WO2008038779A1 - Glass composition and glass article using the same - Google Patents

Glass composition and glass article using the same Download PDF

Info

Publication number
WO2008038779A1
WO2008038779A1 PCT/JP2007/069000 JP2007069000W WO2008038779A1 WO 2008038779 A1 WO2008038779 A1 WO 2008038779A1 JP 2007069000 W JP2007069000 W JP 2007069000W WO 2008038779 A1 WO2008038779 A1 WO 2008038779A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass composition
glass
sro
composition according
Prior art date
Application number
PCT/JP2007/069000
Other languages
French (fr)
Japanese (ja)
Inventor
Yukihito Nagashima
Haruki Niida
Akihiro Koyama
Jaeik Yang
Seoghyun Cho
Original Assignee
Nippon Sheet Glass Company, Limited
Samsung Corning Precision Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited, Samsung Corning Precision Glass Co., Ltd. filed Critical Nippon Sheet Glass Company, Limited
Priority to JP2008536454A priority Critical patent/JP5456316B2/en
Publication of WO2008038779A1 publication Critical patent/WO2008038779A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers

Definitions

  • the present invention relates to a glass composition and a glass article for illumination using the same. Specifically, the present invention relates to a glass composition suitable for glass for fluorescent lamps and a glass article for illumination using the same as a glass article.
  • a soda-lime-based glass composition containing 10 to 20% by mass of sodium oxide has been used as a glass for illumination such as a fluorescent lamp.
  • Mercury is sealed in the tube of the fluorescent lamp. From time to time, sodium may elute from lighting glass made of soda-lime glass composition.
  • the total of Na 0, K 2 and Li 2 O is 13% or less.
  • soda-lime glass compositions inevitably contain iron due to industrial raw materials.
  • Iron oxide contained in the glass acts as a colorant and exists in the form of Fe 2+ and Fe 3+ .
  • Fe 2+ has an absorption peak near the wavelength l lOOnm
  • Fe 3+ has an absorption near the wavelength 400nm.
  • transmittance is an important characteristic. Therefore, not only the content of iron oxide contained in the glass but also the ratio of Fe 2+ to Fe 3+ is important for the transmittance.
  • the glass composition disclosed in JP-T-11 509514 not only restricts sodium, but also allows the inclusion of CeO and essentially contains BaO.
  • the glass composition disclosed in Japanese Patent Application Laid-Open No. 2003-073142 contains substantially no sodium, allows the inclusion of Sb 2 O and CeO, and contains BaO as an essential component. There is no description about SO.
  • CeO is an essential component
  • Sb 2 O is allowed to be contained
  • BaO is essentially contained.
  • the glass composition disclosed in JP-A-2003-171141 has SbO as an essential component. , Li O is contained in an amount of 0.5 mass% or more.
  • the glass composition disclosed in Japanese Patent Application Laid-Open No. 09-013232 permits the inclusion of Sb 2 O and CeO as well as the description about Fe.
  • the content of PO is allowed without any description regarding SO or so-called iron ratio (for example, FeO / total iron oxide).
  • SO or so-called iron ratio for example, FeO / total iron oxide.
  • Sb 2 O is an essential component
  • P 2 O is allowed to be contained
  • BaO is essential.
  • the present invention provides a glass composition that can have an ultraviolet transmittance, a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a glass for lighting while suppressing the sodium content in the glass composition.
  • the purpose is to provide. Furthermore, the provision of a glass article using this glass composition will be provided.
  • the present invention is a glass yarn composition comprising SiO, Na 0, K 0, CaO and SO as essential components, and is characterized by the content of Na 2 O and KO, particularly SO 0.05% or more and 0.5% or less, and the total iron oxide in terms of Fe 2 O is 0.05% by mass or more and 0.35% by mass or less, and contains substantially no antimony oxide. It is a composition.
  • the present invention is expressed in mass%
  • MgO 0% or more, 10% or less
  • the present invention suppresses the sodium content in the glass composition. Constructing a fluorescent lamp using this glass composition is effective in preventing blackening of the fluorescent lamp because it prevents elution of sodium.
  • the glass composition of the present invention is preferred as a glass for lighting because solarization is suppressed and it has low ultraviolet light transmittance.
  • the present invention is a glass composition having a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a lighting glass, and has excellent moldability.
  • FIG. 1 is a schematic cross-sectional view of a surface lighting device 1.
  • FIG. 2 is a schematic sectional view of the surface illumination device 2.
  • FIG. 3 is a partially enlarged perspective view of the surface illumination device 3.
  • each component in a glass composition is demonstrated.
  • each content rate is a mass% display, and the ratio of a component is also a mass ratio.
  • SiO is a main component forming a glass skeleton. If the SiO content is less than 65%, the durability of the glass decreases. If it exceeds 75%, it becomes difficult to melt the glass, and the softening point of the glass becomes too high.
  • the lower limit of the SiO content is 65% or more, preferably 67% or more, and more preferably 68% or more.
  • the upper limit of the content of SiO is 75% or less, preferably 73% or less, and more preferably 72% or less. The SiO range is selected from any combination of these upper and lower limits.
  • Al O is an optional component that improves the durability of glass. If the content of Al O exceeds 5%, melting of the glass becomes difficult and the softening point of the glass becomes too high.
  • the lower limit of the content of Al 2 O 3 is 0% or more, more than 0% is preferable, 0.1% or more is more preferable, and 0.5% or more is more preferable.
  • the upper limit of the Al 2 O content is less than 5%, preferably less than 2%, more preferably less than 1.5%, and most preferably less than 1%.
  • the range of Al 2 O is selected from any combination of these upper and lower limits.
  • B 2 O is an optional component used to improve the durability of the glass or as a melting aid. Exceeding B 2 O force will cause inconvenience during molding due to volatilization of B 2 O, etc.
  • the upper limit is 5%.
  • B O also erodes bricks and shortens kiln life.
  • Na 2 O is used as a glass melting accelerator. When Na 2 O is 3% or less, the melting promotion effect is poor. When Na 2 O is 12% or more, the durability of the glass is lowered, and sodium elution, which is a problem particularly in glass for fluorescent lamps, increases, which is not preferable.
  • the lower limit of the Na 2 O content is more than 3%, preferably 4% or more, more preferably 6% or more, and further preferably 7% or more.
  • the upper limit of Na O content is less than 12% and not more than 9% Is preferred. The range of Na 2 O is selected from any combination of these upper and lower limits.
  • K 2 O is an essential component used as a glass melting accelerator in the present invention, like Na 2 O. If K 2 O is less than 2%, the effect of promoting melting is poor. Since K 2 O is more expensive than Na 2 O, it is not preferable to exceed 15%.
  • the lower limit of the content of K 2 O is 2% or more, preferably 4% or more, and more preferably 6% or more.
  • the upper limit of the content of K 2 O is 15% or less, preferably less than 10% is preferably 9% or less, more preferably 8% or less.
  • the range of K O is selected from any combination of these upper and lower limits.
  • Li 2 O is not an essential component, but it is used as a glass melting accelerator in the same way as Na 2 O and K 2 O. Further, it is an effective component for adjusting the thermal expansion coefficient and low temperature viscosity, and it is preferable to contain even a trace amount. On the other hand, Li O is more expensive than Na 2 O, so 5% or more is not preferable.
  • the lower limit of the Li 2 O content is 0% or more, preferably more than 0%, more preferably 0.05% or more, and most preferably 0.1% or more.
  • the upper limit of the Li O content is less than 5%, preferably 3% or less 1. More preferably 5% or less, more preferably 1% or less, and even more preferably less than 1% Even more preferred is less than 0.5%. Most preferred is less than 0.35%.
  • the range of Li 2 O is selected from any combination of these upper and lower limits.
  • the lower limit of the total of (Na 2 O + K 2 O + Li 2 O) is 6% or more, preferably 10% or more.
  • the upper limit of the total of (Na 2 O + K 2 O + Li 2 O) is 20% or less, preferably 19.5% or less, and more preferably 17.5% or less.
  • the range of (Na 2 O + K 0 + Li 2 O) is selected from any combination of these upper and lower limits.
  • the ratio of Na 2 O to KO (Na 2 O / K ⁇ ) is important.
  • Na O and KO A large ratio is not preferable because sodium elution increases.
  • a small ratio of Na 2 O to KO is not preferable because expensive KO increases.
  • the lower limit of Na 2 O / K 2 O is preferably more than 0.2, more preferably 0.6 or more, and more preferably 0.9 or more.
  • the upper limit of Na 2 O / K 2 O is preferably less than 3 and is preferably S, more preferably 1.5 or less, and even more preferably 1.1 or less.
  • the range of Na O / K O is selected from any combination of these upper and lower limits.
  • MgO is not an essential component, but is used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. When MgO exceeds 10%, the devitrification temperature rises.
  • the lower limit of the content of MgO is 0% or more, more than 0% is preferable, 2% or more is more preferable, and more preferably more than 4%.
  • the upper limit of the content of MgO is 10% or less, preferably 6% or less, and more preferably 5% or less.
  • the range of MgO is selected from any combination of these upper and lower limits.
  • CaO is an essential component used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. If CaO is 5% or less, the meltability deteriorates. If it exceeds 15%, the devitrification temperature rises.
  • the lower limit of the CaO content is more than 5%, more preferably 5.5% or more, more preferably 6% or more, and even more preferably more than 6%.
  • the upper limit of the CaO content is 15% or less, preferably 12% or less, more preferably 10% or less, and still more preferably 8% or less.
  • the range of CaO is selected from any combination of these upper and lower limits.
  • SrO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO.
  • the SrO content is set to 10% or less, but when the glass composition is constituted without containing SrO as much as possible, the content is preferably less than 4%, and more preferably less than 1%.
  • the present invention can be realized even if 4% or more of SrO is contained.
  • the lower limit of Sr 2 O is preferably 4% or more, more preferably more than 4%.
  • the upper limit of SrO is 7 % Or less is preferred. 6% or less is more preferred. If 4% or more of SrO is included, formability is improved.
  • BaO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO.
  • the upper limit of BaO is less than 4%, more preferably less than 1%. .
  • the glass composition of the present invention is determined by the force to be established without substantially containing BaO.
  • ZnO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. ZnO tends to be non-homogeneous because it tends to volatilize. When glass is formed by the float process, it tends to agglomerate in the low temperature part after volatilization in the float bath. Aggregation of ZnO may cause surface defects of the glass. Therefore, the content is not more than 10%, preferably not more than 6%, more preferably not more than 5%. I like that!
  • the lower limit of the content of (MgO + CaO + SrO + BaO + ZnO) is more than 5%, preferably 10% or more.
  • the upper limit of the content of (MgO + CaO + SrO + BaO + ZnO) is 19% or less, preferably 16% or less, and more preferably less than 15%.
  • the range of (MgO + CaO + SrO + BaO + ZnO) is selected from any combination of these upper and lower limits.
  • the lower limit of the content of (SrO + BaO + ZnO) is 0% or more.
  • the upper limit of the content of (SrO + BaO + ZnO) is 10% or less, preferably 8% or less, more preferably 6% or less, and even more preferably 5% or less. (SrO + BaO + ZnO) The range is selected from any combination of these upper and lower limits.
  • TiO is not an essential component, but can be added as long as the object of the present invention is not impaired. If the amount of TiO becomes too large, the glass tends to become yellowish. Therefore, the upper limit of the content of TiO is 0.5% or less, preferably less than 0.1%, and less than 0.05%. More preferred. On the other hand, the lower limit of the content of TiO is 0% or more. The range of TiO is selected from any combination of these upper and lower limits.
  • ZrO is not an essential component, but it is an effective component for improving the durability of the glass and adjusting the devitrification temperature during molding. 2. If it exceeds 5%, it tends to devitrify. ZrO is an expensive raw material and is preferably less than 0.5%. The lower limit of the ZrO content is 0% or more. The upper limit of the content of ZrO is 2.5% or less, preferably less than 0.5%, more preferably less than 0.2%. The ZrO range is selected from any combination of these upper and lower limits.
  • CeO has an action of absorbing ultraviolet rays in glass and is an effective component for suppressing ultraviolet transmittance.
  • the glass composition of the present invention may contain 0.5% or less. However, since solarization occurs due to the irradiation of ultraviolet rays and the visible light transmittance of the glass decreases, it is more preferable that the glass is not substantially contained.
  • SO is a component that promotes clarification of glass. If it is less than 0.05%, the clarification effect is insufficient with the normal melting method, and the desirable range is 0.1% or more. On the other hand, if it exceeds 0.5%, SO produced by the decomposition will remain in the glass as bubbles, or bubbles are likely to be generated by reboil.
  • the lower limit of the SO content is 0.05% or more, and preferably 0.1% or more.
  • the upper limit of the SO content is 0.5% or less. The range of SO is selected from any combination of these upper and lower limits.
  • the content of iron oxide is the total iron oxide (T Fe O) is from 0.05% to 0.35%. If the total iron oxide is less than 0.05%, Fe 3+ that absorbs in the ultraviolet region becomes too small, and the ultraviolet transmittance increases. On the other hand, if the total iron oxide exceeds 0.35%, Fe 3+ , which absorbs light in the visible short wavelength region, and too much Fe 2+, which absorbs light on the visible long wavelength side, increase the visible light transmittance. Becomes low.
  • the lower limit of the total iron oxide content is 0.05% or more, and preferably 0.1% or more.
  • the upper limit of the content of total iron oxide is 0.35% or less, and preferably 0.25% or less. The range of total iron oxide is selected from any combination of these upper and lower limits.
  • the iron ratio which is the ratio of FeO in terms of Fe O to total iron oxide, is sometimes called the FeO ratio. If the FeO ratio is less than 10%, too much Fe 3+ has an absorption in the visible short wavelength region, so the visible light transmittance is lowered and the yellow color of the glass becomes too strong. When the FeO ratio exceeds 40%, too much Fe 2+ is absorbed on the visible long wavelength side, so that the visible light transmittance is lowered and the blue color of the glass becomes too strong.
  • the lower limit of the iron ratio is preferably 10% or more, more preferably 15% or more.
