WO2008040164A1 - PROCÉDÉ DE MISE EN œUVRE D'UN ACCÈS ALÉATOIRE D'UN NOUVEAU NOEUD D'ACCÈS, ET SYSTÈME DE COMMUNICATION ASSOCIÉ - Google Patents

PROCÉDÉ DE MISE EN œUVRE D'UN ACCÈS ALÉATOIRE D'UN NOUVEAU NOEUD D'ACCÈS, ET SYSTÈME DE COMMUNICATION ASSOCIÉ Download PDF

Info

Publication number
WO2008040164A1
WO2008040164A1 PCT/CN2007/002732 CN2007002732W WO2008040164A1 WO 2008040164 A1 WO2008040164 A1 WO 2008040164A1 CN 2007002732 W CN2007002732 W CN 2007002732W WO 2008040164 A1 WO2008040164 A1 WO 2008040164A1
Authority
WO
WIPO (PCT)
Prior art keywords
access node
station
new access
relay station
capability
Prior art date
Application number
PCT/CN2007/002732
Other languages
English (en)
French (fr)
Inventor
Aimin Zhang
Yanling Lu
Jiang Li
Shulan Feng
Zheng Shang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07816349.0A priority Critical patent/EP2053872B1/en
Publication of WO2008040164A1 publication Critical patent/WO2008040164A1/zh
Priority to US12/403,987 priority patent/US8086173B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a relay station technology.
  • BACKGROUND With the development of communication technologies in the direction of personalization, mobility, and broadband, mobile technologies, wireless technologies, broadband technologies, and multimedia communication technologies have gradually become hot research technologies.
  • the access network In addition to the integration of the core network, the access network will be one of the bottlenecks that limit network performance. Therefore, Broadband Wireless Access (BWA) technology is one of the key technologies for the development of next-generation communication networks. Access technologies can be divided into multiple types by wired, wireless, or fixed and mobile.
  • Wireless access refers to the access technology that uses wireless means in part or in whole from the switching node to the user terminal.
  • the wireless access system has the advantages of low network construction cost, capacity expansion, on-demand, low operating cost, etc. It can be used as a supplement to the wired network in developed areas, and can quickly replace faulty cable systems or provide short-term temporary services. It can be widely used to replace cable subscriber loops in developing or remote areas, saving time and investment.
  • Wireless access technologies are divided into two categories: mobile access and fixed access.
  • mobile broadband wireless access mainly refers to the third generation mobile communication technology, which can realize broadband access in a mobile state, but the access speed can be different at different moving speeds.
  • Mobile access can be divided into two types: high-speed mobile access and low-speed mobile access.
  • High-speed mobile access can be realized by cellular systems, satellite mobile communication systems, and cluster systems.
  • the low-speed access system can be implemented by personal communication systems. .
  • Fixed access refers to wireless access from the switching node to the fixed user terminal. It is actually the Public Switched Telephone Network (PSTN) / Integrated Services Digital Network (ISDN). ”) Wireless extension.
  • PSTN Public Switched Telephone Network
  • ISDN Integrated Services Digital Network
  • MMDS Multi-channel Multi-point Distribution Service
  • LMSD Fixed Multi-point Distribution Service
  • the IEEE 802.16 working group proposed physical and MAC layer standards for broadband wireless systems.
  • the 802.16 Wireless Metropolitan Area Network provides air interface specifications for fixed, portable and mobile broadband access systems, including high-data-rate direct-view signals for fixed wireless networks operating in the 10 - 66 GHz range, as well as fixed, portable and mobile systems.
  • the high operating frequency will result in a very limited coverage of the base station. Therefore, by adding a wireless relay station to the network, the coverage of the system can be increased or the throughput of the system can be increased.
  • the wireless relay station communicates with the base station over the air interface and forwards the data of the terminal. Since the biggest feature of the wireless relay station is that it does not need cables to connect with the core network, the flexibility of laying it is larger than that of the traditional base station. Therefore, under the same system performance requirements, including the coverage and throughput of the system, the construction of the relay station The cost is also smaller than building a base station. The characteristics of the relay station also enable it to be laid quickly and the operating costs are relatively small. Therefore, the use of relay stations can achieve greater coverage at a lower cost, and these advantages will also expand the market demand for wireless broadband access networks.
  • the relay stations currently in operation are mainly amplifying and forwarding type repeaters. Such relay stations usually use two sets of mutually isolated antennas, one set of antennas for receiving signals of the base station, and the other set of antennas for amplifying the received signals and Launched.
  • the disadvantage of this type of relay station is that it does not increase the signal-to-noise ratio.
  • the transceiver antenna is not well isolated, it may cause self-excitation of the amplifier.
  • digital relay stations are becoming a hot research topic.
  • the basic working principle of the digital relay station is as follows. After receiving the signal from the transmitting end, the digital relay station first decodes the signal, then re-encodes it and then sends it to the receiving end.
  • the advantage of digital relay stations is that they can improve the signal-to-noise ratio.
  • the reception and transmission can be based on the link quality. Different coding methods are adopted to improve the utilization of spectrum resources.
  • the random access procedure of the mobile terminal is an indispensable process before the mobile terminal accesses the network in all communication systems.
  • the random access procedure mainly occurs in the following two situations: The first is that after the mobile terminal is powered on, before establishing a connection with the network Second, after the mobile terminal receives the paging of the network, from the idle state to before re-establishing the connection with the network.
  • the inventors have found that, in either case, the mobile terminal must be within the coverage of the base station to achieve random access. That is to say, if the mobile terminal is not within the coverage of the base station, even if the mobile terminal is within the coverage of the relay station, the random access procedure cannot be implemented.
  • the newly accessed node may be a newly accessed relay station in addition to the mobile terminal. Therefore, if the relay station is not within the coverage of the base station, even if the relay station is within the coverage of other connected relay stations, The random access process may not be implemented. Summary of the invention
  • the main object of the present invention is to provide a method for random access of a new access node and a system thereof, so that a new access node within the coverage of the relay station can implement random access.
  • the present invention provides a method for random access of a new access node, which includes the following steps:
  • Each relay station separately reports the received access request from the new access node to the synchronization station by using a report message, and the synchronization station selects the received connection according to the access request from the same new access node received by each relay station and itself.
  • the access of the new access node is completed according to the station selected by the synchronization station and the type of the synchronization station.
  • the present invention also provides a wireless communication system comprising at least one new access node, at least one relay station and at least one synchronization station, the relay station comprising: a forwarding module, configured to receive the received access from the new access node Requesting to notify the synchronization station by a report message;
  • the synchronization station includes: a selection module, configured to select a site with the best signal quality of the received access request according to an access request from the same new access node received by each relay station; The synchronization station completes access of the new access node according to the selected station and its own type.
  • the present invention also provides a method for random access of a new access node, comprising the following steps: if the signal quality of the access request from the new access node received by the high capability relay station exceeds a preset threshold, then the new connection The ingress node allocates a bandwidth for sending the ranging request message, and sends a ranging request message sent by the new access node to the base station;
  • the base station interacts with the new access node by the high-capability relay station to complete access of the new access node.
  • the present invention also provides a wireless communication system including a base station, a high capability relay station, and at least one new access node;
  • the high-capability relay station includes: a module for determining whether a received signal quality of an access request from a new access node exceeds a preset threshold; and when the signal quality of the access request exceeds a preset threshold, The new access node allocates a module for transmitting a bandwidth of the ranging request message; and a module for transmitting a ranging request message sent by the new access node to the base station;
  • the base station interacts with the new access node by the high-capability relay station to complete access of the new access node.
  • the high-capability relay station further includes, when receiving an access request from a new access node, transmitting an access response message to the new access node according to a signal quality of the access request.
  • the new access node is a mobile terminal, a low capability relay station, or a high capability relay station.
  • the main difference between the technical solution of the present invention and the prior art is that when the new access node is in the range covered by the relay station, the access request sent by the new access node by each relay station is notified by the report message.
  • the station by comparing the signal quality of each relay station and its own access request from the same new access node, selects the site with the best signal quality of the received drop request, according to the selected site and the local.
  • the type of the synchronization station completes the access of the new access node, so that the new access node within the coverage of the relay station can randomly access the channel, taking full advantage of the advantages brought by the introduction of the relay station to the system.
  • FIG. 1 is a flowchart of processing of a base station in a method for random access of a new access node according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the relationship between a new access node and a base station in a method for random access of a new access node according to the first embodiment of the present invention
  • FIG. 3 is a flowchart of processing of a low-power relay station in a method for random access of a new access node according to a first embodiment of the present invention
  • FIG. 4 is a flowchart of a random access method for a new access node when a station with the best access code signal received by the base station itself is received according to the first embodiment of the present invention
  • FIG. 5 is a flowchart of a random access method for a new access node when a station with the best access code signal quality received in the first embodiment of the present invention is a low capability relay station;
  • FIG. 6 is a schematic diagram showing the relationship between a new access node and a low capability/high capability relay station and a base station according to the present invention
  • FIG. 7 is a flowchart of processing of a high-power relay station in a method for random access of a new access node according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart of processing of a low-power relay station in a method for random access of a new access node according to a second embodiment of the present invention
  • FIG. 9 is a flowchart of a random access method for a new access node when a station with the best access code signal quality received in the second embodiment of the present invention is a low-capability relay station;
  • FIG. 10 is a flowchart of a method for random access of a new access node according to a sixth embodiment of the present invention. detailed description
  • the new access node sends an access request in the access channel with a certain transmit power, and each low-capability relay station that receives the access request passes the ranging code report message.
  • the incoming request is forwarded to the sync station. Since the high-capability relay station and the base station have the functions of allocating radio resources, transmitting broadcast management messages, and synchronizing signals, the new access node can be synchronized with it, so that the high-capability relay station and the base station are called synchronization stations.
  • the synchronization station selects the station with the best signal quality from among the stations that receive the access request signal from the same new access node (including the synchronization station itself and each low capability relay station).
  • the base station interacts with the new access node through the low-capability relay station to complete access of the new access node; if the selected site is the The synchronization station itself, and the synchronization station is a base station, the base station directly interacts with the new access node to complete access of the new access node. If the synchronization station is a high-capability relay station, and the selected station of the high-capability relay station is a low-capability relay station, the base station interacts with the new access node through the high-capability relay station and the low-capability relay station to complete the new access node.
  • the base station interacts with the new access node through the high-capability relay station to complete the connection of the new access node.
  • the new access node may be a relay station or a mobile terminal.
  • the high-capability relay station Allocating a bandwidth for sending the ranging request message to the new access node, and sending a ranging request message sent by the new access node to the base station, where the base station interacts with the new access node by using the high-capability relay station to complete Access to the new access node. This allows random access to be achieved by new access nodes within the coverage of the relay.
  • the new access node in the coverage of the cell can receive all the broadcast information, and the broadcast information can be directly sent by the base station; or the base station and the low-capacity relay station can be the same time-frequency resource.
  • the same broadcast information is sent on, at which time, the information received by the new access node is a superposition of broadcast signals simultaneously transmitted by the base station and the low-capability relay station.
  • each relay station is a low-capability relay station that can transmit a downlink broadcast message
  • the synchronization station is a base station, and does not exist in the transmission link of the new access node to the base station.
  • high capacity relay stations In high capacity relay stations.
  • the processing flow of the base station and the low-capability relay station in this embodiment will be separately described below, and the processing flow of the base station is as shown in FIG. 1.
  • the base station waits for a random access code (i.e., an access request). Specifically, if the new access node needs to initiate random access, it must first scan the downlink synchronization information, establish synchronization with the base station or the low-capability relay station, and obtain the uplink and downlink channel parameters from the broadcast message. Then, the access code is transmitted in the access channel with a certain transmission power; that is, the initial ranging code is transmitted.
  • a random access code i.e., an access request.
  • the low-capability relay station and the base station are completely synchronized, and the time division duplex ("TDD") method is used to communicate with the base station and the new access node, respectively.
  • TDD time division duplex
  • the low-capacity relay station is uniformly coordinated by the base station to which it belongs, and does not have the final decision right itself.
  • the downlink subframe and the uplink subframe of the base station are divided into two parts.
  • the new access node For the downlink subframe, a part is used to serve the new access node, which is called a downlink terminal subframe, and another part is used to provide a service for the low-capability relay station, so it is called a downlink relay subframe; for the uplink subframe, the same is divided into Uplink terminal subframe and uplink relay subframe.
  • the new access node can receive all broadcast information, and the broadcast information can be directly sent by the base station; or the base station and the low-capacity relay station can send the same broadcast information on the same time-frequency resource, in this case, new
  • the information received by the access node is a superposition of broadcast signals simultaneously transmitted by the base station and the low-capability relay station.
  • the base station receives the random access code.
  • the relationship between the new access node and the base station and the low-capacity relay station can be divided into the following four cases, and the new access node is described as a mobile terminal, as shown in FIG. 2:
  • the signal transmitted by the mobile terminal is only received by the base station, and other low-capability relay stations receive signals not transmitted by the mobile terminal, such as the mobile terminal 1.
  • the signal transmitted by the mobile terminal can only be received by one low-capability relay station and cannot be received by the base station, such as the mobile terminal 2.
  • the signal transmitted by the mobile terminal may be received by two or more low-capacity relay stations and cannot be received by the base station, such as the mobile terminal 3.
  • the signal transmitted by the mobile terminal may be received by one or more low-capability relay stations, or may be received by the base station, such as the mobile terminal 4.
  • the new access node When the new access node is a relay station, it can also be divided into the above four cases.
  • the access code sent by the new access node may also be received only by the base station, or received by one low-capacity relay station, or received by two or more low-capacity relay stations, or received by the low-capability relay station and the base station.
  • each low-capability relay station receives the access code from the new access node
  • the received access code from the new access node is forwarded to the base station by the ranging code report message, and the ranging is performed.
  • the code report message includes parameters of the access signal, for example, a received signal strength parameter (such as average power or signal to noise ratio, carrier frequency deviation ⁇ / of the new access node relative to the low capability relay station, and the new access node)
  • the time synchronization deviation ⁇ relative to the low capability relay station.
  • the report message sent by each low-capability relay station includes the parameters of the access signal, the report message can be regarded as a ranging code report message, and its format is as shown in Table 1:
  • Table 1 where the variable parameter encoding format in the ranging code report message is as shown in Table 2:
  • Ranging code attributes bit #31-22 OFDM time symble reference
  • each low-capability relay station may first determine whether the quality of the access code signal exceeds a preset threshold, and if yes, forward the access code to The base station, otherwise, ignores the access code.
  • the base station selects the station that receives the best quality of the access code signal. Specifically, the base station selects, according to the evaluation indicator of the signal quality, the best quality of the access code signal received from each low-capability relay station by using the report message and the access code received by the same new access node. Site.
  • the evaluation index of the signal quality is the received signal strength parameter (such as the average power or signal to noise ratio, the carrier frequency offset H of the new access node relative to the low capability relay station, and the time synchronization deviation of the new access node relative to the low capability relay station.
  • the base station can calculate
  • / the smallest value of the site as The station with the best signal quality, where i 0, 1, k, k is the number of low-capability relay stations that forward the access code.
  • the corresponding access code is the base station The access code received by itself,
  • P. P BS + P - Offset
  • 5 is the signal strength of the access code, which is a fixed parameter greater than 0, ⁇ / .
  • is the access station relative to the base
  • ⁇ 7 ⁇ is the time synchronization deviation of the access station relative to the i-th low-capability relay station.
  • the low-capability relay station may first determine whether the quality of the access code signal exceeds a preset threshold, and if the access code signal quality is greater than a preset threshold, The access code is forwarded to the base station by using a report message, which saves system resources in the base station.
  • step 104 it is determined whether the selected site is the base station itself. Specifically, the base station selects the best quality of receiving the access code signal from each station (including the base station and the low-capability relay station) that receives the access code from the same new access node according to the evaluation index of the signal quality. After the station, it is judged whether the selected station is the base station itself, and if so, proceeds to step 105; otherwise, proceeds to step 112.
  • step 105 the base station determines whether the parameters of the terminal transmitting the access code are good enough. Specifically, if the base station determines that the parameter of the terminal that sends the access code is good enough, the process proceeds to step 107; if not, proceeds to step 106, and sends an access response message including the adjustment parameter to the new access node, so that The new access node can adjust the signal parameters (including the transmit power) according to the response message and then send the access code again. Then, the base station waits for the new access node to send the random access code. If the base station determines that the signal quality of the access code is good enough, then step 107 is entered.
  • step 107 the base station sends an access response message containing the success information to the new access node, indicating that the parameters of the terminal have been adjusted sufficiently.
  • the base station allocates a non-contention time-frequency resource for the new access node, so that the new access node sends a ranging request message (Ranging-Request).
  • the base station waits for the new access node to send a ranging request message. Then, proceeding to step 1 10, the base station receives the time frequency specified by the new access node at the base station. Ranging request message sent on the source.
  • the base station sends a corresponding response message, that is, a ranging response message (Ranging-Response).
  • a ranging response message Ranging-Response
  • the base station selects the station that receives the access code signal from the stations receiving the access code from the same new access node (including the base station and the low-capability relay station) according to the evaluation index of the signal quality, the station having the best quality is not the base station.
  • the self that is, the station that receives the best access signal quality is a low-capability relay station, proceeds to step 112.
  • step 1 12 the base station determines whether the quality of the selected access code signal forwarded by the low capability relay station via the report message is good enough. Specifically, if the base station determines that the access code signal quality is good enough, proceed to step 1 14; if not, proceed to step 1 13, and send a response message including the adjustment parameter to the low-capability relay station, by the low-capability relay station.
  • the response message including the adjustment parameter is forwarded to the new access node, so that the new access node can adjust the signal parameter (including the transmission power) according to the response message, and then send the access code again, and then the base station re-transmits Waiting for the new access node to send a random access code.
  • the base station adjusts parameters used by the new access node for accessing the channel according to the parameters of the low-capability relay station, so as to ensure that the new access node can successfully access the channel. If the base station determines that the access code signal quality is good enough, then step 114 is entered.
  • step 144 the base station sends a ranging response including the success information to the low-capability relay station, and the low-capacity relay station forwards the ranging response including the success information to the new access node, indicating that the new access is allowed to be established.
