、内部電極 9はプラスチック容器 8内に挿 入された状態になる。下部外部電極 1に誘電体からなるスぺーサー 36bを固定して おく。次に、下部外部電極 1を上部外部電極 2の下部に装着し、外部電極 3は O—リ ング 10によって密閉される。以上の操作により、外部電極 3の内部空間 30にプラスチ ック容器 8が収容され、かつ、プラスチック容器 8の内部に内部電極 9が配置され、か つ、外部電極 3の内壁面とプラスチック容器 8の外壁面とに挟まれた隙間空間に誘電 体からなるスぺーサー 36が配置されることとなる。  The film forming unit 7 is opened to the atmosphere by opening the vacuum valve 18, and the lower external electrode 1 of the external electrode 3 is removed from the upper external electrode 2. A spacer 36a made of a dielectric is put in advance from the lower side of the upper external electrode 2 and fixed. Next, the plastic container 8 is inserted into the space in the upper external electrode 2 from the lower side of the upper external electrode 2 and installed in the internal space 30 of the external electrode 3. At this time, the internal electrode 9 is inserted into the plastic container 8. A spacer 36b made of a dielectric is fixed to the lower external electrode 1. Next, the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the external electrode 3 is sealed with an O-ring 10. By the above operation, the plastic container 8 is accommodated in the internal space 30 of the external electrode 3, and the internal electrode 9 is disposed inside the plastic container 8, and the inner wall surface of the external electrode 3 and the plastic container 8 are disposed. A spacer 36 made of a dielectric material is disposed in a gap space between the outer wall surfaces of the substrate.
[0085] (外部電極の内部のガスの排気工程) [0085] (Exhaust process of gas inside external electrode)
次に、プラスチック容器 8の内部を原料ガスに置換するとともに所定の成膜圧力に 調整する。すなわち、図 1に示すように、真空バルブ 18を閉じた後、真空バルブ 22を 開き、真空ポンプ 23を作動させ、外部電極 3の内部のガスを、絶縁部材 4によって外 部電極 3と電気的に絶縁されている排気室 5を経由して排気する。これにより、プラス チック容器 8内を含む成膜ユニット 7内が配管 21を通して排気され、成膜ユニット 7内 が真空となる。このときの成膜ユニット 7内の圧力は、例えば 2. 6〜66Paである。  Next, the inside of the plastic container 8 is replaced with a raw material gas and adjusted to a predetermined film forming pressure. That is, as shown in FIG. 1, after the vacuum valve 18 is closed, the vacuum valve 22 is opened, the vacuum pump 23 is operated, and the gas inside the external electrode 3 is electrically connected to the external electrode 3 by the insulating member 4. Exhaust through the exhaust chamber 5 insulated by Thereby, the inside of the film forming unit 7 including the inside of the plastic container 8 is exhausted through the pipe 21, and the inside of the film forming unit 7 is evacuated. The pressure in the film forming unit 7 at this time is 2.6 to 66 Pa, for example.
[0086] (原料ガスを吹き出させる工程) [0086] (Process of blowing material gas)
次に、真空バルブ 12を開き、原料ガス発生源 15においてアセチレンガス等の炭化 水素ガスを発生させ、この炭化水素ガスを配管 14内に導入し、マスフローコントロー ラー 13によって流量制御された炭化水素ガスを配管 11及びアース電位の内部電極 (原料ガス供給管) 9を通してガス吹き出し口 9aから吹き出させる。これにより、炭化水 素ガスがプラスチック容器 8内に導入される。そして、成膜ユニット 7内とプラスチック 容器 8内は、制御されたガス流量と排気能力のバランスによって、 DLC膜の成膜に 適した圧力(例えば 6. 6〜665Pa程度)に保たれ、安定化させる。 Next, the vacuum valve 12 is opened, and carbonization of acetylene gas or the like at the source gas generation source 15 is performed. Hydrogen gas is generated, this hydrocarbon gas is introduced into the pipe 14, and the hydrocarbon gas whose flow rate is controlled by the mass flow controller 13 is supplied to the gas outlet through the pipe 11 and the ground potential internal electrode (raw gas supply pipe) 9. Blow out from 9a. As a result, hydrocarbon gas is introduced into the plastic container 8. The film forming unit 7 and the plastic container 8 are maintained at a pressure suitable for the film formation of the DLC film (for example, about 6.6 to 665 Pa) by the balance between the controlled gas flow rate and the exhaust capacity. Let
[0087] (ガスバリア性を有する薄膜の成膜工程)  [0087] (Film-forming process of thin film having gas barrier property)
次に、プラスチック容器 8の内部に原料ガスを減圧された所定圧力下で吹き出させ ているときに、外部電極 3に周波数 400kHz〜4MHzの低周波電力(例えば、 1MH z)を供給する。低周波電力をエネルギー源として、プラスチック容器 8内の原料ガス がプラズマ化される。これによつて、プラスチック容器 8の内壁面に DLC膜が成膜さ れる。すなわち外部電極 3に低周波電力が供給されることによって、外部電極 3と内 部電極 9との間でバイアス電圧が生ずると共にプラスチック容器 8内の原料ガスがプ ラズマ化されて炭化水素系プラズマが発生し、 DLC膜がプラスチック容器 8の内壁面 に成膜される。このとき、自動整合器 26は、出力供給している電極全体からの反射波 が最小になるように、インダクタンスレキャパシタンス Cによってインピーダンスを合わ せている。外部電極 3の内壁面とプラスチック容器 8の外壁面とに挟まれた隙間空間 は、誘電体からなるスぺーサー 36が配置されているため、異常放電が生じない。  Next, low frequency power (for example, 1 MHz) with a frequency of 400 kHz to 4 MHz is supplied to the external electrode 3 while the raw material gas is blown into the plastic container 8 under a predetermined reduced pressure. The raw material gas in the plastic container 8 is turned into plasma using low frequency power as an energy source. As a result, a DLC film is formed on the inner wall surface of the plastic container 8. That is, by supplying low frequency power to the external electrode 3, a bias voltage is generated between the external electrode 3 and the internal electrode 9, and the raw material gas in the plastic container 8 is plasmatized to generate hydrocarbon-based plasma. The DLC film is formed on the inner wall surface of the plastic container 8. At this time, the automatic matching unit 26 matches the impedance by the inductance recapacitance C so that the reflected wave from the entire electrode supplying the output is minimized. In the gap space between the inner wall surface of the external electrode 3 and the outer wall surface of the plastic container 8, since the spacer 36 made of a dielectric is disposed, abnormal discharge does not occur.
[0088] 図 1のガスバリア性プラスチック容器の製造装置 100Aにおいて、 C > Cの関係、  [0088] In the gas barrier plastic container manufacturing apparatus 100A in FIG.
1 2 好ましくは C > > Cの関係が成立させた状態で、周波数 400kHz〜4MHzの低周  1 2 Preferably low frequency of 400 kHz to 4 MHz with C>> C relationship established
1 2  1 2
波電力を供給することで、図 2及び数 1〜数 4で説明したように、排気室 5、さらにはそ の後の真空ポンプ 23に至る排気経路でのプラズマの発生を抑制することができる。 これにより、排気室 5や排気経路のプラズマのアタックによる損傷を少なくし、また、原 料ガス系の異物の発生量を低減することができる。ここで、排気室 5の内部空間 31で のプラズマの発生が抑制されるに伴って、その分、外部電極 3の内部空間 30でのプ ラズマの発生にエネルギーの消費がまわされるとともに、プラズマの発生する中心箇 所がプラスチック容器 8の肩部から口部に至る部分であったところ、プラスチック容器 8の中心である胴部に移る。したがって、容器の主軸方向に沿った膜厚分布が均一 化される。 By supplying wave power, it is possible to suppress the generation of plasma in the exhaust path leading to the exhaust chamber 5 and then the vacuum pump 23 as described in FIG. 2 and Equations 1 to 4. . As a result, damage caused by the attack of the plasma in the exhaust chamber 5 and the exhaust path can be reduced, and the generation amount of the foreign material in the source gas system can be reduced. Here, as the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed, the consumption of energy is directed to the generation of plasma in the internal space 30 of the external electrode 3 and the plasma is When the generated central portion is a portion from the shoulder portion to the mouth portion of the plastic container 8, the center portion moves to the trunk portion that is the center of the plastic container 8. Therefore, the film thickness distribution along the main axis direction of the container is uniform. It becomes.
[0089] 膜厚分布が均一化されることによって、プラスチック容器 8の口部の内壁面での DL C膜の膜厚が従来と比較して薄くなるため、 口部の内壁面に DLC膜に由来する着色 が低減され、意匠性の向上がもたらされる。  [0089] By uniforming the film thickness distribution, the thickness of the DLC film on the inner wall surface of the mouth of the plastic container 8 becomes thinner compared to the conventional case, so that the DLC film is formed on the inner wall surface of the mouth. The resulting coloration is reduced and the design is improved.
[0090] 誘電体からなるスぺーサー 36の形状を変更することで、形状の異なる他のプラスチ ック容器への成膜が、外部電極 3を変更することなぐ可能となる。  [0090] By changing the shape of the spacer 36 made of a dielectric, it is possible to form a film on another plastic container having a different shape without changing the external electrode 3.
[0091] 次に、電源 27の低周波電力の出力を停止し、プラズマを消滅させて DLC膜の成 膜を終了させる。ほぼ同時に真空バルブ 12を閉じて原料ガスの供給を停止する。  Next, the output of the low frequency power from the power source 27 is stopped, the plasma is extinguished, and the film formation of the DLC film is completed. At about the same time, the vacuum valve 12 is closed and the supply of the raw material gas is stopped.
[0092] 次に、成膜ユニット 7内及びプラスチック容器 8内に残存した炭化水素ガスを除くた めに真空ポンプ 23によって排気する。その後、真空バルブ 22を閉じ、排気を終了さ せる。このときの成膜ユニット 7内の圧力は 6. 6〜665Paである。この後、真空バルブ 18を開く。これにより、成膜ユニット 7が大気開放される。  Next, the vacuum pump 23 exhausts the hydrocarbon gas remaining in the film forming unit 7 and the plastic container 8. Then, the vacuum valve 22 is closed and the exhaust is finished. The pressure in the film forming unit 7 at this time is 6.6 to 665 Pa. Thereafter, the vacuum valve 18 is opened. Thereby, the film forming unit 7 is opened to the atmosphere.
[0093] いずれも成膜時間は数秒程度と短いものとなる。 DLC膜の膜厚は 0. 003-5 μ m となるように形成する。  In any case, the film formation time is as short as several seconds. The DLC film is formed to a thickness of 0.003-5 μm.
[0094] (実施形態 B)  [0094] (Embodiment B)
図 2、図 4〜図 9を参照しながら本実施形態を説明する。なお、共通の部位'部品に は同一符号を付した。まず、本実施形態に係るガスバリア性プラスチック容器の製造 装置について説明する。  The present embodiment will be described with reference to FIGS. 2 and 4 to 9. In addition, the same code | symbol was attached | subjected to common site | part components. First, the manufacturing apparatus of the gas barrier plastic container according to this embodiment will be described.
[0095] 図 4は本実施形態に係るガスバリア性プラスチック容器の製造装置の第 1形態(B) を示す概略構成図である。第 1形態 (B)のガスバリア性プラスチック容器の製造装置 100Bに示すごとぐ本実施形態に係るガスノくリア性プラスチック容器の製造装置は、 プラスチック容器 8を収容する反応室 3Bと、排気室 5と、反応室 3Bと排気室 5に挟ま れて各々を電気的に絶縁させるとともに反応室 3Bと排気室 5とを連通させる開口部 3 2を設けた絶縁体スぺーサー 4Bと、排気室 5に接続され、開口部 32と排気室 5を経 由して反応室 3Bの内部ガスを排気する真空ポンプ 23と、プラスチック容器 8の内部 に配置された原料ガス供給管 9と、原料ガス供給管 9に原料ガスを供給する原料ガス 供給手段 16と、反応室 3Bに高周波電力を供給する高周波電力供給手段 360と、を 備えたガスノ リア性プラスチック容器の製造装置にぉレ、て、プラスチック容器 8と反応 室 3Bの内部空間 30Bとの合成静電容量 Cのインピーダンス Aと絶縁体スぺーサー 4 FIG. 4 is a schematic configuration diagram showing a first mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. As shown in the gas barrier plastic container manufacturing apparatus 100B according to the first embodiment (B), the gas plastic plastic container manufacturing apparatus according to the present embodiment includes a reaction chamber 3B containing the plastic container 8, an exhaust chamber 5, The insulating spacer 4B provided with an opening 32 that is sandwiched between the reaction chamber 3B and the exhaust chamber 5 to electrically insulate each of the reaction chamber 3B and the exhaust chamber 5, and the exhaust chamber 5 A vacuum pump 23 that is connected and exhausts the internal gas of the reaction chamber 3B through the opening 32 and the exhaust chamber 5, a source gas supply pipe 9 disposed inside the plastic container 8, and a source gas supply pipe 9 A plastic container 8 and a raw material gas supply means 16 for supplying the raw material gas to the reaction chamber 3B and a high-frequency power supply means 360 for supplying the high-frequency power to the reaction chamber 3B. reaction Chamber 3B inner space 30B combined capacitance C impedance A and insulator spacer 4
1  1
Bと排気室 5の内部空間 31との合成静電容量 Cのインピーダンス Bのうち、インピー  Impedance B of combined capacitance C of B and internal space 31 of exhaust chamber 5
2  2
ダンス Bを、インピーダンス Aを基準として相対的に高めるインピーダンス増加手段を 設けたものである。  Impedance increasing means is provided to increase dance B relative to impedance A as a reference.
[0096] (第 1形態 (B)の製造装置)  [0096] (Manufacturing apparatus of first form (B))
本実施形態では、インピーダンス増加手段として、レ、くつかの形態が示される。第 1 形態(B)であるガスバリア性プラスチック容器の製造装置 100Bでは、インピーダンス 増加手段は、反応室 3Bに供給される高周波電力に、低周波電力を重畳させて供給 する低周波電力供給手段 350である。  In this embodiment, several forms are shown as the impedance increasing means. In the gas barrier plastic container manufacturing apparatus 100B according to the first embodiment (B), the impedance increasing means is a low-frequency power supply means 350 that superimposes low-frequency power on high-frequency power supplied to the reaction chamber 3B. is there.
[0097] 本発明では、インピーダンス増加手段の構成の違いによって、ガスバリア性プラス チック容器の製造装置として複数の形態が存在するが、インピーダンス増加手段以 外は共通の構成を有するため、まず共通の構成を説明した後、第 1形態におけるィ ンピーダンス増加手段を説明することとする。  [0097] In the present invention, there are a plurality of forms as a gas barrier plastic container manufacturing apparatus due to the difference in the configuration of the impedance increasing means. However, since the configuration other than the impedance increasing means has a common configuration, first, the common configuration is used. After the explanation, the impedance increasing means in the first embodiment will be explained.
[0098] 反応室 3Bは、金属等の導電材で中空に形成されており、コーティング対象のブラ スチック容器 8、例えばポリエチレンテレフタレート樹脂製の容器である PETボトノレを 収容する内部空間 30Bを有する。内部空間 30Bの内壁は、プラスチック容器 8の外 形にほぼ接する形状に形成されている。反応室 3Bは、プラスチック容器 8を取り囲む こととなるため、外部電極の役割を為す。また、反応室 3Bは、上部外部電極 2と下部 外部電極 1からなり、上部外部電極 2の下部に下部外部電極 1の上部が〇 リング 1 0を介して着脱自在に取り付けられるよう構成されている。上部外部電極 2から下部 外部電極 1を脱着することでプラスチック容器 8を装着することができる。反応室 3Bは 、絶縁体スぺーサー 4Bと反応室 3Bとの間に配置された〇一リング 37並びに上部外 部電極 2と下部外部電極 1の間に配置された 0_リング 10によって外部力も密閉され ている。  [0098] The reaction chamber 3B is formed in a hollow shape with a conductive material such as metal, and has an internal space 30B for accommodating a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin. The inner wall of the inner space 30B is formed in a shape that substantially contacts the outer shape of the plastic container 8. Since the reaction chamber 3B surrounds the plastic container 8, it acts as an external electrode. The reaction chamber 3B includes an upper external electrode 2 and a lower external electrode 1. The upper portion of the lower external electrode 1 is detachably attached to the lower portion of the upper external electrode 2 via a ring 10. . The plastic container 8 can be mounted by detaching the lower external electrode 1 from the upper external electrode 2. The reaction chamber 3B has an external force generated by the O-ring 37 disposed between the insulator spacer 4B and the reaction chamber 3B, and the 0_ring 10 disposed between the upper outer electrode 2 and the lower outer electrode 1. Sealed.
[0099] 絶縁体スぺーサー 4Bは、反応室 3Bと排気室 5との間に配置され、プラスチック容 器 8の口部の上方の位置に相当する箇所に開口部 32aが形成されてレ、る。開口部 3 2aは、反応室 3Bと排気室 5とを空気的に連通する。絶縁体スぺーサー 4Bは、ガラス やセラミックス等の無機材料、或いは耐熱性樹脂で形成されることが好ましい。好まし くは、ポリ四フッ化工チレン、四フッ化工チレン'バーフルォロアルキルビエルエーテ ノレ共重合体、四フッ化工チレン'へキサフルォロプロピレン共重合体、ポリフエ二レン オキサイド、ポリイミド、ポリエーテルサルホン、ポリエーテルイミド、ポリフエ二レンサル ファイド又はポリエーテルエーテルケトンである。 [0099] The insulator spacer 4B is disposed between the reaction chamber 3B and the exhaust chamber 5, and an opening 32a is formed at a position corresponding to the position above the mouth of the plastic container 8, The The opening 32a connects the reaction chamber 3B and the exhaust chamber 5 in air. The insulator spacer 4B is preferably formed of an inorganic material such as glass or ceramics or a heat resistant resin. Like Or polytetrafluoroethylene, tetrafluoroethylene “barfluoroalkyl bilayer copolymer”, tetrafluoroethylene “hexafluoropropylene copolymer”, polyphenylene oxide, polyimide, polyether. Sulphone, polyetherimide, polyphenylene sulfide or polyetheretherketone.
[0100] 排気室 5は、金属等の導電材で中空に形成されており、内部空間 31を有する。排 気室 5は、絶縁体スぺーサー 4Bの上に配置されている。このとき、排気室 5と絶縁体 スぺーサー 4Bとの間は〇一リング 38によってシールされている。そして、内部空間 3 1と内部空間 30Bとを空気的に連通させるために、開口部 32aに対応してほぼ同形 状の開口部 32bが排気室 5の下方に設けられている。排気室 5は、配管 21、圧力ゲ ージ 20、真空バルブ 22等からなる排気経路を介して真空ポンプ 23に接続されてお り、その内部空間 31が排気される。  [0100] The exhaust chamber 5 is formed hollow with a conductive material such as metal and has an internal space 31. The exhaust chamber 5 is disposed on the insulator spacer 4B. At this time, the space between the exhaust chamber 5 and the insulator spacer 4B is sealed by the O-ring 38. In order to make the internal space 31 and the internal space 30B communicate with each other in air, an opening 32b having substantially the same shape is provided below the exhaust chamber 5 so as to correspond to the opening 32a. The exhaust chamber 5 is connected to a vacuum pump 23 through an exhaust path including a pipe 21, a pressure gauge 20, a vacuum valve 22, and the like, and the internal space 31 is exhausted.
[0101] 絶縁体スぺーサー 4Bの上に排気室 5が配置されることによって蓋 6を形成して、反 応室 3Bを密封し、密閉可能な真空チャンバ 7Bが組み上がることとなる。このとき、真 空チャンバ 7Bには、反応室 3Bの内部空間 30Bと排気室 5の内部空間 31の 2つの部 屋があり、それらは開口部 32a, 32bを通してつながつている。  [0101] By disposing the exhaust chamber 5 on the insulator spacer 4B, the lid 6 is formed, the reaction chamber 3B is sealed, and the sealable vacuum chamber 7B is assembled. At this time, the vacuum chamber 7B has two parts, an internal space 30B of the reaction chamber 3B and an internal space 31 of the exhaust chamber 5, which are connected through the openings 32a and 32b.
[0102] 原料ガス供給管 9は、導電材料によって形成されており、内部電極を兼ねている。  [0102] The source gas supply pipe 9 is made of a conductive material and also serves as an internal electrode.
原料ガス供給管 9は、その内部が中空からなる管形状を有している。また、その先端 にはガス吹き出し口 9aが設けられている。なお、原料ガス供給管 9の側胴にガス吹き 出し口を設けても良い。さらに原料ガス供給管 9 (内部電極)は接地されている。原料 ガス供給管 9の一端は、排気室 5の内部空間の壁で固定され、真空チャンバ 7B内に 配置されている。反応室 3B内にプラスチック容器 8がセットされたとき、原料ガス供給 管 9は、反応室 3B内に配置され且つプラスチック容器 8の口部からその内部に配置 される。すなわち、排気室 5の内壁上部を基端として、内部空間 31、開口部 32a, 32 bを通して、反応室 3Bの内部空間 30Bまで原料ガス供給管 9が差し込まれる。原料 ガス供給管 9の先端はプラスチック容器 8の内部に配置される。なお、原料ガス供給 管 9と内部電極を兼用させずに、別個に内部電極を配置しても良い。このとき、内部 電極は接地し、原料ガス供給管 9と同様にプラスチック容器 8の内部に揷入される。  The source gas supply pipe 9 has a tubular shape whose inside is hollow. A gas outlet 9a is provided at the tip. A gas outlet may be provided in the side cylinder of the source gas supply pipe 9. Further, the source gas supply pipe 9 (internal electrode) is grounded. One end of the raw material gas supply pipe 9 is fixed by a wall of the internal space of the exhaust chamber 5 and arranged in the vacuum chamber 7B. When the plastic container 8 is set in the reaction chamber 3B, the source gas supply pipe 9 is disposed in the reaction chamber 3B and disposed in the plastic container 8 from the mouth. That is, with the upper part of the inner wall of the exhaust chamber 5 as a base end, the source gas supply pipe 9 is inserted through the internal space 31 and the openings 32a and 32b to the internal space 30B of the reaction chamber 3B. The tip of the raw material gas supply pipe 9 is disposed inside the plastic container 8. The internal electrodes may be separately arranged without using the source gas supply pipe 9 and the internal electrodes. At this time, the internal electrode is grounded and inserted into the plastic container 8 in the same manner as the source gas supply pipe 9.
[0103] 本発明に係る容器とは、実施形態 Aの場合と同じである。 [0104] 本発明のプラスチック容器 8を成形する際に使用する樹脂は、実施形態 Aの場合と 同じである。 [0103] The container according to the present invention is the same as in the case of Embodiment A. [0104] The resin used in molding the plastic container 8 of the present invention is the same as that in the embodiment A.
[0105] 原料ガス供給手段 16は、プラスチック容器 8の内部に原料ガス発生源 15から供給 される原料ガスを導入する。すなわち、原料ガス供給管 9の基端には、配管 11の一 方側が接続されており、この配管 11の他方側は真空バルブ 12を介してマスフローコ ントローラー 13の一方側に接続されている。マスフローコントローラー 13の他方側は 配管 14を介して原料ガス発生源 15に接続されている。この原料ガス発生源 15はァ セチレンなどの炭化水素ガス等を発生させるものである。  The source gas supply means 16 introduces the source gas supplied from the source gas generation source 15 into the plastic container 8. That is, one side of the pipe 11 is connected to the base end of the source gas supply pipe 9, and the other side of the pipe 11 is connected to one side of the mass flow controller 13 via the vacuum valve 12. . The other side of the mass flow controller 13 is connected to a source gas generation source 15 via a pipe 14. This source gas generation source 15 generates hydrocarbon gas such as acetylene.
[0106] 本発明におけるガスバリア膜とは、 DLC (ダイヤモンドライクカーボン)膜、 Si含有 D LC膜、 SiO膜、アルミナ膜、 A1N膜等の酸素透過性を抑制する薄膜をいう。原料ガ ス発生源 15から発生させる原料ガスは、上記薄膜の構成元素を含む揮発性ガスが 選択される。ガスバリア薄膜を形成する際の原料ガスは公知公用の揮発性原料ガス が使用できる。  The gas barrier film in the present invention refers to a thin film that suppresses oxygen permeability, such as a DLC (diamond-like carbon) film, a Si-containing DLC film, a SiO film, an alumina film, or an A1N film. As the source gas generated from the source gas generating source 15, a volatile gas containing the constituent elements of the thin film is selected. As the raw material gas for forming the gas barrier thin film, a publicly known volatile raw material gas can be used.
[0107] 原料ガスとしては、例えば、 DLC膜を成膜する場合、実施形態 Aの場合と同じであ る。  [0107] As the source gas, for example, when forming a DLC film, it is the same as in the case of Embodiment A.
[0108] 本発明でレ、う DLC膜とは、実施形態 Aの場合と同じである。  In the present invention, the DLC film is the same as in the case of Embodiment A.
[0109] また、ケィ素含有 DLC膜を成膜する場合には、実施形態 Aの場合と同じである。  [0109] Further, in the case of forming a silicon-containing DLC film, it is the same as in the case of Embodiment A.
[0110] SiO膜 (珪素酸化物膜)を成膜する場合には、例えば、シランと酸素の混合ガス、 又は、 HMDSOと酸素の混合ガスを原料ガスとする。  [0110] When forming a SiO film (silicon oxide film), for example, a mixed gas of silane and oxygen or a mixed gas of HMDSO and oxygen is used as a source gas.
[0111] 真空ポンプ 23は、真空チャンバ 7Bの内部ガスを排気する。すなわち、排気室 5に 配管 21の一端が接続され、配管 21の他端は真空バルブ 22に接続され、真空バル ブ 22は配管を介して真空ポンプ 23に接続されている。この真空ポンプ 23はさらに排 気ダクト 24に接続されている。なお、配管 21には圧力ゲージ 20が接続され、排気経 路での圧力を検出する。真空ポンプ 23を作動させることによって、プラスチック容器 8 の内部ガス並びに反応室 3Bの内部空間 30Bの内部ガスが開口部 32a, 32bを介し て排気室 5の内部空間 31に移動し、内部空間 31の内部ガスは配管 21を含む排気 経路を通して真空ポンプ 23に送られる。  [0111] The vacuum pump 23 exhausts the internal gas of the vacuum chamber 7B. That is, one end of the pipe 21 is connected to the exhaust chamber 5, the other end of the pipe 21 is connected to the vacuum valve 22, and the vacuum valve 22 is connected to the vacuum pump 23 via the pipe. This vacuum pump 23 is further connected to an exhaust duct 24. A pressure gauge 20 is connected to the pipe 21 to detect the pressure in the exhaust path. By operating the vacuum pump 23, the internal gas of the plastic container 8 and the internal gas of the internal space 30B of the reaction chamber 3B move to the internal space 31 of the exhaust chamber 5 through the openings 32a and 32b, and the internal space 31 The internal gas is sent to the vacuum pump 23 through the exhaust path including the pipe 21.
