WO2008037157A1 - Circuit de commande destiné à un dispositif de suiveur solaire - Google Patents

Circuit de commande destiné à un dispositif de suiveur solaire Download PDF

Info

Publication number
WO2008037157A1
WO2008037157A1 PCT/CN2007/001472 CN2007001472W WO2008037157A1 WO 2008037157 A1 WO2008037157 A1 WO 2008037157A1 CN 2007001472 W CN2007001472 W CN 2007001472W WO 2008037157 A1 WO2008037157 A1 WO 2008037157A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control circuit
switch
tracking device
interlock
Prior art date
Application number
PCT/CN2007/001472
Other languages
English (en)
French (fr)
Inventor
Jing Li
Sixiang Yu
Original Assignee
Beijing Co-Chance Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Co-Chance Co., Ltd. filed Critical Beijing Co-Chance Co., Ltd.
Publication of WO2008037157A1 publication Critical patent/WO2008037157A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/10Control of position or direction without using feedback
    • G05D3/105Solar tracker
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the utility model relates to a control circuit for a day tracking device, in particular to a high reliability and low energy consumption control circuit which can be used for controlling a sun tracking device.
  • a day-to-day tracking device that provides effective daylight hours.
  • a control unit for example, a day tracking circuit
  • the control unit issues a control signal to rotate the sun tracking device from east to west until the solar panel
  • Each rotation takes about 1 to 2 minutes.
  • the control unit sends a control signal to rotate the sun tracking device from west to east until the solar panel points to the next day's rising sun, welcoming the next day's rise.
  • Figure 1 is a typical control circuit 900 for controlling a day tracking device. As shown in Fig. 1, the signal detected by the solar azimuth detector 91 is transmitted to the control unit 92. The control unit 92 outputs control signals to the drive unit ⁇ 93 and the drive unit ⁇ 94 to respectively drive the two motors 95 and 96 for controlling the azimuth and elevation of the sun tracking device.
  • the current rated power of the motor of the control circuit is mostly above 90 W, and the power of the driving circuit is also greater than 50 W. Even when the control unit 92 is implemented by a single chip microcomputer, the power consumption of the control unit 92 itself is at least 4 W. Left and right, so the entire control device consumes a lot of energy. Therefore, there is a need for a control circuit that is more reliable, consumes less power, and can be used with low-power, day-to-day tracking devices.
  • An object of the present invention is to overcome the above-mentioned deficiencies in the prior art and to provide a control circuit which has high reliability, low power consumption, and can be used with a low power consumption day tracking device.
  • a control circuit for controlling a sun tracking device characterized in that the circuit comprises a tracking circuit, a driving circuit and a motor, and the control circuit may further comprise: a small signal cutting circuit, Receiving an input from the day tracking circuit, comparing the input with a preset value, and outputting signals of different levels according to the comparison result; and an interlock circuit receiving the signals of different levels, and according to the The different levels of signals received cause the drive circuit to be powered up or down.
  • a first switching circuit for controlling the powering up or powering down of the driving circuit is provided between the interlock circuit and the driving circuit.
  • control circuit since the control circuit according to the present invention includes a small signal ablation circuit, in the case of, for example, insufficient solar intensity (such as cloudy weather), the control circuit is prevented from detecting the azimuth of the sun. Other interference sources (such as lights, The illumination bullet, etc., is mistaken for the sun, and the wrong tracking signal is received by the tracking circuit, so that the tracking device is mistakenly tracked by the tracking device. Therefore, energy is saved.
  • Other interference sources such as lights, The illumination bullet, etc.
  • the driving circuit is powered to operate only when the sun is required to be tracked, thereby saving electric power and reducing power consumption of the entire control circuit.
  • FIG. 1 is a block diagram showing the structure of a control circuit for a day tracking device of the prior art
  • FIG. 2 is a block diagram showing the structure of a control circuit for a day tracking device according to a preferred embodiment of the present invention
  • Figure 3 is a partial schematic view of one embodiment of the interlock circuit shown in Figure 2; and Figure 4 is a schematic illustration of the interconnection of the first switch circuit and other components shown in Figure 2 In the drawings, some of the elements are omitted for simplicity. detailed description
  • the control circuit 1000 includes a tracking circuit 10, an interlock circuit 20, a small signal cutoff circuit 30, a drive circuit 40, and a first switch circuit 50.
  • the control circuit 1000 can receive multiplexed signals from a solar azimuth detector (not shown), but to describe the cartridge, in the illustrated embodiment four signals, i.e., azimuth signals Xs-1 and Xs-, are used.
  • the control circuit 1000 will be described by taking the catching signal Xs-4 as an example.
  • the tracking circuit 10 includes a current/voltage conversion unit 110, an arithmetic unit 120, and a comparison unit