  • the connection between the node and the base station is not limited to the base station.
  • the base station allocates a non-contention time-frequency resource for the new access node, so that the new access node sends a ranging request message.
  • the base station waits for a ranging request message sent by the new access node forwarded by the low capability relay station.
  • the base station receives, by the low-capability relay station, a ranging request message sent by the new access node on the time-frequency resource specified by the base station.
  • the base station forwards a corresponding ranging response message to the new access node through the low capability relay station.
  • the processing flow of the low-capability relay station in this embodiment is as shown in FIG. 3.
  • the low capability relay station determines the type of information received. Specifically, if the new access node is within the coverage of the low-capability relay station, when the new access node transmits an access code (initial ranging code), the low-capability relay station will receive the new access node. The initial ranging code transmitted; if the low-capability relay station is the station with the best signal quality among all stations receiving the same new access node signal, the low-capability relay station will receive the adjustment parameter or success information sent by the base station.
  • an access code initial ranging code
  • the low capability relay station if the low capability relay station receives the access code signal, it will also receive a bandwidth allocation message sent by the base station containing non-contention time-frequency resource information; if the base station receives the low-capability relay station The ranging request message of the new access node, the low capability relay station will receive the ranging response message of the base station; if the low capability relay station is the station with the best signal quality among all stations receiving the same new access node signal And the base station has allocated the non-competitive time-frequency resource for transmitting the information required to establish the connection to the new access node, Low capacity relay station receives the new access node transmits a ranging request message. Therefore, when a low-capability relay station receives a message, it needs to first determine the type of information received.
  • step 302 If the information is an access code from the new access node, proceed to step 302; if the information is an access response message from the base station, a bandwidth allocation message including non-contention time-frequency resource information, or a ranging response message Then, proceed to step 304; if the information is a ranging request message from the new access node, proceed to step 305.
  • step 302 when the low capability relay station receives the access code from the new access node, it is determined whether the signal quality of the access code exceeds a preset threshold.
  • the evaluation index of the low capability relay station determining the quality of the access code signal may include a signal strength, a time synchronization deviation of the signal from the low capability relay station, and a carrier frequency deviation of the signal from the low capability relay station.
  • the low-capability relay station forwards the access code to the base station by using a report message, where the report message includes the received signal strength parameter P, the new connection Carrier frequency deviation of the relatively low-capability relay station of the ingress node ⁇ , and the relatively low capability of the new access node
  • the parameters such as the time synchronization deviation ⁇ of the relay station provide a reliable basis for the base station to select the station with the best access signal quality of the new access node.
  • the low-capability relay station When the low-capability relay station receives an access response message from the base station (such as an access response message including an adjustment parameter or an access response message containing the success information), a bandwidth allocation message including non-contention time-frequency resource information, or a measurement
  • the process proceeds to step 304, and the message is sent to the new access node.
  • the low-capability relay station sends an access response message including the adjustment parameter to the new access node, so that the new access node can adjust the signal parameter (including the transmission power) according to the response message, and then initiate the access code again.
  • the low-capability relay station can ensure that the new access node can smoothly access the channel through the low-capability relay station by transmitting an access response message, a bandwidth allocation message, or a ranging response message to the new access node.
  • the process proceeds to step 305, and the low capability relay station forwards the ranging request message to the base station to establish a connection between the new access node and the base station. .
  • the following is the system access for Worldwide Interoperability for Microwave Access (WiMAX) system.
  • the quality of the access code is the best among the access codes received by the same new access node from each relay station and the base station itself.
  • the site is the base station itself as an example, and the flow of the random access of the new access node in this embodiment is described.
  • step 401 when the time of the code division multiple access ("CDMA") initial ranging opportunity comes, the base station sends a "UL-MAP" message in the frame header, where The message contains time-frequency resource allocation information of the ranging. If the new access node is within the transmission range of the message, the message may be directly transmitted to the new access node; if there is a low-capability relay station within the transmission range of the message, if the low-capability relay station transmits the same detection as the base station Listening, the base station should send the message to the low-capability relay station in advance, so that the low-capability relay station can send the message on the same time-frequency resource with the base station.
  • the new access node scans the downlink synchronization information, establishes synchronization with the base station or the low-capability relay station, and then acquires uplink and downlink channel parameters from the broadcast message.
  • CDMA code division multiple access
  • the new access node decodes the "UL-MAP" message, when testing When the opportunity comes, the new access node randomly selects a code in the ranging code set and sends it out in a ranging slot in the ranging subchannel, that is, transmits the access code, that is, the initial ranging code. Then, start the T3 timer, wait for the ⁇ ⁇ access response message to arrive, and if the timer overflows, perform the corresponding overflow processing.
  • the new access node may be a mobile terminal or a relay station, so that the mobile terminal and the relay station within the coverage of the relay station can be smoothly accessed.
  • the initial ranging code transmitted by the mobile terminal or the relay station as the new access node may be located in different intervals to reduce the possibility of collision between the relay station and the mobile terminal, and to reduce the average access time of the relay station. If a collision occurs during ranging, and no access response message is received within the time specified by the protocol, the new access node repeats the transmission according to the concession policy specified in the protocol until a certain number of times is reached.
  • the low-capability relay station will receive the access code, and generate a ranging code report message of the access code, and send the report to the base station.
  • the message carries a received signal strength parameter (such as average power or signal to noise ratio) / / a carrier frequency offset of the new access node relative to the low capability relay station, and a time synchronization of the new access node with respect to the low capability relay station.
  • a received signal strength parameter such as average power or signal to noise ratio
  • the format of the message has been described in the processing flow of the base station, and details are not described herein.
  • the ranging code report message includes various parameters (including the ranging code, the sending position of the ranging code,
  • the low-capability relay station provides information such as the ranging code adjustment amount indicated by the receiving decision by the receiving code, and provides a reliable basis for the base station to select the station that receives the best access signal quality.
  • each low-capability relay station may first determine whether the quality of the access code signal exceeds a preset threshold, and if so, generate a ranging code report message. Sent to the base station, otherwise, the access code is ignored. The station with poor quality of the received access code signal does not need to send an access code report message, which saves system resources in the base station.
  • the base station collects an access code corresponding to the same new access node that is received by itself and forwarded by the low-capability relay station through the report message, and sends an access response message. Specifically, the base station waits for a period of time after receiving the access code of the new access node, and if waiting for a period of time, the base station does not receive the ranging code report message sent by the low-capability relay station of the new access node. Then, it regards itself as the site with the best quality of the received access code signal. Otherwise, the base station selects a station with the best quality of the received access code signal through the selection algorithm. The specific selection algorithm is already in the processing flow of the base station. Description, no longer repeat here. In the present embodiment, the selected site is the base station itself. Therefore, the base station directly sends the ranging response message to the new access node. In this embodiment, the ranging status message in the access response message in this step is
  • the access response message is an access response message including an adjustment parameter
  • the new access node is required to adjust its own signal parameters (including transmission power) according to the response message, and then send the access code again.
  • step 404 when the time for transmitting the CDMA ranging opportunity comes, the base station transmits the "UL-MAP" message in the frame header to include the time-frequency resource allocation information of the ranging.
  • This step is the same as step 401.
  • Step 405 and step 405' are the same as step 402 and step 402', respectively, and are not described herein again.
  • step 406 after receiving the access code sent by the new access node after adjusting the signal parameters (including the transmit power) of the new access node, the base station sends an access response message to the new access node again. If the signal quality of the access code received by the base station is good enough, the ranging status message in the access response message sent this time is "successful", that is, the access response message containing the success information is sent. And, the base station allocates a non-contention bandwidth to the new access node by using a bandwidth allocation message (CDMA_Allocation_IE), and the new access node sends a ranging request message.
  • CDMA_Allocation_IE bandwidth allocation message
  • Step 407 is a step of the base station including the time-frequency resource allocation information of the ranging in the "UL-MAP" message sent by the base station when the time for transmitting the CDMA ranging opportunity comes.
  • step 408 After the new access node receives the non-contention time-frequency resource information allocated to it, the process proceeds to step 408 to send a ranging request message on the specified non-contention time-frequency resource. It contains the Media Access Control (MAC) address of the new access node.
  • MAC Media Access Control
  • the base station receives the ranging request message sent by the new access node. Then, generating a response message, that is, a ranging response message, which includes information such as a connection identifier ("CID") assigned to the new access node, and sends the ranging response message to the new connection.
  • a response message that is, a ranging response message, which includes information such as a connection identifier ("CID") assigned to the new access node
  • the system is a WiMAX system, and among the stations (including base stations and low-capacity relay stations) that receive the access code signals from the same new access node, the one with the best signal quality is a low-capability relay station, and the low-capability relay station.
  • step 501 when the time of the code division multiple access (“CDMA") initial ranging opportunity comes, the base station includes the test in the "UL-MAP" message it sends.
  • the time-frequency resource allocation information is the same as the step 401, and is not described here.
  • the new access node decodes a "UL-MAP" message, and the new access node randomly selects a code in the ranging code set, and one ranging slot in the ranging subchannel If it is sent out, it sends the access code, that is, the initial ranging code, and then starts the T3 timer, waiting for the arrival of the access response message. If the timer overflows, the corresponding overflow processing is performed. This step is identical to step 402.
  • step 502 ′ If there is a low-capability relay station in the transmission range of the access code, the process proceeds to step 502 ′, and the step 502 ′ is identical to the step 402 ′, and details are not described herein again.
  • the base station collects an access code corresponding to the same new access node that is received by the low-capacity relay station and is forwarded by the low-capacity relay station, and selects a site with the best quality of the received access code signal. Send a ranging response message.
  • This step is substantially the same as step 403. The difference is only that, in step 403, the station that selects the best quality of the received access code signal is the base station itself, and in this step, the base station selects the receiving access.
  • the station with the best code signal quality is the low capability relay station 1. Since the low-capability relay station in the present embodiment is a relay station capable of transmitting a broadcast message, the base station transmits a ranging response message to the low-capability relay station 1.
  • the access response message can be directly broadcast by the base station.
  • the base station adjusts parameters of the new access node for accessing the channel according to the parameters of the low-capability relay station 1 to ensure that the new access node can successfully access the channel.
  • the low-capability relay station 1 forwards the received access response message containing the adjustment parameter from the base station to the new access node, so that the new access node can respond to its own signal parameters according to the response message (including The transmit power is adjusted and the access code is sent again.
  • step 505 when the time for transmitting the CDMA ranging opportunity comes, the "UL-MAP" message sent by the base station includes the time-frequency resource allocation information of the ranging. This step is the same as step 501.
  • Step 506 and step 506' are identical to steps 502 and 502', respectively, and are not described herein again.
  • step 507 the base station collects an access code corresponding to the same new access node that is received by the low-capability relay station and is forwarded by the low-capability relay station, and is sent after selecting the site with the best quality of the received access code signal. Access response message.
  • This step is substantially the same as step 503, except that in step 503, the quality of the access code signal received by the station selected by the base station is not good enough, and in this step, the station selected by the base station receives the same.
  • the access code signal quality is good enough, so the ranging state in the access response message sent by the base station to the low capability relay station 1 is "successful".
  • the base station allocates a non-contention bandwidth to the new access node by using a bandwidth allocation message (CDMA_Allocation_IE), and the new access node sends a ranging request message.
  • the base station may directly send a bandwidth allocation message to the new access node, or the base station may send a bandwidth allocation message to the new access node through the low capability relay station 1.
  • the low capability relay station 1 forwards the received ranging response message containing the success information from the base station to the new access node, and notifies the new access node to send the ranging request message.
  • Step 509 When the time to send the CDMA ranging opportunity is sent, the base station sends again
  • the step of the message, the "UL-MAP" message contains the time-frequency resource allocation letter ij of the ranging After the new access node receives the non-competitive time-frequency resource information assigned to it, the access step
  • ranging request message Send a ranging request message on the specified non-competitive time-frequency resource. It contains the MAC address of the new access node.
  • the ranging request message is forwarded to the base station through the low capability relay station 1, and therefore, in this step, the ranging request message is received by the low capability relay station 1.
  • the low capability relay station 1 forwards the ranging request message to the base station.
  • the base station receives the ranging request message of the new access node forwarded by the low capability relay station 1, and generates a response message, that is, a ranging response message, which includes the allocation for the new access node. Information such as CID. Since the ranging response message needs to be forwarded to the new access node through the low capability relay station 1, in this step, the base station transmits the ranging response message to the low capability relay station 1.
  • the low capability relay station 1 forwards the ranging response message to the new access node.
  • the received access code from the new access node can be sent to the base station through the report message, and the low-capability relay station has the highest quality of the received access code signal.
  • the base station interacts with the new access node by forwarding the multiple low-capability relay stations to complete the access of the new access node. That is to say, the present embodiment is applicable not only to a two-hop system but also to a multi-hop system.
  • the uplink signal transmitted by the new access node may be received by one or more low-capacity relay stations, or may be received by the synchronization stations (high-capability relay stations) of the low-capacity relay stations, such as the new access node mobile terminal in the figure. 4 uplink signal transmitted.
  • the method relates to a method for random access of a new access node.
  • the synchronization station is a high-capability relay station
  • the low-capability relay station is a low-capability relay station that does not transmit a downlink broadcast message
  • the relay station is applied to a scenario of increasing the cell throughput rate.
  • the low-capability relay station is covered.
  • the terminal in the range can directly receive the downlink broadcast information sent by the synchronization station.
  • the processing flow of the high-capability relay station and the low-capacity relay station in the present embodiment will be described below.
  • the processing flow of the high-capability relay station is as shown in FIG. 7.
  • the high capability relay station waits for a random access code (i.e., an access request). If the new access node needs to initiate random access, it must first scan the downlink synchronization information and establish synchronization with the serving node to obtain downlink and uplink parameters. In the uplink parameters, the location of the ranging area in the ranging code set and the uplink frame is obtained.
  • a random access code i.e., an access request
  • Steps 702 to 709 are substantially the same as steps 102 to 109 in the first embodiment, respectively, except that in the first embodiment, the base station selects and receives the station with the best access code signal quality, and returns the connection. In response to the message; in the present embodiment, the high-capability relay station selects the station that receives the best access signal quality and returns an access response message. And, when the signal quality of the received access code is sufficiently good, the high-capacity relay station allocates non-competitive time-frequency resources for the new access node.
  • the new access node After acquiring the allocated non-contention time-frequency resources, the new access node sends a ranging request message requesting to establish a connection with the base station. Therefore, in step 710, the high-capability relay station encapsulates the received ranging request message from the new access node with its own basic CID and forwards it to the base station. After receiving the forwarded ranging request, the base station extracts the ranging request message parameter sent by the new access node, and then generates a ranging response message, where the best quality access station signal is the high-capability relay station. In this case, the ranging response message needs to be forwarded to the new access node by the high capability relay station.
  • Steps 712 to 716 are respectively larger than steps 1 12 to 116 in the first embodiment.
  • the station receiving the best access signal quality is a low-capability relay station
  • the base station returns an access response message to the new access node through the low-capability relay station.
  • the station receiving the best access signal quality is a low-capability relay station
  • the high-capability relay station directly returns an access response message to the new access node.
  • the low-capability relay station does not transmit the downlink broadcast message
  • the high-capacity relay station allocates the non-competitive time-frequency resource for the new access node.
  • the new access node After acquiring the allocated non-contention time-frequency resources, the new access node sends a ranging request message requesting to establish a connection with the base station. Therefore, in step 717, the high-capability relay station encapsulates the received ranging request message forwarded by the low-capability relay station from the new access node with its own basic CID and forwards it to the base station. After receiving the forwarded ranging request, the base station extracts the ranging request message parameter sent by the new access node, and then generates a ranging response message, and the ranging response message needs to be forwarded to the new access node by the high-capability relay station.
  • the processing flow of the low-capability relay station in this embodiment is as shown in FIG. 8.
  • the low capability relay station determines the type of information received. For example, if the new access node is within the coverage of the low-capability relay station, when the new access node transmits an access code (initial ranging code), the low-capability relay station will receive the new access node to send. Initial ranging code; if the low-capability relay station is the station with the best signal quality among all stations receiving the same new access node signal, and the high-capability relay station has allocated the new access node for transmitting the connection establishment If the non-competitive time-frequency resource of the information is required, the low-capability relay station will receive the ranging request message sent by the new access node. Therefore, when a low-capability relay station receives a message, it needs to first determine the type of information received.
  • an access code initial ranging code
  • step 802 If the information is an access code from the new access node, proceed to step 802; if the information is a ranging request message from the new access node, proceed to step 804.
  • step 802 when the low capability relay station receives the access code from the new access node, it is determined whether the signal quality of the access code exceeds a preset threshold.
  • the evaluation index of the low capability relay station determining the quality of the access code signal may include a signal strength, a time synchronization deviation of the signal from the low capability relay station, and a carrier frequency deviation of the signal from the low capability relay station.
  • the low-capability relay station forwards the access code to the high-capability relay station by using the report message, where the report message includes the received signal strength parameter P, the new The carrier frequency deviation ⁇ / of the relatively low-capability relay station of the access node and the time synchronization deviation ⁇ of the relatively low-capability relay station of the new access node, etc., select the received access signal signal quality of the new access node for the low-capability relay station
  • the best sites provide a reliable basis.
