WO2008038371A1 - Water-treatment method and apparatus - Google Patents

Water-treatment method and apparatus Download PDF

Info

Publication number
WO2008038371A1
WO2008038371A1 PCT/JP2006/319334 JP2006319334W WO2008038371A1 WO 2008038371 A1 WO2008038371 A1 WO 2008038371A1 JP 2006319334 W JP2006319334 W JP 2006319334W WO 2008038371 A1 WO2008038371 A1 WO 2008038371A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
seawater
water
water treatment
reverse osmosis
Prior art date
Application number
PCT/JP2006/319334
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Ueda
Kyo Kunishio
Keizou Murakami
Hideki Iwamoto
Original Assignee
Global Trust Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Trust Incorporated filed Critical Global Trust Incorporated
Priority to PCT/JP2006/319334 priority Critical patent/WO2008038371A1/en
Publication of WO2008038371A1 publication Critical patent/WO2008038371A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/024Turbulent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment method for desalinating seawater and a water treatment apparatus for carrying out the method.
  • seawater desalination treatment as shown in FIG. 1, seawater that has been appropriately pretreated such as sterilization and disinfection is filtered through a high-pressure pump 1 and a reverse osmosis membrane (not shown).
  • a high-pressure pump 1 for example, seawater that has been appropriately pretreated such as sterilization and disinfection is filtered through a high-pressure pump 1 and a reverse osmosis membrane (not shown).
  • the apparatus 2 provided with 2 is supplied into the apparatus 3.
  • the water particles 4 containing minerals 4a and harmful substances 4b such as chlorine in seawater hardly pass through the reverse osmosis membrane 2, and only the water particles 5 and a part 6 of the mineral components pass through.
  • These water particles 4 are composed of large water particles 4c and small water particles 4d together with minerals 4a and harmful substances 4b such as chlorine.
  • 7 is a tank for concentrated salt water
  • 8 is a tank for storing treated water
  • 9 is a container for chlorinated water for sterilizing and disinfecting water after treatment with
  • an ozone supply device that mixes ozone gas into the water to be treated (for example, see Patent Document 1) and this device are used.
  • a water treatment method (for example, see Patent Document 2) has been proposed.
  • water treatment is performed using a specific ozone supply device provided with a magnetic treatment unit, and the solution in the treated water is dissolved. The purpose is to reduce the amount of oxygen present.
  • water with a high amount of dissolved oxygen has the advantage of providing vitality to the human body as well as living organisms living in the water and quickly recovering from fatigue.
  • such water with a high amount of dissolved oxygen also has the merit of providing vitality to the soil and helping plant growth.
  • a water treatment method for easily obtaining fresh water with a large amount of dissolved oxygen from seawater has not been known so far.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-200891 (Claims etc.)
  • Patent Document 1 Japanese Patent Publication No. 3-72359 (Claims)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-334548 (Claims)
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and a large amount of seawater is desalinated in a short time so that the amount of dissolved oxygen is large and the mineral components in seawater are large.
  • An object is to provide a compact water treatment method and apparatus for obtaining remaining fresh water.
  • a first water treatment method of the present invention is a water treatment system comprising at least one ozone generator, at least one ozone treatment device, at least one filtration device, and a device comprising a reverse osmosis membrane.
  • the ozone treatment device is a cylindrical body having a cylindrical central portion and frustoconical end portions. Seawater is supplied from the truncated portion, and the ozone-treated seawater is discharged from the other truncated portion to the filtration device.
  • ozone generated by the ozone generator is injected into the seawater.
  • ozone is introduced into the seawater from an upstream position inside the ozone treatment apparatus or from an upstream position outside the treatment apparatus.
  • the ozone treatment is performed by injecting the ozone into the turbulent seawater and diffusing it throughout the ozone treatment equipment.
  • the oxygen bubbles generated from the injected ozone are nanobubbled, It is characterized by being passed through a filtration device and a reverse osmosis membrane to be desalinated and discharged outside the water treatment system.
  • the ozone treatment apparatus further includes at least one baffle plate at a predetermined position inside the ozone treatment apparatus, and the seawater supplied into the ozone treatment apparatus is further collided with the top plate and turbulent. It is characterized by ozone treatment, which is made to flow and diffuse as ozone is more rapidly involved in seawater.
  • the baffle plate is configured to have at least an upper surface configured in a slope shape from the upstream side to the downstream side, and to have a cross section that tapers from the upstream side to the downstream side. It is characterized by that.
  • This baffle plate preferably has a tongue shape.
  • nanobubbles in which mineral components in seawater are concentrated are generated around the produced oxygen nanobubbles, and the treated seawater is allowed to pass through a reverse osmosis membrane.
  • the nanobubbles are passed through a reverse osmosis membrane together with water particles to increase the amount of dissolved oxygen in the treated seawater, and the mineral component remains in the treated water.
  • a second water treatment method of the present invention includes first and second ozone generation devices, first and second ozone treatment devices, first and second filtration devices, and a reverse osmosis membrane.
  • the first ozone As a treatment device, it is a cylindrical body consisting of a cylindrical central part and both ends of a frustoconical shape. Seawater is supplied from one of the truncated parts, and ozone-treated seawater is supplied from the other truncated part.
  • a device that is configured to flow out to a first filtration device composed of an inorganic filtration device, and that further includes at least one screen plate at a predetermined position in the ozone treatment device is used.
  • Seawater is supplied into the treatment device to make it turbulent, and ozone generated by the first ozone generator is injected into the seawater, for example, from the upstream position in the first ozone treatment device or the treatment device.
  • Ozone is injected into seawater from the upstream position outside, and this ozone is entrained in turbulent seawater and diffused throughout the ozone treatment equipment, and ozone treatment is performed.
  • the second ozone generator and the second ozone treatment device having the same configuration as the first ozone generation device and the first ozone treatment device are passed through the first filtration device.
  • the ozone treatment it is passed through a second filtration device composed of an activated carbon filtration device, then passed through a reverse osmosis membrane, desalinated, and discharged out of the water treatment system.
  • organic substances and inorganic substances in seawater are mainly removed by the first filtration apparatus, and remaining acidic and acidic substances and organic substances are mainly removed by adsorption by the second filtration apparatus.
  • the baffle plate has at least an upper surface configured in a slope shape from the upstream side to the downstream side, and has a cross section that tapers from the upstream side to the downstream side. For example, having a mouth-like shape, passing through a reverse osmosis membrane to remove mainly sodium salt and impurities in seawater, and desalination,
  • nanobubbles are generated in which mineral components in seawater are concentrated around the produced oxygen nanobubbles, and the treated seawater is treated with a reverse osmosis membrane.
  • the nanobubbles When passing, the nanobubbles pass through the reverse osmosis membrane together with water particles to increase the amount of dissolved oxygen in the treated seawater, and to leave the mineral component in the treated water.
  • the seawater containing mainly sodium chloride and impurities that have not passed through the reverse osmosis membrane and increased in the amount of dissolved oxygen is discharged out of the water treatment system as concentrated seawater. This is the same as the one water treatment method.
  • the water treatment device of the present invention includes an ozone generator, an ozone treatment device, a filtration device, and a reverse immersion.
  • the ozone treatment device is a cylindrical body having a cylindrical central portion and both end portions of a truncated cone shape, It is configured to supply seawater from one of the truncated portions, and to flow out the ozone-treated seawater from the other truncated portion to the filtration device, and a baffle plate at a predetermined position in the ozone treatment device.
  • a large amount of seawater can be desalinated in a short time to obtain fresh water having a large amount of dissolved oxygen and a large amount of mineral components in the seawater. Play.
  • seawater to be treated in the present invention various impurities, for example, insoluble substances such as dust and other suspended particles, microorganisms such as nocteria, colloidal substances, and dissolved substances are dissolved.
  • Organic substances such as proteins and gases such as carbon dioxide are included as sex substances. If the seawater is desalinated and these impurities can be selected and removed as appropriate, water covering 70% of the surface of the earth, especially seawater, can be effectively used as drinking water, industrial water, agricultural water, etc.
  • seawater is first ozone-treated by passing through an ozone treatment apparatus.
  • this ozone treatment apparatus is configured such that the central portion has a cylindrical shape, both end portions thereof have a truncated cone shape, and the diameter of the bottom surface of the cone shape is the same as the diameter of the cylinder. It is a cylindrical device.
  • This truncation partial force seawater can be supplied, and the seawater treated from the other truncation part can be discharged to the next step.
  • seawater to be treated is supplied with a narrow inlet force at one of the truncated parts and processed through a cylindrical part wider than the inlet, Narrow outlet force at the other truncated part Flows to the next process.
  • Seawater is the inner wall of the truncated cone at both ends in such an ozone treatment device. In the vicinity, a vortex is wound, creating a violent turbulent state. Therefore, when the ozone generated by the ozone generator is continuously injected into the ozone processor at a high concentration in a critical state, the ozone is immediately diffused throughout the ozone processor and the ozone treatment can be performed.
  • superoxide HO
  • the nanobubbles referred to in the present invention are ultrafine bubbles having a diameter of about 0.3 to 1. Onm, and ions such as mineral components in seawater are concentrated and gathered around these bubbles. Forms the outer shell of the bubble. This nanobubble is stable for a long time. This is thought to be due to the so-called salting-out phenomenon. In this case, the amount of dissolved oxygen in the treated seawater increases.
  • the particle size of the nanobubbles can be measured using a known particle counter, for example, a particle counter described in JP-A-2003-334548.
  • ozone injected into the ozone treatment apparatus is composed of HO composed of superoxide-on (O— or •• —) according to the following chemical formula, and paraffin into which hydrogen atoms are incorporated.
  • the ozone treatment apparatus it is preferable to use an apparatus in which at least one baffle plate having a specific shape is arranged at a predetermined position.
  • the baffle plate has at least an upper surface configured in a slope shape from the upstream side to the downstream side with respect to the supplied seawater, and preferably has an upper surface and a lower surface configured in such a slope shape.
  • the baffle plate has at least an upper surface configured in a slope shape from the upstream side to the downstream side with respect to the supplied seawater, and preferably has an upper surface and a lower surface configured in such a slope shape.
  • a baffle plate having a tongue shape is preferable.
  • the ozone inlet may be provided as upstream as possible in the ozone treatment apparatus, and is preferably provided in the vicinity of the seawater supply port of the ozone treatment apparatus. Alternatively, it may be provided outside the ozone treatment apparatus and in the vicinity of the upstream side of the seawater supply port.
  • the baffle plate is arranged in the vicinity of the seawater supply port of the ozone treatment apparatus, for example, by arranging a plurality of the above-mentioned bevel-shaped ones in a ring shape.
  • the seawater flowing in the ozonizer is also present on the surface of the baffle plate, particularly on the vicinity of the sloped portion of It collides with a predetermined part of the baffle plate, becomes a violent turbulent state, and flows to the downstream side of the baffle plate in a whirling manner.
  • ozone When ozone is injected into seawater in such a state, ozone immediately diffuses in a turbulent state throughout the ozone treatment apparatus according to the flow of seawater. Forcibly, efficient ozone treatment can be performed. For this reason, in the process of converting ozone in seawater into supersaturated oxygen, the HO and OH gases that have the superoxide ion power described above are used.
  • seawater By subjecting seawater to ozone treatment as described above, oxidative sterilization, decolorization, deodorization, and the like are performed. In this case, sterilization of nocteria and other microorganisms and degradation of proteins and other organic substances are also performed.
  • ozone treatment apparatuses it is preferable to arrange a plurality of such ozone treatment apparatuses and repeatedly purify seawater with ozone. Then, seawater is filtered in various filtration processes during a plurality of ozone treatment processes. In this case, it is preferable to use an inorganic filter or an activated carbon filter.
  • Such a filtration device removes inorganic substances present in seawater, adsorbs and removes acidic and organic substances and reverse osmosis membranes disposed downstream of the water treatment system. It also plays a role of protection.