  • the upper limit of the iron ratio is preferably 40% or less, more preferably 35% or less. The range of the iron ratio is selected from any combination of these upper and lower limits.
  • Antimony oxide is a component that promotes clarification of glass.
  • glass containing antimony oxide is formed by the float process, for example, the glass is colored by the reducing atmosphere in the float bath. It is also a component that can be a burden on the environment. Therefore, in the present invention, antimony oxide is not substantially contained.
  • substantially not containing means that the corresponding component is not actively added, and means that contamination as an unavoidable impurity is allowed. Even when the corresponding component is mixed as an unavoidable impurity, the content is preferably less than 0.1%.
  • the glass composition of the present invention may contain components other than the above components and unavoidable impurities as long as the effects of the present invention are not impaired.
  • PO is a component that easily volatilizes and may cause defects during molding similar to BO and ZnO. Therefore, in the present invention, it is preferable that P o is not substantially included.
  • a particularly preferred first composition is:
  • MgO 0% or more, 5% or less
  • the first composition achieves a near thermal expansion coefficient and a lower softening point as compared with the current soda lime glass with a lower Na 2 O content than the current soda lime glass.
  • AlO is 0.5% or more and less than 1%
  • NaO is 7% or more and 9% or less
  • KO is 6% or more and less than 10%
  • LiO is 0.05. % Or more, less than 0.35%
  • ZrO More preferably, the force is S0% or more and less than 0.5%.
  • a particularly preferred second composition is:
  • the second composition realizes a near thermal expansion coefficient and a lower softening point compared to the current soda lime glass with a lower Na 2 O content than the current soda lime glass! / And a glass composition having excellent formability.
  • AlO is 0.1% or more and less than 2%
  • NaO is 6% or more and 9% or less
  • LiO is 0.1% or more, 1.5% or less
  • MgO 2% or more is 0.1% or more, 1.5% or less
  • CaO 5.5% or more 10% or less
  • the visible light transmittance is high. Visible light is generated in a fluorescent lamp by using light emitted when the generated ultraviolet light is irradiated on a phosphor on the inner surface of the fluorescent lamp. Thus, ultraviolet rays are generated inside the fluorescent lamp. Since it is necessary to reduce the leakage of ultraviolet rays, the transmittance of wavelengths in the ultraviolet region must be kept low. Ultraviolet rays include light with wavelengths such as 254 nm and 313 nm. In the case of glass, light with a wavelength of 254 nm is hardly transmitted and therefore need not be considered.
  • the transmission of light having a wavelength of 313 nm needs to be controlled, and can be controlled mainly by the contents of Fe 2 O and titanium oxide in the total iron oxide.
  • the transmittance of light with a wavelength of 313 nm (glass thickness: 0.7 mm) is preferably 60% or less, and more preferably 45% or less.
  • This sealing glass is used for sealing an electrode inserted into the interior in the case of internal electrode type illumination, and is used for laminating sheet glass to form a glass container in the case of a surface illumination device. .
  • the glass container for lighting is tubular, it is molded directly from the molten glass into a tubular shape. Or once formed into a tubular shape, it is heated to a temperature at which it is softened again and reshaped into a U shape.
  • the plate-like glass in order to form a glass container for illumination, the plate-like glass may be heated to a temperature at which it is softened again and used for press molding or the like. Therefore, it is preferable that the softening point is low so that the work can be easily performed in the molding by heating and reheating. It is desirable that the softening point is not so high compared to that of the current soda-lime glass composition.
  • the softening point is preferably 790 ° C or lower, about 50 ° C higher than the softening point of the soda-lime glass composition, and more preferably 750 ° C or lower, about 10 ° C higher. Furthermore, it is most desirable that the temperature be 740 ° C. or lower, which is lower than the softening point of the current soda-lime glass composition.
  • glass transition point since it is often difficult to measure the softening point !, this may be substituted by the glass transition point. In terms of glass transition point, less than 630 ° C is desirable, and less than 600 ° C is more desirable, with 565 ° C or less being most desirable.
  • (softening point glass transition point) is a parameter that serves as an index of the cooling rate after re-forming by reheating.
  • the cooling rate is given as a value obtained by dividing (softening point glass transition point) by the time required for cooling from the softening point to the glass transition point.
  • the (softening point glass transition point) of the glass composition of the present invention has a value equal to or greater than the (softening point-glass transition point) of the current soda-lime glass composition.
  • (softening point-glass transition point) in Examples 1, 3, 4 and 8-42 described later is a value exceeding 184 ° C.
  • the value is 184 ° C or lower. For this reason, in the said Example, it is possible to enlarge a cooling rate compared with a comparative example. That is, for the glass composition of the present invention, the cooling rate at the time of reshaping can be made equal to or greater than that in the prior art.
  • the glass composition of the present invention can be formed into tubular glass or sheet glass.
  • the glass composition of the present invention which is desired to be a float method capable of being manufactured at low cost and in large quantities, can be applied to the float method as a method for forming a sheet glass.
  • a fluorescent lamp It is also possible to form a general tubular shape.
  • the specific molding method may be in accordance with a known method.
  • the glass composition of the present invention for example, as described above, using a glass article formed into a plate shape by a float method or the like, or a glass article formed into a container shape, and an illumination device such as a fluorescent lamp according to a known method (example: , Surface lighting devices, tubular fluorescent lamps, and the like).
  • an illumination device such as a fluorescent lamp according to a known method (example: , Surface lighting devices, tubular fluorescent lamps, and the like).
  • Raw material batches (hereinafter sometimes referred to as batches) were prepared so that the glass compositions shown in Tables 1 to 4 were obtained.
  • the raw materials used were those used for normal glass production.
  • UV transmittance (313nm) 47.5 46.7 44.9 44.2 44.0 43.0 43.5 44.1 3]
  • Example 17 Composition (% by weight) Example 17 Example 18 Example 19 Example 20 Example 21 Example 22 Example 23 Example 24
  • RO-1 is MgO + CaO + SrO + BaO + ZnO
  • RO-2 is SrO + BaO + ZnO Is shown.
  • the formulated batch was melted and clarified in a platinum crucible.
  • the crucible was held in an electric furnace set at 1500 ° C. for 4 hours to melt the batch.
  • the glass melt was poured onto an iron plate to obtain a plate-like glass body.
  • This glass body was held in another electric furnace set at 650 ° C for 1 hour, and then cooled to room temperature at a cooling rate of 2 ° C per minute. This slowly cooled glass body was used as a sample glass.
  • the transmittance of the obtained sample glass was measured with a spectrophotometer (manufactured by Hitachi, Ltd., U4100) using A light source.
  • the thickness of the glass substrate was 0.7 mm.
  • UV transmission As a measure of the excess rate, the transmittance of light having a wavelength of 313 nm was measured. Further, the visible light transmittance was measured according to the method for measuring visible light transmittance of JIS R 3106.
  • composition of the obtained sample glass was quantitatively analyzed using fluorescent X-ray analysis and chemical analysis.
  • the thermal expansion coefficient of some of the obtained sample glasses was measured with a differential thermal dilatometer (manufactured by Rigaku, TAS-100).
  • the sample size is 5 mm in diameter and 17 mm in length.
  • the sample is measured from room temperature to the yield temperature at a heating rate of 5 ° C / min, and the coefficient of thermal expansion is in the range of 50 ° C to 300 ° C. Calculated.
  • the intrusion indenter of the obtained sample glass was lowered to a flat sample with a constant load, and the viscosity was calculated from the penetration speed of the indenter to obtain the softening point.
  • the glass transition point was determined from the inflection point in the thermal expansion curve determined by the above-described measurement of the thermal expansion coefficient.
  • the sample glass pulverized to a particle size of 1.0 to 2.8 mm is placed in a platinum boat and held in an electric furnace with a temperature gradient for 2 hours. From the maximum temperature at which the crystal appears, devitrification occurs. The temperature was determined.
  • the viscosity of the glass was determined by the ordinary platinum ball pulling method, and the temperature (forming temperature) at which the viscosity of the glass reached 10000 dPas (10000 poise) was determined.
  • the Na 2 O content is 4.37% to 10.8%
  • the Na 2 O / K 0 is 0.3 to 2.6
  • the thermal expansion coefficient is (74. 7-95. 6)
  • it has less Na 2 O content than the current soda-lime glass and has properties that are relatively close to it, and it has suitable characteristics as a glass composition for lighting.
  • Example 2 In Example 2;! To 27, the Na 2 O content is 7.94% to 8.08%, and the Na 2 O / K 0 is 0 ⁇ 9 ⁇ 1.1, thermal S tension coefficient force (88. 1-92.4) X IO /. C, transition ⁇ (force 536. C ⁇ 551 ° C, softening point 724 ° C ⁇ 739 ° C. That is, the current soda lime with a much lower Na 2 O content than the current soda lime glass. Compared to glass, it has a very close thermal expansion coefficient and a lower softening point, which makes it particularly suitable as a lighting glass composition.
  • Comparative Example 1 is a general soda-lime glass composition for sheet glass. It contains a large amount of Na 2 O as 13.1% and is outside the glass composition range of the present invention. Also, it contains almost no K 2 O and Na 2 O / K 2 O is 15.1.
  • Comparative Example 2 is a soda-lime-based glass composition containing a large amount of iron for a general plate glass.
  • Comparative Example 3 is the glass composition disclosed in Example 8 of Japanese Patent Application Laid-Open No. 05-314169, and does not contain SO as a fining agent and contains SbO.
  • Comparative Example 4 is a glass composition described in Example 7 of JP-A-11 224649, and is a glass composition having a small content of CaO and a small content of CaO.
  • Comparative Example 5 is a glass composition containing Sb 2 O as a fining agent and having a very small FeO ratio.
  • Comparative examples 3 and 4 are examples that do not contain SO. Comparative Examples 3 and 4 both contain Sb 2 O as a fining agent, and Comparative Example 4 further contains CeO. When the glass compositions of Comparative Examples 3 and 4 are molded by the float process, they are colored brown by the reducing atmosphere in the float bath. Furthermore, in Comparative Example 4, it is colored yellow by irradiation with ultraviolet rays.
  • Examples 28-42 are glass compositions containing about 4.5% SrO.
  • Comparative Example 6 is a general soda-lime glass composition for sheet glass. It contains a large amount of Na 2 O as 13.12% and is outside the glass composition range of the present invention. Moreover, it contains almost no K 2 O and Na 2 O / K 2 O is 11.82.
  • UV transmittance (313nm) 1 1 1-1 1 34.7 34.7 36.7 Visible light transmittance (%)---1 1 1 91.5 91.4 91.5 6]
  • RO represents Na O + KO + Li O
  • RO-1 represents MgO + CaO + SrO + BaO + ZnO
  • RO-2 represents SrO + BaO + ZnO.
  • the Na 2 O content was 5.20% to 8.03%
  • the Na 2 O / K ⁇ was 0 ⁇ 68 to 2 • 24, and the thermal expansion coefficient was (83.7 ⁇ 94. 2) X 10- 7 / ° C, transition point of 526 ° C ⁇ 561 ° C.
  • it has less Na 2 O content than the current soda-lime glass and has properties that are relatively close to it, and it has suitable characteristics as a glass composition for tube bulbs.
  • the transmittance at a wavelength of 313 nm was 36.7% and the transmittance for visible light was 91.5%.
  • the transmittance at a wavelength of 313 nm was 27.8%, and visible light was visible. Transmittance The power was 3%.
  • Application Example 1 is a surface illumination device in which a casing is formed using the glass substrate described above.
  • Figure 1 shows a schematic cross-sectional view of a surface illumination device according to Application Example 1.
  • a flat plate-like first glass substrate 11 and a second glass substrate 12 having a U-shaped cross section are press-molded to join a glass frit 13 to form a container, and the interior is a space. S.
  • a pair of discharge electrodes 14 and 14 are provided at both ends inside the container.
  • phosphors 15 and 15 are coated on the surfaces facing the space S in the first glass substrate 11 and the second glass substrate 12.
  • mercury and an inert gas such as argon are sealed in the space S inside the container.
  • the surface illumination device 1 configured using the glass substrate has a feature that a blackening phenomenon due to sodium elution hardly occurs.
  • Application Example 2 uses the above-mentioned two glass substrates and provides a large number of partition walls between them to form a large number of cells to form a surface illumination device.
  • Figure 2 shows a schematic cross-sectional view of a surface illumination device according to Application Example 2.
  • the surface lighting device 2 holds two glass substrates 21 and 22 at a constant interval, and provides a large number of partition wall portions 23 ⁇ (where ⁇ ⁇ ⁇ represents a large number) between them, Cell S is constructed. Further, phosphors 25 and 25 are coated on the surfaces of the glass substrates 21 and 22 facing the cell S. Further, the cell S is sealed with mercury and an inert gas such as argon.
  • the surface illumination device 2 is caused to discharge by applying voltage to an electrode (not shown) to function as a light source.
  • Application Example 3 is a surface illumination device having a structure in which a large number of cells are provided as in Application Example 2.
  • application In Example 2, the force S provided with a large number of partition walls to separate a large number of cells, and in Application Example 3, one glass substrate was press-molded to form a large number of ridges, so that the joints became the partition walls. It has been made.
  • FIG. 3 shows a partially enlarged perspective view of the surface illumination device 3 according to the application example 3.
  • the surface illumination device 3 is configured by first joining a flat plate-like first glass substrate 31 and a second glass substrate 32 formed by press molding into a shape in which a large number of ridges are arranged in parallel to constitute a large number of cells S. is there.
  • the bonding portion 33 of the second glass substrate 32 bonded to the first glass substrate 31 is a partition wall portion.
  • phosphors 35 and 35 are coated on the surfaces of the glass substrates 31 and 32 facing the cell S.
  • the cell S is filled with mercury and an inert gas such as argon.
  • the surface illumination device 3 is discharged by applying a voltage to an electrode (not shown) to function as a light source.
  • a glass article obtained by molding the glass composition of the present invention is useful as an illumination glass such as a phosphor.

Abstract

Disclosed is a glass composition having a reduced sodium content and having a UV transmittance, a thermal expansion coefficient, a glass transition temperature and a softening point in levels suitable for use as an electrical glass. Specifically disclosed is a glass composition which comprises SiO2, Na2O, K2O, CaO and SO3 as essential ingredients, which is characteristic in the contents of Na2O and K2O, which contains SO3 in an amount of 0.05 to 0.5 mass% inclusive and iron oxides in the total amount of 0.05 to 0.35 mass% inclusive in terms of Fe2O3, and which contains substantially no antimony oxide.

Description

明 細 書  Specification
ガラス組成物およびそれを用レ、たガラス物品  GLASS COMPOSITION AND GLASS ARTICLE USING THE SAME
技術分野  Technical field
[0001] 本発明は、ガラス組成物およびそれを用いた照明用ガラス物品に関する。具体的 には、ガラス物品として、蛍光灯用ガラスに好適なガラス組成物およびそれを用いた 照明用ガラス物品に関する。  [0001] The present invention relates to a glass composition and a glass article for illumination using the same. Specifically, the present invention relates to a glass composition suitable for glass for fluorescent lamps and a glass article for illumination using the same as a glass article.
背景技術  Background art
[0002] 蛍光灯などの照明用のガラスとしては、酸化ナトリウムを 10〜20質量%含むソーダ 石灰系ガラス組成物が用いられてきた。蛍光灯の管内には、水銀が封入されている。 ソーダ石灰系ガラス組成物からなる照明用ガラスからは、時間の経過と共に、ナトリウ ムが溶出することがある。  As a glass for illumination such as a fluorescent lamp, a soda-lime-based glass composition containing 10 to 20% by mass of sodium oxide has been used. Mercury is sealed in the tube of the fluorescent lamp. From time to time, sodium may elute from lighting glass made of soda-lime glass composition.
[0003] 蛍光灯の端部が黒化して、その寿命が短くなる現象は、溶出したナトリウムが上述 の水銀と結合して、蛍光灯の内側に付着することによって起こる。このため、ソーダ石 灰系ガラス組成物において、ナトリウムの含有率を下げることが提案されている。  [0003] The phenomenon in which the end of a fluorescent lamp is blackened and its life is shortened occurs when the eluted sodium is combined with the above-mentioned mercury and adheres to the inside of the fluorescent lamp. For this reason, it has been proposed to reduce the sodium content in the soda-lime glass composition.
[0004] 例えば、特開平 11― 224649号公報に開示された「ランプ用ガラス組成物」では、 Na 0、 K Οおよび Li Oの合計を 13%以下としている。  For example, in the “glass composition for lamp” disclosed in JP-A-11-224649, the total of Na 0, K 2 and Li 2 O is 13% or less.
[0005] また、特表平 11 509514号公報(W097/43223)に開示された「蛍光ランプの 使用に好適なガラス組成物」では、ナトリウムを少量 (重量%で Na O< 0. 1)に制限 している。  [0005] In addition, in the “glass composition suitable for use in fluorescent lamps” disclosed in Japanese Patent Publication No. 11 509514 (W097 / 43223), sodium is reduced in a small amount (Na O <0.1 by weight%). Restricted.
[0006] さらに、特開 2003 073142号公報に開示された「照明用ガラス組成物」では、実 質的にナトリウムを含有させて!/、なレ、。  [0006] Further, in the “illuminating glass composition” disclosed in Japanese Patent Application Laid-Open No. 2003 073142, sodium is substantially contained!
[0007] 蛍光ランプ用ガラス組成物では、紫外線の照射によって、ガラスの透過率が低下す る、ソーラリゼーシヨンを起こすことは好ましくない。蛍光ランプ用ガラス組成物でソー ラリゼ一シヨンに言及した公報のいくつかを以下に記す。 [0007] In a glass composition for a fluorescent lamp, it is not preferable to cause solarization that lowers the transmittance of the glass when irradiated with ultraviolet rays. Some of the publications referring to solarization in glass compositions for fluorescent lamps are described below.
*特開平 06— 092677号公報  * Japanese Patent Laid-Open No. 06-092677
*特開 2001— 243914号公報  * JP 2001-243914
*特開 2002— 137935号公報 *特開 2003— 171141号公報 * JP 2002-137935 * JP 2003-171141 A
[0008] 一般にソーダ石灰系ガラス組成物では、工業原料に起因して、鉄が不可避的に含 まれる。ガラス中に含まれる酸化鉄は、着色剤として作用し、 Fe2+と Fe3+の形で存在 する。 Fe2+は波長 l lOOnm付近に吸収のピークを有し、 Fe3+は波長 400nm付近に 吸収を有する。 [0008] Generally, soda-lime glass compositions inevitably contain iron due to industrial raw materials. Iron oxide contained in the glass acts as a colorant and exists in the form of Fe 2+ and Fe 3+ . Fe 2+ has an absorption peak near the wavelength l lOOnm, and Fe 3+ has an absorption near the wavelength 400nm.
[0009] 蛍光ランプ用ガラス組成物では、透過率が重要な特性である。そのため、ガラス中 に含まれる酸化鉄の含有率のみならず、 Fe2+と Fe3+との比率も、透過率にとって重要 である。 [0009] In a glass composition for a fluorescent lamp, transmittance is an important characteristic. Therefore, not only the content of iron oxide contained in the glass but also the ratio of Fe 2+ to Fe 3+ is important for the transmittance.
[0010] また、照明用のガラス組成物に関する公報のいくつかを以下に記す。  [0010] Some of the publications relating to glass compositions for lighting are described below.
'特開平 09— 012332号公幸  'Publication No. 09-012332
'特開平 10— 152340号公報  'JP-A-10-152340
*特開 2000— 290038号公報  * JP 2000-290038
*特開 2000— 315477号公報  * JP 2000-315477
*特開 2005— 314169号公報  * JP 2005-314169
[0011] 特開平 11— 224649号公報に開示されたガラス組成物では、 Sb Oや CeOの含 有を許容し、 BaOを必須で含有する。また SOに関する記述はない。 [0011] In the glass composition disclosed in JP-A-11-224649, the inclusion of Sb 2 O or CeO is permitted, and BaO is contained indispensable. There is no description about SO.
特表平 11 509514号公報に開示されたガラス組成物では、ナトリウムを制限して いる上に、 CeOの含有を許容し、 BaOを必須で含有する。  The glass composition disclosed in JP-T-11 509514 not only restricts sodium, but also allows the inclusion of CeO and essentially contains BaO.
特開 2003— 073142号公報に開示されたガラス組成物では、実質的にナトリウム を含有せず、 Sb Oや CeOの含有を許容し、 BaOを必須で含有する。また SOに関 する記述はない。  The glass composition disclosed in Japanese Patent Application Laid-Open No. 2003-073142 contains substantially no sodium, allows the inclusion of Sb 2 O and CeO, and contains BaO as an essential component. There is no description about SO.
[0012] 特開平 06— 092677号公報に開示されたガラス組成物では、 Sb Oを必須成分と し、 CeOの含有を許容し、 BaOを必須で含有する。また SOに関する記述はない。 特開 2001— 243914号公報に開示されたガラス組成物では、 CeOを必須成分と し、 Sb Oの含有を許容し、 BaOを必須で含有する。  [0012] In the glass composition disclosed in Japanese Patent Application Laid-Open No. 06-092677, Sb 2 O is an essential component, CeO is allowed to be contained, and BaO is essentially contained. There is no description about SO. In the glass composition disclosed in JP-A-2001-243914, CeO is an essential component, Sb 2 O is allowed to be contained, and BaO is essentially contained.
特開 2002— 137935号公報に開示されたガラス組成物では、 CeOを必須成分と し、 Sb Oの含有を許容し、 BaOを必須で含有する。  In the glass composition disclosed in JP-A-2002-137935, CeO is an essential component, Sb 2 O is allowed to be contained, and BaO is essentially contained.
特開 2003— 171141号公報に開示されたガラス組成物は、 Sb Oを必須成分とし 、 Li Oを 0. 5質量%以上含む。 The glass composition disclosed in JP-A-2003-171141 has SbO as an essential component. , Li O is contained in an amount of 0.5 mass% or more.
[0013] 特開平 09— 012332号公報に開示されたガラス組成物では、 Feに関する記述は なぐ Sb Oや CeOの含有を許容している。 [0013] The glass composition disclosed in Japanese Patent Application Laid-Open No. 09-013232 permits the inclusion of Sb 2 O and CeO as well as the description about Fe.
特開平 10— 152340号公報に開示されたガラス組成物では、 SOやいわゆる鉄比 In the glass composition disclosed in JP-A-10-152340, SO or so-called iron ratio is used.
(例えば FeO/全酸化鉄)に関する記述はなぐ Sb Oの含有を許容し、 BaOを必須 で含有する。 (For example, FeO / total iron oxide) The description of SbO is allowed, and BaO is essential.
特開 2000— 290038号公報に開示されたガラス組成物では、 SOやいわゆる鉄 比(例えば FeO/全酸化鉄)に関する記述はなぐ P Oの含有を許容している。 特開 2000— 315477号公報に開示されたガラス組成物では、 Sb Oを必須成分と し、 P Oの含有を許容し、 BaOを必須で含有する。  In the glass composition disclosed in Japanese Patent Application Laid-Open No. 2000-290038, the content of PO is allowed without any description regarding SO or so-called iron ratio (for example, FeO / total iron oxide). In the glass composition disclosed in Japanese Patent Application Laid-Open No. 2000-315477, Sb 2 O is an essential component, P 2 O is allowed to be contained, and BaO is essential.
特開 2005— 314169号公報に開示されたガラス組成物では、 SOやいわゆる鉄 比(例えば FeO/全酸化鉄)に関する記述はなぐ Sb Oや CeOの含有を許容し、 B aOを任意で含有する。  In the glass composition disclosed in Japanese Patent Application Laid-Open No. 2005-314169, there is no description about SO and so-called iron ratio (for example, FeO / total iron oxide). Sb O and CeO are allowed to be contained, and BaO is optionally contained. .
発明の開示  Disclosure of the invention
[0014] 本発明は、ガラス組成物において、ナトリウムの含有率を抑えつつ、照明用ガラスと して好ましい、紫外線の透過率と熱膨張係数、ガラス転移点、軟化点を有しうるガラス 組成物の提供を目的とする。さらに、このガラス組成物を用いたガラス物品の提供を 目白勺とする。  [0014] The present invention provides a glass composition that can have an ultraviolet transmittance, a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a glass for lighting while suppressing the sodium content in the glass composition. The purpose is to provide. Furthermore, the provision of a glass article using this glass composition will be provided.
[0015] 本発明は、 SiO、 Na 0、 K 0、 CaOおよび SOを必須成分として含んでなるガラス 糸且成物であって、とりわけ Na Oと K Oとの含有率に特徴があり、 SOが 0. 05%以上 0. 5%以下、 Fe Oに換算した全酸化鉄が 0. 05質量%以上 0. 35質量%以下であ り、酸化アンチモンを実質的に含有しないことを特徴とするガラス組成物である。  [0015] The present invention is a glass yarn composition comprising SiO, Na 0, K 0, CaO and SO as essential components, and is characterized by the content of Na 2 O and KO, particularly SO 0.05% or more and 0.5% or less, and the total iron oxide in terms of Fe 2 O is 0.05% by mass or more and 0.35% by mass or less, and contains substantially no antimony oxide. It is a composition.
[0016] すなわち、本発明は、質量%で表示して、 [0016] That is, the present invention is expressed in mass%,
SiO 65%以上、 75%以下、  SiO 65% or more, 75% or less,
Al O 0%以上、 5%未満、  Al O 0% or more, less than 5%,
B O 0%以上、 5%以下、  B O 0% or more, 5% or less,
Na O 3%超、 12%未満、  Na O> 3%, <12%,
K O 2%以上、 15%以下、 Li O 0%以上、 5%未満、 KO 2% or more, 15% or less, Li O 0% or more, less than 5%,
Na O + K O + Li O 6%以上、 20%以下、  Na O + K O + Li O 6% or more, 20% or less,
MgO 0%以上、 10%以下、  MgO 0% or more, 10% or less,
CaO 5%超、 15%以下、  CaO over 5%, 15% or less,
BaO 0%以上、 4%未満、  BaO 0% or more, less than 4%,
SrO 0%以上、 10%以下、  SrO 0% or more, 10% or less,
ZnO 0%以上、 10%以下、  ZnO 0% or more, 10% or less,
MgO + CaO + SrO + BaO + ZnO 5%超、 19%以下、  MgO + CaO + SrO + BaO + ZnO over 5%, 19% or less,
SrO + BaO + ZnO 0%以上、 10%以下、  SrO + BaO + ZnO 0% or more, 10% or less,
TiO 0%以上、 0. 5%以下、  TiO 0% or more, 0.5% or less,
ZrO 0%以上、 2. 5%以下、  ZrO 0% or more, 2.5% or less,
CeO 0%以上、 0. 5%以下、  CeO 0% or more, 0.5% or less,
SO 0. 05%以上、 0. 5%以下、および  SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、  Total iron oxide converted to Fe O 0.05% or more, 0.35% or less,
を含んでなり、  Comprising
酸化アンチモンを実質的に含有しないことを特徴とするガラス組成物である。  It is a glass composition characterized by containing substantially no antimony oxide.
[0017] 本発明は、ガラス組成物において、ナトリウムの含有率を抑えている。このガラス組 成物を用いて蛍光灯を構成すると、ナトリウムの溶出が抑えられるので、蛍光灯の黒 化防止に効果がある。  [0017] The present invention suppresses the sodium content in the glass composition. Constructing a fluorescent lamp using this glass composition is effective in preventing blackening of the fluorescent lamp because it prevents elution of sodium.
[0018] また本発明のガラス組成物は、ソーラリゼーシヨンが抑えられ、低い紫外線の透過 率を有してレ、るので、照明用ガラスとして好ましレ、。  [0018] The glass composition of the present invention is preferred as a glass for lighting because solarization is suppressed and it has low ultraviolet light transmittance.
さらに本発明は、照明用ガラスとして好ましい、熱膨張係数やガラス転移点、軟化 点を有するガラス組成物であり、成形性にも優れて!/、る。  Furthermore, the present invention is a glass composition having a thermal expansion coefficient, a glass transition point, and a softening point, which is preferable as a lighting glass, and has excellent moldability.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]面照明装置 1の断面模式図である。  FIG. 1 is a schematic cross-sectional view of a surface lighting device 1.
[図 2]面照明装置 2の断面模式図である。  FIG. 2 is a schematic sectional view of the surface illumination device 2.
[図 3]面照明装置 3の部分拡大斜視図である。  FIG. 3 is a partially enlarged perspective view of the surface illumination device 3.
発明を実施するための最良の形態 [0020] [ガラス組成] BEST MODE FOR CARRYING OUT THE INVENTION [0020] [Glass composition]
以下に、ガラス組成物における各成分について説明する。なお、各含有率は、質量 %表示であり、成分の比も質量比である。  Below, each component in a glass composition is demonstrated. In addition, each content rate is a mass% display, and the ratio of a component is also a mass ratio.
[0021] (SiO ) [0021] (SiO 2)
SiOはガラスの骨格を形成する主成分である。 SiOの含有率が、 65%未満ではガ ラスの耐久性が低下し、 75%を超えるとガラスの熔解が困難になると共に、ガラスの 軟化点が高くなり過ぎる。 SiOの含有率の下限値は、 65%以上であり、 67%以上が 好ましぐ 68%以上がさらに好ましい。 SiOの含有率の上限値は、 75%以下であり、 73%以下が好ましぐ 72%以下がさらに好ましい。 SiOの範囲は、これら上限値と下 限値の任意の組み合わせから選ばれる。  SiO is a main component forming a glass skeleton. If the SiO content is less than 65%, the durability of the glass decreases. If it exceeds 75%, it becomes difficult to melt the glass, and the softening point of the glass becomes too high. The lower limit of the SiO content is 65% or more, preferably 67% or more, and more preferably 68% or more. The upper limit of the content of SiO is 75% or less, preferably 73% or less, and more preferably 72% or less. The SiO range is selected from any combination of these upper and lower limits.
[0022] (Al O ) [0022] (Al O)
Al Oはガラスの耐久性を向上させる任意成分である力 Al Oの含有率が 5%以 上となるとガラスの熔解が困難になると共に、ガラスの軟化点が高くなり過ぎる。 Al O の含有率の下限値は、 0%以上であり、 0%超が好ましぐ 0. 1 %以上がより好ましぐ 0. 5%以上がさらに好ましい。 Al Oの含有率の上限値は、 5%未満であり、 2%未満 が好ましぐ 1. 5%以下がさらに好ましぐ 1 %未満が最も好ましい。 Al Oの範囲は、 これら上限値と下限値の任意の組み合わせから選ばれる。  Al O is an optional component that improves the durability of glass. If the content of Al O exceeds 5%, melting of the glass becomes difficult and the softening point of the glass becomes too high. The lower limit of the content of Al 2 O 3 is 0% or more, more than 0% is preferable, 0.1% or more is more preferable, and 0.5% or more is more preferable. The upper limit of the Al 2 O content is less than 5%, preferably less than 2%, more preferably less than 1.5%, and most preferably less than 1%. The range of Al 2 O is selected from any combination of these upper and lower limits.
[0023] (B O ) [0023] (B O)
B Oはガラスの耐久性向上のため、あるいは熔解助剤としても使用される任意成分 である。 B O力 を超えると、 B Oの揮発等による成形時の不都合が生じるので、 B 2 O is an optional component used to improve the durability of the glass or as a melting aid. Exceeding B 2 O force will cause inconvenience during molding due to volatilization of B 2 O, etc.
5%を上限とする。また B Oは、レンガを侵食して窯の寿命を短くすることがあるのでThe upper limit is 5%. B O also erodes bricks and shortens kiln life.
、実質的に含有させないことが望ましい。 , It is desirable not to contain substantially.
[0024] (Na O) [0024] (Na O)
Na Oはガラスの熔解促進剤として用いられる。 Na Oが 3%以下では、熔解促進効 果が乏しい。 Na Oが 12%以上となると、ガラスの耐久性が低下すると共に、特に蛍 光灯用ガラスにおいて問題となるナトリウムの溶出が多くなるので、好ましくない。 Na Oの含有率の下限値は、 3%超であり、 4%以上が好ましぐ 6%以上がより好ましぐ 7%以上がさらに好ましい。 Na Oの含有率の上限値は、 12%未満であり、 9%以下 が好ましい。 Na Oの範囲は、これら上限値と下限値の任意の組み合わせから選ば れる。 Na 2 O is used as a glass melting accelerator. When Na 2 O is 3% or less, the melting promotion effect is poor. When Na 2 O is 12% or more, the durability of the glass is lowered, and sodium elution, which is a problem particularly in glass for fluorescent lamps, increases, which is not preferable. The lower limit of the Na 2 O content is more than 3%, preferably 4% or more, more preferably 6% or more, and further preferably 7% or more. The upper limit of Na O content is less than 12% and not more than 9% Is preferred. The range of Na 2 O is selected from any combination of these upper and lower limits.
[0025] (K O) [0025] (K O)
K Oは、本発明において、 Na Oと同様に、ガラスの熔解促進剤として用いられる必 須成分である。 K Oが 2%未満では、熔解促進効果が乏しい。 K Oは、 Na Oに比し て原料が高価であるため、 15%を超えるのは好ましくない。 K Oの含有率の下限値 は、 2%以上であり、 4%以上が好ましぐ 6%以上がさらに好ましい。 K Oの含有率の 上限値は、 15%以下であり、 10%未満が好ましぐ 9%以下がより好ましぐ 8%以下 力 Sさらに好ましい。 K Oの範囲は、これら上限値と下限値の任意の組み合わせから選 ば'れる。  K 2 O is an essential component used as a glass melting accelerator in the present invention, like Na 2 O. If K 2 O is less than 2%, the effect of promoting melting is poor. Since K 2 O is more expensive than Na 2 O, it is not preferable to exceed 15%. The lower limit of the content of K 2 O is 2% or more, preferably 4% or more, and more preferably 6% or more. The upper limit of the content of K 2 O is 15% or less, preferably less than 10% is preferably 9% or less, more preferably 8% or less. The range of K O is selected from any combination of these upper and lower limits.
[0026] (Li O) [0026] (Li O)
Li Oは、必須成分ではないが、 Na Oや K Oと同様にガラスの熔解促進剤として用 いられる。また、熱膨張係数や低温粘性を調整するのに有効な成分であり、微量でも 、含有させることが好ましい。一方、 Li Oは Na Oに比して原料が高価であるため、 5 %以上は好ましくない。 Li Oの含有率の下限値は、 0%以上であり、 0%超が好ましく 、 0. 05%以上がさらに好ましぐ 0. 1 %以上が最も好ましい。 Li Oの含有率の上限 値は、 5%未満であり、 3%以下が好ましぐ 1. 5%以下がより好ましぐ 1 %以下がさ らに好ましく、 1 %未満がさらにより好ましぐ 0. 5%未満がさらに一層好ましぐ 0. 35 %未満が最も好ましい。 Li Oの範囲は、これら上限値と下限値の任意の組み合わせ 力 選ばれる。  Li 2 O is not an essential component, but it is used as a glass melting accelerator in the same way as Na 2 O and K 2 O. Further, it is an effective component for adjusting the thermal expansion coefficient and low temperature viscosity, and it is preferable to contain even a trace amount. On the other hand, Li O is more expensive than Na 2 O, so 5% or more is not preferable. The lower limit of the Li 2 O content is 0% or more, preferably more than 0%, more preferably 0.05% or more, and most preferably 0.1% or more. The upper limit of the Li O content is less than 5%, preferably 3% or less 1. More preferably 5% or less, more preferably 1% or less, and even more preferably less than 1% Even more preferred is less than 0.5%. Most preferred is less than 0.35%. The range of Li 2 O is selected from any combination of these upper and lower limits.
[0027] (Na O + K O + Li O)  [0027] (Na O + K O + Li O)
(Na O + K O + Li O)の合計力 S、 6%未満では熔解促進効果が乏しぐ 20%を超 えるとガラスの耐久性が低下する。 (Na O + K O + Li O)の合計の下限値は、 6%以 上であり、 10%以上が好ましい。 (Na O + K O + Li O)の合計の上限値は、 20%以 下であり、 19. 5%未満が好ましぐ 17. 5%以下がさらに好ましい。 (Na O + K 0 + Li O)の範囲は、これら上限値と下限値の任意の組み合わせから選ばれる。  If the total force S of (Na 2 O + K 2 O + Li 2 O) is less than 6%, the durability of the glass decreases if it exceeds 20%, the effect of promoting melting. The lower limit of the total of (Na 2 O + K 2 O + Li 2 O) is 6% or more, preferably 10% or more. The upper limit of the total of (Na 2 O + K 2 O + Li 2 O) is 20% or less, preferably 19.5% or less, and more preferably 17.5% or less. The range of (Na 2 O + K 0 + Li 2 O) is selected from any combination of these upper and lower limits.
[0028] (Na O/K O)  [0028] (Na O / K O)
本発明において、 Na Oと K Oの比(Na O/K Ο)は、重要である。 Na Oと K Oの 比が大きいと、ナトリウムの溶出が多くなるので、好ましくない。 Na Oと K Oの比が小 さいと、高価な K Oが多くなるので、好ましくない。 In the present invention, the ratio of Na 2 O to KO (Na 2 O / K Ο) is important. Na O and KO A large ratio is not preferable because sodium elution increases. A small ratio of Na 2 O to KO is not preferable because expensive KO increases.
本発明において、 Na O/K Oの下限値は、 0. 2超であることが好ましぐ 0. 6以上 力はり好ましぐ 0. 9以上がさらに好ましい。 Na O/K Oの上限値は、 3未満であるこ と力 S好ましく、 1. 5以下がより好ましぐ 1. 1以下がさらに好ましい。 Na O/K Oの範 囲は、これら上限値と下限値の任意の組み合わせから選ばれる。  In the present invention, the lower limit of Na 2 O / K 2 O is preferably more than 0.2, more preferably 0.6 or more, and more preferably 0.9 or more. The upper limit of Na 2 O / K 2 O is preferably less than 3 and is preferably S, more preferably 1.5 or less, and even more preferably 1.1 or less. The range of Na O / K O is selected from any combination of these upper and lower limits.
[0029] (MgO) [0029] (MgO)
MgOは、必須成分ではないが、ガラスの耐久性を向上させるとともに、成形時の失 透温度、粘度を調整するのに用いられる。 MgOが 10%を超えると、失透温度が上昇 する。 MgOの含有率の下限値は、 0%以上であり、 0%超が好ましぐ 2%以上がより 好ましぐ 4%超がさらに好ましい。 MgOの含有率の上限値は、 10%以下であり、 6 %以下が好ましぐ 5%以下がさらに好ましい。 MgOの範囲は、これら上限値と下限 値の任意の組み合わせから選ばれる。  MgO is not an essential component, but is used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. When MgO exceeds 10%, the devitrification temperature rises. The lower limit of the content of MgO is 0% or more, more than 0% is preferable, 2% or more is more preferable, and more preferably more than 4%. The upper limit of the content of MgO is 10% or less, preferably 6% or less, and more preferably 5% or less. The range of MgO is selected from any combination of these upper and lower limits.
[0030] (CaO) [0030] (CaO)
CaOは、 MgOと同様に、ガラスの耐久性を向上させるとともに、成形時の失透温度 、粘度を調整するのに用いられる必須成分である。 CaOが 5%以下では熔解性が悪 化する。また、 15%を超えると失透温度が上昇する。 CaOの含有率の下限値は、 5 %超であり、 5. 5%以上が好ましぐ 6%以上がより好ましぐ 6%超がさらに好ましい 。 CaOの含有率の上限値は、 15%以下であり、 12%以下が好ましぐ 10%以下がよ り好ましぐ 8%以下がさらに好ましい。 CaOの範囲は、これら上限値と下限値の任意 の組み合わせから選ばれる。  CaO, like MgO, is an essential component used to improve the durability of the glass and adjust the devitrification temperature and viscosity during molding. If CaO is 5% or less, the meltability deteriorates. If it exceeds 15%, the devitrification temperature rises. The lower limit of the CaO content is more than 5%, more preferably 5.5% or more, more preferably 6% or more, and even more preferably more than 6%. The upper limit of the CaO content is 15% or less, preferably 12% or less, more preferably 10% or less, and still more preferably 8% or less. The range of CaO is selected from any combination of these upper and lower limits.
[0031] (SrO) [0031] (SrO)
SrOは必須成分ではないが、 MgOや CaOと同様にガラスの成形時の失透温度、 粘度を調整するのに用いられる。 SrOの含有率は、 10%以下とするが、 SrOをできる だけ含ませないで、ガラス組成物を構成する場合、その含有率は 4%未満が好ましく 、 1 %未満がより好ましい。  SrO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. The SrO content is set to 10% or less, but when the glass composition is constituted without containing SrO as much as possible, the content is preferably less than 4%, and more preferably less than 1%.
一方、本発明は、 SrOを 4%以上含ませても成立させることができる。その場合、 Sr Oの下限値としては 4%以上が好ましぐ 4%超が好ましい。 SrOの上限値としては、 7 %以下が好ましぐ 6%以下がさらに好ましい。 SrOを 4%以上含ませると、成形性が よくなる。 On the other hand, the present invention can be realized even if 4% or more of SrO is contained. In that case, the lower limit of Sr 2 O is preferably 4% or more, more preferably more than 4%. The upper limit of SrO is 7 % Or less is preferred. 6% or less is more preferred. If 4% or more of SrO is included, formability is improved.
[0032] (BaO) [0032] (BaO)
BaOは必須成分ではないが、 MgOや CaOと同様にガラスの成形時の失透温度、 粘度を調整するのに用いられる。 BaOの含有率が大きいと、ガラスの密度が増大し、 ガラス物品とした際の軽量化の点で不利となるため、 BaOの上限値は、 4%未満とし 、より好ましくは 1 %未満である。本発明のガラス組成物は、 BaOを実質的に含まなく てあ成立させること力でさる。  BaO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. When the content of BaO is large, the density of the glass increases, which is disadvantageous in terms of weight reduction when used as a glass article. Therefore, the upper limit of BaO is less than 4%, more preferably less than 1%. . The glass composition of the present invention is determined by the force to be established without substantially containing BaO.
[0033] (ZnO) [0033] (ZnO)
ZnOは必須成分ではないが、 MgOや CaOと同様にガラスの成形時の失透温度、 粘度を調整するのに用いられる。 ZnOは揮発し易ぐガラスが不均質になり易い。フ ロート法でガラスを成形する場合、フロートバス内で揮発した後、低温部で凝集するこ とが多くなる。 ZnOが凝集すると、ガラスの表面欠点の原因となることがあるため、そ の含有率は 10%以下、好ましくは 6%以下、より好ましくは 5%以下とする力 ZnOは 実質的に含有させなレ、ことが好まし!/、。  ZnO is not an essential component, but it is used to adjust the devitrification temperature and viscosity when forming glass, just like MgO and CaO. ZnO tends to be non-homogeneous because it tends to volatilize. When glass is formed by the float process, it tends to agglomerate in the low temperature part after volatilization in the float bath. Aggregation of ZnO may cause surface defects of the glass. Therefore, the content is not more than 10%, preferably not more than 6%, more preferably not more than 5%. I like that!
[0034] (MgO + CaO + SrO + BaO + ZnO)  [0034] (MgO + CaO + SrO + BaO + ZnO)
(MgO + CaO + SrO + BaO + ZnO)の合計が、 5%以下ではガラスの耐久性が低 下する。一方、 19%を超えると失透温度が上昇したり、あるいは熱膨張係数が大きく なり過ぎたりする。 (MgO + CaO + SrO + BaO + ZnO)の含有率の下限値は、 5% 超であり、 10%以上が好ましい。 (MgO + CaO + SrO + BaO + ZnO)の含有率の 上限値は、 19%以下であり、 16%以下が好ましぐ 15%未満がさらに好ましい。 (M gO + CaO + SrO + BaO + ZnO)の範囲は、これら上限値と下限値の任意の組み合 わせから選ばれる。  If the total of (MgO + CaO + SrO + BaO + ZnO) is 5% or less, the durability of the glass will decrease. On the other hand, if it exceeds 19%, the devitrification temperature rises or the coefficient of thermal expansion becomes too large. The lower limit of the content of (MgO + CaO + SrO + BaO + ZnO) is more than 5%, preferably 10% or more. The upper limit of the content of (MgO + CaO + SrO + BaO + ZnO) is 19% or less, preferably 16% or less, and more preferably less than 15%. The range of (MgO + CaO + SrO + BaO + ZnO) is selected from any combination of these upper and lower limits.
[0035] (SrO + BaO + ZnO)  [0035] (SrO + BaO + ZnO)
(SrO + BaO + ZnO)が多くなると、膨張係数が大きくなり過ぎるため、その合計が 10%を超えるのは好ましくない。 (SrO + BaO + ZnO)の含有率の下限値は、 0%以 上である。 (SrO + BaO + ZnO)の含有率の上限値は、 10%以下であり、 8%以下が 好ましぐ 6%以下がより好ましぐ 5%以下がさらに好ましい。 (SrO + BaO + ZnO) の範囲は、これら上限値と下限値の任意の組み合わせから選ばれる。 If the amount of (SrO + BaO + ZnO) increases, the expansion coefficient becomes too large, so it is not preferable that the total exceeds 10%. The lower limit of the content of (SrO + BaO + ZnO) is 0% or more. The upper limit of the content of (SrO + BaO + ZnO) is 10% or less, preferably 8% or less, more preferably 6% or less, and even more preferably 5% or less. (SrO + BaO + ZnO) The range is selected from any combination of these upper and lower limits.
[0036] (TiO ) [0036] (TiO)
TiOは必須成分ではないが、本発明の目的を損なわない範囲で、加えることがで きる。 TiOが多くなり過ぎると、ガラスが黄色味を帯び易くなるこのため、 TiOの含有 率の上限値は、 0. 5%以下であり、 0. 1 %未満が好ましぐ 0. 05%未満がより好まし い。一方、 TiOの含有率の下限値は、 0%以上である。 TiOの範囲は、これら上限 値と下限値の任意の組み合わせから選ばれる。  TiO is not an essential component, but can be added as long as the object of the present invention is not impaired. If the amount of TiO becomes too large, the glass tends to become yellowish. Therefore, the upper limit of the content of TiO is 0.5% or less, preferably less than 0.1%, and less than 0.05%. More preferred. On the other hand, the lower limit of the content of TiO is 0% or more. The range of TiO is selected from any combination of these upper and lower limits.
[0037] (ZrO ) [0037] (ZrO)
ZrOは、必須成分ではないが、ガラスの耐久性を向上させるとともに、成形時の失 透温度を調整するのに有効な成分である。 2. 5%を超えると、逆に失透しやすくなる 。また、 ZrOは原料が高価であり、 0. 5%未満とすることが望ましい。 ZrOの含有率 の下限値は、 0%以上である。 ZrOの含有率の上限値は、 2. 5%以下であり、 0. 5 %未満が好ましぐ 0. 2%未満がより好ましい。 ZrOの範囲は、これら上限値と下限 値の任意の組み合わせから選ばれる。  ZrO is not an essential component, but it is an effective component for improving the durability of the glass and adjusting the devitrification temperature during molding. 2. If it exceeds 5%, it tends to devitrify. ZrO is an expensive raw material and is preferably less than 0.5%. The lower limit of the ZrO content is 0% or more. The upper limit of the content of ZrO is 2.5% or less, preferably less than 0.5%, more preferably less than 0.2%. The ZrO range is selected from any combination of these upper and lower limits.
[0038] (CeO ) [0038] (CeO)
CeOは、ガラス中で紫外線を吸収する作用を示し、紫外線透過率の抑制に効果 的な成分である。本発明のガラス組成物では、 0. 5%以下の範囲であれば含んでも 構わない。し力もながら、紫外線の照射によりソーラリゼーシヨンが起こり、ガラスの可 視光透過率が低下してしまうので、実質的に含有させないことがより好ましい。  CeO has an action of absorbing ultraviolet rays in glass and is an effective component for suppressing ultraviolet transmittance. The glass composition of the present invention may contain 0.5% or less. However, since solarization occurs due to the irradiation of ultraviolet rays and the visible light transmittance of the glass decreases, it is more preferable that the glass is not substantially contained.
[0039] (SO ) [0039] (SO)
SOはガラスの清澄を促進する成分である。 0. 05%未満では通常の溶融方法で は清澄効果が不十分となり、その望ましい範囲は 0. 1 %以上である。一方、 0. 5%を 超えると、その分解により生成する SOが泡としてガラス中に残留したり、リボイルによ り泡を発生し易くなる。 SOの含有率の下限値は、 0. 05%以上であり、 0. 1 %以上 が好ましい。 SOの含有率の上限値は、 0. 5%以下である。 SOの範囲は、これら上 限値と下限値の任意の組み合わせから選ばれる。  SO is a component that promotes clarification of glass. If it is less than 0.05%, the clarification effect is insufficient with the normal melting method, and the desirable range is 0.1% or more. On the other hand, if it exceeds 0.5%, SO produced by the decomposition will remain in the glass as bubbles, or bubbles are likely to be generated by reboil. The lower limit of the SO content is 0.05% or more, and preferably 0.1% or more. The upper limit of the SO content is 0.5% or less. The range of SO is selected from any combination of these upper and lower limits.
[0040] (全酸化鉄 (T Fe O ) ) [0040] (Total iron oxide (T Fe O))
酸化鉄の含有率は、含まれるすべての鉄を Fe Oに換算した、全酸化鉄 (T Fe O )として、 0. 05%〜0. 35%である。全酸化鉄が 0. 05%未満では、紫外域に吸 収を持つ Fe3+が少なくなり過ぎるために、紫外線透過率が高くなつてしまう。一方、全 酸化鉄が 0. 35%を超えると、可視短波長域にも吸収を持つ Fe3+と共に、可視長波 長側に吸収を持つ Fe2+が多くなり過ぎるために、可視光透過率が低くなつてしまう。 全酸化鉄の含有率の下限値は、 0. 05%以上であり、 0. 1 %以上が好ましい。全酸 化鉄の含有率の上限値は、 0. 35%以下であり、 0. 25%以下が好ましい。全酸化鉄 の範囲は、これら上限値と下限値の任意の組み合わせから選ばれる。 The content of iron oxide is the total iron oxide (T Fe O) is from 0.05% to 0.35%. If the total iron oxide is less than 0.05%, Fe 3+ that absorbs in the ultraviolet region becomes too small, and the ultraviolet transmittance increases. On the other hand, if the total iron oxide exceeds 0.35%, Fe 3+ , which absorbs light in the visible short wavelength region, and too much Fe 2+, which absorbs light on the visible long wavelength side, increase the visible light transmittance. Becomes low. The lower limit of the total iron oxide content is 0.05% or more, and preferably 0.1% or more. The upper limit of the content of total iron oxide is 0.35% or less, and preferably 0.25% or less. The range of total iron oxide is selected from any combination of these upper and lower limits.
[0041] (鉄比) [0041] (iron ratio)
全酸化鉄に対する Fe Oに換算した FeOの割合である鉄比を、 FeO比ということが ある。 FeO比が 10%未満では、可視短波長域に吸収を持つ Fe3+が多くなり過ぎるた め、可視光透過率が低くなると共に、ガラスの色調の黄色みが強くなり過ぎる。 FeO 比が 40%を超えると、可視長波長側に吸収を持つ Fe2+が多くなり過ぎるため、可視 光透過率が低くなると共に、ガラスの色調の青色が強くなり過ぎる。鉄比の下限値は 、 10%以上であることが好ましぐ 15%以上がより好ましい。鉄比の上限値は、 40% 以下であることが好ましぐ 35%以下がより好ましい。鉄比の範囲は、これら上限値と 下限値の任意の組み合わせから選ばれる。 The iron ratio, which is the ratio of FeO in terms of Fe O to total iron oxide, is sometimes called the FeO ratio. If the FeO ratio is less than 10%, too much Fe 3+ has an absorption in the visible short wavelength region, so the visible light transmittance is lowered and the yellow color of the glass becomes too strong. When the FeO ratio exceeds 40%, too much Fe 2+ is absorbed on the visible long wavelength side, so that the visible light transmittance is lowered and the blue color of the glass becomes too strong. The lower limit of the iron ratio is preferably 10% or more, more preferably 15% or more. The upper limit of the iron ratio is preferably 40% or less, more preferably 35% or less. The range of the iron ratio is selected from any combination of these upper and lower limits.
[0042] (酸化アンチモン)  [0042] (antimony oxide)
酸化アンチモンはガラスの清澄を促進する成分である力 S、例えばフロート法にて酸 化アンチモンを含有するガラスを成形した場合、フロートバス内の還元雰囲気によつ て、ガラスが着色してしまう。また、環境に対して負荷となり得る成分でもある。そのた め、本発明において、酸化アンチモンは実質的に含有させない。  Antimony oxide is a component that promotes clarification of glass. When glass containing antimony oxide is formed by the float process, for example, the glass is colored by the reducing atmosphere in the float bath. It is also a component that can be a burden on the environment. Therefore, in the present invention, antimony oxide is not substantially contained.
[0043] 本発明において、「実質的に含有しない」とは、該当する成分が積極的に添加され ていないことを意味し、不可避的不純物としての混入は許容することを意味する。該 当する成分が不可避的不純物として混入する場合でも、その含有率は 0. 1 %未満 であることが好ましい。  In the present invention, “substantially not containing” means that the corresponding component is not actively added, and means that contamination as an unavoidable impurity is allowed. Even when the corresponding component is mixed as an unavoidable impurity, the content is preferably less than 0.1%.
[0044] 本発明のガラス組成物には、本発明の効果を損なわない範囲において、上記の成 分以外の成分および不可避的不純物を含んでいてもよい。ただし、 P Oは、揮発し やすい成分であり、 B Oおよび ZnOと同様の成形時の不具合を引き起こすおそれが あるために、本発明において、 P oは実質的に含ませないことが好ましい。 [0044] The glass composition of the present invention may contain components other than the above components and unavoidable impurities as long as the effects of the present invention are not impaired. However, PO is a component that easily volatilizes and may cause defects during molding similar to BO and ZnO. Therefore, in the present invention, it is preferable that P o is not substantially included.
[0045] 本発明のガラス組成物について、特に好ましい第一の組成は、  [0045] For the glass composition of the present invention, a particularly preferred first composition is:
SiO 65%以上、 75%以下、  SiO 65% or more, 75% or less,
Al O 0. 5%以上、 2%未満、  Al O 0.5% or more, less than 2%,
B O 0%以上、 5%以下、  B O 0% or more, 5% or less,
Na O 6%以上、 9%以下、  Na O 6% or more, 9% or less,
K O 4%以上、 10%未満、  K O 4% or more, less than 10%,
Li O 0%以上、 1 %未満、  Li O 0% or more, less than 1%,
Na O + K O + Li O 10%以上、 17. 5%以下、  Na O + K O + Li O 10% or more, 17.5% or less,
MgO 0%以上、 5%以下、  MgO 0% or more, 5% or less,
CaO 6%超、 12%以下、  CaO over 6%, 12% or less,
BaO 0%以上、 4%未満、  BaO 0% or more, less than 4%,
SrO 0%以上、 4%未満、  SrO 0% or more, less than 4%,
ZnO 0%以上、 5%以下、  ZnO 0% or more, 5% or less,
MgO + CaO + SrO + BaO + ZnO 10%以上、 15%未満、  MgO + CaO + SrO + BaO + ZnO 10% or more, less than 15%,
SrO + BaO + ZnO 0%以上、 5%以下、  SrO + BaO + ZnO 0% or more, 5% or less,
TiO 0%以上、 0. 5%以下、  TiO 0% or more, 0.5% or less,
ZrO 0%以上、 2. 5%以下、  ZrO 0% or more, 2.5% or less,
CeO 0%以上、 0. 5%以下、  CeO 0% or more, 0.5% or less,
SO 0. 05%以上、 0. 5%以下、および  SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、  Total iron oxide converted to Fe O 0.05% or more, 0.35% or less,
である。  It is.
[0046] 当該第一の組成においては、現行のソーダ石灰ガラスより少ない Na O含有率でも つて、現行のソーダ石灰ガラスと比べて、近い熱膨張係数と、より低い軟化点を実現 している。  [0046] The first composition achieves a near thermal expansion coefficient and a lower softening point as compared with the current soda lime glass with a lower Na 2 O content than the current soda lime glass.
[0047] 当該第一の組成において、 Al Oが 0. 5%以上、 1 %未満、 Na Oが 7%以上、 9% 以下、 K Oが 6%以上、 10%未満、 Li Oが 0. 05%以上、 0. 35%未満、 MgOが 4 %超、 5%以下、 SrOが 0%以上、 1 %未満、 TiO力 S0%以上、 0. 05%未満、 ZrO 力 S0%以上、 0. 5%未満であることがより好ましい。 [0047] In the first composition, AlO is 0.5% or more and less than 1%, NaO is 7% or more and 9% or less, KO is 6% or more and less than 10%, LiO is 0.05. % Or more, less than 0.35%, MgO over 4%, 5% or less, SrO over 0%, less than 1%, TiO force S0% or more, less than 0.05%, ZrO More preferably, the force is S0% or more and less than 0.5%.
[0048] 本発明のガラス組成物について、特に好ましい第二の組成は、 [0048] Regarding the glass composition of the present invention, a particularly preferred second composition is:
SiO 67%以上、 73%以下、  SiO 67% or more, 73% or less,
Al O 0%超、 2%未満、  Al O> 0%, <2%,
B O 0%以上、 5%以下、  B O 0% or more, 5% or less,
Na O 4%以上、 9%以下、  Na O 4% or more, 9% or less,
K O 2%以上、 9%以下、  K O 2% or more, 9% or less,
Li O 0%超、 3%以下、  Li O over 0%, 3% or less,
Na O + K O + Li O 10%以上、 19. 5%未満、  Na O + K O + Li O 10% or more, 19.
MgO 0%超、 6%以下、  MgO over 0%, 6% or less,
CaO 5%超、 10%以下、  CaO over 5%, up to 10%,
BaO 0%以上、 1 %未満、  BaO 0% or more, less than 1%,
SrO 4%以上、 7%以下、  SrO 4% or more, 7% or less,
ZnO 0%以上、 6%以下、  ZnO 0% or more, 6% or less,
MgO + CaO + SrO + BaO + ZnO 10%以上、 19%以下、  MgO + CaO + SrO + BaO + ZnO 10% or more, 19% or less,
SrO + BaO + ZnO 0%以上、 10%以下、  SrO + BaO + ZnO 0% or more, 10% or less,
TiO 0%以上、 0. 5%以下、  TiO 0% or more, 0.5% or less,
ZrO 0%以上、 2. 5%以下、  ZrO 0% or more, 2.5% or less,
CeO 0%以上、 0. 5%以下、  CeO 0% or more, 0.5% or less,
SO 0. 05%以上、 0. 5%以下、および  SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、  Total iron oxide converted to Fe O 0.05% or more, 0.35% or less,
である。  It is.
[0049] 当該第二の組成においては、現行のソーダ石灰ガラスより少ない Na O含有率でも つて、現行のソーダ石灰ガラスと比べて、近い熱膨張係数と、より低い軟化点を実現 して!/、るとともに、成形性に優れたガラス組成物である。  [0049] The second composition realizes a near thermal expansion coefficient and a lower softening point compared to the current soda lime glass with a lower Na 2 O content than the current soda lime glass! / And a glass composition having excellent formability.
[0050] 当該第二の組成において、 Al Oが 0. 1 %以上、 2%未満、 Na Oが 6%以上、 9% 以下、 Li Oが 0. 1 %以上、 1. 5%以下、 MgOが 2%以上、 6%以下、 CaOが 5. 5% 以上、 10%以下、 TiO力 S0%以上、 0. 05%未満、 ZrO力 以上、 0. 5%未満で あることがより好ましい。また、 Si〇2が 68%以上、 72%以下、 Al23が 0. 5%以上、 2 %未満、 Na Oが 7%以上、 9%以下、 K Oが 4%以上、 8%以下、 Li Oが 0. 1 %以 上、 1 %以下、 MgOが 2%以上、 5%以下、 CaOが 5. 5%以上、 8%以下、 SrOが 4 %以上、 6%以下であることがさらに好ましい。 [0050] In the second composition, AlO is 0.1% or more and less than 2%, NaO is 6% or more and 9% or less, LiO is 0.1% or more, 1.5% or less, MgO 2% or more, 6% or less, CaO 5.5% or more, 10% or less, TiO force S0% or more, less than 0.05%, ZrO force or more, less than 0.5% More preferably. Further, Si_〇 2 68% or more, 72% or less, Al 23 0.5% or more and less than 2%, Na O is more than 7%, 9% or less, KO 4% or more, 8% or less, Li O is 0.1% or more, 1% or less, MgO is 2% or more, 5% or less, CaO is 5.5% or more, 8% or less, and SrO is 4% or more, 6% or less. preferable.
[0051] [ガラス組成物の特性] [0051] [Characteristics of glass composition]
(透過率)  (Transmittance)
照明用ガラスとして、可視光の透過率は高い方が望ましい。蛍光灯における可視光 の発生は、発生させた紫外線が、蛍光灯の内側表面にある蛍光体に照射された際 の発光を利用している。このように、蛍光灯内部では紫外線を発生させている。紫外 線の漏洩を低減する必要があるため、紫外域の波長の透過率は低く抑えなければな らない。紫外線には、 254nmや 313nmなどの波長の光が含まれる。波長 254nmの 光は、ガラスの場合、ほとんど透過しないので、考慮しなくてよい。波長 313nmの光 の透過は、制御する必要があり、主に全酸化鉄中の Fe Oおよび酸化チタンの含有 率にて制御することができる。波長 313nmの光の透過率(ガラス厚み: 0· 7mm)は、 60%以下とすることが望ましぐ 45%以下とすることがさらに望ましい。  As the glass for illumination, it is desirable that the visible light transmittance is high. Visible light is generated in a fluorescent lamp by using light emitted when the generated ultraviolet light is irradiated on a phosphor on the inner surface of the fluorescent lamp. Thus, ultraviolet rays are generated inside the fluorescent lamp. Since it is necessary to reduce the leakage of ultraviolet rays, the transmittance of wavelengths in the ultraviolet region must be kept low. Ultraviolet rays include light with wavelengths such as 254 nm and 313 nm. In the case of glass, light with a wavelength of 254 nm is hardly transmitted and therefore need not be considered. The transmission of light having a wavelength of 313 nm needs to be controlled, and can be controlled mainly by the contents of Fe 2 O and titanium oxide in the total iron oxide. The transmittance of light with a wavelength of 313 nm (glass thickness: 0.7 mm) is preferably 60% or less, and more preferably 45% or less.
[0052] (熱膨張係数)  [0052] (Thermal expansion coefficient)
照明用ガラスとして用いる場合、ガラスの熱膨張係数は、用いられる封着ガラスの 熱膨張係数と釣り合つている必要がある。この封着ガラスは、内部電極型の照明の場 合、内部へ揷入する電極の封止に用いられ、面照明装置の場合、ガラス容器を形成 するために板状ガラスの貼り合わせに用いられる。  When used as lighting glass, the thermal expansion coefficient of the glass needs to be balanced with the thermal expansion coefficient of the sealing glass used. This sealing glass is used for sealing an electrode inserted into the interior in the case of internal electrode type illumination, and is used for laminating sheet glass to form a glass container in the case of a surface illumination device. .
[0053] よく用いられる封着ガラスでは、その熱膨張係数が、通常ソーダ石灰系ガラス組成 物の熱膨張係数の代表値である 89 X 10— 7/°Cと釣り合うように調整されている。した がって、照明用ガラスの熱膨張係数としても、この数値から余り離れないことが望まれ る。具体的には、(89 ± 5) X 10— 7/。Cの範囲にあることが望ましく(89 ±4) X 10— 7/ °Cの範囲にあることがより望ましぐ(89 ± 2) X 10— 7/°Cの範囲にあることがさらに望 ましい。 The [0053] commonly used are sealing glass, the thermal expansion coefficient is adjusted normally to balance the representative value of the thermal expansion coefficient of 89 X 10- 7 / ° C of the soda-lime glass composition. Therefore, it is desirable that the coefficient of thermal expansion of the lighting glass not be far from this value. Specifically, (89 ± 5) X 10- 7 /. It is desirable in the range of C (89 ± 4) X 10- 7 / ° and more desirable tool in the range of C (89 ± 2) X 10- 7 / ° more Nozomu be in the range of C Good.
[0054] (軟化点、ガラス転移点)  [0054] (softening point, glass transition point)
照明用ガラス容器が管状の場合には、溶融されたガラスから、直接、管状に成形さ れたり、一旦管状に形成したものを再度軟化する温度まで加熱して、 U字状などに再 成形される。また面照明装置の場合には、照明用ガラス容器を形成するために、板 状のガラスを再度軟化する温度まで加熱して、プレス成形等に供される場合がある。 したがって、いずれも加熱'再加熱による成形の際に作業が容易なように、軟化点は 低い方が好ましい。軟化点は、現行のソーダ石灰系ガラス組成物のそれと比較して、 あまり高くないことが望ましい。具体的に軟化点は、ソーダ石灰系ガラス組成物の軟 化点から 50°C高い程度の 790°C以下が望ましぐ 10°C高い程度の 750°C以下がさ らに望ましい。さらに、現行のソーダ石灰系ガラス組成物の軟化点以下となる、 740 °C以下が最も望ましい。 If the glass container for lighting is tubular, it is molded directly from the molten glass into a tubular shape. Or once formed into a tubular shape, it is heated to a temperature at which it is softened again and reshaped into a U shape. In the case of a surface illumination device, in order to form a glass container for illumination, the plate-like glass may be heated to a temperature at which it is softened again and used for press molding or the like. Therefore, it is preferable that the softening point is low so that the work can be easily performed in the molding by heating and reheating. It is desirable that the softening point is not so high compared to that of the current soda-lime glass composition. Specifically, the softening point is preferably 790 ° C or lower, about 50 ° C higher than the softening point of the soda-lime glass composition, and more preferably 750 ° C or lower, about 10 ° C higher. Furthermore, it is most desirable that the temperature be 740 ° C. or lower, which is lower than the softening point of the current soda-lime glass composition.
[0055] また、軟化点の測定は困難なことが多!/、ので、ガラス転移点でこれを代用する場合 がある。ガラス転移点でいうと、 630°C未満が望ましぐ 600°C未満がさらに望ましぐ 565°C以下が最も望ましい。  [0055] In addition, since it is often difficult to measure the softening point !, this may be substituted by the glass transition point. In terms of glass transition point, less than 630 ° C is desirable, and less than 600 ° C is more desirable, with 565 ° C or less being most desirable.
[0056] ここで、(軟化点 ガラス転移点)は、再加熱による再成形後の冷却速度の指標とな るパラメータである。 (軟化点 ガラス転移点)が大きいほど、再加熱による再成形後 の冷却時に、ガラスの冷却速度を速めることができる。したがって、再成型加工の生 産性が向上する。なお、冷却速度は、(軟化点 ガラス転移点)を、軟化点からガラス 転移点までの冷却に要する時間で除した数値として与えられる。  Here, (softening point glass transition point) is a parameter that serves as an index of the cooling rate after re-forming by reheating. The larger the (softening point glass transition point), the faster the glass cooling rate during cooling after re-forming by reheating. Therefore, productivity of remolding is improved. The cooling rate is given as a value obtained by dividing (softening point glass transition point) by the time required for cooling from the softening point to the glass transition point.
[0057] 本発明のガラス組成物の(軟化点 ガラス転移点)は、現行のソーダ石灰系ガラス 組成物の(軟化点—ガラス転移点)と同等もしくはより大きレ、値を有す。本発明におレ、 て、後述の実施例 1、 3、 4および 8〜42における(軟化点—ガラス転移点)は、 184 °Cを超えた値である。一方、比較例では、 184°C以下の値となっている。このため、 前記実施例においては、比較例と比べて、冷却速度を大きくすることが可能である。 すなわち、本発明のガラス組成物については、再成形加工時の冷却速度を、従来と 同等か、より大きくすることが可能である。  [0057] The (softening point glass transition point) of the glass composition of the present invention has a value equal to or greater than the (softening point-glass transition point) of the current soda-lime glass composition. In the present invention, (softening point-glass transition point) in Examples 1, 3, 4 and 8-42 described later is a value exceeding 184 ° C. On the other hand, in the comparative example, the value is 184 ° C or lower. For this reason, in the said Example, it is possible to enlarge a cooling rate compared with a comparative example. That is, for the glass composition of the present invention, the cooling rate at the time of reshaping can be made equal to or greater than that in the prior art.
[0058] (ガラスの成形方法)  [0058] (Glass forming method)
本発明のガラス組成物は、管状ガラスや板状ガラスに成形することができる。特に、 板状ガラスに成形する方法としては、安価で大量の製造が可能なフロート法が望まし ぐ本発明のガラス組成物は、フロート法に適用可能である。もちろん、蛍光灯として 一般的な管状に成形することも可能である。具体的な成形の手法については、公知 方法に準じればよい。 The glass composition of the present invention can be formed into tubular glass or sheet glass. In particular, the glass composition of the present invention, which is desired to be a float method capable of being manufactured at low cost and in large quantities, can be applied to the float method as a method for forming a sheet glass. Of course, as a fluorescent lamp It is also possible to form a general tubular shape. The specific molding method may be in accordance with a known method.
[0059] (ガラス組成物の用途) [0059] (Use of glass composition)
本発明のガラス組成物を、例えば上記のように、フロート法等により板状に成形した ガラス物品や容器状に成形したガラス物品を用いて、公知方法に準じて蛍光灯等の 照明装置 (例、面照明装置、管状蛍光灯等)を構成することができる。  The glass composition of the present invention, for example, as described above, using a glass article formed into a plate shape by a float method or the like, or a glass article formed into a container shape, and an illumination device such as a fluorescent lamp according to a known method (example: , Surface lighting devices, tubular fluorescent lamps, and the like).
[0060] 以下に、実施例 ·比較例を示して、本発明を詳しく説明する。 [0060] Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
表 1〜4に示したガラス組成となるように、原料バッチ(以下、バッチと呼ぶ場合があ る)をそれぞれ調合した。原料は、通常のガラス製造に用いられるものを使用した。  Raw material batches (hereinafter sometimes referred to as batches) were prepared so that the glass compositions shown in Tables 1 to 4 were obtained. The raw materials used were those used for normal glass production.
[0061] [表 1] [0061] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0062] [表 2] 組成 (貧量%) 実施例 9 実施例 10実施例 11実施例 12実施例 13実施例 14実施例 15実施例 16[0062] [Table 2] Composition (Poor%) Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16
Si02 69.22 71.44 70.38 70.54 70.21 70.27 70.42 70.58Si0 2 69.22 71.44 70.38 70.54 70.21 70.27 70.42 70.58
Al203 1.35 0.67 0.67 0.67 0.67 0.80 0.80 0.81Al 2 0 3 1.35 0.67 0.67 0.67 0.67 0.80 0.80 0.81
Li20 ― ― 一- ―Li 2 0 ― ― One- ―
Na20 6.56 8.02 7.99 8.01 7.97 7.99 8.00 8.02Na 2 0 6.56 8.02 7.99 8.01 7.97 7.99 8.00 8.02
K20 6.17 8.13 9.27 8.90 8.86 9.26 8.90 8.53 20 12.73 16.2 17.3 16.9 16.8 17.2 16.9 16.5 gO 3.84 3.91 3.89 4.07 4.05 3.89 4.06 4.24K 2 0 6.17 8.13 9.27 8.90 8.86 9.26 8.90 8.53 20 12.73 16.2 17.3 16.9 16.8 17.2 16.9 16.5 gO 3.84 3.91 3.89 4.07 4.05 3.89 4.06 4.24
CaO 7.59 7.74 7.70 7.72 7.13 7.70 7.71 7.73CaO 7.59 7.74 7.70 7.72 7.13 7.70 7.71 7.73
SrO 4.19 ― ― ― 1.02 一 一 ―SrO 4.19 ― ― ― 1.02 One ―
BaO ― ― —一 一 一 一 一BaO ― ― ― 一 one one one one
ZnO -- ― 一— ― ― ― ― ―ZnO--One------
RO-1 15.61 11.64 1 1.59 1 1.79 12.19 11.59 1 1.78 11.97RO-1 15.61 11.64 1 1.59 1 1.79 12.19 11.59 1 1.78 11.97
RO-2 4.19 0.00 0.00 0.00 1.02 0.00 0.00 0.00RO-2 4.19 0.00 0.00 0.00 1.02 0.00 0.00 0.00
Ti02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02Ti0 2 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Zr02 1.00 ― ― ― ― ― ― . 一Zr0 2 1.00 ― ― ― ― ― ―.
Fe203 0.11 0.11 0.11 0.1 1 0.1 1 0.11 0.11 0.11 so3 0.22 0.25 0.20 0.22 0.23 0.23 0.20 0.21Fe 2 0 3 0.11 0.11 0.11 0.1 1 0.1 1 0.11 0.11 0.11 so 3 0.22 0.25 0.20 0.22 0.23 0.23 0.20 0.21
Ce02 一 ― 一 一 ― 一 ―Ce0 2 1 ― 1 1 ― 1 ―
Sb203 ― ― ― ― ― ― ―Sb 2 0 3 ― ― ― ― ― ― ―
Na20/K20 1.1 1.0 0.9 0.9 0.9 0.9 0.9 0.9Na 2 0 / K 2 0 1.1 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9
FeO比(%) 27.3 25.1 29.7 26.8 28.2 27.8 29.5 28.9 熱膨張係数 (X 1 CT7/°C) 77.0 94.3 94.7 92.5 89.0 95.0 94.0 92.0 転移点 (°C) 590 564 561 561 558 559 563 562 軟化点 (°c) 786 754 747 749 746 746 749 752 軟化点一耘移点 (°C) 196 190 186 188 189 187 186 190FeO ratio (%) 27.3 25.1 29.7 26.8 28.2 27.8 29.5 28.9 Coefficient of thermal expansion (X 1 CT 7 / ° C) 77.0 94.3 94.7 92.5 89.0 95.0 94.0 92.0 Transition point (° C) 590 564 561 561 558 559 563 562 Softening point ( ° c) 786 754 747 749 746 746 749 752 Softening point first transition point (° C) 196 190 186 188 189 187 186 190
UV透過率 (313nm) 47.5 46.7 44.9 44.2 44.0 43.0 43.5 44.1 3] UV transmittance (313nm) 47.5 46.7 44.9 44.2 44.0 43.0 43.5 44.1 3]
組成 (質量%) 実施例 17実施例 18実施例 19実施例 20実施例 21 実施例 22実施例 23実施例 24Composition (% by weight) Example 17 Example 18 Example 19 Example 20 Example 21 Example 22 Example 23 Example 24
Si02 71.53 71.75 71.05 70.10 70.35 70.61 70.73 70.88 Si0 2 71.53 71.75 71.05 70.10 70.35 70.61 70.73 70.88
Al203 0.67 0.67 0.67 0.80 0.80 0.81 0.81 0.81Al 2 0 3 0.67 0.67 0.67 0.80 0.80 0.81 0.81 0.81
Li20 0.15 0.49 ― ― 0.15 0.30 0.44 0.30Li 2 0 0.15 0.49 ― ― 0.15 0.30 0.44 0.30
Na20 8.03 8.06 7.98 7.97 7.99 8.02 7.94 8.05 Na 2 0 8.03 8.06 7.98 7.97 7.99 8.02 7.94 8.05
K20 8.14 8.16 8.08 8.85 8.89 8.92 8.78 8.17K 2 0 8.14 8.16 8.08 8.85 8.89 8.92 8.78 8.17
R20 16.3 16.7 16.1 16.8 17.0 17.2 17.2 16.5 R 2 0 16.3 16.7 16.1 16.8 17.0 17.2 17.2 16.5
MgO 3.91 3.93 3.56 4.04 4.06 4.07 4.01 4.26MgO 3.91 3.93 3.56 4.04 4.06 4.07 4.01 4.26
CaO 7.46 6.84 7.23 7.13 7.15 7.18 7.19 7.43CaO 7.46 6.84 7.23 7.13 7.15 7.18 7.19 7.43
SrO 一 一 一 1.02 0.51 一 ― ―SrO 1 1 1 1.02 0.51 1 ― ―
BaO ― ― ― ― 一 一 ― ―BaO ― ― ― ― One one ― ―
ZnO ― 1.33 ― ― ― ― 一ZnO ― 1.33 ― ― ― ― One
RO-1 1 1.38 10.76 12.12 12.19 11.72 11.25 11.20 11.69RO-1 1 1.38 10.76 12.12 12.19 11.72 11.25 11.20 11.69
RO-2 0.00 0.00 1.33 1.02 0.51 0.00 0.00 0.00RO-2 0.00 0.00 1.33 1.02 0.51 0.00 0.00 0.00
Ti02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02Ti0 2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Zr02 ― ― —一 一 —― 一 ―Zr0 2 ― ― ―One one ―― One ―
Fe203 0.11 0.11 0.11 0.13 0.13 0.13 0.13 0.20 so3 0.22 0.22 0.20 0.23 0.22 0.22 0.22 0.22 Fe 2 0 3 0.11 0.11 0.11 0.13 0.13 0.13 0.13 0.20 so 3 0.22 0.22 0.20 0.23 0.22 0.22 0.22 0.22
Ce02 ― ― ― ― ― ― ― Ce0 2 ― ― ― ― ― ― ―
Sb203 —— 一 ― ― —— —― Sb 2 0 3 —— One — — —— ——
Na20/K20 1.0 1.0 1.0 0.9 0.9 0.9 0.9 1.0Na 2 0 / K 2 0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 1.0
FeO比(%) 26.1 26.5 31.3 25.5 28.8 28.7 28.6 27.0 熱膨張係数 (X 10— 7/°c) 91.5 89.0 88.5 91.1 91.7 90.2 91.1 92.4 転移点 (°C) 552 532 562 560 550 541 536 546 軟化点 (°C) 744 726 749 746 739 730 724 735 軟化点一転移点 (°C) 192 194 187 186 189 189 188 189FeO ratio (%) 26.1 26.5 31.3 25.5 28.8 28.7 28.6 27.0 thermal expansion coefficient (X 10- 7 / ° c) 91.5 89.0 88.5 91.1 91.7 90.2 91.1 92.4 Transition point (° C) 552 532 562 560 550 541 536 546 Softening point ( ° C) 744 726 749 746 739 730 724 735 Softening point one transition point (° C) 192 194 187 186 189 189 188 189
UV透過率 (313nm) 45.9 46.5 47.0 42.3 44.3 44.1 43.2 35.8 可視光透過率 (%) ― 一 ― 91.5 91.5 91.3 91.4 ― 4] UV transmittance (313nm) 45.9 46.5 47.0 42.3 44.3 44.1 43.2 35.8 Visible light transmittance (%) ― One ― 91.5 91.5 91.3 91.4 ― 4]
組成 (質量%) 実施例 25実施例 26実施例 27 比較例 1 比較例 2 比較例 3 比較例 4 比較例 5Composition (mass%) Example 25 Example 26 Example 27 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5
SiOz 71.01 71.15 71.28 72.63 71.0 69.8 71.0 69.2SiO z 71.01 71.15 71.28 72.63 71.0 69.8 71.0 69.2
ΑΙ2θ3 0.81 0.81 0.81 1.4 1.7 1.0 1.5 0.1 ΑΙ 2 θ 3 0.81 0.81 0.81 1.4 1.7 1.0 1.5 0.1
Li20 0.30 0.30 0.45 ― ― 1.6 一一 一一Li 2 0 0.30 0.30 0.45 ― ― 1.6
Na20 8.07 8.08 8.00 13.1 13.6 7.4 5.5 8.0Na 2 0 8.07 8.08 8.00 13.1 13.6 7.4 5.5 8.0
K20 7.80 7.42 7.28 0.9 1.0 7.5 4.0 8.1K 2 0 7.80 7.42 7.28 0.9 1.0 7.5 4.0 8.1
R20 16.2 15.8 15.7 14.0 14.6 16.5 9.5 16.2R 2 0 16.2 15.8 15.7 14.0 14.6 16.5 9.5 16.2
MgO 4.33 4.44 4.38 4.0 4.0 2.2 1.0 0.04MgO 4.33 4.44 4.38 4.0 4.0 2.2 1.0 0.04
CaO 7.59 7.70 7.71 7.91 8.0 6.5 3.0 6.85CaO 7.59 7.70 7.71 7.91 8.0 6.5 3.0 6.85
SrO 1.0 6.0 ―SrO 1.0 6.0 ―
BaO ― ― 一一 ― ― 2.5 6.0 2.01BaO ― ― 1― ― ― 2.5 6.0 2.01
ZnO ― ― ― ― ― ― ― 4.2ZnO ― ― ― ― ― ― ― 4.2
RO-1 1 1.92 12.13 12.09 1 1.9 12.0 12.2 16.0 13.1RO-1 1 1.92 12.13 12.09 1 1.9 12.0 12.2 16.0 13.1
RO-2 0.00 0.00 0.00 0.00 0.0 3.5 12.0 6.2RO-2 0.00 0.00 0.00 0.00 0.0 3.5 12.0 6.2
Ti02 0.02 0.02 0.01 0.02 0.03 ― ― 0.4Ti0 2 0.02 0.02 0.01 0.02 0.03 ― ― 0.4
Zr02 一 一一 ―Zr0 2 1 1 1-
Fe203 0.20 0.20 0.20 0.1 1 0.53 一 ― 0.01 Fe 2 0 3 0.20 0.20 0.20 0.1 1 0.53 one - 0.01
S03 0.22 0.21 0.22 0.2 0.17 一 ― 0.35S0 3 0.22 0.21 0.22 0.2 0.17 One ― 0.35
Ce02 一 0.5 ―Ce0 2 1 0.5-
Sb203 0.5 0.5 0.36Sb 2 0 3 0.5 0.5 0.36
B203 1.0 ―B 2 0 3 1.0 ―
Na20/K20 1.0 1.1 1.1 15.1 13.6 1.0 1.4 1.0Na 2 0 / K 2 0 1.0 1.1 1.1 15.1 13.6 1.0 1.4 1.0
FeO比(%) 26.5 26.1 27.0 22.0 24.5 —一 ― 3.6 熱膨張係数 (x 10 7/°C) 91.0 88.1 89.8 90.9 -- 94.0 94.0 95.0 転移点 (°C) 551 550 544 563 ― ― 501 570 軟化点 (°C) 736 739 733 740 ― ― 680 軟化点一転移点 (°C) 185 189 189 177 ― 一一 179 FeO ratio (%) 26.5 26.1 27.0 22.0 24.5 —One ― 3.6 Thermal expansion coefficient (x 1 0 7 / ° C) 91.0 88.1 89.8 90.9-94.0 94.0 95.0 Transition point (° C) 551 550 544 563 ― ― 501 570 Softening Point (° C) 736 739 733 740 ― ― 680 Softening point one transition point (° C) 185 189 189 177 ― 1 179
UV透過率 (313nm) 36.1 35.7 35.2 36.0 ― ― ― 77.1 可視光透過率 (¾) ― ― ― 91.3 89.3 ― 一一 一一  UV transmittance (313nm) 36.1 35.7 35.2 36.0 ― ― ― 77.1 Visible light transmittance (¾) ― ― ― 91.3 89.3 ―
[0065] (表;!〜 4において、 R Oは、 Na O + K O + Li Oを、 RO— 1は、 MgO + CaO + Sr O + BaO + ZnOを、 RO— 2は、 SrO + BaO + ZnOを示す。) [0065] (Table;! To 4, in which RO is Na O + KO + Li O, RO-1 is MgO + CaO + SrO + BaO + ZnO, RO-2 is SrO + BaO + ZnO Is shown.)
[0066] 調合したバッチは、白金ルツボの中で熔融および清澄した。まず、このルツボを 15 00°Cに設定した電気炉で、 4時間保持してバッチを熔融した。その後、ガラス融液を 鉄板上に流し出し、板状のガラス体を得た。このガラス体を 650°Cに設定した別の電 気炉の中で 1時間保持した後、 2°C毎分の冷却速度で、室温まで冷却することによつ て行なった。この徐冷したガラス体を試料ガラスとした。  [0066] The formulated batch was melted and clarified in a platinum crucible. First, the crucible was held in an electric furnace set at 1500 ° C. for 4 hours to melt the batch. Thereafter, the glass melt was poured onto an iron plate to obtain a plate-like glass body. This glass body was held in another electric furnace set at 650 ° C for 1 hour, and then cooled to room temperature at a cooling rate of 2 ° C per minute. This slowly cooled glass body was used as a sample glass.
[0067] (透過率の測定)  [0067] (Measurement of transmittance)
得られた試料ガラスの!/、くつかにつ!/、て、 A光源を用いて分光光度計(日立製作所 製、 U4100)にて透過率を測定した。ガラス基板の厚みは 0. 7mmとした。紫外線透 過率の尺度として、波長 313nmの光の透過率を測定した。また、可視光透過率は、 J IS R 3106の可視光透過率の測定法に準じて、測定した。 The transmittance of the obtained sample glass was measured with a spectrophotometer (manufactured by Hitachi, Ltd., U4100) using A light source. The thickness of the glass substrate was 0.7 mm. UV transmission As a measure of the excess rate, the transmittance of light having a wavelength of 313 nm was measured. Further, the visible light transmittance was measured according to the method for measuring visible light transmittance of JIS R 3106.
[0068] (組成分析) [0068] (Composition analysis)
蛍光 X線分析及び化学分析法を用いて、得られた試料ガラスの組成を定量分析し た。  The composition of the obtained sample glass was quantitatively analyzed using fluorescent X-ray analysis and chemical analysis.
[0069] (熱膨張係数の測定)  [0069] (Measurement of thermal expansion coefficient)
得られた試料ガラスのいくつかについて、示差式熱膨張計(リガク製、 TAS— 100) にて熱膨張係数を測定した。試料の大きさは、直径 5mm,長さ 17mmとし、 5°C/分 の昇温速度で室温から降伏温度までの範囲で測定を行い、 50°C〜300°Cの範囲の 熱膨張係数を算出した。  The thermal expansion coefficient of some of the obtained sample glasses was measured with a differential thermal dilatometer (manufactured by Rigaku, TAS-100). The sample size is 5 mm in diameter and 17 mm in length. The sample is measured from room temperature to the yield temperature at a heating rate of 5 ° C / min, and the coefficient of thermal expansion is in the range of 50 ° C to 300 ° C. Calculated.
[0070] (軟化点とガラス転移点との測定) [0070] (Measurement of softening point and glass transition point)
得られた試料ガラスの!/、くつかにつ!/、て、平板状試料に貫入圧子を一定荷重で降 下させ、その圧子の貫入速度から粘度を算出して、軟化点を求めた。  The intrusion indenter of the obtained sample glass was lowered to a flat sample with a constant load, and the viscosity was calculated from the penetration speed of the indenter to obtain the softening point.
またガラス転移点は、上述の熱膨張係数の測定で求めた熱膨張曲線における変曲 点から求めた。  The glass transition point was determined from the inflection point in the thermal expansion curve determined by the above-described measurement of the thermal expansion coefficient.
[0071] (失透温度の測定) [0071] (Measurement of devitrification temperature)
前記試料ガラスを、粒径 1. 0〜2. 8mmに粉砕したものを白金ボートに入れ、温度 勾配のついた電気炉内に 2時間保持し、結晶が出現する位置の最高温度から、失透 温度を求めた。  The sample glass pulverized to a particle size of 1.0 to 2.8 mm is placed in a platinum boat and held in an electric furnace with a temperature gradient for 2 hours. From the maximum temperature at which the crystal appears, devitrification occurs. The temperature was determined.
[0072] (成形温度の測定) [0072] (Measurement of molding temperature)
通常の白金球引き上げ法によりガラスの粘性を求め、ガラスの粘性が 10000dPas ( 10000 poise)となる温度(成形温度)を求めた。  The viscosity of the glass was determined by the ordinary platinum ball pulling method, and the temperature (forming temperature) at which the viscosity of the glass reached 10000 dPas (10000 poise) was determined.
[0073] 上記の測定結果も表;!〜 4に示す。 [0073] The above measurement results are also shown in Tables !! to 4.
[0074] 実施例;!〜 27では、 Na O含有率が 4. 37%〜; 10. 8%、 Na O/K Οが 0· 3〜2· 6であり、熱膨張係数が(74. 7-95. 6) X 10— 7/°C、転移点が 532°C〜622°Cであ る。つまり、現行のソーダ石灰ガラスより少ない Na O含有率で、それに比較的近い物 性を有しており、照明用ガラス組成物として、適した特性を有している。 [0074] In Examples;! To 27, the Na 2 O content is 4.37% to 10.8%, the Na 2 O / K 0 is 0.3 to 2.6, and the thermal expansion coefficient is (74. 7-95. 6) X 10- 7 / ° C, transition point Ru 532 ° C~622 ° C der. In other words, it has less Na 2 O content than the current soda-lime glass and has properties that are relatively close to it, and it has suitable characteristics as a glass composition for lighting.
[0075] また、実施例 2;!〜 27では、 Na O含有率が 7. 94%〜8. 08%、 Na O/K Οが 0· 9~1. 1であり、熱 S彭張係数力 (88. 1-92. 4) X IO /。C、転移^ (力 536。C〜551 °Cで、軟化点が 724°C〜739°Cである。つまり、現行のソーダ石灰ガラスよりかなり少 ない Na O含有率でもって、現行のソーダ石灰ガラスと比べて、非常に近い熱膨張係 数と、より低い軟化点を実現している。このため、照明用ガラス組成物として、特に適 した特性を有している。 [0075] In Example 2;! To 27, the Na 2 O content is 7.94% to 8.08%, and the Na 2 O / K 0 is 0 · 9 ~ 1.1, thermal S tension coefficient force (88. 1-92.4) X IO /. C, transition ^ (force 536. C ~ 551 ° C, softening point 724 ° C ~ 739 ° C. That is, the current soda lime with a much lower Na 2 O content than the current soda lime glass. Compared to glass, it has a very close thermal expansion coefficient and a lower softening point, which makes it particularly suitable as a lighting glass composition.
[0076] 比較例 1は、一般的な板ガラス用のソーダ石灰系ガラス組成物である。 Na Oを 13 . 1 %と多く含み、本発明のガラス組成範囲外である。また、 K Oをほとんど含まず、 Na O/K Oは 15· 1である。  [0076] Comparative Example 1 is a general soda-lime glass composition for sheet glass. It contains a large amount of Na 2 O as 13.1% and is outside the glass composition range of the present invention. Also, it contains almost no K 2 O and Na 2 O / K 2 O is 15.1.
[0077] 比較例 2は、一般的な板ガラス用の、多くの鉄分を含むソーダ石灰系ガラス組成物 である。  [0077] Comparative Example 2 is a soda-lime-based glass composition containing a large amount of iron for a general plate glass.
[0078] 比較例 3は、特開平 05— 314169号公報の実施例 8に示されたガラス組成物であ り、清澄剤として SOを含まず、 Sb Oを含有している。  [0078] Comparative Example 3 is the glass composition disclosed in Example 8 of Japanese Patent Application Laid-Open No. 05-314169, and does not contain SO as a fining agent and contains SbO.
[0079] 比較例 4は、特開平 11 224649号公報の実施例 7に示されたガラス組成物であ り、アルカリ金属酸化物の含有率が小さぐ CaOの含有率も小さいガラス組成物であ る。さらに清澄剤として、 SOを含まず、 CeOや Sb Oを含有している。  [0079] Comparative Example 4 is a glass composition described in Example 7 of JP-A-11 224649, and is a glass composition having a small content of CaO and a small content of CaO. The Furthermore, as a clarifier, it does not contain SO but contains CeO and SbO.
[0080] 比較例 5は、清澄剤として Sb Oを含み、その関係で FeO比が非常に小さいガラス 組成物である。  [0080] Comparative Example 5 is a glass composition containing Sb 2 O as a fining agent and having a very small FeO ratio.
[0081] 比較例 3と 4とは、 SOを含まない例である。比較例 3と 4とは、清澄剤として、いずれ も Sb Oを含有しており、比較例 4はさらに、 CeOを含有している。比較例 3と 4とのガ ラス組成物をフロート法にて成形すると、フロートバス内の還元雰囲気によって、茶色 に着色してしまう。さらに比較例 4では、紫外線の照射により、黄色に着色してしまう。  [0081] Comparative examples 3 and 4 are examples that do not contain SO. Comparative Examples 3 and 4 both contain Sb 2 O as a fining agent, and Comparative Example 4 further contains CeO. When the glass compositions of Comparative Examples 3 and 4 are molded by the float process, they are colored brown by the reducing atmosphere in the float bath. Furthermore, in Comparative Example 4, it is colored yellow by irradiation with ultraviolet rays.
[0082] 比較例 2では、含まれる鉄分が多いので、可視光透過率が 89. 3%と、実施例 20 〜23に比べて低くなる。  In Comparative Example 2, since the iron content is large, the visible light transmittance is 89.3%, which is lower than that in Examples 20-23.
[0083] 表 5と 6に示したガラス組成となるように、ノ ッチをそれぞれ調合した。この実施例 28 〜42は、 SrOを約 4. 5%含むガラス組成である。比較例 6は、一般的な板ガラス用 のソーダ石灰系ガラス組成物である。 Na Oを 13. 12%と多く含み、本発明のガラス 組成範囲外である。また、 K Oをほとんど含まず、 Na O/K Oは 11. 82である。  [0083] Notches were prepared so that the glass compositions shown in Tables 5 and 6 were obtained. Examples 28-42 are glass compositions containing about 4.5% SrO. Comparative Example 6 is a general soda-lime glass composition for sheet glass. It contains a large amount of Na 2 O as 13.12% and is outside the glass composition range of the present invention. Moreover, it contains almost no K 2 O and Na 2 O / K 2 O is 11.82.
[0084] [表 5] 組成 (質量%) 実施例 28実施例 29実施例 30実施例 31実施例 32実施例 33実施例 34実施例 35[0084] [Table 5] Composition (% by weight) Example 28 Example 29 Example 30 Example 31 Example 32 Example 33 Example 34 Example 35
Si02 69.35 70.35 68.95 69.33 71.66 72.07 70.46 70.60 Si0 2 69.35 70.35 68.95 69.33 71.66 72.07 70.46 70.60
Al203 0.79 0.81 0.79 0.79 0.80 0.80 0.80 0.80Al 2 0 3 0.79 0.81 0.79 0.79 0.80 0.80 0.80 0.80
Li20 0.30 0.30 0.29 0.54 0.30 0.54 0.30 0.30 Li 2 0 0.30 0.30 0.29 0.54 0.30 0.54 0.30 0.30
Na20 5.20 8.03 7.88 7.92 7.96 8.01 7.92 7.93Na 2 0 5.20 8.03 7.88 7.92 7.96 8.01 7.92 7.93
K20 7.66 3.58 7.62 6.90 4.63 3.88 5.98 5.83K 2 0 7.66 3.58 7.62 6.90 4.63 3.88 5.98 5.83
R20 13.16 1 1.91 15.79 15.36 12.89 12.43 14.20 14.06R 2 0 13.16 1 1.91 15.79 15.36 12.89 12.43 14.20 14.06
MgO 3.96 4.02 3.22 3.23 3.25 3.27 3.23 3.24MgO 3.96 4.02 3.22 3.23 3.25 3.27 3.23 3.24
CaO 7.85 7.96 6.37 6.40 6.44 6.47 6.40 6.41CaO 7.85 7.96 6.37 6.40 6.44 6.47 6.40 6.41
SrO 4.54 4.61 4.52 4.54 4.57 4.59 4.55 4.55SrO 4.54 4.61 4.52 4.54 4.57 4.59 4.55 4.55
BaO BaO
RO-1 16.35 16.59 14.1 1 14.17 14.26 14.33 14.18 14.20 RO-1 16.35 16.59 14.1 1 14.17 14.26 14.33 14.18 14.20
RO-2 4.54 4.61 4.52 4.54 4.57 4.59 4.55 4.55RO-2 4.54 4.61 4.52 4.54 4.57 4.59 4.55 4.55
Ti02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02Ti0 2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Zr02 Zr0 2
Fe203 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.12Fe 2 0 3 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.12
S03 0.21 0.19 0.22 0.21 0.24 0.22 0.22 0.20S0 3 0.21 0.19 0.22 0.21 0.24 0.22 0.22 0.20
Ce02 ― ― ― ― ― 一 ―Ce0 2 ― ― ― ― ― One ―
Sb203 Sb 2 0 3
Na20/K20 0.68 2.24 1.03 1.15 1.72 2.06 1.32 1.36 Na 2 0 / K 2 0 0.68 2.24 1.03 1.15 1.72 2.06 1.32 1.36
FeO比(%) 19.1 22.3 20.9 失透温度 (°C) 1073 1063 943 930 971 1033 951 960 成形温度 ( c) 1048 1027 1029 1017 1056 1044 1052 1053 成形温度一失透温度 (°c) -25 -36 86 87 85 1 1 101 93 熱膨張係数 (X 1 0— 7Z°C) 88.5 85.2 94.2 93.8 84.7 83,7 89.5 88.6 転移点 (°c) 561 555 536 526 546 539 545 543 軟化点 (°C) 747 741 724 716 744 735 734 736 軟化点一転移点 (°C) 186 186 188 190 1 Θ8 1 Θ6 189 193FeO ratio (%) 19.1 22.3 20.9 Devitrification temperature (° C) 1073 1063 943 930 971 1033 951 960 Molding temperature (c) 1048 1027 1029 1017 1056 1044 1052 1053 Molding temperature One devitrification temperature (° c) -25 -36 86 87 85 1 1 101 93 Thermal expansion coefficient (X 1 0— 7 Z ° C) 88.5 85.2 94.2 93.8 84.7 83,7 89.5 88.6 Transition point (° c) 561 555 536 526 546 539 545 543 Softening point (° C) 747 741 724 716 744 735 734 736 Softening point one transition point (° C) 186 186 188 190 1 Θ8 1 Θ6 189 193
UV透過率 (313nm) 一一 一一 ― 一 一一 34.7 34.7 36.7 可視光透過率 (%) ― ― ― 一一 一一 91.5 91.4 91.5 6] UV transmittance (313nm) 1 1 1-1 1 34.7 34.7 36.7 Visible light transmittance (%)---1 1 1 91.5 91.4 91.5 6]
組成 (質量%) 実施例 36実施例 37実施例 38実施例 39実施例 40実施例 41実施例 42 比較例 6Composition (% by weight) Example 36 Example 37 Example 38 Example 39 Example 40 Example 41 Example 42 Comparative Example 6
Si02 70.27 69.55 69.72 69.49 69.61 69.63 69.60 72.05Si0 2 70.27 69.55 69.72 69.49 69.61 69.63 69.60 72.05
Alj03 0.99 1.81 1.82 1.81 1.82 1.82 1.57 1.38Alj0 3 0.99 1.81 1.82 1.81 1.82 1.82 1.57 1.38
Li20 0.30 0.29 0.39 0.34 0.36 0.43 0.34 0Li 2 0 0.30 0.29 0.39 0.34 0.36 0.43 0.34 0
Na20 7.92 7.89 7.91 7.89 7.90 7.91 7.90 13.12Na 2 0 7.92 7.89 7.91 7.89 7.90 7.91 7.90 13.12
K20 5.98 5.96 5.66 5.96 5.81 5.67 6.12 1.1 1K 2 0 5.98 5.96 5.66 5.96 5.81 5.67 6.12 1.1 1
R20 14.20 14.14 13.96 14.19 14.07 14.01 14.36 14.23R 2 0 14.20 14.14 13.96 14.19 14.07 14.01 14.36 14.23
MgO 3.23 3.22 3.23 3.22 3.22 3.23 3.22 4.02MgO 3.23 3.22 3.23 3.22 3.22 3.23 3.22 4.02
CaO 6.40 6.38 6.39 6.38 6.38 6.39 6.38 7.98CaO 6.40 6.38 6.39 6.38 6.38 6.39 6.38 7.98
SrO 4.54 4.53 4.53 4.53 4.53 4.54 4.53 0SrO 4.54 4.53 4.53 4.53 4.53 4.54 4.53 0
BaO BaO
RO-1 14.17 14.13 14.15 14.13 14.13 14.16 14.13 12.00 RO-1 14.17 14.13 14.15 14.13 14.13 14.16 14.13 12.00
RO-2 4.54 4.53 4.53 4.53 4.53 4.54 4.53 0RO-2 4.54 4.53 4.53 4.53 4.53 4.54 4.53 0
Ti02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02Ti0 2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Zr02 Zr0 2
Fe203 0.12 0.14 0.14 0.14 0.14 0.14 0.11 0.1 1 so3 0.23 0.21 0.19 0.22 0.21 0.22 0.20 0.21Fe 2 0 3 0.12 0.14 0.14 0.14 0.14 0.14 0.11 0.1 1 so 3 0.23 0.21 0.19 0.22 0.21 0.22 0.20 0.21
Ce02 一 ― ― ― ― ― ― ―Ce0 2 ― ― ― ― ― ― ―
Sb203 Sb 2 0 3
Na20/K20 1.32 1.32 1.40 1.32 1.36 1.40 1.29 1 1.82Na 2 0 / K 2 0 1.32 1.32 1.40 1.32 1.36 1.40 1.29 1 1.82
FeO比(%) 24.7 21.0 20.8 失透温度 (°C) 955 990 1006 986 1008 992 978 978 成形温度 (°C) 1053 1060 1055 1056 1056 1052 1050 1025 成形温度一失透温度 (°c) 98 70 49 70 48 60 72 47 熱膨張係数 (X 1 0— 7/°C) 90.3 88.5 87.7 87.4 87.2 87.4 88.5 87.8 転移点 (°C) 545 551 546 543 544 543 540 556 軟化点 (°c) 736 742 738 739 740 737 736 734 軟化点一転移点 (°C) 191 191 192 196 196 194 196 178FeO ratio (%) 24.7 21.0 20.8 Devitrification temperature (° C) 955 990 1006 986 1008 992 978 978 Molding temperature (° C) 1053 1060 1055 1056 1056 1052 1050 1025 Molding temperature One devitrification temperature (° c) 98 70 49 70 48 60 72 47 Thermal expansion coefficient (X 1 0— 7 / ° C) 90.3 88.5 87.7 87.4 87.2 87.4 88.5 87.8 Transition point (° C) 545 551 546 543 544 543 540 556 Softening point (° c) 736 742 738 739 740 737 736 734 Softening point one transition point (° C) 191 191 192 196 196 194 196 178
UV透過率 (313nm) ― ― 一 一 一 27.8 40.7 42.6 可視光透過率 00 ― ― ― ― ― 91.3 91.4 91.6 UV transmittance (313nm) ― ― 1 1 27.8 40.7 42.6 Visible light transmittance 00 ― ― ― ― ― 91.3 91.4 91.6
[0086] (表 5および 6において、 R Oは、 Na O + K O + Li Oを、 RO— 1は、 MgO + CaO + SrO + BaO + ZnOを、 RO— 2は、 SrO + BaO + ZnOを示す。) [0086] (In Tables 5 and 6, RO represents Na O + KO + Li O, RO-1 represents MgO + CaO + SrO + BaO + ZnO, and RO-2 represents SrO + BaO + ZnO. .)
[0087] 実施例 28〜42は、 Na O含有率が 5. 20%〜8. 03%、 Na O/K Οが 0· 68〜2 • 24であり、熱膨張係数が(83. 7-94. 2) X 10— 7/°C、転移点が 526°C〜561°C である。つまり、現行のソーダ石灰ガラスより少ない Na O含有率で、それに比較的近 い物性を有しており、管球用ガラス組成物として、適した特性を有している。なお、実 施例 35における、波長 313nmの透過率が 36. 7%、可視光線の透過率が 91. 5% であり、実施例 41における、波長 313nmの透過率が 27. 8%、可視光線の透過率 力 3%であった。 In Examples 28 to 42, the Na 2 O content was 5.20% to 8.03%, the Na 2 O / K Ο was 0 · 68 to 2 • 24, and the thermal expansion coefficient was (83.7− 94. 2) X 10- 7 / ° C, transition point of 526 ° C~561 ° C. In other words, it has less Na 2 O content than the current soda-lime glass and has properties that are relatively close to it, and it has suitable characteristics as a glass composition for tube bulbs. In Example 35, the transmittance at a wavelength of 313 nm was 36.7% and the transmittance for visible light was 91.5%. In Example 41, the transmittance at a wavelength of 313 nm was 27.8%, and visible light was visible. Transmittance The power was 3%.
[0088] 以下に、本発明によるガラス組成物をフロート法により板状に成形し、そのガラス基 板を用いて、面照明装置を構成した例につ!、て説明する。  [0088] Hereinafter, an example in which a glass composition according to the present invention is formed into a plate shape by a float process and a surface illumination device is configured using the glass substrate will be described.
[0089] (応用例 1) [0089] (Application 1)
応用例 1は、上述のガラス基板を用いて筐体を構成し、面照明装置としたものであ る。図 1に、応用例 1による面照明装置の断面模式図を示す。面照明装置 1は、まず 平板状の第 1ガラス基板 11と、断面が U字形にプレス成形された第 2ガラス基板 12と を、ガラスフリット 13によって接合して容器を構成し、その内部は空間 Sとなっている。 容器内部の両端には、対をなす放電電極 14, 14が設けられている。また、第 1ガラス 基板 11と第 2ガラス基板 12とにおいて、空間部 Sを臨む面には蛍光体 15, 15が塗 布されている。さらに、容器内部の空間 Sには、水銀とアルゴンなどの不活性ガスとが 封入されている。  Application Example 1 is a surface illumination device in which a casing is formed using the glass substrate described above. Figure 1 shows a schematic cross-sectional view of a surface illumination device according to Application Example 1. In the surface lighting device 1, first, a flat plate-like first glass substrate 11 and a second glass substrate 12 having a U-shaped cross section are press-molded to join a glass frit 13 to form a container, and the interior is a space. S. A pair of discharge electrodes 14 and 14 are provided at both ends inside the container. Further, phosphors 15 and 15 are coated on the surfaces facing the space S in the first glass substrate 11 and the second glass substrate 12. Furthermore, mercury and an inert gas such as argon are sealed in the space S inside the container.
[0090] 放電電極 14, 14に電圧をかけて放電させると、紫外線が発生する。この紫外線が 蛍光体 15, 15に入射し、可視光線が発せられて、照明装置として機能する。  [0090] When a voltage is applied to the discharge electrodes 14 and 14, the ultraviolet rays are generated. This ultraviolet light enters the phosphors 15 and 15 and emits visible light, which functions as a lighting device.
[0091] 本発明によるガラス基板では、ナトリウムの含有率を抑えてあるので、これを用いて 構成した面照明装置 1では、ナトリウム溶出による黒化現象が起こりにくいという特徴 を有する。  [0091] Since the glass substrate according to the present invention has a reduced sodium content, the surface illumination device 1 configured using the glass substrate has a feature that a blackening phenomenon due to sodium elution hardly occurs.
[0092] (応用例 2)  [0092] (Application 2)
応用例 2は、上述のガラス基板 2枚を用い、その間に多数の隔壁部を設けて、多数 のセルを構成し、面照明装置としたものである。図 2に、応用例 2による面照明装置の 断面模式図を示す。面照明装置 2は、 2枚のガラス基板 21 , 22とを一定の間隔を保 つて保持し、その間に多数の隔壁部 23 · · · ( · · ·は多数を表す)を設けて、多数のセ ル Sを構成したものである。また、ガラス基板 21 , 22のセル Sを臨む面には蛍光体 25 , 25が塗布されている。さらに、セル Sには、水銀とアルゴンなどの不活性ガスとが封 入されている。面照明装置 2に、図示しない電極に電圧をかけて放電させて、光源と して機能させる。  Application Example 2 uses the above-mentioned two glass substrates and provides a large number of partition walls between them to form a large number of cells to form a surface illumination device. Figure 2 shows a schematic cross-sectional view of a surface illumination device according to Application Example 2. The surface lighting device 2 holds two glass substrates 21 and 22 at a constant interval, and provides a large number of partition wall portions 23 ··· (where · · · represents a large number) between them, Cell S is constructed. Further, phosphors 25 and 25 are coated on the surfaces of the glass substrates 21 and 22 facing the cell S. Further, the cell S is sealed with mercury and an inert gas such as argon. The surface illumination device 2 is caused to discharge by applying voltage to an electrode (not shown) to function as a light source.
[0093] (応用例 3) [0093] (Application 3)
応用例 3は、応用例 2と同様に多数のセルを設けた構造の面照明装置である。応用 例 2では、多数のセルを隔てるために多数の隔壁部を設けた力 S、応用例 3では一方 のガラス基板をプレス成形して多数の樋を形成して、接合部分が隔壁部となるように したものである。 Application Example 3 is a surface illumination device having a structure in which a large number of cells are provided as in Application Example 2. application In Example 2, the force S provided with a large number of partition walls to separate a large number of cells, and in Application Example 3, one glass substrate was press-molded to form a large number of ridges, so that the joints became the partition walls. It has been made.
[0094] 図 3に、応用例 3による面照明装置 3の部分拡大斜視図を示す。面照明装置 3は、 まず平板状の第 1ガラス基板 31と、プレス成形にて多数の樋が並列した形状とした第 2ガラス基板 32とを接合して、多数のセル Sを構成したものである。このとき、第 1ガラ ス基板 31に接合された、第 2ガラス基板 32の接合部分 33が、隔壁部となっている。 また、ガラス基板 31 , 32のセル Sを臨む面には蛍光体 35, 35が塗布されている。さ らに、セル Sには、水銀とアルゴンなどの不活性ガスとが封入されている。面照明装 置 3に、図示しない電極に電圧をかけて放電させて、光源として機能させる。  FIG. 3 shows a partially enlarged perspective view of the surface illumination device 3 according to the application example 3. As shown in FIG. The surface illumination device 3 is configured by first joining a flat plate-like first glass substrate 31 and a second glass substrate 32 formed by press molding into a shape in which a large number of ridges are arranged in parallel to constitute a large number of cells S. is there. At this time, the bonding portion 33 of the second glass substrate 32 bonded to the first glass substrate 31 is a partition wall portion. Further, phosphors 35 and 35 are coated on the surfaces of the glass substrates 31 and 32 facing the cell S. Further, the cell S is filled with mercury and an inert gas such as argon. The surface illumination device 3 is discharged by applying a voltage to an electrode (not shown) to function as a light source.
産業上の利用可能性  Industrial applicability
[0095] 本発明のガラス組成物を成形して得たガラス物品は、蛍光体等の照明用ガラスとし て有用である。 [0095] A glass article obtained by molding the glass composition of the present invention is useful as an illumination glass such as a phosphor.

Claims

請求の範囲 The scope of the claims
質量%で表示して、  Display in mass%,
SiO 65%以上、 75%以下、  SiO 65% or more, 75% or less,
Al O 0%以上、 5%未満、  Al O 0% or more, less than 5%,
B O 0%以上、 5%以下、  B O 0% or more, 5% or less,
Na O 3%超、 12%未満、  Na O> 3%, <12%,
K O 2%以上、 15%以下、  K O 2% or more, 15% or less,
Li O 0%以上、 5%未満、  Li O 0% or more, less than 5%,
Na O + K O + Li O 6%以上、 20%以下、  Na O + K O + Li O 6% or more, 20% or less,
MgO 0%以上、 10%以下、  MgO 0% or more, 10% or less,
CaO 5%超、 15%以下、  CaO over 5%, 15% or less,
BaO 0%以上、 4%未満、  BaO 0% or more, less than 4%,
SrO 0%以上、 10%以下、  SrO 0% or more, 10% or less,
ZnO 0%以上、 10%以下、  ZnO 0% or more, 10% or less,
MgO + CaO + SrO + BaO + ZnO 5%超、 19%以下、  MgO + CaO + SrO + BaO + ZnO over 5%, 19% or less,
SrO + BaO + ZnO 0%以上、 10%以下、 SrO + BaO + ZnO 0% or more, 10% or less,
TiO 0%以上、 0. 5%以下、  TiO 0% or more, 0.5% or less,
ZrO 0%以上、 2. 5%以下、  ZrO 0% or more, 2.5% or less,
CeO 0%以上、 0. 5%以下、  CeO 0% or more, 0.5% or less,
SO 0. 05%以上、 0. 5%以下、および  SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、  Total iron oxide converted to Fe O 0.05% or more, 0.35% or less,
を含んでなり、 Comprising
酸化アンチモンを実質的に含有しないことを特徴とする、ガラス組成物。 請求項 1に記載のガラス組成物にお!/、て、  A glass composition characterized by being substantially free of antimony oxide. In the glass composition according to claim 1,! /
前記ガラス組成物が、質量%で表示して、  The glass composition is expressed in mass%,
SiO 65%以上、 75%以下、  SiO 65% or more, 75% or less,
Al O 0%超、 2%未満、  Al O> 0%, <2%,
B O 0%以上、 5%以下、 Na O 4%以上、 9%以下、 BO 0% or more, 5% or less, Na O 4% or more, 9% or less,
K O 2%以上、 10%未満、  K O 2% or more, less than 10%,
Li O 0%以上、 5%未満、  Li O 0% or more, less than 5%,
Na O + K O + Li O 10%以上、 19. 5%未満、  Na O + K O + Li O 10% or more, 19.
MgO 0%以上、 6%以下、  MgO 0% or more, 6% or less,
CaO 5%超、 12%以下、  CaO over 5%, up to 12%,
BaO 0%以上、 4%未満、  BaO 0% or more, less than 4%,
SrO 0%以上、 10%以下、  SrO 0% or more, 10% or less,
ZnO 0%以上、 10%以下、  ZnO 0% or more, 10% or less,
MgO + CaO + SrO + BaO + ZnO 10%以上、 19%以下、  MgO + CaO + SrO + BaO + ZnO 10% or more, 19% or less,
SrO + BaO + ZnO 0%以上、 10%以下、  SrO + BaO + ZnO 0% or more, 10% or less,
TiO 0%以上、 0. 5%以下、  TiO 0% or more, 0.5% or less,
ZrO 0%以上、 2. 5%以下、  ZrO 0% or more, 2.5% or less,
CeO 0%以上、 0. 5%以下、  CeO 0% or more, 0.5% or less,
SO 0. 05%以上、 0. 5%以下、および  SO 0.05% or more, 0.5% or less, and
Fe Oに換算した全酸化鉄 0. 05%以上、 0. 35%以下、  Total iron oxide converted to Fe O 0.05% or more, 0.35% or less,
を含んでなる、ガラス組成物。  A glass composition comprising:
[3] 請求項 2に記載のガラス組成物において、  [3] In the glass composition according to claim 2,
前記 Al Oが 0. 5%以上、 2%未満、  Al O is 0.5% or more, less than 2%,
前記 Na Oが 6%以上、 9%以下、  Na O is 6% or more, 9% or less,
前記 Oが 4%以上、 10%未満、  O is 4% or more, less than 10%,
前記 Li Oが 0%以上、 1 %未満、  Li O is 0% or more, less than 1%,
前記(Na O + K O + Li O)が 10%以上、 17· 5%以下、  (Na O + K O + Li O) is 10% or more, 17.5% or less,
前記 MgOが 0%以上、 5%以下、  MgO is 0% or more, 5% or less,
前記 CaOが 6%超、 12%以下、  CaO is more than 6%, 12% or less,
前記 SrOが 0%以上、 4%未満、  SrO is 0% or more, less than 4%,
前記 ZnOが 0%以上、 5%以下、  ZnO is 0% or more, 5% or less,
前記(MgO + CaO + SrO + BaO + ZnO)が 10%以上、 15%未満、および 前記(SrO + BaO + ZnO)が 0%以上、 5%以下、 である、ガラス組成物。 (MgO + CaO + SrO + BaO + ZnO) is 10% or more, less than 15%, and The glass composition, wherein (SrO + BaO + ZnO) is 0% or more and 5% or less.
請求項 3に記載のガラス組成物において、 前記 Al Oが 0. 5%以上、 1 %未満、  In the glass composition according to claim 3, the Al O is 0.5% or more, less than 1%,
前記 Na Oが 7%以上、 9%以下、  Na O is 7% or more, 9% or less,
前記 Oが 6%以上、 10%未満、  O is 6% or more, less than 10%,
前記 Li Oが 0. 05%以上、 0. 35%未満、 前記 MgOが 4%超、 5%以下、  Li O is 0.05% or more, less than 0.35%, MgO is more than 4%, 5% or less,
前記 SrOが 0%以上、 1 %未満、  SrO is 0% or more, less than 1%,
前記 TiO力 S0%以上、 0. 05%未満、および 前記 ZrO力 SO %以上、 0. 5%未満、  TiO force S0% or more, less than 0.05%, and ZrO force SO% or more, less than 0.5%,
である、ガラス組成物。 A glass composition.
請求項 2に記載のガラス組成物において、 前記 SiO力 S67%以上、 73%以下、  The glass composition according to claim 2, wherein the SiO force S67% or more, 73% or less,
前記 Oが 2%以上、 9%以下、  O is 2% or more, 9% or less,
前記 Li Oが 0%超、 3%以下、  Li O is more than 0%, 3% or less,
前記 MgOが 0%超、 6%以下、  MgO is more than 0%, 6% or less,
前記 CaOが 5%超、 10%以下、  CaO is more than 5%, 10% or less,
前記 SrOが 4%以上、 7%以下、  SrO is 4% or more, 7% or less,
前記 ZnOが 0%以上、 6%以下、および 前記 BaOが 0%以上、 1 %未満、  ZnO is 0% or more and 6% or less, and BaO is 0% or more and less than 1%,
である、ガラス組成物。 A glass composition.
請求項 5に記載のガラス組成物において、 前記 Al Oが 0. 1 %以上、 2%未満、  In the glass composition according to claim 5, the Al O is 0.1% or more, less than 2%,
前記 Na Oが 6%以上、 9%以下、  Na O is 6% or more, 9% or less,
前記 Li Oが 0. 1 %以上、 1. 5%以下、 前記 MgOが 2%以上、 6%以下、  Li O is 0.1% or more, 1.5% or less, MgO is 2% or more, 6% or less,
前記 CaOが 5. 5%以上、 10%以下、 前記 TiO力 S0%以上、 0. 05%未満、および CaO is 5.5% or more, 10% or less, The TiO force S0% or more, less than 0.05%, and
前記 ZrO力 SO %以上、 0. 5%未満、  ZrO force SO% or more, less than 0.5%,
である、ガラス組成物。 A glass composition.
請求項 6に記載のガラス組成物において、  The glass composition according to claim 6,
前記 SiO力 S68%以上、 72%以下、  SiO force S68% or more, 72% or less,
前記 Al Oが 0. 5%以上、 2%未満、  Al O is 0.5% or more, less than 2%,
前記 Na Oが 7%以上、 9%以下、  Na O is 7% or more, 9% or less,
前記 Oが 4%以上、 8%以下、  O is 4% or more, 8% or less,
前記 Li Oが 0. 1 %以上、 1 %以下、  Li O is 0.1% or more, 1% or less,
前記 MgOが 2%以上、 5%以下、  MgO is 2% or more, 5% or less,
前記 CaOが 5. 5%以上、 8%以下、および  The CaO is 5.5% or more, 8% or less, and
前記 SrOが 4%以上、 6%以下、  SrO is 4% or more, 6% or less,
である、ガラス組成物。 A glass composition.
請求項 1に記載のガラス組成物にお!/、て、  In the glass composition according to claim 1,! /
前記全酸化鉄が 0. 1 %以上 0. 25%以下である、ガラス組成物。  A glass composition, wherein the total iron oxide is 0.1% or more and 0.25% or less.
請求項 1に記載のガラス組成物にお!/、て、  In the glass composition according to claim 1,! /
前記全酸化鉄のうち、 Fe Oに換算した FeOの割合力 前記全酸化鉄の 10%〜4 Of the total iron oxide, the ratio force of FeO converted to Fe O 10% -4% of the total iron oxide
0%である、ガラス組成物。 A glass composition that is 0%.
請求項 9に記載のガラス組成物において、  The glass composition according to claim 9,
前記全酸化鉄のうち Fe Oに換算した FeOの割合力 S、前記全酸化鉄の 15%〜35 FeO percentage force S converted to Fe 2 O in the total iron oxide, 15% to 35% of the total iron oxide
%である、ガラス組成物。 % Glass composition.
請求項 1に記載のガラス組成物にお!/、て、  In the glass composition according to claim 1,! /
前記 ZrO力 SO %以上、 0. 2%未満である、ガラス組成物。  The glass composition having a ZrO force SO% or more and less than 0.2%.
請求項 1に記載のガラス組成物にお!/、て、  In the glass composition according to claim 1,! /
前記ガラス組成物が、実質的に BaOを含有しない、ガラス組成物。  The glass composition which the said glass composition does not contain BaO substantially.
請求項 1に記載のガラス組成物にお!/、て、  In the glass composition according to claim 1,! /
前記ガラス組成物が、実質的に CeOを含有しない、ガラス組成物。  The glass composition, wherein the glass composition is substantially free of CeO.
請求項 1に記載のガラス組成物にお!/、て、 前記ガラス組成物が、実質的に B Oを含有しない、ガラス組成物。 In the glass composition according to claim 1,! / The glass composition, wherein the glass composition contains substantially no BO.
2 3  twenty three
[15] 請求項 1に記載のガラス組成物にお!/、て、  [15] The glass composition according to claim 1! /,
前記ガラス組成物が、実質的に ZnOを含有しない、ガラス組成物。  The glass composition, wherein the glass composition does not substantially contain ZnO.
[16] 請求項 1に記載のガラス組成物にお!/、て、 [16] In the glass composition according to claim 1,! /
前記ガラス組成物を厚み 0. 7mmとしたとき、波長 313nmの光の透過率が 60%以 下である、ガラス組成物。  A glass composition having a light transmittance of 313 nm or less of light of 60% or less when the glass composition has a thickness of 0.7 mm.
[17] 請求項 16に記載のガラス組成物において、 [17] The glass composition according to claim 16,
前記ガラス組成物を厚み 0. 7mmとしたとき、波長 313nmの光の透過率が 45%以 下である、ガラス組成物。  A glass composition having a transmittance of light of a wavelength of 313 nm of 45% or less when the glass composition has a thickness of 0.7 mm.
[18] 請求項 1に記載のガラス組成物にお!/、て、 [18] In the glass composition according to claim 1,! /
熱膨張係数が、(89 ± 5) X 10— 7/°Cの範囲にある、ガラス組成物。 Thermal expansion coefficient in the range of (89 ± 5) X 10- 7 / ° C, the glass composition.
[19] 請求項 18に記載のガラス組成物において、 [19] The glass composition according to claim 18,
熱膨張係数が、(89 ± 2) X 10— 7/°Cの範囲にある、ガラス組成物。 Thermal expansion coefficient in the range of (89 ± 2) X 10- 7 / ° C, the glass composition.
[20] 請求項 1に記載のガラス組成物にお!/、て、 [20] In the glass composition according to claim 1,! /,
軟化点が 790°C以下である、ガラス組成物。  A glass composition having a softening point of 790 ° C or lower.
[21] 請求項 20に記載のガラス組成物において、 [21] The glass composition according to claim 20,
前記軟化点が 750°C以下である、ガラス組成物。  The glass composition whose softening point is 750 degrees C or less.
[22] 請求項 21に記載のガラス組成物にお!/、て、 [22] In the glass composition according to claim 21,! /
前記軟化点が 740°C以下である、ガラス組成物。  A glass composition having a softening point of 740 ° C or lower.
[23] 請求項 1に記載のガラス組成物からなり、板状に成形された、ガラス物品。 [23] A glass article comprising the glass composition according to claim 1 and formed into a plate shape.
[24] 前記成形がフロート法により行われた、請求項 23に記載のガラス物品。 24. The glass article according to claim 23, wherein the forming is performed by a float process.
[25] 請求項 23に記載のガラス物品であって、照明用ガラス容器に用いられる、ガラス物 [25] The glass article according to claim 23, which is used for a glass container for lighting.
P P
P o  P o
[26] 請求項 25に記載の照明用ガラス物品であって、前記照明が蛍光灯である、ガラス 物品。  26. The glass article for illumination according to claim 25, wherein the illumination is a fluorescent lamp.
[27] 請求項 1に記載のガラス組成物からなり、照明用ガラス容器に用いられる、ガラス物  [27] A glass article comprising the glass composition according to claim 1 and used for a glass container for lighting.
P P
PP o PP o
[28] 請求項 27に記載の照明用ガラス物品であって、前記照明が蛍光灯である、ガラス /v:/ O/-00ifcl£/-/-8S80SAVε- 28. The glass article for illumination according to claim 27, wherein the illumination is a fluorescent lamp. / v: / O / -00ifcl £ /-/-8S80SAVε-
PCT/JP2007/069000 2006-09-28 2007-09-28 Glass composition and glass article using the same WO2008038779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536454A JP5456316B2 (en) 2006-09-28 2007-09-28 Glass composition and glass article using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-266066 2006-09-28
JP2006266066 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008038779A1 true WO2008038779A1 (en) 2008-04-03

Family

ID=39230211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069000 WO2008038779A1 (en) 2006-09-28 2007-09-28 Glass composition and glass article using the same

Country Status (2)

Country Link
JP (2) JP5456316B2 (en)
WO (1) WO2008038779A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928367A1 (en) * 2008-03-10 2009-09-11 Saint Gobain Display screen of LCD or organic-LED type, comprises glass substrate coated with a matrix of thin film transistors and comprising e.g. silicon dioxide, aluminum oxide, calcium oxide, magnesium oxide, sodium oxide and potassium oxide
CN102757181A (en) * 2012-08-07 2012-10-31 广东省潮州市质量计量监督检测所 Formula for producing fish tank glass
US20170362116A1 (en) * 2014-12-09 2017-12-21 Agc Glass Europe Chemically temperable glass sheet
US20180312430A1 (en) * 2014-12-09 2018-11-01 Agc Glass Europe Chemically temperable glass sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692677A (en) * 1992-02-05 1994-04-05 Toshiba Glass Co Ltd Glass composition for illumination
JPH11224649A (en) * 1998-02-10 1999-08-17 Matsushita Electron Corp Lamp glass constituent, lamp stem and lamp bulb
JP2000290038A (en) * 1999-02-01 2000-10-17 Nippon Electric Glass Co Ltd Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2003178712A (en) * 2002-09-09 2003-06-27 Matsushita Electric Ind Co Ltd Fluorescent lamp
WO2003104157A1 (en) * 2002-06-10 2003-12-18 旭硝子株式会社 Glass and method for production of glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548423B2 (en) * 1990-04-04 1996-10-30 日本板硝子株式会社 Glass panel
JP2002137935A (en) * 2000-10-26 2002-05-14 Nippon Electric Glass Co Ltd Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP2003012342A (en) * 2001-06-29 2003-01-15 Nippon Sheet Glass Co Ltd Green glass absorbing uv and ir rays
DE102004033653B4 (en) * 2004-07-12 2013-09-19 Schott Ag Use of a glass for EEFL fluorescent lamps
FR2876094B1 (en) * 2004-10-04 2009-01-09 Saint Gobain GLASS SUBSTRATE FOR DISPLAY SCREEN.
JP4400412B2 (en) * 2004-10-15 2010-01-20 日本電気硝子株式会社 Jacket for external electrode fluorescent lamp
US7622410B2 (en) * 2005-02-23 2009-11-24 Guardian Industries Corp. Grey glass composition
JP2007238398A (en) * 2006-03-10 2007-09-20 Nippon Sheet Glass Co Ltd Soda-lime based glass composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692677A (en) * 1992-02-05 1994-04-05 Toshiba Glass Co Ltd Glass composition for illumination
JPH11224649A (en) * 1998-02-10 1999-08-17 Matsushita Electron Corp Lamp glass constituent, lamp stem and lamp bulb
JP2000290038A (en) * 1999-02-01 2000-10-17 Nippon Electric Glass Co Ltd Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
WO2003104157A1 (en) * 2002-06-10 2003-12-18 旭硝子株式会社 Glass and method for production of glass
JP2003178712A (en) * 2002-09-09 2003-06-27 Matsushita Electric Ind Co Ltd Fluorescent lamp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928367A1 (en) * 2008-03-10 2009-09-11 Saint Gobain Display screen of LCD or organic-LED type, comprises glass substrate coated with a matrix of thin film transistors and comprising e.g. silicon dioxide, aluminum oxide, calcium oxide, magnesium oxide, sodium oxide and potassium oxide
CN102757181A (en) * 2012-08-07 2012-10-31 广东省潮州市质量计量监督检测所 Formula for producing fish tank glass
US20170362116A1 (en) * 2014-12-09 2017-12-21 Agc Glass Europe Chemically temperable glass sheet
US20180312430A1 (en) * 2014-12-09 2018-11-01 Agc Glass Europe Chemically temperable glass sheet
US10654750B2 (en) * 2014-12-09 2020-05-19 Agc Glass Europe Chemically temperable glass sheet
US20200180998A1 (en) * 2014-12-09 2020-06-11 Agc Glass Europe Chemically temperable glass sheet
US11718552B2 (en) 2014-12-09 2023-08-08 Agc Glass Europe Chemically temperable glass sheet

Also Published As

Publication number Publication date
JP5456316B2 (en) 2014-03-26
JP5762515B2 (en) 2015-08-12
JPWO2008038779A1 (en) 2010-01-28
JP2014088315A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP7036168B2 (en) Non-alkali glass substrate
EP0795522B1 (en) Glass composition for a substrate
JP2007238398A (en) Soda-lime based glass composition
US5459109A (en) Substrate glasses for plasma displays
EP1653499B1 (en) Glass tube for external electrode fluorescent lamp
JP2008542189A (en) Low infrared transmittance glass substrate for display panels
WO2012002174A1 (en) Lead-free glass for sealing semiconductor
JP2002137935A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
JP5762515B2 (en) Glass composition and glass article using the same
JPWO2006106660A1 (en) Lamp glass composition, lamp, backlight unit, and method for producing lamp glass composition
JPWO2007086441A1 (en) Method for producing glass composition for lamp, glass composition for lamp and lamp
TW200800829A (en) Process for producing alkali-free glass
WO2006013680A1 (en) Lead-free glass for coating fluorescent flat lamp electrode and fluorescent flat lamp
JP2008305711A (en) Manufacturing method of glass substrate for plasma display panel and glass substrate for plasma display panel
JPH1025129A (en) Glass for substrate
JPH1025130A (en) Glass for substrate
JP2006252828A (en) Glass substrate for plasma display panel
JPH11322358A (en) Heat resistant glass composition
JP5456317B2 (en) Glass composition and glass article using the same
JPH1025128A (en) Glass for substrate
US6432853B1 (en) Medium expansion leaded copper boroaluminosilicate glasses
JP2003073142A (en) Glass composition for illumination
JP2002060241A (en) Glass for sealing tungsten
KR20000070211A (en) Plasma display substrate glass
JP2001220175A (en) Tungsten sealed glass for fluorescent lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828741

Country of ref document: EP

Kind code of ref document: A1