  • the low capability relay station When the low capability relay station receives the ranging request message from the new access node, it proceeds to step 804, and the low capability relay station forwards the ranging request message to the high capability relay station.
  • the following is a low-capacity relay station with the best quality of the received access code signal selected by the high-capability relay station as an example, and the method of random access of the new access node is elaborated.
  • step 901 the preparatory work before the ranging is performed, that is, the step before the ranging process in the network access process.
  • the new access node (relay station or mobile terminal) first establishes synchronization with the serving node to obtain downlink and uplink parameters.
  • the uplink parameters the location of the ranging area in the ranging code set and the uplink frame is obtained.
  • the new access node selects an initial ranging code, and then selects a ranging location in the ranging area to transmit the initial ranging code, that is, transmits the access code.
  • the new access node may be a mobile terminal or a relay station.
  • the initial ranging code of the relay station and the initial ranging code of the mobile terminal may be located in different intervals to reduce the possibility of collision between the relay station and the mobile terminal, and reduce the average connection of the relay station.
  • the new access node repeats the transmission according to the backoff policy specified in the protocol until a certain number of times is reached.
  • the low-capability relay station will receive the access code and notify the high energy through the ranging code report message.
  • a relay station carrying a received signal strength parameter (such as average power or signal to noise ratio) p, a carrier frequency offset of the new access node relative to the low capability relay station, and a new capability of the new access node relative to the low capability relay station
  • the time synchronization deviation ⁇ The ranging code report message should be sent in the basic CID of the low-capability relay station, and its message type can select the unoccupied number in the 802.16e protocol, and the format is the same as the ranging code report message in the first embodiment. Let me repeat.
  • each low-capability relay station may first determine whether the signal quality of the access code exceeds a preset threshold, and if so, report the message through the ranging code. The high capability relay station is informed, otherwise the access code is ignored. The low-capability relay station that receives the poor quality of the access code signal does not need to send the ranging code report message, which saves system resources in the high-capacity relay station.
  • the high-capability relay station collects an access code corresponding to the same new access node that is received by itself and forwarded by the low-capability relay station through the report message, and sends an access response message. Specifically, the high-capability relay station waits for a period of time after receiving the access code of the new access node, and if waiting for a period of time, the high-capability relay station does not receive the report message from the low-capability relay station of the new access node. The forwarded access code sets itself to the station that receives the best access signal quality. Otherwise, the high-capability relay station selects the station that receives the best access signal signal by the selection algorithm.
  • Ff is strictly the signal strength of the access code, "is a fixed parameter greater than 0, ⁇ / . is the carrier frequency deviation of the selected station, ⁇ 71 . is the time synchronization deviation of the selected station, when i is not equal to 0 , the strength of the access code signal forwarded for the i-th low-capability relay station,
  • is the carrier frequency deviation of the i-th low-capability relay station
  • ⁇ 7 ⁇ is the time synchronization deviation of the i-th low-capability relay station.
  • the high capability relay station then generates an access response message and sends the access response message to the new access node. Since the low capability relay station does not transmit the downlink broadcast message in the present embodiment, the high capability relay station directly transmits the access response message to the new access node.
  • the ranging status in the access response message is "continue", and the high-capability relay station adjusts the new according to the parameters of the low-capability relay station 1.
  • the access node is used to access the parameters of the channel to ensure that the new access node can successfully access the channel.
  • step 901 to step 903 correspond to step 501 to step 504.
  • the synchronization station is a base station
  • the low-capability relay station notifies the base station of the access code from the new access node through the ranging code report message, and the base station selects the station that receives the best access signal quality. And returning the access response message; but in the embodiment, the synchronization station is a high-capability relay station, so the low-capability relay station informs the high-capability relay station of the access code from the new access node by the ranging code report message, and the high-capability relay station Select the site that receives the best access signal quality and return an access response message.
  • Step 904 and step 904' are identical to steps 902 and 902', respectively, and are not described herein again.
  • step 905 the high-capability relay station collects an access code corresponding to the same new access node that is received by itself and forwarded by the low-capability relay station through the report message, after selecting the site with the best quality of the received access code signal. Send an access response message.
  • This step is substantially the same as step 903, except that in step 903, the quality of the access code signal selected by the high-capability relay station is not yet good enough, and in this step, the access code selected by the high-capability relay station is selected. The signal quality is good enough, so the ranging status in the access response message sent directly by the high capability relay station to the new access node is "successful".
  • step 906 the high-capability relay station allocates a non-contention bandwidth to the new access node through a bandwidth allocation message (CDMA_Allocation__IE) for the new access section.
  • CDMA_Allocation__IE bandwidth allocation message
  • the ranging request message is sent on the designated non-contention time-frequency resource. It contains the MAC address of the new access node.
  • the ranging request message is forwarded to the high-capability relay station through the low-capacity relay station 1, and therefore, in this step, the ranging request message is received by the low-capability relay station 1.
  • the low capability relay station 1 forwards the ranging request message to the high energy relay station.
  • the process proceeds to step 909.
  • the high-capability relay station After receiving the forwarded ranging request message, the high-capability relay station encapsulates the ranging request message with its own basic CID and forwards the message to the base station.
  • the encapsulated message is called a forwarded ranging request (REL_RNG). -REQ)
  • the content of the message is exactly the same as the content of the original ranging request message.
  • the base station extracts the ranging request message parameter sent by the new access node, and allocates a CID to the new access node, where the message includes the MAC address of the new access node. , basic CID, primary management CID, and then generate a ranging response message.
  • the ranging response message is sent to the new access node through the high-capability relay station. Therefore, in this step, the base station encapsulates the ranging response message with the CID of the high-capability relay station, and sends the result to the high-energy relay station, after encapsulation.
  • the message is called a Forwarded Ranging Response (REL-RNG-RSP) message.
  • REL-RNG-RSP Forwarded Ranging Response
  • the received access code from the new access node can be forwarded to the high capability relay station through the report message, and the low capability relay station receives the access code signal.
  • the base station interacts with the new access node through the forwarding of the high capability relay station and the plurality of low capability relay stations to complete the new access section. Point access. That is to say, the present embodiment is applicable not only to the two-hop system but also to the multi-hop system.
  • the low-capability relay station since the low-capability relay station does not transmit the downlink broadcast message in this embodiment, the high-low capability relay station directly sends an access response message, a bandwidth allocation message, and a forward ranging response message to the new access node. If the low-capability relay station receiving the best access signal quality can transmit the downlink broadcast message, the low-response relay station can forward the access response message, the bandwidth allocation message, and the ranging response message.
  • a third embodiment of the present invention relates to a method for random access of a new access node, and the present embodiment is substantially the same as the second embodiment, except that in the second embodiment, the selected by the high-capability relay station is received.
  • the station with the best access code signal quality is the low capability relay station 1
  • the station with the best quality of the received access code signal selected by the high capability relay station is the high capability relay station itself. Therefore, during the interaction between the new access node and the high-capability relay station, the new access node does not need to communicate with the high-capability relay station directly through the relay of the low-capability relay station, and the high-capability relay station according to its own parameters Adjust the signal parameters used by the new access node for random access.
  • a fourth embodiment of the present invention relates to a system for random access by a new access node, comprising a new access node, at least one relay station, and a synchronization station, the synchronization station being a base station, the relay station being a low capability relay station.
  • a forwarding module and a judging module are included in the low capability relay station.
  • the forwarding module is configured to notify the synchronization station of the received access code from the new access node by using a ranging code report message.
  • the synchronization station is also the base station.
  • the determining module is configured to determine, before the forwarding module receives the access code from the new access node, the quality of the access code signal exceeds a preset threshold by using a ranging code report message, and if yes, indicating The forwarding module forwards the access code to the base station by using a ranging code report message.
  • a selection module and an interaction module are included in the base station.
  • the selecting module is configured to receive the station with the best quality of the access code signal according to the access codes of the low-capacity relay station and the self-received new access node.
  • the interaction module is configured to allocate a new access node for sending a ranging request message. Bandwidth, and when the selected node of the selection module is a low-capability relay station, the low-capacity relay station interacts with the new access node to complete access of the new access node; the selected site in the selection module is When the base station itself, it directly interacts with the new access node to complete access of the new access node.
  • the new access node within the coverage of the relay station can randomly access the channel, taking full advantage of the advantages brought by the introduction of the relay station to the system.
  • the new access node may be a mobile terminal or a relay station, so that both the mobile terminal and the relay station within the coverage of the relay station can smoothly access.
  • a fifth embodiment of the present invention relates to a system for random access by a new access node, comprising a new access node, at least one low capability relay station and a high capability relay station, and a base station.
  • a forwarding module and a judging module are included in the low capability relay station.
  • the forwarding module is configured to notify the synchronization station of the received access code from the new access node by using a ranging code report message, in this embodiment, that is, a high capability relay station.
  • the determining module is configured to determine, before the forwarding module forwards the received access code from the new access node to the high-capability relay station, whether the quality of the access code signal exceeds a preset threshold, and if yes, indicating the forwarding module The access code is forwarded to the high capability relay station by a ranging code report message.
  • a selection module and an allocation module are included in the high capability relay station.
  • the selecting module is configured to receive, according to the access codes of the low-capacity relay station and the self-received access code from the same new access node, the station with the best quality of the access code signal;
  • the allocation module is configured to receive at the station selected by the selecting module. When the quality of the access code signal is good enough, the new access node is allocated a bandwidth for transmitting the ranging request message.
  • the base station interacts with the new access node through the high-capability relay station and the low-capability relay station to complete access of the new access node;
  • the selected node of the high-capability relay station selects the station as the high-capability relay station itself, and the base station interacts with the new access node through the high-capability relay station to complete the access of the new access node. It is ensured that when the system includes high-capacity and low-capacity relay stations, the new access nodes in the coverage of the relay station can also randomly access the channel, and fully utilize the advantages brought by the introduction of the relay station to the system.
  • a sixth embodiment of the present invention relates to a method for random access of a new access node, and a specific process thereof is shown in FIG.
  • step 1001 the preparation before the ranging is performed, that is, the step before the ranging process in the network access process.
  • the new access node (relay station or mobile terminal) first synchronizes with the serving node to obtain downlink and uplink parameters.
  • the uplink parameters the location of the ranging area in the ranging code set and the uplink frame is obtained.
  • the new access node selects an initial ranging code, and then selects a ranging location in the ranging area to transmit the initial ranging code, that is, transmits the access code.
  • the new access node may be a mobile terminal or a relay station.
  • the initial ranging code of the relay station and the initial ranging code of the mobile terminal may be located in different intervals to reduce the possibility of collision between the relay station and the mobile terminal, and reduce the average connection of the relay station.
  • the new access node repeats the transmission according to the backoff policy specified in the protocol until a certain number of times is reached.
  • the high-capability relay station generates an access response message according to the signal quality of the access code, and sends the access response message to the new access node. If the signal quality of the access code is good enough (such as setting a threshold in advance, if the signal quality of the access code reaches the threshold, the signal quality of the access code is considered to be good enough), the high-capability relay station needs to transmit bandwidth. An assignment message (CDMA_Allocation_IE) is given to the new access node, and the new access node is allocated a non-contention bandwidth for transmitting a ranging request message.
  • CDMA_Allocation_IE An assignment message
  • the high capability relay station transmits an access response message whose ranging status is "continue" to the new access node.
  • the high-capability relay station adjusts parameters of the new access node for accessing the channel according to its own parameters, so as to ensure that the new access node can successfully access the channel.
  • Step 1004 is exactly the same as step 1002, and details are not described herein again.
  • Step 1005 is substantially the same as step 1003, except that, in step 1003, the quality of the access code signal received by the high-capability relay station is not yet good enough, and in this step, the quality of the access code signal received by the high-capability relay station is Good enough, therefore, high-capacity relay stations to new access sections
  • the point sends an access response message whose ranging status is "successful", and the new access node needs to be allocated a non-contention bandwidth for transmitting the ranging request message.
  • step 1006 the high-capability relay station allocates a non-contention bandwidth to the new access node through a bandwidth allocation message (CDMA_Allocation_IE), and the new access node sends a ranging request message.
  • CDMA_Allocation_IE bandwidth allocation message
  • the ranging request message is sent on the designated non-contention time-frequency resource. It contains the MAC address of the new access node.
  • the process proceeds to step 1008.
  • the high-capability relay station After receiving the ranging request message, the high-capability relay station encapsulates the ranging request message with its own basic CID and forwards the message to the base station.
  • the encapsulated message is called a forwarded ranging request (REL_RNG-REQ). a message whose content is exactly the same as the content of the original ranging request message.
  • the base station extracts the ranging request message parameter sent by the new access node, and allocates a CID to the new access node, where the message includes the MAC address of the new access node. , the basic CID, the primary management CID, and then generate a ranging response message.
  • the ranging response message is sent to the new access node through the high-capability relay station. Therefore, in this step, the base station encapsulates the ranging response message with the CID of the high-capability relay station and sends the result to the high-capability relay station.
  • the message is called a Forwarded Ranging Response (REL_RNG-RSP) message.
  • REL_RNG-RSP Forwarded Ranging Response
  • a seventh embodiment of the present invention relates to a system for random access by a new access node, the system comprising: a base station, a high-capability relay station, and a new access node, and the new access node may be a mobile terminal or a relay station.
  • the high-capability relay station includes: a module for sending an access response message to the new access node according to the signal quality of the access request when receiving the access request from the new access node; Whether the signal quality of the access request from the new access node exceeds a preset threshold a module for allocating a bandwidth for transmitting a ranging request message to the new access node when the signal quality of the access request exceeds a preset threshold; and ranging for transmitting by the new access node A module that requests a message to be sent to a base station.
  • the base station interacts with the new access node by the high-capability relay station to complete access of the new access node, so that the new access node within the coverage of the relay station can implement random access.
  • the main difference between the technical solution of the present invention and the prior art is that when the new access node is in the range covered by the relay station, the access request sent by the new access node by each relay station is notified by the report message.
  • the station by comparing the signal quality of each relay station and its own access request from the same new access node, selects the site with the best signal quality of the received access request, according to the selected site and the local.
  • the type of the synchronization station completes the access of the new access node, so that the new access node within the coverage of the relay station can randomly access the channel, taking full advantage of the advantages brought by the introduction of the relay station to the system.
  • the synchronization station may be a base station or a high-capability relay station, so that the system including only the low-capacity relay station and the system including both the high-capacity and low-capacity relay stations can apply the present invention, and the application range of the solution of the present invention is expanded.
  • the new access node may be a mobile terminal or a relay station, so that both the mobile terminal and the relay station within the coverage of the relay station can smoothly access.
  • the access request sent by the mobile terminal or the relay station as the new access node may be an initial ranging code.
  • the initial ranging code of the mobile terminal and the initial ranging code of the relay station may be located in different intervals to reduce the possibility of collision between the relay station and the mobile terminal during random access, and reduce the average access time of the relay station.
  • the low-capability relay station After receiving the access request from the new access node, the low-capability relay station first determines whether the signal quality of the access request exceeds a preset threshold, and if so, forwards the access request to the synchronization station by using a report message. The low-capability relay station that receives the poor quality of the access request signal does not need to forward the access request to the synchronization station, thereby saving system resources in the synchronization station.
  • the report message sent by the low-capability relay station to the synchronization station includes the received signal strength parameter P, The carrier frequency deviation of the new access node relative to the low-capability relay station and the time synchronization deviation ⁇ of the new access node relative to the low-capability relay station provide a reliable basis for the station with the best signal quality selection by the synchronization station.
  • the synchronization station adjusts parameters of the new access node for accessing the channel according to the parameters of the low-capability relay station; if the signal quality of the synchronization station is selected to be the best
  • the station is the synchronization station itself, and the signal parameters used by the new access node for random access are adjusted according to its own parameters, so that the new access node can successfully access the channel.
  • the low-capability relay station may also notify the synchronization station of the received access request from the new access node through the report message through the other low-capacity relay station, if the low-capability relay station receives the access request signal with the best quality site, and the The new access node needs to interact with the synchronization station during the access process, and the synchronization station interacts with the new access node by forwarding the multiple low-capability relay stations to complete the access of the new access node, so that the access
  • the invention solution is applicable not only to the two-hop system but also to the multi-hop system, which expands the application range of the present invention.
  • the high-capability relay station Allocating a bandwidth for sending the ranging request message to the new access node, and sending a ranging request message sent by the new access node to the base station, where the base station interacts with the new access node by using the high-capability relay station to complete Access to the new access node. This allows random access to be achieved by new access nodes within the coverage of the relay.
  • a method for selecting a random access of a new access node is described in detail by taking a site with the best signal quality as an example, and a site with the lightest load may be selected to implement random access of a new access node, or comprehensively considering signal quality and Load situation, select the site with the best transmission capacity to achieve random access of the new access node.
  • the method for obtaining the load situation of each site and determining the site with the lightest load is prior art, and details are not described herein again.
  • signal quality and load can be classified by grading signal quality information and load information (eg, 1, 2, 3, 4, 5, level 5 indicating the best signal quality or lightest load).
  • the situation score the site with the highest score is the site with the best transmission capacity.
  • the flow after selecting the site is the same as that of the above embodiment, and can be referred to for execution.
  • the lightest load includes the minimum number of connected terminals and/or the least amount of traffic data carried.
  • the site is selected by the multi-layer transmission capability of the site, and the manner of selecting the site is more flexible, and is suitable for various network environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