  • the seawater may pass through, for example, an ultraviolet irradiation device to sterilize bacteria and decompose organic matter.
  • the treated seawater has already been desalinated at a high level.
  • the inorganic filter but for example, a sand filter, a crusher filter, a ceramic filter, or a filter of any mixture of sand, sand, and ceramics can be used. Mention may be made of filtration devices.
  • treated seawater that has been subjected to ozone treatment and filtration treatment is passed through an apparatus provided with a reverse osmosis membrane.
  • a reverse osmosis membrane In the case of a normal reverse osmosis membrane, almost no mineral components pass through, and chlorination of drinking water hardly causes any mineral components that have passed through to remain in the drinking water.
  • the reverse osmosis membrane treatment after the ozone treatment of the present invention unlike the normal reverse osmosis membrane, the reverse osmosis membrane has a small diameter (about 0.3 to 1. Onm) as described above. Can be passed along with water particles, so the obtained fresh water becomes water with a lot of mineral components.
  • the reverse osmosis membrane used in the present invention can pass oxygen nanobubbles because the membrane has an eye of about 1 to 2 nm.
  • high-concentration ozone gas is injected into the ozone treatment device, and ozone is diffused and dispersed in a large amount in seawater for seawater treatment, resulting in an increase in the amount of dissolved oxygen in fresh water.
  • salt and sodium components in seawater are treated with reverse osmosis membranes and can be discharged as high dissolved oxygen (for example, about 36. OmgZD concentrated seawater. From this concentrated saltwater, a known saltwater separation system can be used. The salt can be separated.
  • the water treatment method of the present invention takes, for example, seawater 21 into a seawater tank 22 and ozone as described above.
  • a large amount of ozone pumped into the treatment device 23 and injected into the ozone treatment device 24 is injected into the ozone treatment device, and the seawater is treated with ozone, and then various filtration devices 25 and reverse osmosis membranes (Fig. (Not shown) is used to filter impurities and discharge as sterile water.
  • the high concentration generated in the ozone generator 24 The ozone gas is injected into the seawater, and as described above, the seawater is subjected to oxidative sterilization, decolorization, and deodorization treatment with ozone to achieve the desired effect.
  • treatment with a precision filter can be performed as desired to remove impurities of 1 ⁇ m or less in the treated water, or to kill bacteria produced when sterilized and decomposed with ultraviolet irradiation equipment. It is also possible to remove all or organic residue.
  • FIG. 3 FIG. 4 (a) and (b), and FIG. 5 (a) and (b) as embodiments thereof. To explain.
  • FIG. 3 shows an ozone treatment apparatus provided with a baffle plate.
  • the ozone treatment device 31 is a cylindrical body composed of a cylindrical portion 31a and truncated cone portions 31b and 31c. One truncated cone portion 31b is connected to a seawater tank (not shown), The other truncated cone portion 31c is connected to a filtering device (not shown).
  • the baffle plate 32 is provided at a predetermined position inside the ozone treatment device 31, and generates ozone so as to inject the ozone generated by the ozone generator 33 against a predetermined portion of the baffle plate. A device and a baffle are arranged. As a result, ozone diffuses efficiently in the turbulent flowing seawater.
  • the ozone injection nozzle may be provided at a predetermined position of the cylindrical portion 31a on the upstream side.
  • the ozone injection nozzle may be provided in the vicinity of the truncated portion of the truncated cone portion 31b as long as ozone is efficiently injected into seawater, or may be provided separately.
  • FIG. 4 showing an example of an ozone treatment apparatus provided with another baffle having a shape different from that in FIG.
  • FIG. 4 (a) is a side cross-sectional view of an ozone treatment apparatus 41 composed of a cylindrical portion 41a and frustoconical portions 41b and 41c
  • FIG. 4 (b) is a plan view thereof.
  • the baffle plate 42 is configured in a bell shape, and the upper surface portion and the lower surface portion thereof are formed in a slope shape so that the tip portion 42a becomes V and becomes narrower.
  • the rear end portion 42b of the baffle plate 42 is formed in a slope shape so that seawater collides and becomes turbulent.
  • This baffle plate 42 is fixed to the cylindrical portion 4 la of the ozone treatment device 41.
  • an ozone injection nozzle 43a of an ozone generator 43 may be used. That is, the baffle plate 42 can be fixed by opening the counter holes 42c and 42d and fitting the ozone injection nozzle 43a there. In FIG.
  • the ozone injection nozzle 43a is provided at a predetermined position of the cylindrical portion 41a and on the upstream side, but is provided in the vicinity of the truncated portion of the truncated cone portion 41b. It's okay. At least one ozone injection port 43b is provided at a portion of the ozone injection nozzle 43a that protrudes into the ozone treatment device 41.
  • the inlet 43b may be a shower nozzle with an appropriate number of holes. Ozone is configured to be injected into seawater from this inlet 43b.
  • FIG. 4 shows an example in which one ozone inlet 43b is provided above and below the baffle plate 42. However, even if one inlet is provided at a predetermined position, three or more ozone inlets 43b are provided. It may be provided. In this case, an ozone generator may be provided depending on the number of inlets, or it may be branched from one ozone generator and connected to each inlet.
  • FIG. 5 shows an example of an ozone treatment apparatus provided with a plurality of other baffles different in shape from FIG.
  • FIG. 5 (a) is a side sectional view of an ozone generator 51 composed of a cylindrical portion 51a and truncated cone portions 51b and 51c
  • FIG. 5 (b) is a plan view thereof.
  • the baffle plates 52 are each configured in a velvet shape similar to FIG.
  • 52a is a front end portion 52a of the baffle plate 52
  • 52b is a rear end portion of the baffle plate
  • 53 is an ozone generator
  • 54 is a fixing means for the baffle plate.
  • the force for arranging 6 baffles is as appropriate as the number of baffles.
  • Ozone is injected through an ozone injection nozzle of an ozone generator 53 provided near the entrance of the ozone treatment apparatus.
  • the seawater taken into the seawater tank is treated in the ozone treatment apparatus described above, and then passed through various filtration devices.
  • the filtered treated water is supplied into a treatment device 62 provided with a reverse osmosis membrane 61 as shown in FIG. 6 for further treatment.
  • ionized mineral components 63a and the like are present in a large amount around the oxygen nanobubbles 63 in the seawater treated by the ozone treatment apparatus. Therefore, when the treated seawater passes through the reverse osmosis membrane 61, the nanobubbles 63 in which the mineral component ions 63a are concentrated around and pass through the reverse osmosis membrane together with the water particles, into the treated water.
  • a reverse osmosis membrane having a membrane size of about 1 to 2 nm is used in the present invention.
  • a cluster of water usually has 11 to 13 units as one unit, which itself passes through a reverse osmosis membrane.
  • the state of the state 0 the salt water is larger than that of the reverse osmosis membrane (greater than 2 nm). Therefore, it cannot pass.
  • nano-sized bubbles oxygen nano-bubbles generated by the acid of ozone
  • the mineral ions are attracted around oxygen, and the oxygen molecules are attracted by water molecules.
  • the average size of this cluster is 1. Onm or less. Since it is smaller than the membrane used, most of it passes through the reverse osmosis membrane unlike salt water.
  • the oxygen nanobubbles obtained as described above exist in a stable state. This is because, as described above, ions such as minerals in seawater concentrate around the bubbles, creating an electrostatic repulsive force, making it difficult for the nanobubbles to disappear.
  • the concentrated ions function as an outer shell that encloses the nanobubbles.
  • Seawater is taken into a seawater tank, treated in sequence by a treatment system consisting of an ozone treatment device, a filtration device and a reverse osmosis membrane having the above-mentioned structure connected to this tank, and then discharged to the treated water tank. .
  • An ozone generator is connected to this ozone treatment device.
  • Each of these components is connected by a pipe line. If desired, the seawater after being treated in each step can be returned to any component in the middle of the treatment system and reprocessed there. You may comprise so that components may be connected. Further, it is preferable that a pump is connected to an arbitrary pipe line, and an appropriate water pressure is applied to the entire treatment system so that the treated water flows uniformly. In the present invention, if two or more of these ozone treatment apparatuses are used, Zon treatment is effective.
  • the filtration device shown in FIG. 7 preferably uses a combination of the above-described inorganic filtration device and activated carbon filtration device.
  • the activated carbon filter for example, coconut shell, coal, and petroleum filter means are used in appropriate combination. Remove inorganic and organic precipitates from seawater with an inorganic filter! ⁇ Adsorb and remove oxidizing substances and organics with an activated carbon filter to facilitate reverse osmosis membrane treatment and supply a large amount of seawater. Even if it is processed, the components of the processing system are not clogged and the processing efficiency is not lowered. Further, an ultraviolet irradiation device (not shown) may be provided to decompose organic substances in seawater and sterilize bacteria.
  • a reverse osmosis membrane By using a reverse osmosis membrane, salt (salt sodium salt) in seawater can be removed and a desalination treatment can be performed.
  • This reverse osmosis membrane can use an appropriate number of multiple reverse osmosis membranes as a unit, and if the number of units is increased or decreased appropriately according to the amount of seawater treated, ⁇
  • FIG. 8 shows another embodiment relating to the water treatment method of the present invention.
  • Seawater was taken into a seawater tank and equipped with a first ozone treatment device, a first filtration device, a second ozone treatment device, a second filtration device, and a reverse osmosis membrane having the above structure connected to the seawater tank. After being processed sequentially by the processing system that is the equipment power, it is discharged to the treated water tank.
  • a first ozone generator is connected to the first ozone processor, and a second ozone generator is connected to the second ozone processor.
  • Each of these components is connected by a pipeline, and as described above, seawater after being processed in each step can be returned to any component in the middle of the processing system and processed again as desired.
  • Arbitrary components may be connected as described above. It is preferable to provide a pump as described above and apply an appropriate water pressure to the entire treatment system so that the treated water flows uniformly. Although two ozone treatment apparatuses have been described here, three or more ozone treatment apparatuses may be used.
  • the first filtration device is composed of an inorganic filtration device such as the above-mentioned sand filtration device
  • the second filtration device is composed of the above-mentioned activated carbon filtration device, and the role thereof is as described above.
  • the reverse osmosis membrane has the function as described above. Dissolved oxygen is high (approx. 36. OmgZD concentrated seawater power is discharged from equipment equipped with reverse osmosis membranes. Salt can also be obtained from this concentrated brine by processing as described above.
  • the water treatment method of the present invention is carried out according to the water treatment system of Fig.
  • the oxygen concentration (PPm (mgZU)) of the sample was measured using a dissolved oxygen meter (DOL-40) manufactured by Electrochemical Measurement Co., Ltd.
  • the mineral component was measured according to a known inorganic ion analysis method.
  • Table 1 shows the measurement results regarding the amount of dissolved oxygen and the amount of mineral components.
  • seawater desalination is industrially compacted by subjecting seawater to ozone treatment using a specific ozone treatment device and then passing it through a filtration device and a reverse osmosis membrane. Since it can be performed and fresh water having a high dissolved oxygen content and a high amount of mineral components can be obtained, the present invention is applicable to fields such as drinking water, industrial water, industrial water, and fish farming.
  • Concentrated salt water obtained as a by-product also has a high dissolved oxygen content and mineral content, and thus can be used in the fields of dried fish production, fish freshness maintenance, and aquaculture. Furthermore, since it can be separated as salt with a high mineral content using a known salt water separation system, it can also be applied to the salt industry.
  • FIG. 1 is a schematic cross-sectional side view of an apparatus provided with a reverse osmosis membrane for explaining the action of a reverse osmosis membrane in the prior art.
  • FIG. 2 is a schematic configuration diagram for explaining a water treatment method according to the present invention.
  • FIG. 3 is a schematic side sectional view showing a structure of an embodiment of an ozone treatment apparatus used in the present invention.
  • FIG. 4 A schematic side sectional view (a) and a plan view (b) showing the structure of another embodiment of an ozone treatment apparatus used in the present invention.
  • FIG. 5 is a schematic side sectional view (a) and a plan view (b) showing the structure of still another embodiment of the ozone treatment apparatus used in the present invention.
  • FIG. 6 is a schematic sectional side view of an apparatus provided with a reverse osmosis membrane for explaining the action of the reverse osmosis membrane in the present invention.
  • FIG. 7 is a block diagram of an embodiment of a water treatment method according to the present invention.
  • FIG. 8 is a block diagram of another embodiment of the water treatment method according to the present invention.
  • baffle plate 42a 52 baffle plate 42a, 52a baffle tip end b, 52b baffle plate rear end portion 42c, 42d stop hole, 53 ozone generator 54 fixing means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