  • the current/voltage conversion unit 110 receives current signals Xs-1 and Xs-2 representing the azimuth of the sun from an azimuth angle detecting unit (not shown) of the solar azimuth angle detector, and inputs the input current signals Xs-1 and Xs- 2 is converted to two voltage signals A and B.
  • the arithmetic unit 120 first performs a subtraction and addition operation on the voltage signals A and B, and then outputs a signal C after performing the division operation on the result of the subtraction and addition.
  • the operations performed by the arithmetic unit 120 can be expressed by the following formula:
  • the signal C is compared with a preset value in the comparison unit 130. For example, when the level of the signal C is greater than 20%, the first output D of the comparison unit 130 is at a low level, and the second output E is at a high level. When the level of the signal C is less than -20%, the first output D is high and the second output E is low. When the level of the signal C is between -20% and 20%, both the first output D and the second output E are low.
  • the interlock circuit 20 receives the first output D and the second output E, and outputs a control signal for controlling the rotation of the motor 90 to the drive circuit 40.
  • the interlock circuit 20 also controls ON (ON) and OFF (OFF) of the first switch circuit 50 in accordance with the first output D and the second output, thereby controlling the power-on and power-off of the drive circuit 40.
  • the interlock circuit 20 includes four RS flip-flop chips CD4043 (i.e., IC7), four AND gate chips CD4081, i.e., IC8) and other related circuits.
  • CD4043 i.e., IC7
  • AND gate chips CD4081 i.e., IC8
  • other related circuits When the second output E is high (the first output D is low), the interlock circuit 20 outputs a high level to the first switching circuit 50. In contrast, when the first output D is at a high level (the second output E is a low level), the interlock circuit 20 outputs a low level signal to the first switching circuit 50. Since both CD4043 and CD4081 are well-known technologies, their structure and principle will not be described again herein. Those skilled in the art will appreciate that other known chips, such as the 74HC series, and components can also be used to implement the interlock circuit 20.
  • the first switching circuit 50 includes a transistor T3 and a relay K1 as shown in FIG.
  • the emitter of the transistor ⁇ 3 is connected to the second switching circuit 90; the base of the transistor ⁇ 3 is connected to the interlock circuit 20; the collector of the transistor ⁇ 3 is connected to the relay K1.
  • the second switching circuit 90 FIG. 4
  • the transistor ⁇ 3 is connected to the external operating power supply
  • the drive circuit 40 is powered up, and at the same time, the drive circuit 40 is turned on with the pulse generation circuit 80 connected thereto.
  • the drive circuit 40 receives the drive pulse from the pulse generation circuit 80 and rotates the step motor 70 in accordance with the control signal received from the interlock circuit 20.
  • the transistor ⁇ 3 When the output of the interlock circuit 20 to the first switching circuit 50 is low (i.e., when the sun is not required to be tracked), the transistor ⁇ 3 is turned off, thus cutting off the power and pulses supplied to the driving circuit 40. Therefore, the drive circuit 40 is powered to operate only when the sun is required to be tracked, thereby saving electrical power and reducing the power consumption of the entire control circuit 1000. Since both the transistor ⁇ 3 and the relay K1 are well-known techniques, their operation will not be described again. Instead of the transistor ⁇ 3 and the relay K1 described above, all of the ⁇ transistors having a conduction current greater than 100 mA and any non-gate circuits having an output sink current greater than 100 mA in the integrated circuit are used. ⁇
  • the small signal cutoff circuit 30 receives the converted voltage signals ⁇ and B from the current/voltage conversion unit 110 of the tracking circuit 10.
  • the adding unit 310 adds the received voltage signals A and B, and inputs the added result to the comparing unit 320 for comparison with a preset value (for example, 15%) to determine whether the set value is exceeded. . If exceeded, the comparison unit 320 outputs a high level to the interlock circuit 20, otherwise outputs a low level to the interlock circuit 20. If the output of the comparison unit 320 is at a low level, the interlock circuit 20 shields the output E of the tracking circuit 10 so that the output of the interlock circuit 20 to the first switching circuit 50 is at a low level. Accordingly, the drive circuit 40 is not powered up.
  • the tracking circuit 10 receives the wrong orientation signal so that the tracking device is mistracked by the tracking device.
  • the small signal cutoff circuit 30 also shields the second output E of the tracking circuit 10', causing the drive circuit 40 to stop operating.
  • Control circuit 1000 can also include a catch-up circuit 60.
  • the small signal cutoff circuit 30 causes the drive circuit 40 to be inoperative when the light intensity does not reach a set value (e.g., cloudy or the sun is blocked by the cloud), i.e., the day tracking device does not perform day tracking. If the light intensity reaches the catch-up setpoint again (for example, 30%) outside the detection range of the solar azimuth detector (ie, "missing angle"), the plane indicating the solar azimuth is ahead of the solar panel normal. The angle does not exceed the maximum tracking range (e.g., 160 in this embodiment), but when the angle of loss has been exceeded, the catch-up circuit 60 forces the day tracking device to turn to catch up with the sun.
  • a set value e.g., cloudy or the sun is blocked by the cloud
  • the day tracking device does not perform day tracking.
  • missing angle refers to the angle at which the solar azimuth detector loses its target.
  • the tracking device is not tracked.
  • the sun tracking device loses the target due to the solar azimuth detector.
  • the sun cannot be correctly tracked based on the signal from the solar azimuth detector.
  • the motor 70 is driven forward by the catching circuit 60 to drive to the sun tracking device to catch up with the sun.
  • the control circuit 1000 resumes normal day tracking.
  • the angle of loss is not less than 45. .
  • the catch-up circuit 60 receives the current signal Xs-4 indicating the catch-up from the catch-up detecting unit (not shown) of the solar azimuth angle detector.
  • the current/voltage conversion unit 610 of the catch-up circuit 60 converts the received current signal Xs-4 into a voltage signal, and inputs it to the comparison unit 620 for comparison with a preset value (30%) to determine whether or not chasing is required. If the result of the comparison is greater than a predetermined value, the comparing unit 620 outputs a level (e.g., a high level) indicating the "catch-up" signal to the interlock circuit 20.
  • a level e.g., a high level
  • the interlock circuit 20 After receiving the high level signal, the interlock circuit 20 outputs a high level indicating "forward rotation" to the first switching circuit 50 to turn on the first switching circuit 50 to cause the driving circuit 40 to be powered up, thereby Chasing the sun to the day tracking device. After catching up to the lost angle (i.e., the signal Xs-4 converted to voltage is less than a predetermined value), the control circuit 1000 stops the catch-up function.
  • control circuit 1000 may further include a second switching circuit 90.
  • Second switch circuit 90 One or more of the east side travel switch, the west side travel switch, the reverse start manual switch, the reverse stop manual switch, the power on manual switch, and the forward manual switch may be included as needed.
  • the east side travel switch and the west side travel switch are used to limit the extreme rotation position of the day tracking device.
  • the sun When the sun is approaching the setting sun, turn to the west limit position to the day tracking device, touch the west side stop switch to the west side baffle of the day tracking device, and the west side travel switch is turned off to reverse the sun tracking device from west to east until
  • the east side flapper of the day tracking device hits the east side travel switch, and the east side travel switch is turned off to stop the reversal of the day tracking device, and the tracking state is resumed, and the sun rises the next day.
  • reverse means the rotation from west to east, and its operation and stop are controlled by the reverse start manual switch and the reverse stop manual switch, respectively, to ensure that the day tracking device can be turned to the east limit.
  • Automatic stop means the rotation from east to west, with the forward manual switch control, press to run, lift and stop.
  • the switch for "reverse” has the highest priority. For example, even if the tracking device is rotating forward (whether automatic or manual), when the switch is reversed, After the manual switch, the tracking device is reversed until the reverse switch stops the manual switch. When the tracking device is reversed, the forward manual switch is inactive until the reverse manual switch is pressed. In special cases such as maintenance, the solar panel of the day tracking device can also be placed in a specific position by reversing the manual start switch and the reverse stop manual switch to facilitate the maintenance operation.
  • control circuit 1000 may further include an output torque expansion unit (not shown).
  • the output torque expansion unit receives the control input from the drive circuit 40 and drives the operation of the motor 70 connected thereto in accordance with the received control input.
  • the output torque expansion unit is used to increase the output torque of the system under certain conditions (such as non-standard design) to change the motor to increase the output torque. It should be noted here that when the motor connected to the output torque expansion unit changes, it may be necessary to adjust the supply voltage of the control circuit accordingly.
  • the control circuit 1000 according to the present invention may further include a clock control unit (not shown).
  • the clock control unit is connected to the second switch circuit 90 and includes a clock reversal contact and a clock start contact for respectively transmitting a "reverse" signal and a "on” signal to the control circuit according to the set time.
  • the clock control unit can set the boot time and shutdown time. Control circuit 1000 is off at night. When the clock reaches the power-on time, the clock control unit sends a power-on signal to the control circuit 1000; and when the sun tracking device does not return to the east side at dusk for some reason (to meet the position where the sun rises), or clock control When the clock set by the unit reaches the shutdown time, the clock control unit sends a reverse signal to the control circuit 1000 through the reverse contact, so that the return to the east side of the tracking device is automatically turned off.
  • the clock unit is powered by its own 2 A-cell batteries. The early start signal and the night shutdown signal of the clock control unit are output by two different channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Description

用于向日追踪装置的控制电路 技术领域
本实用新型涉及一种用于向日追踪装置的控制电路, 尤其涉及一种 可用于控制向日追踪装置的高可靠、 低能耗的控制电路。 背景技术
近几年来, 国外太阳能电站的建设非常普遍; 在国内的一些边远地 区 (例如, 新疆、 内蒙、 黑龙江等)也逐渐开始将太阳能电站作为普通 的电力供应系统、 或能源补充系统来使用。
为了提高可用于太阳能电站使用的全天有效日照时间, 以提高发电 量, 人们开始研究并试图应用一种能够在有效日照时间内使太阳能电池 板追踪太阳, 保持阳光与太阳能电池板相对垂直, 从而提供有效日照时 间的向日追踪装置。 在现有的向日追踪装置中, 使用控制单元(例如, 向日追踪电路)来对向日追踪装置的仰角和方位角进行控制。 例如, 当 向日追踪装置上的太阳能电池板的法线落后表示太阳方位的平面 ot角 (例如 2.5° )时,控制单元发出控制信号使向日追踪装置自东向西旋转, 直至太阳能电池板法线超前表示太阳方位的平面 α角时停止。 每次旋转 大约 1 ~ 2分钟。 当太阳下山时, 控制单元发出控制信号使向日追踪装置 自西向东旋转, 直至太阳能电池板指向次日太阳升起位置, 迎接次日太 阳的升起。
图 1为用于控制向日追踪装置的一种典型控制电路 900。如图 1所示, 太阳方位角探测器 91探测到的信号传送到控制单元 92。 控制单元 92向 驱动单元 Α 93和驱动单元 Β 94输出控制信号,以分别驱动用于控制太阳 追踪装置的方位角和仰角的两个电机 95和 96。
现有的这种控制电路的电机的额定功率大多在 90W以上, 其驱动电 路的功率也都大于 50W, 即便是控制单元 92采用单片机来实现时, 控制 单元 92本身的功耗也至少要在 4W左右, 所以整个控制装置能耗较大。 因此, 需要一种可靠性能较高、 功耗较低且能够与低功耗的向日追 踪装置一起使用的控制电路。 实用新型内容
本实用新型的目的在于克服现有技术中存在的上述不足, 并进而提 供一种可靠性能较高、 功耗较低且能够与低功耗的向日追踪装置一起使 用的控制电路。
为了实现上述目的。 根据本实用新型提供了一种用于控制向日追踪 装置的控制电路, 其特征在于, 所述电路包括追踪电路、 驱动电路和电 机, 所述控制电路还可包括: 小信号切除电路, 用于从所述向日追踪电 路接收输入, 将所述输入与预设值进行比较, 并根据比较的结果输出不 同电平的信号; 以及联锁电路, 接收所述不同电平的信号, 并根据所接 收的不同电平的信号使所述驱动电路上电或断电。
优选地, 在联锁电路和驱动电路之间具有用于控制所述驱动电路上 电或断电的第一开关电路。
由于根据本实用新型的控制电路包括小信号切除电路, 这样在例如 太阳光强不足(如阴天) 的情况下, 避免了控制电路将太阳方位角探测. 器周围的其它干扰光源 (如灯光、 照明弹等)误认为是太阳, 而使向曰 追踪电路接收到错误的方位信号, 从而使向日追踪装置误追踪干扰光源。 因此, 节省了能源。
此外, 由于具有第一开关电路, 所以只有在需要追踪太阳太阳时, 才对驱动电路供电使其工作, 从而节约了电功率, 并降低了整个控制电 路的功耗。 附图说明
图 1为现有技术的用于向日追踪装置的控制电路的结构方框图; 图 2为 居本实用新型的一个优选实施方式的用于向日追踪装置的 控制电路结构方框图;
图 3为图 2中所示的联锁电路的一个实施例的局部示意图; 以及 图 4为图 2中所示的第一开关电路与其它各部件的相互连接的示意 图, 其中, 为了简化省略了一些元件。 具体实施方式
下面将参照附图详细描述本实用新型的优选实施方式。
如图 2所示为 居本实用新型的一个优选实施方式的用于向日追踪 装置的控制电路 1000的方框图。 控制电路 1000包括追踪电路 10、 联锁 电路 20、 小信号切除电路 30、 驱动电路 40和第一开关电路 50。
控制电路 1000可以从太阳方位角探测器(图中未示出)接收多路信 号, 但为了描述筒便, 在图示的实施方式中以四路信号, 即方位角信号 Xs-1和 Xs-2以及追赶信号 Xs-4为例来对控制电路 1000进行说明。
追踪电路 10包括电流 /电压转换单元 110、运算单元 120和比较单元
130。
电流 /电压转换单元 110从太阳方位角探测器的方位角探测单元(未 示出)接收表示太阳方位角的电流信号 Xs-1和 Xs-2, 并把输入的电流信 号 Xs-1和 Xs-2转换为两个电压信号 A和 B。 运算单元 120首先对电压 信号 A和 B进行减法和加法操作, 并接着对相减和相加的结果进行除法 操作后输出信号 C。 运算单元 120执行的操作可用下式表示:
C = ( B - A ) / ( B + A )
接着,在比较单元 130中将信号 C与预先设定的值进行比较。 1例如, 当信号 C的电平值大于 20%时, 比较单元 130的第一输出 D为低电平, 第二输出 E为高电平。 当信号 C的电平值小于 -20%时, 第一输出 D为高 电平, 第二输出 E为低电平。 当信号 C的电平值在 -20%至 20%之间时, 第一输出 D和第二输出 E都为低电平。
联锁电路 20接收第一输出 D和第二输出 E, 并向驱动电路 40输出 控制电机 90旋转的控制信号。 联锁电路 20还根据第一输出 D和第二输 出控制第一开关电路 50的开(ON )和断(OFF ), 从而控制驱动电路 40 的上电和断电。
如图 3所示为联锁电路 20的一个实施例。联锁电路 20包括四 RS触 发器芯片 CD4043 (即, IC7 )、 四与门芯片 CD4081 即, IC8 )和其他相 关电路。 当第二输出 E为高电平 (第一输出 D为低电平) 时, 联锁电路 20向第一开关电路 50输出高电平。 相反, 当第一输出 D为高电平(第 二输出 E为低电平) 时, 联锁电路 20向第一开关电路 50输出低电平信 号。 由于 CD4043和 CD4081都是属于公知的技术, 因此, 在本文中对其 结构和原理不再赘述。 本领域的技术人员应该理解, 还可以使用其他的 公知芯片 (如 74HC系列)和元件来实现联锁电路 20。
优选地,第一开关电路 50包括晶体管 T3和继电器 Kl,如图 4所示。 晶体管 Τ3的发射极与第二开关电路 90相连;晶体管 Τ3的基极与联锁电 路 20相连; 晶体管 Τ3的集电极与继电器 K1相连。 在第二开关电路 90 (图 4 )导通的情况下(即晶体管 Τ3与外部工作电源相连), 当第一开关 电路 50从联锁电路 20接收到高电平信号时, 继电器 K1导通,驱动电路 40上电, 同时, 驱动电路 40与和其相连的脉沖发生电路 80导通。 这样, 驱动电路 40从脉冲发生电路 80接收驱动脉冲, 并根据从联锁电路 20接 收的控制信号使步进电机 70旋转。
当联锁电路 20向第一开关电路 50的输出为低电平时(即不需要进 行追踪太阳时), 晶体管 Τ3为断开状态, 这样就切断了提供至驱动电路 40的电源和脉冲。 因此, 只有在需要追踪太阳太阳时, 才对驱动电路 40 供电使其工作, 从而节约了电功率, 降低了整个控制电路 1000的功耗。 由于晶体管 Τ3和继电器 K1都为公知的技术, 因此对其工作原理不再赘 述。 所有导通电流大于 100毫安的 ΝΡΝ晶体管、 以及集成电路中的输出 灌电流大于 100毫安的任何非门电路来代替上述的晶体管 Τ3和继电器 Kl。 <
小信号切除电路 30从追踪电路 10的电流 /电压转换单元 110接收经 过转换的电压信号 Α和 B。 加法单元 310对接收的电压信号 A和 B进行 加法操作, 并将相加的结果输入到比较单元 320 中与预先设置的值(例 如, 15% )进行比较, 以确定是否超过该设先的值。 如超过, 比较单元 320向联锁电路 20输出高电平, 否则向联锁电路 20输出低电平。如果比 较单元 320的输出为低电平, 则联锁电路 20将追踪电路 10的输出 E屏 蔽掉, 这样联锁电路 20向第一开关电路 50的输出为低电平。 相应地, 不对驱动电路 40上电。这样,可以避免当例如在太阳光强不足(如阴天) 的情况下, 太阳方位角探测器对周围的其它干扰光源 (如灯光、 照明弹 等)敏感而将其误认为是太阳, 而使向日追踪电路 10接收到错误的方位 信号, 以使向日追踪装置误追踪干扰光源。 此外, 当太阳光不够强时, 设置在向日追踪装置上的太阳能电池板的发电量较少, 此时也没有必要 追踪太阳。 在这种情况下, 小信号切除电路 30也将追踪电路 10 '的第二 输出 E屏蔽掉, 而使驱动电路 40停止操作。
控制电路 1000还可包括追赶电路 60。 如上所述, 小信号切除电路 30使得当光强没有达到设定值(例如阴天或太阳被云彩挡住) 时, 使驱 动电路 40不工作, 即向日追踪装置不实施向日追踪。 如果在太阳方位角 探测器的探测范围 (即 "失的角度")之外光强再次达到追赶设定值(例 如, 30% )时, 表示太阳方位的平面超前太阳能电池板法线之间的角度不 超过最大追踪范围 (例如在该实施方是为 160。), 但已超过失的角度时, 追赶电路 60强制向日追踪装置正转去追赶太阳。 在本文中, "失的角度" 指太阳方位角探测器失去目标的角度。 例如, 阴天无太阳时向日追踪装 置不追踪, 待太阳出来后, 如太阳超前太阳能电池板法线的角度超过此 失的角度, 则向日追踪装置因太阳方位角探测器失去目标, 而不能根据 太阳方位角探测器的信号正确追踪太阳。 这时, 太阳方位角探测器中的 追赶探测单元探测到太阳后, 通过追赶电路 60使电机 70正转驱动向日 追踪装置去追赶太阳。 当追赶到失的角度之内后, 控制电路 1000恢复正 常的向日追踪。 优选地, 失的角度不小于 45。。
具体地说, 追赶电路 60从太阳方位角探测器的追赶探测单元(未示 出 )接收表示追赶的电流信号 Xs-4。 追赶电路 60的电流 /电压转换单元 610将所接收的电流信号 Xs-4转换为电压信号后, 输入到比较单元 620 中与预先设定的值(30% )进行比较, 以确定是否需要追赶。 如果比较的 结果是大于预先设定的值, 则比较单元 620向联锁电路 20输出表示 "追 赶" 信号的电平 (例如, 高电平)。 联锁电路 20在接收到该高电平信号 后向第一开关电路 50输出表示 "正转" 的高电平, 以使第一开关电路 50 导通从而使驱动电路 40上电工作, 从而使得向日追踪装置追赶太阳。 当 追赶到失的角度之内后(即,经过转换为电压的信号 Xs-4小于预定的值), 控制电路 1000停止追赶功能。
此外, 控制电路 1000还可包括第二开关电路 90。 第二开关电路 90 可根据需要包括东侧行程开关、 西侧行程开关、 反转启动手动开关、 反 转停止手动开关、 开机手动开关和正转手动开关中的一个或多个。
东侧行程开关和西侧行程开关用来限制向日追踪装置的东西旋转极 限位置。 当太阳接近落山时, 向日追踪装置转到西側极限位置, 向日追 踪装置的西侧挡板碰上西侧行程开关, 西侧行程开关断开使向日追踪装 置自西向东反转, 直至向日追踪装置的东侧挡板碰上东侧行程开关, 东 侧行程开关断开使向日追踪装置停止反转, 恢复追踪状态, 迎接次日太 阳的升起。
在这里需要说明的是 "反转" 表示自西向东的旋转, 其运行和停止 分别用反转启动手动开关和反转停止手动开关来控制, 以保证向日追踪 装置转到东侧极限时可以自动停止。 "正转 "表示自东向西的旋转, 用正 转手动开关控制, 按下即运行, 抬起即停止。 其中, 在所有的启动开关 或停止开关中, 用于 "反转,, 的开关的优先级最高。 例如, 即使向日追 踪装置正在正转(无论是自动或手动), 当启按下反转手动开关后, 向日 追踪装置即反转, 直至反转停止手动开关按下。 而当向日追踪装置反转 时, 正转手动开关处于无效状态, 直至按下反转停止手动开关。 当需要 维修等特殊情况时, 还可以通过反转手动启动开关和反转停止手动开关 使向日追踪装置的太阳能电池板处于特定位置, 以便于维修操作。
控制电路 1000正常工作时, 如有特殊原因 (如突然阴天, 或需要维 修系统等) 需要进入 "关机,, 状态时, 可以先按下反转手动开关, 然后 再搬动东侧行程开关, 则控制电路即关机。
以上虽然例举了多个手动操作开关, 但是本领域的普通技术人员应 该理解, 可以根据实际的需要而选择使用这些开关中的一个或多个。
此外, 根据本实用新型的控制电路 1000还可以包括输出转矩扩展单 元(未示出)。 输出转矩扩展单元从驱动电路 40接收控制输入, 并根据 接收到的控制输入驱动与之相连的电机 70的操作。 输出转矩扩展单元的 作用是在某种特定条件下 (如非标设计) 需要增加系统的输出转矩时使 用, 以改变配制的电机以增加输出力矩。 在这里需要注意的是, 当与输 出转矩扩展单元相连的电机改变时, 可能需要同时对控制电路的供电电 压做相应调整。 根据本实用新型的控制电路 1000还可包括钟控单元(未示出)。 钟 控单元与第二开关电路 90相连, 并包括时钟反转接点和时钟开机接点, 分别用于按照设定的时间为控制电路发出 "反转 "信号和"开机"信号。
钟控单元可设置开机时间和关机时间。 控制电路 1000在夜间处于关 机状态。 当时钟到达开机时间时, 钟控单元向控制电路 1000发出开机信 号; 而当太阳追踪装置由于某种原因, 而没有在黄昏返回东侧 (迎接次 曰太阳升起的位置) 时, 或钟控单元设置的时钟到达关机时间时, 钟控 单元通过反转接点向控制电路 1000发出反转信号, 使向日追踪装置返回 东侧实现自动关机。 钟控单元由自带的 2节 1号电池供电。 钟控单元早 上的开机信号和晚上的关机信号, 分别由两个不同的通道输出。
以上虽然根据本实用新型的优选实施方式进行了描述, 但是本领域 的技术人员应该理解, 根据以上公开的内容及其教导, 可以对本实用新 型作出各种修改, 这些修改均应视为落入本实用新型的保护范围内。

Claims

权利要求:
1. 一种用于控制向日追踪装置的控制电路, 其特征在于, 包括追踪 电路(10)、 驱动电路(40)和电机(70), 所述控制电路还包括:
小信号切除电路(30), 用于从所述追踪电路(10)接收输入, 将所 述输入与预设值进行比较, 并根据比较的结果输出不同电平的信号; 以 及
联锁电路(20), 接收所述不同电平的信号, 并根据所接收的不同电 平的信号使所述驱动电路(40)上电或断电。
2. 如权利要求 1所述的控制电路, 其中, 在所述联锁电路(10)和 所述驱动电路(40)之间具有用于控制所述驱动电路(40)上电或断电 的第一开关电路(50)。
3. 如权利要求 2所述的控制电路, 其中, 所述第一开关电路(50) 包括晶体管和继电器。
4. 如权利要求 3所述的控制电路, 其中, 所述晶体管的基极与所述 联锁电路相连, 所述晶体管的集电极与所述继电器相连, 所述晶体管的 发射极通过第二开关电路(90)与外部工作电源相连。
5. 如权利要求 4所述的控制电路, 其中, 所述驱动电路(40)通过 所述继电器与脉沖发生电路(80)相连。
6. 如权利要求 1所述的控制电路, 其中, 所述第二开关电路(90) 包括东侧行程开关、 西侧行程开关、 反转启动手动开关、 反转停止手动 开关、 开机手动开关和正转手动开关中的一个或多个。
7. 如权利要求 2-6任一项所述的控制电路, 其中, 所述控制电路还 包括追赶电路(60), 所述追赶电路从外部太阳方位角探测器接收信号, 并将所接收的信号与预先设定的值进行比较, 以向所述联锁电路(20) 输出比较结果, 所述联锁电路(20)根据所接收到的比较结果, 导通或 断开所述第一开关电路(50)。
8. 如权利要求 7所述的控制电路, 其中, 所述驱动电路(40)和所 述电机( 70 )之间连接有扩展单元。
9. 如权利要求 7所述的控制电路, 其中, 所述第二开关电路(90) 还连接有用于控制所述向日追踪装置的开关机时间的钟控单元。
PCT/CN2007/001472 2006-09-22 2007-04-29 Circuit de commande destiné à un dispositif de suiveur solaire WO2008037157A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200620137144 2006-09-22
CN200620137144.2 2006-09-22
CNU2006201662594U CN200979308Y (zh) 2006-09-22 2006-12-13 用于向日追踪装置的控制电路
CN200620166259.4 2006-12-13

Publications (1)

Publication Number Publication Date
WO2008037157A1 true WO2008037157A1 (fr) 2008-04-03

Family

ID=38979689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001472 WO2008037157A1 (fr) 2006-09-22 2007-04-29 Circuit de commande destiné à un dispositif de suiveur solaire

Country Status (2)

Country Link
CN (1) CN200979308Y (zh)
WO (1) WO2008037157A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112882495B (zh) * 2021-01-21 2024-02-27 辽宁太阳能研究应用有限公司 一种光伏发电系统角度调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863232A (ja) * 1994-08-25 1996-03-08 Puriide:Kk 太陽自動追尾装置
CN2248853Y (zh) * 1996-09-16 1997-03-05 秦皇岛市新能源办公室 全自动跟踪太阳控制器
WO2002079793A1 (en) * 2001-03-28 2002-10-10 Solar Systems Pty Ltd Solar tracking system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0863232A (ja) * 1994-08-25 1996-03-08 Puriide:Kk 太陽自動追尾装置
CN2248853Y (zh) * 1996-09-16 1997-03-05 秦皇岛市新能源办公室 全自动跟踪太阳控制器
WO2002079793A1 (en) * 2001-03-28 2002-10-10 Solar Systems Pty Ltd Solar tracking system

Also Published As

Publication number Publication date
CN200979308Y (zh) 2007-11-21

Similar Documents

Publication Publication Date Title
US10469001B1 (en) DC brushless ceiling fan speed control device and method
CN104949049A (zh) 一种可自动调节方位的太阳能路灯
CN104197629A (zh) 一种压缩机和冷凝器温度控制装置及方法
CN201877806U (zh) 一种风扇电机转速异常自动停止装置及风扇
CN202353187U (zh) 一种蓄电池短路过流保护单元
WO2008037157A1 (fr) Circuit de commande destiné à un dispositif de suiveur solaire
CN101782745A (zh) 太阳光聚光器控制系统
CN106712607B (zh) 智能通道系统专用的电机控制系统及控制方法
CN200975792Y (zh) 向日追踪装置
CN201039038Y (zh) 用于光伏发电的自适应对日跟踪装置
WO2017148241A1 (zh) 一种逆变器控制方法、装置及发电系统
CN109347427B (zh) 一种太阳能光伏发电与建筑遮阳一体化系统及调节方法
CN104485861A (zh) 智能型直流无位置传感光伏水泵驱动控制器
CN103731020A (zh) 光伏逆变器的待机控制方法
CN201467010U (zh) 用于安装太阳能光伏组件的太阳跟踪装置
CN112610921A (zh) 一种智慧路灯
CN106352293A (zh) 太阳能路灯
CN105490337A (zh) 一种太阳能应急馈电系统
CN105207535A (zh) 电动开窗器的智能控制装置
CN201623688U (zh) 煤矿风机变频控制节能装置
CN201993650U (zh) 自动跟踪器
CN103844862A (zh) 一种高效太阳能供电的智能窗帘控制装置的设计
CN104714561B (zh) 一种用于光伏追日系统的防风复位装置
CN105337552A (zh) 电冰箱、马达模组及马达驱动电路
WO2009045173A2 (en) Switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07721045

Country of ref document: EP

Kind code of ref document: A1