新接入节点随机接入的方法及通信系统 技术领域
本发明涉及无线通信技术领域, 特别涉及中继站技术。 背景技术 随着通信技术逐渐向个人化、 移动化、 宽带化方向发展, 移动技术、 无线技术、 宽带技术及多媒体通信技术渐成为研究的热点技术。 除了对于 核心网的建设融合之外,接入网将是限制网络性能提升的瓶颈之一。 因此, 宽带无线接入 (Broadband Wireless Access, 简称" BWA")技术是下一代通信 网络发展的关键技术之一。 接入技术按有线、 无线或者固定、 移动可以分 为多种。
无线接入是指从交换节点到用户终端部分或全部采用无线手段的接 入技术。 无线接入系统具有建网费用低、 扩容可按需而定、 运行成本低等. 优点, 所以在发达地区可以作为有线网的补充, 能迅速及时替代有故障的 有线系统或提供短期临时业务; 在发展中或边远地区可广泛用来替换有线 用户环路, 节省时间和投资。 无线接入技术分为移动接入和固定接入两大 类。
移动宽带无线接入现阶段主要是指第三代移动通信技术, 该技术能实 现移动状态下的宽带接入, 但在不同的移动速度下所能提供的接入速度不 同。 移动接入又可分为高速移动接入和低速移动接入两类, 高速移动接入 一般可用蜂窝系统、 卫星移动通信系统、 集群系统等来实现; 而低速接入 系统可用个人通信系统来实现。
固定接入是指从交换节点到固定用户终端采用无线接入, 它实际上是 公用电话交换网 ( Public Switched Telephone Network, 简称" PSTN" ) /综 合业务数字网 ( Integrated Services Digital Network, 简称" ISDN" ) 的无线 延伸。 主要的固定无线接入有三类, 即已经投入使用的多信道多点分布服 务( Multi-channel Multi-point Distribution Service, 简称" MMDS" )和固定 卫星接入以及刚刚兴起并正成为热点的新兴宽带接入技术本地多点分配业 务( Local Multi-point Distribution Service, 简称" LMSD" ) 。
在通信领域的工程和研究中, 由于对接入速率的要求越来越高, BWA 方式已经引起了广泛的关注。 IEEE 802.16工作组提出了对宽带无线系统的 物理层和 MAC层标准。 802.16无线城域网提供了对固定、 便携和移动宽 带接入系统的空口规范,包含工作于 10 - 66GHz范围内固定无线网络高数 据率直视信号的要求, 同时又对固定、便携和移动系统工作于 1 1GHz以下 的非视距信号要求。
众所周知, 频率越高, 无线电波随距离衰减越块。 高的工作频率将导 致基站的覆盖范围十分有限, 因此, 通过在网络中加入无线中继站, 可以 增加系统覆盖的范围或提高系统的吞吐率。
无线中继站通过空中接口与基站进行通信, 并转发终端的数据。 由于 无线中继站最大的特点在于它不需要线缆与核心网络进行连接, 其铺设的 灵活性比传统基站大, 因此在相同的系统性能要求下, 包括系统的覆盖范 围和吞吐量等, 建设中继站的成本也要比建设基站小。 中继站的特性也使 得它能够被快速的铺设, 并且操作上的费用也比较小。 因此, 使用中继站, 可以以较低的成本获得较大的覆盖, 这些优点也将扩大无线宽带接入网的 市场需求。
现在运行中的中继站主要是放大转发型的直放站, 这种中继站通常使 用两套相互隔离的天线, 其中一套天线用于接收基站的信号, 另一套天线 用于对接收信号进行放大并发射出去。 这种中继站的缺点在于它不会提高 信噪比, 另外, 如果收发天线隔离不好, 还可能引起放大器的自激。
为了开发中继站的优点, 同时克服传统直放站的不足, 数字中继站正 成为目前研究的热点。 数字中继站的基本工作原理如下, 数字中继站从发 送端接收到信号后, 首先对信号进行解码, 然后重新编码后再发送给接收 端。 数字中继站的优点在于能提高信噪比, 接收和发送可以根据链路质量 采用不同的编码方式, 从而提高频谱资源的利用率等。
目前, 移动终端的随机接入过程是所有通信系统中移动终端接入网络 之前必不可少的过程, 随机接入过程主要发生在以下两种情况: 第一是移 动终端开机后到与网络建立连接之前,第二是移动终端收到网络的寻呼后, 从空闲(idle)状态到与网络重新建立连接之前。 但是, 发明人在实现本发明 的过程中发现, 无论哪种情况, 移动终端都必须处于基站覆盖范围内, 才 能实现随机接入。 也就是说, 如果移动终端不在基站覆盖的范围内, 即使 该移动终端处于中继站覆盖的范围内, 也无法实现随机接入过程。
另外, 新接入的节点除了可能是移动终端外, 还可能是新接入的中继站, 因此, 如果中继站不在基站覆盖的范围内, 即使该中继站处于其他已接入的 中继站覆盖的范围内, 也可能无法实现随机接入过程。 发明内容
有鉴于此, 本发明的主要目的在于提供一种新接入节点随机接入的方 法及其系统, 使得在中继站覆盖范围内的新接入节点可以实现随机接入。
为实现上述目的, 本发明提供了一种新接入节点随机接入的方法, 包 含以下步骤:
各中继站分别将收到的来自新接入节点的接入请求通过报告消息告 知同步站, 所述同步站根据各中继站和自身收到的来自同一新接入节点的 接入请求选择收到的接入请求的信号质量最好的站点;
根据所述同步站所选择的站点和该同步站的类型完成所述新接入节 点的接入。
本发明还提供了一种无线通信系统, 包含至少一个新接入节点、 至少 一个中继站和至少一个同步站, 所述中继站包含: 转发模块, 用于将收到 的来自新接入节点的接入请求通过报告消息告知所述同步站;
所述同步站包含: 选择模块, 用于根据各中继站和自身收到的来自同 一.新接入节点的接入请求选择收到的接入请求的信号质量最好的站点; 所述同步站根据所选择的站点和自身的类型完成所述新接入节点的 接入。
本发明还提供了一种新接入节点随机接入的方法, 包含以下步骤: 如果高能力中继站收到的来自新接入节点的接入请求的信号质量超 过预设门限, 则为该新接入节点分配用于发送测距请求消息的带宽, 并将 由该新接入节点发送的测距请求消息发送给基站;
所述基站通过所述高能力中继站与所述新接入节点进行交互, 完成该 新接入节点的接入。
本发明还提供了一种无线通信系统, 包含基站、 高能力中继站、 和至 少一个新接入节点;
所述高能力中继站包含: 用于判断收到的来自新接入节点的接入请求 的信号质量是否超过预设门限的模块; 用于在该接入请求的信号质量超过 预设门限时, 为该新接入节点分配用于发送测距请求消息的带宽的模块; 和用于将由该新接入节点发送的测距请求消息发送给基站的模块;
所述基站通过所述高能力中继站与所述新接入节点进行交互, 完成该 新接入节点的接入。
此外在所述系统中, 所述高能力中继站还包含用于在收到来自新接入 节点的接入请求时, 根据该接入请求的信号质量向该新接入节点发送接入 响应消息的模块;
所述新接入节点为移动终端、 低能力中继站、 或高能力中继站。
通过比较可以发现, 本发明的技术方案与现有技术的主要区别在于, 在新接入节点处于中继站覆盖的范围时, 由各中继站将该新接入节点发送 的接入请求通过报告消息告知同步站, 同步站通过比较各中继站和自身收 到的来自同一新接入节点的接入请求的信号质量, 选择出收到的摔入请求 的信号质量最好的站点, 根据所选择的站点和本同步站的类型完成该新接 入节点的接入,使得在中继站覆盖范围内的新接入节点可以随机接入信道, 充分利用了引入中继站对系统带来的优点。 附图说明
图 1是根据本发明第一实施方式的新接入节点随机接入的方法中基站 的处理流程图;
图 2是根据本发明第一实施方式的新接入节点随机接入的方法中新接 入节点与基站的关系示意图;
图 3是根据本发明第一实施方式的新接入节点随机接入的方法中低能 力中继站的处理流程图;
图 4是根据本发明第一实施方式中收到的接入码信号盾量最好的站点 为基站自身时新接入节点随机接入方法流程图;
图 5是根据本发明第一实施方式中收到的接入码信号质量最好的站点 为低能力中继站时新接入节点随机接入方法流程图;
图 6 是根据本发明中新接入节点与低能力 /高能力中继站和基站的关 系示意图;
图 7是根据本发明第二实施方式的新接入节点随机接入的方法中高能 力中继站的处理流程图;
图 8是根据本发明第二实施方式的新接入节点随机接入的方法中低能 力中继站的处理流程图;
图 9是根据本发明第二实施方式中收到的接入码信号质量最好的站点 为低能力中继站时新接入节点随机接入方法流程图;
图 10是根据本发明第六实施方式的新接入节点随机接入方法流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一步地详细描述。
在本发明实施例中, 新接入节点以一定的发射功率在接入信道里发送 接入请求, 收到该接入请求的各低能力中继站通过测距码报告消息将该接 入请求转发给同步站。 由于高能力中继站和基站具有分配无线资源、 发送 广播管理消息和同步信号的功能, 可以使新接入节点与之保持同步, 所以 称高能力中继站和基站为同步站。 同步站从收到来自同一新接入节点的接 入请求信号的各站点中 (包括同步站自身和各低能力中继站)选择信号质 量最好的站点。 如果所选择的站点为低能力中继站, 并且同步站为基站, 则该基站通过该低能力中继站与该新接入节点进行交互, 完成该新接入节 点的接入; 如果所选择的站点为该同步站自身, 并且同步站为基站, 则该 基站直接与该新接入节点进行交互, 完成该新接入节点的接入。 如果同步 站为高能力中继站, 并且该高能力中继站所选择的站点为低能力中继站, 则基站通过该高能力中继站和该低能力中继站, 与新接入节点进行交互, 完成该新接入节点的接入; 如果同步站为高能力中继站, 并且该高能力中 继站所选择的站点为该高能力中继站自身, 则基站通过该高能力中继站与 新接入节点进行交互, 完成该新接入节点的接入。 其中, 新接入节点可以 为中继站或移动终端。
在不存在低能力中继站, 只有基站, 高能力中继站和新接入节点的情 况下, 如果高能力中继站收到的来自新接入节点的接入请求的信号质量足 够好, 则由该高能力中继站为该新接入节点分配用于发送测距请求消息的 带宽, 并将由该新接入节点发送的测距请求消息发送给基站, 基站通过该 高能力中继站与该新接入节点进行交互, 完成该新接入节点的接入。 使得 在中继站覆盖范围内的新接入节点可以实现随机接入。
需要说明的是, 在本发明方案中, 在小区覆盖范围内的新接入节点能 接收到所有广播信息, 这些广播信息可以直接由基站发送; 也可以是基站 和低能力中继站在同一时频资源上发送相同的广播信息, 这时, 新接入节 点收到的信息为基站和低能力中继站同时发送的广播信号的叠加。
下面对本发明的第一实施方式进行详细阐述, 本实施方式涉及新接入 节点随机接入的方法。 在本实施方式中, 各中继站为可发送下行广播消息 的低能力中继站, 同步站为基站, 在新接入节点到基站的传输链路中不存 在高能力中继站。
下面分别对本实施方式中的基站和低能力中继站的处理流程进行说 明, 基站的处理流程如图 1所示。
在步骤 101中, 基站等待随机接入码(即接入请求) 。 具体地说, 如 果新接入节点需要发起随机接入, 则必须先扫描下行同步信息, 与基站或 低能力中继站建立同步, 从广播消息中获取上下行信道参数。 然后, 再以 一定的发射功率在接入信道里发送接入码; 也就是发送初始测距码。
需要说明的是,在本实施方式中,低能力中继站与基站是完全同步的, 采用时分双工 ( Time Division Duplex, 简称" TDD" ) 方式分别与基站和新 接入节点进行通信。 低能力中继站由其所属的基站进行统一协调, 其本身 不具有最终的决策权。 为了支持低能力中继站, 基站的下行子帧和上行子 帧都分为两部分。 对于下行子帧, 一部分用于为新接入节点提供服务, 称 为下行终端子帧, 另一部分用于为低能力中继站提供服务, 因此称为下行 中继子帧; 对于上行子帧, 同样分为上行终端子帧和上行中继子帧。 在小 区覆盖范围内, 新接入节点能接收到所有广播信息, 这些广播信息可以直 接由基站发送; 也可以是基站和低能力中继站在同一时频资源上发送相同 的广播信息, 这时, 新接入节点收到的信息为基站和低能力中继站同时发 送的广播信号的叠加。
接着, 进入步骤 102, 基站接收随机接入码。 具体地说, 新接入节点 与基站和低能力中继站的关系可以分为以下四种情况, 以新接入节点为移 动终端进行说明, 如图 2所示:
(1) 移动终端发射的信号只被基站接收到, 其它低能力中继站接收不 到该移动终端发射的信号, 如移动终端 1。
(2)移动终端发射的信号只能被 1个低能力中继站接收到, 不能被基站 接收到, 如移动终端 2。
(3) 移动终端发射的信号可能被两个或多个低能力中继站接收到, 不 能被基站接收到, 如移动终端 3。 (4) 移动终端发射的信号可能被一个或多个低能力中继站接收到, 也 可以被基站接收到, 如移动终端 4。
新接入节点为中继站时, 也可分为以上四种情况。
因此, 新接入节点发送的接入码也可能只被基站接收到, 或被 1个低 能力中继站接收到, 或被两个或多个低能力中继站接收到, 或被低能力中 继站和基站接收到。
在本实施方式中, 如果各低能力中继站收到了来自新接入节点的接入 码, 则分别将收到的来自新接入节点的接入码通过测距码报告消息转发给 基站, 测距码报告消息中包含接入信号的参数, 比如说, 接收信号强度参 数 (如平均功率或信噪比 、该新接入节点相对该低能力中继站的载波频率 偏差 Δ/、 和该新接入节点相对该低能力中继站的时间同步偏差 ΔΓ。
由于各低能力中继站发送的报告消息中包含了接入信号的参数, 因此 可将该报告消息视为测距码报告消息, 其格式如表 1所示:
Figure imgf000010_0001
表 1 其中 , 测距码报告消息中的可变参数编码格式如表 2所示:
类型 长度 描述 Value
Ranging code attributes 比特位 #31-22: OFDM time symble reference
150 4
(测距码属性) of the received ranging code (与接》|t的测 ί巨码
Figure imgf000011_0001
表 2
值得一提的是, 各低能力中继站收到来自新接入节点的接入码后, 可 以先判断该接入码信号质量是否超过预设门限, 如果是, 则再将该接入码 转发给该基站, 否则, 忽略该接入码。