In a water-treatment system provided with an ozone generator, an ozone-treatment device, a filtration device and a reverse osmotic membrane, a device having a baffle plate at a definite position therein is employed as the ozone-treatment device. Seawater is flown into this ozone-treatment device to give a turbulent flow so that ozone diffuses throughout the seawater, thereby performing the ozone-treatment. After thus forming oxygen nanobubbles containing concentrated mineral ions around the flow, the seawater is passed through the filtration device and the reverse osmosis device. Then, the desalinated water is flown out from the water-treatment system. According to this method, fresh water containing a large amount of dissolved oxygen and being rich in minerals can be obtained from seawater.

Description

明 細 書  Specification
水処理方法及び装置  Water treatment method and apparatus
技術分野  Technical field
[0001] 本発明は、海水を淡水化する水処理方法及びその方法を実施するための水処理 装置に関する。  [0001] The present invention relates to a water treatment method for desalinating seawater and a water treatment apparatus for carrying out the method.
背景技術  Background art
[0002] 従来から、オゾンを利用して処理対象水を処理すれば、オゾンの持つ強力な酸化' 殺菌作用により、処理対象水中に含まれた有機物等の汚染物を除去できることが知 られている。この場合、高濃度のオゾンガスを多量に処理対象水中へ供給することが 必要であるが、オゾンは直ぐに酸素に変換され易いという問題や、処理対象水を流 す際には高い水圧をかけるために、多量のオゾンガスを処理対象水中へ供給して、 拡散 '混入させることは極めて困難であるという問題がある。処理対象水の用途にもよ るが、通常、大量の処理対象水をできるだけ短時間で処理することが要求される。そ のため、このような条件を満足させると共に、溶存酸素量を増加させ、処理対象水中 の有用な成分を残存させるような水処理方法が求められている。  [0002] Conventionally, it is known that if water to be treated is treated using ozone, contaminants such as organic substances contained in the water to be treated can be removed by the strong oxidation and sterilization action of ozone. . In this case, it is necessary to supply a large amount of high-concentration ozone gas to the water to be treated. However, because ozone is easily converted to oxygen immediately, or when applying the water to be treated, a high water pressure is applied. There is a problem that it is extremely difficult to supply a large amount of ozone gas into the water to be treated and to diffuse and mix it. Depending on the use of the water to be treated, it is usually required to treat a large amount of water to be treated in as short a time as possible. For this reason, there is a need for a water treatment method that satisfies such conditions, increases the amount of dissolved oxygen, and leaves useful components in the water to be treated.
[0003] 例えば、海水の淡水化処理として、図 1に示すように、適宜殺菌'消毒等の前処理 を行った海水を高圧ポンプ 1を介して、濾過装置(図示せず)や逆浸透膜 2を設けた 装置 3内へ供給して行う方法が知られている。この場合、海水中のミネラル成分 4aや 塩素等の有害物資 4b含む水の粒子 4は逆浸透膜 2をほとんど通過せず、水の粒子 5 及びミネラル成分の一部 6が通過するに過ぎない。この水の粒子 4は、大きい水粒子 4cや小さい水粒子 4dとミネラル成分 4aや塩素等の有害物質 4bとが一緒になつて構 成されている。図 1中、 7は濃縮塩水用タンクであり、 8は処理後の水を入れるタンクで あり、 9は逆浸透膜で処理した後の水を殺菌消毒するための塩素水用容器である。  For example, as seawater desalination treatment, as shown in FIG. 1, seawater that has been appropriately pretreated such as sterilization and disinfection is filtered through a high-pressure pump 1 and a reverse osmosis membrane (not shown). There is known a method in which the apparatus 2 provided with 2 is supplied into the apparatus 3. In this case, the water particles 4 containing minerals 4a and harmful substances 4b such as chlorine in seawater hardly pass through the reverse osmosis membrane 2, and only the water particles 5 and a part 6 of the mineral components pass through. These water particles 4 are composed of large water particles 4c and small water particles 4d together with minerals 4a and harmful substances 4b such as chlorine. In FIG. 1, 7 is a tank for concentrated salt water, 8 is a tank for storing treated water, and 9 is a container for chlorinated water for sterilizing and disinfecting water after treatment with a reverse osmosis membrane.
[0004] また、大量の海水等の処理対象水を浄ィ匕するために、例えば、オゾンガスを処理対 象水中へ混入するオゾン供給装置 (例えば、特許文献 1参照)、及びこの装置を利用 した水処理方法 (例えば、特許文献 2参照)が提案されている。しかし、この従来技術 では、磁気処理部を設けた特定のオゾン供給装置を用いて水処理し、処理水中の溶 存酸素量を低減することを目的として ヽる。 [0004] Further, in order to purify a large amount of water to be treated such as seawater, for example, an ozone supply device that mixes ozone gas into the water to be treated (for example, see Patent Document 1) and this device are used. A water treatment method (for example, see Patent Document 2) has been proposed. However, in this prior art, water treatment is performed using a specific ozone supply device provided with a magnetic treatment unit, and the solution in the treated water is dissolved. The purpose is to reduce the amount of oxygen present.
[0005] しかるに、溶存酸素量の多い水は、水中で生活する生物だけではでなぐヒトの身 体にも活力を与え、疲労を早く回復させるというメリットがある。また、このような溶存酸 素量の多い水は、土壌にも活力を与え、植物の成長を助けるというメリットもある。しか しながら、海水から溶存酸素量の多い淡水を簡単に得る水処理方法はこれまでに知 られていない。  [0005] However, water with a high amount of dissolved oxygen has the advantage of providing vitality to the human body as well as living organisms living in the water and quickly recovering from fatigue. In addition, such water with a high amount of dissolved oxygen also has the merit of providing vitality to the soil and helping plant growth. However, a water treatment method for easily obtaining fresh water with a large amount of dissolved oxygen from seawater has not been known so far.
[0006] さらに、ナノ気泡の生成方法として、水の一部を電気分解により分解ガス化すること 、又は水中で超音波を印加することにより、ナノ気泡を生成することが提案されている (例えば、特許文献 3参照)。しかし、大量の海水を短時間で効率よく処理するのは困 難である。  [0006] Furthermore, as a method for generating nanobubbles, it has been proposed to decompose and gasify a part of water by electrolysis or to generate nanobubbles by applying ultrasonic waves in water (for example, And Patent Document 3). However, it is difficult to efficiently process a large amount of seawater in a short time.
特許文献 1:特開昭 63 - 200891号公報 (特許請求の範囲等)  Patent Document 1: Japanese Patent Laid-Open No. 63-200891 (Claims etc.)
特許文献 1:特公平 3— 72359号公報 (特許請求の範囲等)  Patent Document 1: Japanese Patent Publication No. 3-72359 (Claims)
特許文献 3:特開 2003 - 334548号公報 (特許請求の範囲等)  Patent Document 3: Japanese Patent Application Laid-Open No. 2003-334548 (Claims)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の課題は、上記従来技術の問題点を解決することにあり、大量の海水を短 時間で淡水化処理して、溶存酸素量が多ぐかつ、海水中のミネラル成分が多く残 存する淡水を得るコンパクトな水処理方法及び装置を提供することにある。 [0007] An object of the present invention is to solve the above-mentioned problems of the prior art, and a large amount of seawater is desalinated in a short time so that the amount of dissolved oxygen is large and the mineral components in seawater are large. An object is to provide a compact water treatment method and apparatus for obtaining remaining fresh water.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者等は、海水から溶存酸素量の多い淡水を得る水処理方法及びそのため の水処理装置が開発されれば、得られた淡水を種々の産業分野で利用できるため、 非常に有意義であるという考えから、種々検討を重ねてきた。その結果、海水をォゾ ン処理して、酸素ナノバブルを形成することにより、目的を達成できることに気がつき 、本発明を完成させるに至った。  [0008] If the water treatment method for obtaining fresh water having a large amount of dissolved oxygen from seawater and the water treatment apparatus therefor are developed, the present inventors can use the obtained fresh water in various industrial fields. Various studies have been repeated from the idea that it is meaningful. As a result, the inventors have realized that the purpose can be achieved by ozone treatment of seawater to form oxygen nanobubbles, and the present invention has been completed.
[0009] 本発明の第一の水処理方法は、少なくとも 1種のオゾン発生装置、少なくとも 1種の オゾン処理装置、少なくとも 1種の濾過装置、及び逆浸透膜を備えた装置からなる水 処理系に海水を供給して淡水化する水処理方法にお!、て、前記オゾン処理装置とし て、円筒形状の中央部分と切頭円錐形状の両端部分とからなる筒体であり、一方の 切頭部分から海水を供給し、また、他方の切頭部分からオゾン処理された海水を濾 過装置へと流出させるように構成されて 、る装置を用い、このオゾン処理装置内に海 水を供給して乱流化すると共に、オゾン発生装置で生成したオゾンを海水中に注入 し、例えば、オゾン処理装置内の上流側の位置から又はその処理装置外の上流側 の位置から、オゾンを海水中に注入し、このオゾンを乱流化した海水中に巻き込むよ うにしてオゾン処理装置全体に拡散させてオゾン処理を行!ヽ、注入されたオゾンから 生成された酸素バブルをナノバブルィヒした後、濾過装置及び逆浸透膜を通過させて 淡水化し、水処理系外に流出させることを特徴とする。 [0009] A first water treatment method of the present invention is a water treatment system comprising at least one ozone generator, at least one ozone treatment device, at least one filtration device, and a device comprising a reverse osmosis membrane. In the water treatment method for supplying seawater to desalination, the ozone treatment device is a cylindrical body having a cylindrical central portion and frustoconical end portions. Seawater is supplied from the truncated portion, and the ozone-treated seawater is discharged from the other truncated portion to the filtration device. In addition to supplying turbulent flow, ozone generated by the ozone generator is injected into the seawater. For example, ozone is introduced into the seawater from an upstream position inside the ozone treatment apparatus or from an upstream position outside the treatment apparatus. The ozone treatment is performed by injecting the ozone into the turbulent seawater and diffusing it throughout the ozone treatment equipment. After the oxygen bubbles generated from the injected ozone are nanobubbled, It is characterized by being passed through a filtration device and a reverse osmosis membrane to be desalinated and discharged outside the water treatment system.
[0010] 前記オゾン処理装置として、さらにその内部の所定位置にじゃま板を少なくとも 1つ 備えたものを用いて、このオゾン処理装置内に供給される海水をさらにじやま板にも 衝突させて乱流化し、オゾンを海水中により急激に巻き込むようにして拡散させてォ ゾン処理を行うことを特徴とする。  [0010] The ozone treatment apparatus further includes at least one baffle plate at a predetermined position inside the ozone treatment apparatus, and the seawater supplied into the ozone treatment apparatus is further collided with the top plate and turbulent. It is characterized by ozone treatment, which is made to flow and diffuse as ozone is more rapidly involved in seawater.
[0011] 前記じゃま板は、上流側から下流側へとスロープ状に構成された上面を少なくとも 有し、かつ、上流側から下流側へと先細りになるような断面を有するように構成されて いることを特徴とする。このじゃま板は、ベロ状の形状を有していることが好まし。  [0011] The baffle plate is configured to have at least an upper surface configured in a slope shape from the upstream side to the downstream side, and to have a cross section that tapers from the upstream side to the downstream side. It is characterized by that. This baffle plate preferably has a tongue shape.
[0012] 前記逆浸透膜を通過させて、海水中の主として塩ィ匕ナトリウム及び不純物を除去し て淡水化することを特徴とする。  [0012] It is characterized in that it is passed through the reverse osmosis membrane to desalinate mainly by removing sodium salt and impurities in seawater.
[0013] 前記オゾン処理装置内で処理された海水中に、生成した酸素ナノバブルの周りに 海水中のミネラル成分が濃縮されているナノバブルを生成し、この処理された海水を 逆浸透膜を通過させる際に、このナノバブルを水粒子と共に逆浸透膜を通過させ、 処理された海水中の溶存酸素量を増加させ、かつ、この処理水中にミネラル成分を 残存させることを特徴とする。  [0013] In the seawater treated in the ozone treatment apparatus, nanobubbles in which mineral components in seawater are concentrated are generated around the produced oxygen nanobubbles, and the treated seawater is allowed to pass through a reverse osmosis membrane. In this case, the nanobubbles are passed through a reverse osmosis membrane together with water particles to increase the amount of dissolved oxygen in the treated seawater, and the mineral component remains in the treated water.