[0112] 高周波電力供給手段 360は、高周波を反応室 3Bに供給してプラスチック容器 8の 内部の原料ガスをプラズマ化させるものである。高周波電力供給手段 360は、高周 波電源 29と、高周波電源 29に接続された自動整合器 28とを備え、高周波電源 29 は自動整合器 28を介して反応室 3Bに接続される。高周波電源 29は、グランド電位 との間に高周波電力を発生させ、これにより原料ガス供給管 9 (内部電極)と反応室 3 B (外部電極)との間に高周波電力が印加される。この結果、プラスチック容器 8の内 部に供給された原料ガスがプラズマ化する。高周波電源の周波数は、 3MHz超 100 0MHz以下である力 S、高周波電源 29は、例えば、工業用周波数である 13. 56MHz のものを使用することが好ましレ、。 [0112] The high frequency power supply means 360 supplies the high frequency to the reaction chamber 3B, The internal source gas is turned into plasma. The high-frequency power supply means 360 includes a high-frequency power supply 29 and an automatic matching device 28 connected to the high-frequency power supply 29, and the high-frequency power supply 29 is connected to the reaction chamber 3B via the automatic matching device 28. The high frequency power supply 29 generates high frequency power between the ground potential and the high frequency power is applied between the source gas supply pipe 9 (internal electrode) and the reaction chamber 3 B (external electrode). As a result, the raw material gas supplied to the inside of the plastic container 8 is turned into plasma. The frequency of the high-frequency power supply is more than 3MHz and less than 100MHz, and the high-frequency power supply 29 is preferably an industrial frequency of 13.56MHz, for example.
[0113] 真空チャンバ 7Bは、リーク用の配管 17が接続されていて、配管 17は真空バルブ 1 8を介して、リーク源 19 (大気開放)と連通されている。  The vacuum chamber 7 B is connected to a leak pipe 17, and the pipe 17 communicates with a leak source 19 (open to the atmosphere) via a vacuum valve 18.
[0114] 本実施形態に係るガスバリア性プラスチック容器の製造装置は、以上説明した構成 を基本として、インピーダンス増加手段を有する。インピーダンス増加手段は、複数の 形態があり、第 1形態 (B)のガスバリア性プラスチック容器の製造装置 100Bでは、反 応室 3Bに供給される高周波電力に、低周波電力を重畳させて供給する低周波電力 供給手段 350である。  [0114] The gas barrier plastic container manufacturing apparatus according to the present embodiment has impedance increasing means based on the configuration described above. The impedance increasing means has a plurality of modes. In the gas barrier plastic container manufacturing apparatus 100B of the first mode (B), the low frequency power is supplied by superimposing the low frequency power on the high frequency power supplied to the reaction chamber 3B. The frequency power supply means 350.
[0115] 低周波電力供給手段 350は、低周波電力を高周波電力に重畳させて反応室 3Bに 供給することで、プラスチック容器 8の内部の原料ガスをプラズマ化させるものである 。低周波電力供給手段 350は、低周波電源 270と、低周波電源 270に接続された自 動整合器 260とを備え、低周波電源 270は自動整合器 260を介して反応室 3Bに接 続される。低周波電源 270は、グランド電位との間に低周波電力を発生させ、これに より原料ガス供給管 9 (内部電極)と反応室 3B (外部電極)との間に低周波電力が、 高周波電力(高周波電源 29による)に重畳されて印加される。低周波電源 270の周 波数は、高周波電源 29の周波数と比較して相対的に低い周波数を指すが、高周波 電源 29の周波数を 13. 56MHzとすれば、低周波電源 270の周波数は、 100kHz 〜3MHzとすることが好ましレ、。低周波電源 270の周波数が 3MHzを超えると、高周 波電源 29の周波数(13. 56MHz)との周波数差が小さくなり、インピーダンス Bを増 大させる効果が薄れる。一方、低周波電源 270の周波数が 100kHz未満であると、 放電困難となる場合がある。 [0116] 図 4の製造装置 100Bでは、高周波電源 29に低周波電力が混入することを防止し 、また、低周波電源 270に高周波電力が混入することを防止するため、 自動整合器 2 60, 28と反応室 3Bとの間にフイノレタュニッ卜 25を接続する。フイノレタュニッ卜 25は、 HPF (ハイパスフィルタ)と LPF (ローパスフィルタ)を含む。 [0115] The low-frequency power supply means 350 superimposes the low-frequency power on the high-frequency power and supplies it to the reaction chamber 3B, thereby converting the raw material gas inside the plastic container 8 into plasma. The low-frequency power supply means 350 includes a low-frequency power source 270 and an automatic matching unit 260 connected to the low-frequency power source 270. The low-frequency power source 270 is connected to the reaction chamber 3B via the automatic matching unit 260. The The low frequency power supply 270 generates low frequency power between the ground potential and the low frequency power between the source gas supply pipe 9 (internal electrode) and the reaction chamber 3B (external electrode). Applied by being superimposed on (by high frequency power supply 29). The frequency of the low-frequency power supply 270 indicates a relatively low frequency compared to the frequency of the high-frequency power supply 29, but if the frequency of the high-frequency power supply 29 is 13.56 MHz, the frequency of the low-frequency power supply 270 is 100 kHz to 3MHz is preferred. If the frequency of the low-frequency power supply 270 exceeds 3 MHz, the frequency difference from the frequency of the high-frequency power supply 29 (13.56 MHz) will be small, and the effect of increasing impedance B will be diminished. On the other hand, if the frequency of the low-frequency power supply 270 is less than 100 kHz, it may be difficult to discharge. [0116] In the manufacturing apparatus 100B of Fig. 4, in order to prevent the low-frequency power from being mixed into the high-frequency power source 29 and to prevent the high-frequency power from being mixed into the low-frequency power source 270, the automatic matching device 260, Connect a Fino Tunic 25 between 28 and reaction chamber 3B. Finale Tunic 25 includes HPF (High Pass Filter) and LPF (Low Pass Filter).
[0117] 次に、高周波電力に低周波電力を重畳させた際に、排気室 5の内部空間 31にお けるプラズマの発生が抑制される原理について説明する。図 2に、第 1形態(B)のガ スバリア性プラスチック容器の製造装置に対応する 2極放電型の回路を示す。図 2で 示した回路の交流電源は、高周波電源 29又は低周波電源 270に対応する。 Cは、 プラスチック容器 8と反応室 3Bの内部空間 30Bとの合成静電容量を表している。 C  Next, the principle that the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed when the low frequency power is superimposed on the high frequency power will be described. Fig. 2 shows a bipolar discharge circuit corresponding to the gas barrier plastic container manufacturing apparatus of the first embodiment (B). The AC power supply of the circuit shown in Fig. 2 corresponds to the high frequency power supply 29 or the low frequency power supply 270. C represents the combined capacitance of the plastic container 8 and the internal space 30B of the reaction chamber 3B. C
1 は、プラスチック容器 8と反応室 3Bとに LCRメーターを接続して測定することができる 。なお、 LCRメーターとは、インダクタンス(L)、キャパシタンス(C)及びレジスタンス( R)などを測定できる器械である。 Cは、絶縁体スぺーサー 4Bと排気室 5の内部空間  1 can be measured by connecting an LCR meter to the plastic container 8 and the reaction chamber 3B. An LCR meter is an instrument that can measure inductance (L), capacitance (C), resistance (R), and so on. C is the inner space of insulator spacer 4B and exhaust chamber 5.
2  2
31との合成静電容量を表している。 Cは、絶縁体スぺーサー 4Bと排気室 5とに LCR  31 represents the combined capacitance. C is the LCR for insulator spacer 4B and exhaust chamber 5.
2  2
メーターを接続して測定することができる。 Z は、反応室 3B内で発生するプラズマの  It can be measured by connecting a meter. Z is the plasma generated in the reaction chamber 3B.
pi  pi
インピーダンスを表し、 Z は、反応室 3B内で発生するプラズマのインピーダンスを表  Z represents the impedance of the plasma generated in the reaction chamber 3B.
p2  p2
している。図 2の回路において、 Z と Z のそれぞれの両側は、シースを表している。  is doing. In the circuit of Figure 2, each side of Z and Z represents a sheath.
pi 2  pi 2
回路全体に流れる電流を I、 C側に流れる電流を I、 C側に流れる電流を Iとすれば  If the current flowing in the entire circuit is I, the current flowing in the C side is I, and the current flowing in the C side is I
1 1 2 2 1 1 2 2
、 1 = 1 +1の関係が成立している。ここで、 Cのインピーダンス Aは、数 6によって示 , 1 = 1 +1 is established. Where the impedance A of C is given by
1 2 1  1 2 1
される。 Cのインピーダンス Bは、数 7によって示される。ここで、 fは高周波又は低周  Is done. The impedance B of C is expressed by Equation 7. Where f is high frequency or low frequency
2  2
波の周波数である。  The frequency of the wave.
(数 6)インピーダンス A= 1/ (2 fC )  (Equation 6) Impedance A = 1 / (2 fC)
1  1
(数 7)インピーダンス Β = ΐΖ (2 π Κ )  (Equation 7) Impedance Β = ΐΖ (2 π Κ)
2  2
[0118] 図 4の製造装置 100Bでは、 C >Cの関係が成り立つように、設計されていること  [0118] The manufacturing apparatus 100B in Fig. 4 is designed so that the relationship of C> C is established.
1 2  1 2
が好ましい。反応室 3Bの内部空間 30Bは、プラスチック容器 8の外表面にほぼ接す る形状とすれば、その大きさはプラスチック容器 8の形状に制限を受けるが、排気室 5 の内部空間 31又は絶縁体スぺーサー 4Bの材質や厚さは自由に変更することができ る。そこで、あらかじめ C >Cの関係が成り立つように、例えば、絶縁体スぺーサー 4  Is preferred. If the inner space 30B of the reaction chamber 3B is substantially in contact with the outer surface of the plastic container 8, its size is limited by the shape of the plastic container 8, but the inner space 31 or insulator of the exhaust chamber 5 is limited. The material and thickness of the spacer 4B can be changed freely. Therefore, in order to establish the relationship C> C in advance, for example, insulator spacer 4
1 2  1 2
Bの厚さを大きくする、或いは、絶縁体スぺーサー 4Bの材質を比誘電率が小さいも ので作製する、或いは、排気室 5の内部空間 31の容量を大きくとるように装置を製作 しておく。そして、高周波電源 29から 13. 56MHzの高周波電力を出力し、低周波電 源 270から 400kHzの低周波電力を出力した場合を考える。数 7から数 8の結果が得 られる。 Increase the thickness of B, or use the insulator spacer 4B with a low relative dielectric constant. Therefore, a device is manufactured so that the capacity of the internal space 31 of the exhaust chamber 5 is increased. Consider a case where high frequency power of 13.56 MHz is output from the high frequency power supply 29 and low frequency power of 400 kHz is output from the low frequency power supply 270. The results of Equation 7 to Equation 8 are obtained.
(数 8)インピーダンス B Zインピーダンス B = 33. 9  (Equation 8) Impedance B Z Impedance B = 33.9
(f = 400kHz) (f= 13. 56MHz)  (f = 400kHz) (f = 13. 56MHz)
数 8の結果は、低周波電力(400kHz)を供給すれば、高周波電力(13. 56MHz)を 供給したときと比較して、インピーダンス Bが相対的に 33. 9倍大きくなるため、排気 室 5における大きな電圧降下が生じ、排気室 5の内部空間 31におけるプラズマの発 生が起こりに《なる又は持続し難レ、ことを示してレ、る。  The result of Equation 8 is that if low frequency power (400 kHz) is supplied, impedance B is 33.9 times larger than when high frequency power (13.56 MHz) is supplied. As a result, a large voltage drop occurs in the internal space 31 of the exhaust chamber 5 and plasma generation occurs in the internal space 31 of the exhaust chamber 5.
[0119] また、数 6から数 9の結果が得られる。 [0119] In addition, the results of Equation 6 to Equation 9 are obtained.
(数 9)インピーダンス A /インピーダンス A = 33. 9  (Equation 9) Impedance A / Impedance A = 33.9
(f = 400kHz) (f= 13. 56MHz)  (f = 400kHz) (f = 13. 56MHz)
[0120] 数 9の結果は、低周波電力(400kHz)を供給すれば、高周波電力(13. 56MHz) を供給したときと比較して、インピーダンス Aが相対的に大きくなるため、反応室 3Bに おいて電圧降下が生じることを示している。しかし、図 4の製造装置 100Bにおいて、 C >Cの関係、好ましくは C > > Cの関係が成り立つように設計することで、数 10 [0120] The result of Equation 9 is that when low frequency power (400 kHz) is supplied, impedance A becomes relatively large compared to when high frequency power (13. 56 MHz) is supplied. This shows that a voltage drop occurs. However, in the manufacturing apparatus 100B shown in FIG. 4, it is possible to satisfy the relationship of C> C, preferably C >> C.
1 2 1 2 1 2 1 2
で示すようにインピーダンス Bを、インピーダンス Aを基準として相対的に高めることが 可能となり、反応室 3Bの内部空間 30Bでのプラズマの発生はそのままとして、排気 室 5の内部空間 31でのプラズマの発生のみを抑制することができる。そして図 2で示 す Iを大きくすることができる。  As shown in Fig. 3, impedance B can be relatively increased with reference to impedance A, and plasma generation in the internal space 31 of the exhaust chamber 5 is maintained while maintaining the generation of plasma in the internal space 30B of the reaction chamber 3B. Only can be suppressed. And I shown in Fig. 2 can be increased.
(数 10)インピーダンス B /インピーダンス A =C /C  (Equation 10) Impedance B / Impedance A = C / C
(f = 400kHz) (f = 400kHz) 1 2  (f = 400kHz) (f = 400kHz) 1 2
[0121] なお、 C > Cの関係、好ましくは C > >Cの関係が成り立つように設計することで  [0121] It should be noted that by designing such that the relationship C> C, preferably C>> C, is established.
1 2 1 2  1 2 1 2
、数 11で示すように高周波電力をエネルギー源とするプラズマ発生についても、イン ピーダンス Bを、インピーダンス Aを基準として相対的に高めることが可能となり、反応 室 3Bの内部空間 30Bでのプラズマの発生はそのままとしてガスバリア薄膜を成膜す ること力 Sでき、且つ、排気室 5の内部空間 31でのプラズマの発生のみを抑制する傾 向とすることができる。  As shown in Equation 11, impedance B can be relatively increased with reference to impedance A for plasma generation using high-frequency power as an energy source, and plasma is generated in internal space 30B of reaction chamber 3B. Can maintain the force to form a gas barrier thin film as it is, and tend to suppress only the generation of plasma in the internal space 31 of the exhaust chamber 5.
(数 11)インピーダンス B  (Equation 11) Impedance B
(f = 13. 56MHz) Zインピーダンス A =C /C  (f = 13. 56MHz) Z impedance A = C / C
(f = 13. 56MHz) 1 2  (f = 13. 56MHz) 1 2
[0122] 一方、高周波電力に低周波電力を重畳させることによりインピーダンス Bがインピー ダンス Aに対して相対的に高まることは、インピーダンス Bからインピーダンス Aを差し 引いた差分を求めることによつても示される。数 6と数 7より、数 12の結果を得る。数 1 2によれば、差分 (インピーダンス B—インピーダンス A)は、 f力 M、さくなると、 C — C [0122] On the other hand, impedance B is impeded by superimposing low-frequency power on high-frequency power. The increase relative to dance A is also indicated by finding the difference of impedance B minus impedance A. From Equation 6 and Equation 7, the result of Equation 12 is obtained. According to Equation 1 2, the difference (impedance B—impedance A) is f force M, then C — C
1 2 が正の場合、すなわち C > Cの関係が成り立つときのみ大きくなることがわかる。 C  It can be seen that it increases only when 1 2 is positive, that is, when the relationship C> C holds. C
1 2 1 1 2 1
> >cの関係が成り立てば、前記差分がより大きくなる。 If the relationship >> c holds, the difference becomes larger.
2  2
(数 12)インピーダンス B—インピーダンス A= l/2 f ' { (C — C ) /C C }  (Equation 12) Impedance B—Impedance A = l / 2 f '{(C — C) / C C}
1 2 1 2  1 2 1 2
[0123] 図 4の製造装置 100Bを、 C > Cの関係、好ましくは C > > Cの関係が成り立つ  [0123] The manufacturing apparatus 100B of Fig. 4 is configured such that the relationship C> C, preferably the relationship C>> C holds.
1 2 1 2  1 2 1 2
ように設計し、且つ、高周波電力に低周波電力を重畳させることで、排気室 5、さらに はその後の真空ポンプ 23に至る排気経路でのプラズマの発生を抑制することができ る。これにより、排気室 5や排気経路のプラズマのアタックによる損傷を少なくし、また 、原料ガス系のダストの発生量を低減することができる。このとき、成膜時において装 置の部材の物理的な操作をカ卩えることなぐ電気的な作用によって、インピーダンス B を高めた状態でガスバリア薄膜を成膜することができる。ここで、高周波と低周波の周 波数差が大きくなるような電源の組み合わせを選択することが好ましい。  By designing so that the low frequency power is superimposed on the high frequency power, the generation of plasma in the exhaust path to the exhaust chamber 5 and then to the vacuum pump 23 can be suppressed. As a result, the damage caused by the attack of the plasma in the exhaust chamber 5 and the exhaust path can be reduced, and the generation amount of the source gas dust can be reduced. At this time, the gas barrier thin film can be formed with the impedance B increased by an electrical action that does not control the physical operation of the apparatus members during film formation. Here, it is preferable to select a combination of power sources that increases the frequency difference between the high frequency and the low frequency.
[0124] (第 2形態 (B)の製造装置)  [0124] (Manufacturing device of second form (B))
図 5は本実施形態に係るガスバリア性プラスチック容器の製造装置の第 2形態(B) を示す概略構成図である。第 1形態 (B)の製造装置 100Bとの差異を説明する。第 2 形態(B)のガスバリア性プラスチック容器の製造装置 200Bは、反応室 3B (外部電極 )に自動整合器 50を介して高周波電源 51が接続される。ただし、第 1形態 (B)の製 造装置 100Bのように低周波電源を接続し、高周波電力に低周波電力を重畳させる 仕組みを組み合わせても良い。  FIG. 5 is a schematic configuration diagram showing a second mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. Differences from the manufacturing apparatus 100B of the first form (B) will be described. In the gas barrier plastic container manufacturing apparatus 200B of the second embodiment (B), a high frequency power source 51 is connected to a reaction chamber 3B (external electrode) via an automatic matching unit 50. However, a mechanism in which a low-frequency power source is connected and the low-frequency power is superimposed on the high-frequency power may be combined as in the manufacturing apparatus 100B of the first mode (B).
[0125] 第 2形態(B)のガスバリア性プラスチック容器の製造装置 200Bでは、インピーダン ス増加手段として、排気室 5に副室 52が開口部 54を介して連通されている。副室 52 には、可動式仕切り 53が設けられている。可動式仕切り 53を開口部 54に近づける か遠ざけるかで副室 52の体積 Vを調整すること力できる。第 2形態(B)のガスノ リア 性プラスチック容器の製造装置 200Bでは、インピーダンス増加手段は、排気室 5の 容積を増加させる手段 55であり、副室 52及び可動式仕切り 53からなる。なお、本発 明は副室 52と可動式仕切り 53を設けた形態に限定されず、排気室 5の容積を可変と することができればいかなる構造をとつてもよい。反応室 3Bの内部空間 30Bの容積 に対して、排気室 5の内部空間 31の容積(ここで Vを含む)が、 2. 5〜: 10倍となるよ [0125] In the gas barrier plastic container manufacturing apparatus 200B of the second embodiment (B), the sub chamber 52 communicates with the exhaust chamber 5 through the opening 54 as an impedance increasing means. In the sub chamber 52, a movable partition 53 is provided. It is possible to adjust the volume V of the sub chamber 52 by moving the movable partition 53 closer to or away from the opening 54. In the gas noble plastic container manufacturing apparatus 200B of the second form (B), the impedance increasing means is means 55 for increasing the volume of the exhaust chamber 5, and comprises a sub chamber 52 and a movable partition 53. The present invention is not limited to the form in which the sub chamber 52 and the movable partition 53 are provided, and the volume of the exhaust chamber 5 is variable. Any structure can be used as long as it can. The volume of the internal space 31 of the exhaust chamber 5 (including V here) is 2.5 to 10 times the volume of the internal space 30B of the reaction chamber 3B.
1  1
うに副室 52の容積を設計することが好ましい。排気室 5の容積が 2. 5倍未満とすると 効果が小さい場合があり、 10倍を超えるときには副室 52が大型化しすぎる。  Thus, it is preferable to design the volume of the sub chamber 52. If the volume of the exhaust chamber 5 is less than 2.5 times, the effect may be small, and if it exceeds 10 times, the sub chamber 52 will be too large.
[0126] 次に、副室 52によって排気室 5の容積を増加させた際に、排気室 5の内部空間 31 におけるプラズマの発生が抑制される原理について説明する。図 5の製造装置 200 Bに対応する 2極放電型の回路は、図 2で示した回路と同じである。この場合、図 2で 示した回路の交流電源は、高周波電源 51に対応する。 Cは、プラスチック容器 8と Next, the principle that the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed when the volume of the exhaust chamber 5 is increased by the sub chamber 52 will be described. The bipolar discharge type circuit corresponding to the manufacturing apparatus 200 B in FIG. 5 is the same as the circuit shown in FIG. In this case, the AC power supply of the circuit shown in FIG. C with plastic container 8
1  1
反応室 3Bの内部空間 30Bとの合成静電容量を表している。 Cは、絶縁体スぺーサ  It represents the combined capacitance with the internal space 30B of the reaction chamber 3B. C is an insulator spacer
2  2
一 4Bと排気室 5の内部空間 31との合成静電容量を表している。ここで排気室 5の内 部空間 31は、副室 52の内部空間 (V相当の空間)を含むものとする。すなわち Vを  1 represents the combined capacitance of 4B and the internal space 31 of the exhaust chamber 5. Here, the internal space 31 of the exhaust chamber 5 includes the internal space of the sub chamber 52 (a space equivalent to V). Ie V
1 1 増加させることで内部空間 31の容積を増加させることができる。また、 Z  1 1 The volume of the internal space 31 can be increased by increasing it. Z
pi、Z 、各シ P2 ース及び 1 = 1 +1の関係については、図 4の製造装置 100Bの場合と同じである。こ  The relationship of pi, Z, each P2 series, and 1 = 1 + 1 is the same as that of the manufacturing apparatus 100B in FIG. This
1 2  1 2
こで、 Cのインピーダンス Aは、数 6によって示される。 Cのインピーダンス Bは、数 7  Here, the impedance A of C is expressed by Equation 6. The impedance B of C is the number 7
1 2  1 2
によって示される。また、 fは高周波の周波数であり、一定である。したがって、インピ 一ダンス Aは一定である。  Indicated by. F is a high frequency and constant. Impedance A is therefore constant.
[0127] 一般にコンデンサの静電容量 Cは数 13で示される。 εは誘電率、 Sは電極面積、 d は電極間の距離である。 [0127] In general, the capacitance C of a capacitor is expressed by Equation 13. ε is the dielectric constant, S is the electrode area, and d is the distance between the electrodes.
(数 13) C= ε - S/d  (Equation 13) C = ε-S / d
[0128] 可動式仕切り 53を動力 て Vを増加させると、近似的な考えではある力 数 13に  [0128] When the movable partition 53 is powered to increase V, the approximate power of 13 is obtained.
1  1
おいて dが大きくなることにつながり、 Cが小さくなる。したがって、数 7において、イン  D increases, and C decreases. Therefore, in number 7,
2  2
ピーダンス Bが増大する。ここで、インピーダンス Aは一定であるから、インピーダンス Bを、インピーダンス Aを基準として相対的に高めることが可能となり、反応室 3Bの内 部空間 30Bでのプラズマの発生はそのままとして、ガスバリア薄膜を成膜することが 可能であり、且つ、排気室 5の内部空間 31でのプラズマの発生のみを抑制すること ができる。これにより、排気室 5や排気経路のプラズマのアタックによる損傷を少なくし 、また、原料ガス系のダストの発生量を低減することができる。  Peedance B increases. Here, since the impedance A is constant, the impedance B can be relatively increased with reference to the impedance A, and the gas barrier thin film is formed while maintaining the generation of plasma in the internal space 30B of the reaction chamber 3B. A film can be formed, and only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed. As a result, the damage caused by the attack of the plasma in the exhaust chamber 5 and the exhaust path can be reduced, and the generation amount of the raw material gas dust can be reduced.
[0129] (第 3形態 (B)の製造装置) 図 6は本実施形態に係るガスバリア性プラスチック容器の製造装置の第 3形態(B) を示す概略構成図である。第 1形態 (B)の製造装置 100Bとの差異を説明する。第 3 形態(B)のガスバリア性プラスチック容器の製造装置 300Bは、反応室 3B (外部電極 )に自動整合器 50を介して高周波電源 51が接続される。ただし、第 1形態(B)の製 造装置 100Bのように低周波電源を接続し、高周波電力に低周波電力を重畳させる 仕組みを組み合わせても良い。 [0129] (Manufacturing apparatus of third embodiment (B)) FIG. 6 is a schematic configuration diagram showing a third mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. Differences from the manufacturing apparatus 100B of the first form (B) will be described. In the gas barrier plastic container manufacturing apparatus 300B of the third embodiment (B), a high frequency power supply 51 is connected to a reaction chamber 3B (external electrode) via an automatic matching unit 50. However, a mechanism for connecting a low-frequency power source and superimposing the low-frequency power on the high-frequency power may be combined as in the manufacturing apparatus 100B of the first mode (B).
[0130] 第 3形態(B)のガスバリア性プラスチック容器の製造装置 300Bでは、インピーダン ス増加手段として、絶縁体スぺーサー 4B (厚さ t )を、より厚い絶縁体スぺーサー 4B a (厚さ t )に変更する絶縁体スぺーサー変更手段 60が設けられている。ここで絶縁 [0130] In the gas barrier plastic container manufacturing apparatus 300B of the third embodiment (B), the insulator spacer 4B (thickness t) is used as the impedance increasing means, and the thicker insulator spacer 4B a (thickness is used). Insulator spacer changing means 60 for changing to t) is provided. Insulation here
2  2
体スぺーサー 4Bの厚さは、反応室 3Bと排気室 5との平均距離に相当する。絶縁体 スぺーサー 4Bの厚さは、容器の容量や印加する高周波電力及び低周波電力等の 条件によって最適な値は異なる力 例えば 5〜80mmである。なお、第 3形態(B)で は、絶縁体スぺーサー 4Bを、より厚い絶縁体スぺーサー 4Baにそっくり取り替える場 合にのみならず、絶縁体スぺーサー 4Bに別体の絶縁体スぺーサーを重ねることによ つて、より厚い絶縁体スぺーサー 4Ba相当にすることを含む。絶縁体スぺーサー 4B の厚さを変更する際には、適宜、反応室 3Bと排気室 5との平均距離もそれに対応さ せて変更する。  The thickness of the body spacer 4B corresponds to the average distance between the reaction chamber 3B and the exhaust chamber 5. The optimum thickness of the insulator spacer 4B varies depending on conditions such as the capacity of the container and the applied high frequency power and low frequency power, for example, 5 to 80 mm. In the third mode (B), not only when the insulator spacer 4B is completely replaced with the thicker insulator spacer 4Ba, but also the insulator spacer 4B is replaced with a separate insulator spacer. Including thicker insulator spacer 4Ba equivalent by stacking spacers. When changing the thickness of the insulator spacer 4B, the average distance between the reaction chamber 3B and the exhaust chamber 5 is also changed accordingly.
[0131] 次に、絶縁体スぺーサー 4Bを、より厚い絶縁体スぺーサー 4Baに変更した際に、 排気室 5の内部空間 31におけるプラズマの発生が抑制される原理について説明す る。図 6の製造装置 300Bに対応する 2極放電型の回路は、図 2で示した回路と同じ である。この場合、図 2で示した回路の交流電源は、高周波電源 51に対応する。 C  Next, the principle by which the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed when the insulator spacer 4B is changed to a thicker insulator spacer 4Ba will be described. The bipolar discharge circuit corresponding to the manufacturing apparatus 300B in FIG. 6 is the same as the circuit shown in FIG. In this case, the AC power supply of the circuit shown in FIG. C
1 は、プラスチック容器 8と反応室 3Bの内部空間 30Bとの合成静電容量を表している。  1 represents the combined capacitance of the plastic container 8 and the internal space 30B of the reaction chamber 3B.
Cは、絶縁体スぺーサー 4Bと排気室 5の内部空間 31との合成静電容量を表してい C represents the combined capacitance of the insulator spacer 4B and the internal space 31 of the exhaust chamber 5.
2 2
る。また、 Z 、 Z 、各シース及び 1 = 1 +1の関係については、図 4の製造装置 100B pi 2 1 2  The For the relationship of Z, Z, each sheath and 1 = 1 + 1, the manufacturing apparatus 100B pi 2 1 2 in FIG.
の場合と同じである。ここで、 Cのインピーダンス Aは、数 6によって示される。 Cのィ  Is the same as Here, the impedance A of C is expressed by Equation 6. C
1 2 ンピーダンス Bは、数 7によって示される。また、 fは高周波の周波数であり、一定であ る。したがって、インピーダンス Aは一定である。  1 2 Impedance B is given by Equation 7. F is a high frequency and is constant. Therefore, impedance A is constant.
[0132] 絶縁体スぺーサー 4Bを、より厚い絶縁体スぺーサー 4Baに変更すると、数 13にお いて dが大きくなることにつながり、 Cが小さくなる。したがって、数 7において、インピ [0132] If the insulator spacer 4B is changed to the thicker insulator spacer 4Ba, D leads to an increase and C decreases. Therefore, in equation 7,
2  2
一ダンス Bが増大する。ここで、インピーダンス Aは一定であるから、インピーダンス B を、インピーダンス Aを基準として相対的に高めることが可能となり、反応室 3Bの内部 空間 30Bでのプラズマの発生はそのままとして、ガスバリア薄膜を成膜することが可 能であり、且つ、排気室 5の内部空間 31でのプラズマの発生のみを抑制することがで きる。これにより、排気室や排気経路のプラズマのアタックによる損傷を少なくし、また 、原料ガス系のダストの発生量を低減することができる。  One dance B increases. Here, since impedance A is constant, impedance B can be relatively increased with reference to impedance A, and a gas barrier thin film is formed while maintaining the generation of plasma in the internal space 30B of the reaction chamber 3B. In addition, only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed. As a result, damage due to plasma attack in the exhaust chamber or exhaust path can be reduced, and the amount of dust in the source gas system can be reduced.
[0133] (第 4形態 (B)の製造装置)  [0133] (Manufacturing device of the fourth form (B))
図 7は本実施形態に係るガスバリア性プラスチック容器の製造装置の第 4形態(B) を示す概略構成図である。第 1形態 (B)の製造装置 100Bとの差異を説明する。第 4 形態(B)のガスバリア性プラスチック容器の製造装置 400Bは、反応室 3B (外部電極 )に自動整合器 50を介して高周波電源 51が接続される。ただし、第 1形態(B)の製 造装置 100Bのように低周波電源を接続し、高周波電力に低周波電力を重畳させる 仕組みを組み合わせても良い。  FIG. 7 is a schematic configuration diagram showing a fourth mode (B) of the gas barrier plastic container manufacturing apparatus according to the present embodiment. Differences from the manufacturing apparatus 100B of the first form (B) will be described. In the gas barrier plastic container manufacturing apparatus 400B of the fourth embodiment (B), a high frequency power source 51 is connected to a reaction chamber 3B (external electrode) via an automatic matching unit 50. However, a mechanism for connecting a low-frequency power source and superimposing the low-frequency power on the high-frequency power may be combined as in the manufacturing apparatus 100B of the first mode (B).
[0134] 第 4形態(B)のガスバリア性プラスチック容器の製造装置 400Bでは、インピーダン ス増加手段として、排気室 5と接地との接続の間に直列で接続された可変コンデンサ 70が設けられている。  [0134] In the gas barrier plastic container manufacturing apparatus 400B of the fourth embodiment (B), a variable capacitor 70 connected in series is provided between the connection of the exhaust chamber 5 and the ground as an impedance increasing means. .
[0135] 次に、可変コンデンサ 70によってその静電容量を変化させた際に、排気室 5の内 部空間 31におけるプラズマの発生が抑制される原理について説明する。図 7の製造 装置 400Bに対応する 2極放電型の回路は、図 8で示される。図 8は、第 4形態(B)の ガスバリア性プラスチック容器の製造装置に対応する 2極放電型の回路を示す。図 8 で示した回路の交流電源は、高周波電源 51に対応する。 Cは、プラスチック容器 8と  Next, the principle by which the generation of plasma in the inner space 31 of the exhaust chamber 5 is suppressed when the capacitance is changed by the variable capacitor 70 will be described. A bipolar discharge circuit corresponding to the manufacturing apparatus 400B of FIG. 7 is shown in FIG. FIG. 8 shows a bipolar discharge type circuit corresponding to the gas barrier plastic container manufacturing apparatus of the fourth embodiment (B). The AC power supply of the circuit shown in FIG. C with plastic container 8
1  1
反応室 3Bの内部空間 30Bとの合成静電容量を表している。 Cは、可変コンデンサ 7  It represents the combined capacitance with the internal space 30B of the reaction chamber 3B. C is a variable capacitor 7
3  Three
0の静電容量を示している。 C は、絶縁体スぺーサー 4Bの静電容量であり、 C  A capacitance of 0 is shown. C is the capacitance of insulator spacer 4B, C
2- 1 2- 2 は、排気室 5の静電容量を示している。 Cは、 C と C と Cの合成静電容量を示  2- 1 2- 2 indicates the capacitance of the exhaust chamber 5. C indicates the combined capacitance of C, C and C
2 2- 1 2- 2 3  2 2- 1 2- 2 3
している。 Z と Z は、図 2と同じく、各プラズマのインピーダンスを表していている。図  is doing. Z and Z represent the impedance of each plasma, as in Figure 2. Figure
pi 2  pi 2
8の回路において、 Z と Z のそれぞれの両側は、シースを表している。回路全体に  In the circuit of 8, each side of Z and Z represents a sheath. To the whole circuit
pi P2  pi P2
流れる電流を I、 C側に流れる電流を I、 C側に流れる電流を Iとすれば、 1 = 1 +1 の関係が成立している。ここで、 ^のインピーダンス Aは、数 6によって示される。ここ で、 fは高周波の周波数であり、一定である。したがって、インピーダンス Aは一定で ある。 1 = 1 +1 where I is the current that flows, I is the current that flows to the C side, and I is the current that flows to the C side The relationship is established. Here, the impedance A of ^ is expressed by Equation 6. Here, f is a high frequency and is constant. Therefore, impedance A is constant.
[0136] 可変コンデンサ 70の静電容量 Cを小さくすることで、インピーダンス Bが増大する。  [0136] Impedance B increases by reducing the capacitance C of variable capacitor 70.
3  Three
ここで、インピーダンス Aは一定であるから、インピーダンス Bを、インピーダンス Aを 基準として相対的に高めることが可能となる。これにより、反応室 3Bの内部空間 30B でのプラズマの発生はそのままとして、ガスバリア薄膜を成膜することが可能であり、 且つ、排気室 5の内部空間 31でのプラズマの発生のみを抑制することができる。これ により、排気室 5や排気経路のプラズマのアタックによる損傷を少なくし、また、原料ガ ス系のダストの発生量を低減することができる。  Here, since impedance A is constant, impedance B can be relatively increased with impedance A as a reference. Thereby, it is possible to form a gas barrier thin film while keeping the generation of plasma in the internal space 30B of the reaction chamber 3B as it is, and to suppress only the generation of plasma in the internal space 31 of the exhaust chamber 5. Can do. As a result, the damage caused by the attack of the plasma in the exhaust chamber 5 and the exhaust path can be reduced, and the generation amount of the raw material gas dust can be reduced.
[0137] 次に、本実施形態に係るガスバリア性プラスチック容器の製造方法を説明する。ま ず、図 4を参照して、第 1形態 (B)に係る製造方法について説明する。第 1形態 (B) に係る製造方法は、インピーダンス Bを高めるために、 C > Cとした上で、高周波電 [0137] Next, a method for manufacturing a gas barrier plastic container according to the present embodiment will be described. First, the manufacturing method according to the first embodiment (B) will be described with reference to FIG. In the manufacturing method according to the first mode (B), in order to increase the impedance B, C> C is set and a high-frequency
1 2  1 2
力に低周波電力を重畳させる。通常、あら力じめ c > cの関係が成り立つ装置を製  Superimpose low frequency power on the force. In general, make a device that satisfies the relationship c> c.
1 2  1 2
作しておく。以下、 DLC膜をガスバリア薄膜として成膜する場合を例に説明する。  Make it. Hereinafter, a case where the DLC film is formed as a gas barrier thin film will be described as an example.
[0138] (第 1形態 (B)の製造方法)  [0138] (Production method of the first form (B))
真空チャンバ 7B内は、真空バルブ 18を開いて大気開放されており、反応室 3Bの 下部外部電極 1が上部外部電極 2から取り外された状態となっている。上部外部電極 2の下側から上部外部電極 2内の空間にプラスチック容器 8を差し込み、反応室 3B の内部空間 30B内に設置する。この際、原料ガス供給管 9はプラスチック容器 8内に 挿入された状態になる。次に、下部外部電極 1を上部外部電極 2の下部に装着し、 反応室 3Bは 0—リング 10によって密閉される。  The inside of the vacuum chamber 7B is opened to the atmosphere by opening the vacuum valve 18, and the lower external electrode 1 of the reaction chamber 3B is removed from the upper external electrode 2. A plastic container 8 is inserted into the space in the upper external electrode 2 from the lower side of the upper external electrode 2 and installed in the internal space 30B of the reaction chamber 3B. At this time, the source gas supply pipe 9 is inserted into the plastic container 8. Next, the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the reaction chamber 3 B is sealed by the 0-ring 10.
[0139] 次に、プラスチック容器 8の内部を原料ガスに置換するとともに所定の成膜圧力に 調整する。すなわち、図 4に示すように、真空バルブ 18を閉じた後、真空バルブ 22を 開き、真空ポンプ 23を作動させ、反応室 3Bの内部ガスを、絶縁体スぺーサー 4Bに よって反応室 3Bと電気的に絶縁されている排気室 5を経由して排気する。これにより 、プラスチック容器 8内を含む真空チャンバ 7B内が配管 21を通して排気され、真空 チャンバ 7B内が真空となる。このときの真空チャンバ 7B内の圧力は、例えば 2. 6〜 66Paである。次に、真空バルブ 12を開き、原料ガス発生源 15においてアセチレン ガス等の炭化水素ガスを発生させ、この炭化水素ガスを配管 14内に導入し、マスフ ローコントローラー 13によって流量制御された炭化水素ガスを配管 11及びアース電 位の原料ガス供給管(内部電極) 9を通してガス吹き出し口 9aから吹き出させる。これ により、炭化水素ガスがプラスチック容器 8内に導入される。そして、真空チャンバ 7B 内とプラスチック容器 8内は、制御されたガス流量と排気能力のバランスによって、 D LC膜の成膜に適した圧力(例えば 6. 6〜665Pa程度)に保たれ、安定化させる。 [0139] Next, the inside of the plastic container 8 is replaced with a raw material gas and adjusted to a predetermined film forming pressure. That is, as shown in FIG. 4, after the vacuum valve 18 is closed, the vacuum valve 22 is opened, the vacuum pump 23 is operated, and the gas in the reaction chamber 3B is separated from the reaction chamber 3B by the insulator spacer 4B. Exhaust through the electrically insulated exhaust chamber 5. As a result, the inside of the vacuum chamber 7B including the inside of the plastic container 8 is exhausted through the pipe 21, and the inside of the vacuum chamber 7B becomes a vacuum. The pressure in the vacuum chamber 7B at this time is, for example, 2.6 to 66Pa. Next, the vacuum valve 12 is opened, a hydrocarbon gas such as acetylene gas is generated at the source gas generation source 15, this hydrocarbon gas is introduced into the pipe 14, and the hydrocarbon gas whose flow rate is controlled by the mass flow controller 13. Is blown out from the gas outlet 9a through the pipe 11 and the source gas supply pipe (internal electrode) 9 of the ground potential. As a result, hydrocarbon gas is introduced into the plastic container 8. The vacuum chamber 7B and the plastic container 8 are maintained at a pressure suitable for the formation of the DLC film (for example, about 6.6 to 665 Pa) by the balance between the controlled gas flow rate and the exhaust capacity. Let
[0140] 次に、プラスチック容器 8の内部に原料ガスを減圧された所定圧力下で吹き出させ ているときに、反応室 3Bに高周波電力(例えば、 13. 56MHz)を供給すると同時又 はほぼ同時に、低周波電力(例えば、 400kHz)を高周波電力に重畳させて供給す る。このとき低周波電力の出力を、高周波電力と低周波電力の合計出力の 20〜80 %とすることが好ましい。低周波電力の出力が 20%未満であると排気室 5でのプラズ マ発生を抑制する効果が少なくなり、一方 80%を超えると、成膜レートが遅くなる場 合がある。成膜時間内の範囲で、高周波電力と低周波電力の供給タイミングをずらし ても良い。このとき、フィルタユニット 25を接続しているため、高周波電源 29は低周波 の影響を受けず、また、低周波電源 270は高周波の影響を受けない。そして、高周 波電力及び低周波電力をエネルギー源として、プラスチック容器 8内の原料ガスがプ ラズマ化される。これによつて、プラスチック容器 8の内表面に DLC膜が成膜される。 すなわち反応室 3Bに高周波電力及び低周波電力が供給されることによって、反応 室 3Bと原料ガス供給管 9 (内部電極) 9と間でバイアス電圧が生ずると共にプラスチッ ク容器 8内の原料ガスがプラズマ化されて炭化水素系プラズマが発生し、 DLC膜が プラスチック容器 8の内表面に成膜される。このとき、自動整合器 260, 28は、出力供 給している電極全体からの反射波が最小になるように、インダクタンス キャパシタ ンス Cによってインピーダンスを合わせている。  [0140] Next, when high-frequency power (for example, 13.56 MHz) is supplied to the reaction chamber 3B when the raw material gas is blown out into the plastic container 8 under a predetermined reduced pressure, simultaneously or almost simultaneously. Suppose that low frequency power (eg 400 kHz) is superimposed on the high frequency power. At this time, the output of the low frequency power is preferably 20 to 80% of the total output of the high frequency power and the low frequency power. If the output of the low frequency power is less than 20%, the effect of suppressing the plasma generation in the exhaust chamber 5 is reduced, while if it exceeds 80%, the film formation rate may be slow. The supply timing of the high frequency power and the low frequency power may be shifted within the film formation time. At this time, since the filter unit 25 is connected, the high frequency power supply 29 is not affected by the low frequency, and the low frequency power supply 270 is not affected by the high frequency. Then, the raw material gas in the plastic container 8 is made into a plasma using high frequency power and low frequency power as energy sources. As a result, a DLC film is formed on the inner surface of the plastic container 8. That is, by supplying high frequency power and low frequency power to the reaction chamber 3B, a bias voltage is generated between the reaction chamber 3B and the source gas supply pipe 9 (internal electrode) 9, and the source gas in the plastic container 8 is plasma. Hydrocarbon plasma is generated and a DLC film is formed on the inner surface of the plastic container 8. At this time, the automatic matching devices 260 and 28 match the impedance by the inductance capacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
[0141] 図 4の製造装置 100Bにおいて、 C >Cの関係、好ましくは C > > Cの関係が成  [0141] In the manufacturing apparatus 100B of Fig. 4, the relationship of C> C, preferably the relationship of C>> C is established.
1 2 1 2  1 2 1 2
立させた状態で、高周波電力に低周波電力を重畳させることで、図 2及び数 6〜数 1 1で説明したように、プラスチック容器 8と反応室 3Bの内部空間 30Bとの合成静電容 量 Cのインピーダンス Aと絶縁体スぺーサー 4Bと排気室 5の内部空間 31との合成静 電容量 Cのインピーダンス Bのうち、インピーダンス Bを、インピーダンス Aを基準としIn the standing state, the low frequency power is superimposed on the high frequency power, so that the combined capacitance of the plastic container 8 and the internal space 30B of the reaction chamber 3B as explained in Fig. 2 and Equations 6 to 11 Impedance C of C, insulator spacer 4B, and the inner space 31 of the exhaust chamber 5 Of impedance B of capacitance C, impedance B is based on impedance A.
2 2
て相対的に高めた状態でガスバリア薄膜の成膜がなされる。その結果、排気室 5、さ らにはその後の真空ポンプ 23に至る排気経路でのプラズマの発生を抑制される。こ れにより、排気室 5や排気経路のプラズマのアタックによる損傷が少なぐまた、原料 ガス系のダストの発生量が低減することができる。  The gas barrier thin film is formed in a relatively high state. As a result, the generation of plasma in the exhaust chamber 5 and the subsequent exhaust path to the vacuum pump 23 is suppressed. As a result, the damage caused by the attack of the plasma in the exhaust chamber 5 and the exhaust path is small, and the generation amount of the raw material gas dust can be reduced.
[0142] また、高周波電力に低周波電力を重畳させることで、次のような副次的効果が得ら れる。低周波電力のみを供給すると、高周波電力のみを供給した場合と比較して、成 膜速度が低下する。しかし、第 1形態(B)の製造方法では、従来の 13. 56MHz単独 での放電と比較して 400kHzの低周波を重畳し、且つ、トータルでの電力が等しい場 合、成膜速度が同等であるか若しくは上昇する。また、容器の主軸方向に沿った膜 厚分布が均一化される。  [0142] Further, the following secondary effects can be obtained by superimposing low-frequency power on high-frequency power. When only low-frequency power is supplied, the deposition rate is reduced compared to when only high-frequency power is supplied. However, in the manufacturing method of the first mode (B), the deposition rate is equivalent when the low frequency of 400 kHz is superimposed and the total power is equal compared to the conventional discharge of 13.56 MHz alone. Or rise. In addition, the film thickness distribution along the main axis direction of the container is made uniform.
[0143] プラズマ中のイオンがその高周波電界に追従できる境界はイオンプラズマ周波数 によって評価できる。イオンプラズマ周波数は、プラズマ密度によって決まり、図 4に 示す場合のように、 2極放電の容量結合プラズマの場合、その周波数はおよそ:!〜 3 MHzと計算される。したがって 13. 56MHzの高周波放電では、イオンは高周波電 界には追従できない。一方、 400kHzの低周波放電には追従できる。特許文献 1で 示された装置のように 13. 56MHz単独放電では、イオンはボトル表面にセルフバイ ァスによって加速され入射する。しかし、第 1形態(B)の製造方法では、 400kHzの 重畳に伴い、イオンはその高周波電界 (Vpp)によっても加速され得るようになる。そ の結果、プラスチック容器 8の内表面へ従来よりも高エネルギーを持ったイオンが入 射すると考えられる。また、排気室 5の内部空間 31でのプラズマの発生が抑制される に伴って、その分、反応室 3Bの内部空間 30Bでのプラズマの発生にエネルギーの 消費がまわされるとともに、プラズマの発生する中心箇所がプラスチック容器 8の肩部 力 口部に至る部分であったところ、プラスチック容器 8の中心である胴部に移る。し たがって、容器の主軸方向に沿った膜厚分布が均一化され、また、成膜速度が向上 若しくは同等となる。  [0143] The boundary at which ions in the plasma can follow the high-frequency electric field can be evaluated by the ion plasma frequency. The ion plasma frequency is determined by the plasma density. As shown in Fig. 4, in the case of capacitively coupled plasma with bipolar discharge, the frequency is calculated to be approximately:! ~ 3 MHz. Therefore, with a high frequency discharge of 13.56 MHz, ions cannot follow the high frequency field. On the other hand, it can follow a 400kHz low frequency discharge. As in the device described in Patent Document 1, in 13.56MHz single discharge, ions are accelerated and incident on the bottle surface by self-bias. However, in the manufacturing method of the first form (B), ions can be accelerated by the high-frequency electric field (Vpp) with the superposition of 400 kHz. As a result, it is considered that ions having higher energy than before are incident on the inner surface of the plastic container 8. In addition, as the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed, energy is consumed for the generation of plasma in the internal space 30B of the reaction chamber 3B, and plasma is generated. When the central part is the part that reaches the shoulder mouth of the plastic container 8, it moves to the trunk that is the center of the plastic container 8. Therefore, the film thickness distribution along the main axis direction of the container is made uniform, and the film forming speed is improved or equivalent.
[0144] 膜厚分布が均一化されることによって、プラスチック容器 8の口部の内壁面での DL C膜の膜厚が従来と比較して薄くなるため、 口部の内壁面に DLC膜に由来する着色 が低減され、意匠性の向上がもたらされる。 [0144] Since the film thickness distribution of the DLC film on the inner wall surface of the mouth of the plastic container 8 becomes thinner compared to the conventional case by making the film thickness distribution uniform, the DLC film is formed on the inner wall surface of the mouth. Origin of coloring Is reduced, and the design is improved.
[0145] 次に、高周波電源 29の高周波電力の出力及び低周波電源 270の低周波電力の 出力を共に停止し、プラズマを消滅させて DLC膜の成膜を終了させる。ほぼ同時に 真空バルブ 12を閉じて原料ガスの供給を停止する。  Next, both the output of the high frequency power from the high frequency power supply 29 and the output of the low frequency power from the low frequency power supply 270 are stopped, the plasma is extinguished, and the film formation of the DLC film is completed. Almost at the same time, the vacuum valve 12 is closed to stop supplying the raw material gas.
[0146] 次に、真空チャンバ 7B内及びプラスチック容器 8内に残存した炭化水素ガスを除く ために真空ポンプ 23によって排気する。その後、真空バルブ 22を閉じ、排気を終了 させる。このときの真空チャンバ 7B内の圧力は 6.6〜665Paである。この後、真空バ ルブ 18を開く。これにより、真空チャンバ 7Bが大気開放される。  [0146] Next, the vacuum pump 23 exhausts the hydrocarbon gas remaining in the vacuum chamber 7B and the plastic container 8. After that, the vacuum valve 22 is closed and the exhaust is finished. The pressure in the vacuum chamber 7B at this time is 6.6 to 665 Pa. After this, the vacuum valve 18 is opened. Thereby, the vacuum chamber 7B is opened to the atmosphere.
[0147] (第 2形態 (B)の製造方法)  [0147] (Manufacturing method of the second form (B))
図 5を参照して、第 2形態 (B)に係る製造方法について説明する。第 2形態 (B)に 係る製造方法は、インピーダンス Bを高めるために、排気室 5の容積を増加させる。以 下、第 1形態 (B)に係る製造方法との差異点を中心に説明する。  A manufacturing method according to the second embodiment (B) will be described with reference to FIG. In the manufacturing method according to the second mode (B), the volume of the exhaust chamber 5 is increased in order to increase the impedance B. Hereinafter, the difference from the manufacturing method according to the first embodiment (B) will be mainly described.
[0148] プラスチック容器 8を反応室 3B内に収容して、 DLC膜の成膜に適した圧力に調整 するまでの工程は、第 1形態(B)に係る製造方法の場合と同じである。  [0148] The process until the plastic container 8 is accommodated in the reaction chamber 3B and adjusted to a pressure suitable for the formation of the DLC film is the same as in the manufacturing method according to the first embodiment (B).
[0149] 次に、プラスチック容器 8の内部に原料ガスを減圧された所定圧力下で吹き出させ ているときに、副室 52の可動式仕切り 53を動力 て、 Vの体積を増加させることで、 排気室 5の容積を増加させる。好ましくは排気室 5の容積が 2. 5〜: 10倍の容積となる ように可動式仕切り 53の位置を変更する。排気室 5の容積が 2· 5倍未満とすると効 果が小さい場合があり、 10倍を超えるときには副室 52が大型化しすぎる。また、反応 室 3Bの内部空間 30Bの容積に対して、排気室 5の内部空間 31の Vを含む容積が、  [0149] Next, when the source gas is blown into the plastic container 8 under a predetermined reduced pressure, the movable partition 53 of the sub chamber 52 is powered to increase the volume of V. Increase the volume of the exhaust chamber 5. Preferably, the position of the movable partition 53 is changed so that the volume of the exhaust chamber 5 is 2.5 to 10 times the volume. If the volume of the exhaust chamber 5 is less than 2.5 times, the effect may be small, and if it exceeds 10 times, the sub chamber 52 will be too large. Further, the volume including V in the internal space 31 of the exhaust chamber 5 with respect to the volume of the internal space 30B in the reaction chamber 3B is
1  1
5倍以上となるように排気室 5の容積を増加させることが好ましい。その後、反応室 3B に高周波電力(例えば、 13. 56MHz)を供給する。可動式仕切り 53を動かすタイミ ングは、高周波電力の供給前であればいつでも良い。排気室 5の容積を増大させる 指針としては、次の通りである。プラスチック容器 8として例えば容量の小さな 0. 3リツ トル容量の容器に成膜を行なう場合には、反応室 3Bの内部空間 30Bが小さぐ反応 室 3Bは小さな金属部材で形成することが可能となる。その結果、 Cが小さくなる。す  It is preferable to increase the volume of the exhaust chamber 5 to be 5 times or more. Thereafter, high-frequency power (for example, 13.56 MHz) is supplied to the reaction chamber 3B. The timing for moving the movable partition 53 may be any time before supplying high-frequency power. Guidelines for increasing the volume of the exhaust chamber 5 are as follows. For example, when film formation is performed on a container having a small capacity of 0.3 L as the plastic container 8, the reaction chamber 3B in which the internal space 30B of the reaction chamber 3B is small can be formed of a small metal member. . As a result, C becomes smaller. You
1  1
なわち、インピーダンス Aが大きくなる。そこで、 Vを大きくして排気室 5の容積を増加  In other words, impedance A increases. Therefore, increase V to increase the volume of exhaust chamber 5.
1  1
させることで Cを小さくして、インピーダンス Bを増大させる。これにより、排気室 5での プラズマの発生を抑制することができる。第 2形態 (B)に係る製造方法においては、 高周波電力をエネルギー源として、プラスチック容器 8内の原料ガスがプラズマ化さ れる。これによつて、反応室 3Bと原料ガス供給管 9 (内部電極)との間でバイアス電圧 が生ずると共にプラスチック容器 8内の原料ガスがプラズマ化されて炭化水素系ブラ ズマが発生し、 DLC膜がプラスチック容器 8の内表面に成膜される。このとき、自動 整合器 50は、出力供給している電極全体からの反射波が最小になるように、インダク タンス キャパシタンス Cによってインピーダンスを合わせている。このときの成膜時 間は数秒程度と短レ、ものとなる。 To reduce C and increase impedance B. As a result, the exhaust chamber 5 Generation of plasma can be suppressed. In the manufacturing method according to the second mode (B), the raw material gas in the plastic container 8 is turned into plasma using high frequency power as an energy source. As a result, a bias voltage is generated between the reaction chamber 3B and the raw material gas supply pipe 9 (internal electrode), and the raw material gas in the plastic container 8 is turned into plasma to generate hydrocarbon-based plasma. Is deposited on the inner surface of the plastic container 8. At this time, the automatic matching unit 50 matches the impedance by the inductance capacitance C so that the reflected wave from the entire electrode supplying the output is minimized. The film formation time at this time is as short as several seconds.
[0150] 図 5の製造装置 200Bにおいて、排気室 5の容積を増大させることで、インピーダン ス Bを、インピーダンス Aを基準として相対的に高めた状態でガスバリア薄膜の成膜 カ¾される。その結果、排気室 5、さらにはその後の真空ポンプ 23に至る排気経路で のプラズマの発生を抑制される。これにより、排気室 5や排気経路のプラズマのァタツ クによる損傷が少なぐまた、原料ガス系のダストの発生量が低減することができる。ま た、排気室 5の内部空間 31でのプラズマの発生が抑制されるに伴って、その分、反 応室 3Bの内部空間 30Bでのプラズマの発生にエネルギーの消費がまわされるととも に、プラズマの発生する中心箇所がプラスチック容器 8の肩部から口部に至る部分で あつたところ、プラスチック容器 8の中心である胴部に移る。したがって、容器の主軸 方向に沿った膜厚分布が均一化される。膜厚分布が均一化されることによって、 口部 の内壁面に DLC膜に由来する着色が低減され、意匠性の向上がもたらされる。  In the manufacturing apparatus 200B of FIG. 5, by increasing the volume of the exhaust chamber 5, the gas barrier thin film can be formed in a state where the impedance B is relatively increased with the impedance A as a reference. As a result, the generation of plasma in the exhaust path leading to the exhaust chamber 5 and then to the vacuum pump 23 is suppressed. As a result, the damage due to the plasma attack in the exhaust chamber 5 and the exhaust path is reduced, and the generation amount of the raw material gas dust can be reduced. In addition, as the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed, energy consumption is diverted to the generation of plasma in the internal space 30B of the reaction chamber 3B. When the center where the plasma is generated is the part from the shoulder to the mouth of the plastic container 8, it moves to the trunk which is the center of the plastic container 8. Therefore, the film thickness distribution along the main axis direction of the container is made uniform. By making the film thickness distribution uniform, the color derived from the DLC film on the inner wall surface of the mouth is reduced, and the design is improved.
[0151] 次に、高周波電源 51の高周波電力の出力を停止する。その後の容器取出しまで の工程は第 1形態(B)の製造方法の場合と同じである。  Next, the output of the high frequency power from the high frequency power supply 51 is stopped. The subsequent steps up to the removal of the container are the same as in the manufacturing method of the first form (B).
[0152] (第 3形態 (B)の製造方法)  [0152] (Manufacturing method of the third form (B))
図 6を参照して、第 3形態 (B)に係る製造方法について説明する。第 3形態 (B)に 係る製造方法は、インピーダンス Bを高めるために、絶縁体スぺーサー 4Bをより厚い 絶縁体スぺーサー 4Baへ変更する。以下、第 1形態(B)に係る製造方法との差異点 を中心に説明する。  A manufacturing method according to the third embodiment (B) will be described with reference to FIG. In the manufacturing method according to the third mode (B), in order to increase the impedance B, the insulator spacer 4B is changed to a thicker insulator spacer 4Ba. Hereinafter, the difference from the manufacturing method according to the first embodiment (B) will be mainly described.
[0153] プラスチック容器 8の反応室 3B内への収容し、 DLC膜の成膜に適した圧力に調整 するまでの工程は、第 1形態(B)に係る製造方法の場合と同じである。 [0154] 次に、プラスチック容器 8の内部に原料ガスを減圧された所定圧力下で吹き出させ ているときに、絶縁体スぺーサー 4Bをより厚い絶縁体スぺーサー 4Baへ変更する。 好ましくは 3〜6倍の厚みを持った絶縁体スぺーサー 4Baへ変更する。厚さが 3倍未 満のものに変更すると効果が小さい場合があり、厚さが 6倍を超えるものに変更すると 、装置が長手方向に拡大し大型化する。その後、反応室 3Bに高周波電力(例えば、 13. 56MHz)を供給する。絶縁体スぺーサー 4Baに変更するタイミングは、高周波 電力の供給前であればいつでも良レ、。ここで、絶縁体スぺーサー 4Bを厚くする指針 としては、次の通りである。プラスチック容器 8として例えば容量の小さな 0. 3リットル 容量の容器に成膜を行なう場合には、反応室 3Bの内部空間 30Bが小さぐ反応室 3 Bは小さな金属部材で形成することが可能となる。その結果、 Cが小さくなる。すなわ [0153] The process until the plastic container 8 is accommodated in the reaction chamber 3B and adjusted to a pressure suitable for the formation of the DLC film is the same as that in the manufacturing method according to the first embodiment (B). [0154] Next, when the source gas is blown into the plastic container 8 under a predetermined reduced pressure, the insulator spacer 4B is changed to a thicker insulator spacer 4Ba. Preferably, the insulator spacer is changed to 4Ba having a thickness of 3 to 6 times. If the thickness is changed to less than 3 times, the effect may be small. If the thickness is changed to more than 6 times, the device will expand in the longitudinal direction and become larger. Thereafter, high-frequency power (for example, 13.56 MHz) is supplied to the reaction chamber 3B. Insulator spacers 4Ba can be changed anytime before high-frequency power is supplied. Here, the guidelines for thickening the insulator spacer 4B are as follows. For example, when a film is formed in a small container having a capacity of 0.3 liter as the plastic container 8, the reaction chamber 3B in which the internal space 30B of the reaction chamber 3B is small can be formed of a small metal member. . As a result, C becomes smaller. Snow
1  1
ち、インピーダンス Aが大きくなる。そこで、絶縁体スぺーサー 4Bを厚くすることで C  That is, impedance A increases. Therefore, by increasing the thickness of insulator spacer 4B, C
2 を小さくして、インピーダンス Bを増大させる。これにより、排気室 5でのプラズマの発 生を抑制することができる。第 3形態(B)に係る製造方法においても、第 2形態(B)に 係る製造方法と同様に、高周波電力をエネルギー源として、 DLC膜がプラスチック容 器 8の内表面に成膜される。  Decrease 2 and increase impedance B. Thereby, generation of plasma in the exhaust chamber 5 can be suppressed. Also in the manufacturing method according to the third mode (B), a DLC film is formed on the inner surface of the plastic container 8 using high-frequency power as an energy source, as in the manufacturing method according to the second mode (B).
[0155] 図 6の製造装置 300Bにおいて、より厚い絶縁体スぺーサー 4Baに変更することで 、インピーダンス Bを、インピーダンス Aを基準として相対的に高めた状態でガスバリ ァ薄膜の成膜がなされる。その結果、第 2形態 (B)に係る製造方法と同様に、排気室 5及び排気経路のプラズマのアタックによる損傷の抑制、原料ガス系のダストの発生 量の低減、容器の主軸方向に沿った膜厚分布の均一化、及び口部の内壁面の DL C膜に由来する着色の低減が実現できる。  [0155] In the manufacturing apparatus 300B of Fig. 6, by changing to the thicker insulator spacer 4Ba, the gas barrier thin film is formed in a state where the impedance B is relatively increased with the impedance A as a reference. . As a result, similarly to the manufacturing method according to the second mode (B), the damage due to the attack of the plasma in the exhaust chamber 5 and the exhaust path is suppressed, the amount of dust generated in the source gas system is reduced, and the main axis direction of the container is aligned. Uniform film thickness distribution and reduction of coloring derived from the DL C film on the inner wall of the mouth can be realized.
[0156] 次に、高周波電源 51の高周波電力の出力を停止する。その後の容器取出しまで の工程は第 1形態(B)の製造方法の場合と同じである。  Next, the output of the high frequency power from the high frequency power supply 51 is stopped. The subsequent steps up to the removal of the container are the same as in the manufacturing method of the first form (B).
[0157] (第 4形態 (B)の製造方法)  [0157] (Manufacturing method of the fourth form (B))
図 7を参照して、第 4形態 (B)に係る製造方法について説明する。第 4形態 (B)に 係る製造方法は、インピーダンス Bを高めるために、排気室 5と接地との接続の間に 直列で静電容量 Cの可変コンデンサ 70を接続し、合成静電容量 C (ただし、可変コ  A manufacturing method according to the fourth embodiment (B) will be described with reference to FIG. In the manufacturing method according to the fourth mode (B), in order to increase the impedance B, a variable capacitor 70 having a capacitance C is connected in series between the connection between the exhaust chamber 5 and the ground, and the combined capacitance C ( However, variable
3 2  3 2
ンデンサの静電容量 Cをカ卩えたもの)を小さくすることにより、インピーダンス Bを高め る。以下、第 1形態 (B)に係る製造方法との差異点を中心に説明する。 Impedance B is increased by reducing the capacitance (capacitance C of the capacitor). The Hereinafter, the difference from the manufacturing method according to the first embodiment (B) will be mainly described.
[0158] プラスチック容器 8の反応室 3B内への収容し、 DLC膜の成膜に適した圧力に調整 するまでの工程は、第 1形態(B)に係る製造方法の場合と同じである。 [0158] The process until the plastic container 8 is accommodated in the reaction chamber 3B and adjusted to a pressure suitable for forming the DLC film is the same as in the manufacturing method according to the first embodiment (B).
[0159] 次に、プラスチック容器 8の内部に原料ガスを減圧された所定圧力下で吹き出させ[0159] Next, the source gas is blown out into the plastic container 8 under a predetermined reduced pressure.
、その後、反応室 3Bに高周波電力(例えば、 13. 56MHz)を供給する。このとき、可 変コンデンサ 70の静電容量 Cを小さくするように調整する。可変コンデンサ 70の容 Thereafter, high frequency power (for example, 13.56 MHz) is supplied to the reaction chamber 3B. At this time, the capacitance C of the variable capacitor 70 is adjusted to be small. Variable capacitor 70
3  Three
量の調整の指針は次の通りである。プラスチック容器 8として例えば容量の小さな 0. 3リットル容量の容器に成膜を行なう場合には、反応室 3Bの内部空間 30Bが小さぐ 反応室 3Bは小さな金属部材で形成することが可能となる。その結果、 Cが小さくなる  The guidelines for adjusting the amount are as follows. For example, when film formation is performed in a small container having a capacity of 0.3 liter as the plastic container 8, the internal space 30B of the reaction chamber 3B is small. The reaction chamber 3B can be formed of a small metal member. As a result, C becomes smaller
1  1
。すなわち、インピーダンス Aが大きくなる。そこで、可変コンデンサ 70の静電容量 C  . That is, the impedance A increases. Therefore, the capacitance C of the variable capacitor 70
3 を小さくするように調整することで Cを小さくして、インピーダンス Bを増大させる。これ  Adjust C to decrease 3 to decrease C and increase impedance B. this
2  2
により、排気室 5でのプラズマの発生を抑制することができる。可変コンデンサ 70の最 適容量は、対象とするプラスチック容器 8の容量によっても変わる力 例えば 5〜: 100 pF、好ましくは、 10〜80pFである。可変コンデンサ 70の容量の調整のタイミングは、 高周波電力の供給前、供給途中のいつでも良い。第 4形態 (B)に係る製造方法にお いては、第 2形態 (B)に係る製造方法と同様に、高周波電力をエネルギー源として、 DLC膜がプラスチック容器 8の内表面に成膜される。  Thus, the generation of plasma in the exhaust chamber 5 can be suppressed. The optimum capacity of the variable capacitor 70 is a force that varies depending on the capacity of the target plastic container 8, for example, 5 to: 100 pF, preferably 10 to 80 pF. The timing of adjusting the capacity of the variable capacitor 70 can be any time before or during the supply of high-frequency power. In the manufacturing method according to the fourth mode (B), a DLC film is formed on the inner surface of the plastic container 8 using high-frequency power as an energy source, as in the manufacturing method according to the second mode (B). .
[0160] 図 7の製造装置 400Bにおいて、インピーダンス Bを高めるために、可変コンデンサ 70の静電容量 Cを小さくするように調整することで、インピーダンス Bを、インピーダ [0160] In the manufacturing apparatus 400B of Fig. 7, in order to increase the impedance B, the impedance B can be reduced by adjusting the capacitance C of the variable capacitor 70 to be small.
3  Three
ンス Aを基準として相対的に高めた状態でガスバリア薄膜の成膜がなされる。その結 果、第 2形態(B)に係る製造方法と同様に、排気室 5及び排気経路のプラズマのァタ ックによる損傷の抑制、原料ガス系のダストの発生量の低減、容器の主軸方向に沿つ た膜厚分布の均一化、及び口部の内壁面の DLC膜に由来する着色の低減が実現 できる。  The gas barrier thin film is formed in a relatively high state with respect to the flow rate A. As a result, as in the manufacturing method according to the second mode (B), the damage due to the plasma attack in the exhaust chamber 5 and the exhaust path is suppressed, the amount of dust generated in the source gas system is reduced, the main shaft of the container Uniform film thickness distribution along the direction and reduction of coloring derived from the DLC film on the inner wall of the mouth.
[0161] 次に、高周波電源 51の高周波電力の出力を停止する。その後の容器取出しまで の工程は第 1形態(B)の製造方法の場合と同じである。  Next, the output of the high frequency power from the high frequency power supply 51 is stopped. The subsequent steps up to the removal of the container are the same as in the manufacturing method of the first form (B).
[0162] 第 1〜第 4形態(B)に係る製造方法においては、いずれも成膜時間は数秒程度と 短いものとなる。 DLC膜の膜厚は 0. 003〜5 x mとなるように形成する。 [0163] (実施形態 C) [0162] In each of the manufacturing methods according to the first to fourth embodiments (B), the film formation time is as short as several seconds. The DLC film is formed to a thickness of 0.003 to 5 xm. [0163] (Embodiment C)
図 2、図 10〜図 16を参照しながら本実施形態を説明する。なお、共通の部位'部 品には同一符号を付した。まず、本実施形態に係るプラズマ CVD成膜装置につい て説明する。  The present embodiment will be described with reference to FIGS. 2 and 10 to 16. In addition, the same code | symbol was attached | subjected to common site | part parts. First, the plasma CVD film forming apparatus according to this embodiment will be described.
[0164] 図 10は本実施形態に係るプラズマ CVD成膜装置の第 1形態(C)を示す概略構成 図である。図 11は、図 10の詳細を説明するための図であって、(a)は A-A断面図、( b)はスパーク発生部 40の部分拡大概略図、を示す。第 1形態(C)のプラズマ CVD 成膜装置 100Cに示すごとぐ本実施形態に係るプラズマ CVD成膜装置は、プラス チック容器 8を収容する反応室 3Cと、排気室 5と、反応室 3Cと排気室 5に挟まれて各 々を電気的に絶縁させるとともに反応室 3Cと排気室 5とを連通させる開口部 32を設 けた絶縁体スぺーサー 4Cと、排気室 5に接続され、開口部 32と排気室 5を経由して 反応室 3Cの内部ガスを排気する真空ポンプ 23と、プラスチック容器 8の内部に配置 された原料ガス供給管 9と、反応室 3Cに周波数 100kHz〜3MHzの低周波電力を 供給する低周波電力供給手段 350と、プラスチック容器 8の内部に配置されたスパー ク発生部 40を有するプラズマ着火手段と、を備え、プラスチック容器 8と反応室 3Cの 内部空間 30Cとの合成静電容量を Cとし、絶縁体スぺーサー 4Cと排気室 5の内部  FIG. 10 is a schematic configuration diagram showing a first mode (C) of the plasma CVD film forming apparatus according to the present embodiment. FIGS. 11A and 11B are diagrams for explaining the details of FIG. 10, where FIG. 11A is a cross-sectional view taken along the line AA, and FIG. As shown in the plasma CVD film forming apparatus 100C of the first embodiment (C), the plasma CVD film forming apparatus according to this embodiment includes a reaction chamber 3C that accommodates a plastic container 8, an exhaust chamber 5, and a reaction chamber 3C. An insulating spacer 4C provided with an opening 32 for electrically insulating each of the reaction chamber 3C and the exhaust chamber 5 between the exhaust chamber 5 and the exhaust chamber 5 connected to the exhaust chamber 5. The vacuum pump 23 that exhausts the gas inside the reaction chamber 3C via the 32 and the exhaust chamber 5, the source gas supply pipe 9 arranged inside the plastic container 8, and the low frequency of 100 kHz to 3 MHz in the reaction chamber 3C A low-frequency power supply means 350 for supplying electric power and a plasma ignition means having a spark generating part 40 disposed inside the plastic container 8, and a combination of the plastic container 8 and the internal space 30C of the reaction chamber 3C. Capacitance C, insulator spacer 4C and exhaust chamber 5, inside
1  1
空間 31との合成静電容量を Cとしたとき、 C >Cの関係が成立する。  When the combined capacitance with space 31 is C, the relationship C> C is established.
2 1 2  2 1 2
[0165] 本実施形態では、スパーク発生部 40を有するプラズマ着火手段として、いくつかの 形態が示される。第 1形態(C)であるプラズマ CVD成膜装置 100Cでは、スパーク発 生部 40を有するプラズマ着火手段は、高圧直流電源 290による直流放電方式であ る。  [0165] In the present embodiment, several forms are shown as the plasma ignition means having the spark generator 40. In the plasma CVD film forming apparatus 100C, which is the first form (C), the plasma ignition means having the spark generating unit 40 is a DC discharge system using a high-voltage DC power supply 290.
[0166] 本発明では、スパーク発生部 40を有するプラズマ着火手段の違いによって、プラズ マ CVD成膜装置として複数の形態が存在するが、スパーク発生部 40を有するブラ ズマ着火手段以外は共通の構成を有するため、まず共通の構成を説明した後、第 1 形態(C)におけるインピーダンス増加手段を説明することとする。  [0166] In the present invention, there are a plurality of forms as a plasma CVD film forming apparatus due to the difference in the plasma ignition means having the spark generation part 40, but the configuration other than the plasma ignition means having the spark generation part 40 is common. First, after explaining the common configuration, the impedance increasing means in the first mode (C) will be explained.
[0167] 反応室 3Cは、金属等の導電材で中空に形成されており、コーティング対象のブラ スチック容器 8、例えばポリエチレンテレフタレート樹脂製の容器である PETボトノレを 収容する内部空間 30Cを有する。内部空間 30Cの内壁は、プラスチック容器 8の外 壁面にほぼ接する形状に形成されている。反応室 3Cは、プラスチック容器 8を取り囲 むこととなるため、外部電極の役割を為す。また、反応室 3Cは、上部外部電極 2と下 部外部電極 1からなり、上部外部電極 2の下部に下部外部電極 1の上部が〇 リング 10を介して着脱自在に取り付けられるよう構成されている。上部外部電極 2から下部 外部電極 1を脱着することでプラスチック容器 8を装着することができる。反応室 3Cは 、絶縁体スぺーサー 4Cと反応室 3Cとの間に配置された 0 リング 37並びに上部外 部電極 2と下部外部電極 1の間に配置された 0_リング 10によって外部力も密閉され ている。 [0167] The reaction chamber 3C is formed hollow with a conductive material such as metal, and has an internal space 30C for accommodating a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin. The inner wall of the internal space 30C is outside the plastic container 8. It is formed in a shape that substantially contacts the wall surface. Since the reaction chamber 3C surrounds the plastic container 8, it acts as an external electrode. The reaction chamber 3C includes an upper external electrode 2 and a lower external electrode 1, and is configured such that the upper portion of the lower external electrode 1 is detachably attached to the lower portion of the upper external electrode 2 via a ring 10. . The plastic container 8 can be mounted by detaching the lower external electrode 1 from the upper external electrode 2. Reaction chamber 3C is sealed with external force by 0 ring 37 placed between insulator spacer 4C and reaction chamber 3C, and 0_ring 10 placed between upper outer electrode 2 and lower outer electrode 1. It has been.
[0168] 絶縁体スぺーサー 4Cは、反応室 3Cと排気室 5との間に配置され、プラスチック容 器 8の口部の上方の位置に相当する箇所に開口部 32aが形成されてレ、る。開口部 3 2aは、反応室 3Cと排気室 5とを空気的に連通する。絶縁体スぺーサー 4Cは、ガラス やセラミックス等の無機材料、或いは耐熱性樹脂で形成されることが好ましい。好まし くは、ポリ四フッ化工チレン、四フッ化工チレン'バーフルォロアルキルビエルエーテ ノレ共重合体、四フッ化工チレン'へキサフルォロプロピレン共重合体、ポリフエ二レン オキサイド、ポリイミド、ポリエーテルサルホン、ポリエーテルイミド、ポリフエ二レンサル ファイド又はポリエーテルエーテルケトンである。  [0168] The insulator spacer 4C is disposed between the reaction chamber 3C and the exhaust chamber 5, and an opening 32a is formed at a position corresponding to the position above the mouth of the plastic container 8, The The opening 32a connects the reaction chamber 3C and the exhaust chamber 5 in air. The insulator spacer 4C is preferably formed of an inorganic material such as glass or ceramics or a heat resistant resin. Preferably, polytetrafluoroethylene, tetrafluoroethylene “verfluoroalkylbierethenole copolymer”, tetrafluoroethylene “hexafluoropropylene copolymer”, polyphenylene oxide, polyimide, Polyethersulfone, polyetherimide, polyphenylene sulfide or polyetheretherketone.
[0169] 排気室 5は、金属等の導電材で中空に形成されており、内部空間 31を有する。排 気室 5は、絶縁体スぺーサー 4Cの上に配置されている。このとき、排気室 5と絶縁体 スぺーサー 4Cとの間は〇一リング 38によってシールされている。そして、内部空間 3 1と内部空間 30Cとを空気的に連通させるために、開口部 32aに対応してほぼ同形 状の開口部 32bが排気室 5の下部に設けられている。排気室 5は、配管 21、圧力ゲ ージ 20、真空バルブ 22等からなる排気経路を介して真空ポンプ 23に接続されてお り、その内部空間 31が排気される。  The exhaust chamber 5 is formed hollow with a conductive material such as metal, and has an internal space 31. The exhaust chamber 5 is disposed on the insulator spacer 4C. At this time, the space between the exhaust chamber 5 and the insulator spacer 4C is sealed by the O-ring 38. In order to make the internal space 31 and the internal space 30C communicate with each other in air, an opening 32b having substantially the same shape is provided in the lower portion of the exhaust chamber 5 in correspondence with the opening 32a. The exhaust chamber 5 is connected to a vacuum pump 23 through an exhaust path including a pipe 21, a pressure gauge 20, a vacuum valve 22, and the like, and the internal space 31 is exhausted.
[0170] 絶縁体スぺーサー 4Cの上に排気室 5が配置されることによって蓋 6を形成して、反 応室 3Cを密封し、密閉可能な真空チャンバ 7Cが組み上がることとなる。このとき、真 空チャンバ 7Cには、反応室 3Cの内部空間 30Cと排気室 5の内部空間 31の 2つの部 屋があり、それらは開口部 32a, 32bを通してつながつている。  [0170] By disposing the exhaust chamber 5 on the insulator spacer 4C, the lid 6 is formed, the reaction chamber 3C is sealed, and the sealable vacuum chamber 7C is assembled. At this time, the vacuum chamber 7C has two parts, an internal space 30C of the reaction chamber 3C and an internal space 31 of the exhaust chamber 5, which are connected through the openings 32a and 32b.
[0171] 本発明に係る容器とは、実施形態 Aの場合と同じである。 [0172] 本発明のプラスチック容器 8を成形する際に使用する樹脂は、実施形態 Aの場合と 同じである。 [0171] The container according to the present invention is the same as in the case of Embodiment A. [0172] The resin used in molding the plastic container 8 of the present invention is the same as that in the embodiment A.
[0173] 原料ガス供給管 9は、その内部にガス流路が設けられており、この中を原料ガスが 通過する。原料ガス供給管 9の先端にはガス吹き出し口 9a、すなわちガス流路の開 口部が設けられている。原料ガス供給管 9の一端は、排気室 5の内部空間 31の壁で 固定され、真空チャンバ 7C内に配置されている。反応室 3C内にプラスチック容器 8 がセットされたとき、原料ガス供給管 9は、反応室 3C内に配置され且つプラスチック 容器 8の口部からその内部に配置される。すなわち、排気室 5の内壁上部を基端とし て、内部空間 31、開口部 32a、 32bを通して、反応室 3Cの内部空間 30Cまで原料ガ ス供給管 9が差し込まれる。原料ガス供給管 9の先端はプラスチック容器 8の内部に 配置される。原料ガス供給管 9は、それ自身が電極となる力、、或いは別部品の電極を 保持するが、この点については後述する。  [0173] The raw material gas supply pipe 9 is provided with a gas flow path therein, through which the raw material gas passes. A gas outlet 9a, that is, an opening of a gas flow path is provided at the tip of the source gas supply pipe 9. One end of the source gas supply pipe 9 is fixed by the wall of the internal space 31 of the exhaust chamber 5 and is disposed in the vacuum chamber 7C. When the plastic container 8 is set in the reaction chamber 3C, the source gas supply pipe 9 is disposed in the reaction chamber 3C and disposed in the plastic container 8 from the mouth. That is, the raw material gas supply pipe 9 is inserted from the upper part of the inner wall of the exhaust chamber 5 to the inner space 30C of the reaction chamber 3C through the inner space 31 and the openings 32a and 32b. The tip of the source gas supply pipe 9 is disposed inside the plastic container 8. The raw material gas supply pipe 9 holds the force to be an electrode itself or an electrode of another part, which will be described later.
[0174] 原料ガス供給手段 16は、プラスチック容器 8の内部に原料ガス発生源 15から供給 される原料ガスを導入する。すなわち、原料ガス供給管 9の基端には、配管 11の一 方側が接続されており、この配管 11の他方側は真空バルブ 12を介してマスフローコ ントローラー 13の一方側に接続されている。マスフローコントローラー 13の他方側は 配管 14を介して原料ガス発生源 15に接続されている。この原料ガス発生源 15はァ セチレンなどの炭化水素ガス系原料ガスを発生させるものである。  The raw material gas supply means 16 introduces the raw material gas supplied from the raw material gas generation source 15 into the plastic container 8. That is, one side of the pipe 11 is connected to the base end of the source gas supply pipe 9, and the other side of the pipe 11 is connected to one side of the mass flow controller 13 via the vacuum valve 12. . The other side of the mass flow controller 13 is connected to a source gas generation source 15 via a pipe 14. This source gas generation source 15 generates hydrocarbon gas source gas such as acetylene.
[0175] 本発明におけるガスバリア膜とは、 DLC (ダイヤモンドライクカーボン)膜、 Si含有 D LC膜、 SiO膜、アルミナ膜、 A1N膜等の酸素透過性を抑制する薄膜をいう。原料ガ ス発生源 15から発生させる原料ガスは、上記薄膜の構成元素を含む揮発性ガスが 選択される。ガスバリア薄膜を形成する際の原料ガスは公知公用の揮発性原料ガス が使用できる。  In the present invention, the gas barrier film refers to a thin film that suppresses oxygen permeability, such as a DLC (diamond-like carbon) film, a Si-containing DLC film, a SiO film, an alumina film, or an A1N film. As the source gas generated from the source gas generating source 15, a volatile gas containing the constituent elements of the thin film is selected. As the raw material gas for forming the gas barrier thin film, a publicly known volatile raw material gas can be used.
[0176] 原料ガスとしては、例えば、 DLC膜を成膜する場合、実施形態 Aの場合と同じであ る。  [0176] As the source gas, for example, when forming a DLC film, it is the same as in the case of Embodiment A.
[0177] 本発明でレ、う DLC膜とは、実施形態 Aの場合と同じである。  In the present invention, the DLC film is the same as in the case of Embodiment A.
[0178] また、ケィ素含有 DLC膜を成膜する場合には、実施形態 Aの場合と同じである。  [0178] Further, in the case where a silicon-containing DLC film is formed, it is the same as in the case of Embodiment A.
[0179] SiO膜 (珪素酸化物膜)を成膜する場合には、例えば、シランと酸素の混合ガス、 又は、 HMDSOと酸素の混合ガスを原料ガスとする。 [0179] When forming a SiO film (silicon oxide film), for example, a mixed gas of silane and oxygen, Alternatively, a mixed gas of HMDSO and oxygen is used as the source gas.
[0180] 真空ポンプ 23は、真空チャンバ 7Cの内部ガスを排気する。すなわち、排気室 5に 配管 21の一端が接続され、配管 21の他端は真空バルブ 22に接続され、真空バル ブ 22は配管を介して真空ポンプ 23に接続されている。この真空ポンプ 23はさらに排 気ダクト 24に接続されている。なお、配管 21には圧力ゲージ 20が接続され、排気経 路での圧力を検出する。真空ポンプ 23を作動させることによって、プラスチック容器 8 の内部ガス並びに反応室 3Cの内部空間 30Cの内部ガスが開口部 32a, 32bを介し て排気室 5の内部空間 31に移動し、内部空間 31の内部ガスは配管 21を含む排気 経路を通して真空ポンプ 23に送られる。  [0180] The vacuum pump 23 exhausts the internal gas of the vacuum chamber 7C. That is, one end of the pipe 21 is connected to the exhaust chamber 5, the other end of the pipe 21 is connected to the vacuum valve 22, and the vacuum valve 22 is connected to the vacuum pump 23 via the pipe. This vacuum pump 23 is further connected to an exhaust duct 24. A pressure gauge 20 is connected to the pipe 21 to detect the pressure in the exhaust path. By operating the vacuum pump 23, the internal gas of the plastic container 8 and the internal gas of the internal space 30C of the reaction chamber 3C move to the internal space 31 of the exhaust chamber 5 through the openings 32a and 32b. The internal gas is sent to the vacuum pump 23 through the exhaust path including the pipe 21.
[0181] 真空チャンバ 7Cは、リーク用の配管 17が接続されていて、配管 17は真空バルブ 1 8を介して、リーク源 19 (大気開放)と連通されている。  [0181] The vacuum chamber 7C is connected to a leak pipe 17, and the pipe 17 is connected to a leak source 19 (open to the atmosphere) via a vacuum valve 18.
[0182] 低周波電力供給手段 350は、低周波電力を反応室 3Cに供給することで、プラスチ ック容器 8の内部の原料ガスをプラズマ化させるものである。低周波電力供給手段 35 0は、低周波電源 270と、低周波電源 270に接続された自動整合器 260とを備え、低 周波電源 270は自動整合器 260を介して反応室 3Cに接続される。低周波電源 270 で発生させた低周波電力を原料ガス供給管 9 (内部電極)と反応室 3C (外部電極)と の間に印加することによってプラスチック容器 8の内部に供給された原料ガスがブラ ズマ化する。低周波電源 270の周波数は、 100kHz〜3MHzとすることが好ましい。 低周波電源 270の周波数が 3MHzを超えると、反応室 3Cの内部空間 30Cでのみプ ラズマ発生を生じさせることが困難となる。一方、低周波電源 270の周波数が lOOkH z未満であると、放電困難となる場合がある。  [0182] The low-frequency power supply means 350 supplies the low-frequency power to the reaction chamber 3C to turn the raw material gas inside the plastic container 8 into plasma. The low-frequency power supply means 350 includes a low-frequency power source 270 and an automatic matching device 260 connected to the low-frequency power source 270, and the low-frequency power source 270 is connected to the reaction chamber 3C via the automatic matching device 260. . The low-frequency power generated by the low-frequency power source 270 is applied between the raw material gas supply pipe 9 (internal electrode) and the reaction chamber 3C (external electrode), so that the raw material gas supplied into the plastic container 8 is Zuma. The frequency of the low frequency power supply 270 is preferably 100 kHz to 3 MHz. If the frequency of the low-frequency power supply 270 exceeds 3 MHz, it will be difficult to generate plasma only in the internal space 30C of the reaction chamber 3C. On the other hand, if the frequency of the low frequency power supply 270 is less than lOOkHz, it may be difficult to discharge.
[0183] 次に、低周波電力を反応室 3Cに供給した際に、排気室 5の内部空間 31における プラズマの発生が抑制される原理について説明する。図 2に、第 1形態(C)のプラズ マ CVD成膜装置に対応する 2極放電型の回路を示す。図 2で示した回路の交流電 源は低周波電源 270に対応する。 Cは、プラスチック容器 8と反応室 3Cの内部空間  Next, the principle by which the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed when low frequency power is supplied to the reaction chamber 3C will be described. Figure 2 shows a bipolar discharge-type circuit corresponding to the plasma CVD film-forming system of the first form (C). The AC power supply in the circuit shown in Fig. 2 corresponds to the low-frequency power supply 270. C is the internal space of plastic container 8 and reaction chamber 3C
1  1
30Cとの合成静電容量を表している。 Cは、プラスチック容器 8と反応室 3Cとに LCR メーターを接続して測定することができる。なお、 LCRメーターとは、インダクタンス(L )、キャパシタンス(C)及びレジスタンス (R)などを測定できる機器である。 Cは、絶縁 体スぺーサー 4Cと排気室 5の内部空間 31との合成静電容量を表している。 Cは、 It represents the combined capacitance with 30C. C can be measured by connecting an LCR meter to the plastic container 8 and the reaction chamber 3C. An LCR meter is a device that can measure inductance (L), capacitance (C), resistance (R), and the like. C is insulation It represents the combined capacitance of the body spacer 4C and the internal space 31 of the exhaust chamber 5. C is
2 絶縁体スぺーサー 4Cと排気室 5とに LCRメーターを接続して測定することができる。  2 It can be measured by connecting an LCR meter to the insulator spacer 4C and the exhaust chamber 5.
Z は、反応室 3C内で発生するプラズマのインピーダンスを表し、 Z は、排気室 5内 pi p2  Z represents the impedance of the plasma generated in the reaction chamber 3C, and Z is pi p2 in the exhaust chamber 5.
で発生するプラズマのインピーダンスを表している。図 2の回路において、 Z と Z の  Represents the impedance of the plasma generated in In the circuit of Figure 2, Z and Z
pi p2 それぞれの両側は、シースを表している。回路全体に流れる電流を I、 C側に流れる 電流を I、 C側に流れる電流を Iとすれば、 1 = 1 + 1の関係が成立している。ここで、  Each side of pi p2 represents a sheath. If the current flowing through the entire circuit is I, the current flowing through the C side is I, and the current flowing through the C side is I, then the relationship 1 = 1 + 1 holds. here,
1 2 2 1 2  1 2 2 1 2
Cのインピーダンス Aは、数 15によって示される。 Cのインピーダンス Bは、数 16に The impedance A of C is given by Equation 15. The impedance B of C is
1 2 1 2
よって示される。ここで、 fは低周波の周波数である。  As shown. Where f is the low frequency.
(数 15)インピーダンス A= 1/ (2 π Κ )  (Equation 15) Impedance A = 1 / (2 π Κ)
1  1
(数 16)インピーダンス B = lZ(2 fC )  (Equation 16) Impedance B = lZ (2 fC)
2  2
[0184] 図 10の成膜装置 100Cでは、 C > Cの関係が成り立つように、設計されていること  [0184] The film deposition system 100C in Fig. 10 is designed so that the relationship C> C is established.
1 2  1 2
が好ましい。反応室 3Cの内部空間 30Cは、プラスチック容器 8の外表面にほぼ接す る形状とすれば、その大きさはプラスチック容器 8の形状に制限を受けるが、排気室 5 の内部空間 31又は絶縁体スぺーサー 4Cの材質や厚さは自由に変更することができ る。そこで、あらかじめ C > Cの関係が成り立つように、例えば、絶縁体スぺーサー 4  Is preferred. If the inner space 30C of the reaction chamber 3C is substantially in contact with the outer surface of the plastic container 8, its size is limited by the shape of the plastic container 8, but the inner space 31 or insulator of the exhaust chamber 5 is limited. The material and thickness of the spacer 4C can be changed freely. Therefore, in order to establish the relationship of C> C in advance, for example, insulator spacer 4
1 2  1 2
Cの厚さを大きくする、或いは、絶縁体スぺーサー 4Cの材質を比誘電率が小さいも ので作製する、或いは、排気室 5の内部空間 31の容量を大きくとるように装置を製作 しておく。そして、低周波電源 270から 400kHzの低周波電力を出力した場合を考え る。図 10の成膜装置 100Cにおいて、 C > Cの関係、好ましくは C > > Cの関係が  Increase the thickness of C, or make the insulator spacer 4C with a low relative dielectric constant, or make the device to increase the capacity of the internal space 31 of the exhaust chamber 5. deep. Consider the case where 400 kHz low frequency power is output from the low frequency power supply 270. In the film forming apparatus 100C of FIG. 10, the relationship C> C, preferably the relationship C >> C,
1 2 1 2  1 2 1 2
成り立つように設計することで、数 17で示すようにインピーダンス Bを、インピーダンス Aを基準として相対的に高めることが可能となる。このとき、反応室 3Cの内部空間 30 Cでのプラズマの発生はそのままとして、排気室 5の内部空間 31でのプラズマの発生 のみを抑制することができる。そして図 2で示す Iを大きくすることができる。  By designing so as to hold, impedance B can be relatively increased with impedance A as a reference, as shown in Eq. At this time, the generation of plasma in the internal space 30 C of the reaction chamber 3 C is left as it is, and only the generation of plasma in the internal space 31 of the exhaust chamber 5 can be suppressed. And I shown in Fig. 2 can be increased.
1  1
(数 17)インピーダンス B /インピーダンス A = C /C  (Equation 17) Impedance B / Impedance A = C / C
(f = 400kHz) (f = 400kHz) 1 2  (f = 400kHz) (f = 400kHz) 1 2
[0185] 一方、数 15と数 16より、数 18の結果を得る。数 18によれば、差分 (インピーダンス B—インピーダンス A)は、 f力 M、さくなると、 C - Cが正の場合、すなわち C > Cの  [0185] On the other hand, the result of Expression 18 is obtained from Expression 15 and Expression 16. According to Eq. 18, the difference (impedance B—impedance A) is f force M, and when C-C is positive, that is, C> C
1 2 1 2 関係が成り立つときのみ大きくなることがわかる。 c 立てば、前  It can be seen that it increases only when the 1 2 1 2 relationship holds. c Standing, front
1 > >cの関係が成り  1>> c
2  2
記差分がより大きくなる。 (数 18)インピーダンス B—インピーダンス Α= 1/2 π { (C — C ) /C C } The difference becomes larger. (Equation 18) Impedance B—Impedance Α = 1/2 π {(C — C) / CC}
1 2 1 2  1 2 1 2
[0186] 図 10の成膜装置 100Cを、 C > Cの関係、好ましくは C > > Cの関係が成り立つ  [0186] In the film forming apparatus 100C of FIG. 10, the relationship C> C, preferably the relationship C>> C holds.
1 2 1 2  1 2 1 2
ように設計し、且つ、原料ガスのプラズマエネルギー源として低周波電力を供給する ことで、インピーダンス Bが、インピーダンス Aを基準として相対的に高まるため、排気 室、さらにはその後の真空ポンプ 23に至る排気経路でのプラズマの発生を抑制する こと力 Sできる。これにより、排気室や排気経路のプラズマのアタックによる損傷を少なく し、また、原料ガス系のダストの発生量を低減することができる。しかし、低周波電力 により原料ガスをプラズマ化させるとき、プラズマの着火性若しくはその持続性が高周 波電力により原料ガスをプラズマ化させたときと比較して悪化することがわかった。そ こで、本実施形態においては、プラスチック容器 8の内部に、スパーク発生部 40を配 置することとして、プラズマの着火性若しくはその持続性を確保することとした。このと き、スパーク発生部 40を、プラスチック容器 8の高さの中央より下方側に配置すること が好ましい。容器の底面にガスバリア薄膜を成膜させやすぐ膜厚分布を均質化しや すい。  By supplying low frequency power as a source gas plasma energy source, impedance B is relatively increased with reference to impedance A, leading to the exhaust chamber and further to the vacuum pump 23 thereafter. Suppresses the generation of plasma in the exhaust path. As a result, damage due to plasma attack in the exhaust chamber and exhaust path can be reduced, and the amount of dust in the source gas system can be reduced. However, it was found that when the source gas was turned into plasma with low-frequency power, the ignitability or sustainability of the plasma was worse than when the source gas was turned into plasma with high-frequency power. Therefore, in the present embodiment, the spark generating part 40 is disposed inside the plastic container 8 to ensure the plasma ignitability or its sustainability. At this time, it is preferable that the spark generating portion 40 is disposed below the center of the height of the plastic container 8. It is easy to form a gas barrier thin film on the bottom of the container and immediately homogenize the film thickness distribution.
[0187] 本実施形態に係るプラズマ CVD成膜装置は、以上説明した構成を基本として、ス パーク発生部 40を有するプラズマ着火手段を備える。スパーク発生部 40を有するプ ラズマ着火手段 (イダナイターユニット)は、複数の形態があり、第 1形態(C)のプラズ マ CVD成膜装置 100Cでは、直流放電方式のプラズマ着火手段が備えられている。  [0187] The plasma CVD film forming apparatus according to the present embodiment is provided with plasma ignition means having the spark generating section 40 based on the configuration described above. The plasma ignition means (idanator unit) having the spark generating section 40 has a plurality of forms, and the plasma CVD film forming apparatus 100C of the first form (C) is provided with a DC ignition type plasma ignition means. Yes.
[0188] プラズマ CVD成膜装置 100Cにおいて、プラズマ着火手段は高圧直流電源 290を 有し、スパーク発生部 40は、高圧直流電源 290に接続されたスパーク電極と、それと 対向関係にある接地電極とを有し、且つ、スパーク電極と接地電極との間でスパーク を発生させる。スパーク電極と接地電極とは、例えば 2〜5mm離されている。高圧直 流電源 290は、 1〜: ! OkV程度の直流高圧電源が好ましい。スパーク電極に電圧を 印加することで、プラスチック容器 8内でスパークが発生する。スパークは、少なくとも プラズマが着火するまでに要する時間の間、発生させることができればよいが、成膜 時間を通して発生させ続けても良い。このスパークは、プラズマの着火を補助する。  [0188] In the plasma CVD film forming apparatus 100C, the plasma ignition means has a high-voltage DC power supply 290, and the spark generating unit 40 includes a spark electrode connected to the high-voltage DC power supply 290 and a ground electrode that is opposed to the spark electrode. And a spark is generated between the spark electrode and the ground electrode. The spark electrode and the ground electrode are separated by 2 to 5 mm, for example. The high-voltage DC power supply 290 is preferably a DC high-voltage power supply of about 1 to:! Spark is generated in the plastic container 8 by applying a voltage to the spark electrode. The spark may be generated at least for the time required for the plasma to ignite, but may be continuously generated throughout the film formation time. This spark assists the ignition of the plasma.
[0189] 第 1形態(C)のプラズマ CVD成膜装置 100Cでは、原料ガス供給管 9は、導電性 材料で形成され、且つ、その管内に、線状若しくは棒状の導電体 41をその先端を除 いて絶縁体 42で被覆した状態として収容し、且つ、導電体 41の先端に原料ガスを吹 き付けるガス流路 43を有する。ここで、導電体 41をスパーク電極とし、原料ガス供給 管 9を接地電極としている。接地電極は、外部電極となる反応室 3Cの対向電極の役 害 |J (内部電極)をなしている。なお、高圧直流電源 290のオン—オフは、スィッチ 280 によって切りかえられる。 [0189] In the plasma CVD film forming apparatus 100C of the first embodiment (C), the source gas supply pipe 9 is formed of a conductive material, and a linear or rod-like conductor 41 is placed in the pipe at the tip. Removal And a gas channel 43 that is housed in a state of being covered with an insulator 42 and that blows a source gas to the tip of the conductor 41. Here, the conductor 41 is a spark electrode, and the source gas supply pipe 9 is a ground electrode. The ground electrode serves as the counter electrode | J (internal electrode) of reaction chamber 3C, which is the external electrode. The on / off of the high-voltage DC power supply 290 is switched by the switch 280.
[0190] 導電体 41がスパーク電極となるので導電体 41は、モリブデン、タンタル、ジルコ二 ゥム、ニオブ、ニッケル、イリジウム又は白金或いはこれらの金属の基合金或いは炭 素繊維で形成されていることが好ましい。電極の消耗及び電極物質の容器への汚染 を抑制できる。また、電極の材質を炭素繊維とすれば、ガスバリア薄膜として炭素膜 を成膜する場合に電極物質の汚染の心配がない。  [0190] Since the conductor 41 becomes a spark electrode, the conductor 41 is made of molybdenum, tantalum, zirconium, niobium, nickel, iridium, platinum, a base alloy of these metals, or carbon fiber. Is preferred. It is possible to suppress electrode consumption and contamination of the electrode material into the container. Further, if the electrode material is carbon fiber, there is no fear of electrode material contamination when a carbon film is formed as a gas barrier thin film.
[0191] 直流放電方式のプラズマ着火手段を備えた他形態の成膜装置として、図 12に示し た第 2形態(C)のプラズマ CVD成膜装置 200Cがある。図 13には、図 12の詳細を説 明するための図を示した。ここで図 13 (a)は B-B断面図、図 13 (b)はスパーク発生部 40の部分拡大概略図、を示す。この成膜装置 200Cでは、原料ガス供給管 9は、導 電性材料で形成され、且つ、その先端を除いて絶縁体 42で被覆されてなり、且つ、 原料ガス供給管 9を内管として、その外側に導電性材料で形成された外管 44を配置 して二重管の構造としている。そして、外管 44を接地電極とし、原料ガス供給管 9を スパーク電極としている。接地電極は、外部電極となる反応室 3Cの対向電極の役割 (内部電極)をなしている。なお、高圧直流電源 290のオン オフは、スィッチ 280に よって切りかえられる。  [0191] Another type of film forming apparatus provided with a DC discharge type plasma ignition means is a plasma CVD film forming apparatus 200C of the second mode (C) shown in FIG. FIG. 13 shows a diagram for explaining the details of FIG. Here, FIG. 13 (a) is a BB cross-sectional view, and FIG. 13 (b) is a partially enlarged schematic view of the spark generating portion 40. In this film forming apparatus 200C, the source gas supply pipe 9 is formed of a conductive material and is covered with an insulator 42 except for the tip thereof, and the source gas supply pipe 9 is used as an inner pipe. An outer tube 44 made of a conductive material is disposed outside the structure to form a double tube structure. The outer tube 44 is a ground electrode, and the source gas supply tube 9 is a spark electrode. The ground electrode serves as the counter electrode (internal electrode) of the reaction chamber 3C that serves as the external electrode. The on / off of the high-voltage DC power supply 290 is switched by the switch 280.
[0192] 原料ガス供給管 9がスパーク電極となるので、その材質は、プラズマ CVD成膜装置 100Cの場合と同様の材料が選択される。  [0192] Since the source gas supply pipe 9 serves as a spark electrode, the same material as in the case of the plasma CVD film forming apparatus 100C is selected.
[0193] 次にスパーク発生部 40を有するプラズマ着火手段が、低周波放電方式である場合 について、成膜装置の形態例を 2つ示して説明する。まず、図 14に示した第 3形態の プラズマ CVD成膜装置 300Cがある。なお、図 14において、 A-A断面図及びスパ ーク発生部 40の部分拡大概略図は図 11に示したとおりである。  [0193] Next, the case where the plasma ignition means having the spark generating unit 40 is a low-frequency discharge method will be described by showing two embodiments of the film forming apparatus. First, there is a plasma CVD film forming apparatus 300C of the third embodiment shown in FIG. In FIG. 14, an AA cross-sectional view and a partially enlarged schematic view of the spark generating portion 40 are as shown in FIG.
[0194] 図 14にプラズマ CVD成膜装置 300Cにおいて、プラズマ着火手段は、低周波電 力供給手段 350に接続された分配器 250を有し、スパーク発生部 40は、分配器 250 に接続されたスパーク電極と、それと対向関係にある接地電極とを有し、且つ、スパ ーク電極と接地電極との間でスパークを発生させる。スパーク電極と接地電極とは、 例えば 2〜5mm離されている。スパークを発生させるエネルギー源として、低周波電 力供給手段 350の低周波電源 270を兼用して使用する。なお、別の低周波電源を 接続しても良い。スパーク発生部 40に低周波電力を印加することで、プラスチック容 器 8の内部でスパークが発生する。なお、低周波電力のスパーク発生部 40への供給 のオン—オフは、スィッチ 280によって切りかえられる。スパークは、成膜時間を通し て発生させ続ける力 スィッチ 280によってスパーク発生部 40への低周波電力の供 給を停止し、少なくともプラズマが着火するまでに要する時間の間、プラズマを発生さ せることとしても良レ、。このスパークは、プラズマの着火を補助する。分配器 250とス パーク電極との接続の間に、位相シフタ 45を直列に接続することが好ましい。これに より低周波放電の持続性が高まる。第 3形態(C)のプラズマ CVD成膜装置 300Cで は、第 1形態(C)の成膜装置 100Cと同様の構造の原料ガス供給管 9を有していて、 原料ガス供給管 9を接地電極とし、導電体 41をスパーク電極としている。スパーク電 極の材質も同様に選択する。 [0194] In FIG. 14, in the plasma CVD film forming apparatus 300C, the plasma ignition means has a distributor 250 connected to the low-frequency power supply means 350, and the spark generator 40 has a distributor 250. A spark electrode and a ground electrode opposite to the spark electrode, and generates a spark between the spark electrode and the ground electrode. The spark electrode and the ground electrode are separated by 2-5 mm, for example. As the energy source for generating sparks, the low frequency power supply means 350 of the low frequency power supply means 350 is also used. Another low frequency power supply may be connected. Spark is generated inside the plastic container 8 by applying low-frequency power to the spark generator 40. The on / off of the supply of the low-frequency power to the spark generator 40 is switched by the switch 280. The spark is generated through the film formation time. The supply of low-frequency power to the spark generation unit 40 is stopped by the force switch 280, and plasma is generated at least for the time required for the plasma to ignite. As good as it is. This spark assists the ignition of the plasma. A phase shifter 45 is preferably connected in series between the distributor 250 and the spark electrode. This increases the sustainability of the low frequency discharge. The plasma CVD film forming apparatus 300C of the third form (C) has the source gas supply pipe 9 having the same structure as the film forming apparatus 100C of the first form (C), and the source gas supply pipe 9 is grounded. The conductor 41 is a spark electrode. The material for the spark electrode is selected in the same way.
[0195] 低周波放電方式のプラズマ着火手段を備えた他形態の成膜装置として、図 15に 示したプラズマ CVD成膜装置 400Cがある。なお、図 15において、 B-B断面図及び スパーク発生部 40の部分拡大概略図は図 13に示したとおりである。この成膜装置 4 00Cでは、図 14に示した成膜装置 300Cと同様にスパーク発生部 40への低周波電 力が供給される。また、図 12に示した成膜装置 200Cの原料ガス供給管 9と同様の 構造の原料ガス供給管が装備されていて、外管 44を接地電極とし、原料ガス供給管 9をスパーク電極としている。スパーク電極の材質も同様に選択する。  [0195] Another form of film forming apparatus provided with a low-frequency discharge type plasma ignition means is a plasma CVD film forming apparatus 400C shown in FIG. In FIG. 15, a BB cross-sectional view and a partial enlarged schematic view of the spark generating portion 40 are as shown in FIG. In the film forming apparatus 400C, low-frequency power is supplied to the spark generating unit 40 in the same manner as the film forming apparatus 300C shown in FIG. In addition, a source gas supply pipe having the same structure as that of the source gas supply pipe 9 of the film forming apparatus 200C shown in FIG. 12 is provided, and the outer pipe 44 is a ground electrode and the source gas supply pipe 9 is a spark electrode. . The material for the spark electrode is selected in the same manner.
[0196] 第 1〜第 4のいずれの形態の成膜装置においても、絶縁体 42は絶縁碍子とするこ とが好ましい。  [0196] In any of the first to fourth embodiments, the insulator 42 is preferably an insulator.
[0197] スパーク電極又は接地電極となる原料ガス供給管 9の表面、導電体 41の先端、外 管 44の表面には、原料ガス由来の異物が付着する場合がある。これを除去するため に、拭き取り手段を設けて拭き取るか、或いは通電手段を設けて発熱させて燃焼させ ることとしても良レ、。スパーク電極又は接地電極に炭素系異物等の原料ガス由来の 異物が析出しても除去できるので、電極クリーニングに起因する稼動停止を低減でき る。 [0197] Foreign materials derived from the source gas may adhere to the surface of the source gas supply pipe 9, which becomes a spark electrode or a ground electrode, the tip of the conductor 41, and the surface of the outer pipe 44. In order to remove this, wiping means can be provided for wiping, or energization means can be provided to generate heat and burn. It is derived from source gas such as carbon-based foreign matter on the spark electrode or ground electrode Since foreign matter can be removed even if it deposits, it is possible to reduce the outage caused by electrode cleaning.
[0198] 次に、本実施形態に係るガスバリア性プラスチック容器の製造方法を説明する。以 下ことわりがない限り、図 10の成膜装置 100Cを用いて、 DLC膜をガスバリア薄膜と して成膜する場合を説明する。  Next, a method for manufacturing a gas barrier plastic container according to this embodiment will be described. Unless otherwise specified, the case where a DLC film is formed as a gas barrier thin film using the film forming apparatus 100C of FIG. 10 will be described.
[0199] 真空チャンバ 7C内は、真空バルブ 18を開いて大気開放されており、反応室 3Cの 下部外部電極 1が上部外部電極 2から取り外された状態となっている。上部外部電極 2の下側から上部外部電極 2内の空間にプラスチック容器 8を差し込み、反応室 3C の内部空間 30C内に設置する。この際、原料ガス供給管 9はプラスチック容器 8内に 揷入された状態になる。次に、下部外部電極 1を上部外部電極 2の下部に装着し、 反応室 3Cは〇—リング 10によって密閉される。  [0199] The vacuum chamber 7C is opened to the atmosphere by opening the vacuum valve 18, and the lower external electrode 1 of the reaction chamber 3C is removed from the upper external electrode 2. A plastic container 8 is inserted into the space inside the upper external electrode 2 from the lower side of the upper external electrode 2 and installed in the internal space 30C of the reaction chamber 3C. At this time, the source gas supply pipe 9 is inserted into the plastic container 8. Next, the lower external electrode 1 is attached to the lower part of the upper external electrode 2, and the reaction chamber 3 C is sealed with a ring 10.
[0200] 次に、プラスチック容器 8の内部を原料ガスに置換するとともに所定の成膜圧力に 調整する。すなわち、図 10に示すように、真空バルブ 18を閉じた後、真空バルブ 22 を開き、真空ポンプ 23を作動させ、反応室 3Cの内部ガスを、絶縁体スぺーサー 4C によって反応室 3Cと電気的に絶縁されている排気室 5を経由して排気する。これに より、プラスチック容器 8内を含む真空チャンバ 7C内が配管 21を通して排気され、真 空チャンバ 7C内が真空となる。このときの真空チャンバ 7C内の圧力は、例えば 2. 6 〜66Paである。次に、真空バルブ 12を開き、原料ガス発生源 15においてァセチレ ンガス等の炭化水素ガスを発生させ、この炭化水素ガスを配管 14内に導入し、マス フローコントローラー 13によって流量制御された炭化水素ガスを配管 11及びアース 電位の原料ガス供給管(内部電極) 9を通してガス吹き出し口 9aから吹き出させる。こ れにより、炭化水素ガスがプラスチック容器 8内に導入される。そして、真空チャンバ 7 C内とプラスチック容器 8内は、制御されたガス流量と排気能力のバランスによって、 DLC膜の成膜に適した圧力(例えば 6. 6〜665Pa程度)に保たれ、安定化させる。  [0200] Next, the inside of the plastic container 8 is replaced with a raw material gas and adjusted to a predetermined film forming pressure. That is, as shown in FIG. 10, after the vacuum valve 18 is closed, the vacuum valve 22 is opened, the vacuum pump 23 is operated, and the gas in the reaction chamber 3C is electrically connected to the reaction chamber 3C by the insulator spacer 4C. Exhaust through the electrically insulated exhaust chamber 5. As a result, the inside of the vacuum chamber 7C including the inside of the plastic container 8 is exhausted through the pipe 21, and the inside of the vacuum chamber 7C is evacuated. The pressure in the vacuum chamber 7C at this time is 2.6 to 66 Pa, for example. Next, the vacuum valve 12 is opened, a hydrocarbon gas such as acetylene gas is generated in the source gas generation source 15, this hydrocarbon gas is introduced into the pipe 14, and the hydrocarbon gas whose flow rate is controlled by the mass flow controller 13. Is blown out from the gas outlet 9a through the pipe 11 and the source gas supply pipe (internal electrode) 9 at ground potential. As a result, hydrocarbon gas is introduced into the plastic container 8. The vacuum chamber 7 C and the plastic container 8 are maintained at a pressure suitable for the formation of the DLC film (for example, about 6.6 to 665 Pa) and stabilized by controlling the balance between the gas flow rate and the exhaust capacity. Let
[0201] 次に、プラスチック容器 8の内部に原料ガスを減圧された所定圧力下で吹き出させ ているときに、反応室 3Cに低周波電力(例えば、 400kHz)を供給する。低周波電力 をエネルギー源として、プラスチック容器 8内の原料ガスがプラズマ化される。これに よって、プラスチック容器 8の内表面に DLC膜が成膜される。すなわち反応室 3Cに 低周波電力が供給されることによって、反応室 3Cと原料ガス供給管 9との間でバイァ ス電圧が生ずると共にプラスチック容器 8内の原料ガスがプラズマ化されて炭化水素 系プラズマが発生し、 DLC膜がプラスチック容器 8の内表面に成膜される。このとき、 自動整合器 260は、出力供給している電極全体からの反射波が最小になるように、 インダクタンスレキャパシタンス Cによってインピーダンスを合わせている。 [0201] Next, when the raw material gas is blown into the plastic container 8 under a predetermined reduced pressure, low frequency power (eg, 400 kHz) is supplied to the reaction chamber 3C. The raw material gas in the plastic container 8 is turned into plasma using low frequency power as an energy source. As a result, a DLC film is formed on the inner surface of the plastic container 8. In other words, reaction chamber 3C By supplying the low frequency power, a bias voltage is generated between the reaction chamber 3C and the raw material gas supply pipe 9, and the raw material gas in the plastic container 8 is turned into plasma to generate hydrocarbon-based plasma. A film is formed on the inner surface of the plastic container 8. At this time, the automatic matching device 260 matches the impedance by the inductance recapacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
[0202] 低周波電力の供給とほぼ同時に、スィッチ 280をオンとする。これによつて、プラズ マ着火手段が作動し、スパーク発生部 40で導電体 41 (スパーク電極)と接地されて レ、る原料ガス供給管 9との間で直流放電によるスパークが発生する。これにより、低周 波電力をエネルギー源として原料ガスがプラズマ化される際に、着火不良を低減し、 また、着火持続性が付与される。着火の有無は着火モニタ等の検出手段 (不図示) で判断する。スパークをプラズマの着火後直ぐに停止させても良い。  [0202] Switch 280 is turned on almost simultaneously with the supply of low-frequency power. As a result, the plasma ignition means is activated, and the spark generating part 40 is connected to the conductor 41 (spark electrode) and grounded, and sparks are generated between the source gas supply pipe 9 and the DC gas discharge. Thereby, when the raw material gas is turned into plasma using low frequency power as an energy source, ignition failure is reduced and ignition sustainability is imparted. The presence or absence of ignition is determined by detection means (not shown) such as an ignition monitor. The spark may be stopped immediately after the plasma is ignited.
[0203] 図 10の成膜装置 100Cにおいて、 C > Cの関係、好ましくは C > >Cの関係が  [0203] In the film forming apparatus 100C of FIG. 10, the relationship C> C, preferably the relationship C>> C,
1 2 1 2 成立させた状態で、低周波電力を供給することで、図 2及び数 15〜数 18で説明した ように、排気室 5、さらにはその後の真空ポンプ 23に至る排気経路でのプラズマの発 生を抑制することができる。これにより、排気室 5や排気経路のプラズマのアタックに よる損傷を少なくし、また、原料ガス系のダストの発生量を低減することができる。ここ で、排気室 5の内部空間 31でのプラズマの発生が抑制されるに伴って、その分、反 応室 3Cの内部空間 30Cでのプラズマの発生にエネルギーの消費がまわされるととも に、プラズマの発生する中心箇所がプラスチック容器 8の肩部から口部に至る部分で あつたところ、プラスチック容器 8の中心である胴部に移る。したがって、容器の主軸 方向に沿った膜厚分布が均一化される。  1 2 1 2 By supplying low-frequency power in the established state, as explained in FIG. 2 and Equations 15 to 18, in the exhaust path to the exhaust chamber 5 and then to the vacuum pump 23, Plasma generation can be suppressed. As a result, damage caused by plasma attack in the exhaust chamber 5 and the exhaust path can be reduced, and the amount of dust in the source gas system can be reduced. Here, as the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed, energy is consumed for the generation of plasma in the internal space 30C of the reaction chamber 3C. When the center where the plasma is generated is the part from the shoulder to the mouth of the plastic container 8, it moves to the trunk which is the center of the plastic container 8. Therefore, the film thickness distribution along the main axis direction of the container is made uniform.
[0204] 膜厚分布が均一化されることによって、プラスチック容器 8の口部の内壁面での DL C膜の膜厚が従来と比較して薄くなるため、 口部の内壁面に DLC膜に由来する着色 が低減され、意匠性の向上がもたらされる。  [0204] By making the film thickness distribution uniform, the film thickness of the DLC film on the inner wall of the mouth of the plastic container 8 becomes thinner compared to the conventional one. The resulting coloration is reduced and the design is improved.
[0205] 次に、低周波電源 270の低周波電力の出力を停止し、プラズマを消滅させて DLC 膜の成膜を終了させる。ほぼ同時に真空バルブ 12を閉じて原料ガスの供給を停止 する。  Next, the output of the low frequency power from the low frequency power supply 270 is stopped, the plasma is extinguished, and the film formation of the DLC film is completed. At about the same time, the vacuum valve 12 is closed and the supply of the raw material gas is stopped.
[0206] 次に、真空チャンバ 7C内及びプラスチック容器 8内に残存した炭化水素ガスを除く ために真空ポンプ 23によって排気する。その後、真空バルブ 22を閉じ、排気を終了 させる。このときの真空チャンバ 7C内の圧力は 6.6〜665Paである。この後、真空バ ルブ 18を開く。これにより、真空チャンバ 7Cが大気開放される。 [0206] Next, the hydrocarbon gas remaining in the vacuum chamber 7C and the plastic container 8 is removed. Therefore, the vacuum pump 23 exhausts the air. After that, the vacuum valve 22 is closed and the exhaust is finished. At this time, the pressure in the vacuum chamber 7C is 6.6 to 665 Pa. After this, the vacuum valve 18 is opened. Thereby, the vacuum chamber 7C is opened to the atmosphere.
[0207] いずれも成膜時間は数秒程度と短いものとなる。 DLC膜の膜厚は 0. 003〜5 μ m となるように形成する。 [0207] In either case, the film formation time is as short as several seconds. The DLC film is formed to a thickness of 0.003 to 5 μm.
[0208] 図 12の成膜装置 200Cを使用した場合においては、低周波電力の供給とほぼ同 時に、同様にスィッチ 280をオンとする。これによつて、プラズマ着火手段が作動し、 スパーク発生部 40でスパーク電極である原料ガス供給管 9と接地電極である外管 44 との間で直流放電によるスパークが発生する。これにより、低周波電力をエネルギー 源として原料ガスがプラズマ化される際に、着火不良を低減し、また、着火持続性が 付与される。着火の有無は着火モニタ等の検出手段(不図示)で判断する。スパーク をプラズマの着火後直ぐに停止させても良い。  [0208] When the film forming apparatus 200C of Fig. 12 is used, the switch 280 is turned on at the same time as the supply of the low frequency power. As a result, the plasma ignition means is activated, and a spark is generated by a direct current discharge between the source gas supply pipe 9 as a spark electrode and the outer pipe 44 as a ground electrode in the spark generation section 40. As a result, when the raw material gas is turned into plasma using low frequency power as an energy source, ignition failure is reduced and ignition sustainability is imparted. The presence or absence of ignition is determined by detection means (not shown) such as an ignition monitor. The spark may be stopped immediately after the plasma is ignited.
[0209] 図 14の成膜装置 300Cを使用した場合においては、低周波電力の供給とほぼ同 時に、同様にスィッチ 280をオンとする。これによつて、プラズマ着火手段が作動し、 スパーク発生部 40でスパーク電極である導電体 41と接地電極である原料ガス供給 管 9との間で低周波放電によるスパークが発生する。これにより、低周波電力をエネ ルギ一源として原料ガスがプラズマ化される際に、着火不良を低減し、また、着火持 続性が付与される。着火の有無は着火モニタ等の検出手段 (不図示)で判断する。ス パークをプラズマの着火後直ぐに停止させても良い。  [0209] When the film forming apparatus 300C of Fig. 14 is used, the switch 280 is turned on at the same time as the supply of the low frequency power. As a result, the plasma ignition means is activated, and a spark due to the low frequency discharge is generated between the conductor 41 as the spark electrode and the source gas supply pipe 9 as the ground electrode in the spark generator 40. As a result, when the raw material gas is turned into plasma using low-frequency power as an energy source, ignition failure is reduced and ignition sustainability is imparted. Presence or absence of ignition is determined by detection means (not shown) such as an ignition monitor. The spark may be stopped immediately after the plasma is ignited.
[0210] 図 15の成膜装置 400Cを使用した場合においては、低周波電力の供給とほぼ同 時に、同様にスィッチ 280をオンとする。これによつて、プラズマ着火手段が作動し、 スパーク発生部 40でスパーク電極である原料ガス供給管 9と接地電極である外管 44 との間で低周波放電によるスパークが発生する。これにより、低周波電力をエネルギ 一源として原料ガスがプラズマ化される際に、着火不良を低減し、また、着火持続性 が付与される。着火の有無は着火モニタ等の検出手段 (不図示)で判断する。スパー クをプラズマの着火後直ぐに停止させても良い。  [0210] When the film forming apparatus 400C of Fig. 15 is used, the switch 280 is turned on at the same time as the supply of the low-frequency power. As a result, the plasma ignition means is activated, and a spark is generated by the low frequency discharge between the source gas supply tube 9 as the spark electrode and the outer tube 44 as the ground electrode in the spark generation unit 40. As a result, when the raw material gas is turned into plasma using low frequency power as an energy source, ignition failure is reduced and ignition sustainability is imparted. Presence or absence of ignition is determined by detection means (not shown) such as an ignition monitor. The spark may be stopped immediately after the plasma is ignited.
実施例  Example
[0211] (実施形態 A) 以下、実施例を示して本発明を更に詳細に説明する。実施例で使用したプラスチッ ク容器は、容量 500ml、容器の高さ 207mm、容器月同部径 68mm、口部開口部内径 21. 74mm,口部開口部外径 24. 94mm,口部の高さ 21. Omm、容器胴部肉厚 0 . 3mm、樹脂量 30g/本の丸型 PET (ポリエチレンテレフタレート)ボトルである。 [0211] (Embodiment A) Hereinafter, the present invention will be described in more detail with reference to examples. The plastic container used in the examples has a capacity of 500 ml, a container height of 207 mm, a container monthly diameter of 68 mm, a mouth opening inner diameter of 21.74 mm, a mouth opening outer diameter of 24.94 mm, and a mouth height. 21. This is a round PET (polyethylene terephthalate) bottle with Omm, container body thickness of 0.3mm, and resin amount of 30g / piece.
[0212] 評価は次の通りで行なった。 [0212] Evaluation was performed as follows.
(成膜均一性)  (Film uniformity)
成膜均一性は次のように求めた。容器底面から 2cm上 (底部)、同 8cm上 (胴部)、 同 16cm上 (肩部)について、それぞれ周方向に 3箇所を選んで膜厚を測定する。膜 厚は、 Tenchol社 alpha_step500の触針式段差計で測定した。それらを平均して 、底部、胴部及び肩部の各平均膜厚を求める。底部、胴部及び肩部の各平均膜厚 の中から最も平均膜厚が厚い結果 (平均膜厚 A)と、最も平均膜厚が薄い結果 (平均 膜厚 B)を選びだし、数 5により成膜均一性(%)を求める。成膜均一性(%)が低いほ ど、均一性が高い。  The film formation uniformity was determined as follows. Measure the film thickness at 3 locations in the circumferential direction, 2cm above (bottom), 8cm above (trunk), and 16cm above (shoulder) above the bottom of the container. The film thickness was measured with a stylus type step gauge of Tenchol alpha_step500. By averaging them, the average film thickness of the bottom, the trunk and the shoulder is obtained. From the average film thickness at the bottom, torso and shoulder, select the result with the largest average film thickness (average film thickness A) and the result with the smallest average film thickness (average film thickness B). Obtain film formation uniformity (%). The lower the deposition uniformity (%), the higher the uniformity.
(数 5)成膜均一性(%) = (平均膜厚 A—平均膜厚 B) / (平均膜厚 A +平均膜厚 B) X 100  (Equation 5) Film uniformity (%) = (Average film thickness A—Average film thickness B) / (Average film thickness A + Average film thickness B) X 100
成膜の均一性 15%以下:(〇)容器高さ方向に均一に成膜されていて良好である。 成膜の均一性 15%超 30%以下:(△)容器高さ方向に均一に成膜されていて品質 上問題ない。  Uniformity of film formation 15% or less: (◯) Good film formation in the container height direction. Uniformity of film formation Over 15% and 30% or less: (△) There is no problem in quality because the film is formed uniformly in the container height direction.
成膜の均一性 30%超:(X )容器高さ方向にムラがあることが目視にてわかる。  Uniformity of film formation> 30%: (X) It can be visually observed that there is unevenness in the container height direction.
[0213] (成膜速度) [0213] (Deposition rate)
容器の平均膜厚 Aを成膜時間で割ることで、単位時間 (秒)当たりの成膜厚さを求 めた。  By dividing the average film thickness A of the container by the film formation time, the film thickness per unit time (second) was obtained.
成膜速度 lOnmZ秒以上:(〇)製造効率が高ぐ良好である。  Deposition rate lOnmZ seconds or more: (◯) Good production efficiency.
成膜速度 lOnmZ秒未満:(X )製造効率が低下し、問題あり。  Deposition rate less than lOnmZ seconds: (X) There is a problem because the production efficiency is lowered.
[0214] (排気室の発光量) [0214] (Light emission in exhaust chamber)
排気室の内部空間におけるプラズマ発生の有無及びその程度を調べるため、当該 内部空間に光ファイバ一の一端 (入光部)を設置し、その光ファイバ一の他端を放電 センサー(フォト一ダイオード、株式会社山武製光電センサー、 HPX-MA-063) に接続し、光ファイバ一に入射する光をモニタリングした。光ファイバ一の入光部の位 置は、例えば図 1の成膜装置において、「D」で示す箇所とした。放電センサーの出 力値 (V)の大小で、排気室内でのプラズマの発生の有無及びその程度を評価した。 出力値が大きいほど排気室内でのプラズマの発生量が多いことを示している。 In order to investigate the presence and extent of plasma generation in the internal space of the exhaust chamber, one end (light incident part) of the optical fiber is installed in the internal space and the other end of the optical fiber is connected to a discharge sensor (photo diode, (Yamatake photoelectric sensor, HPX-MA-063) The light incident on the optical fiber was monitored. The position of the light incident portion of the optical fiber is, for example, the location indicated by “D” in the film forming apparatus of FIG. The presence or absence and degree of plasma generation in the exhaust chamber were evaluated based on the output value (V) of the discharge sensor. The larger the output value, the greater the amount of plasma generated in the exhaust chamber.
発光量 0. 3V以下:(〇)排気室内でのプラズマの発生がほぼ無で長時間連続運転 上良好である。  Luminous emission 0.3 V or less: (○) No generation of plasma in the exhaust chamber and good continuous operation for a long time.
発光量 0. 3V超 0. 5V以下:(△)排気室内でのプラズマの発生がやや発生するが長 時間連続運転上問題なレ、。  Amount of emitted light: More than 0.3 V and 0.5 V or less: (△) Plasma is slightly generated in the exhaust chamber, but this is a problem in continuous operation for a long time.
発光量 0. 5V超:(X )排気室内でのプラズマの発生が発生し、長時間連続運転上問 題あり。  Emission amount> 0.5V: (X) Plasma is generated in the exhaust chamber, causing problems in continuous operation for a long time.
[0215] (排気室内での異物の発生量)  [0215] (Amount of foreign matter generated in the exhaust chamber)
開口部 32bの壁面(例えば図 1では Eと表記した箇所)にシリコンチップ Aを取り付け 、排気室 5の排気口付近 (例えば図 1では Fと表記した箇所)の壁面にシリコンチップ Bを取り付け、同一条件で 20回、容器に成膜した後、取り出して電子天秤 (新光電子 製、高精度電子天秤 AF-R220)で重量を測定した。成膜前後の重量差から付着異 物量とした。  Silicon chip A is attached to the wall surface of the opening 32b (for example, the location indicated as E in FIG. 1), and silicon chip B is attached to the wall surface near the exhaust port of the exhaust chamber 5 (eg, the location indicated as F in FIG. 1). The film was formed in a container 20 times under the same conditions, and then taken out and weighed with an electronic balance (manufactured by Shinko Denshi, high-precision electronic balance AF-R220). The amount of adhering foreign matter was determined from the weight difference before and after film formation.
付着異物量 0. 2mg以下:(〇)異物の付着がほとんどなぐ長時間連続運転上良好 である。  Amount of adhering foreign matter 0.2 mg or less: (○) Good for long-term continuous operation with almost no foreign matter adhering.
付着異物量 0. 2mg超 0. 4mg以下:(△)異物の付着がややあるが長時間連続運転 上問題なし。  Amount of adhering foreign matter More than 0.2 mg 0.4 mg or less: (△) Foreign matter adhering slightly, but no problem in continuous operation for a long time.
付着異物量 0. 4mg超:(X )異物の付着があり、長時間連続運転上問題あり。  Amount of adhering foreign matter> 0.4 mg: (X) There is a foreign matter adhering, causing problems in continuous operation for a long time.
[0216] (PETボトルの酸素透過度) [0216] (Oxygen permeability of PET bottle)
酸素透過度は、 Modern Control社製 Oxtranにて 22°C X 60。/。RHの条件にて 測定開始後一週間経過後に測定を行なった。本発明では、酸素透過度(酸素バリア 性)は、容器 1本あたりについて計算している。これを面積 (m2)あたりに換算する場 合は、容器の内表面積を勘案して換算すればよい。なお、口部蓋からのガス透過は ほとんどないため、その面積は考慮に入れない。 Oxygen permeability is 22 ° CX 60 with Oxtran manufactured by Modern Control. /. Measurement was performed one week after the start of measurement under the RH conditions. In the present invention, the oxygen permeability (oxygen barrier property) is calculated per container. When this is converted per area (m 2 ), it may be converted in consideration of the inner surface area of the container. Since there is almost no gas permeation from the mouth lid, the area is not taken into consideration.
酸素透過度 0. 005mlZ日 Z容器以下:(◎)酸素バリア性が充分に良好で酸素に 鋭敏な飲料に使用できる。 Oxygen permeability 0.005ml Z day Below Z container: (◎) Oxygen barrier property is sufficiently good and oxygen Can be used for sensitive beverages.
酸素透過度 0. 005ml/日/容器超 0. 010ml/日/容器以下:(〇)酸素ノくリア性 が良好で、酸素に鋭敏な飲料に使用しても問題なレ、。  Oxygen permeability 0.005ml / day / over container 0.010ml / day / container or less: (○) Oxygen-free, good for oxygen-sensitive beverages.
酸素透過度 0. OlOmlZ日 Z容器超 0. 015mlZ日 Z容器以下:(△)簡易な酸素 バリア性容器として問題なく使用できる。  Oxygen permeability 0. OlOmlZ day Z container over 0.015ml Z day Z container or less: (△) Can be used as a simple oxygen barrier container without any problems.
酸素透過度 0. 015mlZ日 Z容器超:(X )酸素バリア性容器としては問題あり。  Oxygen permeability 0.015ml Z day Over Z container: (X) There is a problem as an oxygen barrier container.
[0217] (試験 1) [0217] (Exam 1)
図 1に示したガスバリア性プラスチック容器の製造装置 100Aを用いて、 PETボトノレ の内壁面に DLC膜を成膜した。成膜条件は、原料ガスはアセチレンを使用し、原料 ガス流量を 120sccm、排気室 5の内部空間 31の容積を 1. 2リットル、絶縁部材 4 (ポ リエ一テルエーテルケトン製)の厚さを 10mm、電源 27 (3. OMHz)の出力を 600W 、成膜時間を 2秒間とした。また、内部空間 30が円筒型形状の外部電極 3を使用し、 PETボトノレを入れたときの隙間空間にポリエーテルエーテルケトン製のスぺーサー 3 6を設置した。内部空間 30の円筒型形状の内径は PETボトルの胴部の外壁面と内 部空間 30の内壁面とが略接する大きさとしてレ、る。図 1に示すように PETボトル 8と外 部電極 3の内部空間 30との合成静電容量を Cとし、絶縁部材 4と排気室 5の内部空 間 31との合成静電容量を Cとしたとき、 C >Cの関係が成立していた。異物の発生  Using the gas barrier plastic container manufacturing apparatus 100A shown in Fig. 1, a DLC film was formed on the inner wall of the PET bottle. The film forming conditions are as follows: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 is 1.2 liters, and the thickness of the insulating member 4 (made of polyester ether ketone) is set. The output of 10 mm, power supply 27 (3. OMHz) was 600 W, and the film formation time was 2 seconds. In addition, an outer electrode 3 having an inner space 30 having a cylindrical shape was used, and a spacer 36 made of polyetheretherketone was installed in a gap space when the PET bottle was inserted. The inner diameter of the cylindrical shape of the inner space 30 is such that the outer wall surface of the body of the PET bottle and the inner wall surface of the inner space 30 are substantially in contact with each other. As shown in Fig. 1, the combined capacitance of the PET bottle 8 and the inner space 30 of the outer electrode 3 is C, and the combined capacitance of the insulating member 4 and the inner space 31 of the exhaust chamber 5 is C. When C> C, the relationship was established. Generation of foreign matter
2 1 2  2 1 2
量の評価は、この条件で 20回成膜後に行なった。排気室 5の発光量は 0. 4Vでわず かに発光した。異物の発生量 (A)は 0. 3mg、(B)は 0. 3mgであり、排気室 5の内部 空間 31でのプラズマの発生はわずかであることがわかった。外部電極 3の内壁面と P ETボトル 8の外壁面とに挟まれた隙間空間での異常放電は起こらなかった。成膜均 一性は 18%、成膜速度は 14nmZ秒であった。成膜条件と結果を表 1に示す。  The amount was evaluated after film formation 20 times under these conditions. Exhaust chamber 5 emitted a slight amount of light at 0.4V. The amount of foreign matter generated (A) was 0.3 mg, and (B) was 0.3 mg. It was found that the generation of plasma in the internal space 31 of the exhaust chamber 5 was slight. No abnormal discharge occurred in the gap space between the inner wall surface of the external electrode 3 and the outer wall surface of the PET bottle 8. The film formation uniformity was 18% and the film formation rate was 14 nmZ seconds. Table 1 shows the deposition conditions and results.
[0218] (試験 2) [0218] (Exam 2)
低周波の周波数を 1. OMHzとした以外は試験 1と同様に PETボトノレの内壁面に D LC膜を成膜した。結果を表 1に示した。  A DLC film was deposited on the inner wall of the PET bottle as in Test 1, except that the low frequency was 1. OMHz. The results are shown in Table 1.
[0219] (試験 3) [0219] (Exam 3)
原料ガス流量を 80sccmとした以外は試験 2と同様に PETボトルの内壁面に DLC 膜を成膜した。結果を表 1に示した。 [0220] (試験 4) A DLC film was deposited on the inner wall of the PET bottle in the same manner as in Test 2 except that the raw material gas flow rate was 80 sccm. The results are shown in Table 1. [0220] (Exam 4)
低周波の周波数を 0. 4MHzとした以外は試験 1と同様に PETボトノレの内壁面に D LC膜を成膜した。結果を表 1に示した。  A DLC film was deposited on the inner wall of the PET bottle as in Test 1, except that the low frequency was 0.4 MHz. The results are shown in Table 1.
[0221] (試験 5) [0221] (Exam 5)
低周波電源の代わりに高周波電源(周波数 13. 56MHz)を用レ、た以外は試験 1と 同様に PETボトルの内壁面に DLC膜を成膜した。結果を表 1に示した。  A DLC film was deposited on the inner wall of the PET bottle in the same manner as in Test 1, except that a high-frequency power supply (frequency 13.56 MHz) was used instead of the low-frequency power supply. The results are shown in Table 1.
[0222] (試験 6) [0222] (Exam 6)
低周波の周波数を 0. 1MHzとした以外は試験 1と同様に PETボトノレの内壁面に D LC膜を成膜した。結果を表 1に示した。  A DLC film was deposited on the inner wall of the PET bottle as in Test 1, except that the low frequency was 0.1 MHz. The results are shown in Table 1.
[0223] (試験 7) [0223] (Exam 7)
ポリエーテルエーテルケトン製のスぺーサー 36を設置しな力 た以外は試験 2と同 様に PETボトルの内壁面に DLC膜を成膜した。結果を表 1に示した。  A DLC film was formed on the inner wall of the PET bottle in the same way as in Test 2 except that the spacer 36 made of polyetheretherketone was not used. The results are shown in Table 1.
[0224] (試験 8) [0224] (Exam 8)
容量 480ml、容器の高さ 207mm、容器月同部径 68mm、 口部開口部内径 21. 74 mm、 口部開口部外径 24. 94mm, 口部の高さ 21. Omm、容器胴部肉厚 0. 3mm、 樹脂量 30g/本、細首の丸型の PETボトルとし、その形状に併せたポリエーテルエ ーテルケトン製のスぺーサー 36を用いた以外は試験 2と同様に PETボトルの内壁面 に DLC膜を成膜した。結果を表 1に示した。  Capacity 480ml, container height 207mm, container month diameter 68mm, mouth opening inner diameter 21.74mm, mouth opening outer diameter 24.94mm, mouth height 21.Omm, container body thickness 0.3mm, resin amount 30g / bottle, round neck PET bottle with the same shape as the polyether ether ketone spacer 36 except for the use of DLC on the inner wall of the PET bottle as in Test 2 A film was formed. The results are shown in Table 1.
[0225] (試験 9) [0225] (Exam 9)
未コーティングの PETボトルの酸素透過度を測定した。結果を表 1に示した。  The oxygen permeability of uncoated PET bottles was measured. The results are shown in Table 1.
[0226] (試験 10) [0226] (Exam 10)
図 1に示したガスバリア性プラスチック容器の製造装置 100Aの代わりに、 C < C  Instead of the gas barrier plastic container manufacturing equipment 100A shown in Fig. 1, C <C
1 2 の関係が成立している装置を用いて、それ以外は試験 2と同じ条件で成膜を行なつ た。成膜条件と結果を表 1に示す。  Using the equipment in which the relationship of 1 and 2 was established, the film was formed under the same conditions as in Test 2 except for the above. Table 1 shows the deposition conditions and results.
[0227] 表 1において、総合評価を記載した。異常放電の有無、発光量、付着した異物の発 生量、成膜速度、成膜均一性及び酸素バリア性を判断材料とした。これらのうち、一 つでも Xの評価を含む試験或いは異常放電が起きた試験は総合評価 Xと判断した 。さらに、総合判断 X以外の試験において、一つでも△の評価を含む試験は総合評 価△と判断した。〇又は◎の評価を得た試験は総合評価〇と判断した。総合評価△ 又は〇と判断された試験は、上記評価項目の特性をバランス良く有している。 [0227] In Table 1, the overall evaluation is described. Judgment materials were the presence / absence of abnormal discharge, the amount of luminescence, the amount of attached foreign matter, the deposition rate, deposition uniformity, and oxygen barrier properties. Of these, tests that included an evaluation of X or tests in which abnormal discharge occurred were judged as comprehensive evaluation X. In addition, in the tests other than the comprehensive judgment X, any test that includes an evaluation of △ The price was judged to be △. A test that obtained an evaluation of ◯ or ◎ was judged as an overall evaluation ◯. The test judged as comprehensive evaluation Δ or ○ has the characteristics of the above evaluation items in a well-balanced manner.
[表 1] [table 1]
Figure imgf000064_0001
Figure imgf000064_0001
※:膜厚 いため評価でき *: Can be evaluated because of film thickness
[0229] 試験 1〜試験 4で得られたガスバリア性を有する薄膜をコーティングした PETボトル は、酸素バリア性を有しつつ、排気室でのプラズマの発生が抑制されていた。ポリエ 一テルエーテルケトン製のスぺーサ一によつて異常放電が抑制されていた。また、容 器の高さ方向について、成膜のムラが少なかった。さらに、試験 8では、形状が異なる PETボトルに対しても異常放電を起こさずに同様に成膜できることがわかった。した がって、異物除去のための清掃作業時間と外部電極の取替え作業時間を低減でき るので、結果として成膜装置の生産効率を高く維持できることがわかった。 [0229] The PET bottle coated with the thin film having gas barrier properties obtained in Tests 1 to 4 had oxygen barrier properties and suppressed generation of plasma in the exhaust chamber. Abnormal discharge was suppressed by the spacer made of polyetheretherketone. In addition, there was little unevenness in film formation in the height direction of the container. Furthermore, in Test 8, it was found that PET bottles with different shapes can be similarly formed without causing abnormal discharge. Therefore, it was found that the cleaning work time for removing foreign substances and the external electrode replacement work time can be reduced, and as a result, the production efficiency of the film forming apparatus can be maintained high.
[0230] 一方、試験 5では、高周波電源を用いたので、酸素ノ リア性が良好なボトルが得ら れたものの、排気室でのプラズマの発生が顕著であり、異物除去のための清掃作業 時間を要し、成膜装置の生産効率を落とす原因となる。また、容器の高さ方向につい て、成膜のムラがあった。  [0230] On the other hand, in Test 5, since a high-frequency power supply was used, a bottle with good oxygen-nore properties was obtained, but plasma generation in the exhaust chamber was significant, and cleaning work was performed to remove foreign matter. This takes time and causes the production efficiency of the film forming apparatus to drop. In addition, there was uneven film formation in the height direction of the container.
[0231] また、試験 6では、周波数が 0. 1MHzと低いため、排気室でのプラズマの発生が 抑制されていたが、成膜速度が遅ぐまた酸素バリア性が低かった。  [0231] In Test 6, since the frequency was as low as 0.1 MHz, the generation of plasma in the exhaust chamber was suppressed, but the deposition rate was slow and the oxygen barrier property was low.
[0232] また、試験 7では、スぺーサーを使用しな力 たので、隙間空間でプラズマが異常 放電として発生し、その部分で余計なパワーを消費することで成膜均一性の低下を 招いた。その結果、酸素バリア性はスぺーサー無し (試験 2)と比較して 0. 006ml/ 日 /容器 (試験 2)から 0. 008ml/日 /容器 (試験 7)へと低下した。また、外部電極 の内壁面に炭素系異物が付着し、連続運転するにつれてダストの発生が見られた。 ダストの発生によって定期的な清掃作業が必要となる。  [0232] In addition, in Test 7, since the force was not applied using the spacer, plasma was generated as an abnormal discharge in the gap space, and excessive power was consumed in that portion, resulting in a decrease in film formation uniformity. It was. As a result, the oxygen barrier property decreased from 0.006 ml / day / container (Test 2) to 0.008 ml / day / container (Test 7) compared to no spacer (Test 2). In addition, carbon-based foreign matter adhered to the inner wall of the external electrode, and dust was observed as the operation continued. Periodic cleaning work is required due to the generation of dust.
[0233] 試験 10では、 C < Cの関係が成立しているため、排気室の内壁面に炭素系異物  [0233] In Test 10, since the relationship of C <C is established, carbon-based foreign matter is detected on the inner wall surface of the exhaust chamber.
1 2  1 2
が付着し、連続運転するにつれてダストの発生が見られた。ダストの発生によって定 期的な清掃作業が必要となる。また、排気室においてプラズマが生じたため、成膜速 度が小さかった。  As a result, the generation of dust was observed with continuous operation. Periodic cleaning work is required due to the generation of dust. In addition, since plasma was generated in the exhaust chamber, the deposition rate was low.
[0234] (実施形態 B) [0234] (Embodiment B)
以下、実施例を示して本発明を更に詳細に説明する。実施例で使用したプラスチッ ク容器は、容量 500ml、容器の高さ 207mm、容器胴部径 68mm、口部開口部内径 21. 74mm,口部開口部外径 24. 94mm,口部の高さ 21. Omm、容器胴部肉厚 0 . 3mm、樹脂量 30g/本の PET (ポリエチレンテレフタレート)容器である。 [0235] 評価は次の通りで行なった。 Hereinafter, the present invention will be described in more detail with reference to examples. The plastic container used in the examples has a capacity of 500 ml, a container height of 207 mm, a container body diameter of 68 mm, a mouth opening inner diameter of 21.74 mm, a mouth opening outer diameter of 24.94 mm, and a mouth height of 21. It is a PET (polyethylene terephthalate) container with Omm, container body thickness of 0.3 mm, and resin amount of 30 g / bottle. [0235] The evaluation was performed as follows.
(成膜均一性)  (Film uniformity)
成膜均一性は次のように求めた。容器底面から 2cm上 (底部)、同 8cm上 (胴部)、 同 16cm上 (肩部)について、それぞれ周方向に 3箇所を選んで膜厚を測定する。膜 厚は、 Tenchol社 alpha_step500の触針式段差計で測定した。それらを平均して 、底部、胴部及び肩部の各平均膜厚を求める。底部、胴部及び肩部の各平均膜厚 の中から平均膜厚が厚レヽ結果 (平均膜厚 A)と、最も平均膜厚が薄レヽ結果 (平均膜厚 B)を選びだし。数 14により成膜均一性(%)を求める。成膜均一性(%)が低いほど、 均一性が高い。  The film formation uniformity was determined as follows. Measure the film thickness at 3 locations in the circumferential direction, 2cm above (bottom), 8cm above (trunk), and 16cm above (shoulder) above the bottom of the container. The film thickness was measured with a stylus type step gauge of Tenchol alpha_step500. By averaging them, the average film thickness of the bottom, the trunk and the shoulder is obtained. From the average film thickness of the bottom, trunk, and shoulder, the average film thickness is the result of the thick layer (average film thickness A) and the thinnest average film thickness is the result (average film thickness B). The film formation uniformity (%) is obtained by Equation 14. The lower the deposition uniformity (%), the higher the uniformity.
(数 14)成膜均一性(%) = (平均膜厚 A—平均膜厚 B) / (平均膜厚 A +平均膜厚 B ) X 100  (Equation 14) Film formation uniformity (%) = (Average film thickness A—Average film thickness B) / (Average film thickness A + Average film thickness B) X 100
[0236] (成膜速度) [0236] (Deposition rate)
容器の平均膜厚 Aを成膜時間で割ることで、単位時間 (秒)当たりの成膜厚さを求 めた。  By dividing the average film thickness A of the container by the film formation time, the film thickness per unit time (second) was obtained.
[0237] (排気室の発光量)  [0237] (Light emission in exhaust chamber)
排気室の内部空間におけるプラズマ発生の有無及びその程度を調べるため、当該 内部空間に光ファイバ一の一端 (入光部)を設置し、その光ファイバ一の他端を放電 センサー(フォト一ダイオード、株式会社山武製光電センサー、 HPX-MA-063) に接続し、光ファイバ一に入射する光をモニタリングした。光ファイバ一の入光部の位 置は、例えば図 4の製造装置において、「D」で示す箇所とした。放電センサーの出 力値 (V)の大小で、排気室内でのプラズマの発生の有無及びその程度を評価した。 出力値が大きいほど排気室内でのプラズマの発生量が多いことを示している。  In order to investigate the presence and extent of plasma generation in the internal space of the exhaust chamber, one end of the optical fiber (light incident part) is installed in the internal space, and the other end of the optical fiber is connected to a discharge sensor (photo diode, Connected to a Yamatake photoelectric sensor, HPX-MA-063), the light incident on the optical fiber was monitored. The position of the light incident part of the optical fiber is, for example, the location indicated by “D” in the manufacturing apparatus of FIG. The presence or absence and degree of plasma generation in the exhaust chamber were evaluated based on the output value (V) of the discharge sensor. The larger the output value, the greater the amount of plasma generated in the exhaust chamber.
[0238] (排気室内でのダストの発生量) [0238] (Dust generation amount in the exhaust chamber)
開口部 32bの壁面(例えば図 4では Eと表記した箇所)にシリコンチップ Aを取り付け 、排気室 5の排気口付近 (例えば図 4では Fと表記した箇所)の壁面にシリコンチップ Bを取り付け、同一条件で 20回、容器に成膜した後、取り出して電子天秤 (新光電子 製、高精度電子天秤 AF-R220)で重量を測定した。成膜前後の重量差から付着ダ スト量とした。 [0239] (試験 1) Silicon chip A is attached to the wall surface of the opening 32b (for example, the location indicated as E in FIG. 4), and silicon chip B is attached to the wall surface near the exhaust port of the exhaust chamber 5 (eg, the location indicated as F in FIG. 4). After depositing the film in the container 20 times under the same conditions, it was taken out and weighed with an electronic balance (manufactured by Shinko Denshi, high-precision electronic balance AF-R220). The amount of adhering dust was determined from the difference in weight before and after film formation. [0239] (Exam 1)
図 4に示したガスバリア性プラスチック容器の製造装置 100Bを用いて、 PETボトル の内壁面に DLC膜を成膜した。成膜条件は、原料ガスはアセチレンを使用し、原料 ガス流量を 120sccm、排気室 5の内部空間 31の容積を 1. 2リットノレ、絶縁体スぺー サー 4B (ポリエーテルエーテルケトン製)の厚さを 10mm、高周波電源 29 (13. 56M Hz)の出力を 600W、低周波電源 270 (0. 4MHz)の出力を 0W、成膜時間を 2秒間 とした。なお、ダストの発生量の評価は、この条件で 20回成膜後に行なった。評価結 果を表 2に示した。  Using the gas barrier plastic container manufacturing apparatus 100B shown in Fig. 4, a DLC film was deposited on the inner wall of the PET bottle. The deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 in the exhaust chamber 5 is 1.2 litter, and the thickness of the insulator spacer 4B (made of polyetheretherketone). The output of the high-frequency power supply 29 (13. 56 MHz) is 600 W, the output of the low-frequency power supply 270 (0.4 MHz) is 0 W, and the deposition time is 2 seconds. The amount of dust generated was evaluated after film formation 20 times under these conditions. The evaluation results are shown in Table 2.
[表 2]  [Table 2]
Figure imgf000067_0001
Figure imgf000067_0001
[0240] (試験 2)  [0240] (Exam 2)
高周波電源の出力を 500W、低周波電源の出力を 100Wとした以外は試験 1と同 条件で、成膜を行なった。なお、高周波電源と低周波電源の出力の合計は、 600W と共通とした(以下の試験でも同じ)。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 1 except that the output of the high frequency power supply was 500 W and the output of the low frequency power supply was 100 W. The total output of the high-frequency power supply and low-frequency power supply is 600W (the same applies to the following tests). The results are shown in Table 2.
[0241] (試験 3)  [0241] (Trial 3)
高周波電源の出力を 400W、低周波電源の出力を 200Wとした以外は試験 1と同 条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 1 except that the output of the high frequency power supply was 400 W and the output of the low frequency power supply was 200 W. The results are shown in Table 2.
[0242] (試験 4)  [0242] (Exam 4)
高周波電源の出力を 200W、低周波電源の出力を 400Wとした以外は試験 1と同 条件で、成膜を行なった。結果を表 2に示す。 Same as Test 1 except the output of the high frequency power supply is 200W and the output of the low frequency power supply is 400W Film formation was performed under the conditions. The results are shown in Table 2.
[0243] (試験 5) [0243] (Exam 5)
高周波電源の出力を 100W、低周波電源の出力を 500Wとした以外は試験 1と同 条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 1 except that the output of the high frequency power supply was 100 W and the output of the low frequency power supply was 500 W. The results are shown in Table 2.
[0244] (試験 6) [0244] (Exam 6)
高周波電源の出力を 400W、低周波電源の出力を 200Wとし、低周波電源の周波 数を 0. 1MHzとした以外は試験 1と同条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 1 except that the output of the high frequency power supply was 400 W, the output of the low frequency power supply was 200 W, and the frequency of the low frequency power supply was 0.1 MHz. The results are shown in Table 2.
[0245] (試験 7) [0245] (Exam 7)
高周波電源の出力を 200W、低周波電源の出力を 400Wとした以外は試験 6と同 条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 6 except that the output of the high frequency power supply was 200 W and the output of the low frequency power supply was 400 W. The results are shown in Table 2.
[0246] (試験 8) [0246] (Exam 8)
高周波電源の出力を 400W、低周波電源の出力を 200Wとし、低周波電源の周波 数を 1MHzとした以外は試験 1と同条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 1 except that the output of the high frequency power supply was 400 W, the output of the low frequency power supply was 200 W, and the frequency of the low frequency power supply was 1 MHz. The results are shown in Table 2.
[0247] (試験 9) [0247] (Exam 9)
高周波電源の出力を 200W、低周波電源の出力を 400Wとした以外は試験 8と同 条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 8 except that the output of the high frequency power supply was 200 W and the output of the low frequency power supply was 400 W. The results are shown in Table 2.
[0248] (試験 10) [0248] (Exam 10)
高周波電源の出力を 400W、低周波電源の出力を 200Wとし、低周波電源の周波 数を 3MHzとした以外は試験 1と同条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 1 except that the output of the high frequency power supply was 400 W, the output of the low frequency power supply was 200 W, and the frequency of the low frequency power supply was 3 MHz. The results are shown in Table 2.
[0249] (試験 11) [0249] (Exam 11)
高周波電源の出力を 200W、低周波電源の出力を 400Wとした以外は試験 10と同 条件で、成膜を行なった。結果を表 2に示す。  Film formation was performed under the same conditions as in Test 10 except that the output of the high frequency power supply was 200 W and the output of the low frequency power supply was 400 W. The results are shown in Table 2.
[0250] (試験 12) [0250] (Exam 12)
図 5に示したガスバリア性プラスチック容器の製造装置 200Bを用いて、 PETボトル の内壁面に DLC膜を成膜した。成膜条件は、原料ガスはアセチレンを使用し、原料 ガス流量を 120sccm、排気室 5の内部空間 31の容積を 3. 6リットノレ、絶縁体スぺー サー 4Bの厚さを 10mm、高周波電源(13. 56MHz)の出力を 600W、成膜時間を 2 秒間とした。なお、ダストの発生量の評価は、この条件で 20回成膜後に行なった。評 価結果を表 2に示した。 Using the gas barrier plastic container manufacturing device 200B shown in Fig. 5, a DLC film was formed on the inner wall of the PET bottle. The deposition conditions are acetylene as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 in the exhaust chamber 5 is 3.6 litter, the thickness of the insulator spacer 4B is 10 mm, and the high frequency power supply (13 The output of 56 MHz) was 600 W and the film formation time was 2 seconds. The amount of dust generated was evaluated after film formation 20 times under these conditions. Comment The results are shown in Table 2.
[0251] (試験 13) [0251] (Exam 13)
排気室 5の内部空間 31の容積を 4. 8リットルとした以外は試験 12と同条件で成膜 を行なった。評価結果を表 2に示した。  Film formation was performed under the same conditions as in Test 12, except that the volume of the internal space 31 of the exhaust chamber 5 was changed to 4.8 liters. The evaluation results are shown in Table 2.
[0252] (試験 14) [0252] (Exam 14)
図 6に示したガスバリア性プラスチック容器の製造装置 300Bを用いて、 PETボトル の内壁面に DLC膜を成膜した。成膜条件は、原料ガスはアセチレンを使用し、原料 ガス流量を 120sccm、排気室 5の内部空間 31の容積を 1. 2リットル、絶縁体スぺー サー 4Bの厚みを 40mmとし、高周波電源(13. 56MHz)の出力を 600W、成膜時 間を 2秒間とした。なお、ダストの発生量の評価は、この条件で 20回成膜後に行なつ た。評価結果を表 2に示した。  Using the gas barrier plastic container manufacturing device 300B shown in Fig. 6, a DLC film was deposited on the inner wall of the PET bottle. The deposition conditions were as follows: acetylene was used as the source gas, the source gas flow rate was 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 was 1.2 liters, the thickness of the insulator spacer 4B was 40 mm, and a high frequency power source (13 The output of 56 MHz) was 600 W and the film formation time was 2 seconds. Note that the amount of dust generated was evaluated after film formation 20 times under these conditions. The evaluation results are shown in Table 2.
[0253] (試験 15) [0253] (Exam 15)
図 7に示したガスバリア性プラスチック容器の製造装置 400Bを用いて、 PETボトル の内壁面に DLC膜を成膜した。可変コンデンサ 70を接続している。成膜条件は、原 料ガスはアセチレンを使用し、原料ガス流量を 120sccm、排気室 5の内部空間 31の 容積を 1 · 2リットル、絶縁体スぺーサー 4Bの厚さを 10mm、高周波電源 29 (13· 56 MHz)の出力を 600W、成膜時間を 2秒間、可変コンデンサ 70の容量を 50pFとした 。なお、ダストの発生量の評価は、この条件で 20回成膜後に行なった。評価結果を 表 2に示した。  Using the gas barrier plastic container manufacturing device 400B shown in Fig. 7, a DLC film was deposited on the inner wall of the PET bottle. A variable capacitor 70 is connected. The deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 is 1.2 liters, the thickness of the insulator spacer 4B is 10 mm, and the high frequency power supply 29 The output of (13 · 56 MHz) was 600 W, the film formation time was 2 seconds, and the capacitance of the variable capacitor 70 was 50 pF. The amount of dust generated was evaluated after film formation 20 times under these conditions. The evaluation results are shown in Table 2.
[0254] (試験 16) [0254] (Exam 16)
可変コンデンサ 70の容量を 105pFとした以外は試験 15と同条件で成膜を行なつ た。評価結果を表 2に示した。  Film formation was performed under the same conditions as in Test 15 except that the capacitance of the variable capacitor 70 was set to 105 pF. The evaluation results are shown in Table 2.
[0255] 高周波電力のみを供給した試験 1 (比較例)と高周波電力に低周波電力を重畳さ せた試験 2〜試験 11とを比較すると、低周波電力を重畳させることで、排気室の発光 量が低下し、排気室内でのプラズマ発生が抑制されたことがわかった。これに伴い、 排気室でのダスト付着量も低減した。一方、成膜速度を試験 1と試験 2〜試験 4につ レ、て比較すると、試験 2〜試験 4では成膜速度が大きくなつた。また、成膜均一性も 向上したことがわかる。低周波電力を重畳させることで、反応室内でのプラズマ発生 は同等以上に起こっており、プラズマ発生の中心部が容器の中心部に近づいたため に成膜均一性が向上したと考えられる。 [0255] Comparing test 1 (comparative example) in which only high-frequency power was supplied to test 2 to test 11 in which low-frequency power was superimposed on high-frequency power, emission of the exhaust chamber was achieved by superimposing low-frequency power. It was found that the amount was reduced and plasma generation in the exhaust chamber was suppressed. As a result, the amount of dust attached to the exhaust chamber has also been reduced. On the other hand, when the film formation rate was compared between Test 1 and Test 2 to Test 4, the film formation rate increased in Test 2 to Test 4. It can also be seen that the film formation uniformity has also improved. Plasma generation in the reaction chamber by superimposing low frequency power It is thought that the film formation uniformity was improved because the central part of the plasma generation approached the central part of the container.
[0256] 図 9に試験 1の条件で 100回成膜したボトル(図 9 (b) )と試験 4で 100回成膜したボ トル(図 9 (a) )の外観画像の比較を示した。試験 4では容器口部の成膜が抑制された ことがわかる。プラズマ発生の中心部分が下方にずれたためと考えられる。  [0256] Fig. 9 shows a comparison of the appearance images of the bottle (Fig. 9 (b)) formed 100 times under the conditions of Test 1 and the bottle (Fig. 9 (a)) formed 100 times in Test 4. . Test 4 shows that film formation at the container mouth was suppressed. This is probably because the central part of the plasma generation has shifted downward.
[0257] 排気室 5の容積を大きくした試験 12及び試験 13は、試験 1と比較すると、排気室の 発光量が低下し、排気室内でのプラズマ発生が抑制されたことがわかった。これに伴 レ、、排気室でのダスト付着量も低減した。  [0257] In Test 12 and Test 13 in which the volume of the exhaust chamber 5 was increased, it was found that the amount of luminescence in the exhaust chamber was reduced and plasma generation in the exhaust chamber was suppressed as compared with Test 1. As a result, the amount of dust attached to the exhaust chamber has also been reduced.
[0258] 絶縁体スぺーサー 4Bの厚さを大きくした試験 14は、試験 1と比較すると、排気室の 発光量が低下し、排気室内でのプラズマ発生が抑制されたことがわかった。これに伴 レ、、排気室でのダスト付着量も低減した。  [0258] Test 14 in which the thickness of the insulator spacer 4B was increased was found to be less than the test 1 in that the amount of light emitted from the exhaust chamber was reduced and plasma generation in the exhaust chamber was suppressed. As a result, the amount of dust attached to the exhaust chamber has also been reduced.
[0259] 図 7に示すように可変コンデンサ 70を排気室 5と接地との間に直列となるように接続 した場合、反応室 3Cから絶縁体スぺーサー 4B、排気室 5及び可変コンデンサ 70を 介してアースとなる電流経路のインピーダンスを Gと定義すれば、当該電流経路中で の合成静電容量 Cによるインピーダンスが Bであり、可変コンデンサ 70の容量を小さ  [0259] When the variable capacitor 70 is connected in series between the exhaust chamber 5 and the ground as shown in Fig. 7, the insulator spacer 4B, the exhaust chamber 5 and the variable capacitor 70 are connected from the reaction chamber 3C. If the impedance of the current path that is grounded is defined as G, the impedance due to the combined capacitance C in the current path is B, and the capacity of the variable capacitor 70 is reduced.
2  2
くすれば、インピーダンス G中に含まれる合成静電容量 Cに起因するインピーダンス  In other words, the impedance caused by the combined capacitance C contained in the impedance G
2  2
Bは増加することとなる。可変コンデンサ 70を接続した試験 15及び試験 16では、プ ラスチック容器 8と反応室 3Bの内部空間 30Bとの合成静電容量 Cのインピーダンス Aとの比較において可変コンデンサ 70の容量を調整することにより、インピーダンス B を高めたため、試験 1と比較すると、排気室の発光量が低下し、排気室内でのプラズ マ発生が抑制されたことがわかった。これに伴い、排気室でのダスト付着量も低減し た。試験 15と試験 16においては、可変コンデンサ 70の容量を小さくした試験 15が 排気室でのプラズマ発生がより抑制されていた。  B will increase. In Test 15 and Test 16 with the variable capacitor 70 connected, by adjusting the capacity of the variable capacitor 70 in comparison with the impedance A of the synthetic capacitance C between the plastic container 8 and the internal space 30B of the reaction chamber 3B, Since the impedance B was increased, it was found that the amount of light emitted from the exhaust chamber decreased compared to Test 1, and the generation of plasma in the exhaust chamber was suppressed. As a result, the amount of dust attached to the exhaust chamber has also been reduced. In Test 15 and Test 16, Test 15 in which the capacity of the variable capacitor 70 was reduced further suppressed plasma generation in the exhaust chamber.
[0260] (実施形態 C) [0260] (Embodiment C)
以下、実施例を示して本発明を更に詳細に説明する。実施例で使用したプラスチッ ク容器は、容量 500ml、容器の高さ 207mm、容器胴部径 68mm、口部開口部内径 21. 74mm,口部開口部外径 24. 94mm,口部の高さ 21. 0mm、容器胴部肉厚 0 . 3mm、樹脂量 30g/本の PET (ポリエチレンテレフタレート)容器である。 [0261] 評価は次の通りで行なった。 Hereinafter, the present invention will be described in more detail with reference to examples. The plastic container used in the examples has a capacity of 500 ml, a container height of 207 mm, a container body diameter of 68 mm, a mouth opening inner diameter of 21.74 mm, a mouth opening outer diameter of 24.94 mm, and a mouth height of 21. A PET (polyethylene terephthalate) container with a thickness of 0.3 mm and a container body thickness of 0.3 mm and a resin amount of 30 g / bottle. [0261] Evaluation was performed as follows.
(成膜均一性)  (Film uniformity)
成膜均一性は次のように求めた。容器底面から 2cm上 (底部)、同 8cm上 (胴部)、 同 16cm上 (肩部)について、それぞれ周方向に 3箇所を選んで膜厚を測定する。膜 厚は、 Tenchol社 alpha_step500の触針式段差計で測定した。それらを平均して 、底部、胴部及び肩部の各平均膜厚を求める。底部、胴部及び肩部の各平均膜厚 の中から平均膜厚が厚レヽ結果 (平均膜厚 A)と、最も平均膜厚が薄レヽ結果 (平均膜厚 B)を選びだし、数 19により成膜均一性(%)を求める。成膜均一性(%)が低いほど、 均一性が高い。  The film formation uniformity was determined as follows. Measure the film thickness at 3 locations in the circumferential direction, 2cm above (bottom), 8cm above (trunk), and 16cm above (shoulder) above the bottom of the container. The film thickness was measured with a stylus type step gauge of Tenchol alpha_step500. By averaging them, the average film thickness of the bottom, the trunk and the shoulder is obtained. From the average film thickness at the bottom, torso, and shoulder, select the average film thickness results (average film thickness A) and the thinnest average film thickness results (average film thickness B). To obtain the film formation uniformity (%). The lower the deposition uniformity (%), the higher the uniformity.
(数 19)成膜均一性 (%) = (平均膜厚 A—平均膜厚 B) / (平均膜厚 A +平均膜厚 B ) X 100  (Equation 19) Film formation uniformity (%) = (Average film thickness A—Average film thickness B) / (Average film thickness A + Average film thickness B) X 100
[0262] (成膜速度) [0262] (Deposition rate)
容器の平均膜厚 Aを成膜時間で割ることで、単位時間 (秒)当たりの成膜厚さを求 めた。  By dividing the average film thickness A of the container by the film formation time, the film thickness per unit time (second) was obtained.
[0263] (排気室の発光量)  [0263] (Light emission in exhaust chamber)
排気室の内部空間におけるプラズマ発生の有無及びその程度を調べるため、当該 内部空間に光ファイバ一の一端 (入光部)を設置し、その光ファイバ一の他端を放電 センサー(フォト一ダイオード、株式会社山武製光電センサー、 HPX-MA-063) に接続し、光ファイバ一に入射する光をモニタリングした。光ファイバ一の入光部の位 置は、例えば図 10の成膜装置において、「D」で示す箇所とした。放電センサーの出 力値 (V)の大小で、排気室内でのプラズマの発生の有無及びその程度を評価した。 出力値が大きいほど排気室内でのプラズマの発生量が多いことを示している。  In order to investigate the presence and extent of plasma generation in the internal space of the exhaust chamber, one end of the optical fiber (light incident part) is installed in the internal space, and the other end of the optical fiber is connected to a discharge sensor (photo diode, Connected to a Yamatake photoelectric sensor, HPX-MA-063), the light incident on the optical fiber was monitored. For example, in the film forming apparatus shown in FIG. 10, the position of the light incident part of the optical fiber is the part indicated by “D”. The presence or absence and degree of plasma generation in the exhaust chamber were evaluated based on the output value (V) of the discharge sensor. The larger the output value, the greater the amount of plasma generated in the exhaust chamber.
[0264] (排気室内でのダストの発生量) [0264] (Dust generation amount in the exhaust chamber)
開口部 32bの壁面(例えば図 10では Eと表記した箇所)にシリコンチップ Aを取り付 け、排気室 5の排気口付近 (例えば図 10では Fと表記した箇所)の壁面にシリコンチ ップ Bを取り付け、同一条件で 20回、容器に成膜した後、取り出して電子天秤 (新光 電子製、高精度電子天秤 AF-R220)で重量を測定した。成膜前後の重量差から付 着ダスト量とした。 [0265] (試験 1) A silicon chip A is attached to the wall surface of the opening 32b (for example, the location indicated as E in FIG. 10), and the silicon chip B is disposed near the exhaust port of the exhaust chamber 5 (for example, the location indicated as F in FIG. 10). The film was formed in a container 20 times under the same conditions, then taken out and weighed with an electronic balance (manufactured by Shinko Denshi, high-precision electronic balance AF-R220). The amount of dust attached was determined from the difference in weight before and after film formation. [0265] (Exam 1)
図 10に示したプラズマ CVD成膜装置 100Cを用レ、て、 PETボトルの内壁面に DL C膜を成膜した。成膜条件は、原料ガスはアセチレンを使用し、原料ガス流量を 120 sccm、排気室 5の内部空間 31の容積を 1. 2リットノレ、絶縁体スぺーサー 4C (ポリエ 一テルエーテルケトン製)の厚さを 10mm、低周波電源 270 (0. 4MHz)の出力を 60 0W、成膜時間を 2秒間とした。プラズマ着火手段は作動させた。なお、ダストの発生 量の評価は、この条件で 20回成膜後に行なった。排気室 5の発光量は 0Vで発光し なかった。ダストの発生量 (A)は 0. lmg以下、(B)は 0. lmg以下であり、反応室 3C の内部空間のみでプラズマが発生していた。成膜均一性は 8%、成膜速度は 143A /sであった。  Using the plasma CVD film forming apparatus 100C shown in Fig. 10, a DL C film was formed on the inner wall surface of the PET bottle. The deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space 31 of the exhaust chamber 5 is 1.2 litter, and the insulator spacer 4C (made of polyetheretherketone) is used. The thickness was 10 mm, the output of the low-frequency power supply 270 (0.4 MHz) was 600 W, and the film formation time was 2 seconds. The plasma ignition means was activated. The amount of dust generated was evaluated after 20 film formations under these conditions. The amount of light emitted from the exhaust chamber 5 was 0V and no light was emitted. The amount of dust generated (A) was 0.1 mg or less, and (B) was 0.1 mg or less, and plasma was generated only in the internal space of the reaction chamber 3C. The film formation uniformity was 8%, and the film formation rate was 143 A / s.
[0266] (試験 2) [0266] (Exam 2)
一方、比較例として、低周波電力の代わりに高周波電源(13. 56MHz)を接続し、 原料ガス供給管を内部電極とした不図示のプラズマ CVD成膜装置を用いて、 PET ボトルの内壁面に DLC膜を成膜した。成膜条件は、原料ガスはアセチレンを使用し、 原料ガス流量を 120sccm、排気室の内部空間の容積を 1. 2リットル、絶縁体スぺー サー(ポリエーテルエーテルケトン製)の厚さを 10mm、高周波電源(13· 56MHz) の出力を 600W、成膜時間を 2秒間とした。プラズマ着火手段は装備されていない。 なお、ダストの発生量の評価は、この条件で 20回成膜後に行なった。排気室 5の発 光量は 1 · 8V、ダストの発生量 (A)は 1 · 0mg、(B)は 0· 6mgであり、反応室 3Cの内 部空間及び排気室 5の内部空間の両方ともプラズマが発生していた。成膜均一性は 36%、成膜速度は 176A/sであった。  On the other hand, as a comparative example, a plasma CVD film-forming device (not shown) with a high-frequency power supply (13.56 MHz) connected instead of low-frequency power and a source gas supply pipe as an internal electrode was used on the inner wall surface of the PET bottle. A DLC film was formed. The deposition conditions are: acetylene is used as the source gas, the source gas flow rate is 120 sccm, the volume of the internal space of the exhaust chamber is 1.2 liters, the thickness of the insulator spacer (made of polyetheretherketone) is 10 mm, The output of the high frequency power supply (13 · 56MHz) was 600W and the film formation time was 2 seconds. Plasma ignition means are not equipped. The amount of dust generated was evaluated after film formation 20 times under these conditions. The amount of light generated in exhaust chamber 5 is 1 · 8V, the amount of dust generated (A) is 1 · 0mg, and (B) is 0 · 6mg. Both the internal space of reaction chamber 3C and the internal space of exhaust chamber 5 are Plasma was generated. The film formation uniformity was 36% and the film formation rate was 176 A / s.
[0267] 高周波電力を供給した試験 2 (比較例)と低周波電力を供給した試験 1とを比較す ると、低周波電力を供給すると排気室の発光量が 0Vで発光せず、排気室内でのプ ラズマ発生が抑制されたことがわかった。これに伴い、排気室でのダスト付着量も低 減した。また、成膜均一性も向上したことがわかった。  [0267] When test 2 (comparative example) that supplied high-frequency power was compared with test 1 that supplied low-frequency power, when the low-frequency power was supplied, the amount of light emitted from the exhaust chamber did not emit at 0V, and It was found that the generation of plasma was suppressed. Along with this, the amount of dust attached to the exhaust chamber has also been reduced. It was also found that the film formation uniformity was improved.
[0268] 図 16に試験 1の条件で 100回成膜したボトル(図 16 (a) )と試験 2で 100回成膜し たボトル(図 16 (b) )の外観画像の比較を示した。試験 1では容器口部の成膜が抑制 されたことがわかる。プラズマ発生の中心部分が下方にずれたためと考えられる。 [0269] (試験 3) [0268] Fig. 16 shows a comparison of the appearance images of a bottle (Fig. 16 (a)) 100 times deposited under the conditions of Test 1 and a bottle (Fig. 16 (b)) 100 times deposited in Test 2. . Test 1 shows that film formation at the container mouth was suppressed. This is probably because the central part of the plasma generation has shifted downward. [0269] (Trial 3)
試験 1の条件で、プラズマ着火手段を作動させ、スパーク発生部 40で常にスパーク を発生させ、プラズマが着火するとほぼ同時にスパークを消した。成膜回数を 30, 00 0回行なったところ、プラズマの不着火トラブルは 0回であった。なお、途中、適時、原 料ガス供給管 9 (内部電極)の外表面と、スパーク電極である線状若しくは棒状の導 電体 41もその先端を洗浄した。  Under the conditions of Test 1, the plasma ignition means was activated, sparks were always generated at the spark generator 40, and the sparks were extinguished almost simultaneously with the ignition of the plasma. When the number of times of film formation was 30,00 0 times, the plasma non-ignition trouble was 0 times. In the meantime, the tips of the outer surface of the raw material gas supply pipe 9 (inner electrode) and the linear or rod-like conductor 41 as a spark electrode were also cleaned at an appropriate time.
[0270] (試験 4) [0270] (Exam 4)
比較例として、試験 1の条件で、プラズマ着火手段を作動させずに成膜を繰り返し た。成膜回数を 30, 000回行なったところ、プラズマの不着火トラブルは 17回であつ た。なお、この場合においても、原料ガス供給管 9 (内部電極)の外表面と、スパーク 電極である線状若しくは棒状の導電体 41もその先端を洗浄した。  As a comparative example, the film formation was repeated under the conditions of Test 1 without operating the plasma ignition means. When 30,000 depositions were performed, there were 17 plasma non-ignition troubles. In this case as well, the tips of the outer surface of the source gas supply pipe 9 (inner electrode) and the linear or rod-like conductor 41 as the spark electrode were cleaned.
[0271] 試験 4では、低周波電力を供給してプラズマを発生させるため、試験 1の結果を考 慮すれば排気室 5の内部空間 31におけるプラズマ発生を抑制していることがわかる 力 プラズマの着火不良若しくは着火持続不良のトラブルが生じた。これに対して、 試験 3では、このようなトラブルはなぐ試験 1で製造されたガスバリア性プラスチック 容器が安定して製造された。 [0271] In Test 4, plasma is generated by supplying low-frequency power. Therefore, considering the results of Test 1, it can be seen that the generation of plasma in the internal space 31 of the exhaust chamber 5 is suppressed. Trouble with poor ignition or poor ignition persistence occurred. On the other hand, in Test 3, the gas barrier plastic container manufactured in Test 1 that eliminates such troubles was stably manufactured.

Claims

請求の範囲 The scope of the claims
[1] プラスチック容器を収容する真空チャンバとなる外部電極と、前記プラスチック容器 の内部に揷脱自在に配置される原料ガス供給管となる内部電極と、前記外部電極の 内部のガスを排気する真空ポンプと、前記外部電極に接続された電源と、前記外部 電極の内部空間と前記プラスチック容器の口部の上方にて連通する排気室と、前記 外部電極と前記排気室とを電気的に絶縁させる絶縁部材とを有し、前記プラスチック 容器の内壁面にプラズマ CVD法によってガスバリア性を有する薄膜を形成するガス バリア性プラスチック容器の製造装置において、  [1] An external electrode serving as a vacuum chamber that accommodates a plastic container, an internal electrode serving as a source gas supply pipe that is detachably disposed inside the plastic container, and a vacuum that exhausts gas inside the external electrode A pump, a power source connected to the external electrode, an exhaust chamber communicating with the internal space of the external electrode and the opening of the plastic container, and the external electrode and the exhaust chamber are electrically insulated. In an apparatus for producing a gas barrier plastic container, comprising an insulating member, and forming a thin film having a gas barrier property by a plasma CVD method on the inner wall surface of the plastic container.
前記外部電極の内壁面と前記プラスチック容器の外壁面とに挟まれた隙間空間に 誘電体からなるスぺーサ一が配置されており、かつ、  A spacer made of a dielectric material is disposed in a gap space between the inner wall surface of the external electrode and the outer wall surface of the plastic container; and
前記プラスチック容器自体の静電容量とその内部空間の静電容量との合成静電容 量を Cとし、前記真空チャンバの内部空間と前記排気室の内部空間とを含む成膜ュ The combined capacitance of the capacitance of the plastic container itself and the capacitance of its internal space is C, and the film forming unit including the internal space of the vacuum chamber and the internal space of the exhaust chamber.
1 1
ニットの内部空間のうち前記プラスチック容器の外側空間の合成静電容量を cとした  The combined capacitance of the outer space of the plastic container among the inner space of the knit is assumed to be c
2 とき、 c >cの関係が成立し、かつ、  2 when c> c holds, and
1 2  1 2
前記電源が周波数 400kHz〜4MHzの低周波電力を前記外部電極に供給するこ とを特徴とするガスバリア性プラスチック容器の製造装置。  The apparatus for producing a gas barrier plastic container, wherein the power supply supplies low frequency power having a frequency of 400 kHz to 4 MHz to the external electrode.
[2] 前記プラスチック容器は、胴部に対して口部が縮径した形状を有しており、 [2] The plastic container has a shape in which the mouth portion has a reduced diameter with respect to the trunk portion,
前記外部電極は、前記プラスチック容器の胴径よりもわずかに大きな内径を持つ筒 形状の内部空間を有しており、  The external electrode has a cylindrical internal space having an inner diameter slightly larger than the body diameter of the plastic container,
前記スぺーサ一は、前記プラスチック容器の胴部から口部にかけて縮径した部分 の外壁面と前記外部電極の筒形状の内壁面とに挟まれた隙間空間に配置されてい ることを特徴とする請求項 1に記載のガスバリア性プラスチック容器の製造装置。  The spacer is disposed in a gap space sandwiched between an outer wall surface of a portion having a reduced diameter from a body portion to a mouth portion of the plastic container and a cylindrical inner wall surface of the external electrode. The apparatus for producing a gas barrier plastic container according to claim 1.
[3] 前記外部電極は、前記プラスチック容器の全体を収容する内部空間を有するか、 或いは、前記プラスチック容器の口部を除く全体を収容する内部空間を有することを 特徴とする請求項 1又は 2に記載のガスバリア性プラスチック容器の製造装置。 [3] The external electrode has an internal space that accommodates the entire plastic container or an internal space that accommodates the entire plastic container excluding the mouth. An apparatus for producing a gas barrier plastic container as described in 1. above.
[4] 真空チャンバとなる外部電極にプラスチック容器を収容する工程と、 [4] storing a plastic container in an external electrode serving as a vacuum chamber;
前記プラスチック容器の内部に原料ガス供給管となる内部電極を配置する工程と、 前記外部電極の内壁面と前記プラスチック容器の外壁面とに挟まれた隙間空間に 誘電体からなるスぺーサーを配置する工程と、 A step of disposing an internal electrode serving as a source gas supply pipe inside the plastic container; and a gap space sandwiched between an inner wall surface of the external electrode and an outer wall surface of the plastic container. Placing a spacer made of a dielectric;
真空ポンプを作動させて前記外部電極の内部のガスを排気する工程と、 前記プラスチック容器の内部に原料ガスを減圧下で吹き出させる工程と、 前記プラスチック容器自体の静電容量とその内部空間の静電容量との合成静電容 量を Cとし、前記真空チャンバの内部空間と排気室の内部空間とを含む成膜ュニッ A step of evacuating a gas inside the external electrode by operating a vacuum pump; a step of blowing a raw material gas into the plastic container under reduced pressure; a capacitance of the plastic container itself and a static of the internal space thereof; The combined capacitance with the capacitance is C, and the film formation unit including the internal space of the vacuum chamber and the internal space of the exhaust chamber.
1 1
トの内部空間のうち前記プラスチック容器の外側空間の合成静電容量を Cとしたとき When the combined capacitance of the outer space of the plastic container is C
2 2
、C > Cの関係が成立する条件下で、前記外部電極に周波数 400kHz〜4MHzのAnd C> C, the external electrode has a frequency of 400 kHz to 4 MHz.
1 2 1 2
低周波電力を供給し、前記原料ガスをプラズマ化して、前記プラスチック容器の内壁 面にガスバリア性を有する薄膜を成膜する工程と、 Supplying low-frequency power, converting the source gas into plasma, and forming a thin film having gas barrier properties on the inner wall surface of the plastic container;
を有することを特徴とするガスバリア性プラスチック容器の製造方法。  A method for producing a gas-barrier plastic container, comprising:
前記ガスバリア性を有する薄膜として、炭素膜、珪素含有炭素膜又は SiO膜を成 膜することを特徴とする請求項 4に記載のガスバリア性プラスチック容器の製造方法。  5. The method for producing a gas barrier plastic container according to claim 4, wherein a carbon film, a silicon-containing carbon film, or a SiO film is formed as the gas barrier thin film.
PCT/JP2007/058458 2006-09-29 2007-04-18 Production device of gas barrier plastic container and its production method WO2008041386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-268300 2006-09-29
JP2006268300A JP5032080B2 (en) 2006-09-29 2006-09-29 Gas barrier plastic container manufacturing apparatus and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2008041386A1 true WO2008041386A1 (en) 2008-04-10

Family

ID=39268251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058458 WO2008041386A1 (en) 2006-09-29 2007-04-18 Production device of gas barrier plastic container and its production method

Country Status (2)

Country Link
JP (1) JP5032080B2 (en)
WO (1) WO2008041386A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883257B2 (en) 2009-04-13 2014-11-11 Kirin Beer Kabushiki Kaisha Method for manufacturing gas barrier thin film-coated plastic container
US9953809B2 (en) 2015-09-02 2018-04-24 Industrial Technology Research Institute Apparatus for coating a film in a container and method for coating the film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949426B2 (en) * 2017-09-27 2021-10-13 株式会社吉野工業所 Barrier membrane forming device and barrier membrane forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147878A (en) * 1996-11-19 1998-06-02 Kokusai Electric Co Ltd Plasma cvd system
JP2005113202A (en) * 2003-10-08 2005-04-28 Mitsubishi Shoji Plast Kk Plasma cvd film deposition system
JP2005194606A (en) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd Apparatus for forming barrier film on inner surface of plastic vessel, and method for manufacturing plastic vessel with barrier film-coated inner surface
JP2005281844A (en) * 2004-03-31 2005-10-13 Mitsubishi Heavy Ind Ltd Film deposition system and method
JP2007113052A (en) * 2005-10-19 2007-05-10 Mitsubishi Shoji Plast Kk Method for suppressing plasma generation outside reaction chamber, and method and device for manufacturing gas barrier property plastic container
JP2007126732A (en) * 2005-11-07 2007-05-24 Mitsubishi Shoji Plast Kk Plasma cvd film-forming apparatus, and method for manufacturing plastic container having gas barrier property

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147878A (en) * 1996-11-19 1998-06-02 Kokusai Electric Co Ltd Plasma cvd system
JP2005113202A (en) * 2003-10-08 2005-04-28 Mitsubishi Shoji Plast Kk Plasma cvd film deposition system
JP2005194606A (en) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd Apparatus for forming barrier film on inner surface of plastic vessel, and method for manufacturing plastic vessel with barrier film-coated inner surface
JP2005281844A (en) * 2004-03-31 2005-10-13 Mitsubishi Heavy Ind Ltd Film deposition system and method
JP2007113052A (en) * 2005-10-19 2007-05-10 Mitsubishi Shoji Plast Kk Method for suppressing plasma generation outside reaction chamber, and method and device for manufacturing gas barrier property plastic container
JP2007126732A (en) * 2005-11-07 2007-05-24 Mitsubishi Shoji Plast Kk Plasma cvd film-forming apparatus, and method for manufacturing plastic container having gas barrier property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883257B2 (en) 2009-04-13 2014-11-11 Kirin Beer Kabushiki Kaisha Method for manufacturing gas barrier thin film-coated plastic container
US9953809B2 (en) 2015-09-02 2018-04-24 Industrial Technology Research Institute Apparatus for coating a film in a container and method for coating the film

Also Published As

Publication number Publication date
JP5032080B2 (en) 2012-09-26
JP2008088471A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP4515280B2 (en) Apparatus and method for manufacturing a plastic container having a gas barrier thin film formed thereon
JP2008088472A (en) Gas barrier property plastic vessel production device and method for producing the same
KR100610130B1 (en) Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container
JPWO2003085165A1 (en) Plasma CVD film forming apparatus and CVD film coated plastic container manufacturing method
JP4372833B1 (en) Method for producing gas barrier thin film coated plastic container
JP4722674B2 (en) Plasma CVD film forming apparatus and gas barrier plastic container manufacturing method
JP4854983B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP4132982B2 (en) DLC film coated plastic container manufacturing equipment
WO2008041386A1 (en) Production device of gas barrier plastic container and its production method
JP4722667B2 (en) Method for suppressing plasma generation outside reaction chamber, method for manufacturing gas barrier plastic container, and apparatus for manufacturing the same
JP4664658B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP2005105294A (en) Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film
JPWO2003000559A1 (en) DLC film-coated plastic container manufacturing apparatus, DLC film-coated plastic container and method for manufacturing the same
JP5610345B2 (en) Manufacturing method of plastic container having gas barrier property, adapter for small container and thin film deposition apparatus
JP2005113202A (en) Plasma cvd film deposition system
JP2007070734A (en) Plastic container coated with diamond-like carbon film
JP2006321528A (en) Method for manufacturing gas barrier plastic container with spout with reduced coloring and its container
JPWO2003000558A1 (en) Moisture / gas barrier plastic container with partition plate, device for manufacturing the same, and method for manufacturing the same
JP4945398B2 (en) Manufacturing method of ultra-thin carbon film coated plastic container
JP2001232714A (en) Dlc film and carbon film coated plastic container
JP2005330542A (en) Plasma cvd film deposition system, method for confirming ignition of plasma, method for confirming property of cvd film and method for confirming stain of system
JP2001031045A (en) Dlc film, plastic container, and manufacturing apparatus for carbon film-coated plastic container
KR100976104B1 (en) Device for manufacturing dlc film-coated plastic container
JP2006299332A (en) Plasma cvd film deposition apparatus, and method of manufacturing plastic container having barrier property
JP2005325395A (en) Plasma cvd deposition apparatus and method for producing plastic container coated with cvd film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741894

Country of ref document: EP

Kind code of ref document: A1