接着, 进入步骤 103, 基站选择接收到该接入码信号质量最好的站点。 具体地说, 基站根据信号质量的评价指标, 从各低能力中继站通过报告消 息转发的和自身收到的来自同一新接入节点的接入码中选择接收到该接入 码信号质量最好的站点。 比如说, 信号质量的评价指标为接收信号强度参 数 (如平均功率或信噪比 、新接入节点相对该低能力中继站的载波频率偏 H 和新接入节点相对该低能力中继站的时间同步偏差 ΔΓ, 且各低能力 中继站发送的测距码报告消息中包含相关的 、 Δ 、 和 参数, 则基站 可以分别计算 |Δ Δ7;|/^选择对应于 l4;'A7 |/ 值最小的站点作为信号 质量最好的站点, 其中, i = 0, 1, k, k为转发该接入码的低能力中继 站个数。 ΙΔ 'δ:γ|/ρ。对应的接入码为该基站自 身收到的接入码,
P。 =PBS +P— Offset , 5为该接入码的信号强度, 为大于 0的固定参 数, Δ/。为该接入站相对该基站的载波频率偏差, Δ 为该接入站相对该基 站的时间同步偏差, 当 i不等于 0时, 为第 i个低能力中继站收到的接入 码的信号强度, 为该接入站相对第 i个低能力中继站的载波频率偏差,
Δ7 ^为该接入站相对第 i个低能力中继站转发的时间同步偏差。 通过上述算 法, 为基站选择接收到该接入码信号质量最好的站点提供了保证。
另外, 低能力中继站在收到来自新接入节点的接入码之后, 可以先判 断该接入码信号质量是否超过预设门限, 在接入码信号质量大于预设门限 的情况下, 才将该接入码通过报告消息转发给基站, 节约了基站内的系统 资源。
接着, 进入步骤 104, 判断所选择的站点是否为基站自身。 具体地说, 基站在根据信号质量的评价指标从接收到来自同一新接入节点的接入码的 各站点 (包括该基站和低能力中继站) 中选择出接收该接入码信号质量最 好的站点后,判断所选择的站点是否为基站自身 ,如果是,则进入步骤 105; 否则, 进入步骤 112。
在步骤 105中, 基站判断发送该接入码的终端的参数是否足够好。 具 体地说, 如果基站判断发送该接入码的终端的参数足够好, 则进入步骤 107; 如果不是, 则进入步骤 106, 向该新接入节点发送包含调整参数的接 入响应消息,以便该新接入节点能根据该响应消息对自己的信号参数(包括 发射功率)进行调整后再次发送接入码, 然后,该基站重新等待新接入节点 发送随机接入码。 如果基站判定该接入码的信号质量足够好, 则进入步骤 107。
在步骤 107中, 基站向该新接入节点发送包含成功信息的接入响应消 息, 表示终端的参数已调整得足够好。
接着, 进入步骤 108, 基站为该新接入节点分配非竟争的时频资源, 以便该新接入节点发送测距请求消息 (Ranging-Request ) 。
接着, 进入步骤 109 , 基站等待该新接入节点发送测距请求消息。 接着, 进入步骤 1 10, 基站接收该新接入节点在该基站指定的时频资 源上发送的测距请求消息。
接着, 进入步骤 11 1, 基站发送相应的响应消息, 也就是测距响应消 息 (Ranging-Response ) 。 这时, 测距过程结束。
如果基站根据信号质量的评价指标从接收到来自同一新接入节点的 接入码的各站点 (包括该基站和低能力中继站) 中选择出的接收该接入码 信号质量最好的站点不是基站自身, 即接收该接入码信号质量最好的站点 为低能力中继站, 则进入步骤 112。
在步骤 1 12中, 基站判断所选择的由低能力中继站通过报告消息转发 的接入码信号质量是否足够好。 具体地说, 如果基站判断该接入码信号质 量足够好, 则进入步骤 1 14; 如果不是, 则进入步骤 1 13, 向该低能力中继 站发送包含调整参数的响应消息, 由该低能力中继站将该包含调整参数的 响应消息转发给该新接入节点, 以便该新接入节点能根据该响应消息对自 己的信号参数(包括发射功率)进行调整后再次发送接入码, 然后, 该基站 重新等待新接入节点发送随机接入码。 其中, 基站根据该低能力中继站的 参数调节该新接入节点用于接入信道的参数, 以保障该新接入节点能顺利 接入信道。 如果基站判定该接入码信号质量足够好, 则进入步骤 114。
在步骤 1 14中,基站向该低能力中继站发送包含成功信息的测距响应, 由该低能力中继站将该包含成功信息的测距响应转发给该新接入节点, 表 示允许建立该新接入节点与本基站之间的连接。
接着, 进入步骤 115 , 基站为该新接入节点分配非竟争的时频资源, 以便该新接入节点发送测距请求消息。
接着, 进入步骤 1 16, 基站等待由该低能力中继站转发的该新接入节 点发送的测距请求消息。
接着, 进入步骤 117, 基站通过该低能力中继站接收该新接入节点在 该基站指定的时频资源上发送的测距请求消息。
接着, 进入步骤 118, 基站通过该低能力中继站转发相应的测距响应 消息给该新接入节点。 使得在低能力中继站覆盖范围内的新接入节点也可 以随机接入信道, 充分利用了引入低能力中继站对系统带来的优点。
本实施方式中的低能力中继站的处理流程如图 3所示。
在步骤 301中, 低能力中继站判断收到的信息类型。 具体地说, 如果 新接入节点处于该低能力中继站的覆盖范围内, 则当该新接入节点发送接 入码 (初始测距码) 时, 该低能力中继站将接收到该新接入节点发送的初 始测距码; 如果该低能力中继站为收到同一新接入节点信号的所有站点中 信号质量最好的站点, 则该低能力中继站将接收到该基站发送的包含调整 参数或成功信息的接入响应消息; 如果该低能力中继站收到接入码信号, 则还将收到该基站发送的包含非竟争的时频资源信息的带宽分配消息; 如 果基站通过该低能力中继站收到了该新接入节点的测距请求消息, 则该低 能力中继站将收到基站的测距响应消息; 如果该低能力中继站为收到同一 新接入节点信号的所有站点中信号质量最好的站点, 并且该基站已为该新 接入节点分配了用于发送建立连接所需信息的非竟争的时频资源, 则该低 能力中继站将接收到该新接入节点发送的测距请求消息。 因此, 当低能力 中继站收到信息时, 需先判断接收到的信息类型。
如果该信息为来自新接入节点的接入码, 则进入步骤 302; 如果该信 息为来自基站的接入响应消息、 包含非竟争的时频资源信息的带宽分配消 息、 或测距响应消息, 则进入步骤 304; 如果该信息为来自新接入节点的 测距请求消息, 则进入步骤 305。
在步骤 302中, 当低能力中继站收到来自新接入节点的接入码时, 判 断该接入码的信号质量是否超过预设门限。 低能力中继站判断该接入码信 号质量的评价指标可以包含信号强度、 信号与该低能力中继站的时间同步 偏差、 以及信号与该低能力中继站的载波频率偏差。 如果该接入码的信号 盾量超过预设门限, 则进入步骤 303, 该低能力中继站将该接入码通过报 告消息转发给基站, 在该报告消息中包含接收信号强度参数 P、 该新接入 节点相对低能力中继站的载波频率偏差^、 和该新接入节点相对低能力中 继站的时间同步偏差 ΔΓ等参数,为基站选择收到的新接入节点的接入码信 号质量最好的站点提供了可靠的依据。
当低能力中继站收到来自基站的接入响应消息 (如包含调整参数的接 入响应消息或包含成功信息的接入响应消息) 、 包含非竟争的时频资源信 息的带宽分配消息、 或测距响应消息时, 进入步骤 304, 将该消息发送给 新接入节点。 该低能力中继站通过将包含调整参数的接入响应消息发送给 新接入节点,使得该新接入节点能根据该响应消息对自己的信号参数(包括 发射功率)进行调整后再次发起接入码。该低能力中继站通过将接入响应消 息、 带宽分配消息、 或测距响应消息发送给新接入节点, 可保证该新接入 节点能够通过该低能力中继站顺利接入信道。
当低能力中继站收到来自新接入节点的测距请求消息时, 进入步骤 305,该低能力中继站将该测距请求消息转发给基站, 以便建立该新接入节 点与该基站之间的连接。
下面以系统为 波接入全球互通 ( Worldwide Interoperability for Microwave Access, 简称" WiMAX" ) 系统, 各中继站和基站自身收到的来 自同一新接入节点的接入码中, 接入码信号质量最好的站点为该基站自身 为例, 对本实施方式的新接入节点随机接入的流程进行说明。
如图 4 所示, 在步骤 401 中, 当码分多址(Code Division Multiple Access, 简称" CDMA")初始测距机会的时间到来时, 基站在帧头内发送 "UL-MAP"消息, 该消息包含测距的时频资源分配信息。 如果新接入节点 在该消息的传输范围内, 则该消息可直接传输到该新接入节点; 如果在该 消息的传输范围内存在低能力中继站, 如果该低能力中继站发送与基站同 样的侦听, 则基站应将该消息提前发送给该低能力中继站, 使得该低能力 中继站能与基站在同样的时频资源上发送该消息。 新接入节点扫描下行同 步信息, 与基站或低能力中继站建立同步, 然后从广播消息中获取上下行 信道参数。
接着, 进入步骤 402, 该新接入节点对" UL-MAP"消息进行解码, 当测 距机会到来时, 该新接入节点会在测距码集合中随机选择一个码, 在测距 子信道中的一个测距时隙中发送出去, 即发送接入码,也就是初始测距码, 然后启动 T3 定时器, 等 ί寺接入响应消息的到来, 如果定时器溢出, 则进 行相应的溢出处理。
新接入节点可以是移动终端, 也可以是中继站, 以便中继站覆盖范围 内的移动终端和中继站均可以顺利接入。 作为新接入节点的移动终端或中 继站发送的初始测距码可位于不同区间, 以减少中继站与移动终端冲突的 可能性, 降低中继站的平均接入时间。 如果在测距时发生碰撞, 从而在协 议规定的时间内没有收到接入响应消息, 则新接入节点就根据协议规定的 退让策略, 重复发送, 直至达到一定的次数。
如果在该接入码信号的传输范围内存在低能力中继站, 则进入步骤 402' , 该低能力中继站将收到该接入码, 并生成该接入码的测距码报告消 息发送给基站, 在该消息中携带接收信号强度参数(如平均功率或信噪 比)/ \该新接入节点相对该低能力中继站的载波频率偏差^、和该新接入 节点相对该低能力中继站的时间同步偏差 ΔΓ ,该消息的格式在基站的处理 流程中已有描迷, 在此不再赘述, 该测距码报告消息包含的各种参数(包. 括测距码、 测距码的发送位置、 低能力中继站对测距码经过接收判决所指 示的测距码调整量等信息) 为基站选择接收到接入码信号质量最好的站点 提供了可靠的依据。 当然, 存在的低能力中继站可能不止一个, 每一个存 在的低能力中继站均执行本步骤。 .'
值得一提的是, 各低能力中继站在收到来自新接入节点的接入码时, 可以先判断该接入码信号的质量是否超过预设门限, 如果是, 则生成测距 码报告消息发送给该基站, 否则, 忽略该接入码。 使得接收的接入码信号 质量差的站点无需发送接入码报告消息, 节约了基站内的系统资源。
接着, 进入步骤 403, 基站收集它本身收到的和各低能力中继站通过 报告消息转发的对应于同一新接入节点的接入码, 并发送接入响应消息。 具体地说, 基站在自身收到新接入节点的接入码后等待一段时间, 如果在 等待一段时间后, 基站未收到该新接入节点的由低能力中继站发送的测距 码报告消息, 则将自身作为收到的接入码信号质量最好的站点, 否则, 基 站通过选择算法选定接收接入码信号质量最好的一个站点, 具体的选择算 法在基站的处理流程中已有描述, 在此不再赘述。 在本实施方式中, 所选 择的站点为该基站自身。 因此, 基站将该测距响应消息直接发送给该新接 入节点。 在本实施方式中, 本步骤中的接入响应消息中的测距状态消息为
"继续"。 也就是说, 该接入响应消息为包含调整参数的接入响应消息, 要 求该新接入节点根据该响应消息对自己的信号参数(包括发射功率)进行调 整后再次发送接入码。
接着, 进入步骤 404, 当发送 CDMA测距机会的时间到来时, 基站在 帧头内发送" UL-MAP"的消息中包含测距的时频资源分配信息。 本步骤与 步骤 401相同。
步骤 405和步骤 405' 分别与步骤 402和步骤 402' 相同, 在此不再 赘述。
在步骤 406 中, 基站收到该新接入节点对自己的信号参数(包括发射 功率)调整后发送的接入码后, 向该新接入节点再次发送接入响应消息。如 果基站本次收到的接入码的信号质量足够好, 则在本次发送的接入响应消 息中的测距状态消息为"成功", 即发送包含成功信息的接入响应消息。 并 且, 该基站通过带宽分配消息(CDMA— Allocation— IE)给该新接入节点分配 非竟争带宽, 用于该新接入节点发送测距请求消息。
步骤 407为当发送 CDMA测距机会的时间到来时, 基站在其发送的 "UL-MAP"消息中包含测距的时频资源分配信息的步骤。
当该新接入节点收到分配给它的非竟争的时频资源信息后, 进入步骤 408,在指定的非竟争时频资源上发送测距请求消息。其中包含该新接入节 点的媒体访问控制 ( Medium Access Control, 简称" MAC" )地址。
接着, 进入步骤 409, 该基站收到该新接入节点发送的测距请求消息 后, 生成响应消息, 也就是测距响应消息, 其中包含为该新接入节点分配 的连接识别符 ( Connection ID, 简称" CID" ) 等信息, 并将该测距响应消 息发送给该新接入节点。
下面以系统为 WiMAX系统, 收到来自同一新接入节点的接入码信号 的各站点 (包括基站和低能力中继站) 中, 信号质量最好的一个站点为低 能力中继站, 并且, 低能力中继站可以发送广播消息为例, 对本实施方式 的新接入节点随机接入的流程进行说明。
如图 5 所示, 在步骤 501 中, 当码分多址(Code Division Multiple Access , 简称" CDMA")初始测距机会的时间到来时, 基站在其发送的 "UL-MAP"消息中包含测距的时频资源分配信息, 本步骤与步骤 401 完全 相同, 在此不再赘述。
接着, 进入步骤 502, 该新接入节点对" UL-MAP"消息进行解码, 该新 接入节点会在测距码集合中随机选择一个码, 在测距子信道中的一个测距 时隙中发送出去, 即发送接入码, 也就是初始测距码, 然后启动 T3 定时 器, 等待接入响应消息的到来, 如果定时器溢出, 则进行相应的溢出处理。 本步骤与步骤 402完全相同。
如果在该接入码的传输范围内存在低能力中继站, 则进入步骤 502' , 步骤 502' 与步骤 402' 完全相同, 在此不再赘述。
接着, 进入步骤 503 , 基站收集它本身收到的和各低能力中继站通过 报告消息转发的对应于同一新接入节点的接入码, 在选择出接收接入码信 号质量最好的一个站点后发送测距响应消息。本步骤与步骤 403大致相同, 其区别仅在于, 在步骤 403中, 基站选择出的接收接入码信号质量最好的 站点为该基站自身, 而在本步骤中, 基站选择出的接收接入码信号质量最 好的站点为低能力中继站 1。 由于本实施方式中的低能力中继站为能够发 送广播消息的中继站, 因此, 基站将测距响应消息发送该低能力中继站 1。
(如果低能力中继站不能够发送广播消息, 则接入响应消息可以由基站直 接广播)假设选择出的站点接收到的接入码信号盾量仍未足够好, 则该接 入响应消息中的测距状态为 "继续", 该基站根据该低能力中继站 1的参数 调节该新接入节点用于接入信道的参数, 以保障该新接入节点能顺利接入 信道。
接着, 进入步骤 504, 低能力中继站 1将收到的来自基站的包含调整 参数的接入响应消息转发给新接入节点, 以便该新接入节点能根据该响应 消息对自己的信号参数(包括发射功率)进行调整后再次发送接入码。
接着, 进入步骤 505 , 当发送 CDMA测距机会的时间到来时, 基站在 其发送的" UL-MAP"消息包含测距的时频资源分配信息。本步骤与步骤 501 相同。
步骤 506和步骤 506' 分别与步骤 502和步骤 502' 完全相同, 在此 不再赘述。
在步骤 507中, 基站收集它本身收到的和各低能力中继站通过报告消 息转发的对应于同一新接入节点的接入码, 在选择出接收的接入码信号质 量最好的站点后发送接入响应消息。 本步骤与步骤 503大致相同, 其区别 仅在于, 在步骤 503中, 基站所选择出的站点接收到的接入码信号质量不 是足够好, 而在本步骤中, 基站所选择出的站点接收到的接入码信号质量 已足够好, 因此, 基站向低能力中继站 1发送的接入响应消息中的测距状 态为"成功"。 并且, 该基站通过带宽分配消息(CDMA_Allocation—IE)给该 新接入节点分配非竟争带宽, 用于该新接入节点发送测距请求消息。 可以 是基站直接将带宽分配消息发送给该新接入节点, 或者是基站通过低能力 中继站 1向该新接入节点发送带宽分配消息。
接着, 进入步骤 508, 低能力中继站 1将收到的来自基站的包含成功 信息的测距响应消息转发给新接入节点, 通知该新接入节点发送测距请求 消息。
步骤 509 为到发送 CDMA 测距机会的时间时, 基站再次发送
"UL-MAF,消息的步骤, 该" UL-MAP"消息中包含测距的时频资源分配信 ij 当该新接入节点收到分配给它的非竟争的时频资源信息后, 进入步骤
510,在指定的非竟争时频资源上发送测距请求消息。其中包含该新接入节 点的 MAC地址。 该测距请求消息需通过低能力中继站 1转发给基站, 因 此, 在本步骤中, 由低能力中继站 1收到该测距请求消息。
接着, 进入步骤 511 , 低能力中继站 1将该测距请求消息转发给基站。 接着, 进入步骤 512, 该基站收到通过低能力中继站 1转发的该新接 入节点的测距请求消息, 并生成响应消息, 也就是测距响应消息, 其中包 含为该新接入节点分配的 CID等信息。 由于该测距响应消息需通过低能力 中继站 1转发到该新接入节点, 因此, 在本步骤中, 基站将该测距响应消 息发送给低能力中继站 1。
接着, 进入步骤 513 , 低能力中继站 1将该测距响应消息转发给该新 接入节点。
由此可见, 即使新接入节点不在基站覆盖的范围内, 只要其处于中继 站覆盖的范围内, 就可以实现其随机接入的过程。
需要说明的是, 如果低能力中继站需通过其他低能力中继站才能将收 到的来自新接入节点的接入码通过报告消息发送给基站, 并且该低能力中 继站为收到接入码信号质量最好的站点, 则基站通过多个低能力中继站的 转发与该新接入节点进行交互, 完成该新接入节点的接入。 也就是说, 本 实施方式不仅适用于两跳系统, 还适用于多跳系统。
由于新接 节点与基站和中继站的关系存在许多种情况, 很有可能在 新接入节点到基站的传输链路中既存在高能力中继站 (如 RS2 ) , 也存在 低能力中继站 (如 RS 1 ) , 如图 6所示。 因此, 新接入节点发射的上行信 号可能被一个或多个低能力中继站接收到, 也可以被这些低能力中继站的 同步站(高能力中继站)接收到, 如图中的新接入节点移动终端 4发射的上 行信号。
针对在新接入节点到基站的传输链路中既存在高能力中继站, 也存在 低能力中继站的情况, 下面对本发明的第二实施方式进行详细阐述, 本实 施方式涉及新接入节点随机接入的方法。 在本实施方式中, 同步站为高能 力中继站, 低能力中继站为不发送下行广播消息的低能力中继站, 这种中 继站应用于增加小区吞吐率的场景, 在这种场景下, 位于低能力中继站覆 盖范围内的终端能直接接收到同步站发送的下行广播信息。
下面分别对本实施方式中的高能力中继站和低能力中继站的处理流 程进行说明, 高能力中继站的处理流程如图 7所示。
在步骤 701中, 高能力中继站等待随机接入码 (即接入请求) 。 如果 新接入节点需要发起随机接入, 则必须先扫描下行同步信息, 与服务节点 建立同步, 获得下行、 上行链路参数。 在上行链路参数中, 要获得测距码 集和上行链路帧中测距区的位置。
步骤 702至步骤 709分别与第一实施方式中的步驟 102至步骤 109大 致相同, 其区别仅在于, 在第一实施方式中, 由基站选择接收接入码信号 质量最好的站点, 并返回接入响应消息; 而在本实施方式中, 由高能力中 继站选择接收接入码信号质量最好的站点, 并返回接入响应消息。 并且, 当接收到的接入码的信号质量足够好时, 由高能力中继站为该新接入节点 分配非竟争的时频资源。
该新接入节点在获取到分配的非竟争的时频资源后, 将发送测距请求 消息, 要求建立与基站的连接。 因此, 在步骤 710中, 该高能力中继站将 收到的来自该新接入节点的测距请求消息用自身的基本 CID封装后转发给 基站。 基站收到转发的测距请求后, 从中提取出新接入节点发送的测距请 求消息参数, 然后生成测距响应消息, 在收到的接入码信号质量最好的站 点为高能力中继站的情况下, 该测距响应消息需通过该高能力中继站转发 给新接入节点。
因此, 在步骤 711中, 该高能力中继站从收到的来自基站的测距响应 消息中提取出相应的测距响应消息并以初始 CID (即 CID = 0)发送给新接入 节点。
步骤 712至步骤 716分别与第一实施方式中的步骤 1 12至步骤 116大 致相同, 其区别仅在于, 在第一实施方式中, 当接收接入码信号质量最好 的站点为低能力中继站时, 由基站通过该低能力中继站向该新接入节点返 回接入响应消息。 在本实施方式中, 当接收接入码信号质量最好的站点为 低能力中继站时, 由高能力中继站直接向该新接入节点返回接入响应消息
(本实施方式中低能力中继站不发送下行广播消息) , 并且, 当接收到的 接入码的信号质量足够好时, 由高能力中继站为该新接入节点分配非竟争 的时频资源。
该新接入节点在获取到分配的非竟争的时频资源后, 将发送测距请求 消息, 要求建立与基站的连接。 因此, 在步骤 717中, 该高能力中继站将 收到的来自该新接入节点的通过低能力中继站转发的测距请求消息用自身 的基本 CID封装后转发给基站。 基站收到转发的测距请求后, 从中提取出 新接入节点发送的测距请求消息参数, 然后生成测距响应消息, 该测距响 应消息需通过该高能力中继站转发给新接入节点。
因此, 在步骤 718中, 该高能力中继站从收到的来自基站的测距响应 消息中提取出相应的测距响应消息并以初始 CID (即 CID = 0)发送给新接入 节点。
本实施方式中的低能力中继站的处理流程如图 8所示。
在步骤 801中, 低能力中继站判断收到的信息类型。 比如说, 如果新 接入节点处于该低能力中继站的覆盖范围内, 则当该新接入节点发送接入 码(初始测距码) 时, 该低能力中继站将接收到该新接入节点发送的初始 测距码; 如果该低能力中继站为收到同一新接入节点信号的所有站点中信 号质量最好的站点, 并且高能力中继站已为该新接入节点分配了用于发送 建立连接所需信息的非竟争的时频资源, 则该低能力中继站将接收到该新 接入节点发送的测距请求消息。 因此, 当低能力中继站收到信息时, 需先 判断接收到的信息类型。
如果该信息为来自新接入节点的接入码, 则进入步骤 802; 如果该信 息为来自新接入节点的测距请求消息, 则进入步骤 804。 在步骤 802中, 当低能力中继站收到来自新接入节点的接入码时, 判 断该接入码的信号质量是否超过预设门限。 低能力中继站判断该接入码信 号质量的评价指标可以包含信号强度、 信号与该低能力中继站的时间同步 偏差、 以及信号与该低能力中继站的载波频率偏差。 如果该接入码的信号 质量超过预设门限, 则进入步骤 803 , 该低能力中继站将该接入码通过报 告消息转发给高能力中继站, 在该报告消息中包含接收信号强度参数 P、 该新接入节点相对低能力中继站的载波频率偏差 Δ/、 和该新接入节点相对 低能力中继站的时间同步偏差 ΔΓ等参数,为低能力中继站选择收到的新接 入节点的接入码信号质量最好的站点提供了可靠的依据。
当低能力中继站收到来自新接入节点的测距请求消息时, 进入步骤 804, 该低能力中继站将该测距请求消息转发给高能力中继站。
下面以高能力中继站选择的收到接入码信号质量最好的站点为低能 力中继站为例, 对新接入节点随机接入的方法进行详细阐述。
具体流程如图 9所示, 在步骤 901中进行测距前的准备工作, 即网络 接入过程中测距过程之前的步骤。 新接入节点 (中继站或移动终端) 首先 与服务节点建立同步, 获得下行、 上行链路参数。 在上行链路参数中, 要 获得测距码集和上行链路帧中测距区的位置。
接着, 进入步骤 902, 新接入节点选择一个初始测距码, 然后在测距 区选择一个测距位置将初始测距码发送出去, 即发送接入码。 新接入节点 可以是移动终端, 也可以是中继站, 中继站的初始测距码和移动终端的初 始测距码可以位于不同的区间, 以减少中继站与移动终端冲突的可能性, 降低中继站的平均接入时间。 如果在测距时发生碰撞, 从而在协议规定的 时间内没有收到测距响应消息,则新接入节点就根据协议规定的退让策略, 重复发送, 直至达到一定的次数。
如果在该接入码信号的传输范围内存在低能力中继站, 则进入步骤 902' , 该低能力中继站将收到该接入码, 并通过测距码报告消息告知高能 力中继站, 在该消息中携带接收信号强度参数(如平均功率或信噪比) p、 该新接入节点相对该低能力中继站的载波频率偏差^、 和该新接入节点相 对该低能力中继站的时间同步偏差 ΔΓ。该测距码报告消息应当以低能力中 继站的基本 CID发送, 它的消息类型可以选取 802.16e协议中未占用的编 号, 其格式与第一实施方式中的测距码报告消息相同, 在此不再赘述。
值得一提的是, 各低能力中继站在收到来自新接入节点的接入码时, 可以先判断该接入码的信号质量是否超过预设门限, 如果是, 则通过测距 码报告消息告知该高能力中继站, 否则, 忽略该接入码。 使得接收到接入 码信号质量差的低能力中继站无需发送测距码报告消息, 节约了高能力中 继站内的系统资源。
接着, 进入步骤 903 , 高能力中继站收集它本身收到的和各低能力中 继站通过报告消息转发的对应于同一新接入节点的接入码, 并发送接入响 应消息。 具体地说, 高能力中继站在自身收到新接入节点的接入码后等待 一段时间, 如果在等待一段时间后, 高能力中继站未收到该新接入节点的 由低能力中继站通过报告消息转发的接入码, 则将自身设为接收接入码信 号质量最好的站点, 否则, 高能力中继站通过选择算法选定接收接入码信 号盾量最好的站点。 具体的选择算法与第一实施方式中的选择算法类似, 分别计算 Ι ^ '^ Ι ^ , 选择对应于 Ι Δ 'Δ7^ ^值最小的站点作为接收接入 码信号质量最好的站点, 其中, i = 0, 1, ..., k, k为转发该接入码的低能 力中继站个数。 I ^。 'ΔΓο I / 。对应的接入码为该高能力中继站自身收到的接 入码, P。 = PBS P—。ff 严为该接入码的信号强度, "为大于 0的 固定参数, Δ/。为该选定站点的载波频率偏差, Δ71。为该选定站点的时间同 步偏差,当 i不等于 0时, 为第 i个低能力中继站转发的接入码信号强度,
Δ 为第 i个低能力中继站的载波频率偏差, Δ7 ^为第 i个低能力中继站的时 间同步偏差。 通过上述算法, 为高能力中继站选择接收接入码信号质量最 好的站点提供了保证。 在本实施方式中, 所选择出的接收信号质量最好的 站点为低能力中继站 1。
然后, 高能力中继站生成接入响应消息, 并将该接入响应消息发送给 该新接入节点。 由于本实施方式中低能力中继站不发送下行广播消息, 因 此, 由该高能力中继站将接入响应消息直接发送给该新接入节点。
假设在本步骤中选择出的接入码信号质量仍未足够好, 因此, 该接入 响应消息中的测距状态为"继续", 该高能力中继站根据该低能力中继站 1 的参数调节该新接入节点用于接入信道的参数, 以保障该新接入节点能顺 利接入信道。
通过与第一实施方式的比较, 不难发现, 步骤 901至步骤 903对应于 步骤 501至步骤 504。 由于在第一实施方式中, 同步站为基站, 因此低能 力中继站将来自新接入节点的接入码通过测距码报告消息告知基站, 由基 站选择接收接入码信号质量最好的站点, 并返回接入响应消息; 而在本实 施方式中, 同步站为高能力中继站, 因此低能力中继站将来自新接入节点 的接入码通过测距码报告消息告知高能力中继站, 由高能力中继站选择接 收接入码信号质量最好的站点, 并返回接入响应消息。
步骤 904和步骤 904' 分别与步骤 902和步骤 902' 完全相同, 在此 不再赘述。
在步骤 905中, 高能力中继站收集它本身收到的和各低能力中继站通 过报告消息转发的对应于同一新接入节点的接入码, 在选择出接收接入码 信号质量最好的站点后发送接入响应消息。 本步骤与步骤 903大致相同, 其区别仅在于, 在步骤 903中, 高能力中继站所选择出的接入码信号质量 尚未足够好, 而在本步骤中, 高能力中继站所选择出的接入码信号质量已 足够好, 因此, 高能力中继站直接向新接入节点发送的接入响应消息中的 测距状态为"成功"。
接着, 在步骤 906 中, 该高能力中继站通过带宽分配消息 (CDMA_Allocation__IE)给该新接入节点分配非竟争带宽, 用于该新接入节 点发送测距请求消息。
接着, 进入步骤 907, 当该新接入节点收到包含分配给它的非竟争的 时频资源信息的带宽分配消息后, 在指定的非竟争时频资源上发送测距请 求消息。 其中包含该新接入节点的 MAC地址。 该测距请求消息需通过低 能力中继站 1转发给高能力中继站, 因此, 在本步骤中, 由低能力中继站 1收到该测距请求消息。
接着, 进入步骤 908, 低能力中继站 1将该测距请求消息转发给高能 力中继站。
接着, 进入步骤 909, 该高能力中继站收到转发的测距请求消息后, 将该测距请求消息用自身的基本 CID封装后转发给基站, 封装后的消息称 为转发的测距请求 (REL_RNG-REQ)消息,该消息的内容与原测距请求消息 的内容完全相同。
接着, 进入步骤 910, 基站收到转发的测距请求后, 从中提取出新接 入节点发送的测距请求消息参数, 给新接入节点分配 CID, 消息中要包括 新接入节点的 MAC地址、 基本 CID、 主管理 CID, .然后生成测距响应消 息。 该测距响应消息需通过高能力中继站发送给新接入节点, 因此, 在本 步骤中, 基站将该测距响应消息用该高能力中继站的 CID封装后发送给该 高能.力中继站, 封装后的消息称为转发的测距响应 (REL— RNG-RSP)消息。
接着, 进入步骤 91 1, 该高能力中继站收到该测距响应消息后, 提取 出相应的测距响应消息并以初始 CID(即 CID = 0)发送给新接入节点。
由此可见, 即使新接入节点到基站的传输链路中既存在高能力中继 站, 也存在低能力中继站, 也能应用本发明方案, 使得中继站覆盖范围内 的新接入节点可以实现其随机接入的过程。
需要说明的是, 如果低能力中继站需通过其他低能力中继站才能将收 到的来自新接入节点的接入码通过报告消息转发给高能力中继站, 并且该 低能力中继站为收到接入码信号质量最好的站点, 则基站通过高能力中继 站、 多个低能力中继站的转发与该新接入节点进行交互, 完成该新接入节 点的接入。 也就是说, 本实施方式不仅适用于两跳系统, 还适用于多跳系 统。
另外, 值得一提的是, 由于本实施方式中低能力中继站不发送下行广 播消息, 因此由高低能力中继站直接向新接入节点发送接入响应消息、 带 宽分配消息和转发测距响应消息。 如果接收接入码信号质量最好的低能力 中继站能够发送下行广播消息,则可由该低能力中继站转发接入响应消息、 带宽分配消息和测距响应消息。
本发明的第三实施方式涉及新接入节点随机接入的方法, 本实施方式 与第二实施方式大致相同, 其区别仅在于, 在第二实施方式中, 高能力中 继站所选择出的接收到接入码信号质量最好的站点为低能力中继站 1 , 而 在本实施方式中, 高能力中继站所选择出的接收到接入码信号质量最好的 站点为该高能力中继站自身。 因此, 在该新接入节点与该高能力中继站的 交互过程中, 无需通过低能力中继站的中继, 该新接入节点直接与该高能 力中继站进行交互, 并且, 高能力中继站根据自身的参数调节新接入节点 用于随机接入的信号参数。
本发明的第四实施方式涉及新接入节点随机接入的系统, 包含一个新 接入节点、 至少一个中继站和一个同步站, 该同步站为基站, 该中继站为 低能力中继站。
在低能力中继站中包含转发模块和判断模块。 转发模块用于将收到的 来自新接入节点的接入码通过测距码报告消息告知同步站, 在本实施方式 中, 同步站也就是基站。 判断模块用于在该转发模块将收到的来自新接入 节点的接入码通过测距码报告消息告知基站之前, 先判断该接入码信号质 量是否超过预设门限, 如果是, 则指示该转发模块通过测距码报告消息将 该接入码转发给基站。
在基站中包含选择模块和交互模块。 选择模块用于根据各低能力中继 站和自身收到的来自同一新接入节点的接入码选择接收到该接入码信号质 量最好的站点。 交互模块用于为新接入节点分配用于发送测距请求消息的 带宽, 并在该选择模块所选择的站点为低能力中继站时, 通过该低能力中 继站与该新接入节点进行交互, 完成该新接入节点的接入; 在该选择模块 所选择的站点为该基站自身时, 直接与该新接入节点进行交互, 完成该新 接入节点的接入。 使得在中继站覆盖范围内的新接入节点可以随机接入信 道, 充分利用了引入中继站对系统带来的优点。
新接入节点可以是移动终端, 也可以是中继站, 使得中继站覆盖范围 内的移动终端和中继站均可以顺利接入。
本发明的第五实施方式涉及新接入节点随机接入的系统, 包含一个新 接入节点、 至少一个低能力中继站和一个高能力中继站, 以及基站。
在低能力中继站中包含转发模块和判断模块。 转发模块用于将收到的 来自新接入节点的接入码通过测距码报告消息告知同步站, 在本实施方式 中, 也就是高能力中继站。 判断模块用于在该转发模块将收到的来自新接 入节点的接入码转发给高能力中继站之前, 先判断该接入码信号质量是否 超过预设门限, 如果是, 则指示该转发模块通过测距码报告消息将该接入 码转发给高能力中继站。
在高能力中继站中包含选择模块和分配模块。 选择模块用于根据各低 能力中继站和自身收到的来自同一新接入节点的接入码选择接收该接入码 信号质量最好的站点; 分配模块用于在该选择模块选择出的站点接收到的 接入码信号质量足够好时, 为该新接入节点分配用于发送测距请求消息的 带宽。
如果该高能力中继站的选择模块所选择的站点为低能力中继站, 则基 站通过该高能力中继站和该低能力中继站, 与该新接入节点进行交互, 完 成该新接入节点的接入; 如果该高能力中继站的选择模块所选择的站点为 该高能力中继站自身, 则基站通过该高能力中继站与该新接入节点进行交 互, 完成该新接入节点的接入。 保证了在系统中包含高能力和低能力中继 站的情况下,同样使得中继站覆盖范围内的新接入节点可以随机接入信道, 充分利用了引入中继站对系统带来的优点。 本发明的第六实施方式涉及新接入节点随机接入的方法, 其具体流程 如图 10所示。
在步骤 1001 中进行测距前的准备工作, 即网络接入过程中测距过程 之前的步骤。 新接入节点(中继站或移动终端)首冼与服务节点建立同步, 获得下行、 上行链路参数。 在上行链路参数中, 要获得测距码集和上行链 路帧中测距区的位置。
接着, 进入步骤 1002, 新接入节点选择一个初始测距码, 然后在测距 区选择一个测距位置将初始测距码发送出去, 即发送接入码。 新接入节点 可以是移动终端, 也可以是中继站, 中继站的初始测距码和移动终端的初 始测距码可以位于不同的区间, 以减少中继站与移动终端冲突的可能性, 降低中继站的平均接入时间。 如果在测距时发生碰撞, 从而在协议规定的 时间内没有收到测距响应消息,则新接入节点就根据协议规定的退让策略, 重复发送, 直至达到一定的次数。
接着, 进入步骤 1003 , 高能力中继站在收到接入码时, 根据该接入码 的信号质量生成接入响应消息,并将该接入响应消息发送给该新接入节点。 如果该接入码的信号质量足够好(如预先设置一个门限, 如果接入码的信 号质量达到该门限, 则认为该接入码的信号质量足够好) , 则该高能力中 继站还需发送带宽分配消息 (CDMA— Allocation— IE)给该新接入节点, 为该 新接入节点分配用于发送测距请求消息的非竟争带宽。
假设在本步骤中收到的接入码信号质量未足够好, 因此, 该高能力中 继站将测距状态为"继续"的接入响应消息发送给该新接入节点。 该高能力 中继站根据自身的参数调节该新接入节点用于接入信道的参数, 以保障该 新接入节点能顺利接入信道。
步骤 1004与步骤 1002完全相同, 在此不再赘述。
步骤 1005与步骤 1003大致相同, 其区别仅在于, 在步骤 1003中, 高能力中继站收到的接入码信号质量尚未足够好, 而在本步骤中, 高能力 中继站收到的接入码信号质量已足够好, 因此, 高能力中继站向新接入节 点发送测距状态为"成功"的接入响应消息, 并需为该新接入节点分配用于 发送测距请求消息的非竟争带宽。
接着, 在步骤 1006 中, 该高能力中继站通过带宽分配消息 (CDMA— Allocation— IE)给该新接入节点分配非竟争带宽, 用于该新接入节 点发送测距请求消息。
接着, 进入步骤 1007, 当该新接入节点收到包含分配给它的非竟争的 时频资源信息的带宽分配消息后, 在指定的非竟争时频资源上发送测距请 求消息。 其中包含该新接入节点的 MAC地址。
接着, 进入步骤 1008, 该高能力中继站收到测距请求消息后, 将该测 距请求消息用自身的基本 CID封装后转发给基站, 封装后的消息称为转发 的测距请求 (REL_RNG-REQ)消息,该消息的内容与原测距请求消息的内容 完全相同。
接着, 进入步骤 1009, 基站收到转发的测距请求后, 从中提取出新接 入节点发送的测距请求消息参数, 给新接入节点分配 CID, 消息中要包括 新接入节点的 MAC地址、 基本 CID、 主管理 CID, 然后生成测距响应消 息。 该测距响应消息需通过高能力中继站发送给新接入节点, 因此, 在本 步骤中, 基站将该测距响应消息用该高能力中继站的 CID封装后发送给该 高能力中继站, 封装后的消息称为转发的测距响应 (REL— RNG-RSP)消息。
接着, 进入步骤 1010, 该高能力中继站收到该测距响应消息后, 提取 出相应的测距响应消息并以初始 CID (即 CID = 0)发送给新接入节点, 完成 该新接入节点的接入。
本发明的第七实施方式涉及新接入节点随机接入的系统, 该系统包 含: 基站、 高能力中继站、 和新接入节点, 新接入节点可以是移动终端, 也可以是中继站。
其中, 高能力中继站包含: 用于在收到来自新接入节点的接入请求时, 根据该接入请求的信号质量向该新接入节点发送接入响应消息的模块; 用 于判断收到的来自新接入节点的接入请求的信号质量是否超过预设门限的 模块; 用于在该接入请求的信号质量超过预设门限时, 为该新接入节点分 配用于发送测距请求消息的带宽的模块; 和用于将由该新接入节点发送的 测距请求消息发送给基站的模块。
基站通过所述高能力中继站与所述新接入节点进行交互, 完成该新接 入节点的接入,使得在中继站覆盖范围内的新接入节点可以实现随机接入。
通过比较可以发现, 本发明的技术方案与现有技术的主要区别在于, 在新接入节点处于中继站覆盖的范围时, 由各中继站将该新接入节点发送 的接入请求通过报告消息告知同步站, 同步站通过比较各中继站和自身收 到的来自同一新接入节点的接入请求的信号质量, 选择出收到的接入请求 的信号质量最好的站点, 根据所选择的站点和本同步站的类型完成该新接 入节点的接入,使得在中继站覆盖范围内的新接入节点可以随机接入信道, 充分利用了引入中继站对系统带来的优点。
同步站可以是基站, 也可以是高能力中继站, 使得只包含低能力中继 站的系统和同时包含高能力和低能力中继站的系统均可以应用本发明方 案, 扩大了本发明方案的应用范围。
新接入节点可以是移动终端, 也可以是中继站, 使得中继站覆盖范围 内的移动终端和中继站均可以顺利接入。
作为新接入节点的移动终端或中继站发送的接入请求可以为初始测 距码。 移动终端的初始测距码与中继站的初始测距码可以位于不同区间, 以减少中继站与移动终端在随机接入时发生冲突的可能性, 降低中继站的 平均接入时间。
. 低能力中继站在收到来自新接入节点的接入请求后, 先判断该接入请 求的信号质量是否超过预设门限, 如果是, 则通过报告消息将该接入请求 转发给同步站。 使得接收到接入请求信号质量差的低能力中继站无需将此 接入请求转发给同步站, 节约了同步站内的系统资源。
低能力中继站向同步站发送的报告消息中包含接收信号强度参数 P、 该新接入节点相对该低能力中继站的载波频率偏差^ "、 和该新接入节点相 对该低能力中继站的时间同步偏差 ΔΓ ,为同步站选择信号质量最好的站点 提供了可靠的依据。
如果同步站选择的信号质量最好的站点为低能力中继站, 则该同步站 根据该低能力中继站的参数调节新接入节点用于接入信道的参数; 如果同 步站选择的信号质量最好的站点为该同步站本身, 则根据自身的参数调节 该新接入节点用于随机接入的信号参数, 保证了该新接入节点能顺利接入 信道。
低能力中继站也可通过其他低能力中继站将收到的来自新接入节点 的接入请求通过报告消息告知同步站, 如果该低能力中继站为接收到接入 请求信号质量最好的站点, 并且该新接入节点的接入过程中需要与该同步 站进行交互, 则该同步站通过多个低能力中继站的转发与该新接入节点进 行交互, 完成该新接入节点的接入,使得本发明方案不仅适用于两跳系统, 还适用于多跳系统, 扩大了本发明的应用范围。
在不存在低能力中继站, 只有基站, 高能力中继站和新接入节点的情 况下, 如果高能力中继站收到的来自新接入节点的接入请求的信号质量足 够好, 则由该高能力中继站为该新接入节点分配用于发送测距请求消息的 带宽, 并将由该新接入节点发送的测距请求消息发送给基站, 基站通过该 高能力中继站与该新接入节点进行交互, 完成该新接入节点的接入。 使得 在中继站覆盖范围内的新接入节点可以实现随机接入。
本实施例以选择信号质量最好的站点为例详细描述了新接入节点随 机接入的方法, 也可以选择负载最轻的站点实现新接入节点的随机接入 , 或者综合考虑信号质量与负载情况, 选择传输能力最好的站点实现新接入 节点的随机接入。 可以在收到接入请求之前或者在收到接入请求的同时获 得各站点的负载情况, 并从中选择负载最轻的站点。 获得各站点的负载情 况及确定负载最轻的站点的方法为现有技术, 在此不再赘述。 综合考虑信 号质量与负载情况时, 可通过将信号质量信息与负载信息分级(如 1、 2、 3、 4、 5级, 第 5级表示信号质量最好或负载最轻) 的形式为信号质量与 负载情况评分, 得分最高的站点为传输能力最好的站点。 选择站点后的流 程与上述实施例相同, 可参照执行。 其中, 负载最轻包括连接的终端数量 最少和 /或承载的业务数据量最少。本实施例通过站点的在多方面的传输能 力来选择站点, 选择站点的方式更灵活, 适用于多种网络环境的需要。
虽然通过参照本发明的某些优选实施方式, 已经对本发明进行了图示 和描述, 但本领域的普通技术人员应该明白, 可以在形式上和细节上对其 作各种改变, 而不偏离本发明的精神和范围。

Claims

权 利 要 求
1. 一种新接入节点随机接入的方法, 其特征在于, 包括:
各中继站接收来自新接入节点的接入请求; 所述各中继站将所述接入请 求通过报告消息告知同步站, 所述同步站根据获得的各中继站及自身的传输 能力选择传输能力最好的站点;
根据所述同步站所选择的站点和该同步站的类型完成所述新接入节点的 接入。 '
2. 根据权利要求 1所述的新接入节点随机接入的方法, 其特征在于, 所 述传输能力最好是指负载量最少。 .
3. 根据权利要求 1所述的新接入节点随机接入的方法, 其特征在于, 所 述传输能力最好是指传输的信号质量最好。
4. 根据权利要求 3所述的新接入节点随机接入的方法, 其特征在于, 所 述同步站根据获得的各中继站及自身的传输能力选择传输能力最好的站点的 操作包括步骤:
所述同步站根据各中继站和自身收到的来自所述新接入节点的接入请求 选择收到的接入请求的信号质量最好的站点。
5. 根据权利要求 4所述的新接入节点随机接入的方法, 其特征在于, 所 述中继站为低能力中继站。
6. 根据权利要求 5所述的新接入节点随机接入的方法, 其特征在于, 如 果所选择的站点为低能力中继站, 并且所述同步站为基站, 则该基站通过该 低能力中继站与所述新接入节点进行交互, 完成该新接入节点的接入。
7. 根据权利要求 5所述的新接入节点随机接入的方法, 其特征在于, 如 果所选择的站点为所述同步站自身, 并且所述同步站为基站, 则该基站直接 与所述新接入节点进行交互, 完成该新接入节点的接入。
8. 根据权利要求 5所述的新接入节点随机接入的方法, 其特征在于, 如 果所选择的站点为低能力中继站, 并且所述同步站为高能力中继站, 则该高 能力中继站为所述新接入节点分配用于发送测距请求消息的带宽, 并将由该 新接入节点发送的并通过该低能力中继站转发的测距请求消息发送给基站; :: 所述基站通过所述高能力中继站和所述低能力中继站, 与所述新接入节 点进行交互, 完成该新接入节点的接入。
9. 根据权利要求 5所述的新接入节点随机接入的方法, 其特征在于, 如 果所选择的站点为所述同步站自身, 并且所述同步站为高能力中继站, 则该 高能力中继站为所述新接入节点分配用于发送测距请求消息的带宽, 并将该 新接入节点发送的测距请求消息转发给基站;
所述基站通过所述高能力中继站与所述新接入节点进行交互, 完成该新 接入节点的接入。
10. 根据权利要求 5至 9中任一项所述的新接入节点随机接入的方法, 其特征在于, 所述新接入节点为移动终端、 低能力中继站、 或高能力中继站。
11. 根据权利要求 10所述的新接入节点随机接入的方法, 其特征在于, 所述移动终端和所述中继站发送的接入请求为初始测距码。
12. 根据权利要求 11所述的新接入节点随机接入的方法, 其特征在于, 所述移动终端的初始测距码与所述中继站的初始测距码位于不同区间。
13. 根据权利要求 10所述的新接入节点随机接入的方法, 其特征在于, 所述低能力中继站在收到来自所述新接入节点的接入请求后, 先判断该接入 请求的信号质量是否超过预设门限, 如果是, 则再将该接入请求通过报告消 息告知所述同步站。
14. 根据权利要求 10所述的新接入节点随机接入的方法, 其特征在于, 所述同步站根据各中继站和自身收到的来自同一新接入节点的接入请求选择 收到的接入请求的信号质量最好的站点的步骤中包含以下子步骤:
所述同步站在自身收到新接入节点的接入请求后等待预定时长;
如果等待预定时长后, 所述同步站未收到该新接入节点的由所述低能力 中继站通过报告消息告知的接入请求, 则选择自身为收到的接入请求的信号 质量最好的站点, 否则, 根据各低能力中继站和自身收到的接入请求选择收 到的接入请求的信号质量最好的站点。
15. 根据权利要求 13或 14所述的新接入节点随机接入的方法, 其特征 在于, 所述信号质量的评价指标包含以下之一或其任意组合:
信号强度、 信号与所述低能力 /高能力中继站的时间同步偏差、 以及信号 与所述低能力 /高能力中继站的载波频率偏差。
16. 根据权利要求 10所述的新接入节点随机接入的方法, 其特征在于, 所述低能力中继站向所述同步站发送的报告消息中包含以下参数:
接收信号强度参数 P、该新接入节点相对所述低能力中继站的载波频率偏 差^、 和该新接入节点相对所述低能力中继站的时间同步偏差 ΔΓ。
17. 根据权利要求 16所述的新接入节点随机接入的方法, 其特征在于, 所述同步站选择对应于 I Δ · Δ7^ 11 值最小的站点作为收到的接入请求的信号 质量最好的站点, i = 0, 1 , …, k, k为转发所述接入请求的低能力中继站个 数;
其中, 1 ' 1 。对应的站点为所述同步站自身, P0 = PBS + P Offset ^ Pss 为该同步站自身收到的接入请求的信号强度, P一0 于 0的固定参数, Δ/。为该新接入节点相对该同步站的载波频率偏差, Δ。为该新接入节点相对该 同步站的时间同步偏差, 当 i不等于 0时, 为第 i个低能力中继站收到的接 入请求的信号强度, Δ 为该新接入节点相对第 i个低能力中继站的载波频率 偏差, Δ7^为该新接入节点相对第 i个低能力中继站的时间同步偏差。
18. 根据权利要求 10所述的新接入节点随机接入的方法, 其特征在于, 如果所述同步站选择的站点为低能力中继站, 则所述同步站根据该低能力中 继站的参数调节所述新接入节点用于随机接入的信号参数。
19.根据权利要求 10所述的新接入节点随机接入的方法, 其特征在于, 如果所述同步站选择的站点为同步站本身, 则所述同步站根据自身的参数调 节所述新接入节点用于随机接入的信号参数。
20. 根据权利要求 10所述的新接入节点随机接入的方法, 其特征在于, 如果所述低能力中继站通过其他低能力中继站将收到的来自新接入节点的接 入请求通过报告消息告知所述同步站, 并且该新接入节点的接入过程中需要 与该同步站进行交互, 则该同步站通过该低能力中继站和所述其他低能力中 继站与所述新接入节点进行交互。
21. 一种无线通信系统, 包含至少一个新接入节点、 至少一个中继站和 至少一个同步站, 其特征在于, 所述中继站包含: 转发模块, 用于将收到的 来自新接入节点的接入请求通过报告消息告知所述同步站;
所述同步站包含: 选择模块, 用于才艮据获得的各中继站及自身的传输能 力选择传输能力最好的站点;
所述同步站根据所选择的站点和自身的类型完成所述新接入节点的接 入。
22.根据权利要求 21所述的无线通信系统, 其特征在于, 所述传输能力 最好是指负载量最少; 所述选择模块用于根据获得的各中继站和自身的负载 量选择负载量最少的站点。
23.根据权利要求 21所述的无线通信系统, 其特征在于, 所述传输能力 最好是指传输的信号质量最好; 所述选择模块用于^^据各中继站和自身收到 的来自同一新接入节点的接入请求选择收到的接入请求的信号质量最好的站 点。
24. 根据权利要求 23所述的无线通信系统, 其特征在于, 所述中继站为 低能力中继站。
25. 根据权利要求 24所述的无线通信系统, 其特征在于, 如果所述同步 站为基站, 则该同步站还包含交互模块, 用于为所述新接入节点分配用于发 送测距请求消息的带宽并在所述选择模块所选择的站点为低能力中继站时, 通过该低能力中继站与所述新接入节点进行交互, 完成该新接入节点的接入。
26. 根据权利要求 25所述的无线通信系统, 其特征在于, 如果所述同步 站为基站, 则所述交互模块在所述选择模块所选择的站点为该同步站自身时, 直接与所述新接入节点进行交互, 完成该新接入节点的接入。
27. 根据权利要求 24所述的无线通信系统, 其特征在于, 如果所述同步 站为高能力中继站, 则该系统还包含基站;
所述同步站还包含分配模块, 用于为该新接入节点分配用于发送测距请 求消息的带宽;
如果所述选择模块所选择的站点为低能力中继站, 则所述基站通过所述 高能力中继站和所述低能力中继站, 与所述新接入节点进行交互, 完成该新 接入节点的接入。
28. 根据权利要求 27所述的无线通信系统, 其特征在于, 如果所述选择 模块所选择的站点为所述高能力中继站自身, 则所述基站通过该高能力中继 站与所述新接入节点进行交互, 完成该新接入节点的接入。
29. 根据权利要求 24至 28中任一项所述的无线通信系统, 其特征在于, 所述低能力中继站还包含判断模块, 用于在所述低能力中继站接收到来自新 接入节点的接入请求后, 判断该接入请求的信号质量是否超过预设门限, 如 果是, 则指示所述转发模块通过报告消息将该接入请求告知所述同步站。
30. 根据权利要求 29所述的无线通信系统, 其特征在于, 所述新接入节 点为移动终端、 低能力中继站、 或高能力中继站。
31. 一种新接入节点随机接入的方法', 其特征在于, 包括:
高能力中继站接收来自新接入节点的接入请求, 如果本地的传输能力超 过预设门限, 则为该新接入节点分配用于发送测距请求消息的带宽, 并将由 该新接入节点发送的测距请求消息发送给基站;
所述基站通过所述高能力中继站与所述新接入节点进行交互, 完成该新 接入节点的接入。
32.根据权利要求 31所述的新接入节点随机接入的方法, 其特征在于, 所述传输能力是指负载量。
33.根据权利要求 31所述的新接入节点随机接入的方法, 其特征在于, 所述传输能力是指所述接入请求的信号质量。
34. 根据权利要求 33所述的新接入节点随机接入的方法, 其特征在于, 所述高能力中继站在收到来自新接入节点的接入请求时, 还执行以下步骤: 根据收到的接入请求的信号质量向所述新接入节点发送接入响应消息。
35. 根据权利要求 33或 34所述的新接入节点随机接入的方法, 其特征 在于, 所述新接入节点为移动终端、 低能力中继站、 或高能力中继站。
36. 一种无线通信系统, 其特征在于, 包含: 基站、 高能力中继站、 和 至少一个新接入节点;
所述高能力中继站包含: 用于判断本地的传输能力是否超过预设门限的 模块; 用于在本地的传输能力超过预设门限时, 为该新接入节点分配用于发 送测距请求消息的带宽的模块; 和用于将由该新接入节点发送的测距请求消 息发送给基站的模块;
所述基站通过所述高能力中继站与所述新接入节点进行交互, 完成该新 接入节点的接入。
37.根据权利要求 36所述的无线通信系统, 其特征在于, 所述传输能力 是指本地的负载量。
38.根据权利要求 36所述的无线通信系统, 其特征在于, 所述传输能力 是指收到的来自新接入节点的接入请求的信号质量。
39. 根据权利要求 38所述的无线通信系统, 其特征在于, 所述高能力中 继站还包含用于在收到来自新接入节点的接入请求时, 根据该接入请求的信 号质量向该新接入节点发送接入响应消息的模块;
所述新接入节点为移动终端、 低能力中继站、 或高能力中继站。
PCT/CN2007/002732 2006-09-15 2007-09-17 PROCÉDÉ DE MISE EN œUVRE D'UN ACCÈS ALÉATOIRE D'UN NOUVEAU NOEUD D'ACCÈS, ET SYSTÈME DE COMMUNICATION ASSOCIÉ WO2008040164A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07816349.0A EP2053872B1 (en) 2006-09-15 2007-09-17 Method for implementing random access of new access node and the communication system thereof
US12/403,987 US8086173B2 (en) 2006-09-15 2009-03-13 Method for implementing random access of new access node and communication system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610153392.0 2006-09-15
CN2006101533920A CN101146337B (zh) 2006-09-15 2006-09-15 新接入节点随机接入的方法及其系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/403,987 Continuation US8086173B2 (en) 2006-09-15 2009-03-13 Method for implementing random access of new access node and communication system thereof

Publications (1)

Publication Number Publication Date
WO2008040164A1 true WO2008040164A1 (fr) 2008-04-10

Family

ID=39208573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002732 WO2008040164A1 (fr) 2006-09-15 2007-09-17 PROCÉDÉ DE MISE EN œUVRE D'UN ACCÈS ALÉATOIRE D'UN NOUVEAU NOEUD D'ACCÈS, ET SYSTÈME DE COMMUNICATION ASSOCIÉ

Country Status (4)

Country Link
US (1) US8086173B2 (zh)
EP (1) EP2053872B1 (zh)
CN (1) CN101146337B (zh)
WO (1) WO2008040164A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167079A3 (zh) * 2012-10-25 2014-01-09 中兴通讯股份有限公司 近距离同步时间的方法及装置
EP3090748A1 (en) 2005-12-13 2016-11-09 Spring Bank Pharmaceuticals, Inc. Compositions comprising nucleotide and oligonucleotide prodrugs

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330724B (zh) 2007-06-21 2012-04-04 华为技术有限公司 测距信息所占用专用帧信息的通知方法、基站及中继站
WO2009035263A1 (en) * 2007-09-10 2009-03-19 Electronics And Telecommunications Research Institute Method for allocating resource and receiving data
CN101582870B (zh) * 2008-05-15 2013-01-16 中兴通讯股份有限公司 同步实现方法和装置
KR101429672B1 (ko) * 2008-08-05 2014-08-13 삼성전자주식회사 이동 중계국을 지원하는 광대역 무선통신 시스템의핸드오버 장치 및 방법
CN101686559B (zh) * 2008-09-26 2012-06-13 中兴通讯股份有限公司 一种中继站随机接入方法及系统
PL2351401T3 (pl) * 2008-11-18 2017-08-31 Nokia Technologies Oy Przekazywanie w systemie komunikacji
CN101827451B (zh) 2009-03-03 2012-12-12 华为技术有限公司 中继节点的入网方法及装置
BRPI1009456B1 (pt) 2009-03-13 2021-11-03 Blackberry Limited Sistema e método de sincronização de recepção de retransmissão
WO2010121647A1 (en) * 2009-04-21 2010-10-28 Nokia Siemens Networks Oy Association level indication to neighboring base stations
KR101622406B1 (ko) * 2009-04-24 2016-05-19 엘지전자 주식회사 무선 통신 시스템에서 네트워크 접속 방법 및 장치
CN101588576B (zh) * 2009-05-22 2015-08-12 中兴通讯股份有限公司 一种无线通信系统中保护终端私密性的方法及系统
CA2765474C (en) * 2009-06-19 2015-08-04 Research In Motion Limited Mobile station association procedures with type ii relays
CN102804890B (zh) * 2009-06-19 2016-05-25 黑莓有限公司 中继节点、接入设备和在中继节点中实现的方法
CN101657012B (zh) * 2009-09-23 2015-06-03 中兴通讯股份有限公司 一种通过中继进行下行数据发送的方法及系统
CN102083193B (zh) * 2009-11-30 2016-09-28 中兴通讯股份有限公司 时分双工系统中网络节点的同步方法及系统
EP2362708B1 (en) * 2010-02-15 2012-09-19 Alcatel Lucent Method for performing a random access procedure by a relay node in a wireless or radio communication network, corresponding relay node
CN102215060A (zh) * 2010-04-01 2011-10-12 中兴通讯股份有限公司 中继子帧的配置和指示方法、实现中继传输的方法及系统
US20110319066A1 (en) * 2010-06-24 2011-12-29 Industrial Technology Research Institute Apparatus and method for relaying content between a macrocell and a femtocell
KR101741154B1 (ko) * 2010-11-10 2017-06-15 삼성전자주식회사 차량형 이동 중계기를 포함하는 통신 시스템에서 차량 이동 단말, 차량형 이동 중계기 및 매크로 기지국의 통신 방법
US9191098B2 (en) * 2011-01-14 2015-11-17 Telefonaktiebolaget L M Ericsson (Publ) Capability reporting for relay nodes in wireless networks
CN102843777B (zh) * 2011-06-20 2015-07-15 普天信息技术研究院有限公司 一种随机接入信号的控制方法
US10154499B2 (en) * 2012-05-21 2018-12-11 Lg Electronics Inc. Method for sharing wireless resource information in multi-cell wireless communication system and apparatus for same
CN103796187B (zh) * 2012-10-31 2019-03-19 慧与发展有限责任合伙企业 改进快速漫游的发现阶段性能的系统和方法
US9088962B2 (en) * 2013-03-28 2015-07-21 Quantenna Communications Inc. WAP supporting complementary subnets in a WLAN
BR112016018761A8 (pt) * 2014-02-18 2020-06-23 Huawei Tech Co Ltd sistema, dispositivo e método de acesso
WO2015165031A1 (zh) * 2014-04-29 2015-11-05 华为技术有限公司 一种随机接入的装置及方法
US9986585B2 (en) * 2014-07-31 2018-05-29 Conversant Intellectual Property Management Inc. Relay systems and methods for wireless networks
CN106714329B (zh) * 2015-11-12 2021-03-02 华为技术有限公司 一种建立数据链路的方法及装置
CN105682173A (zh) * 2016-03-16 2016-06-15 青岛海信移动通信技术股份有限公司 一种接入网络的方法和设备
CN110601786B (zh) * 2019-09-24 2020-12-22 瑞斯康达科技发展股份有限公司 一种时间同步方法、中继设备及装置
CN111246398B (zh) * 2020-01-20 2022-02-22 广东博智林机器人有限公司 一种低能耗通信方法、装置、系统及存储介质
CN114071798A (zh) * 2020-08-07 2022-02-18 艾锐势企业有限责任公司 接入点设备、方法、装置和介质
CN112532287B (zh) * 2020-11-17 2022-05-27 广州技象科技有限公司 物联网终端的通信中继选择方法、装置、电子设备及存储介质
CN112543457B (zh) * 2020-11-23 2021-09-03 广州技象科技有限公司 一种物联网终端的网关切换绑定方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689348A (zh) * 2002-09-17 2005-10-26 美国博通公司 混合有线/无线网络中最佳负载均衡的方法和系统
WO2005109689A1 (en) * 2004-05-07 2005-11-17 Samsung Electronics Co., Ltd. System and method for performing a fast handover in a broadband wireless access communication system
CN101064901A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线多跳中继接入网的接入方法、中继站、基站和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7526312B2 (en) 2002-09-17 2009-04-28 Broadcom Corporation Communication system and method in a hybrid wired/wireless local area network
US7400856B2 (en) * 2003-09-03 2008-07-15 Motorola, Inc. Method and apparatus for relay facilitated communications
KR100839966B1 (ko) * 2005-06-29 2008-06-20 삼성전자주식회사 통신 시스템에서 링크의 상태 보고 방법 및 시스템
US7599341B2 (en) * 2006-02-28 2009-10-06 Motorola, Inc. System and method for managing communication routing within a wireless multi-hop network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689348A (zh) * 2002-09-17 2005-10-26 美国博通公司 混合有线/无线网络中最佳负载均衡的方法和系统
WO2005109689A1 (en) * 2004-05-07 2005-11-17 Samsung Electronics Co., Ltd. System and method for performing a fast handover in a broadband wireless access communication system
CN101064901A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线多跳中继接入网的接入方法、中继站、基站和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2053872A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090748A1 (en) 2005-12-13 2016-11-09 Spring Bank Pharmaceuticals, Inc. Compositions comprising nucleotide and oligonucleotide prodrugs
EP3553072A1 (en) 2005-12-13 2019-10-16 Spring Bank Pharmaceuticals, Inc. Compositions comprising dinucleotide prodrugs
WO2013167079A3 (zh) * 2012-10-25 2014-01-09 中兴通讯股份有限公司 近距离同步时间的方法及装置

Also Published As

Publication number Publication date
CN101146337B (zh) 2011-04-20
US8086173B2 (en) 2011-12-27
EP2053872A1 (en) 2009-04-29
EP2053872B1 (en) 2014-04-02
CN101146337A (zh) 2008-03-19
EP2053872A4 (en) 2013-05-22
US20090221288A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
WO2008040164A1 (fr) PROCÉDÉ DE MISE EN œUVRE D'UN ACCÈS ALÉATOIRE D'UN NOUVEAU NOEUD D'ACCÈS, ET SYSTÈME DE COMMUNICATION ASSOCIÉ
US20230262515A1 (en) Communication method and apparatus
US9386572B2 (en) Method, device and system for wireless broadband communications
KR102020350B1 (ko) 무선이동통신시스템에서 d2d 통신을 지원/사용하는 단말기의 이동성을 지원하는 방안
JP3947657B2 (ja) マルチ・ステーション・ネットワークにおけるルーティング方法
US20160323914A1 (en) Systems and Methods for Traffic-Aware Medium Access Selection
US8767692B2 (en) Communication method in an IEEE 802.11 wireless LAN environment
US8345587B2 (en) Relay station, base station and method for extending a coverage area of a base station in a radio network
US10972939B2 (en) Method and apparatus for receiving MAC PDU in mobile communication system
KR20180035643A (ko) RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치
JP2016174361A (ja) ユーザ端末、及びプロセッサ
TW200931883A (en) Mesh deterministic access (MDA) procedure in wireless mesh network and wireless device supporting the same
WO2019214733A1 (zh) 一种通信方法及装置
JPWO2013183732A1 (ja) 通信制御方法及び基地局
EP3211959A1 (en) Method, apparatus, and computer program product for establishing a mix of d2d direct and cellular communication links between two devices for interaction
WO2011160455A1 (zh) 一种集群业务处理方法和系统
JP2007068092A (ja) 無線通信方法および中継局
WO2024048772A1 (ja) 通信方法及びユーザ装置
WO2023071983A1 (zh) 网元之间协商网络编码的方法和通信装置
WO2023133843A1 (zh) 一种确定配置信息的方法及装置、终端设备
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
WO2008110092A1 (fr) Procédé, système et appareil d'établissement de communications entre des systèmes
CN114846825A (zh) 一种数据转发方法及装置、通信设备
KR20090020004A (ko) 무선 메쉬 네트워크에서의 멀티캐스팅/브로드캐스팅 절차
KR20060061051A (ko) 직교 주파수 분할 다중 접속 방식의 무선 통신 시스템에서서비스 품질 제공 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007816349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE