WO2008038500A1 - Laminate, method of forming conductive pattern, conductive pattern obtained thereby, printed wiring board, thin-layer transistor and apparatus utilizing these - Google Patents

Laminate, method of forming conductive pattern, conductive pattern obtained thereby, printed wiring board, thin-layer transistor and apparatus utilizing these Download PDF

Info

Publication number
WO2008038500A1
WO2008038500A1 PCT/JP2007/067308 JP2007067308W WO2008038500A1 WO 2008038500 A1 WO2008038500 A1 WO 2008038500A1 JP 2007067308 W JP2007067308 W JP 2007067308W WO 2008038500 A1 WO2008038500 A1 WO 2008038500A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conductive pattern
layer
graft polymer
glass substrate
Prior art date
Application number
PCT/JP2007/067308
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuaki Matsushita
Hiroshi Sato
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007223870A external-priority patent/JP2008242412A/en
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2008038500A1 publication Critical patent/WO2008038500A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/115Deposition methods from solutions or suspensions electro-enhanced deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1168Graft-polymerization

Definitions

  • the present invention relates to a laminate, a conductive pattern forming method and a conductive pattern using the laminate, a printed wiring board and a thin layer transistor provided with the conductive pattern, and using them. Relates to the device.
  • Fine wiring with high definition and excellent conductivity is generally formed by a vapor phase method such as a vacuum film formation method.
  • a vapor phase method such as a vacuum film formation method.
  • vacuum deposition equipment such as sputtering equipment and CVD equipment requires a lot of power, such as power to drive the vacuum pump, power to heat the substrate, and power to generate plasma.
  • problems such as the increase in energy consumption of these manufacturing equipment also arise.
  • a catalyst layer necessary for an electroless plating reaction is preliminarily placed on a substrate.
  • An electroless plating technique in which a metal film is selectively formed only in the region where the catalyst layer exists (see, for example, Patent Document 1), or a metal oxide film (eg, ZnO) is formed on the substrate surface.
  • a method has been proposed in which the metal oxide film is patterned and a metal film pattern is selectively formed on the formed metal oxide film pattern (see, for example, Patent Document 2).
  • the ability to form a metal wiring with a desired pattern In the former case, when a metal film pattern is formed on a substrate with a smooth surface such as a glass substrate by electroless bonding, the substrate and the plating film are in close contact with each other. However, it was difficult to increase the thickness of the plating film. In the latter case, the process of patterning the zinc oxide film formed on the entire surface of the substrate requires the use of a resist resin or the like, and the process is complicated and the chemical resistance of zinc oxide is low. Due to this, fine adjustment of the etching rate is required, and it is difficult to improve the in-plane uniformity of the etching rate on a large area substrate.
  • a material serving as a catalyst is supported on a photosensitive film, a catalyst layer patterned by ultraviolet exposure is formed, and a zinc oxide film is formed only in that region, and this is used as a starting point.
  • a method for forming a metal pattern by electroless plating has been proposed (for example, see Patent Document 3). This method has the advantage that a high-resolution zinc oxide film pattern is formed, but requires a special material such as a photosensitive film, and the formation of two catalyst layers before the formation of the metal film. The process was complicated, requiring 5 processes.
  • the applicant of the present application has proposed a conductive pattern material capable of directly forming an image based on digital data by scanning a laser having a wavelength of 250 nm to 700 nm (for example, patents). (Ref. 4).
  • the formation of metal wiring by the full additive method that uses only the electroless plating method is a number from the viewpoint of conductivity and durability.
  • the plating thickness is required, when the substrate is a glass substrate containing quartz glass, the surface of the substrate is eroded by alkali, which is often strongly alkaline during the electroless plating process. This causes a problem that the metal wiring part cannot be brought into close contact.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-147762
  • Patent Document 2 JP 2001-85358 Koyuki
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-213436
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2006-104045
  • a conductive pattern forming method capable of forming a pattern having excellent adhesion to a substrate and good conductivity is desired.
  • a laminate that can be used in the conductive pattern forming method is desired!
  • the first aspect of the present invention is formed by chemically bonding a glass substrate, a polymer having a radical polymerization initiation site and a site capable of being directly chemically bonded to the glass substrate, to the glass substrate.
  • a polymerization initiating layer having a thickness of 0 ⁇ 11 to 100 m and a radical having a skeleton derived from a structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide in the molecule
  • a laminate having a polymer having a polymerizable unsaturated site and a site for adsorbing an electroless catalyst.
  • the thickness of the polymerization initiating layer is preferably from 0.3 to 50 ⁇ m, preferably S, and more preferably from 0.5 to 10 ⁇ m.
  • the unsaturated site capable of radical polymerization is preferably a group selected from a (meth) atalyloylmethyl group.
  • the (meth) atalyloylmethyl group means an atalyloylmethyl group, a (meth) atalyloylmethyl group, or both.
  • the weight average molecular weight of the polymer having the radical polymerization initiation site and the site capable of being directly chemically bonded to the glass substrate is not particularly limited. From the standpoint of fabric suitability, force, etc. 1000-; preferably 1000000 ⁇ , 3000-; more than 100,000; ⁇ 5000-50,000 are particularly preferred. By setting the weight average molecular weight of the positive mer to 1000 to 1000 000, a polymer solution can be easily prepared, and the coated surface is good, which is preferable.
  • the glass substrate and the polymer are chemically bonded to each other by being a site force capable of being directly chemically bonded to the glass substrate, such as a halosilyl group, an alkoxysilyl group, a cyclic ether group, or an isocyanate group.
  • a site force capable of being directly chemically bonded to the glass substrate such as a halosilyl group, an alkoxysilyl group, a cyclic ether group, or an isocyanate group.
  • the glass base material is mainly composed of a silicon oxide.
  • energy is applied in a pattern on the laminate, and radicals are generated at radical polymerization initiation sites of the polymer in the polymerization initiation layer of the laminate, A step of generating a graft polymer starting from a radical, and a step of adsorbing an electroless catalyst or a precursor thereof to the generated graft polymer, followed by electroless plating to form a conductive film, A conductive pattern forming method is provided.
  • a third aspect of the present invention provides a conductive pattern formed using the conductive pattern forming method provided by the second aspect.
  • the fourth aspect of the present invention provides a printed wiring board provided with the conductive pattern provided by the third aspect.
  • the fifth aspect of the present invention provides a thin film transistor having the conductive pattern provided by the third aspect.
  • an apparatus comprising the printed wiring board provided by the fourth aspect.
  • the seventh aspect of the present invention provides a device comprising the thin film transistor provided by the fifth aspect.
  • a pattern having excellent conductivity with a substrate and good conductivity is obtained. It is possible to provide a method for forming a conductive pattern that can be formed, and a conductive pattern obtained thereby.
  • a printed wiring board or a thin layer transistor and a printed wiring board or a thin layer transistor having a conductive film excellent in adhesion with a base material and having a good film thickness.
  • An apparatus can be provided.
  • FIG. 1 is a conceptual diagram showing an outline of a photocleavable compound bonding process strength graph polymer production process in the conductive pattern forming method of the present invention.
  • the laminate of the present invention is formed by a glass substrate; a polymer having a radical polymerization initiation site and a site that can be directly chemically bonded to the glass substrate, which is formed by chemical bonding to the glass substrate.
  • a polymerization initiating layer m to 100 m polymerization initiating layer; a skeleton derived from a structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide in the molecule, and radically polymerizable unsaturated sites and electroless
  • a graft polymer precursor layer comprising a polymer having a site for adsorbing a catalyst.
  • the laminate of the present invention having the above-described configuration can be used in a conductive pattern forming method that is excellent in adhesion to a substrate and can form a good conductive pattern.
  • the "conductive pattern" in the present invention can be confirmed by observing with an atomic microscope (AFM) or an electron microscope (SEM).
  • the polymerization initiation layer in the present invention has a thickness of 0.1 am or more and 100 ⁇ m formed by a polymer having a radical polymerization initiation site and a site that can be directly chemically bonded to the glass substrate chemically bonded to the glass substrate. It is a layer of m or less.
  • It has a radical polymerization initiation site and a site capable of direct chemical bonding with a glass substrate.
  • the adhesion between the substrate and the polymerization initiating layer can be improved.
  • alkali resistance can be imparted to the glass substrate by setting the thickness of the formed polymerization initiation layer to 0.1 m or more and 100 m or less.
  • the thickness of the polymerization initiating layer needs to be 0.1 am or more and 100 ⁇ m or less. From the viewpoint of preventing alkali from approaching the glass substrate surface, it is preferably from 0 ⁇ 3 m to 50 m, more preferably from 0.5 ⁇ 11 to 10 m. When the thickness of the polymerization initiating layer is in the range of from 0.3 m to 50 m, the alkali resistance effect tends to increase.
  • the polymerization initiating layer having such a thickness becomes a rigid layer by using a polymer described later.
  • the polymer forming the polymerization initiating layer is a polymer having a radical polymerization initiating site and a site that can be directly chemically bonded to the glass substrate.
  • the polymer include a site capable of directly chemically bonding to a glass substrate (hereinafter also simply referred to as a substrate binding site) and a polymerization initiation site capable of initiating radical polymerization by photocleavage (hereinafter simply referred to as polymerization initiation). It is preferably a compound having a portion.
  • polymerization initiation site (polymerization initiation site (Y)) capable of initiating radical polymerization by photocleavage, and a site (substrate binding site (Q)) capable of directly chemically bonding to the glass substrate.
  • Y polymerization initiation site
  • Q substrate binding site
  • the polymerization initiation site (Y) is a structure containing a single bond that can be cleaved by light.
  • Single bonds that are cleaved by light include carbonyl ⁇ -cleavage, zero-cleavage reaction, light-free rearrangement reaction, phenacyl ester cleavage reaction, sulfonimide cleavage reaction, sulfonyl ester cleavage reaction, ⁇ ⁇ ⁇ ⁇ hydroxysulfonyl ester cleavage reaction, benzylimide cleavage Examples thereof include a single bond that can be cleaved using a reaction, a cleavage reaction of an active halogen compound, or the like.
  • This cleavable single bond includes C-C bond, C C bond, C ⁇ bond, C C1 bond, ⁇ ⁇ bond, and S- — bond. I can get lost.
  • the polymerization initiation site (Y) containing a single bond that can be cleaved by light serves as a starting point for graft polymerization in the graft polymer formation step. Therefore, when a single bond that can be cleaved by light is cleaved, radical cleavage occurs due to the cleavage reaction. It has the function to generate.
  • the structure of the polymerization initiation site ( ⁇ ) having a single bond that can be cleaved by light and capable of generating radicals includes an aromatic ketone group, a phenacyl ester group, a sulfonimide group, and a sulfonyl ester. And a structure containing a group such as a group, ⁇ -hydroxysulfonyl ester group, benzylimide group, trichloromethyl group, benzyl chloride group.
  • the polymerization initiation site ( ⁇ ) is cleaved by exposure to generate a radical, if there is a polymerizable compound in the vicinity of the radical canole, this radical functions as a starting point for the graft polymerization reaction.
  • the graft polymer can be produced (graft polymer production region).
  • the base material binding site (Q) is composed of a reactive group capable of reacting with and binding to a functional group ( ⁇ ) present on the surface of the glass base material.
  • the reactive group include a halosilyl group (preferably a chlorosilyl group, a dichloroalkylsilyl group, a chlorodialkylsilyl group, more preferably a chlorosilyl group and a dichloroalkylsilyl group), an alkoxysilyl group (preferably. , A C1-C2 alkoxysilyl group), a cyclic ether group (preferably a C2-C6 and oxygen number;! -2, more preferably a C2-C3 and oxygen-one cyclic ether) Group) or an isocyanate group.
  • alkyl group substituted on the silyl group an alkyl group having 1 to 2 carbon atoms is preferred.
  • base material binding site (Q) examples include the following groups, but are not limited thereto.
  • the polymerization initiation site (Y) and the substrate binding site (Q) may be directly bonded or may be bonded via a linking group.
  • the linking group include a linking group containing an atom selected from the group consisting of carbon, nitrogen, oxygen, and sulfur. Specifically, for example, a saturated carbon group, an aromatic group, an ester group, an amide Group, ureido group, ether group, amino group, sulfonamide group and the like.
  • This linking group may further have a substituent, and examples of the substituent that can be introduced include an alkyl group, an alkoxy group, and a halogen atom.
  • the initiation layer is bonded onto the glass substrate through a chemically bondable site of the polymer. It is a layer. That is, as shown in FIG. 1, the polymerization initiating layer can be formed by bonding the compound (Q—Y) to the functional group (Z) present on the surface of the glass substrate.
  • the exemplified compound (Q—Y) is dissolved or dispersed in an appropriate solvent such as toluene, hexane, or acetone. Then, apply a method of applying the solution or dispersion to the surface of the substrate, or a method of immersing the substrate in the solution or dispersion.
  • the concentration of the compound (Q—Y) in the solution or dispersion is preferably 0.01% by mass to 30% by mass, and 0.1% by mass to 15% by mass. Is particularly preferred.
  • the liquid temperature when the solution or dispersion is brought into contact with the glass substrate is preferably 0 ° C to 100 ° C.
  • the contact time is preferably 1 second to 50 hours, more preferably 10 seconds to 10 hours.
  • the polymer that forms the polymerization initiating layer can be synthesized with the force S by using the method described in Examples described later.
  • the graft polymer precursor layer has a skeleton derived from a structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide in the molecule, and includes an unsaturated site capable of radical polymerization and an electroless plating catalyst.
  • a polymer having a site to be adsorbed hereinafter also simply referred to as “graft polymer precursor”).
  • (meth) acrylic acid ester and (meth) acrylic acid amide mean acrylic acid ester, methacrylic acid ester, acrylic acid amide, and methacrylic acid amide.
  • the "skeleton derived from the structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide” is selected from the skeletal forces represented by the following structural formulas (A) to (D) Means things. Hereinafter, it may be simply referred to as “skeleton”.
  • Examples of the unsaturated site capable of radical polymerization include polymerizable unsaturated groups (radical polymerizable groups). From the viewpoint of radical polymerizability, a (meth) atalyloylmethyl group is preferred.
  • the site that adsorbs the electroless plating catalyst includes a polar group
  • the polar group is a hydrophilic group from the viewpoint of the adsorptivity (adhesiveness) of the electroless plating catalyst.
  • the hydrophilic group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group, a hydroxyl group, an amide group, and an ether group.
  • the graft polymer precursor in the present invention is not particularly limited as long as it is a polymer having the skeleton and having an unsaturated site capable of radical polymerization in the molecule and a site adsorbing an electroless catalyst.
  • the hydrophilic group that is a polar group is preferable as the site that adsorbs the electroless plating catalyst. Therefore, the graft polymer precursor may be a hydrophilic polymer having a polymerizable unsaturated group, a hydrophilic macromer, or the like. And what has the said frame
  • a hydrophilic polymer having a polymerizable unsaturated group is a radically polymerizable group-containing hydrophilic polymer in which an ethylene addition polymerizable unsaturated group such as a bur group, a aryl group, or a (meth) taroloyl group is introduced in the molecule.
  • This radically polymerizable group-containing hydrophilic polymer preferably has a polymerizable group at the end of the main chain or at the side chain, and has a polymerizable group on both sides. Is more preferable.
  • Such a radically polymerizable group-containing hydrophilic polymer can be synthesized as follows.
  • a method of copolymerizing a ⁇ hydrophilic monomer and a monomer having an ethylene addition polymerizable unsaturated group (b) copolymerizing a hydrophilic monomer and a monomer having a double bond precursor, And (C) a method of reacting a functional group of a hydrophilic polymer with a monomer having an ethylene addition polymerizable unsaturated group.
  • (C) a method of reacting a functional group of a hydrophilic polymer with a monomer having an ethylene addition polymerizable unsaturated group is particularly preferable.
  • the hydrophilic monomer used in the synthesis of the radical polymerizable group-containing hydrophilic polymer may be (meth) acrylic acid or an alkali metal salt thereof.
  • hydrophilic polymer used in the method (c) a hydrophilic homopolymer or copolymer obtained by using at least one selected from these hydrophilic monomers is used.
  • examples of the monomer having an ethylene addition polymerizable unsaturated group that is copolymerized with the hydrophilic monomer include an aryl group-containing monomer. Specific examples include araryl (meth) acrylate and 2-aryloxy cetyl methacrylate.
  • a monomer having a double bond precursor that is copolymerized with a hydrophilic monomer is 2- (3-chloro-1).
  • the radical polymerizable group-containing hydrophilic polymer is synthesized by the method (c), a carboxyl group, an amino group or a salt thereof in the hydrophilic polymer, and a functional group such as a hydroxyl group and an epoxy group It is preferable to introduce an unsaturated group using the reaction of.
  • the monomer having an addition polymerizable unsaturated group used for this purpose include (meth) acrylic acid, glycidyl (meth) acrylate, allyl glycidyl ether, 2-isocyanatoethyl (meth) acrylate. It is done.
  • Particularly useful hydrophilic macromonomers that can be used in the present invention include macromonomers derived from carboxy group-containing monomers such as acrylic acid and methacrylic acid, 2-acrylamido-2-methylpropane sulfonic acid, and vinylsterene.
  • a monomer having a polyethylene glycol chain or a polypropylene glycol chain can also be used effectively as the macromonomer of the present invention.
  • hydrophilic macromonomers useful ones have a molecular weight in the range of 250 to 100,000, with a particularly preferred range of 400 to 30,000.
  • the graft polymer precursor in the present invention specifically has the polymerizable unsaturated group.
  • hydrophilic polymer and the hydrophilic macromer to be synthesized they can be synthesized by the method described in the Examples below.
  • a method of forming the graft polymer precursor layer on the polymerization initiation layer a method in which a solution or dispersion in which the graft polymer precursor is dissolved is applied, or the polymerization initiation layer is applied to the solution or dispersion. There is a method of immersing the base material on which is formed.
  • the concentration of the graft polymer precursor in the solution or in the dispersion is 0.1% by mass.
  • ⁇ 50% by mass is preferred, especially 1% by mass ⁇ ; preferably 10% by mass.
  • the solvent for dissolving and dispersing the above-mentioned graft polymer precursor is not particularly limited as long as the compound and additives added as necessary can be dissolved.
  • a mixture of water or an aqueous solvent such as a water-soluble solvent is preferred, or a surfactant is further added to the solvent.
  • the water-soluble solvent refers to a solvent miscible with water at an arbitrary ratio. Examples of such water-soluble solvents include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, and glycerin, and acetic acid. Examples thereof include acids, ketone solvents such as acetone, amide solvents such as formamide, and the like.
  • the thickness of the polymer precursor layer is not particularly limited, 0.3 ⁇ 111-5 ⁇ 111 Ca from the viewpoint of metal adsorbing the plating catalyst, 0.5 ⁇ 111-2 ⁇ 111 Kayori I like it.
  • the thickness of the graft polymer precursor layer in the range of 0.3 ⁇ m to 5 ⁇ m, the metal adsorption amount of the plating catalyst tends to increase, which is preferable.
  • a glass substrate having a functional group (Z) such as a hydroxyl group, a carboxyl group, or an amino group can be applied to the surface of the substrate that is not particularly limited.
  • a functional group (Z) such as a hydroxyl group, a carboxyl group, or an amino group
  • the main component is silicon oxide from the viewpoint of easy chemical modification.
  • silane coupling agent a compound having an alkoxysilyl group or a halosilyl group at one end and a specific functional group at the other end
  • a surface coating is effective and desirable.
  • amino groups, hydroxyl groups, mercapto groups, carboxyl groups, epoxy groups, and isocyanate groups are desirable as specific functional groups, among which amino groups, carboxyl groups, and groups having high reactivity with radical polymerization initiators. Isocyanate groups are preferred.
  • silane coupling agent is not particularly limited as long as the silane coupling agent has the above-described configuration.
  • the force with which a flat glass substrate is used is not necessarily limited to a flat glass substrate, and a glass substrate having an arbitrary shape such as a cylindrical shape may be used. it can. Graft polymers can be introduced into these glass substrates.
  • Specific examples of the substrate suitable for the present invention include various glass substrates having a hydroxyl group on the surface, and various glass substrates having a surface modified with the specific functional group. .
  • the thickness of the glass substrate is selected according to the purpose of use and is not particularly limited, but is generally about 10 111 to 10 «11.
  • a radical polymerization initiation part of a polymer in a polymerization initiation layer of the laminate is provided by applying energy in a pattern on the laminate.
  • a radical is generated at the position, and a graft polymer is generated starting from the radical (hereinafter, also referred to as “graft polymer generation process”), and an electroless plating catalyst or its catalyst is formed on the graft polymer formed in the pattern.
  • a step of forming a conductive film hereinafter also referred to as a “conductive film forming step” by performing electroless plating after adsorbing the precursor.
  • a desired conductive pattern can be formed on the substrate, and in particular, an ultrafine conductive pattern can be formed.
  • the use of the laminate can remarkably improve the adhesion between the conductive film and the substrate and the resistance to alkalinity in the electroless plating bath of a useful draft polymer.
  • "ultrafine” in the present invention means at least the width of the conductive film (conductive pattern) not exceeding SlOOOnm, and preferably the line and space width is 10 nm to 1000 nm, respectively. More preferably, the line and space widths are each in the range of lOnm to 500 nm.
  • the “ultrafine conductive pattern” in the present invention can be confirmed by observing with an atomic microscope (AFM) or an electron microscope (SEM).
  • graft polymer generating step in the conductive pattern forming method of the present invention energy is imparted to the laminate in a pattern (pattern exposure), and the radical generated at the radical polymerization initiation site of the polymer in the polymerization initiation layer is the starting point.
  • a graft polymerization reaction takes place and proceeds with the graft polymer precursor, and as a result, a graft polymer is formed only in the exposed area.
  • the specific polymer is used as the graft polymer precursor, a thick and strong graft film can be formed.
  • the exposure method that can be used for the pattern exposure is not particularly limited as long as the exposure can give energy with no limitation. Light is enough.
  • Laser scanning exposure having a maximum absorption wavelength (up to 700 nm) or exposure including an ultraviolet region with a mercury lamp or the like and pattern exposure using a photomask are preferred.
  • the maximum absorption wavelength of the laser scanning exposure is preferably 360 nm to 550 nm, more preferably 365 nm to 450 nm.
  • the exposure energy lOOOmj / cm 2 or less It is preferable 500 mj / cm 2 or less and more preferably more preferably fixture 300 mj / cm 2 or less.
  • Examples of light sources used for exposure include ultraviolet light, deep ultraviolet light, and laser light.
  • excimer lasers such as ultraviolet light, i-line, g-line, KrF, and ArF are used. . Of these, i-line, g-line, and excimer laser are preferable.
  • the graft polymer precursor in the conductive pattern forming method of the present invention is the same as the graft polymer precursor contained in the laminate, and preferred examples are also the same.
  • the resolution of the graft pattern formed by the graft polymer production step in the present invention depends on the exposure conditions in the pattern exposure.
  • an ultrafine graft polymer pattern can be formed, and a high-definition graft polymer pattern corresponding to the exposure is formed by performing high-definition pattern exposure.
  • the exposure method for forming a high-definition graft polymer pattern includes light beam scanning exposure using an optical system, exposure using a mask, and the like. Take it.
  • pattern exposure when forming an ultra-fine graft polymer pattern with a line-and-space line width of lOOOnm or less includes the i-line stepper, g-line stepper, KrF stepper, and ArF stepper.
  • Such stepper exposure, and exposure with a two-beam interference exposure machine includes the i-line stepper, g-line stepper, KrF stepper, and ArF stepper.
  • the substrate on which the graft polymer production region and the non-production region are formed on the surface of the glass substrate is subjected to treatment such as solvent immersion after exposure, Remove and purify the remaining graft polymer precursor and homopolymer The Specifically, washing with water or acetone, drying and the like can be mentioned. From the viewpoint of removal of the graft polymer precursor and homopolymer, it is preferable to use ultrasonic means. In the purified substrate, the graft polymer precursor and homopolymer remaining on the surface are completely removed, and only the patterned graft polymer firmly bonded to the substrate exists.
  • the graft polymer pattern obtained by the method of the graft polymer production step in the present invention can be applied to, for example, a fine processing resist.
  • an electroless plating catalyst or a precursor thereof is adsorbed on the resulting graft polymer, and then electroless plating is performed to form a conductive film (hereinafter also simply referred to as “plating film”). Process.
  • the conductive film forming step is a method for forming a plating film by performing electroless plating after adsorbing an electroless plating catalyst or a precursor thereof to a polar group of the graft polymer. By this method, a conductive film made of a plating film is formed.
  • the plating film is formed by electroless attachment to the catalyst or precursor adsorbed on the polar group of the graft polymer, so that the plating film and the graft polymer are firmly bonded.
  • the adhesion between the substrate and the adhesive film is excellent, and the conductivity can be adjusted according to the plating conditions.
  • the electroless plating catalyst used in the present invention is mainly a zero-valent metal, and examples thereof include Pd, Ag, Cu, Ni, Al, Fe, and Co.
  • Pd and Ag are particularly preferred because of their good handleability and high catalytic ability.
  • the charge is adjusted so as to interact with the polar group of the graft polymer.
  • a method of applying the colloidal metal colloid to the base material on which the graft polymer is formed is used.
  • a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent.
  • the charge of the metal colloid can be adjusted by the surfactant or the protective agent used here, and the metal colloid whose charge is adjusted in this way interacts with the polar group of the graft polymer.
  • Metal colloid electroless plating catalyst
  • the electroless plating catalyst precursor used in the present invention can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction.
  • the metal ions of the zero-valent metal used in the above electroless plating catalyst are mainly used.
  • Electroless plating catalyst The metal ion that is a precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction. After the metal ion, which is an electroless plating catalyst precursor, is applied to the base material on which the graft polymer is formed, it is converted into a zero-valent metal by a separate reduction reaction before immersion in the electroless plating bath. It can also be used as a catalyst! /, Immersed in an electroless plating bath as an electroless plating catalyst precursor, and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating bath. Good.
  • the metal ion that is an electroless plating catalyst precursor is imparted to the graft polymer in the form of a metal salt.
  • the metal salt used is not particularly limited as long as it is dissolved in a suitable solvent and dissociated into a metal ion and a base (anion).
  • those obtained by dissociating the above metal salts can be preferably used.
  • Specific examples include Ag ion, Cu ion, A1 ion, Ni ion, Co ion, Fe ion, and Pd ion, and Ag ion and Pd ion are preferable in terms of catalytic ability.
  • the metal colloid As a method for applying a metal colloid as an electroless plating catalyst or a metal salt as an electroless plating catalyst precursor to a graft polymer, the metal colloid is dispersed in a suitable dispersion medium, or a metal Prepare a solution containing the dissociated metal ions by dissolving the salt in an appropriate solvent, and apply the solution to the substrate on which the graft polymer is formed, or the substrate on which the graft polymer is formed in the solution Soak it.
  • Contact solution containing metal ions By doing so, metal ions can be attached to polar groups of the graft polymer using ion ion interaction or dipolar ion interaction, or the interaction region can be impregnated with metal ions. .
  • the metal ion concentration or the metal salt concentration in the contacted solution is preferably in the range of 0.0; More preferably, it is in the range of! -30 mass%.
  • the contact time is preferably about 1 minute to 24 hours, more preferably about 5 minutes to 1 hour.
  • Electroless plating refers to the operation of depositing metal by chemical reaction using a solution in which the metal ions to be deposited as a plating solution are dissolved.
  • the electroless plating in this step is performed, for example, by washing the substrate provided with the electroless plating catalyst with water to remove excess electroless plating catalyst (metal), and then electroless plating bath. Immerse in As the electroless bath used, a generally known electroless bath can be used.
  • a substrate provided with an electroless plating catalyst precursor that is, a substrate in a state where the electroless plating catalyst precursor adheres to or is impregnated with the graft polymer is used as an electroless plating bath.
  • the substrate is washed with water to remove excess precursor (metal salt, etc.) and then immersed in an electroless plating bath.
  • the precursor is reduced and subsequently electroless plating is performed.
  • a generally known electroless bath can be used as described above.
  • composition of a general electroless plating bath mainly includes 1. metal ions for plating, 2. reducing agents, 3. additives that improve the stability of metal ions (stabilizers). ing.
  • this plating bath may contain known additives such as a plating bath stabilizer.
  • Copper, tin, lead, nickel, gold, palladium, and rhodium are known as the types of metals used in electroless plating baths, and copper and gold are particularly preferred from the viewpoint of conductivity. That's right.
  • a copper electroless bath has Cu (SO) as the copper salt, HCOH as the reducing agent, and copper ion as the additive.
  • the bath used for electroless plating of CoNiP includes cobalt sulfate, nickel sulfate as the metal salt, sodium hypophosphite as the reducing agent, sodium malonate as the complexing agent, and sodium malate. Contains sodium succinate.
  • the electroless plating bath of noradium is (Pd (NH)) C1 as a metal ion and ED as NH as a reducing agent.
  • plating baths may contain components other than the above components.
  • the thickness of the conductive film thus formed can be controlled by the concentration of the metal salt or metal ion in the plating bath, the immersion time in the plating bath, the temperature of the plating bath, or the like. From the viewpoint of conductivity, 0.5 m or more is preferable, and 3 m or more is preferable. In addition, the immersion time in the plating bath is preferably about 1 minute to 3 hours, and more preferably about 1 minute to 1 hour.
  • the conductive film obtained as described above has finely dispersed fine particles of electroless plating catalyst and plating metal in the graft polymer film by cross-sectional observation by SEM. It was confirmed that relatively large particles were deposited! Since the interface is a hybrid state of the graft polymer and fine particles, even if the average roughness (Rz) of the substrate surface is 3 m or less, the substrate (organic component) and the inorganic substance (electroless plating catalyst or plating) Adhesion with (metal) was good.
  • an electroplating treatment step after completion of electroless plating in the conductive film forming step. That is, electroplating is performed using the conductive film obtained by electroless plating as described above as an electrode. As a result, it is possible to easily form a new plating film having an arbitrary thickness on the basis of the conductive film having excellent adhesion to the substrate. By adding this step, the plating film can be formed to a thickness according to the purpose.
  • a method of electroplating in the present invention a conventionally known method can be used.
  • metals used for electrical plating include copper, chromium, lead, nickel, gold, silver, tin, and zinc. From the viewpoint of conductivity, copper, gold, and silver are preferred. More preferred.
  • the thickness of the plating film obtained by electroplating varies depending on the application, and can be adjusted by adjusting the concentration of metal contained in the plating bath, the immersion time, or the current density.
  • a conductive pattern having excellent adhesion to a substrate and having an ultrafine conductive film (plating film) is formed on a glass substrate by the method for forming a conductive pattern of the present invention.
  • the forming force S is used.
  • the conductive pattern of the present invention is formed by using the conductive pattern forming method described above, and various kinds of fine wiring that requires fine and excellent conductivity, such as a printed wiring board and a thin layer transistor. It can be applied to any use.
  • the printed wiring board of the present invention is characterized by comprising a conductive pattern formed using the above-described conductive pattern forming method.
  • the fine wiring with high definition and excellent conductivity is made uniform over a wide area with a uniform film thickness and film quality. be able to. Thereby, it can be set as the printed wiring board which has wiring with high reliability and an electrode.
  • the fine wiring with high definition and excellent conductivity obtained by the present invention can form a metal film having a uniform film thickness and film quality over a wide area as compared with the conventional vacuum film-forming method. It is possible to use highly reliable wiring and electrodes. In addition, it does not require huge capital investment, so it consumes less energy.
  • the method using the vacuum film-forming apparatus is the ability to form an electric wiring pattern by forming a metal film on the entire surface of the substrate and then removing unnecessary portions by etching. In the present invention, the wiring resolution is limited. As a result, there is no waste of metal materials, so the burden on the environment is extremely low.
  • the printed wiring board has the conductive pattern. It is preferable to provide a conductive film (conductive pattern) formed using a formation method and then to provide an electrical plating (metal plating) treatment step. As the metal plating, it is preferable that the metal plating is the same.
  • the thickness of the plating film is preferably 0.3 m or more from the viewpoint of conductivity, more preferably 3 m or more. preferable.
  • the thin layer transistor of the present invention is characterized by having a conductive pattern formed by using the conductive pattern forming method described above.
  • the thin film transistor of the present invention preferably has a gate electrode, a drain electrode, a source electrode, or a metal wiring, which is a conductive pattern formed by using the conductive pattern forming method. Masle.
  • the thin-layer transistor has a high-definition and highly conductive fine wiring over a wide area.
  • the film quality can be formed uniformly.
  • a thin layer transistor having highly reliable wiring and electrodes can be obtained.
  • the device of the present invention is characterized by comprising the printed circuit board or the thin layer transistor.
  • a liquid crystal display device LCD
  • FED field emission display device
  • EPD electrophoretic display device
  • PDP plasma display
  • ECD electochromic display
  • ELD electoluminescent display
  • the device of the present invention is not particularly limited except that it includes the printed wiring board or the thin-layer transistor, and can have known constituent elements. Among them, a display device is preferable. .
  • the gate electrode to which the conductive pattern obtained by the above of the present invention is applied Liquid crystal display (LCD), field emission display (FED), electrophoretic display (EPD), plasma display (PDP), electochromic display (with drain electrode, source electrode or metal wiring)
  • LCD Liquid crystal display
  • FED field emission display
  • EPD electrophoretic display
  • PDP plasma display
  • ECD electrochromic display
  • ECD Electric Luminescent Display
  • ECD Electric Luminescent Display
  • the preferred liquid crystal display device of the present invention is extremely useful when it is required to form electrodes or wiring by wet film formation instead of dry film formation, or when a large display area is required. is there.
  • the active matrix display device suitable for the present invention can be applied not only to a flat panel display but also to a flat panel image sensor, and incorporates the thin layer transistor (also referred to as a TFT element) of the present invention.
  • the active matrix substrate can be suitably used for various liquid crystal display devices.
  • Irgacure 2959 (manufactured by Ciba Specialty Chemicals) 9 ⁇ OOg was dissolved in 30mL of THF, and 20mg of p-methoxyphenol, 6 ⁇ 28g of 2-methacryloyloxychetyl isocyanate, and 81mg of dibutyltin dilaurate were added. The reaction was performed at ° C for 4 hours. The solvent was removed under reduced pressure, and recrystallization was performed using ethyl hexane acetate to obtain a white solid.
  • the polymerization initiation layer-forming polymer T1 is the exemplified compound T1 given as a specific example of the compound (Q—Y).
  • the polymerization initiation layer forming polymer T2 is the exemplified compound T2 given as a specific example of the compound (Q—Y).
  • Irgacure 2959 (manufactured by Ciba Specialty Chemicals) 9 ⁇ OOg was dissolved in 30mL of THF, and 20mg of p-methoxyphenol, 6 ⁇ 28g of 2-methacryloyloxychetyl isocyanate, and 81mg of dibutyltin dilaurate were added. The reaction was performed at ° C for 4 hours. The solvent was removed under reduced pressure, and recrystallization was performed using ethyl hexane acetate to obtain a white solid.
  • the polymerization initiation layer-forming polymer ⁇ 7 is the exemplified compound ⁇ 7 given as a specific example of the compound (Q ⁇ ).
  • the polymerization initiation layer forming polymer T8 is the exemplified compound T8 given as a specific example of the compound (QY).
  • Irgacure 2959 (Ciba Specialty Chemicals Co., Ltd.) 9000 g was dissolved in 30 mL of THF, 20 mg of p-methoxyphenol, 2 g of methacryloyloxychetyl isocyanate, 81 mg of dibutyltin dilaurate were added, and 50 ° C , Reacted for 4 hours. The solvent was removed under reduced pressure, and recrystallization was performed using ethyl hexane acetate to obtain a white solid.
  • the polymerization initiation layer forming polymer T9 is the exemplified compound T9 given as a specific example of the compound (QY).
  • the polymerization initiation layer forming polymer T10 is the exemplified compound T10 given as a specific example of the compound (Q—Y).
  • UV ozone cleaner UV42, manufactured by Nippon Laser Electronics Co., Ltd.
  • the exemplified compound T1 a Te also ⁇ dehydrated E chill methyl ketone (2-butanone) was prepared 20 mass 0/0 solution, it was spin-coated on the substrate surface.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Then dried with an air gun, Exemplified Compound T1 was obtained a substrate A1 to have a polymerization initiating layer formed by bonding a glass substrate (polymerization initiation layer thickness: 5 - 0 ⁇ 111) 0
  • the above coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A1 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • the substrate after applying the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate Al after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern with an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B1 having a graft polymer layer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with an atomic microscope AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern in which a line width of 10111 and a gap width of 10 m exist alternately was formed on the surface of the glass substrate B1.
  • the obtained glass substrate B1 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. After that, electroless plating was performed by immersing in an electroless plating bath (pH: 12.4) having the following composition for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
  • silver nitrate manufactured by Wako Pure Chemical Industries
  • Polyethylene glycol (average molecular weight 1000) 0.03g
  • UV ozone cleaner UV42, manufactured by Nippon Laser Electronics Co., Ltd.
  • the above coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A2 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • Substrate A 2 after application of the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate A2 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B2 having a graft polymer layer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, the surface of glass substrate B2 has a line width of 10 m and is empty. It was confirmed that a pattern with alternating gap widths of 10 mm was formed.
  • the obtained glass substrate B2 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun.
  • electroless plating bath commercial product having the following composition for 30 minutes to perform electroless plating. After electroless plating, it was washed with water and dried with an air gun.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A3 was dried with an air gun to obtain a substrate A3 having a polymerization initiating layer formed by binding Exemplified Compound T2 to a glass substrate (polymerization initiating layer thickness: 4.1 m).
  • a coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A3 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • Substrate A3 after application of the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate A2 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B3 having a graft polymer layer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern having a line width of 10 m and a gap width of 10 mm was alternately formed on the surface of the glass substrate B3.
  • the obtained glass substrate B3 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. Thereafter, electroless plating was performed by immersing in the electroless plating bath (pH: 12.4) described in Example 1 for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
  • aqueous solution of silver nitrate manufactured by Wako Pure Chemical Industries
  • the surface of the glass substrate was cleaned by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.), and the substrate was washed with 3-aminopropyltrimethoxysilane 1 It was immersed in a mass% aqueous solution for 10 minutes, washed with water, and dried with an air gun.
  • UV ozone cleaner UV42, manufactured by Nippon Laser Electronics Co., Ltd.
  • the exemplified compound T1 a Te also ⁇ dehydrated E chill methyl ketone (2-butanone) was prepared 20 mass 0/0 solution, it was spin-coated on the substrate surface.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A4 was dried with an air gun to obtain a substrate A4 having a polymerization initiating layer formed by binding Exemplified Compound T1 to a glass substrate (the thickness of the polymerization initiating layer: 5.0 m).
  • the coating solution for graft formation layer was spin-coated on one surface of the substrate A4 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • the substrate after the coating solution for forming the graft polymer precursor layer was applied was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate A1 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern with an exposure machine (UNIQURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIQURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B4 having a graft polymer forming layer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with an atomic microscope AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern with alternating line width 10 111 and gap width 10 m was formed on the surface of glass substrate B4. It is.
  • ATS Adkappa, pH 12.7, manufactured by Okuno Pharmaceutical Co., Ltd.
  • UV ozone cleaner UV42, manufactured by Nippon Laser Electronics Co., Ltd.
  • the exemplified compounds T7 dehydration E chill methyl ketone (2-butanone) to be 20 mass 0/0 solution prepared Te ⁇ , it was spin-coated on the substrate surface.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • the glass substrate was heated at 80 ° C. for 20 minutes, and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A5 was dried with an air gun to obtain a substrate A5 having a polymerization initiation layer formed by binding Exemplified Compound T7 to a glass substrate (polymerization initiation layer thickness: 5.4 m).
  • the coating solution for forming the graft polymer precursor layer was spin-coated on one surface of the substrate A5 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • the substrate after the coating solution for the graft polymer precursor layer forming layer was applied was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate A5 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern with an exposure machine (UNIQURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIQURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B5 having a graft polymer layer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with an atomic microscope AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using a DFM cantilever). As a result, it was confirmed that a pattern with alternating line width 10 111 and gap width 10 m was formed on the surface of glass substrate B5.
  • the obtained glass substrate B5 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. After that, electroless plating was performed by immersing in an electroless plating bath (pH: 12.4) having the following composition for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
  • silver nitrate manufactured by Wako Pure Chemical Industries
  • Polyethylene glycol (average molecular weight 1000) 0.03g
  • the surface of the glass substrate (Nippon Sheet Glass) was cleaned by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.), and the substrate was washed with 3-aminopropyltrimethoxysilane 1 It was immersed in a weight% aqueous solution for 10 minutes, washed with water, and dried with an air gun.
  • UV ozone cleaner UV42, manufactured by Nippon Laser Electronics Co., Ltd.
  • the exemplified compound T9 dehydrated E chill methyl ketone (2-butanone) to be 10 mass 0/0 solution prepared Te ⁇ it was spin-coated on the substrate surface.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • the glass substrate was heated at 120 ° C. for 40 minutes, and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A6 was dried with an air gun to obtain a substrate A6 having a polymerization initiating layer formed by binding the exemplified compound T1 to a glass substrate (the thickness of the polymerization initiating layer: 2.6 m).
  • the coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A6 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • Substrate A6 after application of the coating solution for the graft forming layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate A6 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencot, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B6 having a graft polymer layer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with AFM (Nanobics 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern having a line width of 10 m and a gap width of 10 mm was alternately formed on the surface of the glass substrate B6.
  • the obtained glass substrate B6 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun.
  • the exemplified compound 15 mass 0/0 solution was prepared by dissolving the T10 dehydrated E chill methyl ketone (2-butanone), was spin-coated it to the substrate surface.
  • Spin coater First it was rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Thereafter, it was dried with an air gun to obtain a substrate A7 having a polymerization initiation layer formed by binding Exemplified Compound T10 to a glass substrate (the thickness of the polymerization initiation layer: 3.7 m).
  • a coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A3 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • Substrate A7 after application of the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate A2 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencot, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B7 having a graft polymer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern having a line width of 10 m and a gap width of 10 mm was alternately formed on the surface of the glass substrate B7.
  • the obtained glass substrate B7 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. Thereafter, electroless plating was performed by immersing in the electroless plating bath (pH: 12.4) described in Example 1 for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
  • aqueous solution of silver nitrate manufactured by Wako Pure Chemical Industries
  • Example 1 the same process as in Example 1 was performed, except that the following compound T7 was used instead of the exemplified compound T1, and the exemplified compound P4 (see below) was used instead of the hydrophilic polymer P1.
  • the following compound T7 a compound described in JP-A-2006-104045 was used.
  • the surface conductivity of the portion where the conductive film was formed was measured by a four-probe method using Lorester FP (LORESTA-FP: manufactured by Mitsubishi Chemical Corporation).
  • the film thickness was measured using Nanopixl 000 (manufactured by Seiko Instruments Inc.). The results are shown in Table 1.
  • Conductive regions (10 (mm) X 200 (mm) were formed in the same manner as in! To 4, and applied to the cut grid according to JIS 5400 grid pattern tape method. A tape peeling test was conducted to evaluate film adhesion. Table 1 shows the number of boards remaining on the board side among the 100 grids.
  • UV ozone cleaner UV42, manufactured by Nippon Laser Electronics Co., Ltd.
  • a 0.07% by mass solution of the exemplified compound T2 in dehydrated ethylmethylketone (2-butanone) was prepared, and this was spin-coated on the substrate surface.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour, and the surface was washed with ethyl methyl ketone. Thereafter, it was dried with an air gun to obtain a substrate A9 having a polymerization initiating layer formed by binding Exemplified Compound T2 to a glass substrate (polymerization initiating layer thickness: 20 nm).
  • the coating liquid for graft polymer precursor layer formation layer was spin-coated on one surface of the substrate A9 obtained above.
  • the spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds.
  • Substrate A9 after applying the coating solution for the graft polymer precursor layer forming layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
  • the substrate A9 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
  • an exposure machine UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.
  • a glass substrate B9 having a graft polymer layer formed in a pattern on the surface was formed.
  • the obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern in which a line width of 10 m and a gap width of 10 ⁇ m exist alternately was formed on the surface of the glass substrate B9.
  • the obtained glass substrate B2 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)

Abstract

A laminate comprising a glass substratum; a polymerization initiation layer of 0.1 to 100 μm thickness formed by chemical bonding, to the glass substratum, of a polymer having a radical polymerization initiation moiety and a moiety capable of direct chemical bonding to the glass substratum; and a graft polymer precursor layer containing a polymer having in its molecule a skeleton derived from a structure selected from among (meth)acrylic ester and (meth)acrylamide and having an unsaturated moiety capable of radical polymerization and a moiety capable of adsorbing an electroless plating catalyst. Further, there is provided a method of forming a conductive pattern with the use of the laminate.

Description

明 細 書  Specification
積層体、導電性パターン形成方法及びそれにより得られた導電性パター ン、プリント配線基板及び薄層トランジスタ、並びにそれらを用いた装置  LAMINATE, CONDUCTIVE PATTERN FORMING METHOD AND CONDUCTIVE PATTERN OBTAINED BY THE METHOD, PRINTED WIRING BOARD AND THIN LAYER TRANSISTOR, AND DEVICE USING THEM
技術分野  Technical field
[0001] 本発明は、積層体、該積層体を用いた導電性パターン形成方法及び導電性バタ ーン、該導電性パターンを備えたプリント配線基板及び薄層トランジスタ、並びにそ れらを用いた装置に関する。  [0001] The present invention relates to a laminate, a conductive pattern forming method and a conductive pattern using the laminate, a printed wiring board and a thin layer transistor provided with the conductive pattern, and using them. Relates to the device.
背景技術  Background art
[0002] プリント基板などの電子配線形成において、大面積基板に電気配線を形成する要 求が増大している。高精細で導電性に優れた微細配線は、真空成膜法などの気相 法により形成されることが一般的である。しかし、この方法では、広い面積にわたって 膜厚や膜質が均一な金属膜を成膜することが困難であり、信頼性の高い配線、電極 などの形成が切望されてレ、た。  In the formation of electronic wiring such as a printed circuit board, there is an increasing demand for forming electrical wiring on a large area substrate. Fine wiring with high definition and excellent conductivity is generally formed by a vapor phase method such as a vacuum film formation method. However, with this method, it is difficult to form a metal film having a uniform film thickness and film quality over a wide area, and the formation of highly reliable wiring, electrodes and the like has been desired.
さらに、大面積のパネルに気相法で金属膜を製膜する場合、巨大な真空成膜装置 とガス供給設備などの付帯設備が必要となり、莫大な設備投資が必要になるといった 問題も発生する。  In addition, when a metal film is formed on a large-area panel by a vapor phase method, a huge vacuum film forming apparatus and ancillary equipment such as a gas supply facility are required, which causes a problem that enormous capital investment is required. .
また、スパッタ装置、 CVD装置などの真空成膜装置は、真空ポンプを駆動する電 力、基板加熱を行なう電力、プラズマを発生させる電力等多くの電力を必要とするが 、当然ながら装置の巨大化に伴いこれら製造装置の消費エネルギーが増大するとい つた問題も発生する。  In addition, vacuum deposition equipment such as sputtering equipment and CVD equipment requires a lot of power, such as power to drive the vacuum pump, power to heat the substrate, and power to generate plasma. Along with this, problems such as the increase in energy consumption of these manufacturing equipment also arise.
[0003] さらに、金属配線などを形成する際、従来は、真空成膜装置を用いて基板の全面 に金属膜を成膜した後、その不要部分をエッチングにより除去することで、電気配線 ノ ターンを形成していた。しかし、この手法では、配線の解像度が限定され、金属材 料の無駄が発生するといつた問題もあった。近年、環境への配慮から、製造工程に おける消費エネルギーの低減や、材料資源の有効利用が求められ、より簡易に所望 の解像度の金属膜パターンを形成しうる方法が求められている。  [0003] Further, when forming a metal wiring or the like, conventionally, after forming a metal film on the entire surface of the substrate using a vacuum film forming apparatus, an unnecessary portion is removed by etching, whereby an electrical wiring pattern is formed. Was forming. However, with this method, the resolution of the wiring is limited, and there is a problem when the waste of metal material occurs. In recent years, due to environmental considerations, reduction of energy consumption in manufacturing processes and effective use of material resources are required, and a method capable of forming a metal film pattern with a desired resolution more easily is required.
[0004] これに対して、例えば、無電解めつきの反応に必要な触媒層を予め基板上にバタ ーン配置し、触媒層の存在する領域にのみ選択的に金属膜を形成する無電解めつ き技術 (例えば、特許文献 1参照。)や、基板表面に金属酸化膜 (例えば ZnO)を形 成した後、金属酸化膜をパターユングして、形成された金属酸化膜パターン上に選 択的に金属膜パターンを形成する方法 (例えば、特許文献 2参照。)が提案されてい る。これらの方法では、所望のパターンで金属配線が形成できる力 前者では、ガラ ス基板などの表面が平滑な基板上に無電解めつきで金属膜パターンを形成した場 合、基板とめっき被膜の密着性が非常に弱ぐ実用上問題のあるレベルであり、さら に、めっき膜の膜厚を増加させることが困難であった。また、後者では、基板全面に 形成された酸化亜鉛膜をパターン化する工程にぉレ、て、レジスト樹脂などの使用が 必要であり、工程が煩雑で、且つ、酸化亜鉛の耐薬品性の低さに起因して、エツチン グレートの微妙な調整が要求されるとともに、大面積基板上ではエッチング速度の面 内均性を向上させることが困難であった。 [0004] In contrast, for example, a catalyst layer necessary for an electroless plating reaction is preliminarily placed on a substrate. An electroless plating technique in which a metal film is selectively formed only in the region where the catalyst layer exists (see, for example, Patent Document 1), or a metal oxide film (eg, ZnO) is formed on the substrate surface. After the formation, a method has been proposed in which the metal oxide film is patterned and a metal film pattern is selectively formed on the formed metal oxide film pattern (see, for example, Patent Document 2). With these methods, the ability to form a metal wiring with a desired pattern In the former case, when a metal film pattern is formed on a substrate with a smooth surface such as a glass substrate by electroless bonding, the substrate and the plating film are in close contact with each other. However, it was difficult to increase the thickness of the plating film. In the latter case, the process of patterning the zinc oxide film formed on the entire surface of the substrate requires the use of a resist resin or the like, and the process is complicated and the chemical resistance of zinc oxide is low. Due to this, fine adjustment of the etching rate is required, and it is difficult to improve the in-plane uniformity of the etching rate on a large area substrate.
[0005] また、これらの改良技術として、感光膜に触媒となる材料を担持させ、紫外線露光 でパターン化された触媒層を形成し、その領域のみに酸化亜鉛膜を形成し、これを 基点として無電解めつきにより金属パターンを形成する方法が提案されている(例え ば、特許文献 3参照。)。この方法によれば、解像度の高い酸化亜鉛膜パターンが形 成されるという利点を有するが、感光膜などの特殊な材料を必要とし、また、金属膜 の形成までに、 2つの触媒層の形成を含む 5工程を要し、工程が煩雑であった。  [0005] Further, as these improved technologies, a material serving as a catalyst is supported on a photosensitive film, a catalyst layer patterned by ultraviolet exposure is formed, and a zinc oxide film is formed only in that region, and this is used as a starting point. A method for forming a metal pattern by electroless plating has been proposed (for example, see Patent Document 3). This method has the advantage that a high-resolution zinc oxide film pattern is formed, but requires a special material such as a photosensitive film, and the formation of two catalyst layers before the formation of the metal film. The process was complicated, requiring 5 processes.
[0006] これをうけて本願出願人は、 250nm〜700nmの波長のレーザーを走査することに よりデジタルデータに基づき直接画像形成が可能な導電性パターン材料及びその 形成方法について提案した(例えば、特許文献 4参照)。し力、しながら、この手法で作 製できるめっき膜に関しては、無電解めつき法のみを利用するフルアディティブ法に よる金属配線の形成には、導電性、耐久性などの観点から数 のめつき厚さが必 要であるのに対し、基材が石英ガラスを含む様々のガラス基板の場合、無電解めつき 処理時にめっき浴が強アルカリ性であることが多ぐアルカリによって基板表面が侵 食されてしまい、金属配線部を密着させることができない問題が生じる。処理時間を 短縮することによりこの問題を解決することも可能である力 S、めっき法で配線を形成す る場合、処理時間と配線膜厚は比例の関係にあり、抵抗値などの電気特性を満足す る配線を形成するのは非常に困難である。 [0006] In response to this, the applicant of the present application has proposed a conductive pattern material capable of directly forming an image based on digital data by scanning a laser having a wavelength of 250 nm to 700 nm (for example, patents). (Ref. 4). However, with regard to the plating film that can be produced by this method, the formation of metal wiring by the full additive method that uses only the electroless plating method is a number from the viewpoint of conductivity and durability. Where the plating thickness is required, when the substrate is a glass substrate containing quartz glass, the surface of the substrate is eroded by alkali, which is often strongly alkaline during the electroless plating process. This causes a problem that the metal wiring part cannot be brought into close contact. It is possible to solve this problem by shortening the processing time. S When wiring is formed by the plating method, the processing time and the wiring film thickness are in a proportional relationship, and the electrical characteristics such as resistance value are Satisfied It is very difficult to form a wiring.
特許文献 1:特開 2000— 147762公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-147762
特許文献 2:特開 2001— 85358公幸  Patent Document 2: JP 2001-85358 Koyuki
特許文献 3:特開 2003— 213436公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-213436
特許文献 4:特開 2006— 104045公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2006-104045
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 従って、基材との密着性に優れ、かつ良好な導電性を有するパターンを形成するこ とができる導電性パターン形成方法が望まれている。また、前記導電性パターン形成 方法に用いることができる積層体が望まれて!/、る。 [0007] Therefore, a conductive pattern forming method capable of forming a pattern having excellent adhesion to a substrate and good conductivity is desired. In addition, a laminate that can be used in the conductive pattern forming method is desired!
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、検討の結果、グラフト重合を利用した導電性パターン等の作製にお いて、ガラス基材上に、ラジカル重合開始能を有する厚さ 0.; 1 m以上の重合開始 層、及び特定のグラフトポリマー前駆体を有する層を形成し、本発明を完成した。  [0008] As a result of the study, the present inventors have studied that a polymer having a thickness of 0 .; 1 m or more having a radical polymerization initiating ability on a glass substrate in the production of a conductive pattern or the like using graft polymerization. An initiating layer and a layer with a specific graft polymer precursor were formed to complete the present invention.
[0009] 本発明の第 1の態様は、ガラス基材、ラジカル重合開始部位と前記ガラス基材に直 接化学結合可能な部位とを有するポリマーが前記ガラス基材に化学結合して形成さ れた厚さ 0· 1 11 m以上 100 m以下の重合開始層、及び、分子内に(メタ)アクリル 酸エステル及び (メタ)アクリル酸アミドから選択される構造に由来する骨格を有し且 つラジカル重合可能な不飽和部位と無電解めつき触媒を吸着する部位とを有するポ リマーを有する積層体を提供する。  [0009] The first aspect of the present invention is formed by chemically bonding a glass substrate, a polymer having a radical polymerization initiation site and a site capable of being directly chemically bonded to the glass substrate, to the glass substrate. A polymerization initiating layer having a thickness of 0 · 11 to 100 m and a radical having a skeleton derived from a structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide in the molecule Provided is a laminate having a polymer having a polymerizable unsaturated site and a site for adsorbing an electroless catalyst.
この結果、基材との密着性に優れ、かつ良好な導電性を有する導電性パターンの 形成に用いうる積層体を得ることができる。尚、前記重合開始層の厚さは、 0. 3〜50 〃mであること力 S好ましく、 0. 5〜; 10〃 mがより好ましい。  As a result, it is possible to obtain a laminate that can be used to form a conductive pattern that has excellent adhesion to the substrate and has good conductivity. The thickness of the polymerization initiating layer is preferably from 0.3 to 50 μm, preferably S, and more preferably from 0.5 to 10 μm.
[0010] 前記ラジカル重合可能な不飽和部位は、(メタ)アタリロイルメチル基から選択される 基であることが好ましい。ここで、(メタ)アタリロイルメチル基とは、アタリロイルメチル基 又は (メタ)アタリロイルメチル基又はそれらの双方を意味するものである。 [0010] The unsaturated site capable of radical polymerization is preferably a group selected from a (meth) atalyloylmethyl group. Here, the (meth) atalyloylmethyl group means an atalyloylmethyl group, a (meth) atalyloylmethyl group, or both.
また、前記ラジカル重合開始部位と前記ガラス基材に直接化学結合可能な部位と を有するポリマーの重量平均分子量は、特に限定されないが、ポリマー溶解性、塗 布適正の観点、力、ら、 1000〜; 1000000であること好まし <、 3000〜; 100000カより好 まし <、 5000〜50000カ特に好ましい。ポジマーの重量平均分子量を 1000〜; 1000 000とすることにより、容易にポリマー溶液を調製することができ、塗布面状も良好で あるため好ましい。 Further, the weight average molecular weight of the polymer having the radical polymerization initiation site and the site capable of being directly chemically bonded to the glass substrate is not particularly limited. From the standpoint of fabric suitability, force, etc. 1000-; preferably 1000000 <, 3000-; more than 100,000; <5000-50,000 are particularly preferred. By setting the weight average molecular weight of the positive mer to 1000 to 1000 000, a polymer solution can be easily prepared, and the coated surface is good, which is preferable.
[0011] また、前記ガラス基材に直接化学結合可能な部位力 ハロシリル基、アルコキシシリ ル基、環状エーテル基またはイソシアナート基であることにより、ガラス基材と前記ポリ マーが強固に化学結合することから好ましい。更に、前記ガラス基材が酸化ケィ素を 主成分とすることが好ましレ、。  [0011] Furthermore, the glass substrate and the polymer are chemically bonded to each other by being a site force capable of being directly chemically bonded to the glass substrate, such as a halosilyl group, an alkoxysilyl group, a cyclic ether group, or an isocyanate group. This is preferable. Furthermore, it is preferable that the glass base material is mainly composed of a silicon oxide.
[0012] 本発明の第 2の態様は、前記積層体上にパターン状にエネルギーを付与して、該 積層体が有する前記重合開始層におけるポリマーのラジカル重合開始部位にラジカ ルを生成させ、該ラジカルを起点としてグラフトポリマーを生成させる工程、及び、前 記生成したグラフトポリマーに無電解めつき触媒又はその前駆体を吸着させた後、無 電解めつきを行い、導電性膜を形成する工程、を有する導電性パターン形成方法を 提供する。  [0012] In a second aspect of the present invention, energy is applied in a pattern on the laminate, and radicals are generated at radical polymerization initiation sites of the polymer in the polymerization initiation layer of the laminate, A step of generating a graft polymer starting from a radical, and a step of adsorbing an electroless catalyst or a precursor thereof to the generated graft polymer, followed by electroless plating to form a conductive film, A conductive pattern forming method is provided.
また、前記導電性膜を形成する工程の後に、更に電気めつき処理工程を有すること は、好ましい態様である。  In addition, it is a preferable aspect to further include an electroplating treatment step after the step of forming the conductive film.
[0013] 本発明の第 3の態様は、 2の態様により提供される導電性パターン形成方法を用い て形成された導電性パターンを提供する。 [0013] A third aspect of the present invention provides a conductive pattern formed using the conductive pattern forming method provided by the second aspect.
本発明の第 4の態様は、第 3の態様により提供される導電性パターンを備えたプリ ント配線基板を提供する。  The fourth aspect of the present invention provides a printed wiring board provided with the conductive pattern provided by the third aspect.
本発明の第 5の態様は、第 3の態様により提供される導電性パターンを備えた薄層 トランジスタを提供する。  The fifth aspect of the present invention provides a thin film transistor having the conductive pattern provided by the third aspect.
本発明の第 6の態様は、第 4の態様により提供されるプリント配線基板を備えた装置 を提供する。  According to a sixth aspect of the present invention, there is provided an apparatus comprising the printed wiring board provided by the fourth aspect.
本発明の第 7の態様は、第 5の態様により提供される薄層トランジスタを備えた装置 を提供する。  The seventh aspect of the present invention provides a device comprising the thin film transistor provided by the fifth aspect.
発明の効果  The invention's effect
[0014] 本発明によれば、基材との密着性に優れ、かつ良好な導電性を有するパターンを 形成することができる導電性パターン形成方法、及びそれにより得られた導電性バタ ーンを提供すること力できる。 [0014] According to the present invention, a pattern having excellent conductivity with a substrate and good conductivity is obtained. It is possible to provide a method for forming a conductive pattern that can be formed, and a conductive pattern obtained thereby.
また、本発明によれば、前記導電性パターン形成方法に用いることができる積層体 を提供すること力できる。  In addition, according to the present invention, it is possible to provide a laminate that can be used in the conductive pattern forming method.
更に、本発明によれば、基材との密着性に優れ、かつ膜厚で良好な導電性膜を有 する、プリント配線基板又は薄層トランジスタ、並びにプリント配線基板又は薄層トラン ジスタを備えた装置を提供することができる。  Furthermore, according to the present invention, there is provided a printed wiring board or a thin layer transistor, and a printed wiring board or a thin layer transistor having a conductive film excellent in adhesion with a base material and having a good film thickness. An apparatus can be provided.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の導電性パターン形成方法における光開裂化合物結合工程力 グラフ トポリマー生成工程の概略を示す概念図である。  FIG. 1 is a conceptual diagram showing an outline of a photocleavable compound bonding process strength graph polymer production process in the conductive pattern forming method of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の積層体は、ガラス基材;ラジカル重合開始部位と前記ガラス基材に直接化 学結合可能な部位とを有するポリマーが前記ガラス基材に化学結合して形成された 厚さ 0. 1 m以上 100 m以下の重合開始層;分子内に(メタ)アクリル酸エステル 及び (メタ)アクリル酸アミドから選択される構造に由来する骨格を有し且つラジカル 重合可能な不飽和部位と無電解めつき触媒を吸着する部位とを有するポリマーを含 有するグラフトポリマー前駆体層;を有する。  The laminate of the present invention is formed by a glass substrate; a polymer having a radical polymerization initiation site and a site that can be directly chemically bonded to the glass substrate, which is formed by chemical bonding to the glass substrate. m to 100 m polymerization initiating layer; a skeleton derived from a structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide in the molecule, and radically polymerizable unsaturated sites and electroless And a graft polymer precursor layer comprising a polymer having a site for adsorbing a catalyst.
[0017] 前記構成を有する本発明の積層体は、基材との密着性に優れ、かつ良好な導電 性パターンが形成可能な導電性パターン形成方法に用いることができる。  [0017] The laminate of the present invention having the above-described configuration can be used in a conductive pattern forming method that is excellent in adhesion to a substrate and can form a good conductive pattern.
[0018] 本発明における「導電性パターン」については、原子間顕微鏡 (AFM)や電子顕微 鏡(SEM)にて観察することにより確認することができる。  [0018] The "conductive pattern" in the present invention can be confirmed by observing with an atomic microscope (AFM) or an electron microscope (SEM).
[0019] 1.積層体  [0019] 1. Laminate
(重合開始層)  (Polymerization initiation layer)
本発明における重合開始層は、ラジカル重合開始部位とガラス基材に直接化学結 合可能な部位とを有するポリマーが、ガラス基材に化学結合して形成される厚さ 0. 1 a m以上 100 μ m以下の層である。  The polymerization initiation layer in the present invention has a thickness of 0.1 am or more and 100 μm formed by a polymer having a radical polymerization initiation site and a site that can be directly chemically bonded to the glass substrate chemically bonded to the glass substrate. It is a layer of m or less.
[0020] ラジカル重合開始部位を有し、かつガラス基材と直接化学結合可能な部位を有す るポリマーが、ガラス基材に化学結合することにより、基材と重合開始層との密着性を 向上させること力 Sできる。また、形成された重合開始層の厚さを 0. 1 m以上 100 m以下とすることにより、ガラス基板へ耐アルカリ性を付与することができる。 [0020] It has a radical polymerization initiation site and a site capable of direct chemical bonding with a glass substrate. When the polymer to be bonded is chemically bonded to the glass substrate, the adhesion between the substrate and the polymerization initiating layer can be improved. Moreover, alkali resistance can be imparted to the glass substrate by setting the thickness of the formed polymerization initiation layer to 0.1 m or more and 100 m or less.
[0021] 重合開始層の厚さは、 0. 1 a m以上 100 μ m以下とする必要がある。ガラス基板表 面へのアルカリの接近を防ぐ点で 0· 3 m以上 50 m以下が好ましぐ 0· 5 111以 上 10 m以下がより好ましい。重合開始層の厚さを 0. 3 m以上 50 m以下の範 囲とすることにより耐アルカリ性の効果が増大する傾向となる。このような厚みを有す る重合開始層は、後述するポリマーを用いることにより、リジットな層となる。  [0021] The thickness of the polymerization initiating layer needs to be 0.1 am or more and 100 μm or less. From the viewpoint of preventing alkali from approaching the glass substrate surface, it is preferably from 0 · 3 m to 50 m, more preferably from 0.5 · 11 to 10 m. When the thickness of the polymerization initiating layer is in the range of from 0.3 m to 50 m, the alkali resistance effect tends to increase. The polymerization initiating layer having such a thickness becomes a rigid layer by using a polymer described later.
次に、重合開始層の構成成分について説明する。  Next, the components of the polymerization initiation layer will be described.
[0022] (ラジカル重合開始部位とガラス基材に直接化学結合可能な部位とを有するポリマー )  [0022] (Polymer having radical polymerization initiation site and site capable of direct chemical bonding to glass substrate)
重合開始層を形成するポリマーは、ラジカル重合開始部位とガラス基材に直接化 学結合可能な部位とを有するポリマーである。該ポリマーとしては、ガラス基材に直接 化学結合可能な部位 (以下、単に、基材結合部位ともいう。)、及び、光開裂によりラ ジカル重合開始しうる重合開始部位 (以下、単に、重合開始部位ともいう。)を有する 化合物であることが好ましい。  The polymer forming the polymerization initiating layer is a polymer having a radical polymerization initiating site and a site that can be directly chemically bonded to the glass substrate. Examples of the polymer include a site capable of directly chemically bonding to a glass substrate (hereinafter also simply referred to as a substrate binding site) and a polymerization initiation site capable of initiating radical polymerization by photocleavage (hereinafter simply referred to as polymerization initiation). It is preferably a compound having a portion.
[0023] 以下、光開裂によりラジカル重合を開始しうる重合開始部位 (重合開始部位 (Y) )と 、ガラス基材に直接化学結合可能な部位 (基材結合部位 (Q) )と、を有するポリマー の構造について具体的に説明する。  [0023] Hereinafter, it has a polymerization initiation site (polymerization initiation site (Y)) capable of initiating radical polymerization by photocleavage, and a site (substrate binding site (Q)) capable of directly chemically bonding to the glass substrate. The structure of the polymer will be specifically described.
[0024] このポリマーについて、図 1の概念図における、基材結合部位(Q)と重合開始部位  [0024] For this polymer, the base material binding site (Q) and the polymerization initiation site in the conceptual diagram of FIG.
(Y)とを有する化合物(Q Y)のモデルを用いて詳細に説明する。  This is described in detail using a model of the compound (Q Y) having (Y).
[0025] 重合開始部位 (Y)は、光により開裂しうる単結合を含む構造である。光により開裂 する単結合としては、カルボニルの α開裂、 0開裂反応、光フリー転位反応、フエナ シルエステルの開裂反応、スルホンイミド開裂反応、スルホニルエステル開裂反応、 Ν ヒドロキシスルホニルエステル開裂反応、ベンジルイミド開裂反応、活性ハロゲン 化合物の開裂反応などを利用して開裂が可能な単結合が挙げられる。これらの反応 により、光により開裂しうる単結合が切断される。この開裂しうる単結合としては、 C - C結合、 C Ν結合、 C Ο結合、 C C1結合、 Ν Ο結合、及び S— Ν結合等が挙 げられる。 [0025] The polymerization initiation site (Y) is a structure containing a single bond that can be cleaved by light. Single bonds that are cleaved by light include carbonyl α-cleavage, zero-cleavage reaction, light-free rearrangement reaction, phenacyl ester cleavage reaction, sulfonimide cleavage reaction, sulfonyl ester cleavage reaction, ヒ ド ロ キ シ hydroxysulfonyl ester cleavage reaction, benzylimide cleavage Examples thereof include a single bond that can be cleaved using a reaction, a cleavage reaction of an active halogen compound, or the like. These reactions break a single bond that can be cleaved by light. This cleavable single bond includes C-C bond, C C bond, C Ο bond, C C1 bond, Ν Ο bond, and S- — bond. I can get lost.
[0026] 光により開裂しうる単結合を含む重合開始部位 (Y)は、グラフトポリマー生成工程 におけるグラフト重合の起点となることから、光により開裂しうる単結合が開裂すると、 その開裂反応によりラジカルを発生させる機能を有する。  [0026] The polymerization initiation site (Y) containing a single bond that can be cleaved by light serves as a starting point for graft polymerization in the graft polymer formation step. Therefore, when a single bond that can be cleaved by light is cleaved, radical cleavage occurs due to the cleavage reaction. It has the function to generate.
このように、光により開裂しうる単結合を有し、かつ、ラジカルを発生可能な重合開 始部位 (Υ)の構造としては、芳香族ケトン基、フエナシルエステル基、スルホンイミド 基、スルホニルエステル基、 Ν—ヒドロキシスルホニルエステル基、ベンジルイミド基、 トリクロロメチル基、ベンジルクロライド基などの基を含む構造が挙げられる。  As described above, the structure of the polymerization initiation site (Υ) having a single bond that can be cleaved by light and capable of generating radicals includes an aromatic ketone group, a phenacyl ester group, a sulfonimide group, and a sulfonyl ester. And a structure containing a group such as a group, Ν-hydroxysulfonyl ester group, benzylimide group, trichloromethyl group, benzyl chloride group.
[0027] 重合開始部位 (Υ)は、露光により開裂してラジカルを発生するため、そのラジカノレ 周辺に重合可能な化合物が存在する場合には、このラジカルがグラフト重合反応の 起点として機能し、所望のグラフトポリマーを生成することができる(グラフトポリマー生 成領域)。  [0027] Since the polymerization initiation site (Υ) is cleaved by exposure to generate a radical, if there is a polymerizable compound in the vicinity of the radical canole, this radical functions as a starting point for the graft polymerization reaction. The graft polymer can be produced (graft polymer production region).
[0028] 一方、重合開始部位 (Υ)が露光されな力、つた領域にお!/、ては、重合開始部位 (Υ) の開裂が起きず、当該領域にはグラフトポリマーは生成しない(グラフトポリマー非生 成領域)。  [0028] On the other hand, the force at which the polymerization initiation site (さ れ) is not exposed to light, the cleavage of the polymerization initiation site (Υ) does not occur in the region, and no graft polymer is formed in the region (graft). Polymer non-production region).
[0029] 一方、基材結合部位(Q)は、ガラス基材表面に存在する官能基 (Ζ)と反応して結 合しうる反応性基で構成される。該反応性基としては、ハロシリル基 (好ましくは、トリク ロロシリル基、ジクロロアルキルシリル基、クロロジアルキルシリル基、より好ましくは、ト リクロロシリル基、ジクロロアルキルシリル基である。)、アルコキシシリル基(好ましくは 、炭素数 1〜2のアルコキシシリル基である。)、環状エーテル基 (好ましくは、炭素数 2〜6及び酸素数;!〜 2、より好ましくは炭素数 2〜3及び酸素数 1の環状エーテル基 である。)、又はイソシアナート基が挙げられる。  On the other hand, the base material binding site (Q) is composed of a reactive group capable of reacting with and binding to a functional group (基) present on the surface of the glass base material. Examples of the reactive group include a halosilyl group (preferably a chlorosilyl group, a dichloroalkylsilyl group, a chlorodialkylsilyl group, more preferably a chlorosilyl group and a dichloroalkylsilyl group), an alkoxysilyl group (preferably. , A C1-C2 alkoxysilyl group), a cyclic ether group (preferably a C2-C6 and oxygen number;! -2, more preferably a C2-C3 and oxygen-one cyclic ether) Group) or an isocyanate group.
前記シリル基に置換するアルキル基としては、炭素数 1〜2のアルキル基が好まし い。  As the alkyl group substituted on the silyl group, an alkyl group having 1 to 2 carbon atoms is preferred.
基材結合部位(Q)として具体的には、以下に示すような基が挙げられる力 これに 限定されるものではない。  Specific examples of the base material binding site (Q) include the following groups, but are not limited thereto.
[0030] [化 1] Q:基材結合部位 [0030] [Chemical 1] Q: Substrate binding site
— Si(OMe)3 — SiCI3 — NCO —CH2CI — <^ — Si (OMe) 3 — SiCI 3 — NCO —CH 2 CI — <^
[0031] 重合開始部位 (Y)と、基材結合部位 (Q)と、は直接結合していてもよいし、連結基 を介して結合していてもよい。この連結基としては、炭素、窒素、酸素、及び硫黄から なる群より選択される原子を含む連結基が挙げられ、具体的には、例えば、飽和炭 素基、芳香族基、エステル基、アミド基、ウレイド基、エーテル基、アミノ基、スルホン アミド基等が挙げられる。なお、この連結基は更に置換基を有していてもよぐその導 入可能な置換基としては、アルキル基、アルコキシ基、ハロゲン原子、等が挙げられ [0031] The polymerization initiation site (Y) and the substrate binding site (Q) may be directly bonded or may be bonded via a linking group. Examples of the linking group include a linking group containing an atom selected from the group consisting of carbon, nitrogen, oxygen, and sulfur. Specifically, for example, a saturated carbon group, an aromatic group, an ester group, an amide Group, ureido group, ether group, amino group, sulfonamide group and the like. This linking group may further have a substituent, and examples of the substituent that can be introduced include an alkyl group, an alkoxy group, and a halogen atom.
[0032] 基材結合部位 (Q)と、重合開始部位 (Υ)と、を有する化合物 (Q -Y)の具体例〔例 示化合物 T1〜例示化合物 Τ10〕を、開裂部と共に以下に示す力 本発明はこれらに 制限されるものではない。 [0032] Specific examples of the compound (Q-Y) having a substrate binding site (Q) and a polymerization initiation site (Υ) [Example Compound T1 to Example Compound Τ10] together with the cleavage portion are shown below. The present invention is not limited to these.
[0033] [化 2] [0033] [Chemical 2]
Figure imgf000011_0001
0\,
Figure imgf000011_0001
0 \,
C-CI結合開裂部 C-CI bond cleavage
Figure imgf000011_0002
Figure imgf000011_0002
C-CI結合開裂部C-CI bond cleavage
; Cl3 Cl 3
Figure imgf000011_0003
Figure imgf000011_0003
[0034] [化 3] T7[0034] [Chemical 3] T7
Figure imgf000012_0001
Figure imgf000012_0001
(n = 80, m = 20) (n = 80, m = 20)
Figure imgf000012_0002
Figure imgf000012_0002
C-CI結合開裂部 C-CI bond cleavage
Figure imgf000012_0003
Figure imgf000012_0003
合開始層は、ポリマーの化学結合可能な部位を介してガラス基材上に結合させ てなる層である。即ち、図 1に示すように、重合開始層は、化合物(Q— Y)をガラス基 材表面に存在する官能基 (Z)に結合させることにより形成できる。化合物(Q— Y)を ガラス基材表面に存在する官能基 (Z)に結合させる方法としては、例示化合物(Q— Y)を、トルエン、へキサン、アセトンなどの適切な溶媒に溶解又は分散し、その溶液 又は分散液を基材表面に塗布する方法、又は、溶液又は分散液中に基材を浸漬す る方法などを適用すればょレ、。 The initiation layer is bonded onto the glass substrate through a chemically bondable site of the polymer. It is a layer. That is, as shown in FIG. 1, the polymerization initiating layer can be formed by bonding the compound (Q—Y) to the functional group (Z) present on the surface of the glass substrate. As a method of bonding the compound (Q—Y) to the functional group (Z) present on the surface of the glass substrate, the exemplified compound (Q—Y) is dissolved or dispersed in an appropriate solvent such as toluene, hexane, or acetone. Then, apply a method of applying the solution or dispersion to the surface of the substrate, or a method of immersing the substrate in the solution or dispersion.
[0036] このとき、溶液中又は分散液中の化合物(Q—Y)の濃度としては、 0. 01質量%〜 30質量%が好ましぐ 0. 1質量%〜; 15質量%であることが特に好ましい。溶液又は 分散液をガラス基材に接触させる場合の液温としては、 0°C〜100°Cが好ましい。接 触時間としては、 1秒〜 50時間が好ましぐ 10秒〜 10時間がより好ましい。  [0036] At this time, the concentration of the compound (Q—Y) in the solution or dispersion is preferably 0.01% by mass to 30% by mass, and 0.1% by mass to 15% by mass. Is particularly preferred. The liquid temperature when the solution or dispersion is brought into contact with the glass substrate is preferably 0 ° C to 100 ° C. The contact time is preferably 1 second to 50 hours, more preferably 10 seconds to 10 hours.
[0037] 重合開始層を形成するポリマーは、後述の実施例に記載の方法を用いて合成する こと力 Sでさる。  [0037] The polymer that forms the polymerization initiating layer can be synthesized with the force S by using the method described in Examples described later.
[0038] (グラフトポリマー前駆体層)  [0038] (Graft polymer precursor layer)
グラフトポリマー前駆体層は、分子内に (メタ)アクリル酸エステル及び (メタ)アクリル 酸アミドから選択される構造に由来する骨格を有し且つラジカル重合可能な不飽和 部位と無電解めつき触媒を吸着する部位とを有するポリマー(以下、単に、「グラフト ポリマー前駆体」ともいう。)を含有する。  The graft polymer precursor layer has a skeleton derived from a structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide in the molecule, and includes an unsaturated site capable of radical polymerization and an electroless plating catalyst. A polymer having a site to be adsorbed (hereinafter also simply referred to as “graft polymer precursor”).
[0039] ここで、「(メタ)アクリル酸エステル及び(メタ)アクリル酸アミド」とは、アクリル酸エス テル、メタアクリル酸エステル、アクリル酸アミド、及びメタクリル酸アミドを意味する。  Here, “(meth) acrylic acid ester and (meth) acrylic acid amide” mean acrylic acid ester, methacrylic acid ester, acrylic acid amide, and methacrylic acid amide.
[0040] また、「(メタ)アクリル酸エステル及び (メタ)アクリル酸アミドから選択される構造に 由来する骨格」とは、下記構造式 (A)〜(D)で示される骨格力 選択されるものを意 味する。以下、単に「骨格」と称する場合がある。  [0040] The "skeleton derived from the structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide" is selected from the skeletal forces represented by the following structural formulas (A) to (D) Means things. Hereinafter, it may be simply referred to as “skeleton”.
[0041] [化 4]
Figure imgf000014_0001
[0041] [Chemical 4]
Figure imgf000014_0001
[0042] 構造式 (A)〜(D)中、「 *」は、グラフトポリマー前駆体において、該構造式で示さ れる骨格とそれに隣接する原子との連結部位を示す。 [0042] In structural formulas (A) to (D), "*" represents a linking site between a skeleton represented by the structural formula and an atom adjacent thereto in the graft polymer precursor.
[0043] 前記ラジカル重合可能な不飽和部位としては、重合性不飽和基 (ラジカル重合性 基)が挙げられ、ラジカル重合性の観点から、(メタ)アタリロイルメチル基が好ましい。  [0043] Examples of the unsaturated site capable of radical polymerization include polymerizable unsaturated groups (radical polymerizable groups). From the viewpoint of radical polymerizability, a (meth) atalyloylmethyl group is preferred.
[0044] また、前記無電解めつき触媒を吸着する部位としては、極性基が挙げられ、該極性 基は無電解めつき触媒の吸着性 (付着性)の観点から、親水性基であることが好まし い。親水性基としては、例えば、カルボキシル基、スルホン酸基、リン酸基、アミノ基、 水酸基、アミド基、及びエーテル基、等が挙げられる。  [0044] The site that adsorbs the electroless plating catalyst includes a polar group, and the polar group is a hydrophilic group from the viewpoint of the adsorptivity (adhesiveness) of the electroless plating catalyst. Is preferred. Examples of the hydrophilic group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, an amino group, a hydroxyl group, an amide group, and an ether group.
[0045] 本発明におけるグラフトポリマー前駆体としては、前記骨格を有し、かつ、分子内に ラジカル重合可能な不飽和部位と無電解めつき触媒を吸着する部位と有するポリマ 一であれば特に限定されない。中でも、無電解めつき触媒を吸着する部位としては、 極性基である親水性基が好ましいことから、グラフトポリマー前駆体としては、重合性 不飽和基を有する親水性ポリマー、親水性マクロマーなどであって、かつ、前記骨格 を有するものが好ましい。  [0045] The graft polymer precursor in the present invention is not particularly limited as long as it is a polymer having the skeleton and having an unsaturated site capable of radical polymerization in the molecule and a site adsorbing an electroless catalyst. Not. Among them, the hydrophilic group that is a polar group is preferable as the site that adsorbs the electroless plating catalyst. Therefore, the graft polymer precursor may be a hydrophilic polymer having a polymerizable unsaturated group, a hydrophilic macromer, or the like. And what has the said frame | skeleton is preferable.
[0046] 以下、重合性不飽和基を有する親水性ポリマー及び親水性マクロマーの合成につ いて説明する。  [0046] Hereinafter, the synthesis of a hydrophilic polymer having a polymerizable unsaturated group and a hydrophilic macromer will be described.
[0047] 一重合性不飽和基を有する親水性ポリマ一一  [0047] One hydrophilic polymer having a monopolymerizable unsaturated group
重合性不飽和基を有する親水性ポリマーとは、分子内に、ビュル基、ァリル基、(メ タ)アタリロイル基などのエチレン付加重合性不飽和基が導入されたラジカル重合性 基含有親水性ポリマーを指す。このラジカル重合性基含有親水性ポリマーは、重合 性基を主鎖末端又は側鎖に有することが好ましぐその双方に重合性基を有すること がより好ましい。 A hydrophilic polymer having a polymerizable unsaturated group is a radically polymerizable group-containing hydrophilic polymer in which an ethylene addition polymerizable unsaturated group such as a bur group, a aryl group, or a (meth) taroloyl group is introduced in the molecule. Point to. This radically polymerizable group-containing hydrophilic polymer preferably has a polymerizable group at the end of the main chain or at the side chain, and has a polymerizable group on both sides. Is more preferable.
[0048] このようなラジカル重合性基含有親水性ポリマーは以下のようにして合成することが できる。  [0048] Such a radically polymerizable group-containing hydrophilic polymer can be synthesized as follows.
合成方法としては、 ω親水性モノマーとエチレン付加重合性不飽和基を有するモ ノマーとを共重合する方法、(b)親水性モノマーと二重結合前駆体を有するモノマー とを共重合させ、次に塩基などの処理により二重結合を導入する方法、(C)親水性ポ リマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応させる方 法、が挙げられる。これらの中でも、特に好ましいのは、合成適性の観点から、(C)親 水性ポリマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応さ せる方法である。  As a synthesis method, a method of copolymerizing a ω hydrophilic monomer and a monomer having an ethylene addition polymerizable unsaturated group, (b) copolymerizing a hydrophilic monomer and a monomer having a double bond precursor, And (C) a method of reacting a functional group of a hydrophilic polymer with a monomer having an ethylene addition polymerizable unsaturated group. Among these, from the viewpoint of synthesis suitability, (C) a method of reacting a functional group of a hydrophilic polymer with a monomer having an ethylene addition polymerizable unsaturated group is particularly preferable.
[0049] 上記(a)や (b)の方法にお!/、て、ラジカル重合性基含有親水性ポリマーの合成に 用いられる親水性モノマーとしては、(メタ)アクリル酸若しくはそのアルカリ金属塩及 びァミン塩、ィタコン酸若しくはそのアルカリ金属塩及びアミン塩、 2—ヒドロキシェチ ル (メタ)アタリレート、(メタ)アクリルアミド、 N モノメチロール (メタ)アクリルアミド、 N ジメチロール (メタ)アクリルアミド、ァリルアミン若しくはそのハロゲン化水素酸塩、 3 ビュルプロピオン酸若しくはそのアルカリ金属塩及びアミン塩、ビニルスルホン酸 若しくはそのアルカリ金属塩及びアミン塩、 2—スルホェチル (メタ)アタリレート、ポリ ォキシエチレングリコールモノ(メタ)アタリレート、 2—アクリルアミドー 2—メチルプロ パンスルホン酸、アシッドホスホォキシポリオキシエチレングリコールモノ(メタ)アタリレ ートなどの、カルボキシル基、スルホン酸基、リン酸基、アミノ基若しくはそれらの塩、 水酸基、アミド基及びエーテル基などの親水性基を有するモノマーが挙げられる。  [0049] In the above methods (a) and (b), the hydrophilic monomer used in the synthesis of the radical polymerizable group-containing hydrophilic polymer may be (meth) acrylic acid or an alkali metal salt thereof. Biamine salt, itaconic acid or its alkali metal salt and amine salt, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, N monomethylol (meth) acrylamide, N dimethylol (meth) acrylamide, arylamine or halogenated thereof Hydrogenate, 3 bupropionic acid or its alkali metal salt and amine salt, vinyl sulfonic acid or its alkali metal salt and amine salt, 2-sulfoethyl (meth) acrylate, polyoxyethylene glycol mono (meth) acrylate, 2-Acrylamide-2-methylpropanosulfonic acid, reed Hydrophilic groups such as carboxyl groups, sulfonic acid groups, phosphoric acid groups, amino groups or their salts, hydroxyl groups, amide groups and ether groups, such as phosphophosphooxypolyoxyethylene glycol mono (meth) acrylate. The monomer which has is mentioned.
[0050] また、(c)の方法で用いられる親水性ポリマーとしては、これらの親水性モノマーか ら選ばれる少なくとも一種を用いて得られる親水性ホモポリマー若しくはコポリマーが 用いられる。  [0050] As the hydrophilic polymer used in the method (c), a hydrophilic homopolymer or copolymer obtained by using at least one selected from these hydrophilic monomers is used.
[0051] (a)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性モノマー と共重合するエチレン付加重合性不飽和基を有するモノマーとしては、例えば、ァリ ル基含有モノマーがあり、具体的には、ァリル (メタ)アタリレート、 2—ァリルォキシェ チルメタタリレートが挙げられる。 [0052] また、(b)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性モ ノマーと共重合する二重結合前駆体を有するモノマーとしては、 2—(3—クロロー 1
Figure imgf000016_0001
[0051] When the radically polymerizable group-containing hydrophilic polymer is synthesized by the method (a), examples of the monomer having an ethylene addition polymerizable unsaturated group that is copolymerized with the hydrophilic monomer include an aryl group-containing monomer. Specific examples include araryl (meth) acrylate and 2-aryloxy cetyl methacrylate. [0052] In addition, when synthesizing a radically polymerizable group-containing hydrophilic polymer by the method (b), a monomer having a double bond precursor that is copolymerized with a hydrophilic monomer is 2- (3-chloro-1).
Figure imgf000016_0001
[0053] 更に、(c)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性ポ リマー中のカルボキシル基、アミノ基若しくはそれらの塩と、水酸基及びエポキシ基な どの官能基と、の反応を利用して不飽和基を導入することが好ましい。このために用 いられる付加重合性不飽和基を有するモノマーとしては、(メタ)アクリル酸、グリシジ ル(メタ)アタリレート、ァリルグリシジルエーテル、 2—イソシアナトェチル(メタ)アタリレ ートなど挙げられる。  [0053] Further, when the radical polymerizable group-containing hydrophilic polymer is synthesized by the method (c), a carboxyl group, an amino group or a salt thereof in the hydrophilic polymer, and a functional group such as a hydroxyl group and an epoxy group It is preferable to introduce an unsaturated group using the reaction of. Examples of the monomer having an addition polymerizable unsaturated group used for this purpose include (meth) acrylic acid, glycidyl (meth) acrylate, allyl glycidyl ether, 2-isocyanatoethyl (meth) acrylate. It is done.
[0054] 一親水性マクロモノマ一一  [0054] One hydrophilic macromonomer
本発明において用い得るマクロモノマーの製造方法は、例えば、平成 1年 9月 20日 にアイピーシー出版局発行の「マクロモノマーの化学と工業」(編集者 山下雄也)の 第 2章「マクロモノマーの合成」に各種の製法が提案されて!/、る。  The method for producing a macromonomer that can be used in the present invention is described in, for example, Chapter 2 of “Macromonomer Chemistry and Industry” (Editor, Yuya Yamashita) published on September 20, 1999, published by IPC Publishing Bureau. Various production methods have been proposed in “Synthesis”!
本発明で用い得る親水性マクロモノマーで特に有用なものとしては、アクリル酸、メ タクリル酸などのカルホキシル基含有のモノマーから誘導されるマクロモノマー、 2— アクリルアミドー 2—メチルプロパンスルホン酸、ビニルステレンスルホン酸、及びその 塩のモノマーから誘導されるスルホン酸系マクロモノマー、(メタ)アクリルアミド、 N— ビュルァセトアミド、 N—ビュルホルムアミド、 N—ビュルカルボン酸アミドモノマーから 誘導されるアミド系マクロモノマー、ヒドロキシェチルメタクリレー卜、ヒドロキシェチル アタリレート、グリセロールモノメタタリレートなどの水酸基含有モノマーから誘導される マクロモノマー、メトキシェチノレアタリレート、メトキシポリエチレングリコーノレアタリレー ト、ポリエチレングリコールアタリレートなどのアルコキシ基若しくはエチレンォキシド基 含有モノマー力も誘導されるマクロモノマーである。また、ポリエチレングリコール鎖若 しくはポリプロピレングリコール鎖を有するモノマーも本発明のマクロモノマーとして有 用に使用することができる。  Particularly useful hydrophilic macromonomers that can be used in the present invention include macromonomers derived from carboxy group-containing monomers such as acrylic acid and methacrylic acid, 2-acrylamido-2-methylpropane sulfonic acid, and vinylsterene. Sulfonic acid-based macromonomers derived from monomers of sulfonic acid and its salts, amide-based macromonomers derived from (meth) acrylamide, N-Bulucetamide, N-Buluformamide, N-Bulucarboxylic acid amide monomers , Macromonomers derived from hydroxyl group-containing monomers such as hydroxyethyl methacrylate, hydroxyethyl acrylate, glycerol monomethacrylate, methoxy ethynoleate acrylate, methoxy polyethylene glycolate acrylate, polyethylene Alkoxy or Echirenokishido group-containing monomer force, such as glycol Atari rate also macromonomers derived. A monomer having a polyethylene glycol chain or a polypropylene glycol chain can also be used effectively as the macromonomer of the present invention.
これらの親水性マクロモノマーのうち有用なものの分子量は、 250〜; 10万の範囲で 、特に好ましい範囲は 400〜3万である。  Of these hydrophilic macromonomers, useful ones have a molecular weight in the range of 250 to 100,000, with a particularly preferred range of 400 to 30,000.
[0055] 本発明におけるグラフトポリマー前駆体は、具体的には、前記重合性不飽和基を有 する親水性ポリマー、及び親水性マクロマーを用いて、後述の実施例の記載の方法 にて合成することができる。 [0055] The graft polymer precursor in the present invention specifically has the polymerizable unsaturated group. Using the hydrophilic polymer and the hydrophilic macromer to be synthesized, they can be synthesized by the method described in the Examples below.
[0056] グラフトポリマー前駆体層を重合開始層上に形成する方法としては、グラフトポリマ 一前駆体が溶解された溶液又は分散された分散液を塗布する方法、その溶液又は 分散液に重合開始層を形成した基材を浸漬する方法などがある。 [0056] As a method of forming the graft polymer precursor layer on the polymerization initiation layer, a method in which a solution or dispersion in which the graft polymer precursor is dissolved is applied, or the polymerization initiation layer is applied to the solution or dispersion. There is a method of immersing the base material on which is formed.
[0057] このとき、溶液中又は分散液のグラフトポリマー前駆体の濃度としては、 0. 1質量%[0057] At this time, the concentration of the graft polymer precursor in the solution or in the dispersion is 0.1% by mass.
〜50質量%が好ましぐ特に 1質量%〜; 10質量%であることが好ましい。 ˜50% by mass is preferred, especially 1% by mass˜; preferably 10% by mass.
[0058] グラフトポリマー前駆体の具体例を以下に示す力 本発明はこれらに限定されるも のではない。 [0058] Specific examples of graft polymer precursors are shown below. The present invention is not limited to these.
[0059] [化 5] [0059] [Chemical 5]
Figure imgf000018_0001
Figure imgf000018_0001
:重量平均分子量: 27000)  : Weight average molecular weight: 27000)
Figure imgf000018_0002
Figure imgf000018_0002
:重量平均分子量: 31000)  : Weight average molecular weight: 31000)
溶媒 Solvent
上述のグラフトポリマー前駆体を溶解、分散するための溶媒としては、該化合物や 必要に応じて添加される添加剤が溶解可能ならば特に制限はない。 例えば、グラフトポリマー前駆体として親水性の化合物が適用される場合であれば 、水、水溶性溶剤などの水性溶剤が好ましぐこれらの混合物や、溶剤に更に界面活 性剤を添加したものなどが好ましレ、。水溶性溶剤は、水と任意の割合で混和しうる溶 剤を言い、そのような水溶性溶剤としては、例えば、メタノール、エタノール、プロパノ ール、エチレングリコール、グリセリンの如きアルコール系溶剤、酢酸の如き酸、ァセト ンの如きケトン系溶剤、ホルムアミドの如きアミド系溶剤などが挙げられる。 The solvent for dissolving and dispersing the above-mentioned graft polymer precursor is not particularly limited as long as the compound and additives added as necessary can be dissolved. For example, in the case where a hydrophilic compound is applied as the graft polymer precursor, a mixture of water or an aqueous solvent such as a water-soluble solvent is preferred, or a surfactant is further added to the solvent. Is preferred. The water-soluble solvent refers to a solvent miscible with water at an arbitrary ratio. Examples of such water-soluble solvents include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, and glycerin, and acetic acid. Examples thereof include acids, ketone solvents such as acetone, amide solvents such as formamide, and the like.
[0061] グラフトポリマー前駆体層の厚みとしては、特に限定されないが、めっき触媒の金属 吸着の観点から 0. 3 ^ 111〜5 ^ 111カ好ましく、0. 5 ^ 111〜2 ^ 111カょり好ましぃ。 前記グラフトポリマー前駆体層の厚さを 0· 3 μ m〜5 μ mの範囲とすることによりめ つき触媒の金属の吸着量が増加の傾向となり好ましい。 [0061] Graft The thickness of the polymer precursor layer is not particularly limited, 0.3 ^ 111-5 ^ 111 Ca from the viewpoint of metal adsorbing the plating catalyst, 0.5 ^ 111-2 ^ 111 Kayori I like it. By setting the thickness of the graft polymer precursor layer in the range of 0.3 μm to 5 μm, the metal adsorption amount of the plating catalyst tends to increase, which is preferable.
[0062] (ガラス基材) [0062] (Glass substrate)
本発明において用いられるガラス基材としては、特に制限はなぐ基材表面に、水 酸基、カルボキシル基、アミノ基などの官能基 (Z)を有するガラス基材などを適用でき 前記ガラス基材の成分としては、特に制限はないが、化学的修飾が容易であるとい う観点から酸化ケィ素を主成分とすることが好ましい。  As the glass substrate used in the present invention, a glass substrate having a functional group (Z) such as a hydroxyl group, a carboxyl group, or an amino group can be applied to the surface of the substrate that is not particularly limited. There are no particular restrictions on the component, but it is preferable that the main component is silicon oxide from the viewpoint of easy chemical modification.
[0063] 化学的修飾には、シランカップリング剤(片末端にアルコキシシリル基またはハロシ リル基を有し、もう一方の末端に特定の官能基を有する化合物)を用いることが、工程 が簡易であり、且つ、表面の被覆が効果的で望ましい。この時、特定の官能基として 望ましいのがアミノ基、水酸基、メルカプト基、カルボキシル基、エポキシ基、イソシァ ナート基であり、この中でもラジカル重合開始剤との反応性が高いアミノ基、カルボキ シル基、イソシアナート基が好ましい。  [0063] For chemical modification, using a silane coupling agent (a compound having an alkoxysilyl group or a halosilyl group at one end and a specific functional group at the other end) simplifies the process. And a surface coating is effective and desirable. At this time, amino groups, hydroxyl groups, mercapto groups, carboxyl groups, epoxy groups, and isocyanate groups are desirable as specific functional groups, among which amino groups, carboxyl groups, and groups having high reactivity with radical polymerization initiators. Isocyanate groups are preferred.
[0064] 前記シランカップリング剤の具体例としては、上記構成を有するものであれば特に 限定されず、 3—ァミノプロピルトリエトキシシラン、 3—ァミノプロピルトリメトキシシラン 、 4—アミノブチルトリエトキシシラン、 11—アミノウンデシルトリエトキシシラン、 3—アミ ノプロピルメチルジェトキシシラン、 3 ァミノプロピルジメチルエトキシシラン、 N—(2 —アミノエチル) 3 ァミノプロピルトリメトキシシラン、 N— (2 アミノエチル) - 3- ァミノプロピルトリエトキシシラン、 N— (2 アミノエチル) 3 ァミノプロピルメチルジ メトキシシラン、 (3—トリメトキシシリルプロピル)ジエチレントリァミン、 3—メルカプトプ 口ピルトリエトキシシラン、 3—メルカプトプロビルトリメトキシシラン、 11 メルカプトウ 口ピルメチルジメトキシシラン、 3—イソシアナートプロピルトリエトキシシラン、 3—イソ [0064] Specific examples of the silane coupling agent are not particularly limited as long as the silane coupling agent has the above-described configuration. 3-Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 4-aminobutyltri Ethoxysilane, 11-aminoundecyltriethoxysilane, 3-aminopropylmethyljetoxysilane, 3 aminopropyldimethylethoxysilane, N— (2 —aminoethyl) 3 aminopropyltrimethoxysilane, N— (2 Aminoethyl) -3-aminopropyltriethoxysilane, N— (2 aminoethyl) 3 aminopropylmethyldi Methoxysilane, (3-Trimethoxysilylpropyl) diethylenetriamine, 3-Mercaptopropyl pyrtriethoxysilane, 3-Mercaptopropyl trimethoxysilane, 11 Mercaptopyrmethyldimethoxysilane, 3-Isocyanatopropyltriethoxysilane, 3-Iso
2—(3, 4 エポキシシクロへキシノレ)ェチノレトリエトキシシラン、 2—(3, 4 エポキシ シクロへキシル)ェチルトリメトキシシラン、 (3—グリシジルプロピル)トリエトキシシラン 、(3—グリシジノレプロピノレ)トリメトキシシラン、 5, 6—エポキシへキシノレトリエトキシシ ノレジメトキシシラン、 (3—グリシジノレプロピノレ)ジメチノレエトキシシラン、 N (トリメトキ シシリルプロピル)エチレンジァミン三酢酸ナトリウム、 3—(トリエトキシシリル)プロピ ルコハク酸無水物、等が挙げられ、ラジカル重合開始剤との反応性が高い観点から、2- (3,4 Epoxycyclohexenole) ethinoretriethoxysilane, 2- (3,4 Epoxy cyclohexyl) ethyltrimethoxysilane, (3-Glycidylpropyl) triethoxysilane, (3-Glycidinorepro Pinole) Trimethoxysilane, 5, 6-Epoxyhexenoletriethoxycinolesine methoxysilane, (3-Glycidinorepropinole) Dimethinoleethoxysilane, N (Trimethoxysilylpropyl) ethylenediamin sodium triacetate, 3- ( Triethoxysilyl) propyl succinic anhydride, etc., from the viewpoint of high reactivity with the radical polymerization initiator,
3—ァミノプロピルトリエトキシシラン、 3—ァミノプロピルトリメトキシシラン、 4—アミノブ チルトリエトキシシラン、 3 ァミノプロピルジメチルエトキシシラン、 N— (2 アミノエ チル) 3—ァミノプロピルトリメトキシシラン、 3—イソシアナートプロピルトリエトキシシ ハク酸無水物が好ましい。 3-Aminopropyltriethoxysilane, 3-Aminopropyltrimethoxysilane, 4-Aminobutyltriethoxysilane, 3-Aminopropyldimethylethoxysilane, N— (2 Aminoethyl) 3-Aminopropyltrimethoxysilane, 3-Isocyanatopropyltriethoxy succinic anhydride is preferred.
[0065] また、一般的には、平板状のガラス基材が用いられる力 必ずしも平板状のガラス 基材に限定されず、円筒形などの任意の形状のガラス基材であっても用いることがで きる。これらのガラス基材につ!/、てもグラフトポリマーを導入することができる。 [0065] In general, the force with which a flat glass substrate is used is not necessarily limited to a flat glass substrate, and a glass substrate having an arbitrary shape such as a cylindrical shape may be used. it can. Graft polymers can be introduced into these glass substrates.
[0066] 本発明に好適な基材として、具体的には、表面に水酸基を有する各種ガラス基材、 及び表面を化学修飾し、表面に前記特定官能基を有する各種ガラス基材が挙げら れる。 [0066] Specific examples of the substrate suitable for the present invention include various glass substrates having a hydroxyl group on the surface, and various glass substrates having a surface modified with the specific functional group. .
ガラス基材の厚みは、使用目的に応じて選択され、特に限定はないが、一般的に は、 10 111〜10«11程度でぁる。  The thickness of the glass substrate is selected according to the purpose of use and is not particularly limited, but is generally about 10 111 to 10 «11.
[0067] 2.導電性パターン形成方法 [0067] 2. Method of forming conductive pattern
本発明の導電性パターン形成方法は、前記積層体上にパターン状にエネルギー を付与して、該積層体が有する重合開始層におけるポリマーのラジカル重合開始部 位にラジカルを生成させ、該ラジカルを起点としてグラフトポリマーを生成させる工程 ( 以下、「グラフトポリマー生成工程」ともいう。)と、前記パターン状に形成されたグラフ トポリマーに無電解めつき触媒又はその前駆体を吸着させた後、無電解めつきを行 い、導電性膜を形成する工程 (以下、「導電性膜形成工程」ともいう。)と、を有するこ とを特徴とする。 In the conductive pattern forming method of the present invention, a radical polymerization initiation part of a polymer in a polymerization initiation layer of the laminate is provided by applying energy in a pattern on the laminate. A radical is generated at the position, and a graft polymer is generated starting from the radical (hereinafter, also referred to as “graft polymer generation process”), and an electroless plating catalyst or its catalyst is formed on the graft polymer formed in the pattern. And a step of forming a conductive film (hereinafter also referred to as a “conductive film forming step”) by performing electroless plating after adsorbing the precursor.
[0068] この方法を用いることで、基材上に所望の導電性パターンを形成することができ、 特に、超微細の導電性パターンを形成することができる。また、導電性パターン形成 において、前記積層体を用いることにより、導電性膜と基材との密着性、有用なダラ フトポリマーの無電解めつき浴中のアルカリ性への耐性を著しく向上させることができ  [0068] By using this method, a desired conductive pattern can be formed on the substrate, and in particular, an ultrafine conductive pattern can be formed. In addition, in the formation of the conductive pattern, the use of the laminate can remarkably improve the adhesion between the conductive film and the substrate and the resistance to alkalinity in the electroless plating bath of a useful draft polymer. Can
[0069] ここで、本発明における「超微細」とは、少なくとも導電性膜 (導電性パターン)の幅 力 S lOOOnm以下であるものを指し、好ましくは、ラインアンドスペースの幅がそれぞれ 10nm〜1000nmの範囲のものであり、ラインアンドスペースの幅がそれぞれ lOnm 〜500nmの範囲であることがより好ましい。 [0069] Here, "ultrafine" in the present invention means at least the width of the conductive film (conductive pattern) not exceeding SlOOOnm, and preferably the line and space width is 10 nm to 1000 nm, respectively. More preferably, the line and space widths are each in the range of lOnm to 500 nm.
本発明における「超微細の導電性パターン」については、原子間顕微鏡 (AFM)や 電子顕微鏡(SEM)にて観察することにより確認することができる。  The “ultrafine conductive pattern” in the present invention can be confirmed by observing with an atomic microscope (AFM) or an electron microscope (SEM).
[0070] 以下に、本発明の導電性パターン形成方法におけるグラフトポリマー生成工程と導 電性膜形成工程につ!/、て詳細に説明する。  [0070] Hereinafter, the graft polymer generation step and the conductive film formation step in the conductive pattern formation method of the present invention will be described in detail.
[0071] (グラフトポリマー生成工程)  [0071] (Graft polymer production step)
本発明の導電性パターン形成方法におけるグラフトポリマー生成工程では、前記 積層体にパターン状にエネルギーを付与 (パターン露光)して、重合開始層における ポリマーのラジカル重合開始部位に発生したラジカルを起点として、グラフトポリマー 前駆体との間で、グラフト重合反応を生起、進行させて、その結果、露光領域のみに グラフトポリマーが生成する。  In the graft polymer generating step in the conductive pattern forming method of the present invention, energy is imparted to the laminate in a pattern (pattern exposure), and the radical generated at the radical polymerization initiation site of the polymer in the polymerization initiation layer is the starting point. A graft polymerization reaction takes place and proceeds with the graft polymer precursor, and as a result, a graft polymer is formed only in the exposed area.
[0072] 本発明ではグラフトポリマー前駆体として、前記の特定のポリマーを用いるため、厚 くで丈夫なグラフト膜ができる。  [0072] In the present invention, since the specific polymer is used as the graft polymer precursor, a thick and strong graft film can be formed.
[0073] 前記グラフトポリマー生成工程において、前記パターン露光する際に用いうる露光 方法には特に制限はなぐエネルギーを付与できる露光であれば、紫外光で、可視 光でよい。なかでも、より微細なグラフトパターンを形成する観点から可視領域(360[0073] In the graft polymer generation step, the exposure method that can be used for the pattern exposure is not particularly limited as long as the exposure can give energy with no limitation. Light is enough. Especially, from the viewpoint of forming a finer graft pattern, the visible region (360
〜700nm)に極大吸収波長を有するレーザー走査露光、若しくは水銀灯等による紫 外領域を含む露光とフォトマスクを用いるパターン露光が好ましレ、。 Laser scanning exposure having a maximum absorption wavelength (up to 700 nm) or exposure including an ultraviolet region with a mercury lamp or the like and pattern exposure using a photomask are preferred.
[0074] 前記レーザー走査露光の好ましい前記極大吸収波長は 360nm〜550nmであり、 より好ましくは 365nm〜450nmである。 [0074] The maximum absorption wavelength of the laser scanning exposure is preferably 360 nm to 550 nm, more preferably 365 nm to 450 nm.
[0075] また、露光エネルギーとしては、 lOOOmj/cm2以下であることが好ましく 500mj/ cm2以下がより好ましぐ 300mj/cm2以下がより好ましい。 [0075] Further, as the exposure energy, lOOOmj / cm 2 or less It is preferable 500 mj / cm 2 or less and more preferably more preferably fixture 300 mj / cm 2 or less.
[0076] 露光に用いられる光源としては、紫外光、深紫外光、レーザー光等が挙げられ、具 体的には、紫外光、 i線、 g線、 KrF、 ArFなどのエキシマレーザーが用いられる。中 でも、好ましくは、 i線、 g線、エキシマレーザーである。 [0076] Examples of light sources used for exposure include ultraviolet light, deep ultraviolet light, and laser light. Specifically, excimer lasers such as ultraviolet light, i-line, g-line, KrF, and ArF are used. . Of these, i-line, g-line, and excimer laser are preferable.
[0077] 本発明の導電性パターン形成方法における前記グラフトポリマー前駆体は、前述 の積層体に含有されるグラフトポリマー前駆体と同様であり、好ましい例も同様である[0077] The graft polymer precursor in the conductive pattern forming method of the present invention is the same as the graft polymer precursor contained in the laminate, and preferred examples are also the same.
Yes
[0078] 本発明における前記グラフトポリマー生成工程により形成されたグラフトパターンの 解像度は、前記パターン露光における露光条件に左右される。  [0078] The resolution of the graft pattern formed by the graft polymer production step in the present invention depends on the exposure conditions in the pattern exposure.
本発明における前記グラフトポリマー生成工程により、超微細なグラフトポリマーパ ターンの形成が可能であり、高精細のパターン露光を施すことにより、露光に応じた 高精細なグラフトポリマーパターンが形成される。高精細なグラフトポリマーパターン 形成のための露光方法としては、前述の通り、光学系を用いた光ビーム走査露光、 マスクを用いた露光などが挙げられ、所望のパターンの解像度に応じた露光方法を とれば'よい。  According to the graft polymer generation step of the present invention, an ultrafine graft polymer pattern can be formed, and a high-definition graft polymer pattern corresponding to the exposure is formed by performing high-definition pattern exposure. As described above, the exposure method for forming a high-definition graft polymer pattern includes light beam scanning exposure using an optical system, exposure using a mask, and the like. Take it.
特に、ラインアンドスペースの線幅が lOOOnm以下の超微細なグラフトポリマーパタ ーンを形成する際のパターン露光としては、具体的には、 i線ステッパー、 g線ステツ パー、 KrFステッパー、 ArFステッパーのようなステッパー露光や、二光束干渉露光 機による露光などが挙げられる。  In particular, pattern exposure when forming an ultra-fine graft polymer pattern with a line-and-space line width of lOOOnm or less includes the i-line stepper, g-line stepper, KrF stepper, and ArF stepper. Such stepper exposure, and exposure with a two-beam interference exposure machine.
[0079] このように、本発明におけるグラフトポリマー生成工程において、ガラス基材表面に グラフトポリマー生成領域と非生成領域とが形成された基材は、露光後、溶剤浸漬な どの処理を行って、残存するグラフトポリマー前駆体やホモポリマーを除去し精製す る。具体的には、水やアセトンによる洗浄、乾燥などが挙げられる。グラフトポリマー前 駆体やホモポリマーの除去性の観点から、超音波などの手段を採ることが好ましレ、。 精製後の基材は、その表面に残存するグラフトポリマー前駆体やホモポリマーが完 全に除去され、基材と強固に結合したパターン状のグラフトポリマーのみが存在する ことになる。 [0079] Thus, in the graft polymer production step of the present invention, the substrate on which the graft polymer production region and the non-production region are formed on the surface of the glass substrate is subjected to treatment such as solvent immersion after exposure, Remove and purify the remaining graft polymer precursor and homopolymer The Specifically, washing with water or acetone, drying and the like can be mentioned. From the viewpoint of removal of the graft polymer precursor and homopolymer, it is preferable to use ultrasonic means. In the purified substrate, the graft polymer precursor and homopolymer remaining on the surface are completely removed, and only the patterned graft polymer firmly bonded to the substrate exists.
[0080] 上記本発明におけるグラフトポリマー生成工程を経由することにより、露光の解像度 に応じた微細なパターンが容易に形成されることから、その応用範囲は広い。  [0080] By passing through the graft polymer production step in the present invention, a fine pattern corresponding to the resolution of exposure can be easily formed, so the application range is wide.
本発明におけるグラフトポリマー生成工程の方法により得られたグラフトポリマーパ ターンは、例えば、微細加工用レジスト等に適用することができる。  The graft polymer pattern obtained by the method of the graft polymer production step in the present invention can be applied to, for example, a fine processing resist.
[0081] (導電性膜形成工程) [0081] (Conductive film forming step)
次に、本発明の導電性パターン形成方法における導電性膜を形成する工程 (導電 性膜形成工程)について説明する。  Next, a process of forming a conductive film (conductive film forming process) in the conductive pattern forming method of the present invention will be described.
本工程では、生成されたグラフトポリマーに無電解めつき触媒又はその前駆体を吸 着させた後、無電解めつきを行い、導電性膜 (以下、単に「めっき膜」ともいう。)を形 成する工程である。  In this step, an electroless plating catalyst or a precursor thereof is adsorbed on the resulting graft polymer, and then electroless plating is performed to form a conductive film (hereinafter also simply referred to as “plating film”). Process.
[0082] (めっき膜の形成) [0082] (Formation of plating film)
導電性膜形成工程は、グラフトポリマーが有する極性基に対し、無電解めつき触媒 又はその前駆体を吸着させた後、無電解めつきを行い、めっき膜を形成する方法で ある。この方法により、めっき膜からなる導電性膜が形成される。  The conductive film forming step is a method for forming a plating film by performing electroless plating after adsorbing an electroless plating catalyst or a precursor thereof to a polar group of the graft polymer. By this method, a conductive film made of a plating film is formed.
このように、めっき膜は、グラフトポリマーの極性基に吸着している触媒や前駆体に 対し無電解めつきされて形成されることから、めっき膜とグラフトポリマーとが強固に結 合しており、その結果、基材とめつき膜との密着性に優れると共に、めっき条件により 導電性を調整することができるという利点を有する。  In this way, the plating film is formed by electroless attachment to the catalyst or precursor adsorbed on the polar group of the graft polymer, so that the plating film and the graft polymer are firmly bonded. As a result, the adhesion between the substrate and the adhesive film is excellent, and the conductivity can be adjusted according to the plating conditions.
[0083] まず、無電解めつき触媒又はその前駆体の付与方法について説明する。 First, a method for applying an electroless plating catalyst or a precursor thereof will be described.
本発明において用いられる無電解めつき触媒とは、主に 0価金属であり、 Pd、 Ag、 Cu、 Ni、 Al、 Fe、 Coなどが挙げられる。本発明においては、特に、 Pd、 Agがその取 り扱い性の良さ、触媒能の高さから好ましい。 0価金属を相互作用性領域に固定する 手法としては、例えば、グラフトポリマーの極性基と相互作用するように荷電を調節し た金属コロイドを、グラフトポリマーが生成した基材に付与する手法が用いられる。一 般に、金属コロイドは、荷電を持った界面活性剤又は荷電を持った保護剤が存在す る溶液中において、金属イオンを還元することにより作製することができる。金属コロ イドの荷電は、ここで使用される界面活性剤又は保護剤により調節することができ、こ のように荷電を調節した金属コロイドを、グラフトポリマーが有する極性基と相互作用 させることで、グラフトポリマーに金属コロイド(無電解めつき触媒)を付着させることが できる。 The electroless plating catalyst used in the present invention is mainly a zero-valent metal, and examples thereof include Pd, Ag, Cu, Ni, Al, Fe, and Co. In the present invention, Pd and Ag are particularly preferred because of their good handleability and high catalytic ability. As a method for fixing the zero-valent metal to the interactive region, for example, the charge is adjusted so as to interact with the polar group of the graft polymer. A method of applying the colloidal metal colloid to the base material on which the graft polymer is formed is used. In general, a metal colloid can be prepared by reducing metal ions in a solution containing a charged surfactant or a charged protective agent. The charge of the metal colloid can be adjusted by the surfactant or the protective agent used here, and the metal colloid whose charge is adjusted in this way interacts with the polar group of the graft polymer. Metal colloid (electroless plating catalyst) can be attached to the graft polymer.
[0084] 本発明において用いられる無電解めつき触媒前駆体とは、化学反応により無電解 めっき触媒となりうるものであれば、特に制限なく使用することができる。主には上記 無電解めつき触媒で用いた 0価金属の金属イオンが用いられる。無電解めつき触媒 前駆体である金属イオンは、還元反応により無電解めつき触媒である 0価金属になる 。無電解めつき触媒前駆体である金属イオンはグラフトポリマーが生成した基材に付 与した後、無電解めつき浴への浸漬前に、別途還元反応により 0価金属に変化させ て無電解めつき触媒としてもよ!/、し、無電解めつき触媒前駆体のまま無電解めつき浴 に浸漬し、無電解めつき浴中の還元剤により金属(無電解めつき触媒)に変化させて あよい。  [0084] The electroless plating catalyst precursor used in the present invention can be used without particular limitation as long as it can become an electroless plating catalyst by a chemical reaction. The metal ions of the zero-valent metal used in the above electroless plating catalyst are mainly used. Electroless plating catalyst The metal ion that is a precursor becomes a zero-valent metal that is an electroless plating catalyst by a reduction reaction. After the metal ion, which is an electroless plating catalyst precursor, is applied to the base material on which the graft polymer is formed, it is converted into a zero-valent metal by a separate reduction reaction before immersion in the electroless plating bath. It can also be used as a catalyst! /, Immersed in an electroless plating bath as an electroless plating catalyst precursor, and changed to a metal (electroless plating catalyst) by a reducing agent in the electroless plating bath. Good.
[0085] 実際には、無電解めつき触媒前駆体である金属イオンは、金属塩の状態でグラフト ポリマーに付与する。使用される金属塩としては、適切な溶媒に溶解して金属イオン と塩基(陰イオン)とに解離されるものであれば特に制限はなぐ M (NO ) n、 MCln、  [0085] In practice, the metal ion that is an electroless plating catalyst precursor is imparted to the graft polymer in the form of a metal salt. The metal salt used is not particularly limited as long as it is dissolved in a suitable solvent and dissociated into a metal ion and a base (anion). M (NO) n, MCln,
3  Three
M (SO )、 M (PO ) (Mは、 n価の金属原子を表す)などが挙げられる。金属ィ M (SO), M (PO) (M represents an n-valent metal atom), and the like. Metal
2/n 4 3/n 4 2 / n 4 3 / n 4
オンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例とし ては、例えば、 Agイオン、 Cuイオン、 A1イオン、 Niイオン、 Coイオン、 Feイオン、 Pd イオンが挙げられ、 Agイオン、 Pdイオンが触媒能の点で好ましい。  As on, those obtained by dissociating the above metal salts can be preferably used. Specific examples include Ag ion, Cu ion, A1 ion, Ni ion, Co ion, Fe ion, and Pd ion, and Ag ion and Pd ion are preferable in terms of catalytic ability.
[0086] 無電解めつき触媒である金属コロイド、或いは、無電解めつき触媒前駆体である金 属塩をグラフトポリマーに付与する方法としては、金属コロイドを適当な分散媒に分散 、或いは、金属塩を適切な溶媒で溶解し、解離した金属イオンを含む溶液を調製し、 その溶液をグラフトポリマーが生成した基材に塗布する力、、或いは、その溶液中にグ ラフトポリマーが生成した基材を浸漬すればょレ、。金属イオンを含有する溶液を接触 させることで、グラフトポリマーが有する極性基に、イオン イオン相互作用、又は、双 極子 イオン相互作用を利用して金属イオンを付着させること、或いは、相互作用性 領域に金属イオンを含浸させることができる。このような付着又は含浸を充分に行な わせるという観点からは、接触させる溶液中の金属イオン濃度、或いは金属塩濃度 は 0. 0;!〜 50質量%の範囲であることが好ましぐ 0. ;!〜 30質量%の範囲であること が更に好ましい。また、接触時間としては、 1分〜 24時間程度であることが好ましぐ 5 分〜 1時間程度であることがより好ましい。 [0086] As a method for applying a metal colloid as an electroless plating catalyst or a metal salt as an electroless plating catalyst precursor to a graft polymer, the metal colloid is dispersed in a suitable dispersion medium, or a metal Prepare a solution containing the dissociated metal ions by dissolving the salt in an appropriate solvent, and apply the solution to the substrate on which the graft polymer is formed, or the substrate on which the graft polymer is formed in the solution Soak it. Contact solution containing metal ions By doing so, metal ions can be attached to polar groups of the graft polymer using ion ion interaction or dipolar ion interaction, or the interaction region can be impregnated with metal ions. . From the viewpoint of sufficiently performing such adhesion or impregnation, the metal ion concentration or the metal salt concentration in the contacted solution is preferably in the range of 0.0; More preferably, it is in the range of! -30 mass%. The contact time is preferably about 1 minute to 24 hours, more preferably about 5 minutes to 1 hour.
[0087] 次に、無電解めつき方法について説明する。  [0087] Next, an electroless plating method will be described.
無電解めつき触媒又はその前駆体が付与された基材に対して、無電解めつきを行 うことで、グラフトポリマー生成領域に応じた導電性膜が形成される。  By performing electroless plating on the substrate to which the electroless plating catalyst or its precursor is applied, a conductive film corresponding to the graft polymer generation region is formed.
無電解めつきとは、めっきとして析出させたい金属イオンを溶力、した溶液を用いて、 化学反応によって金属を析出させる操作のことをレ、う。  Electroless plating refers to the operation of depositing metal by chemical reaction using a solution in which the metal ions to be deposited as a plating solution are dissolved.
[0088] 本工程における無電解めつきは、例えば、無電解めつき触媒が付与された基材を、 水洗して余分な無電解めつき触媒 (金属)を除去した後、無電解めつき浴に浸漬して 行なう。使用される無電解めつき浴としては、一般的に知られている無電解めつき浴 を使用すること力できる。  [0088] The electroless plating in this step is performed, for example, by washing the substrate provided with the electroless plating catalyst with water to remove excess electroless plating catalyst (metal), and then electroless plating bath. Immerse in As the electroless bath used, a generally known electroless bath can be used.
[0089] また、無電解めつき触媒前駆体が付与された基材の場合、つまり、無電解めつき触 媒前駆体がグラフトポリマーに付着又は含浸した状態の基材を無電解めつき浴に浸 漬する場合には、基材を水洗して余分な前駆体 (金属塩など)を除去した後、無電解 めっき浴中へ浸漬される。この場合には、無電解めつき浴中において、前駆体の還 元とこれに引き続き無電解めつきが行われる。ここ使用される無電解めつき浴としても 、上記同様、一般的に知られている無電解めつき浴を使用することができる。  [0089] Further, in the case of a substrate provided with an electroless plating catalyst precursor, that is, a substrate in a state where the electroless plating catalyst precursor adheres to or is impregnated with the graft polymer is used as an electroless plating bath. In the case of immersion, the substrate is washed with water to remove excess precursor (metal salt, etc.) and then immersed in an electroless plating bath. In this case, in the electroless plating bath, the precursor is reduced and subsequently electroless plating is performed. As the electroless bath used here, a generally known electroless bath can be used as described above.
[0090] 一般的な無電解めつき浴の組成としては、 1.めっき用の金属イオン、 2.還元剤、 3 .金属イオンの安定性を向上させる添加剤(安定剤)が主に含まれている。このめつき 浴には、これらに加えて、めっき浴の安定剤など公知の添加物が含まれていてもよい [0090] The composition of a general electroless plating bath mainly includes 1. metal ions for plating, 2. reducing agents, 3. additives that improve the stability of metal ions (stabilizers). ing. In addition to these, this plating bath may contain known additives such as a plating bath stabilizer.
Yes
無電解めつき浴に用いられる金属の種類としては、銅、すず、鉛、ニッケル、金、パ ラジウム、ロジウムが知られており、中でも、導電性の観点からは、銅、金が特に好ま しい。 Copper, tin, lead, nickel, gold, palladium, and rhodium are known as the types of metals used in electroless plating baths, and copper and gold are particularly preferred from the viewpoint of conductivity. That's right.
[0091] また、上記金属に合わせて最適な還元剤、添加物がある。例えば、銅の無電解め つき浴は、銅塩として Cu (SO ) 、還元剤として HCOH、添加剤として銅イオンの安  [0091] Further, there are optimum reducing agents and additives in accordance with the above metals. For example, a copper electroless bath has Cu (SO) as the copper salt, HCOH as the reducing agent, and copper ion as the additive.
4 2  4 2
定剤である EDTAやロッシエル塩などのキレート剤が含まれている。また、 CoNiPの 無電解めつきに使用されるめつき浴には、その金属塩として硫酸コバルト、硫酸ニッ ケル、還元剤として次亜リン酸ナトリウム、錯化剤としてマロン酸ナトリウム、りんご酸ナ トリウム、こはく酸ナトリウムが含まれている。また、ノ ラジウムの無電解めつき浴は、金 属イオンとして(Pd (NH ) ) C1、還元剤として NH として ED  Chelating agents such as EDTA and Rossiel salt are included. In addition, the bath used for electroless plating of CoNiP includes cobalt sulfate, nickel sulfate as the metal salt, sodium hypophosphite as the reducing agent, sodium malonate as the complexing agent, and sodium malate. Contains sodium succinate. In addition, the electroless plating bath of noradium is (Pd (NH)) C1 as a metal ion and ED as NH as a reducing agent.
3 4 2 3、 H NNH、安定化剤  3 4 2 3, H NNH, stabilizer
2 2  twenty two
TAが含まれている。これらのめっき浴には、上記成分以外の成分が入っていてもよ い。  TA is included. These plating baths may contain components other than the above components.
[0092] このようにして形成される導電性膜の膜厚は、めっき浴の金属塩又は金属イオン濃 度、めっき浴への浸漬時間、或いは、めっき浴の温度などにより制御することができる 1S 導電性の観点からは、 0. 5 m以上であることが好ましぐ 3 m以上であること 力はり好ましい。また、めっき浴への浸漬時間としては、 1分〜 3時間程度であることが 好ましく、 1分〜 1時間程度であることがより好ましい。  [0092] The thickness of the conductive film thus formed can be controlled by the concentration of the metal salt or metal ion in the plating bath, the immersion time in the plating bath, the temperature of the plating bath, or the like. From the viewpoint of conductivity, 0.5 m or more is preferable, and 3 m or more is preferable. In addition, the immersion time in the plating bath is preferably about 1 minute to 3 hours, and more preferably about 1 minute to 1 hour.
[0093] 以上のようにして得られる導電性膜は、 SEMによる断面観察により、グラフトポリマ 一膜中に無電解めつき触媒やめつき金属の微粒子がぎっしりと分散しており、更にそ の上に比較的大きな粒子が析出して!/、ることが確認された。界面はグラフトポリマーと 微粒子とのハイブリッド状態であるため、基材表面の平均粗さ(Rz)が 3 m以下であ つても、基材(有機成分)と無機物(無電解めつき触媒又はめつき金属)との密着性が 良好であった。  [0093] The conductive film obtained as described above has finely dispersed fine particles of electroless plating catalyst and plating metal in the graft polymer film by cross-sectional observation by SEM. It was confirmed that relatively large particles were deposited! Since the interface is a hybrid state of the graft polymer and fine particles, even if the average roughness (Rz) of the substrate surface is 3 m or less, the substrate (organic component) and the inorganic substance (electroless plating catalyst or plating) Adhesion with (metal) was good.
[0094] (電気めつき処理工程)  [0094] (Electric plating process)
また、導電性膜形成工程における無電解めつき終了後、電気めつき処理工程を有 すること力 S好ましい。即ち、電気めつきは、前述の無電解めつきにより得られた導電性 膜を電極として行う。これにより基材との密着性に優れた導電性膜をベースとして、そ こに新たに任意の厚みをもつめっき膜を容易に形成することができる。この工程を付 加することにより、めっき膜を目的に応じた厚みに形成することができる。  In addition, it is preferable to have an electroplating treatment step after completion of electroless plating in the conductive film forming step. That is, electroplating is performed using the conductive film obtained by electroless plating as described above as an electrode. As a result, it is possible to easily form a new plating film having an arbitrary thickness on the basis of the conductive film having excellent adhesion to the substrate. By adding this step, the plating film can be formed to a thickness according to the purpose.
[0095] 本発明における電気めつきの方法としては、従来公知の方法を用いることができる 。なお、電気めつきに用いられる金属としては、銅、クロム、鉛、ニッケル、金、銀、す ず、亜鉛などが挙げられ、導電性の観点から、銅、金、銀が好ましぐ銅がより好まし い。 [0095] As a method of electroplating in the present invention, a conventionally known method can be used. . Examples of metals used for electrical plating include copper, chromium, lead, nickel, gold, silver, tin, and zinc. From the viewpoint of conductivity, copper, gold, and silver are preferred. More preferred.
[0096] 電気めつきにより得られるめっき膜の膜厚については、用途に応じて異なるもので あり、めっき浴中に含まれる金属濃度、浸漬時間、或いは、電流密度などを調整する ことでコン卜ローノレすること力 Sでさる。  [0096] The thickness of the plating film obtained by electroplating varies depending on the application, and can be adjusted by adjusting the concentration of metal contained in the plating bath, the immersion time, or the current density. The power to roll up with S.
[0097] 以上の通り、本発明の導電性パターン形成方法により、基材との密着性に優れ、且 つ、超微細な導電性膜 (めっき膜)を有する導電性パターンをガラス基材上に形成す ること力 Sでさる。  [0097] As described above, a conductive pattern having excellent adhesion to a substrate and having an ultrafine conductive film (plating film) is formed on a glass substrate by the method for forming a conductive pattern of the present invention. The forming force S is used.
[0098] 3.導電性パターン  [0098] 3. Conductive pattern
本発明の導電性パターンは、前述の導電性パターン形成方法を用いて形成された ものであり、プリント配線基板、薄層トランジスタなど、精細でかつ導電性に優れた微 細配線を必要とする各種の用途に適用できる。  The conductive pattern of the present invention is formed by using the conductive pattern forming method described above, and various kinds of fine wiring that requires fine and excellent conductivity, such as a printed wiring board and a thin layer transistor. It can be applied to any use.
[0099] 4.プリント配線基板  [0099] 4. Printed circuit board
本発明のプリント配線基板は、前述の導電性パターン形成方法を用いて形成され た導電性パターンを備えたことを特徴とする。プリント配線基板が前記導電性パター ン形成方法を用いて形成される導電性パターンを備えることにより、高精細でかつ導 電性に優れた微細配線を広い面積にわたって、膜厚、膜質を均一にすることができ る。これにより、信頼性の高い配線、電極を有するプリント配線基板とすることができる  The printed wiring board of the present invention is characterized by comprising a conductive pattern formed using the above-described conductive pattern forming method. By providing the conductive pattern formed on the printed wiring board using the conductive pattern forming method, the fine wiring with high definition and excellent conductivity is made uniform over a wide area with a uniform film thickness and film quality. be able to. Thereby, it can be set as the printed wiring board which has wiring with high reliability and an electrode.
[0100] 本発明により得られる高精細で導電性に優れた微細配線は、従来の真空成膜法な どに比べて、広い面積にわたって膜厚や膜質が均一な金属膜を成膜することができ 、信頼性の高い配線、電極などとすること力 Sできる。さらに、莫大な設備投資が必要 にないため、消費エネルギーは少なくて済む。真空成膜装置を用いた方法は、基板 の全面に金属膜を成膜した後、その不要部分をエッチングにより除去することで、電 気配線パターンを形成する力 本発明においては配線の解像度が限定されるため、 金属材料の無駄がなレ、ことから環境への負荷が極めて少なレ、。 [0100] The fine wiring with high definition and excellent conductivity obtained by the present invention can form a metal film having a uniform film thickness and film quality over a wide area as compared with the conventional vacuum film-forming method. It is possible to use highly reliable wiring and electrodes. In addition, it does not require huge capital investment, so it consumes less energy. The method using the vacuum film-forming apparatus is the ability to form an electric wiring pattern by forming a metal film on the entire surface of the substrate and then removing unnecessary portions by etching. In the present invention, the wiring resolution is limited. As a result, there is no waste of metal materials, so the burden on the environment is extremely low.
[0101] 前記プリント配線基板は、導電性を更に向上させる観点から、前記導電性パターン 形成方法を用いて形成される導電性膜 (導電性パターン)を備えた後、電気めつき( 金属めつき)処理工程を設けて形成されることが好ましレ、。前記金属めつきとしては、 同めつきであることが好ましレ、。 [0101] From the viewpoint of further improving the conductivity, the printed wiring board has the conductive pattern. It is preferable to provide a conductive film (conductive pattern) formed using a formation method and then to provide an electrical plating (metal plating) treatment step. As the metal plating, it is preferable that the metal plating is the same.
[0102] なお、本発明のプリント配線基板を作製する場合、めっき膜の膜厚は、導電性の観 点から、 0. 3 m以上であることが好ましぐ 3 m以上であることがより好ましい。 [0102] When the printed wiring board of the present invention is manufactured, the thickness of the plating film is preferably 0.3 m or more from the viewpoint of conductivity, more preferably 3 m or more. preferable.
[0103] 5.薄層トランジスタ [0103] 5. Thin layer transistor
本発明の薄層トランジスタは、前述の導電性パターン形成方法を用いて形成された 導電性パターンを備えたことを特徴とする。  The thin layer transistor of the present invention is characterized by having a conductive pattern formed by using the conductive pattern forming method described above.
[0104] 更に詳細には、本発明の薄層トランジスタは前記導電性パターン形成方法を用い て形成された導電性パターンである、ゲート電極、ドレイン電極、ソース電極又は金 属配線を有することが好ましレ、。 More specifically, the thin film transistor of the present invention preferably has a gate electrode, a drain electrode, a source electrode, or a metal wiring, which is a conductive pattern formed by using the conductive pattern forming method. Masle.
[0105] 薄層トランジスタが前記導電性パターン形成方法を用いて形成される導電性バタ ーンを備えることにより、高精細でかつ導電性に優れた微細配線を広い面積にわた つて、膜厚、膜質が均一に形成することができる。これにより、信頼性の高い配線、電 極を有する薄層トランジスタとすることができる。 [0105] By providing the conductive pattern formed using the conductive pattern forming method, the thin-layer transistor has a high-definition and highly conductive fine wiring over a wide area. The film quality can be formed uniformly. Thus, a thin layer transistor having highly reliable wiring and electrodes can be obtained.
[0106] 6.装置 [0106] 6. Equipment
本発明の装置は、前記プリント基板又は薄層トランジスタを備えたことを特徴とする このような装置としては、液晶表示装置 (LCD)、フィールドェミッション表示装置 (F ED)、電気泳動表示装置 (EPD)、プラズマ表示装置 (PDP)、エレクト口クロミック表 示装置 (ECD)、エレクト口ルミネッセント表示装置 (ELD)などのフラットパネルデイス プレイが挙げられる。本発明のプリント配線基板又は薄層トランジスタを備えた装置と することにより、所望の解像度で基板との密着性も良好であり、装置の小型化、高集 積化を達成することができる。  The device of the present invention is characterized by comprising the printed circuit board or the thin layer transistor. Examples of such a device include a liquid crystal display device (LCD), a field emission display device (FED), an electrophoretic display device ( Flat panel displays such as EPD), plasma display (PDP), electochromic display (ECD), and electoluminescent display (ELD). By using the printed wiring board or the thin film transistor according to the present invention, the adhesiveness to the substrate is good at a desired resolution, and the device can be miniaturized and highly integrated.
[0107] 本発明の装置としては、前記プリント配線基板又は薄層トランジスタを備えたこと以 外は、特に限定されず、公知の構成要素を有することができ、中でも、表示装置であ るが好ましい。 [0107] The device of the present invention is not particularly limited except that it includes the printed wiring board or the thin-layer transistor, and can have known constituent elements. Among them, a display device is preferable. .
[0108] 以上のように、本発明の前記により得られた導電性パターンを適用したゲート電極、 ドレイン電極、ソース電極或いは金属配線を有する、液晶表示装置(LCD)、フィ一 ルドエミッション表示装置 (FED)、電気泳動表示装置 (EPD)、プラズマ表示装置 (P DP)、エレクト口クロミック表示装置(ECD)、エレクト口ルミネッセント表示装置(ELD) などのフラットパネルディスプレイは、所望の解像度で基板との密着性に優れた電極 や配線を容易に形成でき、 TFTの小型化、高性能化、或いは液晶表示装置などの 配線の低抵抗化のために導電層が使用されるすべての場合に、有効である。 As described above, the gate electrode to which the conductive pattern obtained by the above of the present invention is applied, Liquid crystal display (LCD), field emission display (FED), electrophoretic display (EPD), plasma display (PDP), electochromic display (with drain electrode, source electrode or metal wiring) Flat panel displays such as ECD) and Electric Luminescent Display (ELD) can easily form electrodes and wiring with excellent resolution and adhesion to the substrate with the desired resolution. This is effective in all cases where a conductive layer is used to reduce the resistance of wiring such as display devices.
[0109] 本発明における好適な液晶表示装置は、ドライ成膜に代わって、湿式成膜による電 極或いは配線の形成が求められる場合や、表示面積の大面積化が求められる場合 に極めて有用である。また、本発明における好適なアクティブマトリックス型表示装置 は、フラットパネルディスプレイのみならず、フラットパネル型イメージセンサにも適用 すること力 Sでき、本発明の薄層トランジスタ (TFT素子ともいう。)を組み込んだァクテ イブマトリクス基板は種々の液晶表示装置に好適に使用しうる。 The preferred liquid crystal display device of the present invention is extremely useful when it is required to form electrodes or wiring by wet film formation instead of dry film formation, or when a large display area is required. is there. In addition, the active matrix display device suitable for the present invention can be applied not only to a flat panel display but also to a flat panel image sensor, and incorporates the thin layer transistor (also referred to as a TFT element) of the present invention. The active matrix substrate can be suitably used for various liquid crystal display devices.
実施例  Example
[0110] 以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれに限定 されるものではない。  [0110] Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0111] 合成例 1 :重合開始層形成ポリマー T1 [0111] Synthesis Example 1: Polymerization initiation layer forming polymer T1
ィルガキュア 2959 (チバスぺシャリティケミカルズ社製) 9· OOgを THF30mLに溶 解し、 p—メトキシフエノール 20mgと 2—メタクリロイルォキシェチルイソシァネート 6· 28g、ジブチルチンジラウレート 81mgを添加し、 50°C、 4時間反応させた。溶媒を減 圧除去し、酢酸ェチルーへキサンを用い再結晶し、白色固体を得た。  Irgacure 2959 (manufactured by Ciba Specialty Chemicals) 9 · OOg was dissolved in 30mL of THF, and 20mg of p-methoxyphenol, 6 · 28g of 2-methacryloyloxychetyl isocyanate, and 81mg of dibutyltin dilaurate were added. The reaction was performed at ° C for 4 hours. The solvent was removed under reduced pressure, and recrystallization was performed using ethyl hexane acetate to obtain a white solid.
次に、この白色固体 10gをメチルェチルケトン 50mLに溶解、グリシジルメタクリレー ト 15. 7g、 AIBN 140mgを添加し、 70°Cに加温、 6時間反応させた。その後、この 溶液をへキサンで再沈殿することにより重合開始層形成ポリマー T1を得た。  Next, 10 g of this white solid was dissolved in 50 mL of methyl ethyl ketone, 15.7 g of glycidyl methacrylate and 140 mg of AIBN were added, and the mixture was heated to 70 ° C. and reacted for 6 hours. Thereafter, this solution was reprecipitated with hexane to obtain a polymerization initiation layer forming polymer T1.
なお、重合開始層形成ポリマー T1は、化合物(Q— Y)の具体例として挙げた例示 化合物 T1である。  The polymerization initiation layer-forming polymer T1 is the exemplified compound T1 given as a specific example of the compound (Q—Y).
[0112] 合成例 2 :重合開始層形成ポリマー T2 [0112] Synthesis Example 2: Polymerization initiation layer forming polymer T2
2, 4—ビストリクロロメチル一 6— (4—ヒドロキシフエニル)トリァジン 16. 4gを THF5 OmLに溶解し、 p—メトキシフエノール 20mgと 2—メタクリロイルォキシェチルイソシァ ネート 6· 28g、ジブチルチンジラウレート 81mgを添加し、 50°C、 4時間反応させた。 溶媒を減圧除去し、酢酸ェチルーへキサンを用い再結晶し、黄色固体を得た。 次に、この黄色固体 10gをジメチルァセトアミド 168mLに溶解、グリシジルメタクリレ ート 8. 85g、 AIBN 140mgを添加し、 70°Cに加温、 6時間反応させた。その後、こ の溶液をへキサンで再沈殿することにより重合開始層形成ポリマー T2を得た。なお、 重合開始層形成ポリマー T2は、化合物(Q— Y)の具体例として挙げた例示化合物 T2である。 2, 4-Bistrichloromethyl mono 6- (4-hydroxyphenyl) triazine 16. 4 g is dissolved in THF5 OmL, p-methoxyphenol 20 mg and 2-methacryloyloxychetyl isocyanate. 6.28 g of Nate and 81 mg of dibutyltin dilaurate were added and reacted at 50 ° C. for 4 hours. The solvent was removed under reduced pressure, and recrystallization was performed using ethyl hexane acetate to obtain a yellow solid. Next, 10 g of this yellow solid was dissolved in 168 mL of dimethylacetamide, 8.85 g of glycidyl methacrylate and 140 mg of AIBN were added, and the mixture was heated to 70 ° C. and reacted for 6 hours. Thereafter, this solution was reprecipitated with hexane to obtain a polymerization initiation layer forming polymer T2. The polymerization initiation layer forming polymer T2 is the exemplified compound T2 given as a specific example of the compound (Q—Y).
[0113] 合成例 3 :親水性ポリマー P1 [0113] Synthesis Example 3: Hydrophilic polymer P1
ポリアクリル酸(平均分子量 25, 000) 18gを DMAc300gに溶解し、ハイドロキノン ート 0. 25gを添加し、 65°C、 4時間反応させた。得られたポリマーの酸価は 7. 02me q/gであった。 IN水酸化ナトリウム水溶液でカルボキシル基を中和し、酢酸ェチル に加えポリマーを沈殿させ、よく洗浄し親水性ポリマー P1を得た。  18 g of polyacrylic acid (average molecular weight 25,000) was dissolved in 300 g of DMAc, 0.25 g of hydroquinone salt was added, and the mixture was reacted at 65 ° C. for 4 hours. The acid value of the obtained polymer was 7.02 meq / g. The carboxyl group was neutralized with IN sodium hydroxide aqueous solution, and the polymer was precipitated in addition to ethyl acetate and washed well to obtain hydrophilic polymer P1.
[0114] 合成例 4 :親水性ポリマー P2  [0114] Synthesis Example 4: Hydrophilic polymer P2
ポリアクリノレ酸(平均分子量 25, 000) 18gを DMAc300giこ溶角早し、グリコーノレ酸メ チル 9. OOgと炭酸水素ナトリウム 22gを添加し、 60°C、 8時間反応させた。その後、 1 N塩酸を用いて中和し、続いてハイドロキノン 0. 41gと 2—アタリロイルォキシェチル イソシァネート 21. 2gとジブチノレチンジラウレート 0. 40gを添カロし、 65。C、 4日寺間反 応させた。この溶液を酢酸ェチルに加えポリマーを沈殿させ、よく洗浄し親水性ポリ マー P2を得た。  18g of polyacryloleic acid (average molecular weight 25,000) was rapidly dissolved in DMAc300gi, 9.OOg of glycolenoleate and 22g of sodium bicarbonate were added, and reacted at 60 ° C for 8 hours. Then, neutralize with 1 N hydrochloric acid, and then add 0.41 g of hydroquinone, 21.2 g of 2-athaloyloxetyl isocyanate and 0.40 g of dibutinoretin dilaurate, 65. C, reacted for 4 days. This solution was added to ethyl acetate to precipitate the polymer, and washed well to obtain hydrophilic polymer P2.
[0115] 合成例 5 :重合開始層形成ポリマー T7  [0115] Synthesis Example 5: Polymerization initiation layer forming polymer T7
ィルガキュア 2959 (チバスぺシャリティケミカルズ社製) 9· OOgを THF30mLに溶 解し、 p—メトキシフエノール 20mgと 2—メタクリロイルォキシェチルイソシァネート 6· 28g、ジブチルチンジラウレート 81mgを添加し、 50°C、 4時間反応させた。溶媒を減 圧除去し、酢酸ェチルーへキサンを用い再結晶し、白色固体を得た。  Irgacure 2959 (manufactured by Ciba Specialty Chemicals) 9 · OOg was dissolved in 30mL of THF, and 20mg of p-methoxyphenol, 6 · 28g of 2-methacryloyloxychetyl isocyanate, and 81mg of dibutyltin dilaurate were added. The reaction was performed at ° C for 4 hours. The solvent was removed under reduced pressure, and recrystallization was performed using ethyl hexane acetate to obtain a white solid.
次に、この白色固体 10. Ogをメチルェチルケトン 35mLに溶解、 3—(トリメトキシシ リノレ)プロピノレメタクリレー卜 1 · 64g、 AIBN 65. Omgを添カロし、 70。Cにカロ温、 6日寺間 反応させた。その後、この溶液をへキサンで再沈殿することにより重合開始層形成ポ リマー T7を得た。 Next, dissolve this white solid 10. Og in 35 mL of methyl ethyl ketone, add 1-64 g of 3- (trimethoxylinole) propinoremethacrylate, AIBN 65. Omg, and add 70. C was warmed for 6 days. Thereafter, this solution is reprecipitated with hexane to thereby form a polymerization initiating layer-forming layer. Obtained Rimmer T7.
なお、重合開始層形成ポリマー Τ7は、化合物(Q Υ)の具体例として挙げた例示 化合物 Τ7である。  The polymerization initiation layer-forming polymer Τ7 is the exemplified compound Τ7 given as a specific example of the compound (QΥ).
[0116] 合成例 6 :重合開始層形成ポリマー Τ8 [0116] Synthesis Example 6: Polymer for forming polymerization initiation layer Τ8
Ν- [4- [4, 6 ビス(トリクロロメチル) 1 , 3, 5 トリアジンー2 ィル ]ー4ーヒド ロキシベンズアミド(富士フィルム(株)製) 40· Ogを THF200mLに溶解。トリェチル ァミン 15. 8mL、ピリジン 0. 60mLを添加し、氷浴にて 0°Cに冷却。無水メタクリル酸 12. 3gを滴下、室温で 12時間撹拌、その後溶媒を減圧除去し、油状物を得た。この 油状物をへキサンで晶出、ァセトニトリルで洗浄し、黄色固体を得た。  Ν- [4- [4, 6 Bis (trichloromethyl) 1, 3, 5 triazine-2-yl] -4-hydroxybenzamide (Fuji Film Co., Ltd.) 40 · Og dissolved in 200 mL THF. Triethylamine 15. 8mL and 0.66mL of pyridine were added and cooled to 0 ° C in an ice bath. 12.3 g of methacrylic anhydride was added dropwise and stirred at room temperature for 12 hours, and then the solvent was removed under reduced pressure to obtain an oil. The oil was crystallized from hexane and washed with acetonitrile to give a yellow solid.
次に、この黄色固体 10gを N, N ジメチルァセトアミド 62· 2mLに溶解、 3— (トリメ 卜キシシリノレ)プロピノレメタクリレー卜 0· 46g、 AIBN 115mg添カロし、 70。Cにカロ温、 6 時間反応させた。その後、反応溶液に THF30mLを加え、へキサンで最沈殿するこ とにより、重合開始層形成ポリマー T8を得た。  Next, 10 g of this yellow solid was dissolved in 62 · 2 mL of N, N dimethylacetamide, and 3- (trimethyloxylinole) propinoremethacrylate · 0 · 46 g and AIBN 115 mg were added. C was allowed to react for 6 hours at a warm temperature. Thereafter, 30 mL of THF was added to the reaction solution, followed by reprecipitation with hexane to obtain a polymerization initiation layer forming polymer T8.
なお、重合開始層形成ポリマー T8は、化合物(Q Y)の具体例として挙げた例示 化合物 T8である。  The polymerization initiation layer forming polymer T8 is the exemplified compound T8 given as a specific example of the compound (QY).
[0117] 合成例 7 :重合開始層形成ポリマー T9 [0117] Synthesis Example 7: Polymerization initiation layer forming polymer T9
ィルガキュア 2959 (チバスぺシャリティケミカルズ社製) 9· 00gを THF30mLに溶 解し、 p メトキシフエノール 20mgと 2 メタクリロイルォキシェチルイソシァネート 6· 28g、ジブチルチンジラウレート 81mgを添加し、 50°C、 4時間反応させた。溶媒を減 圧除去し、酢酸ェチルーへキサンを用い再結晶し、白色固体を得た。  Irgacure 2959 (Ciba Specialty Chemicals Co., Ltd.) 9000 g was dissolved in 30 mL of THF, 20 mg of p-methoxyphenol, 2 g of methacryloyloxychetyl isocyanate, 81 mg of dibutyltin dilaurate were added, and 50 ° C , Reacted for 4 hours. The solvent was removed under reduced pressure, and recrystallization was performed using ethyl hexane acetate to obtain a white solid.
次に、この白色固体 10. 0gをメチノレエチノレケトン 132mLに溶角早、次に力レンズ M OI (昭和電工社製) 8· 18g、ベンジノレメタタリレート 9· 29g, AIBN 287mgを添カロ し、 70°Cに加温、 6時間反応させた。その後、この溶液をへキサンで再沈殿すること により重合開始層形成ポリマー T9を得た。  Next, 10.0 g of this white solid was quickly dissolved in 132 mL of methinoretinoleketone, followed by power lens M OI (manufactured by Showa Denko) 8 · 18 g, benzenoremethacrylate 9 · 29 g, AIBN 287 mg. It was heated and heated to 70 ° C for 6 hours. Thereafter, this solution was reprecipitated with hexane to obtain a polymerization initiation layer forming polymer T9.
なお、重合開始層形成ポリマー T9は、化合物(Q Y)の具体例として挙げた例示 化合物 T9である。  The polymerization initiation layer forming polymer T9 is the exemplified compound T9 given as a specific example of the compound (QY).
[0118] 合成例 8 :重合開始層形成ポリマー T10 [0118] Synthesis Example 8: Polymerization initiation layer forming polymer T10
N- [4- [4, 6 ビス(トリクロロメチル) 1 , 3, 5 トリアジンー2 ィル ]ー4ーヒド ロキシベンズアミド(富士フィルム製) 40· Ogを THF200mLに溶解。トリエチノレアミン 15. 8mL、ピリジン 0. 60mLを添加し、氷浴にて 0°Cに冷却。無水メタクリル酸 12. 3 gを滴下、室温で 12時間撹拌、その後溶媒を減圧除去し、油状物を得た。この油状 物をへキサンで晶出、ァセトニトリルで洗浄し、黄色固体を得た。 N- [4- [4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine-2-yl] -4-hydride Roxybenzamide (Fuji Film) 40 · Og is dissolved in 200mL of THF. Add triethylenolemine (15.8 mL) and pyridine (0.60 mL) and cool to 0 ° C in an ice bath. 12.3 g of methacrylic anhydride was added dropwise and stirred at room temperature for 12 hours, and then the solvent was removed under reduced pressure to obtain an oil. This oil was crystallized from hexane and washed with acetonitrile to give a yellow solid.
次に、この黄色固体 10gを N, N—ジメチルァセトアミド 84. OmLに溶解、グリシジ ノレメタタリレート 7. 17g、ベンジノレメタタリレート 2. 96g、 AIBN 179mg添カロし、 70 °Cに加温、 6時間反応させた。その後、反応溶液に THF50mLを加え、へキサンで 最沈殿することにより、重合開始層形成ポリマー T10を得た。  Next, 10 g of this yellow solid was dissolved in 84 mL of N, N-dimethylacetamide, 7.17 g of glycidinomethacrylate, 2.96 g of benzenomethacrylate, and 179 mg of AIBN were added and heated to 70 ° C. The reaction was allowed to warm for 6 hours. Thereafter, 50 mL of THF was added to the reaction solution, and precipitation with hexane was performed to obtain a polymerization initiation layer forming polymer T10.
なお、重合開始層形成ポリマー T10は、化合物(Q— Y)の具体例として挙げた例 示化合物 T10である。  The polymerization initiation layer forming polymer T10 is the exemplified compound T10 given as a specific example of the compound (Q—Y).
[0119] 実施例 1 [0119] Example 1
(光開裂化合物結合工程)  (Photocleavable compound binding process)
ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行った。  Surface cleaning was performed on a glass substrate (Nippon Sheet Glass) by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.).
次に、前記例示化合物 T1を脱水ェチルメチルケトン(2—ブタノン)に溶力もて 20 質量0 /0溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは、 まず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前記 ガラス基板を 170°Cで 1時間加熱し、表面をェチルメチルケトンで洗浄した。その後、 エアーガンで乾燥して、例示化合物 T1がガラス基板に結合してなる重合開始層を有 する基板 A1を得た(重合開始層の厚み:5· 0 ^ 111) 0 Next, the exemplified compound T1 a Te also溶力dehydrated E chill methyl ketone (2-butanone) was prepared 20 mass 0/0 solution, it was spin-coated on the substrate surface. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Then dried with an air gun, Exemplified Compound T1 was obtained a substrate A1 to have a polymerization initiating layer formed by bonding a glass substrate (polymerization initiation layer thickness: 5 - 0 ^ 111) 0
[0120] (グラフトポリマー生成工程) [0120] (Graft polymer production process)
前記合成例 3で得られた親水性ポリマー P1 0. 5gを炭酸水素ナトリウム水溶液 4. 62g、ジメチルァセトアミド(DMAc) O. 05gおよびァセトニトリノレ 1 · 5gの混合溶媒に 溶解させてグラフトポリマー前駆体層形成用塗布液とした。  0.5 g of the hydrophilic polymer P1 obtained in Synthesis Example 3 above is dissolved in a mixed solvent of sodium hydrogen carbonate aqueous solution 4.62 g, dimethylacetamide (DMAc) O.05 g, and acetonitorinole 1.5 g to obtain a graft polymer precursor. A layer-forming coating solution was obtained.
上記で得られた前記基板 A1の片面表面に前記グラフトポリマー前駆体層形成用 塗布液をスピンコートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rp mで 20秒間回転させた。グラフトポリマー前駆体層形成用塗布液を塗布後の基板を 、 80°Cで 5分間乾燥し、グラフトポリマー前駆体層を形成した。 [0121] (露光) The above coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A1 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. The substrate after applying the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer. [0121] (Exposure)
グラフトポリマー前駆体層形成後の基板 Alを、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し, 7火にァセ トンで洗净した。  The substrate Al after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern with an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、表面にパターン状に形成されたグラフトポリマー層を有するガラ ス基板 B1を形成した。  As described above, a glass substrate B1 having a graft polymer layer formed in a pattern on the surface was formed.
[0122] 得られたパターンを原子間顕微鏡 AFM (ナノビクス 1000,セイコーインスツルメン ッ社製, DFMカンチレバー使用)で観察した。その結果、ガラス基板 B1の表面に線 幅 10 111、空隙幅 10 mが交互に存在するパターンが形成されていることが確認さ れ 。  [0122] The obtained pattern was observed with an atomic microscope AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern in which a line width of 10111 and a gap width of 10 m exist alternately was formed on the surface of the glass substrate B1.
[0123] (導電性素材層形成工程)  [0123] (Conductive material layer forming process)
<無電解めつき〉  <Electroless plating>
得られたガラス基板 B1を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。その後下記組成の無電解めつき浴 (pH : 12. 4)に 30分間浸漬して無電解めつきを行った。無電解めつき後、水で洗浄してエアーガン で乾燥した。  The obtained glass substrate B1 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. After that, electroless plating was performed by immersing in an electroless plating bath (pH: 12.4) having the following composition for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
無電解めつき浴の組成  Composition of electroless bath
水 300g  300 g of water
硫酸銅(II)五水和物 3. 0g  Copper (II) sulfate pentahydrate 3.0 g
EDTA— 2Na二水和物 8. 9g  EDTA— 2Na dihydrate 8.9 g
ポリエチレングリコーノレ(平均分子量 1000) 0. 03g  Polyethylene glycol (average molecular weight 1000) 0.03g
2, 2'—ビビリジノレ 0. 3mg  2, 2'—Bibiridinole 0.3 mg
エチレンジァミン 0. 12g  Ethylenediamine 0.12g
水酸化ナトリウム 2. 5g  Sodium hydroxide 2.5g
ホノレム ノレデヒド水溶 ί夜(36. 0—38. 0%) 1. 6g  Honolem Norede Dehydrated Water ί 夜 (36. 0—38. 0%) 1. 6g
[0125] この表面を電子顕微鏡(Miniscope TM— 1000 HITACHI製)で観察したとこ ろ線幅 10 m、空隙幅 10 mが交互に存在する導電性パターン 1が形成されて!/ヽ ることが確認された。 [0125] When this surface was observed with an electron microscope (Miniscope TM—1000 manufactured by HITACHI), a conductive pattern 1 with alternating line width of 10 m and gap width of 10 m was formed! / ヽ It was confirmed that
[0126] 実施例 2  [0126] Example 2
(光開裂化合物結合工程)  (Photocleavable compound binding process)
ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行った。  Surface cleaning was performed on a glass substrate (Nippon Sheet Glass) by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.).
次に、前記例示化合物 2を脱水ェチルメチルケトン(2—ブタノン)に溶力もて 15質 量%溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは、ま ず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前記ガ ラス基板を 170°Cで 1時間加熱し、表面をェチルメチルケトンで洗浄した。その後、ェ ァーガンで乾燥して、例示化合物 T2がガラス基板に結合してなる重合開始層を有す る基板 A2を得た(重合開始層の厚み:4. 1 ^ 111) 0 Next, a 15% by mass solution of the exemplified compound 2 in dehydrated ethylmethylketone (2-butanone) was prepared, and this was spin coated on the substrate surface. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour, and the surface was washed with ethyl methyl ketone. Thereafter, it was dried with an air gun to obtain a substrate A2 having a polymerization initiating layer formed by binding Exemplified Compound T2 to a glass substrate (polymerization initiating layer thickness: 4.1 ^ 111) 0
[0127] (グラフトポリマー生成工程)  [0127] (Graft polymer production process)
前記合成例 4で得られた親水性ポリマー P2 0. 5gを炭酸水素ナトリウム水溶液 4. 62g、ジメチルァセトアミド(DMAc) O. 05gおよびァセトニトリノレ 1 · 5gの混合溶媒に 溶解させてグラフトポリマー前駆体層形成用塗布液とした。  0.5 g of the hydrophilic polymer P2 obtained in Synthesis Example 4 above is dissolved in a mixed solvent of sodium hydrogen carbonate aqueous solution 4.62 g, dimethylacetamide (DMAc) O. 05 g, and acetonitrile-1.5 g of graft polymer precursor. A layer-forming coating solution was obtained.
上記で得られた前記基板 A2の片面表面に前記グラフトポリマー前駆体層形成用 塗布液をスピンコートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rp mで 20秒間回転させた。グラフトポリマー前駆体層形成用塗布液を塗布後の基板 A 2は、 80°Cで 5分間乾燥し、グラフトポリマー前駆体層を形成した。  The above coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A2 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. Substrate A 2 after application of the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
[0128] (露光)  [0128] (Exposure)
グラフトポリマー前駆体層形成後の基板 A2を、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し, 7火にァセ トンで洗净した。  The substrate A2 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、表面にパターン状に形成されたグラフトポリマー層を有するガラ ス基板 B2を形成した。  As described above, a glass substrate B2 having a graft polymer layer formed in a pattern on the surface was formed.
[0129] 得られたパターンを AFM (ナノビクス 1000,セイコーインスツルメンッ社製, DFM カンチレバー使用)で観察した。その結果、ガラス基板 B2の表面に線幅 10 m、空 隙幅 10〃 mが交互に存在するパターンが形成されていることが確認された。 [0129] The obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, the surface of glass substrate B2 has a line width of 10 m and is empty. It was confirmed that a pattern with alternating gap widths of 10 mm was formed.
[0130] (導電性素材層形成工程) [0130] (Conductive material layer formation process)
<無電解めつき〉  <Electroless plating>
得られたガラス基板 B2を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。  The obtained glass substrate B2 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun.
次に、下記組成の無電解めつき浴(市販品)に 30分間浸漬して、無電解めつきを行 つた。無電解めつき後、水で洗浄してエアーガンで乾燥した。  Next, it was immersed in an electroless plating bath (commercial product) having the following composition for 30 minutes to perform electroless plating. After electroless plating, it was washed with water and dried with an air gun.
[0131] 無電解めつき浴の組成 [0131] Composition of electroless bath
水 258g  258g of water
ATSアドカッパ一 IW— A 15mL  ATS Ad Kappa IW— A 15mL
ATSアドカッパ一 IW— M 24mL  ATS Ad Kappa IW— M 24mL
ATSアドカッパ一 IW— C 3mL  ATS Ad Kappa IW— C 3mL
[0132] この表面を電子顕微鏡(Miniscope TM— 1000 HITACHI製)で観察したとこ ろ線幅 10 m、空隙幅 10 mが交互に存在する導電性パターン 2が形成されて!/ヽ ることが確認された。  [0132] When this surface was observed with an electron microscope (Miniscope TM—1000 manufactured by HITACHI), it was confirmed that a conductive pattern 2 with alternating line width of 10 m and gap width of 10 m was formed! It was done.
[0133] 実施例 3  [0133] Example 3
(光開裂化合物結合工程)  (Photocleavable compound binding process)
ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行った。そのガラス基板 を 1質量%の 3—ァミノプロピルトリエトキシシラン (東京化成製)水溶液に浸漬し、 10 分間静置した。基板を取り出し、蒸留水で洗浄を行い、乾燥させた。  Surface cleaning was performed on a glass substrate (Nippon Sheet Glass) by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.). The glass substrate was immersed in a 1% by mass aqueous solution of 3-aminopropyltriethoxysilane (manufactured by Tokyo Chemical Industry) and allowed to stand for 10 minutes. The substrate was taken out, washed with distilled water and dried.
次に、前記例示化合物 T2を脱水ェチルメチルケトン(2 ブタノン)に溶力もて 15 質量0 /0溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは、 まず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前記 ガラス基板を 170°Cで 1時間加熱し、表面をェチルメチルケトンで洗浄した。その後、 エアーガンで乾燥して、例示化合物 T2がガラス基板に結合してなる重合開始層を有 する基板 A3を得た(重合開始層の厚み: 4. 1 m)。 Next, the exemplified compounds T2 to prepare dehydrated E chill methyl ketone (2-butanone) 15 mass溶力also Te 0/0 solution, it was spin-coated on the substrate surface. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A3 was dried with an air gun to obtain a substrate A3 having a polymerization initiating layer formed by binding Exemplified Compound T2 to a glass substrate (polymerization initiating layer thickness: 4.1 m).
[0134] (グラフトポリマー生成工程) 前記合成例 4で得られた親水性ポリマー P2 0. 5gを炭酸水素ナトリウム水溶液 4. 62g、ジメチルァセトアミド(DMAc) O. 05gおよびァセトニトリノレ 1 · 5gの混合溶媒に 溶解させてグラフトポリマー前駆体層形成用塗布液とした。 [0134] (Graft polymer production process) 0.5 g of the hydrophilic polymer P2 obtained in Synthesis Example 4 above is dissolved in a mixed solvent of sodium hydrogen carbonate aqueous solution 4.62 g, dimethylacetamide (DMAc) O. 05 g, and acetonitrile-1.5 g of graft polymer precursor. A layer-forming coating solution was obtained.
上記で得られた基板 A3の片面表面にグラフトポリマー前駆体層形成用塗布液をス ピンコートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rpmで 20秒間 回転させた。グラフトポリマー前駆体層形成用塗布液の塗布後の基板 A3は、 80°C で 5分間乾燥し、グラフトポリマー前駆体層を形成した。  A coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A3 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. Substrate A3 after application of the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
[0135] (露光) [0135] (Exposure)
グラフトポリマー前駆体層形成後の基板 A2を、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し, 7火にァセ トンで洗净した。  The substrate A2 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、表面にパターン状に形成されたグラフトポリマー層を有するガラ ス基板 B3を形成した。  As described above, a glass substrate B3 having a graft polymer layer formed in a pattern on the surface was formed.
[0136] 得られたパターンを AFM (ナノビクス 1000,セイコーインスツルメンッ社製, DFM カンチレバー使用)で観察した。その結果、ガラス基板 B3の表面に線幅 10 m、空 隙幅 10〃 mが交互に存在するパターンが形成されていることが確認された。  [0136] The obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern having a line width of 10 m and a gap width of 10 mm was alternately formed on the surface of the glass substrate B3.
[0137] (導電性素材層形成工程)  [0137] (Conductive material layer formation process)
<無電解めつき〉  <Electroless plating>
得られたガラス基板 B3を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。その後、前記実施例 1記載の無電解めつき浴 (pH : 12. 4)に 30分間浸漬して無電解めつきを行った。無電解めつき後、水で洗浄してェ ァーガンで乾燥した。  The obtained glass substrate B3 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. Thereafter, electroless plating was performed by immersing in the electroless plating bath (pH: 12.4) described in Example 1 for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
[0138] この表面を電子顕微鏡(Miniscope TM— 1000 HITACHI製)で観察したとこ ろ線幅 10 m、空隙幅 10 mが交互に存在する導電性パターン 3が形成されて!/ヽ ることが確認された。  [0138] When this surface was observed with an electron microscope (Miniscope TM—1000 manufactured by HITACHI), it was confirmed that a conductive pattern 3 having a line width of 10 m and a gap width of 10 m alternately formed was formed! It was done.
[0139] 実施例 4  [0139] Example 4
(光開裂化合物結合工程) ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行い、その基板を 3—アミ ノプロピルトリメトキシシランの 1質量%水溶液に 10分間浸漬、水で洗浄し、エアーガ ンで乾燥した。 (Photocleavable compound binding process) The surface of the glass substrate (Nippon Sheet Glass) was cleaned by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.), and the substrate was washed with 3-aminopropyltrimethoxysilane 1 It was immersed in a mass% aqueous solution for 10 minutes, washed with water, and dried with an air gun.
次に、前記例示化合物 T1を脱水ェチルメチルケトン(2—ブタノン)に溶力もて 20 質量0 /0溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは、 まず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前記 ガラス基板を 170°Cで 1時間加熱し、表面をェチルメチルケトンで洗浄した。その後、 エアーガンで乾燥して、例示化合物 T1がガラス基板に結合してなる重合開始層を有 する基板 A4を得た(重合開始層の厚み: 5· 0 m)。 Next, the exemplified compound T1 a Te also溶力dehydrated E chill methyl ketone (2-butanone) was prepared 20 mass 0/0 solution, it was spin-coated on the substrate surface. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A4 was dried with an air gun to obtain a substrate A4 having a polymerization initiating layer formed by binding Exemplified Compound T1 to a glass substrate (the thickness of the polymerization initiating layer: 5.0 m).
[0140] (グラフトポリマー生成工程) [0140] (Graft polymer production process)
前記合成例 3で得られた親水性ポリマー P1 0. 5gを炭酸水素ナトリウム水溶液 4. 62g、ジメチルァセトアミド(DMAc) O. 05gおよびァセトニトリノレ 1 · 5gの混合溶媒に 溶解させてグラフトポリマー前駆体層形成用塗布液とした。  0.5 g of the hydrophilic polymer P1 obtained in Synthesis Example 3 above is dissolved in a mixed solvent of sodium hydrogen carbonate aqueous solution 4.62 g, dimethylacetamide (DMAc) O. 05 g, and acetonitorinole 1.5 g to obtain a graft polymer precursor. A layer-forming coating solution was obtained.
上記で得られた前記基板 A4の片面表面に前記グラフト形成層用塗布液をスピンコ ートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rpmで 20秒間回転 させた。グラフトポリマー前駆体層形成用塗布液を塗布後の基板を、 80°Cで 5分間 乾燥し、グラフトポリマー前駆体層を形成した。  The coating solution for graft formation layer was spin-coated on one surface of the substrate A4 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. The substrate after the coating solution for forming the graft polymer precursor layer was applied was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
[0141] (露光) [0141] (Exposure)
グラフトポリマー前駆体層形成後の基板 A1を、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し, 7火にァセ トンで洗净した。  The substrate A1 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern with an exposure machine (UNIQURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、表面にパターン状に形成されたグラフトポリマー形成層を有する ガラス基板 B4を形成した。  As described above, a glass substrate B4 having a graft polymer forming layer formed in a pattern on the surface was formed.
[0142] 得られたパターンを原子間顕微鏡 AFM (ナノビクス 1000,セイコーインスツルメン ッ社製, DFMカンチレバー使用)で観察した。その結果、ガラス基板 B4の表面に線 幅 10 111、空隙幅 10 mが交互に存在するパターンが形成されていることが確認さ れ 。 [0142] The obtained pattern was observed with an atomic microscope AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern with alternating line width 10 111 and gap width 10 m was formed on the surface of glass substrate B4. It is.
[0143] (導電性素材層形成工程)  [0143] (Conductive material layer forming process)
<無電解めつき〉  <Electroless plating>
得られたガラス基板 B4を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。その後、実施例 2記載の市販無電解めつき浴 (AT Sアドカッパ一、 pH= 12. 7、奥野製薬工業 (株)製)に 20分間浸漬して、無電解め つきを行った。無電解めつき後、水で洗浄してエアーガンで乾燥した。  The obtained glass substrate B4 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. Thereafter, the electroless plating was carried out by immersing in a commercially available electroless plating bath described in Example 2 (ATS Adkappa, pH = 12.7, manufactured by Okuno Pharmaceutical Co., Ltd.) for 20 minutes. After electroless plating, it was washed with water and dried with an air gun.
[0144] この表面を電子顕微鏡(Miniscope TM— 1000 HITACHI製)で観察したとこ ろ線幅 10 m、空隙幅 10 mが交互に存在する導電性パターン 4が形成されて!/ヽ ることが確認された。  [0144] When this surface was observed with an electron microscope (Miniscope TM—1000 manufactured by HITACHI), it was confirmed that a conductive pattern 4 having a line width of 10 m and a gap width of 10 m alternately formed! It was done.
[0145] 実施例 5  [0145] Example 5
(光開裂化合物結合工程)  (Photocleavable compound binding process)
ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行った。  Surface cleaning was performed on a glass substrate (Nippon Sheet Glass) by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.).
次に、前記例示化合物 T7を脱水ェチルメチルケトン(2—ブタノン)に溶力もて 20 質量0 /0溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは、 まず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前記 ガラス基板を 80°Cで 20分間加熱し、表面をェチルメチルケトンで洗浄した。その後、 エアーガンで乾燥して、例示化合物 T7がガラス基板に結合してなる重合開始層を有 する基板 A5を得た(重合開始層の厚み: 5· 4 m)。 Next, the exemplified compounds T7 dehydration E chill methyl ketone (2-butanone) to be 20 mass 0/0 solution prepared Te溶力, it was spin-coated on the substrate surface. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 80 ° C. for 20 minutes, and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A5 was dried with an air gun to obtain a substrate A5 having a polymerization initiation layer formed by binding Exemplified Compound T7 to a glass substrate (polymerization initiation layer thickness: 5.4 m).
[0146] (グラフトポリマー生成工程)  [0146] (Graft polymer production process)
前記合成例 3で得られた親水性ポリマー P1 0. 5gを炭酸水素ナトリウム水溶液 4. 62g、ジメチルァセトアミド(DMAc) O. 05gおよびァセトニトリノレ 1 · 5gの混合溶媒に 溶解させてグラフト形成層用塗布液とした。  0.5 g of the hydrophilic polymer P1 obtained in Synthesis Example 3 above is dissolved in a mixed solvent of sodium hydrogen carbonate aqueous solution 4.62 g, dimethylacetamide (DMAc) O. 05 g, and acetonitorinole 1.5 g for the graft-forming layer. A coating solution was obtained.
上記で得られた前記基板 A5の片面表面に前記グラフトポリマー前駆体層形成用 塗布液をスピンコートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rp mで 20秒間回転させた。グラフトポリマー前駆体層形成層用塗布液を塗布後の基板 を、 80°Cで 5分間乾燥し、グラフトポリマー前駆体層を形成した。 [0147] (露光) The coating solution for forming the graft polymer precursor layer was spin-coated on one surface of the substrate A5 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. The substrate after the coating solution for the graft polymer precursor layer forming layer was applied was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer. [0147] (Exposure)
グラフトポリマー前駆体層形成後の基板 A5を、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し, 7火にァセ トンで洗净した。  The substrate A5 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern with an exposure machine (UNIQURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、表面にパターン状に形成されたグラフトポリマー層を有するガラ ス基板 B 5を形成した。  As described above, a glass substrate B5 having a graft polymer layer formed in a pattern on the surface was formed.
得られたパターンを原子間顕微鏡 AFM (ナノビクス 1000,セイコーインスツルメン ッ社製, DFMカンチレバー使用)で観察した。その結果、ガラス基板 B5の表面に線 幅 10 111、空隙幅 10 mが交互に存在するパターンが形成されていることが確認さ れ 7こ。  The obtained pattern was observed with an atomic microscope AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using a DFM cantilever). As a result, it was confirmed that a pattern with alternating line width 10 111 and gap width 10 m was formed on the surface of glass substrate B5.
[0148] (導電性素材層形成工程)  [0148] (Conductive material layer forming process)
<無電解めつき〉  <Electroless plating>
得られたガラス基板 B5を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。その後下記組成の無電解めつき浴 (pH : 12. 4)に 30分間浸漬して無電解めつきを行った。無電解めつき後、水で洗浄してエアーガン で乾燥した。  The obtained glass substrate B5 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. After that, electroless plating was performed by immersing in an electroless plating bath (pH: 12.4) having the following composition for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
無電解めつき浴の組成  Composition of electroless bath
水 300g  300 g of water
硫酸銅(II)五水和物 3. 0g  Copper (II) sulfate pentahydrate 3.0 g
EDTA— 2Na二水和物 8. 9g  EDTA— 2Na dihydrate 8.9 g
ポリエチレングリコーノレ(平均分子量 1000) 0. 03g  Polyethylene glycol (average molecular weight 1000) 0.03g
2, 2'—ビビリジノレ 0. 3mg  2, 2'—Bibiridinole 0.3 mg
エチレンジァミン 0. 12g  Ethylenediamine 0.12g
水酸化ナトリウム 2. 5g  Sodium hydroxide 2.5g
ホノレム ノレデヒド水溶 ί夜(36. 0—38. 0%) 1. 6g  Honolem Norede Dehydrated Water ί 夜 (36. 0—38. 0%) 1. 6g
[0149] この表面を電子顕微鏡(Miniscope TM— 1000 HITACHI製)で観察したとこ ろ線幅 10 m、空隙幅 10 mが交互に存在する導電性パターン 5が形成されて!/ヽ ることが確認された。 [0149] When this surface was observed with an electron microscope (Miniscope TM—1000 manufactured by HITACHI), a conductive pattern 5 in which a line width of 10 m and a gap width of 10 m exist alternately was formed! / ヽ It was confirmed that
[0150] 実施例 6 [0150] Example 6
(光開裂化合物結合工程)  (Photocleavable compound binding process)
ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行い、その基板を 3—アミ ノプロピルトリメトキシシランの 1重量%水溶液に 10分間浸漬、水で洗浄し、エアーガ ンで乾燥した。  The surface of the glass substrate (Nippon Sheet Glass) was cleaned by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.), and the substrate was washed with 3-aminopropyltrimethoxysilane 1 It was immersed in a weight% aqueous solution for 10 minutes, washed with water, and dried with an air gun.
次に、前記例示化合物 T9を脱水ェチルメチルケトン(2—ブタノン)に溶力もて 10 質量0 /0溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは、 まず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前記 ガラス基板を 120°Cで 40分間加熱し、表面をェチルメチルケトンで洗浄した。その後 、エアーガンで乾燥して、例示化合物 T1がガラス基板に結合してなる重合開始層を 有する基板 A6を得た(重合開始層の厚み: 2. 6 m)。 Next, the exemplified compound T9 dehydrated E chill methyl ketone (2-butanone) to be 10 mass 0/0 solution prepared Te溶力, it was spin-coated on the substrate surface. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 120 ° C. for 40 minutes, and the surface was washed with ethyl methyl ketone. Thereafter, the substrate A6 was dried with an air gun to obtain a substrate A6 having a polymerization initiating layer formed by binding the exemplified compound T1 to a glass substrate (the thickness of the polymerization initiating layer: 2.6 m).
[0151] (グラフトポリマー生成工程) [0151] (Graft polymer production process)
前記合成例 4で得られた親水性ポリマー P2 0. 5gを炭酸水素ナトリウム水溶液 4. 62g、ジメチルァセトアミド(DMAc) O. 05gおよびァセトニトリノレ 1 · 5gの混合溶媒に 溶解させてグラフトポリマー前駆体層形成用塗布液とした。  0.5 g of the hydrophilic polymer P2 obtained in Synthesis Example 4 above is dissolved in a mixed solvent of sodium hydrogen carbonate aqueous solution 4.62 g, dimethylacetamide (DMAc) O. 05 g, and acetonitrile-1.5 g of graft polymer precursor. A layer-forming coating solution was obtained.
上記で得られた前記基板 A6の片面表面に前記グラフトポリマー前駆体層形成用 塗布液をスピンコートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rp mで 20秒間回転させた。グラフト形成層用塗布液塗布後の基板 A6は、 80°Cで 5分 間乾燥し、グラフトポリマー前駆体層を形成した。  The coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A6 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. Substrate A6 after application of the coating solution for the graft forming layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
[0152] (露光) [0152] (Exposure)
グラフトポリマー前駆体層形成後の基板 A6を、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し、 7火にァセ トンで洗净した。  The substrate A6 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencot, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、表面にパターン状に形成されたグラフトポリマー層を有するガラ ス基板 B6を形成した。 得られたパターンを AFM (ナノビクス 1000,セイコーインスツルメンッ社製, DFM カンチレバー使用)で観察した。その結果、ガラス基板 B6の表面に線幅 10 m、空 隙幅 10〃 mが交互に存在するパターンが形成されていることが確認された。 As described above, a glass substrate B6 having a graft polymer layer formed in a pattern on the surface was formed. The obtained pattern was observed with AFM (Nanobics 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern having a line width of 10 m and a gap width of 10 mm was alternately formed on the surface of the glass substrate B6.
[0153] (導電性素材層形成工程) [0153] (Conductive material layer forming process)
<無電解めつき〉  <Electroless plating>
得られたガラス基板 B6を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。  The obtained glass substrate B6 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun.
次に、下記組成の市販無電解めつき浴 ATSアドカッパ一(奥野製薬工業 (株)製) に 30分間浸漬して、無電解めつきを行った。無電解めつき後、水で洗浄してエアー ガンで乾燥した。  Next, it was immersed in a commercially available electroless plating bath ATS AD Kappaichi (Okuno Pharmaceutical Co., Ltd.) having the following composition for 30 minutes for electroless plating. After electroless plating, it was washed with water and dried with an air gun.
[0154] 無電解めつき浴の組成 [0154] Composition of electroless bath
水 258g  258g of water
ATSアドカッパ一 IW— A 15mL  ATS Ad Kappa IW— A 15mL
ATSアドカッパ一 IW— M 24mL  ATS Ad Kappa IW— M 24mL
ATSアドカッパ一 IW— C 3mL  ATS Ad Kappa IW— C 3mL
[0155] この表面を電子顕微鏡(Miniscope TM— 1000 HITACHI製)で観察したとこ ろ線幅 10 m、空隙幅 10 mが交互に存在する導電性パターン 6が形成されて!/ヽ ることが確認された。  [0155] When this surface was observed with an electron microscope (Miniscope TM—1000 manufactured by HITACHI), it was confirmed that a conductive pattern 6 in which a line width of 10 m and a gap width of 10 m exist alternately was formed! It was done.
[0156] 実施例 7  [0156] Example 7
(光開裂化合物結合工程)  (Photocleavable compound binding process)
ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行った。そのガラス基板 上に 10質量%の 3—ァミノプロピルトリエトキシシラン (東京化成製)水溶液をスピンコ ートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rpmで 20秒間回転 させた。スピンコート後、前記ガラス基板を 120°Cで 20分間加熱し、基板を取り出し、 蒸留水で洗浄を行い、乾燥させた。  Surface cleaning was performed on a glass substrate (Nippon Sheet Glass) by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.). A 10 mass% aqueous solution of 3-aminopropyltriethoxysilane (manufactured by Tokyo Kasei) was spin-coated on the glass substrate. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 120 ° C. for 20 minutes, and the substrate was taken out, washed with distilled water, and dried.
[0157] 次に、前記例示化合物 T10を脱水ェチルメチルケトン(2 ブタノン)に溶かして 15 質量0 /0溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは、 まず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前記 ガラス基板を 170°Cで 1時間加熱し、表面をェチルメチルケトンで洗浄した。その後、 エアーガンで乾燥して例示化合物 T10がガラス基板に結合してなる重合開始層を有 する基板 A7を得た(重合開始層の厚み: 3. 7 m)。 [0157] Next, the exemplified compound 15 mass 0/0 solution was prepared by dissolving the T10 dehydrated E chill methyl ketone (2-butanone), was spin-coated it to the substrate surface. Spin coater First, it was rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour and the surface was washed with ethyl methyl ketone. Thereafter, it was dried with an air gun to obtain a substrate A7 having a polymerization initiation layer formed by binding Exemplified Compound T10 to a glass substrate (the thickness of the polymerization initiation layer: 3.7 m).
[0158] (グラフトポリマー生成工程)  [0158] (Graft polymer production process)
前記合成例 4で得られた親水性ポリマー P2 0. 5gを 2 メトキシー 1 プロパノー ルに溶解させてグラフト形成層用塗布液とした。  0.5 g of the hydrophilic polymer P2 obtained in Synthesis Example 4 was dissolved in 2 methoxy-l-propanol to obtain a coating solution for a graft forming layer.
上記で得られた基板 A3の片面表面にグラフトポリマー前駆体層形成用塗布液をス ピンコートした。スピンコーターは、まず 300rpmで 5秒間、その後 750rpmで 20秒間 回転させた。グラフトポリマー前駆体層形成用塗布液を塗布後の基板 A7は、 80°Cで 5分間乾燥し、グラフトポリマー前駆体層を形成した。  A coating solution for forming a graft polymer precursor layer was spin-coated on one surface of the substrate A3 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. Substrate A7 after application of the coating solution for forming the graft polymer precursor layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
[0159] (露光)  [0159] (Exposure)
グラフトポリマー前駆体層形成後の基板 A2を、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し、 7火にァセ トンで洗净した。  The substrate A2 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencot, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、グラフトポリマーが表面にパターン状に形成されたガラス基板 B7 を形成した。  As described above, a glass substrate B7 having a graft polymer formed in a pattern on the surface was formed.
[0160] 得られたパターンを AFM (ナノビクス 1000,セイコーインスツルメンッ社製, DFM カンチレバー使用)で観察した。その結果、ガラス基板 B7の表面に線幅 10 m、空 隙幅 10〃 mが交互に存在するパターンが形成されていることが確認された。  [0160] The obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern having a line width of 10 m and a gap width of 10 mm was alternately formed on the surface of the glass substrate B7.
[0161] (導電性素材層形成工程)  [0161] (Conductive material layer formation process)
<無電解めつき〉  <Electroless plating>
得られたガラス基板 B7を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。その後、前記実施例 1記載の無電解めつき浴 (pH : 12. 4)に 30分間浸漬して無電解めつきを行った。無電解めつき後、水で洗浄してェ ァーガンで乾燥した。  The obtained glass substrate B7 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun. Thereafter, electroless plating was performed by immersing in the electroless plating bath (pH: 12.4) described in Example 1 for 30 minutes. After electroless plating, it was washed with water and dried with an air gun.
[0162] この表面を電子顕微鏡(Miniscope TM— 1000 HITACHI製)で観察したとこ ろ線幅 10 m、空隙幅 10 mが交互に存在する導電性パターン 7が形成されて!/ヽ ることが確認された。 [0162] This surface was observed with an electron microscope (Miniscope TM—1000 manufactured by HITACHI). It was confirmed that a conductive pattern 7 having a filtration line width of 10 m and a gap width of 10 m alternately formed was formed.
[0163] 比較例 1 [0163] Comparative Example 1
実施例 1において、例示化合物 T1の代わりに下記化合物 T7を用い、親水性ポリマ 一 P1の代わりに例示化合物 P4 (下記参照)を用いた以外は、実施例 1と同様の工程 を行った。ここで、下記化合物 T7は特開 2006— 104045号公報に記載の化合物を 用いた。  In Example 1, the same process as in Example 1 was performed, except that the following compound T7 was used instead of the exemplified compound T1, and the exemplified compound P4 (see below) was used instead of the hydrophilic polymer P1. Here, as the following compound T7, a compound described in JP-A-2006-104045 was used.
導電性膜の膜厚が 1 11 m以上の導電性素材層(導電性膜)を形成しょうとした場合 、無電解めつき処理中で剥離してしまった。  When an attempt was made to form a conductive material layer (conductive film) with a conductive film thickness of 1 11 m or more, it peeled off during the electroless plating process.
[0164] [化 6] [0164] [Chemical 6]
Figure imgf000043_0001
Figure imgf000043_0001
[0165] <導電性 ·膜厚の評価〉 [0165] <Evaluation of conductivity and film thickness>
実施例及び比較例により得られた導電性パターンについて、導電性膜が形成され た部分の表面導電性をロレスター FP (LORESTA-FP:三菱化学 (株)製)を用い て四探針法により、膜厚を Nanopixl 000 (セィコ一インスツルメンッ (株)製)を用い て測定した。結果は表 1に示す。  For the conductive patterns obtained in the examples and comparative examples, the surface conductivity of the portion where the conductive film was formed was measured by a four-probe method using Lorester FP (LORESTA-FP: manufactured by Mitsubishi Chemical Corporation). The film thickness was measured using Nanopixl 000 (manufactured by Seiko Instruments Inc.). The results are shown in Table 1.
[0166] <導電性膜密着性の評価〉  [0166] <Evaluation of adhesion of conductive film>
実施例;!〜 4と同様にして、導電性領域 (導電性膜)(10 (mm) X 200 (mm) )を形 成し、 JIS 5400の碁盤目テープ法に準じ、カットした碁盤目に対するテープの引き 剥がしテストを行い、膜密着性を評価した。 100個の碁盤目のうち基板側に残った碁 盤の数を表 1に示す。  Examples: Conductive regions (conductive film) (10 (mm) X 200 (mm)) were formed in the same manner as in! To 4, and applied to the cut grid according to JIS 5400 grid pattern tape method. A tape peeling test was conducted to evaluate film adhesion. Table 1 shows the number of boards remaining on the board side among the 100 grids.
[0167] 比較例 2 (光開裂化合物結合工程) [0167] Comparative Example 2 (Photocleavable compound binding process)
ガラス基板(日本板硝子)に、 UVオゾンクリーナー(UV42、 日本レーザー電子社 製)を用いて 10分間 UVオゾン処理を行うことで表面洗浄を行った。  Surface cleaning was performed on a glass substrate (Nippon Sheet Glass) by UV ozone treatment for 10 minutes using a UV ozone cleaner (UV42, manufactured by Nippon Laser Electronics Co., Ltd.).
次に、前記例示化合物 T2を脱水ェチルメチルケトン(2—ブタノン)に溶力もて 0. 0 7質量%溶液を調製し、これを前記の基板表面にスピンコートした。スピンコーターは 、まず 300rpmで 5秒間、その後 750rpmで 20秒間回転させた。スピンコート後、前 記ガラス基板を 170°Cで 1時間加熱し、表面をェチルメチルケトンで洗浄した。その 後、エアーガンで乾燥して例示化合物 T2がガラス基板に結合してなる重合開始層を 有する基板 A9を得た(重合開始層の厚み: 20nm)。  Next, a 0.07% by mass solution of the exemplified compound T2 in dehydrated ethylmethylketone (2-butanone) was prepared, and this was spin-coated on the substrate surface. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. After spin coating, the glass substrate was heated at 170 ° C. for 1 hour, and the surface was washed with ethyl methyl ketone. Thereafter, it was dried with an air gun to obtain a substrate A9 having a polymerization initiating layer formed by binding Exemplified Compound T2 to a glass substrate (polymerization initiating layer thickness: 20 nm).
[0168] (グラフトポリマー生成工程) [0168] (Graft polymer production process)
前記合成例 4で得られた親水性ポリマー P2 0. 5gを炭酸水素ナトリウム水溶液 4. 62g、ジメチルァセトアミド(DMAc) O. 05gおよびァセトニトリノレ 1 · 5gの混合溶媒に 溶解させてグラフトポリマー前駆体層形成層用塗布液とした。  0.5 g of the hydrophilic polymer P2 obtained in Synthesis Example 4 above is dissolved in a mixed solvent of sodium hydrogen carbonate aqueous solution 4.62 g, dimethylacetamide (DMAc) O. 05 g, and acetonitrile-1.5 g of graft polymer precursor. A coating solution for the layer forming layer was obtained.
上記で得られた前記基板 A9の片面表面に前記グラフトポリマー前駆体層形成層 用塗布液をスピンコートした。スピンコーターは、まず 300rpmで 5秒間、その後 750r pmで 20秒間回転させた。グラフトポリマー前駆体層形成層用塗布液を塗布後の基 板 A9は、 80°Cで 5分間乾燥し、グラフトポリマー前駆体層を形成した。  The coating liquid for graft polymer precursor layer formation layer was spin-coated on one surface of the substrate A9 obtained above. The spin coater was first rotated at 300 rpm for 5 seconds and then at 750 rpm for 20 seconds. Substrate A9 after applying the coating solution for the graft polymer precursor layer forming layer was dried at 80 ° C. for 5 minutes to form a graft polymer precursor layer.
[0169] (露光) [0169] (Exposure)
グラフトポリマー前駆体層形成後の基板 A9を、露光機(ュニキユア UVX— 02516 S 1LP01 ,ゥシォ電機 (株)製)で所定のパターンに従って露光した。露光後、基板表 面をワイパー(ベンコット、小津産業 (株)製)で軽くこすりながら水で洗浄し, 7火にァセ トンで洗净した。  The substrate A9 after the formation of the graft polymer precursor layer was exposed in accordance with a predetermined pattern using an exposure machine (UNIKIURE UVX-02516 S 1LP01, manufactured by Usio Electric Co., Ltd.). After the exposure, the substrate surface was washed with water while gently rubbing with a wiper (Bencott, manufactured by Ozu Sangyo Co., Ltd.) and washed with Aceton for 7 fires.
以上のようにして、表面にパターン状に形成されたグラフトポリマー層を有するガラ ス基板 B9を形成した。  As described above, a glass substrate B9 having a graft polymer layer formed in a pattern on the surface was formed.
[0170] 得られたパターンを AFM (ナノビクス 1000,セイコーインスツルメンッ社製, DFM カンチレバー使用)で観察した。その結果、ガラス基板 B9の表面に線幅 10 m、空 隙幅 10〃 mが交互に存在するパターンが形成されていることが確認された。  [0170] The obtained pattern was observed with AFM (Nanobix 1000, manufactured by Seiko Instruments Inc., using DFM cantilever). As a result, it was confirmed that a pattern in which a line width of 10 m and a gap width of 10 μm exist alternately was formed on the surface of the glass substrate B9.
[0171] (導電性素材層形成工程) <無電解めつき〉 [0171] (Conductive material layer forming process) <Electroless plating>
得られたガラス基板 B2を硝酸銀 (和光純薬製) 1. 0%水溶液に 1分間浸漬し、水で 洗浄してエアーガンで乾燥した。  The obtained glass substrate B2 was immersed in a 1.0% aqueous solution of silver nitrate (manufactured by Wako Pure Chemical Industries) for 1 minute, washed with water, and dried with an air gun.
次に、下記組成の市販無電解めつき浴 ATSアドカッパ一(奥野製薬工業 (株)製) に 30分間浸漬して、無電解めつき処理を行ったが、処理中に剥離してしまった。  Next, it was immersed in a commercially available electroless plating bath ATS AD Kappaichi (Okuno Pharmaceutical Co., Ltd.) with the following composition for 30 minutes to perform the electroless plating process, but it peeled off during the treatment.
[表 1]  [table 1]
Figure imgf000045_0001
Figure imgf000045_0001
[0173] 以上の結果より、本発明の方法で得られた導電性パターン 1〜7における導電性領 域は、良好な導電性を有し、且つ、基板との密着性に優れることが確認された。一方 、比較例 1及び 2の導電性膜は無電解めつき処理中で剥離してしまって、導電性バタ ーンは得られなかった。 [0173] From the above results, it was confirmed that the conductive regions in the conductive patterns 1 to 7 obtained by the method of the present invention have good conductivity and excellent adhesion to the substrate. It was. On the other hand, the conductive films of Comparative Examples 1 and 2 were peeled off during the electroless plating process, and no conductive pattern was obtained.
[0174] 日本出願 2006— 264706、 2007— 047719、及び 2007— 223870の開示は、 その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献 、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照によ り取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参 照により取り込まれる。  [0174] The disclosures of Japanese applications 2006-264706, 2007-047719, and 2007-223870 are hereby incorporated by reference in their entirety. All documents, patent applications, and technical standards mentioned in this specification are the same as if each document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. And incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] ガラス基材、  [1] glass substrates,
ラジカル重合開始部位と前記ガラス基材に直接化学結合可能な部位とを有するポ リマーが前記ガラス基材に化学結合して形成された厚さ 0· 1 11 m以上 100 a m以下 の重合開始層、及び、  A polymerization initiating layer having a thickness of 0 · 111 m or more and 100 am or less formed by a polymer having a radical polymerization initiation site and a site capable of being chemically bonded directly to the glass substrate, chemically bonded to the glass substrate; as well as,
分子内に (メタ)アクリル酸エステル及び (メタ)アクリル酸アミドから選択される構造 に由来する骨格を有し且つラジカル重合可能な不飽和部位と無電解めつき触媒を吸 着する部位とを有するポリマーを含有するグラフトポリマー前駆体層、  It has a skeleton derived from a structure selected from (meth) acrylic acid ester and (meth) acrylic acid amide in the molecule, and has an unsaturated site capable of radical polymerization and a site that adsorbs an electroless catalyst. A graft polymer precursor layer containing a polymer,
を有することを特徴とする積層体。  A laminate characterized by comprising:
[2] 前記ラジカル重合可能な不飽和部位が、(メタ)アタリロイルメチル基であることを特 徴とする請求項 1に記載の積層体。 [2] The laminate according to [1], wherein the radical-polymerizable unsaturated site is a (meth) atalyloylmethyl group.
[3] 前記ラジカル重合開始部位と前記ガラス基材に直接化学結合可能な部位とを有す るポリマーの重量平均分子量が、 1000〜; 1000000の範囲であることを特徴とする 請求項 1に記載の積層体。 [3] The polymer having a radical polymerization initiation site and a site capable of being directly chemically bonded to the glass substrate has a weight average molecular weight in the range of 1000 to 1000000. Laminated body.
[4] 前記ガラス基材に直接化学結合可能な部位力 ハロシリル基、アルコキシシリル基[4] Site force capable of direct chemical bonding to the glass substrate Halosilyl group, alkoxysilyl group
、環状エーテル基またはイソシアナート基であることを特徴とする請求項 1に記載の 積層体。 The laminate according to claim 1, wherein the laminate is a cyclic ether group or an isocyanate group.
[5] 前記ガラス基材が、酸化ケィ素を主成分とすることを特徴とする請求項 1に記載の 積層体。  [5] The laminate according to [1], wherein the glass base material contains silicon oxide as a main component.
[6] 前記ガラス基材の表面力 アミノ基、水酸基、メルカプト基、カルボキシル基、ェポキ シ基、イソシアナート基の中から選択される少なくとも 1種類以上の官能基で修飾され て!/、ることを特徴とする請求項 1に記載の積層体。  [6] Surface force of the glass substrate modified with at least one functional group selected from amino group, hydroxyl group, mercapto group, carboxyl group, epoxy group and isocyanate group! / The laminate according to claim 1, wherein:
[7] 前記ガラス基材の表面力 アミノ基、水酸基、メルカプト基、カルボキシル基、ェポキ シ基、又はイソシアナ一ト基を有するシランカップリング剤を用いて修飾されたことを 特徴とする請求項 6に記載の積層体。 [7] The surface force of the glass substrate is modified by using a silane coupling agent having an amino group, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, or an isocyanate group. The laminated body as described in.
[8] 前記重合開始層の厚さが 0· 3 a m以上 50 μ m以下であることを特徴とする請求項[8] The thickness of the polymerization initiation layer is from 0.3 · 3 am to 50 μm.
1に記載の積層体。 The laminate according to 1.
[9] 前記グラフトポリマー前駆体層の厚さが 0· 3 m以上 5 m以下であることを特徴と する請求項 1に記載の積層体。 [9] The graft polymer precursor layer has a thickness of 0.3 to 5 m. The laminate according to claim 1.
[10] 請求項 1に記載の積層体上にパターン状にエネルギーを付与して、該積層体が有 する前記重合開始層におけるポリマーのラジカル重合開始部位にラジカルを生成さ せ、該ラジカルを起点としてグラフトポリマーを生成させる工程、及び、 [10] Energy is imparted in a pattern on the laminate according to claim 1, and radicals are generated at a radical polymerization initiation site of the polymer in the polymerization initiation layer of the laminate, and the radical is originated. Producing a graft polymer as
前記生成したグラフトポリマーに無電解めつき触媒又はその前駆体を吸着させた後 、無電解めつきを行い、導電性膜を形成する工程、  A step of adsorbing an electroless catalyst or a precursor thereof to the generated graft polymer, followed by electroless plating to form a conductive film;
を有することを特徴とする導電性パターン形成方法。  A method for forming a conductive pattern, comprising:
[11] 前記導電性膜を形成する工程の後に、更に電気めつき処理工程を有することを特 徴とする請求項 10に記載の導電性パターン形成方法。  11. The conductive pattern forming method according to claim 10, further comprising an electroplating treatment step after the step of forming the conductive film.
[12] 請求項 10又は請求項 11に記載の導電性パターン形成方法を用いて形成された 導電性パターン。 [12] A conductive pattern formed by using the conductive pattern forming method according to claim 10 or 11.
[13] 請求項 12に記載の導電性パターンを備えたことを特徴とするプリント配線基板。  [13] A printed wiring board comprising the conductive pattern according to claim 12.
[14] 請求項 12に記載の導電性パターンを備えたことを特徴とする薄層トランジスタ。 14. A thin layer transistor comprising the conductive pattern according to claim 12.
[15] 請求項 13に記載のプリント配線基板を備えたことを特徴とする装置。 15. An apparatus comprising the printed wiring board according to claim 13.
[16] 請求項 14に記載の薄層トランジスタを備えたことを特徴とする装置。 16. A device comprising the thin film transistor according to claim 14.
PCT/JP2007/067308 2006-09-28 2007-09-05 Laminate, method of forming conductive pattern, conductive pattern obtained thereby, printed wiring board, thin-layer transistor and apparatus utilizing these WO2008038500A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-264706 2006-09-28
JP2006264706 2006-09-28
JP2007047719 2007-02-27
JP2007-047719 2007-02-27
JP2007-223870 2007-08-30
JP2007223870A JP2008242412A (en) 2006-09-28 2007-08-30 Laminate, method of forming conductive pattern, conductive pattern obtained thereby, printed wiring board, thin layer transistor and apparatus utilizing these

Publications (1)

Publication Number Publication Date
WO2008038500A1 true WO2008038500A1 (en) 2008-04-03

Family

ID=39229939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067308 WO2008038500A1 (en) 2006-09-28 2007-09-05 Laminate, method of forming conductive pattern, conductive pattern obtained thereby, printed wiring board, thin-layer transistor and apparatus utilizing these

Country Status (1)

Country Link
WO (1) WO2008038500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073816A1 (en) * 2008-12-26 2010-07-01 富士フイルム株式会社 Method for producing multilayer wiring substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063438A (en) * 2004-07-27 2006-03-09 Fuji Electric Device Technology Co Ltd Plating method on glass base plate, method of manufacturing disk substrate for magnetic recording medium using the method and method for manufacturing vertical magnetic recording medium
JP2006104045A (en) * 2004-09-07 2006-04-20 Fuji Photo Film Co Ltd Conductive glass substrate, method of forming conductive glass substrate, and method of forming conductive pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063438A (en) * 2004-07-27 2006-03-09 Fuji Electric Device Technology Co Ltd Plating method on glass base plate, method of manufacturing disk substrate for magnetic recording medium using the method and method for manufacturing vertical magnetic recording medium
JP2006104045A (en) * 2004-09-07 2006-04-20 Fuji Photo Film Co Ltd Conductive glass substrate, method of forming conductive glass substrate, and method of forming conductive pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073816A1 (en) * 2008-12-26 2010-07-01 富士フイルム株式会社 Method for producing multilayer wiring substrate
JP2010157589A (en) * 2008-12-26 2010-07-15 Fujifilm Corp Method for forming multilayer wiring substrate

Similar Documents

Publication Publication Date Title
US7291427B2 (en) Surface graft material, conductive pattern material, and production method thereof
JP5334777B2 (en) Composition for forming layer to be plated, method for producing metal pattern material, and novel polymer
US20050214550A1 (en) Method of forming a pattern, conductive patterned material, and method of forming a conductive pattern
US20100224317A1 (en) Method for forming graft polymer pattern and method for forming electrically conductive pattern
TW200806128A (en) Method of forming metal pattern, metal pattern, and printed circuit board
EP1589376A1 (en) Conductive pattern forming method, and conductive pattern material
JP4708859B2 (en) Thin layer transistor, active matrix display device using the same, and liquid crystal display device
KR102035999B1 (en) Method for plating on surface of non-conductive substrate
JP2011079877A (en) Polymeric ultrathin film and polymeric ultrathin film pattern, and composition for patterning
JP4321653B2 (en) Method for producing metal film
WO2013065628A1 (en) Method for producing laminate having metal layer
JP4920318B2 (en) Conductive pattern forming method and wire grid polarizer
JP2008106345A (en) Method for forming electrically conductive film, electrically conductive film formed using the same, and printed circuit board, thin layer transistor and device
JP4252919B2 (en) Conductive pattern material, metal fine particle pattern material, and pattern forming method
WO2012073814A1 (en) Method for producing laminate having metal film
JP2008242412A (en) Laminate, method of forming conductive pattern, conductive pattern obtained thereby, printed wiring board, thin layer transistor and apparatus utilizing these
WO2008038500A1 (en) Laminate, method of forming conductive pattern, conductive pattern obtained thereby, printed wiring board, thin-layer transistor and apparatus utilizing these
JP2012097296A (en) Method of forming metal film
JP4291718B2 (en) Conductive pattern forming method and conductive pattern material
JP2008088273A (en) Hydrophobic polymer, laminated form with electrically conductive film using the same, method for producing electrically conductive pattern, printed wiring board utilizing the laminated form, thin-layer transistor, and device equipped with them
JP4216751B2 (en) Conductive pattern forming method and conductive pattern material
JP2006104045A (en) Conductive glass substrate, method of forming conductive glass substrate, and method of forming conductive pattern
JP4328252B2 (en) Conductive pattern forming method
JP4328251B2 (en) Conductive pattern forming method
JP4583848B2 (en) Manufacturing method of matrix array substrate, matrix array substrate, liquid crystal display device, manufacturing method of data electrode for PDP, data electrode for PDP, and PDP

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036200.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097001159

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806751

Country of ref document: EP

Kind code of ref document: A1