[0014] 前記逆浸透膜で処理して、この逆浸透膜を通過しな力つた主として塩ィ匕ナトリウム 及び不純物を含み、かつ、溶存酸素量の増加した海水を水処理系外に濃縮海水と して流出させることを特徴とする。  [0014] Seawater that has been treated with the reverse osmosis membrane and contains mainly sodium chloride and impurities that have not passed through the reverse osmosis membrane and that has an increased amount of dissolved oxygen is removed from the water treatment system as concentrated seawater. It is characterized by letting it flow out.
[0015] 本発明の第二の水処理方法は、第一及び第二のオゾン発生装置、第一及び第二 のオゾン処理装置、第一及び第二の濾過装置、並びに逆浸透膜を備えた装置から なる水処理系に海水を供給して淡水化する水処理方法にお!、て、前記第一オゾン 処理装置として、円筒形状の中央部分と切頭円錐形状の両端部分とからなる筒体で あり、一方の切頭部分から海水を供給し、また、他方の切頭部分からオゾン処理され た海水を無機物濾過装置からなる第一濾過装置へと流出させるように構成され、さら にそのオゾン処理装置内の所定位置にじやま板を少なくとも 1つ備えた装置を用 Vヽ、 まず、この第一オゾン処理装置内に海水を供給して乱流化すると共に、第一オゾン 発生装置で生成したオゾンを海水中に注入し、例えば、第一オゾン処理装置内の上 流側の位置から又はその処理装置外の上流側の位置から、オゾンを海水中に注入 し、このオゾンを乱流化した海水中に巻き込むようにしてオゾン処理装置全体に拡散 させてオゾン処理を行 、、注入されたオゾンから生成された酸素バブルをナノバブル 化した後、第一濾過装置を通過させ、次いで第一オゾン発生装置及び第一オゾン処 理装置と同じ構成を有する第二オゾン発生装置及び第二オゾン処理装置を用いて、 同様にオゾン処理した後、活性炭濾過装置からなる第二濾過装置を通過させ、その 後、逆浸透膜を通過させて淡水化し、水処理系外に流出させることを特徴とする。こ の場合、第一濾過装置では、主として、海水中の有機物や無機物が除去され、第二 濾過装置では、主として、残存している酸ィ匕性物質や有機物が吸着除去される。 [0015] A second water treatment method of the present invention includes first and second ozone generation devices, first and second ozone treatment devices, first and second filtration devices, and a reverse osmosis membrane. In a water treatment method for supplying seawater to a water treatment system comprising an apparatus and desalinating the water, the first ozone As a treatment device, it is a cylindrical body consisting of a cylindrical central part and both ends of a frustoconical shape. Seawater is supplied from one of the truncated parts, and ozone-treated seawater is supplied from the other truncated part. A device that is configured to flow out to a first filtration device composed of an inorganic filtration device, and that further includes at least one screen plate at a predetermined position in the ozone treatment device is used. Seawater is supplied into the treatment device to make it turbulent, and ozone generated by the first ozone generator is injected into the seawater, for example, from the upstream position in the first ozone treatment device or the treatment device. Ozone is injected into seawater from the upstream position outside, and this ozone is entrained in turbulent seawater and diffused throughout the ozone treatment equipment, and ozone treatment is performed. Generated from the injected ozone Oxygen bubbling In the same way, the second ozone generator and the second ozone treatment device having the same configuration as the first ozone generation device and the first ozone treatment device are passed through the first filtration device. After the ozone treatment, it is passed through a second filtration device composed of an activated carbon filtration device, then passed through a reverse osmosis membrane, desalinated, and discharged out of the water treatment system. In this case, organic substances and inorganic substances in seawater are mainly removed by the first filtration apparatus, and remaining acidic and acidic substances and organic substances are mainly removed by adsorption by the second filtration apparatus.
[0016] 前記第二の水処理方法において、じゃま板は、上流側から下流側へとスロープ状 に構成された上面を少なくとも有し、かつ、上流側から下流側へと先細りになるような 断面を有するように構成されていること、例えばべ口状の形状を有すること、また、逆 浸透膜を通過させて、海水中の主として塩ィ匕ナトリウム及び不純物を除去して淡水化 すること、前記第一及び第二オゾン処理装置内で処理された海水中に、生成した酸 素ナノバブルの周りに海水中のミネラル成分が濃縮されているナノバブルを生成し、 この処理された海水を逆浸透膜を通過させる際に、このナノバブルを水粒子と共に 逆浸透膜を通過させ、処理された海水中の溶存酸素量を増加させ、かつ、この処理 水中にミネラル成分を残存させること、また、前記逆浸透膜で処理して、この逆浸透 膜を通過しな力つた主として塩ィ匕ナトリウム及び不純物を含み、かつ、溶存酸素量の 増加した海水を水処理系外に濃縮海水として流出させることについては前記第一の 水処理方法と同じである。  [0016] In the second water treatment method, the baffle plate has at least an upper surface configured in a slope shape from the upstream side to the downstream side, and has a cross section that tapers from the upstream side to the downstream side. For example, having a mouth-like shape, passing through a reverse osmosis membrane to remove mainly sodium salt and impurities in seawater, and desalination, In the seawater treated in the first and second ozone treatment devices, nanobubbles are generated in which mineral components in seawater are concentrated around the produced oxygen nanobubbles, and the treated seawater is treated with a reverse osmosis membrane. When passing, the nanobubbles pass through the reverse osmosis membrane together with water particles to increase the amount of dissolved oxygen in the treated seawater, and to leave the mineral component in the treated water. The seawater containing mainly sodium chloride and impurities that have not passed through the reverse osmosis membrane and increased in the amount of dissolved oxygen is discharged out of the water treatment system as concentrated seawater. This is the same as the one water treatment method.
[0017] 本発明の水処理装置は、オゾン発生装置、オゾン処理装置、濾過装置、及び逆浸 透膜を備えた装置力 なる海水を淡水化する水処理装置にぉ 、て、前記オゾン処理 装置が、円筒形状の中央部分と切頭円錐形状の両端部分とからなる筒体であって、 一方の切頭部分から海水を供給し、また、他方の切頭部分からオゾン処理された海 水を濾過装置へと流出させるように構成され、さらにそのオゾン処理装置内の所定位 置にじゃま板を少なくとも 1つ備えた装置であって、前記オゾン処理装置内へ供給さ れ、オゾン処理された海水中に、酸素ナノバブルの周りに海水中のミネラル成分が濃 縮されて!ヽるナノバブルが生成されるように構成されたものであることを特徴とする。 このじゃま板は、前記した通りである。 [0017] The water treatment device of the present invention includes an ozone generator, an ozone treatment device, a filtration device, and a reverse immersion. In addition to a water treatment device that desalinates seawater, which is a device force provided with a permeable membrane, the ozone treatment device is a cylindrical body having a cylindrical central portion and both end portions of a truncated cone shape, It is configured to supply seawater from one of the truncated portions, and to flow out the ozone-treated seawater from the other truncated portion to the filtration device, and a baffle plate at a predetermined position in the ozone treatment device. At least one apparatus, which is supplied into the ozone treatment apparatus, and in the ozone-treated seawater, mineral components in the seawater are concentrated around the oxygen nanobubbles! It is comprised so that it may be comprised. This baffle is as described above.
発明の効果  The invention's effect
[0018] 本発明の水処理方法によれば、大量の海水を短時間で淡水化して、溶存酸素量 が多ぐかつ、海水中のミネラル成分が多く残存する淡水を得ることができるという効 果を奏する。  [0018] According to the water treatment method of the present invention, a large amount of seawater can be desalinated in a short time to obtain fresh water having a large amount of dissolved oxygen and a large amount of mineral components in the seawater. Play.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明において処理対象とする海水中には、各種の不純物、例えば、不溶解性物 質として、ゴミその他の懸濁性粒子、ノ クテリア等の微生物、コロイド状物質、また、溶 解性物質として、タンパク質等の有機物、炭酸ガス等の気体が含まれている。海水を 淡水化すると共に、これらの不純物も適宜選択して除去できれば、地表の 70%を覆 つている水、特に海水が、飲料水や、工業用水、農業用水等として有効に利用できる [0019] In the seawater to be treated in the present invention, various impurities, for example, insoluble substances such as dust and other suspended particles, microorganisms such as nocteria, colloidal substances, and dissolved substances are dissolved. Organic substances such as proteins and gases such as carbon dioxide are included as sex substances. If the seawater is desalinated and these impurities can be selected and removed as appropriate, water covering 70% of the surface of the earth, especially seawater, can be effectively used as drinking water, industrial water, agricultural water, etc.
[0020] 本発明の水処理方法によれば、海水を、まず、オゾン処理装置内を通過させてォ ゾン処理する。このオゾン処理装置は、上記したように、中央部分が円筒形状であり、 その両端部分が切頭円錐形状であって、円錐形状の底面の径が円筒の径と同一に なるように構成された筒体の装置である。この一方の切頭部分力 海水が供給され 得るように、また、他方の切頭部分から処理された海水を次の工程へと流出させ得る ように構成されている。両端の切頭円錐形状部分の底面が円筒形状部分と連結され ているので、処理される海水は、一方の切頭部分の狭い入口力 供給され、入口より 広い円筒形状の部分を経て処理され、他方の切頭部分の狭い出口力 次の工程へ と流出する。海水は、このようなオゾン処理装置内では、両端の切頭円錐部分の内壁 近傍では渦を巻き、激しい乱流状態となっている。そのため、オゾン発生装置により 発生させたオゾンを、このオゾン処理装置内に連続的に高濃度で臨界状態で注入 するや、オゾンはこのオゾン処理装置全体に直ちに拡散され、オゾン処理が行われ 得る。力べして、海水中に拡散されたオゾンが過飽和の酸素へと変換する過程で水 分子が分解し、いわゆるスーパーオキサイド (HO )ゃヒドロキシフリーラジカル (OHフ [0020] According to the water treatment method of the present invention, seawater is first ozone-treated by passing through an ozone treatment apparatus. As described above, this ozone treatment apparatus is configured such that the central portion has a cylindrical shape, both end portions thereof have a truncated cone shape, and the diameter of the bottom surface of the cone shape is the same as the diameter of the cylinder. It is a cylindrical device. This truncation partial force seawater can be supplied, and the seawater treated from the other truncation part can be discharged to the next step. Since the bottoms of the truncated cone-shaped parts at both ends are connected to the cylindrical part, the seawater to be treated is supplied with a narrow inlet force at one of the truncated parts and processed through a cylindrical part wider than the inlet, Narrow outlet force at the other truncated part Flows to the next process. Seawater is the inner wall of the truncated cone at both ends in such an ozone treatment device. In the vicinity, a vortex is wound, creating a violent turbulent state. Therefore, when the ozone generated by the ozone generator is continuously injected into the ozone processor at a high concentration in a critical state, the ozone is immediately diffused throughout the ozone processor and the ozone treatment can be performed. In the process of converting the ozone diffused into the seawater into supersaturated oxygen, water molecules break down, so-called superoxide (HO) is a hydroxy free radical (OH
2  2
リーラジカル)等が発生する。この際、通常の酸素マイクロバブルがナノバブルに圧壊 され、この酸素ナノバブルの周りに海水中のミネラル成分等のイオンが濃縮して集ま るものと思われる。すなわち、本発明でいうナノバブルは、直径が 0. 3〜1. Onm程 度の超微細な気泡であり、その周りに海水中のミネラル成分等のイオン類が濃縮され て集まり、このイオン類がバブルの外殻を形成している。このナノバブルは長期間安 定である。これは、いわゆるソルティングアウト (salting-out)現象のためであると考えら れる。この場合、処理された海水中の溶存酸素量は増大する。なお、このナノバブル の粒子サイズは、公知の粒子カウンター、例えば特開 2003— 334548号公報記載 の粒子カウンタ一等を用いて測定できる。  Lea radical) is generated. At this time, normal oxygen microbubbles are crushed into nanobubbles, and ions such as mineral components in seawater are concentrated and collected around the oxygen nanobubbles. In other words, the nanobubbles referred to in the present invention are ultrafine bubbles having a diameter of about 0.3 to 1. Onm, and ions such as mineral components in seawater are concentrated and gathered around these bubbles. Forms the outer shell of the bubble. This nanobubble is stable for a long time. This is thought to be due to the so-called salting-out phenomenon. In this case, the amount of dissolved oxygen in the treated seawater increases. The particle size of the nanobubbles can be measured using a known particle counter, for example, a particle counter described in JP-A-2003-334548.
[0021] ところで、オゾン処理装置内へ注入されたオゾンは、次の化学式に従ってスーパー オキサイドァ-オン (O—や ·〇―)からなる HOや、これに水素原子を取り込んだパラ [0021] By the way, ozone injected into the ozone treatment apparatus is composed of HO composed of superoxide-on (O— or •• —) according to the following chemical formula, and paraffin into which hydrogen atoms are incorporated.
2 2 2  2 2 2
スーパーォキシドである H Oや、 OHフリーラジカル等を生成するものと考えられ  It is thought to generate superoxide such as H 2 O and OH free radicals.
2 Λ 2 Λ
る。  The
[0022] [化 1]  [0022] [Chemical 1]
0 3  0 3
 丄
I 4 e  I 4 e
2 H 2 0 2 H 2 0
 †
 †
 †
H〇2 →→ H O H ○ 2 →→ HO
[0023] 本発明によれば、オゾン処理装置として、所定の位置に特定の形状を有するじゃま 板を少なくとも一つ配置された装置を用いることが好ましい。このじゃま板は、例えば 、供給される海水に対して、上流側から下流側へとスロープ状に構成された上面を少 なくとも有し、好ましくはこのようなスロープ状に構成された上面及び下面を有し、か つ、上流側から下流側へと先細りになるような断面を有するように構成されている。例 えば、ベロ (舌)状に構成されているじゃま板が好ましい。このように構成することにより 、オゾン処理装置内に海水を流し、オゾン発生装置カゝら供給されるオゾンを海水内 へ注入すると、オゾンは海水中に巻き込まれるようにして激しく拡散され、オゾン処理 が効率的に行われ得る。このオゾン注入口は、オゾン処理装置のできるだけ上流側 に設ければ良ぐ好ましくはオゾン処理装置の海水供給口の近傍に設けるのが良 、 。あるいはまた、オゾン処理装置の外であって、海水供給口の上流側近傍に設けて も良い。 [0023] According to the present invention, as the ozone treatment apparatus, it is preferable to use an apparatus in which at least one baffle plate having a specific shape is arranged at a predetermined position. For example, the baffle plate has at least an upper surface configured in a slope shape from the upstream side to the downstream side with respect to the supplied seawater, and preferably has an upper surface and a lower surface configured in such a slope shape. Have That is, it is configured to have a cross section that tapers from the upstream side to the downstream side. For example, a baffle plate having a tongue shape is preferable. With this configuration, when seawater is flowed into the ozone treatment apparatus and the ozone supplied from the ozone generator is injected into the seawater, the ozone is violently diffused so as to be caught in the seawater. Can be performed efficiently. The ozone inlet may be provided as upstream as possible in the ozone treatment apparatus, and is preferably provided in the vicinity of the seawater supply port of the ozone treatment apparatus. Alternatively, it may be provided outside the ozone treatment apparatus and in the vicinity of the upstream side of the seawater supply port.
[0024] じゃま板はまた、例えば、上記のようなベロ状のものを複数個環状に並べて、オゾン 処理装置の海水供給口の近傍に設置することが好ま 、。  [0024] It is also preferable that the baffle plate is arranged in the vicinity of the seawater supply port of the ozone treatment apparatus, for example, by arranging a plurality of the above-mentioned bevel-shaped ones in a ring shape.
[0025] 上記の場合、両端の切頭円錐部分の内壁近傍の場合と同様に、じゃま板表面、特 にじやま板のスロープ状の部分の近傍についても、オゾン処理装置内を流れる海水 は、じゃま板の所定の部分に衝突し、激しい乱流状態になって、渦を卷くようにしてじ やま板の下流側へと流れる。このような状態の海水中にオゾンを注入すると、オゾン は、直ちに海水の流れに応じてオゾン処理装置全体に乱流状態で拡散する。力べし て、効率的なオゾン処理が行われ得る。そのため、海水中のオゾンが過飽和の酸素 へと変換する課程で、上記したようなスーパーオキサイドイオン力 なる HOや OHフ  [0025] In the above case, as in the case of the vicinity of the inner wall of the frustoconical portion at both ends, the seawater flowing in the ozonizer is also present on the surface of the baffle plate, particularly on the vicinity of the sloped portion of It collides with a predetermined part of the baffle plate, becomes a violent turbulent state, and flows to the downstream side of the baffle plate in a whirling manner. When ozone is injected into seawater in such a state, ozone immediately diffuses in a turbulent state throughout the ozone treatment apparatus according to the flow of seawater. Forcibly, efficient ozone treatment can be performed. For this reason, in the process of converting ozone in seawater into supersaturated oxygen, the HO and OH gases that have the superoxide ion power described above are used.
2 リーラジカル等がじゃま板のない場合よりも多量に発生する。この際に、通常の酸素 バブルがナノバブルに圧壊され、このナノバブルの周りに海水中のミネラル成分等の イオンが濃縮されて集まり、このような酸素ナノバブルが多量に発生する。処理された 海水中の溶存酸素量は増大する。  2 Large amounts of free radicals are generated compared to the case without baffles. At this time, normal oxygen bubbles are crushed into nanobubbles, and ions such as mineral components in seawater are concentrated around the nanobubbles, and a large amount of such oxygen nanobubbles are generated. The amount of dissolved oxygen in the treated seawater increases.
[0026] 上記のように海水に対してオゾン処理することにより、酸化殺菌、脱色、脱臭等が行 われる。この場合、ノ クテリアその他の微生物の滅菌や、タンパク質その他の有機物 の分解も行われる。水処理系では、このようなオゾン処理装置を複数配置し、海水を 繰り返しオゾンで浄ィ匕することが好ましい。そして、複数のオゾン処理工程の間に各 種濾過工程で海水の濾過を行う。この場合、無機物濾過装置や活性炭濾過装置を 使用することが好ましい。このような濾過装置は、海水中に存在する無機物の除去、 酸ィ匕性物質や有機物の吸着除去を行うと共に、水処理系の後段に配する逆浸透膜 の保護の役目も果たす。海水は、この濾過工程を経た後、例えば紫外線照射装置を 通過してバクテリアの滅菌、有機物の分解処理を行っても良い。この段階で処理海 水は、既に高レベルで淡水化されている。本発明の場合、無機物濾過装置としては 、特に制限はないが、例えば、砂濾過装置や破砕珊瑚による濾過装置やセラミックス による濾過装置やこれら砂、珊瑚及びセラミックスの任意の混合物による濾過装置等 力 なる濾過装置を挙げることができる。 [0026] By subjecting seawater to ozone treatment as described above, oxidative sterilization, decolorization, deodorization, and the like are performed. In this case, sterilization of nocteria and other microorganisms and degradation of proteins and other organic substances are also performed. In the water treatment system, it is preferable to arrange a plurality of such ozone treatment apparatuses and repeatedly purify seawater with ozone. Then, seawater is filtered in various filtration processes during a plurality of ozone treatment processes. In this case, it is preferable to use an inorganic filter or an activated carbon filter. Such a filtration device removes inorganic substances present in seawater, adsorbs and removes acidic and organic substances and reverse osmosis membranes disposed downstream of the water treatment system. It also plays a role of protection. After passing through this filtration step, the seawater may pass through, for example, an ultraviolet irradiation device to sterilize bacteria and decompose organic matter. At this stage, the treated seawater has already been desalinated at a high level. In the case of the present invention, there are no particular restrictions on the inorganic filter, but for example, a sand filter, a crusher filter, a ceramic filter, or a filter of any mixture of sand, sand, and ceramics can be used. Mention may be made of filtration devices.
[0027] 本発明によれば、オゾン処理及び濾過処理を経た処理海水を、逆浸透膜を設けた 装置内を通過させる。通常の逆浸透膜の場合、ミネラル成分はほとんど通さない上、 飲料水とする場合の塩素消毒により、通過した僅かなミネラル成分も飲料水中にはほ とんど残らない。しかし、本発明のオゾン処理の後の逆浸透膜処理においては、通常 の逆浸透膜の作用と異なり、逆浸透膜が上記したような径の小さい (0. 3〜1. Onm 程度)酸素ナノバブルを水粒子と共に通過させ得るので、得られた淡水は、ミネラル 成分の多い水となる。本発明で用いる逆浸透膜は、膜の目が l〜2nm程度のもので あるので、酸素ナノバブルを通過せしめることができる。また、高濃度のオゾンガスを オゾン処理装置内に注入し、オゾンを海水中に大量に拡散 ·分散させて海水処理を 行うので、得られる淡水中の溶存酸素量も多くなる。さらに、海水中の塩ィ匕ナトリウム 成分等も逆浸透膜処理され、溶存酸素量の高い (例えば、約 36. OmgZD濃縮海水 として排出し得る。この濃縮塩水から、公知の塩水分離システムを用いて、食塩を分 離することができる。  [0027] According to the present invention, treated seawater that has been subjected to ozone treatment and filtration treatment is passed through an apparatus provided with a reverse osmosis membrane. In the case of a normal reverse osmosis membrane, almost no mineral components pass through, and chlorination of drinking water hardly causes any mineral components that have passed through to remain in the drinking water. However, in the reverse osmosis membrane treatment after the ozone treatment of the present invention, unlike the normal reverse osmosis membrane, the reverse osmosis membrane has a small diameter (about 0.3 to 1. Onm) as described above. Can be passed along with water particles, so the obtained fresh water becomes water with a lot of mineral components. The reverse osmosis membrane used in the present invention can pass oxygen nanobubbles because the membrane has an eye of about 1 to 2 nm. In addition, high-concentration ozone gas is injected into the ozone treatment device, and ozone is diffused and dispersed in a large amount in seawater for seawater treatment, resulting in an increase in the amount of dissolved oxygen in fresh water. In addition, salt and sodium components in seawater are treated with reverse osmosis membranes and can be discharged as high dissolved oxygen (for example, about 36. OmgZD concentrated seawater. From this concentrated saltwater, a known saltwater separation system can be used. The salt can be separated.
[0028] 以下、図 2〜7を参照して、本発明に係わる水処理方法の例について具体的に説 明する。  [0028] Hereinafter, an example of the water treatment method according to the present invention will be specifically described with reference to FIGS.
[0029] 図 2に模式的に概略を示す水処理システムを参照して説明すれば、本発明の水処 理方法は、例えば、海水 21を海水タンク 22内に取水し、上記したようなオゾン処理 装置 23内へ汲み上げると共に、公知のオゾン発生装置 24で発生させた多量のォゾ ンをこのオゾン処理装置内へ注入し、海水をオゾン処理し、次いで各種濾過装置 25 及び逆浸透膜 (図示せず)を用いて不純物等を濾過し、無菌水として排出させることに より実施される。  [0029] Referring to the water treatment system schematically shown in Fig. 2, the water treatment method of the present invention takes, for example, seawater 21 into a seawater tank 22 and ozone as described above. A large amount of ozone pumped into the treatment device 23 and injected into the ozone treatment device 24 is injected into the ozone treatment device, and the seawater is treated with ozone, and then various filtration devices 25 and reverse osmosis membranes (Fig. (Not shown) is used to filter impurities and discharge as sterile water.
[0030] 水処理系の前段のオゾン処理装置 23では、オゾン発生装置 24で発生した高濃度 のオゾンガスが海水中に注入され、上記したように、海水に対し、オゾンによる酸化殺 菌、脱色、脱臭処理を実施し、所望の効果を達成する。例えば、紫外線照射後、所 望により、精密フィルターを用いて処理して、処理された水中の 1 μ m以下の不純物 を除去することや紫外線照射装置で滅菌、分解した際に生成するバクテリアの死骸 や有機物の残滓を残らず除去することもできる。 [0030] In the ozone treatment device 23 at the front stage of the water treatment system, the high concentration generated in the ozone generator 24 The ozone gas is injected into the seawater, and as described above, the seawater is subjected to oxidative sterilization, decolorization, and deodorization treatment with ozone to achieve the desired effect. For example, after treatment with ultraviolet rays, treatment with a precision filter can be performed as desired to remove impurities of 1 μm or less in the treated water, or to kill bacteria produced when sterilized and decomposed with ultraviolet irradiation equipment. It is also possible to remove all or organic residue.
[0031] 次に、本発明で用いるオゾン処理装置及びじゃま板について、その実施の形態とし て、図 3、図 4(a)及び (b)、並びに図 5(a)及び (b)を参照して説明する。  [0031] Next, with regard to the ozone treatment apparatus and baffle used in the present invention, refer to FIG. 3, FIG. 4 (a) and (b), and FIG. 5 (a) and (b) as embodiments thereof. To explain.
[0032] 図 3では、じゃま板を備えたオゾン処理装置を示してある。オゾン処理装置 31は、 円筒形部分 31aと、切頭円錐部分 31b及び 31cとから構成された筒体であり、一方の 切頭円錐部分 31bは海水タンク (図示せず)に接続されており、他方の切頭円錐部分 31cは濾過装置 (図示せず)に接続されている。じゃま板 32は、オゾン処理装置 31の 内部の所定の位置に設けられており、このじゃま板の所定の部分に向力つて、オゾン 発生装置 33で発生させたオゾンを注入するように、オゾン発生装置とじゃま板とを配 置してある。これにより、オゾンは、乱流化して流れている海水中に効率よく拡散して いく。オゾンの注入用ノズルは、円筒形部分 31aの所定の位置であって、上流側に設 ければよい。オゾン注入用ノズルは、オゾンが海水中に効率的注入されれば良ぐ頭 円錐部分 31bの切頭部分の近傍に設けても、離して設けてもよい。  FIG. 3 shows an ozone treatment apparatus provided with a baffle plate. The ozone treatment device 31 is a cylindrical body composed of a cylindrical portion 31a and truncated cone portions 31b and 31c. One truncated cone portion 31b is connected to a seawater tank (not shown), The other truncated cone portion 31c is connected to a filtering device (not shown). The baffle plate 32 is provided at a predetermined position inside the ozone treatment device 31, and generates ozone so as to inject the ozone generated by the ozone generator 33 against a predetermined portion of the baffle plate. A device and a baffle are arranged. As a result, ozone diffuses efficiently in the turbulent flowing seawater. The ozone injection nozzle may be provided at a predetermined position of the cylindrical portion 31a on the upstream side. The ozone injection nozzle may be provided in the vicinity of the truncated portion of the truncated cone portion 31b as long as ozone is efficiently injected into seawater, or may be provided separately.
[0033] 次に、図 3とは形状の異なる別のじゃま板を備えたオゾン処理装置の例を示す図 4 を参照して説明する。図 4(a)は、円筒形部分 41aと切頭円錐部分 41b及び 41cとから なるオゾン処理装置 41の側断面図であり、図 4(b)はその平面図である。じゃま板 42 は、ベロ状に構成されたものであり、その上面部分及び下面部分は先端部分 42aに V、く程細くなるようにスロープ状に構成されて 、る。  Next, a description will be given with reference to FIG. 4 showing an example of an ozone treatment apparatus provided with another baffle having a shape different from that in FIG. FIG. 4 (a) is a side cross-sectional view of an ozone treatment apparatus 41 composed of a cylindrical portion 41a and frustoconical portions 41b and 41c, and FIG. 4 (b) is a plan view thereof. The baffle plate 42 is configured in a bell shape, and the upper surface portion and the lower surface portion thereof are formed in a slope shape so that the tip portion 42a becomes V and becomes narrower.
[0034] じゃま板 42の後端部分 42bは、海水が衝突して乱流化するようにスロープ状に構 成されていることが好ましい。このじゃま板 42は、オゾン処理装置 41の円筒形部分 4 laに固定されている。この固定方法には特に制限はないが、例えば、図 4に示すよう に、オゾン発生装置 43のオゾン注入ノズル 43aを利用してもよい。すなわち、じゃま 板 42〖こ止め穴 42c及び 42dを開け、ここにオゾン注入ノズル 43aが嵌合するようにし て固定しても良い。 [0035] 図 4では、このオゾン注入ノズル 43aは、円筒形部分 41aの所定の位置であって、 上流側に設けられているが、切頭円錐部分 41bの切頭部分の近傍に設けられていて も良い。オゾン注入ノズル 43aのオゾン処理装置 41内に突出して 、る部分にはォゾ ン注入口 43bが少なくとも 1つ設けられている。この注入口 43bは、適当な数の穴が 開いたシャワーノズルのようなものでも良い。オゾンが、この注入口 43bから海水中に 注入されるように構成される。 [0034] It is preferable that the rear end portion 42b of the baffle plate 42 is formed in a slope shape so that seawater collides and becomes turbulent. This baffle plate 42 is fixed to the cylindrical portion 4 la of the ozone treatment device 41. Although there is no particular limitation on the fixing method, for example, as shown in FIG. 4, an ozone injection nozzle 43a of an ozone generator 43 may be used. That is, the baffle plate 42 can be fixed by opening the counter holes 42c and 42d and fitting the ozone injection nozzle 43a there. In FIG. 4, the ozone injection nozzle 43a is provided at a predetermined position of the cylindrical portion 41a and on the upstream side, but is provided in the vicinity of the truncated portion of the truncated cone portion 41b. It's okay. At least one ozone injection port 43b is provided at a portion of the ozone injection nozzle 43a that protrudes into the ozone treatment device 41. The inlet 43b may be a shower nozzle with an appropriate number of holes. Ozone is configured to be injected into seawater from this inlet 43b.
[0036] また、図 4では、オゾン注入口 43bがじゃま板 42の上下に 1つずつ設けた例を示し てあるが、この注入口は、所定の位置に 1個設けても、 3個以上設けても良い。この場 合注入口の数に応じてオゾン発生装置を設けても、一つのオゾン発生装置から分岐 してそれぞれの注入口に接続しても良 、。  [0036] FIG. 4 shows an example in which one ozone inlet 43b is provided above and below the baffle plate 42. However, even if one inlet is provided at a predetermined position, three or more ozone inlets 43b are provided. It may be provided. In this case, an ozone generator may be provided depending on the number of inlets, or it may be branched from one ozone generator and connected to each inlet.
[0037] さら〖こ、図 3とは形状の異なる別のじゃま板を複数枚環状に並べて備えたオゾン処 理装置の例を示す図 5を参照して説明する。図 5(a)は、円筒形部分 51aと切頭円錐 部分 51b及び 51cとからなるオゾン発生装置 51の側断面図であり、図 5(b)はその平 面図である。じゃま板 52は、それぞれ、図 4と同様なベロ状に構成されたものである。 図中、 52aはじゃま板 52の先端部分 52aであり、 52bはじゃま板の後端部分であり、 5 3はオゾン発生装置であり、 54はじゃま板の固定手段である。図 5では、 6枚のじゃま 板を配置している力 じゃま板の枚数は適宜選定すれば良い。オゾンは、オゾン処理 装置の入り口近傍に設けられたオゾン発生装置 53のオゾン注入ノズルを介して注入 される。  [0037] Sarako will be described with reference to FIG. 5 showing an example of an ozone treatment apparatus provided with a plurality of other baffles different in shape from FIG. FIG. 5 (a) is a side sectional view of an ozone generator 51 composed of a cylindrical portion 51a and truncated cone portions 51b and 51c, and FIG. 5 (b) is a plan view thereof. The baffle plates 52 are each configured in a velvet shape similar to FIG. In the figure, 52a is a front end portion 52a of the baffle plate 52, 52b is a rear end portion of the baffle plate, 53 is an ozone generator, and 54 is a fixing means for the baffle plate. In Fig. 5, the force for arranging 6 baffles is as appropriate as the number of baffles. Ozone is injected through an ozone injection nozzle of an ozone generator 53 provided near the entrance of the ozone treatment apparatus.
[0038] 本発明の水処理方法では、海水タンク内に取水した海水を上記したオゾン処理装 置内で処理した後、各種濾過装置を通す。次いで、濾過された処理水を、図 6に示 すような逆浸透膜 61を設けた処理装置 62内へ供給してさらに処理する。この場合、 オゾン処理装置により処理された海水中には、イオン化されたミネラル成分 63a等が 酸素のナノバブル 63の周りに多量に濃縮された形状で多量に存在している。従って 、この処理された海水を逆浸透膜 61を通過させる際に、ミネラル成分のイオン 63aが 周りに濃縮されて集まっているナノバブル 63は、水粒子と共に逆浸透膜を通過し、処 理水中にミネラル成分が多量に存在するようになる。また、海水中のミネラル成分 64 aや塩素等の有害物質 64bやナトリウム 64cが水粒子 64dと共に集合している水粒子 64は、そのサイズが膜の目よりも大きいため、逆浸透膜を透過せず、溶存酸素量の 高い (約 36. OmgZD濃縮塩水として排出される。図 6中、 65は処理後の水を入れる タンクであり、 66は濃縮塩水用タンクである。この濃縮塩水から、上記したように、公 知の塩水分離システムで食塩を分離できる。 [0038] In the water treatment method of the present invention, the seawater taken into the seawater tank is treated in the ozone treatment apparatus described above, and then passed through various filtration devices. Next, the filtered treated water is supplied into a treatment device 62 provided with a reverse osmosis membrane 61 as shown in FIG. 6 for further treatment. In this case, ionized mineral components 63a and the like are present in a large amount around the oxygen nanobubbles 63 in the seawater treated by the ozone treatment apparatus. Therefore, when the treated seawater passes through the reverse osmosis membrane 61, the nanobubbles 63 in which the mineral component ions 63a are concentrated around and pass through the reverse osmosis membrane together with the water particles, into the treated water. A large amount of mineral components are present. Also, water particles in which mineral components 64a in seawater, harmful substances 64b such as chlorine, and sodium 64c gather together with water particles 64d. Since 64 is larger in size than the membrane, it does not permeate the reverse osmosis membrane and has a high dissolved oxygen content (approximately 36. OmgZD concentrated brine is discharged. In Fig. 6, 65 represents the treated water. The tank is a tank for concentrated salt water, and the salt water can be separated from the concentrated salt water by a known salt water separation system as described above.
[0039] 上記のような現象が容易に起こるのは、本発明では膜の目を l〜2nm程度である 逆浸透膜を使用しているからである。水道水の場合、水のクラスタ一は、通常、 11〜 13個が一つのユニットとなっており、これ自体は逆浸透膜を通過する。しかし、このよ うなクラスターに塩素原子やナトリウム原子や食塩粒子がくっつ 、て 、る状態 0、わゆ る塩水)は、クラスターの大きさが逆浸透膜の目よりも大きくなる (2nmを超える)ため、 通過できない。本発明では、ナノ化したバブル (オゾンの酸ィ匕により生じる酸素ナノバ ブル)が海水中のミネラルである金属イオンによっても壊れな 、で海水中を移動する。 この場合、このミネラルイオンは酸素の周りに引きつけられており、かつ、酸素分子に は水の分子もくつついている力 このクラスターの大きさは平均して 1. Onm以下であ り、本発明で使用する膜の目よりも小さいので、塩水の場合と異なりほとんどが逆浸 透膜を通過する。 [0039] The above phenomenon easily occurs because a reverse osmosis membrane having a membrane size of about 1 to 2 nm is used in the present invention. In the case of tap water, a cluster of water usually has 11 to 13 units as one unit, which itself passes through a reverse osmosis membrane. However, when such a cluster contains chlorine atoms, sodium atoms, and salt particles, the state of the state 0, the salt water is larger than that of the reverse osmosis membrane (greater than 2 nm). Therefore, it cannot pass. In the present invention, nano-sized bubbles (oxygen nano-bubbles generated by the acid of ozone) move in the sea water without being broken by metal ions that are minerals in the sea water. In this case, the mineral ions are attracted around oxygen, and the oxygen molecules are attracted by water molecules. The average size of this cluster is 1. Onm or less. Since it is smaller than the membrane used, most of it passes through the reverse osmosis membrane unlike salt water.
[0040] 上記のようにして得られた酸素ナノバブルは、安定化して存在して ヽる。これは、上 記したように、海水中のミネラル等のイオン類がバブル周囲に濃縮することで、静電 気的な反発力が生じ、このナノバブルを消滅し難くしている。また、この濃縮したィォ ン類がナノバブルを包む外殻として機能して 、る。  [0040] The oxygen nanobubbles obtained as described above exist in a stable state. This is because, as described above, ions such as minerals in seawater concentrate around the bubbles, creating an electrostatic repulsive force, making it difficult for the nanobubbles to disappear. The concentrated ions function as an outer shell that encloses the nanobubbles.
[0041] 図 7を参照して、本発明の水処理方法に係わる一実施の形態を簡単に説明する。  With reference to FIG. 7, an embodiment relating to the water treatment method of the present invention will be briefly described.
海水は、海水タンクに取水され、このタンクに接続された上記構造を有するオゾン処 理装置、濾過装置及び逆浸透膜からなる処理系により、順次処理された後、処理水 タンクへと流出される。このオゾン処理装置にはオゾン発生装置が接続されて 、る。 これらの各構成要素は、管路で接続されており、所望により、各工程で処理した後の 海水を処理系の途中の任意の構成要素に戻し、そこで再処理することができるように 任意の構成要素同士を接続するように構成しても良い。また、任意の管路にポンプを 接続し、処理系全体に適宜の水圧をかけて、処理水が均一に流れるように構成する ことが好ましい。本発明では、これらのオゾン処理装置を 2つ以上使用すれば、よりォ ゾン処理が効果的となる。 Seawater is taken into a seawater tank, treated in sequence by a treatment system consisting of an ozone treatment device, a filtration device and a reverse osmosis membrane having the above-mentioned structure connected to this tank, and then discharged to the treated water tank. . An ozone generator is connected to this ozone treatment device. Each of these components is connected by a pipe line. If desired, the seawater after being treated in each step can be returned to any component in the middle of the treatment system and reprocessed there. You may comprise so that components may be connected. Further, it is preferable that a pump is connected to an arbitrary pipe line, and an appropriate water pressure is applied to the entire treatment system so that the treated water flows uniformly. In the present invention, if two or more of these ozone treatment apparatuses are used, Zon treatment is effective.
[0042] 図 7に示す濾過装置は、好ましくは前記した無機物濾過装置及び活性炭濾過装置 を組み合わせて用いる。活性炭濾過装置としては、例えば、やし殻系、石炭系、石油 系の濾過手段を適宜組み合わせて使用する。無機物濾過装置で海水中の無機物、 有機物の沈殿除去を行!ヽ、活性炭濾過装置で酸化性物質や有機物の吸着除去を 行い、逆浸透膜処理を行い易くすると共に、大量の海水を供給して処理しても、処理 系の構成要素が目詰まりを起こしたり、処理効率の低下が生じないように構成されて いる。また、紫外線照射装置 (図示せず)を設けて海水中の有機物の分解、バクテリア の殺菌作用を行っても良い。  The filtration device shown in FIG. 7 preferably uses a combination of the above-described inorganic filtration device and activated carbon filtration device. As the activated carbon filter, for example, coconut shell, coal, and petroleum filter means are used in appropriate combination. Remove inorganic and organic precipitates from seawater with an inorganic filter! ヽ Adsorb and remove oxidizing substances and organics with an activated carbon filter to facilitate reverse osmosis membrane treatment and supply a large amount of seawater. Even if it is processed, the components of the processing system are not clogged and the processing efficiency is not lowered. Further, an ultraviolet irradiation device (not shown) may be provided to decompose organic substances in seawater and sterilize bacteria.
[0043] 逆浸透膜を使用することにより、海水中の塩分 (塩ィ匕ナトリウム)を除去し、淡水化処 理を施すことができる。この逆浸透膜は複数の逆浸透膜をユニットとして適宜の本数 使用することができ、海水の処理量に合わせそのユニット数を適宜増減すればょ ヽ [0043] By using a reverse osmosis membrane, salt (salt sodium salt) in seawater can be removed and a desalination treatment can be performed. This reverse osmosis membrane can use an appropriate number of multiple reverse osmosis membranes as a unit, and if the number of units is increased or decreased appropriately according to the amount of seawater treated, ヽ
[0044] 図 8は、本発明の水処理方法に係わる別の実施の形態を示すものである。海水は、 海水タンクに取水され、この海水タンクに接続された上記構造を有する第一オゾン処 理装置、第一濾過装置、第二オゾン処理装置、第二濾過装置、及び逆浸透膜を備 えた装置力 なる処理系により、順次処理された後、処理水タンクへと流出される。第 一オゾン処理装置には第一オゾン発生装置が、また、第二オゾン処理装置には第二 オゾン発生装置が接続されている。これらの各構成要素は、管路で接続されており、 上記したように、所望により、各工程で処理した後の海水を処理系の途中の任意の 構成要素に戻し、再度処理することができるように任意の構成要素同士を接続するよ うに構成しても良い。上記したようにしてポンプを設けて、処理系全体に適宜の水圧 をかけて、処理水が均一に流れるように構成することが好ましい。ここでは、 2つのォ ゾン処理装置について説明したが、 3つ以上のオゾン処理装置を使用してもよい。 FIG. 8 shows another embodiment relating to the water treatment method of the present invention. Seawater was taken into a seawater tank and equipped with a first ozone treatment device, a first filtration device, a second ozone treatment device, a second filtration device, and a reverse osmosis membrane having the above structure connected to the seawater tank. After being processed sequentially by the processing system that is the equipment power, it is discharged to the treated water tank. A first ozone generator is connected to the first ozone processor, and a second ozone generator is connected to the second ozone processor. Each of these components is connected by a pipeline, and as described above, seawater after being processed in each step can be returned to any component in the middle of the processing system and processed again as desired. Arbitrary components may be connected as described above. It is preferable to provide a pump as described above and apply an appropriate water pressure to the entire treatment system so that the treated water flows uniformly. Although two ozone treatment apparatuses have been described here, three or more ozone treatment apparatuses may be used.
[0045] 第一濾過装置は上記した砂濾過装置等の無機物濾過装置からなり、第二濾過装 置は上記した活性炭濾過装置からなり、その役割は上記した通りである。逆浸透膜 は上記した通りの機能を有する。溶存酸素量の高い (約 36. OmgZD濃縮海水力 逆 浸透膜を備えた装置カゝら排出される。この濃縮塩水からも、上記したように処理して 食塩を得ることができる。 [0046] 次に、本発明の水処理方法を図 8の水処理系に従って実施し、海水を 30〜100ト ン Z曰処理して得られた処理水、この処理のために使用した海水、水道水、従来の 水処理により得られた処理水、及び市販のミネラルウォーター (ェビアン (登録商標》 につレ、て、溶存酸素量及びミネラル成分等の分析を行った結果を説明する。 [0045] The first filtration device is composed of an inorganic filtration device such as the above-mentioned sand filtration device, the second filtration device is composed of the above-mentioned activated carbon filtration device, and the role thereof is as described above. The reverse osmosis membrane has the function as described above. Dissolved oxygen is high (approx. 36. OmgZD concentrated seawater power is discharged from equipment equipped with reverse osmosis membranes. Salt can also be obtained from this concentrated brine by processing as described above. [0046] Next, the water treatment method of the present invention is carried out according to the water treatment system of Fig. 8, and the treated water obtained by treating seawater with 30 to 100 tonnes Z 曰, the seawater used for this treatment, The results of analyzing the amount of dissolved oxygen, mineral components, etc. will be described for tap water, treated water obtained by conventional water treatment, and commercially available mineral water (Ebian (registered trademark)).
[0047] 溶存酸素量に関しては、電気化学計測株式会社の溶存酸素計 (DOL— 40)を用い て、上記試料の水中の酸素濃度 (PPm(mgZU)を測定した。  [0047] Regarding the amount of dissolved oxygen, the oxygen concentration (PPm (mgZU)) of the sample was measured using a dissolved oxygen meter (DOL-40) manufactured by Electrochemical Measurement Co., Ltd.
[0048] また、ミネラル成分に関しては、公知の無機イオン分析方法に従って測定した。  [0048] The mineral component was measured according to a known inorganic ion analysis method.
[0049] 上記溶存酸素量及びミネラル成分量等に関する測定結果を表 1に示す。  [0049] Table 1 shows the measurement results regarding the amount of dissolved oxygen and the amount of mineral components.
(表 1)  (table 1)
Figure imgf000015_0001
Figure imgf000015_0001
(註)本発明の処理水中の *を付したものは.、. 採取地:東京都江東区有 4—〗 5の四猛瀬 の海水であり、 その他は、 採取地:熊本県天草郡有明町上 3S浦 2 5 2 9 - 3の海水である >  (Ii) The ones marked with * in the treated water of the present invention are collected from: Seawater of Shigese, Koto-ku, Tokyo 4—〗 5, and others are collected from: Ariake-gun, Amakusa-gun, Kumamoto Prefecture Machikami 3S Ura 2 5 2 9-3 seawater>
[0050] 表 1から、本発明の水処理方法に従って得られた処理水中の溶存酸素量は、従来 の水処理方法の場合と比べて、極めて高ぐミネラル成分も多レ、ことが明らかである。 産業上の利用可能性 [0050] From Table 1, it is clear that the amount of dissolved oxygen in the treated water obtained according to the water treatment method of the present invention is much higher than that of the conventional water treatment method. . Industrial applicability
[0051] 本発明によれば、特定のオゾン処理装置を用いて海水をオゾン処理し、その後、濾 過装置及び逆浸透膜を通過させることにより、海水の淡水化が工業的にコンパクトに 行えると共に、溶存酸素量及びミネラル成分量の高い淡水を得ることができるので、 本発明は、飲料水、産業用水、工業用水、魚類の養殖等の分野に適用可能である。 [0051] According to the present invention, seawater desalination is industrially compacted by subjecting seawater to ozone treatment using a specific ozone treatment device and then passing it through a filtration device and a reverse osmosis membrane. Since it can be performed and fresh water having a high dissolved oxygen content and a high amount of mineral components can be obtained, the present invention is applicable to fields such as drinking water, industrial water, industrial water, and fish farming.
[0052] また、副産物として得られる濃縮塩水も、溶存酸素量及びミネラル成分量が高 、の で、干物の製造、魚類の鮮度維持や養殖等の分野で利用可能である。さらに、公知 の塩水分離システムを使用してミネラル含量の多 、食塩として分離することができる ので、食塩産業にも適用可能である。  [0052] Concentrated salt water obtained as a by-product also has a high dissolved oxygen content and mineral content, and thus can be used in the fields of dried fish production, fish freshness maintenance, and aquaculture. Furthermore, since it can be separated as salt with a high mineral content using a known salt water separation system, it can also be applied to the salt industry.
図面の簡単な説明  Brief Description of Drawings
[0053] [図 1]従来技術における逆浸透膜の作用を説明するための、逆浸透膜を設けた装置 の模式的な側断面図。  FIG. 1 is a schematic cross-sectional side view of an apparatus provided with a reverse osmosis membrane for explaining the action of a reverse osmosis membrane in the prior art.
[図 2]本発明に係わる水処理方法を説明するための模式的な構成図。  FIG. 2 is a schematic configuration diagram for explaining a water treatment method according to the present invention.
[図 3]本発明で用いるオゾン処理装置の一実施の形態の構造を示す模式的な側断 面図。  FIG. 3 is a schematic side sectional view showing a structure of an embodiment of an ozone treatment apparatus used in the present invention.
[図 4]本発明で用いるオゾン処理装置の別の実施の形態の構造を示す模式的な側 断面図 (a)及び平面図 (b)。  [FIG. 4] A schematic side sectional view (a) and a plan view (b) showing the structure of another embodiment of an ozone treatment apparatus used in the present invention.
[図 5]本発明で用いるオゾン処理装置のさらに別の実施の形態の構造を示す模式的 な側断面図 (a)及び平面図 (b)。  FIG. 5 is a schematic side sectional view (a) and a plan view (b) showing the structure of still another embodiment of the ozone treatment apparatus used in the present invention.
[図 6]本発明における逆浸透膜の作用を説明するための、逆浸透膜を設けた装置の 模式的な側断面図。  FIG. 6 is a schematic sectional side view of an apparatus provided with a reverse osmosis membrane for explaining the action of the reverse osmosis membrane in the present invention.
[図 7]本発明に係わる水処理方法の一実施の形態のブロック図。  FIG. 7 is a block diagram of an embodiment of a water treatment method according to the present invention.
[図 8]本発明に係わる水処理方法の別の実施の形態のブロック図。  FIG. 8 is a block diagram of another embodiment of the water treatment method according to the present invention.
符号の説明  Explanation of symbols
[0054] 1 高圧ポンプ 2 逆浸透膜  [0054] 1 High-pressure pump 2 Reverse osmosis membrane
3 オゾン処理装置 4 水の粒子  3 Ozone treatment equipment 4 Water particles
4a ミネラル成分 4b 塩素等の有害物質  4a Mineral ingredients 4b Chlorine and other harmful substances
4c 大きい水粒子 4d 小さい水粒子  4c large water particles 4d small water particles
5 水の粒子 6 ミネラル成分の一部  5 Water particles 6 Some mineral components
7 濃縮塩水用タンク 8 処理後の水を入れるタンク  7 Tank for concentrated salt water 8 Tank for water after treatment
21 海水 22 海水タンク オゾン処理装置 24 オゾン発生装置 濾過装置 31 オゾン処理装置a 円筒形部分 31bゝ 31c切頭円錐部分 じゃま板 33 オゾン発生装置 、 51 オゾン処理装置 41a, 51a 円筒形部分bゝ 41c、 51bゝ 51c 切頭円錐部分 21 Seawater 22 Seawater tank Ozone treatment device 24 Ozone generator Filtration device 31 Ozone treatment device a Cylindrical part 31b ゝ 31c frustoconical part Baffle plate 33 Ozone generator, 51 Ozone treatment device 41a, 51a Cylindrical part b ゝ 41c, 51b ゝ 51c Conical part
、 52 じゃま板 42a, 52a じゃま板の先端部分b, 52b じゃま板の後端部分 42c、 42d 止め穴 、 53 オゾン発生装置 54 固定手段52 baffle plate 42a, 52a baffle tip end b, 52b baffle plate rear end portion 42c, 42d stop hole, 53 ozone generator 54 fixing means
a オゾン注入ノズル 43b オゾン注入口 a Ozone injection nozzle 43b Ozone injection port
逆浸透膜 62 オゾン処理装置 ナノバブル 63a ミネラル成分 Reverse osmosis membrane 62 Ozone treatment device Nano bubble 63a Mineral component
b 水粒子 64aミネラル成分b Water particles 64a Mineral component
b 有害物質 64c ナトリウムb Hazardous substance 64c Sodium
d 水粒子 65 処理後の水を入れるタンク 濃縮塩水用タンク d Water particles 65 Tank for water after treatment Concentrated salt water tank

Claims

請求の範囲 The scope of the claims
[1] 少なくとも 1種のオゾン発生装置、少なくとも 1種のオゾン処理装置、少なくとも 1種 の濾過装置、及び逆浸透膜を備えた装置からなる水処理系に海水を供給して淡水 化する水処理方法において、前記オゾン処理装置として、円筒形状の中央部分と切 頭円錐形状の両端部分とからなる筒体であり、一方の切頭部分から海水を供給し、 また、他方の切頭部分力 オゾン処理された海水を濾過装置へと流出させるように構 成されている装置を用い、このオゾン処理装置内に海水を供給して乱流化すると共 に、オゾン発生装置で生成したオゾンを海水中に注入し、このオゾンを乱流化した海 水中に巻き込むようにしてオゾン処理装置全体に拡散させてオゾン処理を行!ヽ、注 入されたオゾン力 生成された酸素バブルをナノバブルィ匕した後、濾過装置及び逆 浸透膜を通過させて淡水化し、水処理系外に流出させることを特徴とする水処理方 法。  [1] Water treatment for supplying seawater to a water treatment system comprising at least one ozone generator, at least one ozone treatment device, at least one filtration device, and a device equipped with a reverse osmosis membrane for desalination In the method, the ozone treatment device is a cylindrical body composed of a cylindrical central portion and both end portions of a truncated cone shape, supplying seawater from one truncated portion, and the other truncated partial force ozone Using a device configured to flow the treated seawater into the filtration device, the seawater is supplied into the ozone treatment device to create turbulence, and the ozone generated by the ozone generator is The ozone treatment is performed by injecting the ozone into the turbulent sea water and diffusing it throughout the ozone treatment equipment!オ ゾ ン, injected ozone force A water treatment method characterized in that the generated oxygen bubbles are nanobubbled and then passed through a filtration device and a reverse osmosis membrane to desalinate and flow out of the water treatment system.
[2] 前記オゾン処理装置として、さらにその内部の所定位置にじゃま板を少なくとも 1つ 備えたものを用いて、このオゾン処理装置内に供給される海水をさらにじやま板にも 衝突させて乱流化し、オゾンを海水中に巻き込むようにして拡散させてオゾン処理を 行うことを特徴とする請求項 1記載の水処理方法。  [2] Using the ozone treatment device provided with at least one baffle plate at a predetermined position inside the ozone treatment device, the seawater supplied into the ozone treatment device is further caused to collide with the plate and the plate. The water treatment method according to claim 1, wherein the ozone treatment is performed by flowing and diffusing ozone in seawater.
[3] 前記じゃま板が、上流側力も下流側へとスロープ状に構成された上面を少なくとも 有し、かつ、上流側から下流側へと先細りになるような断面を有するように構成されて Vヽることを特徴とする請求項 2記載の水処理方法。  [3] The baffle plate is configured to have at least an upper surface in which the upstream force is sloped toward the downstream side, and has a cross section that tapers from the upstream side to the downstream side. The water treatment method according to claim 2, wherein the water treatment method is performed.
[4] 前記じゃま板が、ベロ状の形状を有していることを特徴とする請求項 2又は 3記載の 水処理方法。  [4] The water treatment method according to [2] or [3], wherein the baffle plate has a tongue shape.
[5] 前記逆浸透膜を通過させて、海水中の主として塩ィ匕ナトリウム及び不純物を除去し て淡水化することを特徴とする請求項 1〜4のいずれかに記載の水処理方法。  [5] The water treatment method according to any one of [1] to [4], wherein the water is passed through the reverse osmosis membrane and desalinated by mainly removing sodium chloride and impurities in seawater.
[6] 前記オゾン処理装置内で処理された海水中に、生成した酸素ナノバブルの周りに 海水中のミネラル成分が濃縮されているナノバブルを生成し、この処理された海水を 逆浸透膜を通過させる際に、このナノバブルを水粒子と共に逆浸透膜を通過させ、 処理された海水中の溶存酸素量を増加させ、かつ、この処理水中にミネラル成分を 残存させることを特徴とする請求項 1〜5のいずれかに記載の水処理方法。 [6] In the seawater treated in the ozone treatment apparatus, nanobubbles in which mineral components in seawater are concentrated are formed around the produced oxygen nanobubbles, and the treated seawater is passed through the reverse osmosis membrane. In this case, the nanobubbles are allowed to pass through a reverse osmosis membrane together with water particles to increase the amount of dissolved oxygen in the treated seawater, and the mineral component remains in the treated water. The water treatment method in any one of.
[7] 前記逆浸透膜で処理して、この逆浸透膜を通過しな力つた主として塩ィ匕ナトリウム 及び不純物を含み、かつ、溶存酸素量の増加した海水を水処理系外に濃縮海水と して流出させることを特徴とする請求項 1〜6のいずれかに記載の水処理方法。 [7] Seawater that has been treated with the reverse osmosis membrane and contains mainly sodium chloride and impurities and has increased the amount of dissolved oxygen that has not passed through the reverse osmosis membrane and concentrated seawater outside the water treatment system The water treatment method according to claim 1, wherein the water treatment method is carried out.
[8] 第一及び第二のオゾン発生装置、第一及び第二のオゾン処理装置、第一及び第 二の濾過装置、並びに逆浸透膜を備えた装置からなる水処理系に海水を供給して 淡水化する水処理方法において、前記第一オゾン処理装置として、円筒形状の中央 部分と切頭円錐形状の両端部分とからなる筒体であり、一方の切頭部分から海水を 供給し、また、他方の切頭部分からオゾン処理された海水を無機物濾過装置からな る第一濾過装置へと流出させるように構成され、さらにそのオゾン処理装置内の所定 位置にじゃま板を少なくとも 1つ備えた装置を用い、まず、この第一オゾン処理装置 内に海水を供給して乱流化すると共に、第一オゾン発生装置で生成したオゾンを海 水中に注入し、このオゾンを乱流化した海水中に巻き込むようにしてオゾン処理装置 全体に拡散させてオゾン処理を行 ヽ、注入されたオゾン力 生成された酸素バブル をナノバブル化した後、第一濾過装置を通過させ、次いで第一オゾン発生装置及び 第一オゾン処理装置と同じ構成を有する第二オゾン発生装置及び第二オゾン処理 装置を用いて、同様にオゾン処理した後、活性炭濾過装置からなる第二濾過装置を 通過させ、その後、逆浸透膜を通過させて淡水化し、水処理系外に流出させることを 特徴とする水処理方法。  [8] Supply seawater to a water treatment system comprising a first and second ozone generator, a first and second ozone treatment device, a first and second filtration device, and a device having a reverse osmosis membrane. In the water treatment method for desalination, the first ozone treatment device is a cylindrical body composed of a cylindrical central portion and both ends of a truncated cone shape, supplying seawater from one truncated portion, and The ozonated seawater from the other truncated portion is configured to flow out to the first filtration device comprising an inorganic filtration device, and at least one baffle plate is provided at a predetermined position in the ozone treatment device. First, seawater is supplied into the first ozone treatment device to make it turbulent, and the ozone generated by the first ozone generator is injected into the seawater. Like ozone Ozone treatment is performed by diffusing the entire device, and the injected ozone force is converted into nanobubbles, then passed through the first filtration device, and then the first ozone generator and the first ozone treatment device Using a second ozone generator and a second ozone treatment device having the same structure, after ozone treatment in the same manner, it is passed through a second filtration device comprising an activated carbon filtration device, and then passed through a reverse osmosis membrane for desalination. Water treatment method characterized by causing the water to flow out of the water treatment system.
[9] 前記じゃま板が、上流側力も下流側へとスロープ状に構成された上面を少なくとも 有し、かつ、上流側から下流側へと先細りになるような断面を有するように構成されて Vヽることを特徴とする請求項 8記載の水処理方法。  [9] The baffle plate is configured to have at least an upper surface in which the upstream force is sloped toward the downstream side, and has a cross section that tapers from the upstream side to the downstream side. The water treatment method according to claim 8, wherein the water treatment method is performed.
[10] 前記じゃま板が、ベロ状の形状を有していることを特徴とする請求項 8又は 9記載の 水処理方法。  [10] The water treatment method according to [8] or [9], wherein the baffle plate has a tongue shape.
[11] 前記逆浸透膜を通過させて、海水中の主として塩ィ匕ナトリウム及び不純物を除去し て淡水化することを特徴とする請求項 8〜 10のいずれかに記載の水処理方法。  [11] The water treatment method according to any one of [8] to [10], wherein the water is passed through the reverse osmosis membrane and desalinated by removing mainly sodium chloride salt and impurities in seawater.
[12] 前記第一及び第二オゾン処理装置内で処理された海水中に、生成した酸素ナノバ ブルの周りに海水中のミネラル成分が濃縮されているナノバブルを生成し、この処理 された海水を逆浸透膜を通過させる際に、このナノバブルを水粒子と共に逆浸透膜 を通過させ、処理された海水中の溶存酸素量を増加させ、かつ、この処理水中にミネ ラル成分を残存させることを特徴とする請求項 8〜11のいずれかに記載の水処理方 法。 [12] In the seawater treated in the first and second ozone treatment apparatuses, nanobubbles in which mineral components in the seawater are concentrated are produced around the produced oxygen nanobubbles. When passing through the reverse osmosis membrane, these nanobubbles together with water particles are reverse osmosis membrane The water treatment method according to any one of claims 8 to 11, wherein the dissolved oxygen amount in the treated seawater is increased, and the mineral component remains in the treated water.
[13] 前記逆浸透膜で処理して、この逆浸透膜を通過しな力つた主として塩ィ匕ナトリウム 及び不純物を含み、かつ、溶存酸素量の増加した海水を水処理系外に濃縮海水と して流出させることを特徴とする請求項 8〜12のいずれかに記載の水処理方法。  [13] Seawater that has been treated with the reverse osmosis membrane and contains mainly sodium chloride and impurities and has increased the amount of dissolved oxygen that has not passed through the reverse osmosis membrane and concentrated water outside the water treatment system The water treatment method according to claim 8, wherein the water treatment method is carried out.
[14] オゾン発生装置、オゾン処理装置、濾過装置、及び逆浸透膜を備えた装置からなる 海水を淡水化する水処理装置において、前記オゾン処理装置が、円筒形状の中央 部分と切頭円錐形状の両端部分とからなる筒体であって、一方の切頭部分から海水 を供給し、また、他方の切頭部分からオゾン処理された海水を濾過装置へと流出さ せるように構成され、さらにそのオゾン処理装置内の所定位置にじゃま板を少なくとも 1つ備えた装置であって、前記オゾン処理装置内へ供給され、オゾン処理された海 水中に、酸素ナノバブルの周りに海水中のミネラル成分が濃縮されて 、るナノバブル が生成されるように構成されたものであることを特徴とする水処理装置。  [14] In a water treatment apparatus for desalinating seawater comprising an ozone generator, an ozone treatment apparatus, a filtration apparatus, and a reverse osmosis membrane, the ozone treatment apparatus has a cylindrical central portion and a truncated cone shape. And is configured to supply seawater from one truncated portion and to discharge the ozone-treated seawater from the other truncated portion to a filtration device. A device having at least one baffle plate at a predetermined position in the ozone treatment device, wherein the mineral components in the seawater around the oxygen nanobubbles are supplied into the ozone treatment device and subjected to the ozone treatment. A water treatment apparatus characterized in that it is configured to generate concentrated nanobubbles.
[15] 前記じゃま板が、上流側力 下流側へとスロープ状に構成された上面を少なくとも有 し、かつ、上流側から下流側へと先細りになるような断面を有するように構成されたも のであることを特徴とする請求項 14記載の水処理装置。  [15] The baffle plate is configured to have at least a top surface configured in a slope shape toward the downstream side on the upstream side, and to have a cross section that tapers from the upstream side to the downstream side. 15. The water treatment apparatus according to claim 14, wherein
[16] 前記じゃま板が、ベロ状の形状を有していることを特徴とする請求項 14又は 15記載 の水処理装置。  16. The water treatment device according to claim 14 or 15, wherein the baffle plate has a tongue shape.
PCT/JP2006/319334 2006-09-28 2006-09-28 Water-treatment method and apparatus WO2008038371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319334 WO2008038371A1 (en) 2006-09-28 2006-09-28 Water-treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319334 WO2008038371A1 (en) 2006-09-28 2006-09-28 Water-treatment method and apparatus

Publications (1)

Publication Number Publication Date
WO2008038371A1 true WO2008038371A1 (en) 2008-04-03

Family

ID=39229819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319334 WO2008038371A1 (en) 2006-09-28 2006-09-28 Water-treatment method and apparatus

Country Status (1)

Country Link
WO (1) WO2008038371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260427A (en) * 1990-09-25 1992-09-16 Union Carbide Ind Gases Technol Corp Dispersion in pipe of gas into liquid
JPH08133177A (en) * 1994-11-14 1996-05-28 Sangyo Gijutsu Kenkyusho:Kk Water distilling tanker and method of transporting liquid of different kind by this tanker
JPH11207394A (en) * 1998-01-26 1999-08-03 Asahi Glass Engineering Co Ltd Desalting method for raw water by membrane process and desalting
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260427A (en) * 1990-09-25 1992-09-16 Union Carbide Ind Gases Technol Corp Dispersion in pipe of gas into liquid
JPH08133177A (en) * 1994-11-14 1996-05-28 Sangyo Gijutsu Kenkyusho:Kk Water distilling tanker and method of transporting liquid of different kind by this tanker
JPH11207394A (en) * 1998-01-26 1999-08-03 Asahi Glass Engineering Co Ltd Desalting method for raw water by membrane process and desalting
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles

Similar Documents

Publication Publication Date Title
JP2006263505A (en) Water treatment method and apparatus therefor
US9352989B2 (en) Water treatment apparatus and method
US6096219A (en) Method and apparatus for pretreatment of hazardous waste material
US5271830A (en) Water treatment installation for a tangential filtration loop
US7776224B2 (en) Apparatus for treating ballast water and method for treating ballast water
KR101818996B1 (en) Micro Bubble Generator And Advanced Oxidation Process System Using The Microbubble, Low Concentration Ozone, And UV Lamp
JP6266954B2 (en) Water treatment equipment using liquid level plasma discharge
JP2007144391A (en) Ballast water treatment apparatus and method
JP2010214263A (en) Ozone dissolving device and automatic ozone dissolving system
RU2284966C2 (en) Method of production of the drinking water by the cold desalination of the highly mineralized water solutions and the device for its realization
JP2007268342A (en) Filtration system
KR101857928B1 (en) Functional drinking water production apparatus and manufacturing method using seawater
JP2018089598A (en) Water treating device
WO2008038371A1 (en) Water-treatment method and apparatus
KR101951691B1 (en) A wastewater treatment apparatus
KR0149049B1 (en) High degree clean water processing apparatus and method thereof
RU2094394C1 (en) Method of purification of natural water and sewage and plant for its implementation
CN110997575A (en) Water treatment device
RU2315007C1 (en) Method of purification of the water from the harmful impurities and the installation for the method realization
RU2170713C2 (en) Aqueous medium purifying and disinfecting apparatus
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
KR200407311Y1 (en) Dirty Water Purification Apparatus By Using Circulation Method
KR102170073B1 (en) Method and Apparatus for Making Sea Salt
CN2905768Y (en) Impulse discharge apparatus for six kinds of processing for water
CN100549237C (en) Impulsive discharge water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 21-08-2009.

122 Ep: pct application non-entry in european phase

Ref document number: 06810781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP