WO2008035793A1 - Method for fabricating crystalline silicon grains - Google Patents

Method for fabricating crystalline silicon grains Download PDF

Info

Publication number
WO2008035793A1
WO2008035793A1 PCT/JP2007/068578 JP2007068578W WO2008035793A1 WO 2008035793 A1 WO2008035793 A1 WO 2008035793A1 JP 2007068578 W JP2007068578 W JP 2007068578W WO 2008035793 A1 WO2008035793 A1 WO 2008035793A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon particles
silicon
gas
crystalline silicon
temperature
Prior art date
Application number
PCT/JP2007/068578
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyoshi Tanabe
Jun Fukuda
Nobuyuki Kitahara
Hisao Arimune
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006258054A external-priority patent/JP2009292650A/en
Priority claimed from JP2006321796A external-priority patent/JP2009292652A/en
Priority claimed from JP2007117134A external-priority patent/JP2009292653A/en
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Publication of WO2008035793A1 publication Critical patent/WO2008035793A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites

Definitions

  • the present invention relates to a method for producing crystalline silicon particles that are particularly suitable for use in a photoelectric conversion device such as a solar cell.
  • Photoelectric conversion devices have been developed based on the needs of the market, such as high efficiency in terms of performance such as photoelectric conversion characteristics, consideration of the finite nature of semiconductor resources such as silicon, low manufacturing costs, and other market needs. It has been advanced. As one of promising photoelectric conversion devices in the future market, there is a photoelectric conversion device using crystalline semiconductor particles such as crystalline silicon particles used as solar cells.
  • Raw materials for producing crystalline silicon particles which are crystalline semiconductor particles, include silicon microparticles generated as a result of pulverizing single crystal silicon, and high-purity silicon vapor-phase synthesized by the fluidized bed method. Etc. are used.
  • the raw materials are separated by size or weight, then melted in a container using infrared rays or high frequency, and then freely dropped (for example, patent documents) 1 or 2), or by a method of melting in a container using high-frequency plasma and then free-falling (for example, see Patent Document 3).
  • Patent Document 1 Pamphlet of International Publication No. 99/22048
  • Patent Document 2 US Patent No. 4188177
  • Patent Document 3 Japanese Patent Laid-Open No. 5-78115
  • Patent Document 4 US Patent No. 4430150
  • Patent Document 5 Japanese Patent Laid-Open No. 58-55393
  • Patent Document 6 Japanese Patent Laid-Open No. 63-79794
  • a silicon compound film such as a silicon oxide film is formed on the surface of polycrystalline silicon particles or amorphous silicon particles, and the silicon compound film
  • a method for producing crystalline silicon particles made of a polycrystal or a single crystal excellent in crystallinity by melting and then solidifying by cooling the silicon inside see, for example, Patent Documents 4, 5, and 5). (See 6.)
  • an object of the present invention is to stably and efficiently single-crystallize silicon particles such as polycrystalline silicon particles.
  • Another object is to provide a method for producing crystalline silicon particles.
  • Another object of the present invention is to provide a method for producing crystalline silicon particles, which can produce single crystal silicon particles at low cost. Means for solving the problem
  • the silicon particles are heated to a temperature below the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component.
  • an atmosphere gas consisting of oxygen gas or an atmosphere gas consisting of oxygen gas and inert gas the silicon particles are heated to melt the silicon while maintaining its shape, and then cooled down and solidified to form a single crystal. It is characterized by doing.
  • the method for producing crystalline silicon particles of the present invention comprises heating the silicon particles to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component.
  • a hard film that is harder than the inside is formed on the surface of the particles, and then the silicon particles are heated in an atmosphere gas composed of an oxygen gas or an atmosphere gas composed of an oxygen gas and an inert gas to form oxygen on the hard film.
  • an atmosphere gas composed of an oxygen gas or an atmosphere gas composed of an oxygen gas and an inert gas to form oxygen on the hard film.
  • the method for producing crystalline silicon particles of the present invention comprises heating the silicon particles to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component.
  • a silicon nitride film is formed on the surface of the particles, and then the silicon particles are heated in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and an inert gas to form silicon inside the silicon nitride film. It is characterized in that it is melted, cooled down and solidified to be a single crystal.
  • the silicon nitride film preferably contains oxygen.
  • the silicon particles are heated to melt the silicon inside the silicon nitride film, and then cooled and solidified.
  • the crystallization step it is preferable to perform single crystallization in a state where a large number of the silicon particles are stacked on a base plate.
  • the silicon nitride film is removed after the silicon particles are monocrystallized.
  • the silicon nitride film preferably contains a metal impurity.
  • the silicon melt is discharged and dropped in the form of a nozzle part of a crucible containing silicon melt, and the granular silicon melt is being dropped.
  • the crystalline silicon particles are produced by cooling and solidifying them, and then forming a work-affected layer on the surface layer of the crystalline silicon particles by polishing the surface of the crystalline silicon particles. It is preferable to form a silicon nitride film on the surface of the silicon particles by heating the silicon particles to a temperature not higher than the melting point of silicon in an atmospheric gas containing nitrogen gas as a main component.
  • the crystalline silicon particles are heated to melt the silicon inside the silicon nitride film in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and an inert gas, and the temperature is lowered.
  • the silicon particles are heated to a temperature T1 equal to or higher than the melting point Tm of silicon while maintaining the shape thereof, and the silicon inside is melted.
  • the silicon particles may be supercooled from the temperature T1 to a temperature T2 of 1410 ° C or lower and 1383 ° C or higher.
  • the silicon particles are heated to a temperature T1 equal to or higher than the melting point Tm of silicon while maintaining the shape thereof, the silicon particles are placed on the upper surface when the silicon inside is melted.
  • a base plate is installed in a heating device, and the silicon particles are heated to a temperature below its melting point Tm in an atmosphere gas composed of oxygen gas and nitrogen gas to form a silicon oxynitride film on the surface of the silicon particles, The silicon particles are heated to a temperature T1 equal to or higher than their melting point Tm to melt the silicon inside the silicon oxynitride film.
  • the base plate preferably has a cristobalite crystal layer formed on the surface of a quartz glass substrate.
  • the silicon oxynitride film that may contain metal impurities is preferably removed.
  • silicon particles are heated to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component.
  • a silicon nitride film which is a hard film harder than the inside, is formed on the surface of the silicon particles. Therefore, when crystallizing a single crystal, the crystalline silicon particles are effectively prevented from coalescing, and there is no generation of crystal cracks or subdarenes at the contact surfaces between the crystalline silicon particles due to coalescence. Silicon particles can be produced.
  • the silicon nitride film has a greater ability to prevent diffusion of contaminants and impurities into the silicon inside the crystalline silicon particles than the silicon oxide film, the iron ( Contamination due to diffusion of heavy metal elements such as Fe) is reduced, and it is possible to produce high-quality crystalline silicon particles.
  • the silicon nitride film has a higher density and a unit thickness than the silicon oxide film.
  • the surface layer of crystalline silicon particles containing many strains and defects to be removed by etching in the subsequent process is reduced, and silicon resources can be used effectively.
  • the silicon nitride film can be softened by containing oxygen to melt the silicon inside the silicon nitride film, and the crystalline silicon particles can be made close to spherical by surface tension.
  • the silicon nitride film can contain the same effect as described above even if it contains oxygen.
  • the silicon nitride film formed on the surface of the silicon particles by the pretreatment effectively prevents coalescence of the silicon particles.
  • a large number of silicon particles can be stacked on the base plate, and the silicon particles can be arranged at high density.
  • a large number of silicon particles can be single-crystallized at a time, and it is possible to manufacture crystalline silicon particles at low cost with high productivity. Therefore, it is possible to efficiently produce crystalline silicon particles used for a photoelectric conversion device or the like.
  • the solidification start point is defined as the contact portion between the silicon particles and the base plate and the silicon particles. It is possible to set the contact portion of the substrate and to promote the single crystallization from the contact portion toward the upper part of the silicon particles. Therefore, crystal silicon particles can be easily solidified in one direction without using a seed crystal as in the CZ method and FZ method, and can be easily converted into a single crystal, greatly improving the crystallinity of crystalline silicon particles. Can do.
  • the contact point of the crystalline silicon particles with the base plate becomes a solidification starting point, and solidification proceeds in one direction (upward) of the crystalline silicon particles.
  • the contact point of the crystalline silicon particles with the base plate can be set as the solidification start point without cooling the base plate, but the base plate may be cooled.
  • the solidification progresses in one direction (upward) with the solidified crystal silicon particles in contact with the solidified crystal silicon particles and the contact point with the solidified crystal silicon particles as the solidification start point.
  • solidification proceeds from the lower crystalline silicon particles to the upper crystalline silicon particles as a result.
  • the method for producing crystalline silicon particles of the present invention preferably removes the silicon nitride film after single-crystallizing the silicon particles, so that the Fe, Cr, Ni segregated on the surface layer portion of the crystalline silicon particles. , Mo and other metal impurity containing parts can be removed, and when the crystalline silicon particles obtained by the production method of the present invention are used in a photoelectric conversion device, excellent photoelectric conversion can be obtained.
  • a network-structured silicon nitride film is formed along a number of microcracks formed in the work-affected layer.
  • the crystalline silicon particles have a network-structured silicon nitride film on the surface layer, the shape of the crystalline silicon particles is maintained with respect to the volume change when the silicon inside the crystalline silicon particles is melted and solidified during single crystallization. Sufficient flexibility can be added to the surface layer of the crystalline silicon particles.
  • the film when the silicon nitride film contains oxygen, the film is more flexible than the V and silicon nitride films containing oxygen, and even when the film thickness is large, crystalline silicon particles are formed during single crystallization. Sufficient flexibility can be added to the surface layer of the crystalline silicon particles to maintain the shape of the crystalline silicon particles against the volume change during melting and solidification of the internal silicon.
  • the silicon oxynitride film is formed as a pretreatment on the surface of the silicon particles, the crystalline silicon particles are coalesced during single crystallization. It is possible to effectively suppress the occurrence of crystal cracks and subdarenes at the contact surface between the crystalline silicon particles due to coalescence, and to produce crystalline silicon particles having high quality crystallinity.
  • silicon particles having a silicon oxynitride film formed on the surface in step 1 are converted from a temperature T1 not lower than the melting point Tm of silicon to a temperature lower than the melting point Tm.
  • T1 temperature not lower than the melting point Tm of silicon
  • Tm melting point
  • Tm-T2 degree of supercooling
  • the temperature during solidification can be 1383 ° C or more, It is possible to prevent the formation of protrusions at the end of solidification, the generation of grain boundaries and crystal defects, the generation of uniform nuclei that can be polycrystallized, and the dendrite growth.
  • the degree of supercooling from the melting point Tm is sufficient, so that solidification is likely to occur. It is possible to produce single-crystal silicon particles having high quality crystallinity that do not include grain boundaries or crystal defects formed by the formation of protrusions at the solidification end.
  • the degree of supercooling (Tm-T2) from the melting point Tm is too small to cause solidification.
  • step 1 when the silicon particles are heated to a temperature T1 equal to or higher than the melting point Tm of silicon while maintaining the shape thereof, the silicon on which the silicon particles are placed on the upper surface is heated when melting the internal silicon.
  • a silicon oxynitride film is formed on the surface of the silicon particles by heating the silicon particles to a temperature below its melting point Tm in an atmospheric gas consisting of oxygen gas and nitrogen gas, and the silicon particles are melted at the melting point Tm. By heating to the above temperature T1, the silicon inside the silicon oxynitride film is melted.
  • the silicon oxynitride film is formed on the surface of the silicon particles during the single crystallization, the coalescence of the silicon particles is effectively suppressed, and cracks and subdurale in the contact surfaces of the silicon particles due to the coalescence are suppressed. It is possible to produce single-crystal crystalline silicon particles having high quality crystallinity that are free from the occurrence of defects.
  • the silicon oxynitride film adheres to the surface of the crystalline silicon particles because it has a greater ability to prevent diffusion of contaminants and impurities into the silicon inside the crystalline silicon particles than the silicon oxide film. Contamination due to diffusion of heavy metal elements such as iron (Fe) is reduced, and high-quality crystalline silicon particles with few impurities can be produced.
  • heavy metal elements such as iron (Fe)
  • the silicon oxynitride film has a higher density and higher strength per unit thickness than the silicon oxide film, the silicon particles are heated to melt the silicon inside the silicon oxynitride film.
  • the thickness of the silicon oxynitride film necessary for stably holding the silicon melt inside the silicon particles can be made thinner than that of the silicon oxide film.
  • the surface layer of crystalline silicon particles containing many strains and defects to be removed by etching in the subsequent process is reduced, and silicon resources can be used effectively.
  • the silicon oxynitride film formed on the surface of the silicon particles effectively combines the silicon particles.
  • a large number of silicon particles are placed on a base plate in a single layer during single crystallization in a heating furnace, and a large number of silicon particles are arranged at a high density, so that a large number of silicon particles are placed.
  • the particles can be single crystallized at a time. Accordingly, it is possible to produce crystalline silicon particles at low cost and with high productivity.
  • the solidification starting point when a large number of silicon particles are placed on the base plate in a multilayered manner to melt, solidify, and single crystallize is defined as the contact portion between the silicon particle and the base plate and between the silicon particles. It is possible to set the contact part and to promote single crystallization from the contact part to the upper part of the silicon particles. For this reason, crystal silicon particles can be easily solidified in one direction without using a seed crystal as in the CZ method and FZ method, and single crystal can be easily formed, and the crystallinity of the crystal silicon particles can be greatly improved. Can do.
  • the contact point between the silicon particles and the cristobalite crystal layer on the surface of the base plate becomes a solidification start point, thereby causing heterogeneous nucleation.
  • the force S is used to easily crystallize the crystalline silicon particles in one direction to form a single crystal.
  • the heterogeneous nucleation means that crystal nuclei are generated in a part of silicon particles, and crystallization spreads from the crystal nuclei to the whole.
  • homogeneous nucleation means that crystal nuclei are formed in the entire silicon particle almost simultaneously and each crystal nuclei grows, which corresponds to the case where polycrystalline crystalline silicon particles are formed.
  • the cristobalite crystal layer formed on the surface of the quartz glass substrate is stable at a temperature of about 1400 ° C, and functions as a surface structural material (surface reinforcing layer) of the quartz glass substrate. It will have. As a result, the quartz glass substrate acts to prevent the thermal deformation of the substrate, thereby preventing the substrate from being deformed by heat.
  • the silicon oxynitride film is removed after single-crystallizing the silicon particles, metal impurities such as Fe, Cr, Ni, and Mo segregated on the surface layer portion of the crystalline silicon particles.
  • the containing part can be removed.
  • FIG. 1 shows an embodiment of the method for producing crystalline silicon particles of the present invention, and (a) to (c) show a state in which silicon particles are placed in a multilayered manner on a base plate. It is sectional drawing for every process
  • FIG. 2 is a cross-sectional view showing an embodiment of a photoelectric conversion device obtained by the production method of the present invention.
  • FIG. 3 shows another embodiment of the method for producing crystalline silicon particles of the present invention
  • (a) is a schematic cross-sectional view showing a state in which a work-affected layer is formed by polishing on the surface of the crystalline silicon particles.
  • (B) to (d) are schematic cross-sectional views for each process showing a state in which crystalline silicon particles are placed in a multilayered manner on a base plate.
  • FIG. 4 is a cross-sectional view of a jet device used in the production method of the present invention.
  • FIG. 5 shows still another embodiment of the method for producing crystalline silicon particles of the present invention
  • (a)-(c) is sectional drawing for every process which shows a mode that the silicon particle was mounted in one layer on the base plate.
  • FIG. 6 is a cross-sectional photograph showing the results of observation of grain boundaries and pits (crystal defects) on the polished surface of crystalline silicon particles of Example 3-;!
  • FIG. 7 is a cross-sectional photograph showing the results of observation of grain boundaries and pits (crystal defects) on the polished surface of crystalline silicon particles of Comparative Example 3-;!
  • FIG. 8 is a graph showing a temperature profile in still another manufacturing method of the present invention.
  • FIGS. 1 (a) to 1 (c) each show an embodiment of the method for producing crystalline silicon particles of the present invention.
  • a large number of silicon particles 1 stacked on a base plate 102 are shown in FIG. It is sectional drawing for every process which shows 01.
  • silicon particles 101 semiconductor grade crystalline silicon is used as a material of the crystalline silicon particles, and this is melted in a container using an infrared ray or a high frequency coil. After that, polycrystalline silicon particles 101 are obtained by a melt drop method (jet method) or the like in which molten silicon is freely dropped as a granular melt.
  • Polycrystalline silicon particles 101 produced by the melt drop method are usually doped with a dopant in order to obtain a desired conductivity type and resistance value.
  • dopants for silicon include boron, aluminum, gallium, indium, phosphorus, arsenic, and antimony.
  • boron or phosphorus because it has a large segregation coefficient for silicon and a small evaporation coefficient when silicon is melted.
  • the dopant concentration is preferably about 1 ⁇ 10 14 to 1 ⁇ 10 18 atoms / cm 3 added to the silicon crystal material.
  • the shape of the silicon particles 101 was a teardrop type, streamline type, or a plurality of particles connected in addition to a substantially spherical shape. It is a connected type.
  • the causes include the presence of metal impurities such as Fe, Cr, Ni, and Mo that are usually contained in the polycrystalline silicon particles 101, and the effect of carrier recombination at the crystal grain boundaries. It is.
  • polycrystalline silicon is used in a temperature-controlled heating furnace in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component.
  • the particles 101 are heated to a temperature (500 to; 1400 ° C.) below the melting point of silicon (1414 ° C.) to form a silicon nitride film on the surface of the silicon particles 101.
  • the silicon particles 101 are made into a single crystal by being remelted, cooled and solidified in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and inert gas.
  • the single crystallization of the silicon particles 101 by the production method of the present invention is, for example, a ratio in which about 999 of 1000 silicon particles 101 are completely single-crystallized (99.9% in number ratio). Degree) Power to do S
  • the post-process it is preferable to remove the silicon nitride film, thereby removing the metal impurity containing portion such as Fe, Cr, Ni, Mo segregated on the surface layer portion of the crystalline silicon particles. Can do.
  • the metal impurity containing portion such as Fe, Cr, Ni, Mo segregated on the surface layer portion of the crystalline silicon particles.
  • the pressure of the atmospheric gas composed of nitrogen gas or the atmospheric gas containing nitrogen gas as a main component in the previous step is preferably about 0.01 M to 0.2 MPa. 0. Below OlMPa, the film thickness of the silicon nitride film is reduced and the film quality is liable to deteriorate due to evaporation of nitrogen and oxygen from the silicon nitride film. On the other hand, when it exceeds 0.2 MPa, the thickness of the silicon nitride film tends to vary.
  • the thickness of the silicon nitride film formed on the surface of the silicon particles 101 may be about 100 nm to 10 ⁇ m. If it is less than lOOnm, the silicon nitride film is easily broken when the silicon inside the silicon particles melts. If it exceeds 10 m, the silicon nitride film tends to be spheroidized by surface tension when the silicon melts inside the silicon particle, whereas the silicon nitride film is too thick to deform.
  • the pressure of the atmospheric gas composed of oxygen gas or oxygen gas and inert gas force in the subsequent process is preferably about 0.01 to 0.2 MPa. 0. Below OlMPa, the film thickness of the silicon nitride film is reduced and the film quality is liable to be deteriorated by evaporation of nitrogen and oxygen from the silicon nitride film. If it exceeds 0.2 MPa, the shape cannot be kept stable when the silicon inside the silicon particles is melted, making it difficult to control the shape.
  • the oxygen gas is included as an essential gas component in the atmospheric gas in the subsequent process because the diffusion of oxygen into the silicon nitride film increases the flexibility of the silicon nitride film and the shape when the silicon particles 101 melt. This is because it can be maintained more stably. Further, since the oxygen partial pressure in the atmospheric gas is increased, it is possible to reduce oxygen evaporation from the silicon nitride film with a force s. If oxygen is not included in the atmospheric gas, silicon particles 1 This is to prevent 01 from reacting and fixing with quartz on the base plate 102 made of quartz glass or the like during melting.
  • any gas containing 20% by volume or more of oxygen gas may be used as long as it contains 80% by volume or less of inert gas such as argon gas.
  • inert gas such as argon gas.
  • a large number (for example, several hundred to several thousand) of polycrystalline silicon particles 101 are placed on the surface. Two or more layers are stacked on the upper surface of the plate 102.
  • the multi-layer placement referred to in the present invention is, when viewed in the longitudinal sectional view of FIG. 1 (a), the substantially spherical silicon particles 101 are placed in a plurality of layers on the upper surface of the base plate 102, It means a state in which it is packed in a close packing and stacked.
  • the multiple silicon particles 101 may be placed on the base plate 102 in a single layer, but it is better to place them in multiple layers. By placing them in multiple layers, the silicon particles 101 can be arranged with high density, and a large number of silicon particles 101 can be made into a single crystal at a time. It becomes possible to do. Therefore, it is possible to efficiently produce crystalline silicon particles used in a photoelectric conversion device or the like.
  • the number of layers is not particularly limited! /, For example, 2 to; about 150 layers! /.
  • the multiple silicon particles 101 placed on the base plate 102 may be in contact with each other.
  • the base plate 102 is preferably a box or plate having no upper lid. In the case of a plate shape, it may be used by stacking in multiple stages.
  • quartz glass, mullite, aluminum oxide, silicon carbide, single crystal sapphire, etc. are suitable for suppressing the reaction with the silicon particles 101. Quartz glass is preferred because it has excellent heat resistance, durability, and chemical resistance, is inexpensive, and is easy to handle.
  • the base plate 102 on which the silicon particles 101 are placed is introduced into a heating furnace (not shown), and the silicon particles 101 are heated.
  • a heating furnace (not shown), and the silicon particles 101 are heated.
  • Various furnaces can be used depending on the type of semiconductor material, but since silicon is used as the semiconductor material, it can be used for firing ceramics.
  • a resistance heating type or induction heating type atmosphere firing furnace used, or a horizontal oxidation furnace generally used in the manufacturing process of a semiconductor element is suitable.
  • Resistance heating type atmosphere firing furnaces used for firing ceramics, etc. are relatively easy to raise the temperature above 1500 ° C, and large-scale ones capable of mass production of crystalline silicon particles are also available at relatively low cost. desirable.
  • the solution Prior to heating in the atmospheric firing furnace, the solution may be washed in advance by the RCA method (cleaning method by RCA) in order to remove metal foreign matter adhering to the surface of the silicon particles 101.
  • the RCA method is a cleaning method generally used in the manufacturing process of semiconductor devices as a standard cleaning process for silicon wafers. Specifically, the oxide film and silicon surface layer on the silicon wafer surface are removed with an aqueous solution of ammonium hydroxide and hydrogen peroxide in the first step of the three steps, and the second step.
  • step 3 the oxide film attached in the previous step is removed with an aqueous solution of hydrogen fluoride, and in the third step, heavy metal is removed with an aqueous solution of hydrogen chloride and hydrogen peroxide to form a natural oxide film. ,Is Umono.
  • a bell jar that covers the silicon particles 101 placed on the base plate 102 is installed in the heating furnace.
  • Quartz glass, mullite, aluminum oxide, silicon carbide, single crystal sapphire, etc. are suitable for the material of the bell jar, but it is excellent in heat resistance, durability, chemical resistance and low cost and easy to handle! Glass is preferred.
  • the silicon particles 101 are heated in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component, and the temperature is raised to a temperature lower than the melting point of silicon (1414 ° C).
  • a silicon nitride film is formed on the surface of the silicon particle 101.
  • the formation temperature of the silicon nitride film is preferably 500 ° C or higher and 1400 ° C or lower! When the temperature is lower than 500 ° C! /, The growth rate of the silicon nitride film is slow and it takes time to obtain a sufficient thickness, and when the temperature is higher than 1400 ° C, the thickness of the silicon nitride film becomes uneven. Or part of the silicon particles 101 will melt or the shape of the particles will collapse!
  • the silicon nitride film formed on the surface of the silicon particle 101 has a higher film density and higher strength per unit film thickness than a silicon oxide film or the like, silicon particles such as contaminants and impurities are present. This has the effect that the diffusion blocking power inside the child 101 is large.
  • the silicon nitride film does not turn even if it contains oxygen.
  • the oxygen content should be about 10 mol% or less. If it exceeds 10 mol%, the film quality tends to deteriorate due to the change in crystal structure and increase in crystal defects in the silicon nitride film.
  • the atmosphere gas in the heating furnace when forming the silicon nitride film on the surface of the silicon particle 101 preferably has a nitrogen gas partial pressure of 70% or more.
  • the nitrogen gas partial pressure in the atmospheric gas is less than 70%, the silicon particles 101 are likely to coalesce in the subsequent single crystallization process, and the strength of the silicon nitride film is also deteriorated. That is, when the silicon particles 101 are stacked in layers, the lower silicon particles 101 are easily crushed when melted due to the weight of the upper silicon particles 101.
  • Each gas partial pressure in the atmospheric gas in the heating furnace can be adjusted by each gas flow rate with respect to the total gas flow rate.
  • Atmospheric gas is, for example, gas supply means such as a gas flow meter or mass flow meter, force S supplied into the bell jar through a gas filter, and a device for supplying gas to this gas supply means adjusts the gas pressure and concentration. Any device having a possible mechanism may be used.
  • silicon particles 101 are introduced from the melting point of silicon (1414 ° C.) in an atmospheric gas composed of oxygen gas or an atmospheric gas composed of oxygen gas and inert gas. Raise the temperature to a higher temperature.
  • the steps in Fig. 1 (a) and (b) may be performed separately or consecutively.
  • Base plate 102 also functions as a starting point for solidification when silicon particles 101 are cooled and solidified after being melted and crystallized. In this way, by placing a large number of silicon particles 101 on the upper surface of the base plate 102, the solidification start point can be set at the contact portion between each silicon particle 101 and the base plate 102. As one of the poles, the solidification (single crystallization) direction can be set from this one pole toward the upper facing pole. As a result, it is possible to solidify in one direction without using a seed crystal, and the crystallinity of the crystalline silicon particles 101 can be greatly improved by suppressing the generation of subgrains and the like.
  • the contact portion with the crystalline silicon particles on the base plate 102 previously crystallized is set as a solidification starting point, and the upper portion thereof. Adjacent silicon particles 101 can be solidified, and the upper part of the multilayered Since solidification spreads in a chain reaction direction, the force S can greatly improve the crystallinity of a large number of silicon particles 101.
  • the average particle diameter is preferably 1500 in or less, and the shape is preferably closer to the sphere.
  • the shape of the silicon particles 101 is not limited to a spherical shape, but may be a cubic shape, a rectangular parallelepiped shape, or other irregular shapes.
  • the thickness of the silicon nitride film formed on the surface of the silicon particles 101 becomes relatively thin with respect to the silicon particle 101 main body. It becomes difficult to keep the shape of the silicon particles 101 at the time of melting of the silicon inside the silicon particles 101 stable. In addition, it becomes difficult to completely melt the silicon inside the silicon particles 101, and subdurain is likely to occur when the melting is incomplete. On the other hand, when the diameter of the silicon particles 101 is as small as less than 30 m, it is difficult to stably maintain the shape of the silicon particles 101 when the silicon inside the silicon particles 101 is melted.
  • the diameter of the silicon particles 101 is 30 m to 1500 m, thereby stably maintaining the shape of the silicon particles 101 and providing a spherical and high-quality crystallinity with no generation of subdarenes. Crystalline silicon particles can be stably produced.
  • the temperature of the silicon particle 101 is higher than the melting point of silicon (1414 ° C)! /, The temperature is raised to a temperature! /,
  • the atmosphere gas in the heating furnace in the subsequent process (post process) is an atmosphere composed of oxygen gas
  • the atmosphere gas consists of gas or oxygen gas and inert gas.
  • Argon gas, nitrogen gas, helium gas, and hydrogen gas are suitable as the inert gas, but argon gas or nitrogen gas is preferred from the viewpoint of low cost and ease of handling.
  • each gas partial pressure in the atmospheric gas in the heating furnace can be adjusted by each gas flow rate with respect to the total gas flow rate. For example, if the atmospheric gas is a force supplied from the gas supply means through the gas filter into the bell jar, and the device for supplying the gas to the gas supply means has a mechanism capable of adjusting the gas pressure and the gas concentration. 'Good.
  • the oxygen gas partial pressure in atmospheric gas is preferably 20% or more.
  • Oxygen gas partial pressure in atmospheric gas is not 20% When it is full, oxygen evaporation from the silicon nitride film is easily promoted, and the shape cannot be kept stable when the silicon inside the silicon particles 101 is melted, making it difficult to control the shape.
  • the silicon particles 101 are heated to a temperature not lower than the melting point (1414 ° C) of silicon and preferably not higher than 1480 ° C. During this period, silicon inside the silicon nitride film on the surface melts in the silicon particles 101. At this time, the silicon nitride film formed on the surface of the silicon particles 101 can maintain the shape of the silicon particles 101 while melting the inner silicon.
  • the temperature of the silicon particle 101 is difficult to maintain stably, for example, in the case of the silicon particle 101, if the temperature is raised to a temperature exceeding 1480 ° C, the inside of the silicon particle 101 When the silicon melts, it becomes difficult to keep the shape of the silicon particles 101 stable, and the adjacent silicon particles 101 tend to coalesce, and the silicon particles 101 are easily fused to the base plate 102.
  • the thickness of the silicon nitride film formed on the surface of the silicon particles 101 is preferably lOOnm or more in the above average particle diameter range of the silicon particles 101.
  • the silicon nitride film on the surface of the silicon particles 101 is easily broken when the silicon inside the silicon particles 101 is melted.
  • the silicon nitride film has a required strength with a thickness of lOOnm or more, the silicon inside the silicon particles 101 tends to be spheroidized by the surface tension when it melts, whereas it is nitrided in the above temperature range. Since the silicon film can be sufficiently deformed, it can be controlled by the force of making the crystalline silicon particles obtained by single-crystallizing the inside into a shape close to a true sphere.
  • the thickness of the silicon nitride film exceeds 10 m, the silicon nitride film is deformed in the above temperature region, and the shape of the obtained crystalline silicon particles 101 is a shape close to a true sphere. Desirable because it is hard to become! /.
  • the thickness of the silicon nitride film on the surface of the silicon particles 101 is within the above average particle diameter range.
  • the molten silicon particles 101 are dissolved in the inner side of the silicon nitride film.
  • the temperature is lowered to a temperature of about 1400 ° C or less below the melting point and solidified.
  • the contact portion between the silicon particle 101 and the base plate 102 is set as the solidification starting point (one pole) and facing upward. Solidification progresses in one direction toward the pole, so that unidirectional solidification occurs at the point of contact with the already solidified silicon particle 101 and is inherited by the entire silicon particle 101 as it is. Crystals grow and the resulting crystalline silicon particles become single crystals, which can greatly improve crystallinity.
  • the contact portion with the crystalline silicon particles on the base plate 102 that has been crystallized earlier is set as the solidification starting point and is adjacent to the top. Since the solidified silicon particles 101 can be solidified and the solidification spreads in a chained manner toward the upper part of the stacked layers, the crystallinity of a large number of crystalline silicon particles 101 can be greatly improved. I'll do it.
  • a thermal annealing treatment on the silicon particles 101, for example, a thermal annealing treatment at a constant temperature of 1000 ° C or higher for 30 minutes or longer.
  • a thermal annealing treatment at a constant temperature of 1000 ° C or higher for 30 minutes or longer.
  • the first conductive type (for example, p-type) crystalline silicon particles 40 are formed on one main surface of the conductive substrate 407, in this example, the upper surface.
  • a large number of 6 are bonded to the conductive substrate 407 at the lower portion thereof by, for example, a bonding layer 408.
  • An insulating material 409 is interposed between the crystalline silicon particles 406 and 406 adjacent to each other, and an upper portion of the crystalline silicon particles 406 is disposed so as to be exposed from the insulating material 409.
  • Second conductivity type (for example, n-type) semiconductor layer 410 (semiconductor portion) In addition, the translucent conductor layer 41 1 is provided in order.
  • the electrode 412 is formed in a predetermined pattern shape on the translucent conductor layer 411 when the photoelectric conversion device is used as a solar cell.
  • the electrode 412 is a finger electrode and a bus bar.
  • the electrode 412 may be a conductive plate made of copper, aluminum or the like.
  • the crystalline silicon particles 406 in the photoelectric conversion device of the present invention having the above-described configuration are manufactured by the above-described manufacturing method of crystalline silicon particles of the present invention. Since the crystalline silicon particles 406 produced by the method for producing crystalline silicon particles of the present invention have a very low impurity concentration and high quality, the lifetime of minority carriers, which is an important factor for obtaining high photoelectric conversion efficiency, is obtained. Can be improved. Accordingly, crystalline silicon particles 406 that are preferable as a component of the photoelectric conversion device can be obtained.
  • the method for producing crystalline silicon particles 406 in the photoelectric conversion device of the present invention is the same as the method for producing crystalline silicon particles described above.
  • the silicon particles 101 which are the starting material of the crystalline silicon particles 406 are preferably doped with a p-type semiconductor impurity as a first conductivity type dopant so as to have a desired resistance value.
  • a p-type dopant boron, aluminum, gallium or the like is preferable, and the addition amount is preferably 1 ⁇ 10 14 to 1 ⁇ 10 18 atoms / cm 2.
  • the crystalline silicon particles 406 produced by the above-described method for producing crystalline silicon particles of the present invention are used for producing the photoelectric conversion device of the present invention.
  • the photoelectric conversion apparatus can be used as a power generation means, and a photovoltaic power generation apparatus configured to supply the generated power from the power generation means to a load can be obtained.
  • the example shown in FIG. 2 is a photoelectric conversion device manufactured using the crystalline silicon particles 406 obtained as described above.
  • the silicon nitride film formed on the surface of the crystalline silicon particles 406 is removed by etching with hydrofluoric acid.
  • impurities such as P-type dopant and oxygen, carbon, and metal segregated on the surface of the crystalline silicon particles 406, crystalline silicon particles
  • the surface of 406 may be removed by etching with hydrofluoric acid or the like!
  • the thickness of the surface layer of the crystalline silicon particles 406 removed at that time is preferably 100 Hm or less in the radial direction.
  • a large number of crystalline silicon particles 406 are arranged on a conductive substrate 407 made of aluminum or the like.
  • the crystalline silicon particles 406 are bonded to the conductive substrate 407 through the bonding layer 408 generated by heating the whole in a reducing atmosphere.
  • the bonding layer 408 is, for example, an alloy of aluminum and silicon.
  • the conductive substrate 407 is made of an aluminum substrate, or a metal substrate containing at least aluminum on the surface, so that the crystalline silicon particles 406 can be bonded at a low temperature, which is lightweight and inexpensive.
  • a photoelectric conversion device can be provided.
  • reflection of incident light reaching the non-light-receiving region of the surface of the conductive substrate 407 can be made random, and incident light is obliquely inclined in the non-light-receiving region. The light can be reflected and re-reflected toward the surface of the photoelectric conversion device, and incident light can be effectively used by further photoelectrically converting the light by the photoelectric conversion portion of the crystalline silicon particles 406.
  • an insulating material 409 is placed on the conductive substrate 407 so as to be interposed between adjacent ones of the bonded crystalline silicon particles 406, and at the top of these crystalline silicon particles 406, at least the zenith portion. It is exposed from the insulating material 409.
  • the surface shape of the insulating material 409 between the adjacent crystalline silicon particles 406 is assumed to be a concave shape that is higher on the crystalline silicon particle 406 side. Due to the difference in refractive index from the transparent encapsulating resin formed thereon, it is possible to promote the random reflection of incident light on the crystalline silicon particles 406 in the non-light-receiving region without the crystalline silicon particles 406. it can.
  • a second conductive type semiconductor layer 410 and a translucent conductor layer 411 are provided on the exposed upper portions of the crystalline silicon particles 406.
  • the semiconductor layer 410 is provided by forming the amorphous or polycrystalline semiconductor layer 410 or by forming the semiconductor layer 410 by a thermal diffusion method or the like.
  • the silicon layer which is the semiconductor layer 410 is an n-type semiconductor layer 410.
  • a translucent conductor layer 411 is formed on the semiconductor layer 410.
  • a silver paste or the like is applied in a predetermined pattern shape to form electrodes 412 such as grid electrodes or finger electrodes and bus bar electrodes.
  • the conductive substrate 407 is By using one electrode and the electrode 412 as the other electrode, a photoelectric conversion device as a solar cell can be obtained.
  • the second conductivity type semiconductor layer 410 a thermal diffusion method with a low process cost is performed on the surface of the crystalline silicon particles 406 prior to the bonding of the crystalline silicon particles 406 to the conductive substrate 407. May be formed.
  • P, As, Sb of Group V, B, Al, Ga, etc. of Group III are used as the second conductivity type dopant, and the crystalline silicon particles 406 are accommodated in a diffusion furnace made of quartz.
  • the semiconductor layer 410 of the second conductivity type is formed on the surface of the crystalline silicon particles 406 by heating while introducing.
  • FIG. 3 (a) to 3 (d) are schematic cross-sectional views showing a method for producing crystalline silicon particles that are effective in this embodiment.
  • FIG. 3 (a) shows a method of forming a work-affected layer on the surface of the crystalline silicon particles 101 by polishing using the lower rotating surface plate 201, the upper rotating surface plate 202, and the loose abrasive grains 203 having high rigidity.
  • Show. 3 (b) to 3 (d) are cross-sectional views for each process showing a large number of crystalline silicon particles 101 placed on the base plate 301 in a multilayered manner.
  • the method for producing crystalline silicon particles which is particularly effective for this embodiment, is that the silicon melt is discharged as particles from the nozzle part of the crucible containing the silicon melt and dropped, and the granular silicon melt is being dropped. Then, the crystalline silicon particles 101 are produced by cooling and solidifying, and then the surface of the crystalline silicon particles 101 is polished to form a work-affected layer on the surface layer portion of the crystalline silicon particles 101. Next, the crystalline silicon particles 101 are heated to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component to form a silicon nitride film on the surface of the crystalline silicon particles 101. .
  • the crystalline silicon particles 101 are heated to melt the silicon inside the silicon nitride film, and the temperature is lowered and solidified to form a single crystal. To do.
  • a semiconductor grade crystal is used as the material of the crystalline silicon particles 101.
  • Polycrystalline silicon is melted in a container using silicon and infrared or high-frequency induction coils, and then melted and dropped freely as a granular silicon melt (jet method). Particle 101 is obtained.
  • the crucible 1 heats and melts the raw silicon particles to form a silicon melt, and the bottom nozzle section la This is a container for discharging the melt 4 of granular silicon.
  • the silicon melt heated and melted in the crucible 1 is discharged into the tube 2 from the nozzle part la, becomes a granular silicon melt 4, falls inside the tube 2, and crystal silicon particles 5 are obtained.
  • the tube 2 is arranged below the crucible 1 so that the longitudinal direction is the vertical direction.
  • the crucible 1 is made of a material having a melting point higher than that of silicon.
  • the crucible 1 is preferably made of a material having low reactivity with the silicon melt. When the reaction with the silicon melt is large, the material of the crucible 1 is mixed in the crystalline silicon particles 5 as impurities. This is not preferable.
  • the crucible 1 is provided with a gas introduction pipe 3 made of quartz or the like.
  • the material of the crucible 1 is carbon, silicon carbide sintered body, silicon carbide crystal, boron nitride sintered body, silicon oxynitride sintered body, quartz, quartz crystal, silicon nitride sintered
  • the body, aluminum oxide sintered body, sapphire, magnesium oxide sintered body and the like are preferable. Further, it may be a composite, mixture or combination of these materials. Further, a silicon carbide film, a silicon nitride film, or a silicon oxide film may be coated on the surface of the substrate made of the above material. Further, as a heating method for heating the raw material to the melting point or higher in the crucible 1, electromagnetic induction heating, resistance heating, or the like is suitable.
  • the nozzle portion la is made of silicon carbide (silicon carbide crystal or silicon carbide sintered body) or silicon nitride (silicon nitride sintered body).
  • Polycrystalline crystalline silicon particles 101 produced by the melt drop method are usually doped with a dopant in order to obtain a desired conductivity type and resistance value.
  • Dopants for silicon include boron, aluminum, gallium, indium, phosphorous, arsenic, and antimony. S, boron and phosphorus are used because they have a large segregation coefficient for silicon and a small evaporation coefficient when silicon melts. It is desirable to use it.
  • the dopant concentration is about 1 ⁇ 10 14 to 1 ⁇ 10 18 atoms / cm 3 added to the silicon crystal material.
  • the crystalline silicon particles 101 have a substantially spherical shape, a teardrop type, a streamline type, or a plurality of particles connected to each other. Connected type.
  • a photoelectric conversion device is produced using the polycrystalline silicon particles 101 as it is, good photoelectric conversion characteristics cannot be obtained. This is because metal impurities such as Fe, Cr, Ni, and Mo that are usually contained in the polycrystalline crystalline silicon particle 101 and the carrier recombination effect at the crystal grain boundary of the polycrystalline crystalline silicon particle 101. Is due to.
  • a work-affected layer is formed by polishing on the surface of the crystalline silicon particles 101 obtained by the melt drop method, and then an atmosphere gas composed of nitrogen gas or nitrogen gas is used as a main component.
  • the polycrystalline silicon particles 101 are heated to a temperature (500 to 1400 ° C) below the melting point of silicon (1414 ° C) in a temperature-controlled heating furnace in an atmosphere gas containing the crystalline silicon particles 101
  • a silicon nitride film is formed on the surface, and then the crystalline silicon particles 101 are heated in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and an inert gas to melt silicon inside the silicon nitride film, The temperature is lowered and solidified to form a single crystal.
  • the lower rotary platen 201 and the upper rotary platen 202 shown in FIG. 3 (a) function as a polishing device for the surface of the crystalline silicon particles 101, and at least one of them can rotate. Both may be configured to rotate. Also, if both rotate, they may rotate in opposite directions, and some! / May rotate in the same direction so that their rotational speeds are different.
  • the rotation axis of the lower rotation platen 201 and the rotation axis of the upper rotation platen 202 may be fixed! /, Or one rotation axis may be fixed and the other rotation axis set to a predetermined locus. It may be moved so as to draw (a circular or elliptical trajectory). Alternatively, both rotary axes may be moved so as to draw a predetermined locus (circular, elliptical, etc.). Further, at least one of the lower rotating surface plate 201 and the upper rotating surface plate 202 may be configured to be movable in the vertical direction.
  • the material of the lower rotating surface plate 201 and the upper rotating surface plate 202 is SUS (stainless steel) or the like. Also, a plan view of the lower rotating surface plate 201 and the upper rotating surface plate 202 is shown. The shape in is a circle, a quadrangle, etc., and may be other shapes.
  • one or a plurality of crystalline silicon particles 101 can be arranged between the lower rotating platen 201 and the upper rotating platen 202. ; Place around 100,000. Further, when a plurality of crystalline silicon particles 101 are arranged between the lower rotating surface plate 201 and the upper rotating surface plate 202, all the crystalline silicon particles 101 are considered in consideration of the difference in size of the individual crystalline silicon particles 101.
  • a rubber layer, a rubber film, a rubber sheet or the like is applied to at least one of the pressing surfaces (contact surfaces with the crystalline silicon particles 101) of the lower rotating surface plate 201 and the upper rotating surface plate 202 so that pressure is applied to the 101 substantially uniformly.
  • An elastic layer may be provided.
  • loose abrasive 203 silicon carbide, alumina, diamond or the like is generally used.
  • a grindstone or grindstone plate made of silicon carbide, alumina, diamond, etc. can be installed on at least one of the pressing surfaces of lower rotating platen 201 and upper rotating platen 202 It is.
  • the work-affected layer generally has a structure in which an amorphous layer, a polycrystalline layer, a mosaic layer, a crack layer, a strained layer, etc. exist from the surface side. Call a layer. It is assumed that the work-affected layer in the present invention is actually composed of an amorphous layer, a polycrystalline layer, a mosaic layer, and a crack layer. In addition, the work-affected layer is lost by a remelting (remelting) step for single crystallization of the crystalline silicon particles 101.
  • remelting remelting
  • the pressure of the atmosphere gas composed of nitrogen gas or the atmosphere gas containing nitrogen gas as the main component in the silicon nitride film formation step is 0.01 to 0.2 MPa. The degree is good.
  • the thickness of the silicon nitride film formed on the surface of the crystalline silicon particles 101 may be about lOOnm to about 10 ⁇ m.
  • the pressure of the atmospheric gas composed of oxygen gas or the atmospheric gas composed of oxygen gas and inert gas in the post-process is 0.01-0.2. About MPa is good.
  • any gas containing 20% by volume or more of oxygen gas may be used as long as it contains 80% by volume or less of inert gas such as argon gas.
  • a large number (for example, several hundred to several thousand) of polycrystalline silicon particles 101 are prepared to produce single-crystal crystalline silicon particles 101.
  • Two or more layers are stacked on the upper surface of the plate 301.
  • the multi-layer placement referred to in the present invention means that the substantially spherical crystalline silicon particles 101 are placed so as to form a plurality of layers in the thickness direction as viewed in the longitudinal sectional view of FIG. It shows a state of being filled and stacked and placed.
  • the base plate 301 on which the crystalline silicon particles 101 are placed is introduced into a heating furnace (not shown), and the crystalline silicon particles 101 are heated!
  • the crystalline silicon particles 101 are heated in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component in a heating furnace, and the temperature is raised to a temperature lower than the melting point of silicon (1414 ° C).
  • a silicon nitride film is formed on the surface of the crystalline silicon particles 101.
  • the formation temperature of the silicon nitride film is preferably 500 ° C or higher and 1400 ° C or lower.
  • the silicon nitride film preferably contains oxygen.
  • the oxygen content is preferably about 10 mol% or less. If it exceeds 10 mol%, the film quality tends to deteriorate due to the change in crystal structure and increase of crystal defects in the silicon nitride film. Further, when the silicon nitride film contains oxygen, the flexibility of the film is further improved.
  • Base plate 301 also functions as a starting point for solidification when crystalline silicon particles 101 are cooled and solidified after being melted.
  • the contact portion with the crystalline silicon particles on the base plate 301 crystallized first is set as a solidification starting point, It becomes possible for the crystalline silicon particles 101 adjacent to to solidify. As a result, the solidification spreads in a chain reaction toward the upper part of the stacked layers, so that the crystallinity of the large number of crystalline silicon particles 101 can be greatly improved.
  • the temperature is lowered to a temperature of about 1400 ° C. or lower, which is lower than the melting point of silicon. Let it solidify.
  • the force to solidify by maintaining at a relatively high temperature (about 1360 ° C) below the melting point of silicon.
  • the contact portion between the crystalline silicon particle 101 and the base plate 301 is the solidification starting point (one pole).
  • the unidirectional solidification occurs starting from the contact point with the already solidified crystalline silicon particle 101, and the entire crystalline silicon particle 101 remains as it is.
  • the crystal grows in succession, and the resulting crystalline silicon particle 101 becomes a single crystal.
  • the contact portion with the crystalline silicon particles 101 on the base plate 301 that has been crystallized first is set as the solidification starting point. It is possible to solidify the crystalline silicon particles 101 adjacent to each other, and the solidification spreads in a chain toward the upper part rather than the multi-layered structure, so that the crystallinity of a large number of crystalline silicon particles 101 is greatly improved. be able to.
  • thermal annealing treatment is performed on the crystalline silicon particles 101, for example, a thermal annealing treatment at a constant temperature of 1000 ° C or more for 30 minutes or more. Is preferred.
  • the method for producing crystalline silicon particles which is advantageous for this embodiment, as described above, the crystalline silicon particles having good crystallinity and having a reduced amount of unnecessary impurities can be stabilized. You can power to manufacture. Others are the same as in the previous embodiment, so the description is omitted. ⁇ Third embodiment>
  • FIG. 5 ⁇ to (c) show an embodiment of the method for producing crystalline silicon particles of the present invention, and shows a cross section for each process showing a large number of silicon particles 101 placed on a base plate 102.
  • FIG. 5 ⁇ to (c) show an embodiment of the method for producing crystalline silicon particles of the present invention, and shows a cross section for each process showing a large number of silicon particles 101 placed on a base plate 102.
  • the silicon particles 101 are heated to a temperature T1 equal to or higher than the melting point Tm (1412 ° C) of silicon while maintaining the shape thereof, and the silicon inside is melted.
  • the temperature is lower than the melting point Tm, and it is kept at a predetermined temperature in the range of Tm to T2 until the molten silicon particle 101 is completely solidified, and the temperature is lower than the melting point Tm and is 1383 ° C or higher.
  • Step 2 is provided.
  • Temperature T1 is 1415-; 1450 ° C strong. Below 1415 ° C, it takes time for silicon particles to melt completely. When it exceeds 1450 ° C, the shape of silicon particles melts. It becomes difficult to keep stable, and the adjacent silicon particles 101 are likely to coalesce, and the silicon particles 101 are easily fused to the base plate 102.
  • the temperature T2 in step 1 is less than the melting point Tm of silicon and is 1383 ° C or more. However, when T2 is Tm or more, solidification of the silicon particles 101 is not started and T2 is less than 1383 ° C. In this case, solidification occurs in the temperature range where the degree of supercooling (Tm-T2) is large, so that formation of protrusions at the end of the solidification, generation of grain boundaries and crystal defects can occur, and uniform nucleation that can result in polycrystallization Nya dendritic growth.
  • Tm-T2 degree of supercooling
  • step 2 the molten silicon particles 101 are kept at a predetermined temperature within 1383 ° C or less below Tm until all the molten silicon particles 101 are solidified, but the predetermined temperature is 1410 or less and 1383 ° C or better. Below 1383 ° C, solidification occurs in the temperature range where the degree of supercooling (Tm-T2) is large, as in step 1.Therefore, formation of protrusions at the end of solidification and generation of grain boundaries and crystal defects occur. Uniform nucleation that can be polycrystallized results in dendrite growth. If the temperature exceeds 1410 ° C, the degree of supercooling (Tm-T2) is too small, and solidification of adjacent silicon particles 101 that are difficult to start coagulation tends to occur. It becomes easy to fuse.
  • Tm-T2 degree of supercooling
  • the time for holding at a predetermined temperature is about ! ⁇ 120 minutes is sufficient. If less than 1 minute, solidification of the silicon particles 101 has not yet started, or there is silicon particles 101 being solidified. There is a possibility. If it exceeds 120 minutes, it becomes difficult to keep the shape stable when the silicon particles 101 are melted, and it is easy for the adjacent silicon particles 101 to coalesce, and the silicon particles 101 are easily fused to the base plate 102. Further, the base plate 102 having the quartz glass substrate is thermally deformed due to a high temperature.
  • semiconductor grade crystalline silicon is used as a material for crystalline silicon particles, which is melted in a container using infrared rays or a high-frequency coil, and then the molten silicon is freely dropped as a granular melt.
  • Polycrystalline silicon particles 101 are obtained by a method (jet method) or the like.
  • the polycrystalline silicon particles 101 produced by the melt drop method are usually doped with a dopant in order to obtain a desired conductivity type and resistance value.
  • the dopants for silicon include boron, aluminum, gallium, indium, phosphorus, arsenic, and antimony, but the segregation coefficient for silicon is large, and the point and the evaporation coefficient when silicon melts are small! / It is preferable to use boron or phosphorus.
  • the dopant concentration is about 1 ⁇ 10 14 to 1 ⁇ 10 18 atoms / cm 3 added to the silicon crystal material.
  • the shape of the silicon particles 101 is a teardrop type, a streamline type, a connected type in which a plurality of particles are connected, and a substantially spherical shape, but is solidified and expanded.
  • the shape of the silicon particle 101 is a teardrop type, the number of grains is several, and the shape uniformity is superior to other shapes.
  • a photoelectric conversion device is produced using silicon particles 101 such as a teardrop type obtained by the melt-drop method as it is, good photoelectric conversion characteristics cannot be obtained. This is due to metal impurities such as Fe, Cr, Ni, and Mo usually contained in the polycrystalline silicon particles 101 and the carrier recombination effect at the crystal grain boundaries.
  • the temperature of the heating furnace or the like is controlled by the method for producing crystalline silicon particles of the present invention.
  • the polycrystalline silicon particles 101 are heated to By forming a silicon oxynitride film on the surface of the con particle 101, melting the inside of the silicon particle 101, lowering the temperature, and solidifying it, a single crystallized crystalline silicon particle can be manufactured.
  • the single crystallization of the silicon particles 101 by the production method of the present invention is, for example, a ratio in which about 999 out of 1000 silicon particles 101 are completely single-crystallized (number ratio is 99.9%). Degree) Power to do S
  • the atmosphere gas in the heating furnace in the process of raising the temperature of the silicon particles 101 to a temperature higher than the melting point of silicon (1414 ° C) should be an atmosphere gas composed of oxygen gas and inert gas.
  • the inert gas argon gas, nitrogen gas, and helium gas are preferable, and hydrogen gas is also preferable.
  • nitrogen gas or argon gas is more preferable because it is low in cost and easy to handle. is there.
  • it may be an atmospheric gas made of oxygen gas. If a silicon oxynitride film is formed on the surface of the silicon particle 101 at a temperature below the melting point Tm! /, If the melting point is above the Tm, there is no problem with oxygen gas alone!
  • Each gas partial pressure in the atmospheric gas in the heating furnace can be adjusted by each gas flow rate with respect to the total gas flow rate.
  • the atmospheric gas may be, for example, a force supplied from the gas supply means through the gas filter into the purger as long as the apparatus for supplying the gas to the gas supply means has a mechanism capable of adjusting the gas pressure and the gas concentration.
  • the pressure is about 0.01 MPa to 0.2 MPa. Good. If less than OlMPa, evaporation of nitrogen and oxygen from the silicon oxynitride film tends to cause reduction in film thickness and deterioration of the silicon oxynitride film, and if it exceeds 0.2 MPa, variation in film thickness of the silicon oxynitride film occurs. It tends to occur.
  • the oxygen gas partial pressure is preferably 10% or more. Good. When the oxygen gas partial pressure in the atmospheric gas is less than 10%, the oxygen evaporation from the silicon oxynitride film is easily promoted, and the shape cannot be maintained stably when the silicon inside the silicon particles 101 is melted, so that the shape control can be performed. It becomes difficult. Therefore, the partial pressure of inert gas such as nitrogen gas or argon gas should be 90% or less! /.
  • a large number (for example, several to several thousand) of polycrystalline silicon particles 101 are placed on the surface.
  • a single layer is placed on the upper surface of the plate 102.
  • the multiple silicon particles 101 placed on the base plate 102 may be in contact with each other.
  • the multiple silicon particles 101 placed on the base plate 102 may be placed in two or more layers. That is, a large number (for example, several hundred to several thousand) of polycrystalline silicon particles 101 are formed on the upper surface of the base plate 102 in the shape of a substantially spherical silicon particle 101 when viewed in the longitudinal sectional view of FIG. Is a state of being placed so as to form a plurality of layers in the thickness direction, and is a state of being stacked and placed in close packing. By placing them in multiple layers, the silicon particles 101 can be arranged at a high density, and a large number of silicon particles 101 can be single-crystallized at a time, producing crystalline silicon particles at low cost and with high productivity. It becomes possible. Therefore, it is possible to efficiently produce crystalline silicon particles used for a photoelectric conversion device or the like.
  • the large number of silicon particles 101 are preferably teardrop-shaped.
  • the number of grains is on the order of several, and the uniformity of the shape is superior to those of other shapes.
  • a streamlined type a connected type in which a plurality of particles are connected, or a substantially spherical shape but a shape in which a protrusion due to solidification expansion is formed does not affect the force.
  • the base plate 102 may be stacked and used in a plurality of stages when the box shape without the upper lid or the plate shape is a plate shape.
  • quartz glass, mullite, aluminum oxide, silicon carbide, single crystal sapphire, etc. are suitable for suppressing the reaction with the silicon particles 101.
  • the base plate 102 has a cristobalite crystal layer formed on the surface of a quartz glass substrate. That is, the silicon particles 101 and the cristobalite crystal layer on the surface of the base plate 102 The contact point becomes a solidification starting point, and non-uniform nucleation occurs, so that the silicon particles 101 are solidified in one direction and can be easily single-crystallized.
  • the cristobalite crystal layer on the surface of the quartz glass substrate is stable at a temperature of around 1400 ° C and has a function as a surface structure material (surface reinforcing layer) of the quartz glass substrate. Become. As a result, the quartz glass substrate acts to prevent the thermal deformation of the substrate, and the deformation of the substrate due to heat can be prevented.
  • the cristobalite crystal layer is formed by repeatedly heat-treating (baking) a quartz glass substrate from room temperature to a temperature exceeding 1200 ° C in an atmosphere containing oxygen, for example, air. That power S.
  • the heat treatment may be repeated one or more times.
  • the base plate 102 on which the silicon particles 101 are placed is introduced into a heating furnace (not shown), and the silicon particles 101 are heated.
  • a heating furnace (not shown), and the silicon particles 101 are heated.
  • Various furnaces can be used depending on the type of semiconductor material.
  • a silicon oxynitride film is formed on the surface of 101.
  • the formation temperature of the silicon oxynitride film is preferably above room temperature!
  • the silicon oxynitride film By incorporating contaminants and metal impurities adhering to the surface of the silicon particles 101 into the silicon oxynitride film, it becomes a noble layer for preventing contamination inside the silicon.
  • the silicon oxynitride film functions as a getter site, contamination by metal impurities from the surrounding environment during heating can be gettered. Further, even at a high temperature near the melting point of silicon, there is an effect of repairing a portion where the silicon oxynitride film is broken due to partial melting.
  • silicon oxynitride film formed on the surface of the silicon particle 101 has a higher film density and higher strength per unit film thickness than a silicon oxide film or the like, silicon particles such as contaminants and impurities 101 has an effect of preventing diffusion into the inside of 101.
  • the atmosphere in the heating furnace when the silicon oxynitride film is formed on the surface of the silicon particle 101 The gas preferably has an oxygen gas partial pressure of 10% or more.
  • the partial pressure of oxygen gas in the atmospheric gas is less than 10%, coalescence of silicon particles 101 tends to occur, and the strength of the silicon oxynitride film deteriorates, and the silicon particles 101 are placed in a multilayered state.
  • the weight of the upper silicon particles 101 makes it easier for the lower silicon particles 101 to collapse during melting.
  • the base plate 102 also functions as a starting point for solidification when the silicon particles 101 are melted and supercooled and solidified to be crystallized.
  • the contact point between the silicon particles 101 and the cristobalite crystal layer on the surface of the base plate 102 becomes a solidification start point.
  • non-uniform nucleation is generated, and the silicon particles 101 can be solidified in one direction (for example, upward) and easily single-crystallized.
  • the cristobalite crystal layer formed on the surface of the quartz glass substrate is stable at a temperature of around 1400 ° C, and functions as a surface structural material (surface reinforcing layer) for the quartz glass substrate. It will have.
  • the quartz glass substrate acts to prevent the thermal deformation of the substrate, thereby preventing the substrate from being deformed by heat.
  • a solidification start point can be set at a contact portion between each silicon particle 101 and the base plate 102.
  • the solidification (single crystallization) direction can be set from this one pole toward the upper facing pole.
  • the contact portion with the crystalline silicon particles on the base plate 102 crystallized first is used as a solidification start point.
  • the adjacent silicon particles 101 can be solidified, and the solidification spreads in a chain reaction toward the upper part rather than the multi-layered structure, greatly improving the crystallinity of a large number of crystalline silicon particles. Can be made.
  • the silicon particles 101 are generally almost spherical in shape, the average particle size is preferably 1500 in or less.
  • the average particle diameter of the silicon particles 101 exceeds 1500 m, the thickness of the silicon oxynitride film formed on the surface of the silicon particles 101 becomes relatively thin with respect to the silicon particle 101 main body, thereby When silicon is melted, it becomes difficult to keep the shape of the silicon particles 101 stable. Further, it is difficult to completely melt the silicon inside the silicon particles 101, and subgrains are likely to occur when the melting is incomplete. On the other hand, when the average particle size of the silicon particles 101 is less than 30 m, it is difficult to stably maintain the shape of the silicon particles 101 when the silicon inside the silicon particles 101 is melted.
  • the average particle diameter of the silicon particles 101 is 30 m to 1500 m, thereby stably maintaining the shape of the silicon particles 101 and generating a spherical shape with no generation of subdahrain. Crystalline silicon particles having crystallinity can be stably produced.
  • the shape of the silicon particles 101 is preferably a teardrop-shaped.
  • the teardrop type has several levels of dullness and is superior in shape uniformity compared to other shapes.
  • a streamlined type a connected type in which a plurality of particles are connected, or a substantially spherical shape, but may have a shape in which a protrusion due to solidification expansion is formed.
  • the shape of the silicon particles 101 is not limited to a spherical shape, but may be a cubic shape, a rectangular parallelepiped shape, or other irregular shapes.
  • the silicon particles 101 are heated to a temperature T1 not lower than the melting point (1414 ° C) of silicon, preferably not higher than 1450 ° C. During this time, silicon inside the silicon oxynitride film on the surface melts in the silicon particles 101. At this time, the silicon oxynitride film formed on the surface of the silicon particle 101 can maintain the shape of the silicon particle 101 while melting the inner silicon.
  • the temperature of the silicon particle 101 is difficult to maintain stably, for example, in the case of the silicon particle 101, if the temperature is raised to a temperature exceeding 1450 ° C, It becomes difficult to keep the shape of the silicon particles 101 stable when the silicon melts, and the adjacent silicon particles 101 tend to coalesce with each other, and the silicon particles 101 are easily fused to the base plate 102.
  • the thickness of the silicon oxynitride film formed on the surface of the silicon particles 101 is determined by the silicon particles In the above average particle diameter range of 101, it is preferably lOOnm or more. When the thickness is less than 1 OOnm, the silicon oxynitride film on the surface of the silicon particles 101 is easily broken when the silicon inside the silicon particles 101 is melted.
  • the silicon inside the silicon particles 101 tends to be spheroidized by surface tension when melted, whereas in the above temperature range, If there is, the silicon oxynitride film can be sufficiently deformed, so that the crystalline silicon particles obtained by single-crystallizing the inside can be made into a shape close to a true sphere.
  • the thickness of the silicon oxynitride film on the surface of the silicon particle 101 is preferably lOOnm to 0 mm with respect to the above average particle diameter range (30 am to 1500 ⁇ m). This makes it possible to stably obtain crystalline silicon particles having a good shape close to a true sphere. Further, by using the crystalline silicon particles for a photoelectric conversion device, a photoelectric conversion device having excellent conversion efficiency can be obtained.
  • the temperature is lower than the melting point Tm and is about 1383 ° C. or higher. Decrease the temperature by supercooling to T2 and solidify.
  • the temperature gradient of the supercooling is preferably 2 ° C / min or more. If the temperature gradient of subcooling is less than 2 ° C / min, solidification is difficult to start because the temperature change per hour is small. As a result, the temperature is lowered while maintaining the supercooled state, and coalescence of adjacent silicon particles 101 is likely to occur, which is not preferable.
  • the temperature gradient of the supercooling is 2 ° C / min to 200 ° C / min. This makes the supercooling from the melting point Tm of silicon at a high temperature of 1383 ° C or higher. Small temperature range It becomes easy to start coagulation. Solidification is a two-dimensional growth of unidirectional solidification in which the solidification interface moves in one direction, and does not include grain boundaries or crystal defects due to the formation of protrusions at the solidification end, and has a high quality crystallinity. Can produce crystalline silicon particles
  • the temperature T2 at the time of supercooling is preferably 1410 ° C or lower and 1383 ° C or higher. That is, at a temperature exceeding 1410 ° C., the degree of supercooling (Tm ⁇ T2) is too small, so that the solidification of the silicon particles 101 is difficult to start. If the temperature T2 at the time of supercooling is 1410 ° C or less, the solidification of the silicon particles 101 is easy to start, and high-quality crystalline silicon particles that do not contain grain boundaries or crystal defects are produced. can do.
  • molten silicon particles 101 are solidified, they are maintained at a predetermined temperature within a range of T2 and a temperature T2 of 1383 ° C or higher, thereby forming protrusions at the solidification end, It can prevent the generation of crystal defects, the generation of uniform nuclei that can be polycrystallized, and dendrite growth.
  • the molten silicon particles 101 are all solidified by supercooling to a temperature T2 of 1410 ° C or lower and 1383 ° C or higher.
  • T2 a temperature of 1410 ° C or lower and 1383 ° C or higher.
  • solidification progresses in one direction from the contact portion between the silicon particle 101 and the base plate 102 to the upper facing pole as the solidification start point (one pole), so that the solidification has already occurred.
  • Unidirectional solidification occurs at the point of contact with the silicon particle 101 as the starting point of solidification. Then, as it is, solidification is inherited in one direction (for example, upward direction) as a whole and the crystal grows, and the resulting crystalline silicon particle becomes a single crystal, which can greatly improve the crystallinity.
  • a thermal annealing treatment for example, a thermal annealing treatment at a constant temperature of 1000 ° C or higher for 30 minutes or longer.
  • the accumulated time in the temperature range of 1000 ° C or higher may be 30 minutes or longer.
  • the method for producing crystalline silicon particles of the present invention includes removing the silicon oxynitride film and removing interfacial strain between the silicon oxynitride film and the crystalline silicon particles after the silicon particles are monocrystallized.
  • the silicon oxynitride film which contains metal impurities such as Fe, Cr, Ni, and Mo, and light element impurities such as oxygen and carbon, segregated on the surface layer of the crystalline silicon particles, is removed.
  • the silicon oxynitride film can be removed by hydrofluoric acid, and the surface of the crystalline silicon particles after removing the silicon oxynitride film can be removed by etching with hydrofluoric acid or the like. it can.
  • the thickness of the surface layer of the crystalline silicon particles removed at that time is preferably 100 m or less in the radial direction.
  • the temperature of the silicon particles 101 can be measured by an optical wavelength decomposition measurement method or the like.
  • the analysis is performed by analyzing the emission spectrum of the silicon particles 101.
  • the emission spectrum according to the temperature of silicon is measured in advance as a data table, the emission spectrum of silicon particles 101 in the heating device is measured, and compared with the emission spectrum in the data table.
  • the temperature can be specified without contact with the silicon particles 101.
  • the temperature of the silicon particles 101 can be specified by thermal analysis from the furnace atmosphere gas temperature, furnace wall temperature, furnace gas pressure, furnace gas type, and the like.
  • FIG. 1 (a) first, 1000 pieces of silicon particles 101 having a boron concentration of 0.6 ⁇ 10 16 atoms / cm 3 and an average particle size force of S500 m were placed in a quartz glass box. Were placed in layers on a base plate 102 and housed in a quartz glass bell jar installed in an atmosphere firing furnace as a heating furnace. Then, nitrogen gas is heated while being introduced from the gas supply device, heated to 1300 ° C below the melting point of silicon with a nitrogen gas pressure of 0. IMPa, and held for 60 minutes, with a thickness of 200 nm on the surface of the silicon particles 101. A silicon nitride film was formed. After heating at 1300 ° C for 60 minutes, the temperature was lowered to room temperature.
  • oxygen gas or a mixed gas (oxygen gas and argon gas) (see Tables 1 and 2) is heated while being introduced from the gas supply device.
  • oxygen gas or a mixed gas oxygen gas and argon gas
  • the rate of temperature decrease is 2
  • the solution was solidified while being cooled to ° C. Thereafter, the temperature was further lowered to 1250 ° C., and then a thermal annealing treatment was performed for 120 minutes while introducing an argon gas as an inert gas. After this heat annealing treatment, the temperature was lowered to near room temperature.
  • the silicon silicon nitride film formed on the surface of the recovered crystalline silicon particles is removed with hydrofluoric acid, and the surface of the crystalline silicon particles is etched in the depth direction with hydrofluoric acid to a predetermined thickness. Removed.
  • the crystalline silicon particles are placed on a quartz boat, introduced into a quartz tube controlled at 900 ° C, and POC1 gas is bubbled with nitrogen and sent into the quartz tube, and then by a thermal diffusion method.
  • an n-type semiconductor layer 410 having a thickness of about 1 [I m was formed on the surface of the crystalline silicon particles, and then the surface oxynitride film was removed with hydrofluoric acid.
  • a 50 mm ⁇ 50 mm ⁇ 0.3 mm thick aluminum substrate was used as the conductive substrate 407, and 1000 crystalline silicon particles 406 were closely packed on the upper surface.
  • 600 ° C of greater than 577 ° C which is the eutectic temperature of aluminum and silicon
  • a nitrogen gas containing 5 volume 0/0 of hydrogen gas the crystalline silicon particles 406
  • the lower part was bonded to the conductive substrate 407.
  • a bonding layer 408 made of a eutectic of aluminum and silicon was formed on the portion where the crystalline silicon particles 406 were in contact with the conductive substrate 407, and exhibited strong adhesive strength.
  • a translucent conductor layer 411 serving as an electrode is electrically insulated and separated.
  • a translucent conductor layer 411 as an upper electrode film was formed on the entire surface with a thickness of about lOOnm by sputtering.
  • a silver paste pattern was formed in a grid using a dispenser to form an electrode 412 composed of a finger electrode and a bus bar electrode. This silver paste pattern was fired at 500 ° C in the atmosphere.
  • the coalescence rate was determined from the ratio of the number of coalesced to the total number ⁇ (the number of coalesced) X 100 / (the number of the whole) ⁇ . For example, if there are 95 non-merged pieces, two mergers and three mergers, the total number is 100 and the coalescence rate is 5%.
  • a crystalline silicon particle was produced by forming a silicon oxide film on the surface of a silicon particle in an atmospheric gas composed of oxygen gas without forming a silicon nitride film, and melting and solidifying it (Comparison Example: Compared with 1-1, 2), a silicon nitride film is formed on the surface of silicon particles, and it is melted and solidified in an atmospheric gas consisting of oxygen gas force or atmospheric gas consisting of oxygen gas and inert gas.
  • the crystalline silicon particles (Example 1- ;! to 4) produced in this way had good results with a low coalescence rate.
  • coalescence rate of Examples 1-3 and 4 is larger than the coalescence rate of Examples 1-1 and 2, because the surface bonding state of the silicon nitride film is due to the use of argon gas in the atmospheric gas. This is thought to be due to the fact that the surface tension of the silicon particles also changed, making it easier to unite.
  • Fig. 3 (a) As shown in Fig. 3 (a), first, 1000 pieces of crystalline silicon particles 101 having a boron concentration of 0.6 X 10 16 atoms / cm 3 and an average particle size force of S500 m were added to the lapping apparatus. Lower rotating surface plate 2 It was placed on 01 and the upper rotating platen 202 was lowered. Next, the lower rotary platen 201 is rotated at 20 rpm and the upper rotary platen 202 is rotated at 5 rpm so that the upper and lower rotary platens 202 and 201 rotate in opposite directions, and the average particle size is 30 m. The surface of the crystalline silicon particles 101 was polished for 5 minutes using SiC free abrasive grains 203.
  • a large number (1000 pieces) of crystalline silicon particles 101 are placed in a multilayer manner on a quartz glass box-like base plate 301, and heated in a heating furnace. It was housed in a quartz glass bell jar installed inside an atmosphere firing furnace. Then, nitrogen gas is heated while being introduced from a gas supply device, heated to 1300 ° C. below the melting point of silicon with a nitrogen gas pressure of 0.1 IMPa, and held for 60 minutes to form a silicon nitride film on the surface of the crystalline silicon particles 101 Formed. After heating at 1300 ° C. for 60 minutes, the temperature was lowered to room temperature.
  • the silicon nitride film formed on the surface of the recovered crystalline silicon particles 101 was removed with hydrofluoric acid, and the surface of the crystalline silicon particles 101 was etched away to a depth of 20 Hm with hydrofluoric acid. did.
  • the crystalline silicon particles 101 were placed on a quartz boat, introduced into a quartz tube controlled at 900 ° C, POC1 gas was published with nitrogen and fed into the quartz tube, and the thermal diffusion method was used.
  • a ⁇ -type semiconductor layer 410 having a thickness of about 1 ⁇ m was formed on the surface of the crystalline silicon particle 101, and then the oxynitride film on the surface was removed with hydrofluoric acid.
  • an aluminum substrate of 50 mm X 50 mm X thickness 0.3 mm was used as the conductive substrate.
  • the top surface was arranged with 1000 crystalline silicon particles packed closest. After that, it is heated in a reducing atmosphere furnace of nitrogen gas containing 5% by volume of hydrogen gas at 600 ° C, which exceeds the eutectic temperature of aluminum and silicon of 577 ° C. The lower part was bonded to the conductive substrate. At this time, a bonding layer made of eutectic of aluminum and silicon was formed at the portion where the crystalline silicon particles were in contact with the conductive substrate, and exhibited strong adhesive strength.
  • a silver paste pattern was formed in a grid pattern with a dispenser to form an electrode composed of a finger electrode and a bus bar electrode.
  • the silver paste pattern was fired at 500 ° C in the atmosphere.
  • a silicon oxide film was formed on the surface of the crystalline silicon particles in the atmosphere gas composed of oxygen gas without forming a work-affected layer by polishing on the surface of the crystalline silicon particles.
  • Crystal silicon particles produced by solidification (Comparative Examples 2-1 and 2) and a silicon oxide film formed on the surface of the crystalline silicon particles in an atmosphere gas composed of oxygen gas without forming a silicon nitride film and melted Compared with the crystalline silicon particles produced by solidification (Comparative Examples 2-3, 4), a work-affected layer is formed by polishing on the surface of the crystalline silicon particles, and a silicon nitride film is formed on the surface of the crystalline silicon particles.
  • the crystalline silicon particles (Example 2-;! To 4) prepared and melted and solidified in an atmospheric gas composed of oxygen gas or an atmospheric gas composed of mixed gas (oxygen gas and inert gas) was a good result with a low coalescence rate
  • Example 2-;! ⁇ 4 showed high conversion efficiency and good results.
  • Examples 2-1 and 2 are larger than those of Examples 2-3 and 4 because crystals due to the generation of subgrains at the contact portions between the crystalline silicon particles, etc. This is thought to be due to the reduction in deterioration.
  • Example 3 As shown in Fig. 5 (a), first, 20 silicon particles 101 having a boron concentration of 1.0 X 10 16 atoms / cm 3 and an average particle size force of 00 m were placed in a quartz glass box. The sample was placed on the base plate 102 in a single layer and housed in a quartz glass tube installed in a carbon heater type heating furnace.
  • the box-shaped base plate 102 made of quartz glass was pretreated. That is, heat treatment was repeated 5 times in the air atmosphere from room temperature to around 1430 ° C with a temperature profile of 2 hours for temperature rise and 4 hours for temperature fall.
  • the surface of the base plate 102 after heat treatment has turned white, and when confirmed by X-ray diffraction, a shift from the broad peak of the early quartz glass to the steep peak due to the cristobalite crystal can be confirmed. It was.
  • oxygen gas and nitrogen gas are introduced into the heating furnace at a ratio of oxygen gas partial pressure of 20% and nitrogen gas partial pressure of 80%.
  • the silicon particles 101 were heated to form a silicon oxynitride film on the surface of the silicon particles 101.
  • Bow I While continuing to introduce oxygen gas, heat silicon particle 101 to 1430 ° C, which is above the melting point of silicon, and hold it for 5 minutes to remove the silicon inside the silicon oxynitride film on the surface of silicon particle 101. Melted.
  • the temperature gradient of the temperature drop was set to 60 ° C / min, and the mixture was supercooled to temperature T2 (four temperatures of 1410 ° C, 1400 ° C, 1390 ° C, and 1383 ° C were set) Subsequently, the silicon particles 101 were coagulated by holding at the respective temperatures T2 (1410 ° C, 1400 ° C, 1390 ° C, 1383.C) for 30 minutes at a constant temperature.
  • FIGS. 6 and 7 show cross-sectional photographs of the resulting crystalline silicon particles.
  • Comparative Example 3-2 where T2 is 1368 ° C, dislocations and linear defects were observed, but the shape of the linear defects was OSF (oxidation-induced stacking faults), and grain boundaries Instead, it was confirmed to be a single crystal. However, as in Comparative Example 3-1, where T2 was 1380 ° C,! /, A protrusion was formed at the end of solidification! /.
  • the crystalline silicon particles are single crystals with no protrusions formed at the end of solidification (Example 3-;! To 4).
  • the crystalline silicon particles of Examples 3-1 to 4 are the single crystals of Comparative Example 3-;! To 2, but the crystalline silicon particles in which protrusions were formed at the solidification termination portion, and the comparative Examples 3_3 to 4 Compared to crystalline silicon particles, the shape and crystallinity were excellent.
  • FIG. 8 shows a temperature profile for the method for producing crystalline silicon particles of the present invention.
  • T2 is 1368 ° C or more and 1380 ° C or less
  • T2 is 1368 ° C or more and 1380 ° C or less
  • protrusions having crystal defects and disorder of crystal orientation are formed in a very small part of the solidification terminal portion.
  • Producing a photoelectric conversion device using crystalline silicon particles having such protrusions easily results in deterioration of the pn junction at the protrusion and deterioration of photoelectric conversion characteristics due to current leakage, which is not preferable.
  • T2 is 1383 ° C or higher and 1410 ° C or lower
  • crystal silicon particles having a shape closer to a true sphere can be produced without formation of protrusions, which is good when the crystal silicon particles are used in a photoelectric conversion device.
  • Photoelectric conversion characteristics can be obtained.
  • Polycrystalline crystalline silicon particles with grain boundaries and crystal defects as in Comparative Examples 3-3 and 4 have a high degree of supercooling (Tm-T2), so that solidification is It is thought that uniform nucleation that occurs simultaneously from multiple points on the surface caused dendrite growth.
  • the present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the gist of the present invention.
  • a method may be used in which the crystalline silicon particles are melted by irradiating light energy from above the crystalline silicon particles placed on the upper surface of the base plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

[PROBLEMS] To provide a method for fabricating crystalline silicon grains, capable of stably single-crystallizing silicon grains at a high efficiency and fabricating single crystal silicon grains at a low cost. [MEANS FOR SOLVING PROBLEMS] In the method for fabricating the crystalline silicon grains, silicon grains (101) are heated to a temperature below or equal to their melting point in an ambient gas consisting of nitrogen gas or in an ambient gas containing nitrogen gas as a main component to form a silicon nitride film on the surfaces of the silicon grains (101). Next, the silicon grains (101) are heated in an ambient gas consisting of oxygen gas or in an ambient gas consisting of oxygen gas and an inert gas to melt silicon on the inner side of the silicon nitride film, and then lowered in temperature to be solidified and single-crystallized.

Description

明 細 書  Specification
結晶シリコン粒子の製造方法  Method for producing crystalline silicon particles
技術分野  Technical field
[0001] 本発明は、特に太陽電池のような光電変換装置に用いるのに好適な結晶シリコン 粒子の製造方法に関するものである。  The present invention relates to a method for producing crystalline silicon particles that are particularly suitable for use in a photoelectric conversion device such as a solar cell.
背景技術  Background art
[0002] 光電変換装置は、光電変換特性等の性能面での効率の良さ、シリコン等の半導体 資源の有限性への配慮、製造コストの低さ等と V、つた市場ニーズを捉えて開発が進 められている。今後の市場において有望な光電変換装置の一つとして、太陽電池と して使用される、結晶シリコン粒子等の結晶半導体粒子を用レ、た光電変換装置があ  [0002] Photoelectric conversion devices have been developed based on the needs of the market, such as high efficiency in terms of performance such as photoelectric conversion characteristics, consideration of the finite nature of semiconductor resources such as silicon, low manufacturing costs, and other market needs. It has been advanced. As one of promising photoelectric conversion devices in the future market, there is a photoelectric conversion device using crystalline semiconductor particles such as crystalline silicon particles used as solar cells.
[0003] 結晶半導体粒子である結晶シリコン粒子を作製するための原料としては、単結晶シ リコンを粉砕した結果として発生するシリコンの微小粒子や、流動床法で気相合成さ れた高純度シリコン等が用いられている。これらの原料から結晶シリコン粒子を作製 するには、それらの原料をサイズあるいは重量によって分別した後に、赤外線や高周 波を用いて容器内で溶融し、その後に自由落下させる方法 (例えば、特許文献 1 , 2 を参照。)、または高周波プラズマを用いて容器内で溶融し、その後に自由落下させ る方法 (例えば、特許文献 3を参照。)によって粒子化することが行われる。 [0003] Raw materials for producing crystalline silicon particles, which are crystalline semiconductor particles, include silicon microparticles generated as a result of pulverizing single crystal silicon, and high-purity silicon vapor-phase synthesized by the fluidized bed method. Etc. are used. In order to produce crystalline silicon particles from these raw materials, the raw materials are separated by size or weight, then melted in a container using infrared rays or high frequency, and then freely dropped (for example, patent documents) 1 or 2), or by a method of melting in a container using high-frequency plasma and then free-falling (for example, see Patent Document 3).
特許文献 1:国際公開第 99/22048号パンフレット  Patent Document 1: Pamphlet of International Publication No. 99/22048
特許文献 2:米国特許第 4188177号明細書  Patent Document 2: US Patent No. 4188177
特許文献 3:特開平 5— 78115号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-78115
特許文献 4:米国特許第 4430150号明細書  Patent Document 4: US Patent No. 4430150
特許文献 5 :特開昭 58 - 55393号公報  Patent Document 5: Japanese Patent Laid-Open No. 58-55393
特許文献 6:特開昭 63- 79794号公報  Patent Document 6: Japanese Patent Laid-Open No. 63-79794
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、これらの方法で製造された結晶シリコン粒子は、そのほとんどが多結 晶体(多結晶シリコン粒子)である。多結晶シリコン粒子は、微小な単結晶の集合体 であるため、それら微小な単結晶間に粒界が存在する。この粒界は、多結晶シリコン 粒子を用いた光電変換装置の電気特性を劣化させる。その理由は、粒界にはキヤリ ァの再結合中心が集まっており、それによつてキャリアの再結合が生ずることで少数 キャリアのライフタイムが大幅に低減してしまうためである。 [0004] However, most of the crystalline silicon particles produced by these methods are highly concentrated. It is a crystal (polycrystalline silicon particle). Since polycrystalline silicon particles are aggregates of minute single crystals, there are grain boundaries between these minute single crystals. This grain boundary deteriorates the electrical characteristics of a photoelectric conversion device using polycrystalline silicon particles. The reason for this is that carrier recombination centers are gathered at the grain boundaries, which causes the carrier recombination to significantly reduce the minority carrier lifetime.
[0005] 光電変換装置のように電気特性が少数キャリアの寿命の増大とともに大幅に向上 する半導体装置の場合には、それに用いられる結晶シリコン粒子中の粒界の存在は 、電気特性を悪化させてしまい、特に大きな問題となる。逆に言えば、結晶シリコン粒 子を多結晶体から単結晶体(単結晶シリコン粒子)にして使用することができれば、光 電変換装置の電気特性を著しく改善することができる。  [0005] In the case of a semiconductor device such as a photoelectric conversion device in which electrical characteristics are greatly improved with an increase in the lifetime of minority carriers, the presence of grain boundaries in the crystalline silicon particles used therefor deteriorates electrical characteristics. This is a particularly big problem. In other words, if the crystalline silicon particles can be used from a polycrystal to a single crystal (single crystal silicon particles), the electrical characteristics of the photoelectric conversion device can be remarkably improved.
[0006] また、多結晶シリコン粒子中の粒界は多結晶シリコン粒子の機械的強度を低下させ ることから、光電変換装置を製造する各工程の熱履歴や熱歪み、機械的な圧力等に よって多結晶シリコン粒子が破壊されやすいという問題もあった。  [0006] In addition, since the grain boundaries in the polycrystalline silicon particles reduce the mechanical strength of the polycrystalline silicon particles, the thermal history, thermal strain, mechanical pressure, etc. of each process of manufacturing the photoelectric conversion device are affected. Therefore, there is a problem that the polycrystalline silicon particles are easily broken.
[0007] 従って、結晶シリコン粒子を用いて光電変換装置を製造する場合、粒界等が存在 しない、結晶性に優れた単結晶シリコン粒子を製造することがきわめて重要となる。  [0007] Accordingly, when producing a photoelectric conversion device using crystalline silicon particles, it is extremely important to produce single crystal silicon particles having no crystal grain boundaries and excellent crystallinity.
[0008] そのような結晶性に優れた単結晶シリコン粒子を得る方法として、多結晶シリコン粒 子または無定形シリコン粒子の表面にシリコンの酸化膜等の珪素化合物被膜を形成 し、その珪素化合物被膜の内側のシリコンを溶融した後に冷却して固化させて、結晶 性に優れた多結晶体または単結晶体からなる結晶シリコン粒子を製造する方法が知 られている(例えば、特許文献 4, 5,6を参照。)。  [0008] As a method for obtaining such single crystal silicon particles having excellent crystallinity, a silicon compound film such as a silicon oxide film is formed on the surface of polycrystalline silicon particles or amorphous silicon particles, and the silicon compound film There is known a method for producing crystalline silicon particles made of a polycrystal or a single crystal excellent in crystallinity by melting and then solidifying by cooling the silicon inside (see, for example, Patent Documents 4, 5, and 5). (See 6.)
[0009] しかしながら、多結晶シリコン粒子を加熱してその表面に形成された珪素化合物被 膜、具体的には酸化珪素膜、の内側でシリコンを溶融させ、その後に凝固させた場 合、シリコンの溶融の際に隣接した多結晶シリコン粒子同士が合体してしまうという問 題点があった。また、この場合、 CZ (チヨクラルスキー)法や FZ (フローティングゾーン )法のような一般的なバルタのシリコン単結晶を育成する方法において使用される種 結晶のような凝固起点がないため、一方向に凝固が起こらず、多数核の発生による 多結晶化が起こることが問題となる。この多結晶シリコン粒子を用いた光電変換装置 は、特性劣化を引き起こしてしまうという問題点がある。 [0010] また、結晶シリコン粒子の製造にあたって流動床法により気相合成された高純度の 多結晶シリコンを原料に用いた場合、多結晶シリコン中に含まれる出発原料に含ま れる鉄やニッケル等の金属不純物、また製造工程中に外部から混入する同様の金 属不純物による汚染が問題となる。金属不純物はシリコン中では化学的な結合手を 持たない格子間拡散をすることから、シリコン格子の隙間を縫って不純物原子が拡散 する。そして、この拡散した金属不純物はシリコン内で深い準位を形成してキャリアの 再結合中心として作用し、リーク電流の増加やライフタイムの低下の原因となって光 劣化を引き起こす。 However, when polycrystalline silicon particles are heated to melt silicon inside a silicon compound film formed on the surface, specifically, a silicon oxide film, and then solidified, There was a problem that adjacent polycrystalline silicon particles coalesced during melting. In this case, since there is no solidification starting point like the seed crystal used in a general method for growing a silicon single crystal of Balta such as the CZ (Chiyoklarsky) method or the FZ (floating zone) method, The problem is that solidification does not occur in the direction and polycrystallization occurs due to the generation of many nuclei. The photoelectric conversion device using the polycrystalline silicon particles has a problem that it causes deterioration of characteristics. [0010] In addition, when high-purity polycrystalline silicon synthesized in a gas phase by a fluidized bed method is used as a raw material for the production of crystalline silicon particles, the starting material contained in the polycrystalline silicon, such as iron or nickel, Contamination due to metal impurities and similar metal impurities introduced from the outside during the manufacturing process becomes a problem. Since metal impurities diffuse between lattices that do not have a chemical bond in silicon, impurity atoms diffuse through the gaps in the silicon lattice. This diffused metal impurity forms a deep level in silicon and acts as a carrier recombination center, causing an increase in leakage current and a decrease in lifetime, causing photodegradation.
[0011] 即ち、従来の結晶シリコン粒子の製造方法では、所望の高品質な単結晶シリコン粒 子を作製することが困難であり、それによつて得られた結晶シリコン粒子を用いて電 気特性に優れた光電変換装置を作製するには適してレ、な!/、。  That is, in the conventional method for producing crystalline silicon particles, it is difficult to produce a desired high-quality single-crystal silicon particle, and electrical characteristics are obtained using the obtained crystalline silicon particle. It is suitable for making an excellent photoelectric conversion device.
[0012] 従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり 、その目的は、多結晶シリコン粒子等のシリコン粒子を安定的かつ高効率に単結晶 化することができる結晶シリコン粒子の製造方法を提供することにある。 Accordingly, the present invention has been completed in view of the problems in the above-described conventional technology, and an object of the present invention is to stably and efficiently single-crystallize silicon particles such as polycrystalline silicon particles. Another object is to provide a method for producing crystalline silicon particles.
また、本発明の他の目的は、単結晶シリコン粒子を低コストに製造することができる 結晶シリコン粒子の製造方法を提供することにある。 課題を解決するための手段  Another object of the present invention is to provide a method for producing crystalline silicon particles, which can produce single crystal silicon particles at low cost. Means for solving the problem
[0013] 本発明の結晶シリコン粒子の製造方法は、窒素ガスから成る雰囲気ガスまたは窒 素ガスを主成分として含む雰囲気ガス中で、シリコン粒子をシリコンの融点以下の温 度に加熱し、次に酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから 成る雰囲気ガス中で、前記シリコン粒子を加熱して形状を保持した状態でシリコンを 溶融させ、つ!、で降温し凝固させて単結晶化することを特徴とするものである。  [0013] In the method for producing crystalline silicon particles of the present invention, the silicon particles are heated to a temperature below the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component. In an atmosphere gas consisting of oxygen gas or an atmosphere gas consisting of oxygen gas and inert gas, the silicon particles are heated to melt the silicon while maintaining its shape, and then cooled down and solidified to form a single crystal. It is characterized by doing.
[0014] 本発明の結晶シリコン粒子の製造方法は、窒素ガスから成る雰囲気ガスまたは窒 素ガスを主成分として含む雰囲気ガス中で、シリコン粒子をシリコンの融点以下の温 度に加熱して前記シリコン粒子の表面に内部よりも硬質の硬質膜を形成し、次に酸 素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガス中で 、前記シリコン粒子を加熱して前記硬質膜に酸素を含ませることによって軟化させて 前記硬質膜の内側のシリコンを溶融させ、つ!/、で降温し凝固させて単結晶化すること を特徴とするものである。 [0014] The method for producing crystalline silicon particles of the present invention comprises heating the silicon particles to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component. A hard film that is harder than the inside is formed on the surface of the particles, and then the silicon particles are heated in an atmosphere gas composed of an oxygen gas or an atmosphere gas composed of an oxygen gas and an inert gas to form oxygen on the hard film. To melt the silicon inside the hard film, and to cool down and solidify it into a single crystal. It is characterized by.
[0015] 本発明の結晶シリコン粒子の製造方法は、窒素ガスから成る雰囲気ガスまたは窒 素ガスを主成分として含む雰囲気ガス中で、シリコン粒子をシリコンの融点以下の温 度に加熱して前記シリコン粒子の表面に窒化珪素膜を形成し、次に酸素ガスから成 る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガス中で、前記シリコン 粒子を加熱して前記窒化珪素膜の内側のシリコンを溶融させ、つ!/、で降温し凝固さ せて単結晶化することを特徴とするものである。  [0015] The method for producing crystalline silicon particles of the present invention comprises heating the silicon particles to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component. A silicon nitride film is formed on the surface of the particles, and then the silicon particles are heated in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and an inert gas to form silicon inside the silicon nitride film. It is characterized in that it is melted, cooled down and solidified to be a single crystal.
[0016] 本発明の結晶シリコン粒子の製造方法では、前記窒化珪素膜が酸素を含んでいる のがよい。  In the method for producing crystalline silicon particles of the present invention, the silicon nitride film preferably contains oxygen.
[0017] 酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガス 中で、前記シリコン粒子を加熱して前記窒化珪素膜の内側のシリコンを溶融させて降 温して凝固させて単結晶化する工程では、多数個の前記シリコン粒子を台板上に重 層的に載置した状態で単結晶化するのが好ましい。  [0017] In an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and inert gas, the silicon particles are heated to melt the silicon inside the silicon nitride film, and then cooled and solidified. In the crystallization step, it is preferable to perform single crystallization in a state where a large number of the silicon particles are stacked on a base plate.
[0018] 前記シリコン粒子を単結晶化した後に前記窒化珪素膜を除去することが好ましい。  [0018] Preferably, the silicon nitride film is removed after the silicon particles are monocrystallized.
また、この場合、前記窒化珪素膜は金属不純物を含有することが好ましい。  In this case, the silicon nitride film preferably contains a metal impurity.
[0019] 本発明の結晶シリコン粒子の製造方法では、シリコン融液が入った坩堝のノズル部 力、ら前記シリコン融液を粒状として排出して落下させるとともに、粒状の前記シリコン 融液を落下中に冷却して凝固させることによって結晶シリコン粒子を作製し、次に前 記結晶シリコン粒子の表面に研磨加工を施すことによって前記結晶シリコン粒子の 表層部に加工変質層を形成した後に、窒素ガスから成る雰囲気ガスまたは窒素ガス を主成分として含む雰囲気ガス中で、シリコン粒子をシリコンの融点以下の温度に加 熱して前記シリコン粒子の表面に窒化珪素膜を形成するのがよい。窒化珪素膜を形 成後、酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気 ガス中で、前記結晶シリコン粒子を加熱して前記窒化珪素膜の内側のシリコンを溶 融させて降温して凝固させて単結晶化する  [0019] In the method for producing crystalline silicon particles of the present invention, the silicon melt is discharged and dropped in the form of a nozzle part of a crucible containing silicon melt, and the granular silicon melt is being dropped. Next, the crystalline silicon particles are produced by cooling and solidifying them, and then forming a work-affected layer on the surface layer of the crystalline silicon particles by polishing the surface of the crystalline silicon particles. It is preferable to form a silicon nitride film on the surface of the silicon particles by heating the silicon particles to a temperature not higher than the melting point of silicon in an atmospheric gas containing nitrogen gas as a main component. After forming the silicon nitride film, the crystalline silicon particles are heated to melt the silicon inside the silicon nitride film in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and an inert gas, and the temperature is lowered. To solidify to single crystal
[0020] 本発明の他の結晶シリコン粒子の製造方法は、シリコン粒子をその形状を保持した ままシリコンの融点 Tm以上の温度 T1に加熱して内部のシリコンを溶融させて、前記 温度 T1から前記融点 Tm未満であって 1383°C以上の温度 T2まで過冷却する工程 1と、次に溶融したシリコン粒子が全て凝固するまで前記融点 Tm未満で 1383°C以 上の範囲内の所定の温度に保持する工程 2とを具備する。 [0020] In another method for producing crystalline silicon particles of the present invention, the silicon particles are heated to a temperature T1 equal to or higher than the melting point Tm of silicon while maintaining the shape thereof, and the silicon inside is melted. The process of supercooling to a temperature T2 that is less than the melting point Tm and above 1383 ° C 1 and step 2 of maintaining at a predetermined temperature within the range of 1383 ° C. or less below the melting point Tm until all the molten silicon particles are next solidified.
[0021] 前記工程 1において、前記シリコン粒子を前記温度 T1から 1410°C以下であって 1 383°C以上の温度 T2まで過冷却するのがよい。  [0021] In the step 1, the silicon particles may be supercooled from the temperature T1 to a temperature T2 of 1410 ° C or lower and 1383 ° C or higher.
[0022] 好ましくは、前記工程 1において、シリコン粒子をその形状を保持したままシリコンの 融点 Tm以上の温度 T1に加熱して内部のシリコンを溶融させる際に、上面にシリコン 粒子が載置された台板を加熱装置内に設置するとともに酸素ガス及び窒素ガスから 成る雰囲気ガス中で前記シリコン粒子をその融点 Tm以下の温度に加熱して前記シ リコン粒子の表面に酸窒化珪素膜を形成し、前記シリコン粒子をその融点 Tm以上の 温度 T1に加熱して前記酸窒化珪素膜の内側のシリコンを溶融させる。  [0022] Preferably, in the step 1, when the silicon particles are heated to a temperature T1 equal to or higher than the melting point Tm of silicon while maintaining the shape thereof, the silicon particles are placed on the upper surface when the silicon inside is melted. A base plate is installed in a heating device, and the silicon particles are heated to a temperature below its melting point Tm in an atmosphere gas composed of oxygen gas and nitrogen gas to form a silicon oxynitride film on the surface of the silicon particles, The silicon particles are heated to a temperature T1 equal to or higher than their melting point Tm to melt the silicon inside the silicon oxynitride film.
[0023] 多数個の前記シリコン粒子を前記台板上に重層的に載置した状態で単結晶化する のがよい。前記台板は石英ガラス製の基体の表面にクリストバライト結晶層が形成さ れているのがよい。  [0023] It is preferable that a single crystal is formed in a state where a large number of the silicon particles are stacked on the base plate. The base plate preferably has a cristobalite crystal layer formed on the surface of a quartz glass substrate.
[0024] 前記シリコン粒子を単結晶化した後、金属不純物を含有することがある前記酸窒化 珪素膜を除去するのがよい。  [0024] After the silicon particles are monocrystallized, the silicon oxynitride film that may contain metal impurities is preferably removed.
発明の効果  The invention's effect
[0025] 本発明の結晶シリコン粒子の製造方法によれば、前処理として、窒素ガスから成る 雰囲気ガスまたは窒素ガスを主成分として含む雰囲気ガス中でシリコン粒子をシリコ ンの融点以下の温度に加熱することにより、シリコン粒子の表面に、内部よりも硬質の 硬質膜である窒化珪素膜が形成されている。そのため、単結晶化する際に結晶シリ コン粒子同士の合体を効果的に抑制して、合体による結晶シリコン粒子同士の接触 面における結晶割れやサブダレインの発生がない、高品質の結晶性を有する結晶シ リコン粒子を作製することができる。  According to the method for producing crystalline silicon particles of the present invention, as pretreatment, silicon particles are heated to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component. Thus, a silicon nitride film, which is a hard film harder than the inside, is formed on the surface of the silicon particles. Therefore, when crystallizing a single crystal, the crystalline silicon particles are effectively prevented from coalescing, and there is no generation of crystal cracks or subdarenes at the contact surfaces between the crystalline silicon particles due to coalescence. Silicon particles can be produced.
[0026] また、窒化珪素膜は、酸化珪素膜に比べて、汚染物や不純物等の結晶シリコン粒 子内部のシリコン中への拡散阻止力が大きいため、結晶シリコン粒子の表面に付着 した鉄 (Fe)等の重金属元素等の拡散による汚染が低減され、高品質な結晶シリコン 粒子を作製すること力 Sできる。  [0026] Further, since the silicon nitride film has a greater ability to prevent diffusion of contaminants and impurities into the silicon inside the crystalline silicon particles than the silicon oxide film, the iron ( Contamination due to diffusion of heavy metal elements such as Fe) is reduced, and it is possible to produce high-quality crystalline silicon particles.
[0027] 更に、窒化珪素膜は、酸化珪素膜に比べて、密度が高いとともに単位厚み当たりの 強度が高いため、シリコン粒子を加熱して窒化珪素膜の内側のシリコンを溶融させて 降温して凝固させる際に、シリコン粒子の内部のシリコン融液を安定に保持するため に必要な窒化珪素膜の膜厚を酸化珪素膜に比べて薄くすることができる。その結果 、後工程でエッチング除去すべき歪や欠陥を多く含んだ結晶シリコン粒子の表面層 も少なくなり、シリコン資源を有効に活用することができる。また、後工程において、窒 化珪素膜に酸素を含ませることによって軟化させて窒化珪素膜の内側のシリコンを溶 融させ、結晶シリコン粒子を表面張力によって球状に近づけることができる。 Further, the silicon nitride film has a higher density and a unit thickness than the silicon oxide film. The silicon nitride film required to stably hold the silicon melt inside the silicon particles when the silicon particles are heated to melt the silicon inside the silicon nitride film and to cool and solidify it. Can be made thinner than the silicon oxide film. As a result, the surface layer of crystalline silicon particles containing many strains and defects to be removed by etching in the subsequent process is reduced, and silicon resources can be used effectively. Further, in the subsequent step, the silicon nitride film can be softened by containing oxygen to melt the silicon inside the silicon nitride film, and the crystalline silicon particles can be made close to spherical by surface tension.
[0028] 前記窒化珪素膜は酸素を含んでいてもよぐ上記と同様の作用効果が得られる。 [0028] The silicon nitride film can contain the same effect as described above even if it contains oxygen.
[0029] 本発明の結晶シリコン粒子の製造方法では、前記したように、前処理でシリコン粒 子の表面に形成された窒化珪素膜がシリコン粒子同士の合体を効果的に防ぐため、 加熱炉での単結晶化の際に多数個のシリコン粒子を台板上に重層的に載置して、シ リコン粒子を高密度に配置することができる。これにより、多数個のシリコン粒子を一 度に単結晶化することができ、安価に量産性よく結晶シリコン粒子を製造することが 可能となる。従って、光電変換装置等に使用する結晶シリコン粒子を効率的に製造 できる。 In the method for producing crystalline silicon particles of the present invention, as described above, the silicon nitride film formed on the surface of the silicon particles by the pretreatment effectively prevents coalescence of the silicon particles. During the single crystallization, a large number of silicon particles can be stacked on the base plate, and the silicon particles can be arranged at high density. As a result, a large number of silicon particles can be single-crystallized at a time, and it is possible to manufacture crystalline silicon particles at low cost with high productivity. Therefore, it is possible to efficiently produce crystalline silicon particles used for a photoelectric conversion device or the like.
[0030] また、多数個のシリコン粒子を台板上に重層的に載置して溶融、固化及び単結晶 化する際に、凝固起点を、シリコン粒子と台板との接触部分及びシリコン粒子同士の 接触部分に設定して、その接触部分からシリコン粒子の上方に向けて単結晶化を進 めること力 Sできる。そのため、 CZ法や FZ法等のように種結晶を用いなくとも結晶シリコ ン粒子を一方向に凝固させて容易に単結晶化することができ、結晶シリコン粒子の 結晶性を大幅に向上させることができる。  [0030] Further, when a large number of silicon particles are placed on a base plate in a multilayered manner and melted, solidified, and single-crystallized, the solidification start point is defined as the contact portion between the silicon particles and the base plate and the silicon particles. It is possible to set the contact portion of the substrate and to promote the single crystallization from the contact portion toward the upper part of the silicon particles. Therefore, crystal silicon particles can be easily solidified in one direction without using a seed crystal as in the CZ method and FZ method, and can be easily converted into a single crystal, greatly improving the crystallinity of crystalline silicon particles. Can do.
[0031] 即ち、まず結晶シリコン粒子の台板との接触点が凝固起点となり、結晶シリコン粒子 の一方向(上方向)に凝固が進行する。この場合、特に台板を冷却しなくても、結晶 シリコン粒子の台板との接触点を凝固起点とすることができるが、台板を冷却してもよ い。次に、凝固が完了した結晶シリコン粒子と接しているその上の結晶シリコン粒子 、凝固が完了した結晶シリコン粒子との接触点を凝固起点として、一方向(上方向 に)に凝固が進行する。その繰り返しで、結果的に下側の結晶シリコン粒子から上側 の結晶シリコン粒子に凝固が進行する。 [0032] また、本発明の結晶シリコン粒子の製造方法は好ましくは、シリコン粒子を単結晶 化した後に窒化珪素膜を除去することから、結晶シリコン粒子の表層部に偏析した、 Fe, Cr, Ni, Mo等の金属不純物含有部を除去することができ、本発明の製造方法 によって得られた結晶シリコン粒子を光電変換装置に用いた場合、良好な光電変換 特十生を得ること力できる。 That is, first, the contact point of the crystalline silicon particles with the base plate becomes a solidification starting point, and solidification proceeds in one direction (upward) of the crystalline silicon particles. In this case, the contact point of the crystalline silicon particles with the base plate can be set as the solidification start point without cooling the base plate, but the base plate may be cooled. Next, the solidification progresses in one direction (upward) with the solidified crystal silicon particles in contact with the solidified crystal silicon particles and the contact point with the solidified crystal silicon particles as the solidification start point. As a result, solidification proceeds from the lower crystalline silicon particles to the upper crystalline silicon particles as a result. [0032] In addition, the method for producing crystalline silicon particles of the present invention preferably removes the silicon nitride film after single-crystallizing the silicon particles, so that the Fe, Cr, Ni segregated on the surface layer portion of the crystalline silicon particles. , Mo and other metal impurity containing parts can be removed, and when the crystalline silicon particles obtained by the production method of the present invention are used in a photoelectric conversion device, excellent photoelectric conversion can be obtained.
[0033] また、結晶シリコン粒子の表層部に加工変質層を形成すると、加工変質層内に形 成された多数のマイクロクラックに沿って網目構造の窒化珪素膜が形成される。その 結果、例えば多数の結晶シリコン粒子を並べて単結晶化する際に、結晶シリコン粒 子同士の合体を効果的に抑制して、合体による結晶シリコン粒子同士の接触面にお ける結晶割れやサブダレインの発生がな!/、、高品質な結晶性を有する結晶シリコン 粒子を製造すること力できる。また、結晶シリコン粒子が表層部に網目構造の窒化珪 素膜を有することから、単結晶化の際に結晶シリコン粒子内部のシリコンの溶融固化 時の体積変化に対し、結晶シリコン粒子の形状を維持するのに十分な柔軟性を結晶 シリコン粒子の表層部に付加することができる。  [0033] When a work-affected layer is formed on the surface layer portion of the crystalline silicon particles, a network-structured silicon nitride film is formed along a number of microcracks formed in the work-affected layer. As a result, for example, when a large number of crystalline silicon particles are aligned and single-crystallized, coalescence of the crystalline silicon particles is effectively suppressed, and crystal cracking and subdurale in the contact surface between the crystalline silicon particles due to coalescence are suppressed. It is possible to produce crystalline silicon particles with high quality crystallinity. In addition, since the crystalline silicon particles have a network-structured silicon nitride film on the surface layer, the shape of the crystalline silicon particles is maintained with respect to the volume change when the silicon inside the crystalline silicon particles is melted and solidified during single crystallization. Sufficient flexibility can be added to the surface layer of the crystalline silicon particles.
[0034] また、窒化珪素膜が酸素を含む場合は、酸素を含まな V、窒化珪素膜に比べ膜の柔 軟性に優れ、膜厚が厚い場合においても、単結晶化の際に結晶シリコン粒子内部の シリコンの溶融固化時の体積変化に対し、結晶シリコン粒子の形状を維持するのに 十分な柔軟性を結晶シリコン粒子の表層部に付加することができる。  [0034] In addition, when the silicon nitride film contains oxygen, the film is more flexible than the V and silicon nitride films containing oxygen, and even when the film thickness is large, crystalline silicon particles are formed during single crystallization. Sufficient flexibility can be added to the surface layer of the crystalline silicon particles to maintain the shape of the crystalline silicon particles against the volume change during melting and solidification of the internal silicon.
[0035] 本発明の他の結晶シリコン粒子の製造方法によれば、シリコン粒子の表面に酸窒 化珪素膜が前処理として形成されているため、単結晶化する際に結晶シリコン粒子 同士の合体を効果的に抑制して、合体による結晶シリコン粒子同士の接触面におけ る結晶割れやサブダレインの発生がなレ、、高品質の結晶性を有する結晶シリコン粒 子を作製すること力できる。  [0035] According to another method for producing crystalline silicon particles of the present invention, since the silicon oxynitride film is formed as a pretreatment on the surface of the silicon particles, the crystalline silicon particles are coalesced during single crystallization. It is possible to effectively suppress the occurrence of crystal cracks and subdarenes at the contact surface between the crystalline silicon particles due to coalescence, and to produce crystalline silicon particles having high quality crystallinity.
また、本発明の他の結晶シリコン粒子の製造方法によれば、工程 1において表面に 酸窒化珪素膜が形成されたシリコン粒子を、シリコンの融点 Tm以上の温度 T1から 融点 Tm未満であって 1383°C以上の温度 T2まで過冷却にすることによって 1秒当た りの降温変化(降温の温度勾配)が大きくなり、その急峻な温度勾配がシリコン粒子 の凝固のトリガー(凝固を開始させるきっかけ)となる。 [0036] また、 1383°C以上の高温であって、シリコンの融点 Tmからの過冷却度(Tm— T2 )の小さい温度領域で凝固を生ずるために、凝固界面が一方向に進行する、一方向 凝固の二次元成長となる。その結果、粒界や結晶欠陥を含まない高品質な結晶性を 有する単結晶の結晶シリコン粒子を作製することができ、さらに凝固終端部のごく一 部に結晶欠陥や結晶方位の乱れを生じた突起を形成することもなぐ真球により近い 形状にできるので、その結晶シリコン粒子を光電変換装置に用いた場合には良好な 光電変換特性を得ることができる。 Further, according to another method for producing crystalline silicon particles of the present invention, silicon particles having a silicon oxynitride film formed on the surface in step 1 are converted from a temperature T1 not lower than the melting point Tm of silicon to a temperature lower than the melting point Tm. By overcooling to a temperature T2 above ° C, the temperature change per second (temperature gradient of temperature decrease) increases, and the steep temperature gradient triggers the solidification of silicon particles (trigger for starting solidification). It becomes. [0036] Further, since solidification occurs at a high temperature of 1383 ° C or higher and the degree of supercooling (Tm-T2) from the melting point Tm of silicon is small, the solidification interface proceeds in one direction. Direction Two-dimensional growth of solidification. As a result, it was possible to produce single crystal silicon particles with high quality crystallinity free from grain boundaries and crystal defects, and crystal defects and disordered crystal orientation occurred in a very small part of the solidification end. Since the shape can be made closer to a true sphere that does not form protrusions, good photoelectric conversion characteristics can be obtained when the crystalline silicon particles are used in a photoelectric conversion device.
[0037] また、溶融したシリコン粒子が全て凝固するまで Tm未満で 1383°C以上の範囲内 の所定の温度に保持することによって、凝固時の温度を 1383°C以上にすることがで き、凝固終端部における突起の形成、粒界や結晶欠陥の発生、多結晶化となりうる 均一核生成、及びデンドライト成長を防止することができる。  [0037] Further, by maintaining a predetermined temperature within a range of 1383 ° C or more below Tm until all the molten silicon particles are solidified, the temperature during solidification can be 1383 ° C or more, It is possible to prevent the formation of protrusions at the end of solidification, the generation of grain boundaries and crystal defects, the generation of uniform nuclei that can be polycrystallized, and the dendrite growth.
[0038] また、温度 T1から 1410°C以下であって 1383°C以上の温度 T2まで過冷却する場 合には、融点 Tmからの過冷却度が十分であるため凝固が生じ易くなるとともに、凝 固終端部における突起の形成がなぐ粒界や結晶欠陥を含まない、高品質な結晶性 を有する単結晶の結晶シリコン粒子を作製することができる。これに対して、 1410°C より高温では融点 Tmからの過冷却度 (Tm—T2)が小さすぎるために凝固を生じにく い。  [0038] Further, in the case of supercooling from temperature T1 to 1410 ° C or lower and to temperature T2 of 1383 ° C or higher, the degree of supercooling from the melting point Tm is sufficient, so that solidification is likely to occur. It is possible to produce single-crystal silicon particles having high quality crystallinity that do not include grain boundaries or crystal defects formed by the formation of protrusions at the solidification end. On the other hand, at a temperature higher than 1410 ° C, the degree of supercooling (Tm-T2) from the melting point Tm is too small to cause solidification.
[0039] 工程 1において、シリコン粒子をその形状を保持したままシリコンの融点 Tm以上の 温度 T1に加熱して内部のシリコンを溶融させる際に、上面にシリコン粒子が載置され た台板を加熱装置内に設置するとともに酸素ガス及び窒素ガスから成る雰囲気ガス 中でシリコン粒子をその融点 Tm以下の温度に加熱してシリコン粒子の表面に酸窒 化珪素膜を形成し、シリコン粒子をその融点 Tm以上の温度 T1に加熱して酸窒化珪 素膜の内側のシリコンを溶融させる。すなわち、単結晶化する際にシリコン粒子の表 面に酸窒化珪素膜が形成されているため、シリコン粒子同士の合体を効果的に抑制 して、合体によるシリコン粒子同士の接触面における割れやサブダレインの発生がな い、高品質の結晶性を有する単結晶の結晶シリコン粒子を作製することができる。  [0039] In step 1, when the silicon particles are heated to a temperature T1 equal to or higher than the melting point Tm of silicon while maintaining the shape thereof, the silicon on which the silicon particles are placed on the upper surface is heated when melting the internal silicon. A silicon oxynitride film is formed on the surface of the silicon particles by heating the silicon particles to a temperature below its melting point Tm in an atmospheric gas consisting of oxygen gas and nitrogen gas, and the silicon particles are melted at the melting point Tm. By heating to the above temperature T1, the silicon inside the silicon oxynitride film is melted. That is, since the silicon oxynitride film is formed on the surface of the silicon particles during the single crystallization, the coalescence of the silicon particles is effectively suppressed, and cracks and subdurale in the contact surfaces of the silicon particles due to the coalescence are suppressed. It is possible to produce single-crystal crystalline silicon particles having high quality crystallinity that are free from the occurrence of defects.
[0040] 酸窒化珪素膜は、酸化珪素膜に比べて、汚染物や不純物等の結晶シリコン粒子内 部のシリコン中への拡散阻止力が大きいため、結晶シリコン粒子の表面に付着した 鉄 (Fe)等の重金属元素等の拡散による汚染が低減され、不純物の少ない高品質な 結晶シリコン粒子を作製することができる。 [0040] The silicon oxynitride film adheres to the surface of the crystalline silicon particles because it has a greater ability to prevent diffusion of contaminants and impurities into the silicon inside the crystalline silicon particles than the silicon oxide film. Contamination due to diffusion of heavy metal elements such as iron (Fe) is reduced, and high-quality crystalline silicon particles with few impurities can be produced.
[0041] 更に、酸窒化珪素膜は、酸化珪素膜に比べて、密度が高いとともに単位厚み当た りの強度が高いため、シリコン粒子を加熱して酸窒化珪素膜の内側のシリコンを溶融 させて降温して凝固させる際に、シリコン粒子の内部のシリコン融液を安定に保持す るために必要な酸窒化珪素膜の膜厚を酸化珪素膜に比べて薄くすることができる。 その結果、後工程でエッチング除去すべき歪や欠陥を多く含んだ結晶シリコン粒子 の表面層も少なくなり、シリコン資源を有効に活用することができる。  [0041] Further, since the silicon oxynitride film has a higher density and higher strength per unit thickness than the silicon oxide film, the silicon particles are heated to melt the silicon inside the silicon oxynitride film. When the temperature is lowered and solidified, the thickness of the silicon oxynitride film necessary for stably holding the silicon melt inside the silicon particles can be made thinner than that of the silicon oxide film. As a result, the surface layer of crystalline silicon particles containing many strains and defects to be removed by etching in the subsequent process is reduced, and silicon resources can be used effectively.
[0042] 多数個のシリコン粒子を台板上に重層的に載置した状態で単結晶化することにより 、シリコン粒子の表面に形成された酸窒化珪素膜がシリコン粒子同士の合体を効果 的に防ぐため、加熱炉での単結晶化の際に多数個のシリコン粒子を台板上に重層 的に載置して、多数個のシリコン粒子を高密度に配置することにより、多数個のシリコ ン粒子を一度に単結晶化することができる。従って、安価に量産性よく結晶シリコン 粒子を製造することが可能となる。  [0042] By single-crystallizing a large number of silicon particles stacked on a base plate, the silicon oxynitride film formed on the surface of the silicon particles effectively combines the silicon particles. In order to prevent this, a large number of silicon particles are placed on a base plate in a single layer during single crystallization in a heating furnace, and a large number of silicon particles are arranged at a high density, so that a large number of silicon particles are placed. The particles can be single crystallized at a time. Accordingly, it is possible to produce crystalline silicon particles at low cost and with high productivity.
[0043] また、多数個のシリコン粒子を台板上に重層的に載置して溶融、凝固及び単結晶 化する際の凝固起点を、シリコン粒子と台板との接触部分及びシリコン粒子同士の接 触部分に設定して、その接触部分からシリコン粒子の上方に向けて単結晶化を進め ること力 Sできる。そのため、 CZ法や FZ法等のように種結晶を用いなくとも結晶シリコン 粒子を一方向に凝固させて容易に単結晶化することができ、結晶シリコン粒子の結 晶性を大幅に向上させることができる。  [0043] In addition, the solidification starting point when a large number of silicon particles are placed on the base plate in a multilayered manner to melt, solidify, and single crystallize is defined as the contact portion between the silicon particle and the base plate and between the silicon particles. It is possible to set the contact part and to promote single crystallization from the contact part to the upper part of the silicon particles. For this reason, crystal silicon particles can be easily solidified in one direction without using a seed crystal as in the CZ method and FZ method, and single crystal can be easily formed, and the crystallinity of the crystal silicon particles can be greatly improved. Can do.
[0044] 台板は石英ガラス製の基体の表面にクリストバライト結晶層が形成されていることに より、シリコン粒子と台板の表面のクリストバライト結晶層との接点が凝固起点となり、 不均一核生成を生じて結晶シリコン粒子を一方向に凝固させて容易に単結晶化する こと力 Sでさる。  [0044] Since the cristobalite crystal layer is formed on the surface of the base made of quartz glass in the base plate, the contact point between the silicon particles and the cristobalite crystal layer on the surface of the base plate becomes a solidification start point, thereby causing heterogeneous nucleation. The force S is used to easily crystallize the crystalline silicon particles in one direction to form a single crystal.
[0045] なお、不均一核生成とは、シリコン粒子の一部に結晶核が生じて、その結晶核から 全体に結晶化が広がることをいう。これに対して、均一核生成とは、ほぼ同時にシリコ ン粒子の全体に結晶核が生じて、各結晶核が結晶成長することをいい、多結晶の結 晶シリコン粒子が形成される場合に相当する。 [0046] また、石英ガラス製の基体の表面に形成されたクリストバライト結晶層は、 1400°C 前後の温度で安定しており、石英ガラス製の基体の表面構造材 (表面補強層)として の機能を有するものとなる。その結果、石英ガラス製の基体が熱変形をしょうとするの を妨げるように作用し、熱による基体の変形を防ぐことができる。 [0045] The heterogeneous nucleation means that crystal nuclei are generated in a part of silicon particles, and crystallization spreads from the crystal nuclei to the whole. On the other hand, homogeneous nucleation means that crystal nuclei are formed in the entire silicon particle almost simultaneously and each crystal nuclei grows, which corresponds to the case where polycrystalline crystalline silicon particles are formed. To do. [0046] The cristobalite crystal layer formed on the surface of the quartz glass substrate is stable at a temperature of about 1400 ° C, and functions as a surface structural material (surface reinforcing layer) of the quartz glass substrate. It will have. As a result, the quartz glass substrate acts to prevent the thermal deformation of the substrate, thereby preventing the substrate from being deformed by heat.
[0047] また、本発明によれば、シリコン粒子を単結晶化した後に酸窒化珪素膜を除去する ことから、結晶シリコン粒子の表層部に偏析した、 Fe, Cr, Ni, Mo等の金属不純物 含有部を除去することができる。その結果、本発明の製造方法によって得られた結晶 シリコン粒子を光電変換装置に用いた場合、良好な光電変換特性を得ることができ 図面の簡単な説明  [0047] Further, according to the present invention, since the silicon oxynitride film is removed after single-crystallizing the silicon particles, metal impurities such as Fe, Cr, Ni, and Mo segregated on the surface layer portion of the crystalline silicon particles. The containing part can be removed. As a result, when the crystalline silicon particles obtained by the production method of the present invention are used in a photoelectric conversion device, good photoelectric conversion characteristics can be obtained.
[0048] [図 1]本発明の結晶シリコン粒子の製造方法についての一実施形態を示し、(a)〜(c )は、シリコン粒子が台板上に重層的に載置された様子を示す工程毎の断面図であ  [0048] FIG. 1 shows an embodiment of the method for producing crystalline silicon particles of the present invention, and (a) to (c) show a state in which silicon particles are placed in a multilayered manner on a base plate. It is sectional drawing for every process
[図 2]本発明の製造方法によって得られる光電変換装置について一実施形態を示す 断面図である。 FIG. 2 is a cross-sectional view showing an embodiment of a photoelectric conversion device obtained by the production method of the present invention.
[図 3]本発明の結晶シリコン粒子の製造方法について他の実施形態を示し、 (a)は、 結晶シリコン粒子の表面に研磨加工による加工変質層を形成する様子を示す概略 的断面図であり、(b)〜(d)は、結晶シリコン粒子が台板上に重層的に載置された様 子を示す工程毎の概略的断面図である。  FIG. 3 shows another embodiment of the method for producing crystalline silicon particles of the present invention, and (a) is a schematic cross-sectional view showing a state in which a work-affected layer is formed by polishing on the surface of the crystalline silicon particles. (B) to (d) are schematic cross-sectional views for each process showing a state in which crystalline silicon particles are placed in a multilayered manner on a base plate.
[図 4]本発明の製造方法に用いるジェット装置の断面図である。  FIG. 4 is a cross-sectional view of a jet device used in the production method of the present invention.
[図 5]本発明の結晶シリコン粒子の製造方法についてのさらに他の実施形態を示し、 FIG. 5 shows still another embodiment of the method for producing crystalline silicon particles of the present invention,
(a)〜(c)はシリコン粒子が台板上に一層で載置された様子を示す工程毎の断面図 である。 (a)-(c) is sectional drawing for every process which shows a mode that the silicon particle was mounted in one layer on the base plate.
[図 6]実施例 3-;!〜 4の結晶シリコン粒子の研磨面における粒界やピット (結晶欠陥) の観察を行った結果を示す断面写真である。  FIG. 6 is a cross-sectional photograph showing the results of observation of grain boundaries and pits (crystal defects) on the polished surface of crystalline silicon particles of Example 3-;!
[図 7]比較例 3-;!〜 4の結晶シリコン粒子の研磨面における粒界やピット (結晶欠陥) の観察を行った結果を示す断面写真である。  FIG. 7 is a cross-sectional photograph showing the results of observation of grain boundaries and pits (crystal defects) on the polished surface of crystalline silicon particles of Comparative Example 3-;!
[図 8]本発明のさらに他の製造方法における温度プロファイルを示すグラフである。 発明を実施するための最良の形態 FIG. 8 is a graph showing a temperature profile in still another manufacturing method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 以下、本発明の結晶シリコン粒子の製造方法について添付図面を参照しつつ詳細 に説明する。  Hereinafter, the method for producing crystalline silicon particles of the present invention will be described in detail with reference to the accompanying drawings.
[0050] <第 1の実施形態〉  [0050] <First embodiment>
図 1 (a)〜(c)はそれぞれ本発明の結晶シリコン粒子の製造方法についての一実 施形態を示すものであり、台板 102上に重層的に載置された多数個のシリコン粒子 1 01を示す工程毎の断面図である。  FIGS. 1 (a) to 1 (c) each show an embodiment of the method for producing crystalline silicon particles of the present invention. A large number of silicon particles 1 stacked on a base plate 102 are shown in FIG. It is sectional drawing for every process which shows 01.
[0051] まず、シリコン粒子 101を得るには、結晶シリコン粒子の材料として半導体グレード の結晶シリコンを用い、これを赤外線や高周波コイルを用いて容器内で溶融する。し かる後、溶融したシリコンを粒状の融液として自由落下させる溶融落下法 (ジェット法 )等によって多結晶のシリコン粒子 101を得る。  [0051] First, in order to obtain the silicon particles 101, semiconductor grade crystalline silicon is used as a material of the crystalline silicon particles, and this is melted in a container using an infrared ray or a high frequency coil. After that, polycrystalline silicon particles 101 are obtained by a melt drop method (jet method) or the like in which molten silicon is freely dropped as a granular melt.
[0052] 溶融落下法で作製された多結晶のシリコン粒子 101には、所望の導電型及び抵抗 値にするために、通常はドーパントがドーピングされる。シリコンに対するドーパントと しては、例えばホウ素,アルミニウム,ガリウム,インジウム,リン,ヒ素,アンチモン等が ある。特に、シリコンに対する偏析係数が大きい点やシリコン溶融時の蒸発係数が小 さい点から、ホウ素あるいはリンを用いることが望ましい。また、ドーパント濃度としては 、シリコンの結晶材料に 1 X 1014〜1 X 1018atoms/cm3程度添加されるのがよい。 [0052] Polycrystalline silicon particles 101 produced by the melt drop method are usually doped with a dopant in order to obtain a desired conductivity type and resistance value. Examples of dopants for silicon include boron, aluminum, gallium, indium, phosphorus, arsenic, and antimony. In particular, it is desirable to use boron or phosphorus because it has a large segregation coefficient for silicon and a small evaporation coefficient when silicon is melted. The dopant concentration is preferably about 1 × 10 14 to 1 × 10 18 atoms / cm 3 added to the silicon crystal material.
[0053] この溶融落下法によってシリコン粒子 101を得た時点では、シリコン粒子 101の形 状は、ほぼ球形状のものの他にも涙滴型や流線形型、あるいは複数個の粒子が連 結した連結型等である。このままの多結晶のシリコン粒子 101を用いて光電変換装置 を作製した場合は、良好な光電変換特性を得られないものとなる。その原因としては 、この多結晶のシリコン粒子 101中に通常含有されている Fe, Cr, Ni, Mo等の金属 不純物の存在、及び多結晶の結晶粒界におけるキャリアの再結合効果などが挙げら れる。  [0053] At the time when the silicon particles 101 were obtained by this melting and dropping method, the shape of the silicon particles 101 was a teardrop type, streamline type, or a plurality of particles connected in addition to a substantially spherical shape. It is a connected type. When a photoelectric conversion device is produced using the polycrystalline silicon particles 101 as it is, good photoelectric conversion characteristics cannot be obtained. The causes include the presence of metal impurities such as Fe, Cr, Ni, and Mo that are usually contained in the polycrystalline silicon particles 101, and the effect of carrier recombination at the crystal grain boundaries. It is.
[0054] これを改善するために、本発明では、まず前工程として、窒素ガスから成る雰囲気 ガスまたは窒素ガスを主成分として含む雰囲気ガス中で、温度制御した加熱炉の中 で多結晶のシリコン粒子 101をシリコンの融点(1414°C)以下の温度(500〜; 1400 °C)に加熱してシリコン粒子 101の表面に窒化珪素膜を形成する。その後、後工程と して、酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガ ス中でシリコン粒子 101を再溶融させ降温して固化させることにより単結晶化されて 作製される。 [0054] In order to improve this, in the present invention, first, as a pre-process, polycrystalline silicon is used in a temperature-controlled heating furnace in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component. The particles 101 are heated to a temperature (500 to; 1400 ° C.) below the melting point of silicon (1414 ° C.) to form a silicon nitride film on the surface of the silicon particles 101. After that, Then, the silicon particles 101 are made into a single crystal by being remelted, cooled and solidified in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and inert gas.
[0055] 本発明の製造方法によるシリコン粒子 101の単結晶化は、例えば 1000個のシリコ ン粒子 101のうち 999個程度が完全に単結晶化される程度の割合 (個数割合で 99. 9%程度)で行うこと力 Sできる。  [0055] The single crystallization of the silicon particles 101 by the production method of the present invention is, for example, a ratio in which about 999 of 1000 silicon particles 101 are completely single-crystallized (99.9% in number ratio). Degree) Power to do S
[0056] また、後工程の後において、窒化珪素膜を除去するのが良ぐこれにより結晶シリコ ン粒子の表層部に偏析した Fe, Cr, Ni, Mo等の金属不純物含有部を除去すること ができる。その結果、本発明の製造方法によって得られた結晶シリコン粒子を光電変 換装置に用いた場合、良好な光電変換特性を得ることができる。  [0056] Further, after the post-process, it is preferable to remove the silicon nitride film, thereby removing the metal impurity containing portion such as Fe, Cr, Ni, Mo segregated on the surface layer portion of the crystalline silicon particles. Can do. As a result, when the crystalline silicon particles obtained by the production method of the present invention are used in a photoelectric conversion device, good photoelectric conversion characteristics can be obtained.
[0057] 前工程における窒素ガスから成る雰囲気ガスまたは窒素ガスを主成分として含む 雰囲気ガスの圧力は、 0. 01M〜0. 2MPa程度がよい。 0. OlMPa未満では、窒化 珪素膜からの窒素や酸素の蒸発により窒化珪素膜の膜厚低減や膜質劣化が生じ易 くなる。一方、 0. 2MPaを超えると、窒化珪素膜の膜厚バラツキが生じ易くなる。  [0057] The pressure of the atmospheric gas composed of nitrogen gas or the atmospheric gas containing nitrogen gas as a main component in the previous step is preferably about 0.01 M to 0.2 MPa. 0. Below OlMPa, the film thickness of the silicon nitride film is reduced and the film quality is liable to deteriorate due to evaporation of nitrogen and oxygen from the silicon nitride film. On the other hand, when it exceeds 0.2 MPa, the thickness of the silicon nitride film tends to vary.
[0058] シリコン粒子 101の表面に形成される窒化珪素膜の厚みは 100nm〜 10 μ m程度 であればよい。 lOOnm未満では、シリコン粒子内部のシリコンの溶融時に窒化珪素 膜が破れ易くなる。 10 mを超えると、シリコン粒子内部のシリコンの溶融時に表面 張力で球形化しようとするのに対し、窒化珪素膜が厚すぎて変形しに《なる。  [0058] The thickness of the silicon nitride film formed on the surface of the silicon particles 101 may be about 100 nm to 10 μm. If it is less than lOOnm, the silicon nitride film is easily broken when the silicon inside the silicon particles melts. If it exceeds 10 m, the silicon nitride film tends to be spheroidized by surface tension when the silicon melts inside the silicon particle, whereas the silicon nitride film is too thick to deform.
[0059] 後工程 (再溶融(リメルト)工程)における酸素ガスから成る雰囲気ガスまたは酸素ガ ス及び不活性ガス力、ら成る雰囲気ガスの圧力は、 0. 01-0. 2MPa程度がよい。 0. OlMPa未満では、窒化珪素膜からの窒素や酸素の蒸発により窒化珪素膜の膜厚低 減や膜質劣化が生じ易くなる。 0. 2MPaを超えると、シリコン粒子内部のシリコンの 溶融時に形状を安定に保てず形状制御が難しくなる。  [0059] The pressure of the atmospheric gas composed of oxygen gas or oxygen gas and inert gas force in the subsequent process (remelting (remelting) process) is preferably about 0.01 to 0.2 MPa. 0. Below OlMPa, the film thickness of the silicon nitride film is reduced and the film quality is liable to be deteriorated by evaporation of nitrogen and oxygen from the silicon nitride film. If it exceeds 0.2 MPa, the shape cannot be kept stable when the silicon inside the silicon particles is melted, making it difficult to control the shape.
[0060] 後工程における雰囲気ガスに酸素ガスが必須ガス成分として含まれるのは、窒化 珪素膜中に酸素が拡散することで窒化珪素膜の柔軟性が増し、シリコン粒子 101が 溶融する際に形状をより安定に維持することが可能であるからである。また、雰囲気 ガス中の酸素分圧が高くなることにより、窒化珪素膜からの酸素蒸発を低減化させる こと力 sでさる。また、酸素が雰囲気ガス中に含まれていない場合には、シリコン粒子 1 01が溶融時に石英ガラス等から成る台板 102の石英と反応して固着してしまうことを 防止するためである。 [0060] The oxygen gas is included as an essential gas component in the atmospheric gas in the subsequent process because the diffusion of oxygen into the silicon nitride film increases the flexibility of the silicon nitride film and the shape when the silicon particles 101 melt. This is because it can be maintained more stably. Further, since the oxygen partial pressure in the atmospheric gas is increased, it is possible to reduce oxygen evaporation from the silicon nitride film with a force s. If oxygen is not included in the atmospheric gas, silicon particles 1 This is to prevent 01 from reacting and fixing with quartz on the base plate 102 made of quartz glass or the like during melting.
[0061] 後工程において酸素ガス及び不活性ガスを使用する場合、酸素ガスを 20体積% 以上含むものであればよぐアルゴンガス等の不活性ガスを 80体積%以下含むもの であればよい。酸素ガスの含有率が 20体積%未満では、窒化珪素膜からの酸素蒸 発が促進されやすくなり、またシリコン粒子 101内部のシリコンの溶融時に形状を安 定に保てず形状制御が難しくなる。  [0061] When oxygen gas and inert gas are used in the post-process, any gas containing 20% by volume or more of oxygen gas may be used as long as it contains 80% by volume or less of inert gas such as argon gas. When the oxygen gas content is less than 20% by volume, oxygen evaporation from the silicon nitride film is easily promoted, and the shape cannot be kept stable when silicon inside the silicon particles 101 is melted, making shape control difficult.
[0062] 単結晶の結晶シリコン粒子 101を作製するには、まず、図 1 (a)に示すように、多数 個(例えば、数 100〜数 1000個程度)の多結晶のシリコン粒子 101を台板 102の上 面に二層以上に重層的に載置する。本発明でいう重層的な載置とは、図 1 (a)の縦 断面図でみた場合、略球状のシリコン粒子 101が台板 102の上面に複数の層を成 すように載置され、最密に充填されて積層され載置された状態をいう。  [0062] In order to produce the single-crystal crystalline silicon particles 101, first, as shown in Fig. 1 (a), a large number (for example, several hundred to several thousand) of polycrystalline silicon particles 101 are placed on the surface. Two or more layers are stacked on the upper surface of the plate 102. The multi-layer placement referred to in the present invention is, when viewed in the longitudinal sectional view of FIG. 1 (a), the substantially spherical silicon particles 101 are placed in a plurality of layers on the upper surface of the base plate 102, It means a state in which it is packed in a close packing and stacked.
[0063] 台板 102上への多数個のシリコン粒子 101の載置は、一層であってもかまわないが 、重層的に載置した方がよい。重層的に載置することにより、シリコン粒子 101を高密 度に配置することができ、多数個のシリコン粒子 101を一度に単結晶化することがで き、安価に量産性よく結晶シリコン粒子を製造することが可能となる。従って、光電変 換装置等に使用する結晶シリコン粒子を効率的に製造できる。  [0063] The multiple silicon particles 101 may be placed on the base plate 102 in a single layer, but it is better to place them in multiple layers. By placing them in multiple layers, the silicon particles 101 can be arranged with high density, and a large number of silicon particles 101 can be made into a single crystal at a time. It becomes possible to do. Therefore, it is possible to efficiently produce crystalline silicon particles used in a photoelectric conversion device or the like.
[0064] 多数個のシリコン粒子 101を台板上に重層的に載置する場合、その層数は特に限 定するものではな!/、が、例えば 2〜; 150層程度とすればよ!/、。  [0064] When a large number of silicon particles 101 are placed on a base plate in a multi-layered manner, the number of layers is not particularly limited! /, For example, 2 to; about 150 layers! /.
[0065] 台板 102上に載置された多数個のシリコン粒子 101は、それら同士が接触していて も構わない。台板 102は、上蓋がない箱状か板状のものが望ましい。板状の場合に は複数段に積み上げて使用してもよい。台板 102の材質は、シリコン粒子 101との反 応を抑えるために、石英ガラス,ムライト,酸化アルミニウム,炭化珪素,単結晶サファ ィャ等が適する。耐熱性,耐久性,耐薬品性に優れコストも安ぐかつ扱い易いという 点からは、石英ガラスが好適である。  [0065] The multiple silicon particles 101 placed on the base plate 102 may be in contact with each other. The base plate 102 is preferably a box or plate having no upper lid. In the case of a plate shape, it may be used by stacking in multiple stages. As the material of the base plate 102, quartz glass, mullite, aluminum oxide, silicon carbide, single crystal sapphire, etc. are suitable for suppressing the reaction with the silicon particles 101. Quartz glass is preferred because it has excellent heat resistance, durability, and chemical resistance, is inexpensive, and is easy to handle.
[0066] 次に、シリコン粒子 101を載置した台板 102を加熱炉(図示せず)内に導入し、シリ コン粒子 101を加熱していく。加熱炉としては、半導体材料の種類に応じて種々のも のが使用できるが、半導体材料としてシリコンを用いるので、セラミックスの焼成等に 用いられる抵抗加熱型や誘導加熱型の雰囲気焼成炉、あるいは半導体素子の製造 工程で一般的に用いられる横型酸化炉等が適している。セラミックスの焼成等に用い られる抵抗加熱型の雰囲気焼成炉は、 1500°C以上の昇温も比較的容易であり、結 晶シリコン粒子の量産が可能な大型のものも比較的安価に入手できるので望ましい。 Next, the base plate 102 on which the silicon particles 101 are placed is introduced into a heating furnace (not shown), and the silicon particles 101 are heated. Various furnaces can be used depending on the type of semiconductor material, but since silicon is used as the semiconductor material, it can be used for firing ceramics. A resistance heating type or induction heating type atmosphere firing furnace used, or a horizontal oxidation furnace generally used in the manufacturing process of a semiconductor element is suitable. Resistance heating type atmosphere firing furnaces used for firing ceramics, etc. are relatively easy to raise the temperature above 1500 ° C, and large-scale ones capable of mass production of crystalline silicon particles are also available at relatively low cost. desirable.
[0067] 雰囲気焼成炉による加熱を行う前に、シリコン粒子 101の表面に付着した金属ゃ異 物等を除去するために RCA法 (RCA社による洗浄方法)で予め溶液洗浄をしておく ことが望ましい。 RCA法とは、シリコンウェハの標準的洗浄工程として半導体素子の 製造工程で一般的に用いられている洗浄方法である。具体的には、 3段の工程のう ち 1段目の工程において水酸化アンモニゥムと過酸化水素との水溶液により、シリコ ンウェハ表面の酸化膜とシリコン表層部とを除去し、 2段目の工程においてフッ化水 素水溶液により前段の工程で付いた酸化膜を除去し、 3段目の工程において塩化水 素と過酸化水素との水溶液により重金属等を除去して自然酸化膜を形成させるとレ、う ものである。  [0067] Prior to heating in the atmospheric firing furnace, the solution may be washed in advance by the RCA method (cleaning method by RCA) in order to remove metal foreign matter adhering to the surface of the silicon particles 101. desirable. The RCA method is a cleaning method generally used in the manufacturing process of semiconductor devices as a standard cleaning process for silicon wafers. Specifically, the oxide film and silicon surface layer on the silicon wafer surface are removed with an aqueous solution of ammonium hydroxide and hydrogen peroxide in the first step of the three steps, and the second step. In step 3, the oxide film attached in the previous step is removed with an aqueous solution of hydrogen fluoride, and in the third step, heavy metal is removed with an aqueous solution of hydrogen chloride and hydrogen peroxide to form a natural oxide film. ,Is Umono.
[0068] また、加熱炉内における炉材ゃ発熱体等からの汚染を防止するために、は台板 10 2上に載置したシリコン粒子 101を覆うようなベルジャーを加熱炉内に設置することが 望ましい。ベルジャーの材質は、石英ガラス,ムライト,酸化アルミニウム,炭化珪素, 単結晶サフアイャ等が適するが、耐熱性,耐久性,耐薬品性に優れコストも安く扱い 易いと!/、う点からは、石英ガラスが好適である。  [0068] In addition, in order to prevent contamination from furnace materials and heating elements in the heating furnace, a bell jar that covers the silicon particles 101 placed on the base plate 102 is installed in the heating furnace. Is desirable. Quartz glass, mullite, aluminum oxide, silicon carbide, single crystal sapphire, etc. are suitable for the material of the bell jar, but it is excellent in heat resistance, durability, chemical resistance and low cost and easy to handle! Glass is preferred.
[0069] 加熱炉内でシリコン粒子 101を窒素ガスから成る雰囲気ガスまたは窒素ガスを主成 分として含む雰囲気ガス中で加熱して、シリコンの融点(1414°C)より低い温度へ昇 温していく過程で、シリコン粒子 101の表面には窒化珪素膜が形成される。窒化珪素 膜の形成温度は 500°C以上 1400°C以下が好まし!/、。 500°Cより温度が低!/、場合、 窒化珪素膜の成長速度が遅く充分な厚みとするのに時間がかかり、 1400°Cより温度 が高い場合、窒化珪素膜の厚みが不均一になったりシリコン粒子 101に一部溶融が 生じたり粒子形状が崩れてしま!/、好ましくなレ、。  [0069] In a heating furnace, the silicon particles 101 are heated in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component, and the temperature is raised to a temperature lower than the melting point of silicon (1414 ° C). In the process, a silicon nitride film is formed on the surface of the silicon particle 101. The formation temperature of the silicon nitride film is preferably 500 ° C or higher and 1400 ° C or lower! When the temperature is lower than 500 ° C! /, The growth rate of the silicon nitride film is slow and it takes time to obtain a sufficient thickness, and when the temperature is higher than 1400 ° C, the thickness of the silicon nitride film becomes uneven. Or part of the silicon particles 101 will melt or the shape of the particles will collapse!
[0070] シリコン粒子 101の表面に形成される窒化珪素膜は、酸化珪素膜等と比べて、被 膜の密度が高くて単位膜厚当りの強度が高いため、汚染物や不純物等のシリコン粒 子 101の内部 の拡散阻止力が大きいという作用効果を有する。 [0071] また、窒化珪素膜は酸素を含んでいても力、まわない。酸素含有量は、 10モル%程 度以下がよい。 10モル%を超えると、窒化珪素膜中の結晶構造の変化や結晶欠陥 の増加によって膜質が劣化し易くなる。 [0070] Since the silicon nitride film formed on the surface of the silicon particle 101 has a higher film density and higher strength per unit film thickness than a silicon oxide film or the like, silicon particles such as contaminants and impurities are present. This has the effect that the diffusion blocking power inside the child 101 is large. [0071] Further, the silicon nitride film does not turn even if it contains oxygen. The oxygen content should be about 10 mol% or less. If it exceeds 10 mol%, the film quality tends to deteriorate due to the change in crystal structure and increase in crystal defects in the silicon nitride film.
[0072] また、シリコン粒子 101の表面に窒化珪素膜を形成する際の加熱炉内の雰囲気ガ スは、窒素ガス分圧が 70%以上であることが好ましい。雰囲気ガス中の窒素ガス分 圧が 70%未満の場合、後の単結晶化工程において、シリコン粒子 101同士の合体 が発生し易くなり、また窒化珪素膜の強度も劣化する。すなわち、シリコン粒子 101を 重層的に載置したとき、上部のシリコン粒子 101の重さにより下部のシリコン粒子 101 が溶融時につぶれやすくなる。  [0072] The atmosphere gas in the heating furnace when forming the silicon nitride film on the surface of the silicon particle 101 preferably has a nitrogen gas partial pressure of 70% or more. When the nitrogen gas partial pressure in the atmospheric gas is less than 70%, the silicon particles 101 are likely to coalesce in the subsequent single crystallization process, and the strength of the silicon nitride film is also deteriorated. That is, when the silicon particles 101 are stacked in layers, the lower silicon particles 101 are easily crushed when melted due to the weight of the upper silicon particles 101.
[0073] なお、加熱炉内の雰囲気ガス中の各ガス分圧は、全ガス流量に対する各ガス流量 で調整できる。雰囲気ガスは、例えばガス流量計やマスフロー計等のガス供給手段 力、らガスフィルタを通してベルジャー内に供給される力 S、このガス供給手段にガスを 供給する装置がガス圧力とガス濃度とを調整可能な機構を持つものであればよい。  [0073] Each gas partial pressure in the atmospheric gas in the heating furnace can be adjusted by each gas flow rate with respect to the total gas flow rate. Atmospheric gas is, for example, gas supply means such as a gas flow meter or mass flow meter, force S supplied into the bell jar through a gas filter, and a device for supplying gas to this gas supply means adjusts the gas pressure and concentration. Any device having a possible mechanism may be used.
[0074] 次に、図 1 (b)に示すように、酸素ガスから成る雰囲気ガス、または酸素ガス及び不 活性ガスから成る雰囲気ガス中で、シリコン粒子 101をシリコンの融点( 1414°C)より 高い温度へ昇温していく。図 1 (a) , (b)の工程は、それぞれ別に行っても連続して行 つてもかまわない。 Next, as shown in FIG. 1 (b), silicon particles 101 are introduced from the melting point of silicon (1414 ° C.) in an atmospheric gas composed of oxygen gas or an atmospheric gas composed of oxygen gas and inert gas. Raise the temperature to a higher temperature. The steps in Fig. 1 (a) and (b) may be performed separately or consecutively.
[0075] 台板 102は、シリコン粒子 101を溶融後に冷却し固化させて結晶化させるときの固 化起点を生じさせるものとしても機能する。このように台板 102の上面に多数個のシリ コン粒子 101を載置することにより、それぞれのシリコン粒子 101と台板 102との接触 部分に固化起点を設定することができるため、固化起点を一方の極としてこの一方の 極から上方の対向する極に向けて固化(単結晶化)方向を設定することができる。そ の結果、種結晶を用いることなく一方向に凝固させることが可能となり、サブグレイン 等の発生を抑制して結晶シリコン粒子 101の結晶性を大幅に向上させることができる  [0075] Base plate 102 also functions as a starting point for solidification when silicon particles 101 are cooled and solidified after being melted and crystallized. In this way, by placing a large number of silicon particles 101 on the upper surface of the base plate 102, the solidification start point can be set at the contact portion between each silicon particle 101 and the base plate 102. As one of the poles, the solidification (single crystallization) direction can be set from this one pole toward the upper facing pole. As a result, it is possible to solidify in one direction without using a seed crystal, and the crystallinity of the crystalline silicon particles 101 can be greatly improved by suppressing the generation of subgrains and the like.
[0076] また、多数個のシリコン粒子 101を重層的に載置させた状態であるので、先に結晶 化した台板 102上の結晶シリコン粒子との接触部分を固化起点にして、その上に隣 接するシリコン粒子 101が固化することが可能となり、重層的に載置されたより上部の 方へ固化が連鎖反応的に広がるので、多数個のシリコン粒子 101の結晶性を大幅に 向上させること力 Sでさる。 [0076] In addition, since a large number of silicon particles 101 are placed in a multi-layered manner, the contact portion with the crystalline silicon particles on the base plate 102 previously crystallized is set as a solidification starting point, and the upper portion thereof. Adjacent silicon particles 101 can be solidified, and the upper part of the multilayered Since solidification spreads in a chain reaction direction, the force S can greatly improve the crystallinity of a large number of silicon particles 101.
[0077] シリコン粒子 101の大きさは、通常は形状がほぼ球状であることから、その平均粒 径が直径 1500 in以下が良ぐその形状が球により近いことが好ましい。ただし、シ リコン粒子 101の形状は球状に限られるものではなぐ立方体状、直方体状、その他 の不定形の形状であってもよレ、。  [0077] Since the size of the silicon particles 101 is usually almost spherical, the average particle diameter is preferably 1500 in or less, and the shape is preferably closer to the sphere. However, the shape of the silicon particles 101 is not limited to a spherical shape, but may be a cubic shape, a rectangular parallelepiped shape, or other irregular shapes.
[0078] シリコン粒子 101の大きさ力 500 mを超えて大きい場合、シリコン粒子 101の表 面に形成される窒化珪素膜の厚みがシリコン粒子 101本体に対して相対的に薄くな ることによって、シリコン粒子 101の内側のシリコンの溶融時におけるシリコン粒子 10 1の形状を安定に保つことが難しくなる。また、シリコン粒子 101の内側のシリコンを完 全に溶融させることも困難となって、溶融が不完全な場合にはサブダレインが生じ易 くなる。他方、シリコン粒子 101の直径が 30 m未満と小さい場合、シリコン粒子 101 の内側のシリコンの溶融時にシリコン粒子 101の形状を安定に維持することが困難と なる。  [0078] When the size force of the silicon particles 101 is larger than 500 m, the thickness of the silicon nitride film formed on the surface of the silicon particles 101 becomes relatively thin with respect to the silicon particle 101 main body. It becomes difficult to keep the shape of the silicon particles 101 at the time of melting of the silicon inside the silicon particles 101 stable. In addition, it becomes difficult to completely melt the silicon inside the silicon particles 101, and subdurain is likely to occur when the melting is incomplete. On the other hand, when the diameter of the silicon particles 101 is as small as less than 30 m, it is difficult to stably maintain the shape of the silicon particles 101 when the silicon inside the silicon particles 101 is melted.
[0079] 従って、シリコン粒子 101の直径は 30 m〜1500 mであることが好ましぐこれ によってシリコン粒子 101の形状を安定に維持して、サブダレインの発生がない球形 状で良質な結晶性を有する結晶シリコン粒子を安定して作製することができる。  [0079] Accordingly, it is preferable that the diameter of the silicon particles 101 is 30 m to 1500 m, thereby stably maintaining the shape of the silicon particles 101 and providing a spherical and high-quality crystallinity with no generation of subdarenes. Crystalline silicon particles can be stably produced.
[0080] シリコン粒子 101をシリコンの融点( 1414°C)より高!/、温度へ昇温して!/、く工程(後 工程)での加熱炉内の雰囲気ガスは、酸素ガスから成る雰囲気ガスか酸素ガス及び 不活性ガスから成る雰囲気ガスとする。不活性ガスとしては、アルゴンガス,窒素ガス ,ヘリウムガス,水素ガスが適するが、コストが低いという点や扱い易いという点からは 、アルゴンガスあるいは窒素ガスが好適である。なお、加熱炉内の雰囲気ガス中の各 ガス分圧は、全ガス流量に対する各ガス流量で調整できる。雰囲気ガスは例えばガ ス供給手段からガスフィルタを通してベルジャー内に供給される力、このガス供給手 段にガスを供給する装置がガス圧力とガス濃度とを調整可能な機構を持つものであ れば'よい。  [0080] The temperature of the silicon particle 101 is higher than the melting point of silicon (1414 ° C)! /, The temperature is raised to a temperature! /, And the atmosphere gas in the heating furnace in the subsequent process (post process) is an atmosphere composed of oxygen gas The atmosphere gas consists of gas or oxygen gas and inert gas. Argon gas, nitrogen gas, helium gas, and hydrogen gas are suitable as the inert gas, but argon gas or nitrogen gas is preferred from the viewpoint of low cost and ease of handling. In addition, each gas partial pressure in the atmospheric gas in the heating furnace can be adjusted by each gas flow rate with respect to the total gas flow rate. For example, if the atmospheric gas is a force supplied from the gas supply means through the gas filter into the bell jar, and the device for supplying the gas to the gas supply means has a mechanism capable of adjusting the gas pressure and the gas concentration. 'Good.
[0081] 後工程での加熱炉内の雰囲気ガスが酸素ガス及び不活性ガスから成る場合、酸素 ガス分圧が 20%以上であることが好ましい。雰囲気ガス中の酸素ガス分圧が 20%未 満の場合、窒化珪素膜からの酸素蒸発が促進されやすくなり、またシリコン粒子 101 内部のシリコンの溶融時に形状を安定に保てず形状制御が難しくなる。 [0081] When the atmospheric gas in the heating furnace in the subsequent step is composed of oxygen gas and inert gas, the oxygen gas partial pressure is preferably 20% or more. Oxygen gas partial pressure in atmospheric gas is not 20% When it is full, oxygen evaporation from the silicon nitride film is easily promoted, and the shape cannot be kept stable when the silicon inside the silicon particles 101 is melted, making it difficult to control the shape.
[0082] シリコン粒子 101はシリコンの融点(1414°C)以上で、好ましくは 1480°C以下の温 度まで加熱される。この間にシリコン粒子 101において表面の窒化珪素膜の内側の シリコンが溶融する。このとき、シリコン粒子 101の表面に形成された窒化珪素膜によ つて、内側のシリコンを溶融させながらもシリコン粒子 101の形状を維持することが可 能である。ただし、シリコン粒子 101の形状を安定に維持するのが困難となるような温 度、例えばシリコン粒子 101の場合であれば 1480°Cを超える温度まで昇温させた場 合、シリコン粒子 101の内部のシリコンの溶融時にシリコン粒子 101の形状を安定に 保つことが難しくなり、隣接するシリコン粒子 101同士の合体が生じやすくなり、また シリコン粒子 101が台板 102と融着し易くなる。  [0082] The silicon particles 101 are heated to a temperature not lower than the melting point (1414 ° C) of silicon and preferably not higher than 1480 ° C. During this period, silicon inside the silicon nitride film on the surface melts in the silicon particles 101. At this time, the silicon nitride film formed on the surface of the silicon particles 101 can maintain the shape of the silicon particles 101 while melting the inner silicon. However, if the temperature of the silicon particle 101 is difficult to maintain stably, for example, in the case of the silicon particle 101, if the temperature is raised to a temperature exceeding 1480 ° C, the inside of the silicon particle 101 When the silicon melts, it becomes difficult to keep the shape of the silicon particles 101 stable, and the adjacent silicon particles 101 tend to coalesce, and the silicon particles 101 are easily fused to the base plate 102.
[0083] なお、シリコン粒子 101の表面に形成される窒化珪素膜の厚みは、シリコン粒子 10 1の上記平均粒径の範囲において、 lOOnm以上であることが好ましい。厚みが 100 nm未満と薄い場合、シリコン粒子 101内部のシリコンの溶融時に、シリコン粒子 101 表面の窒化珪素膜が破れやすくなる。また、厚みが lOOnm以上で必要な強度を有 する窒化珪素膜であれば、シリコン粒子 101内部のシリコンがその溶融時には表面 張力で球形化しようとするのに対し、上記の温度領域であれば窒化珪素膜は充分に 変形可能であるため、内部を単結晶化して得られる結晶シリコン粒子を真球に近い 形状とすること力でさる。  Note that the thickness of the silicon nitride film formed on the surface of the silicon particles 101 is preferably lOOnm or more in the above average particle diameter range of the silicon particles 101. When the thickness is less than 100 nm, the silicon nitride film on the surface of the silicon particles 101 is easily broken when the silicon inside the silicon particles 101 is melted. In addition, if the silicon nitride film has a required strength with a thickness of lOOnm or more, the silicon inside the silicon particles 101 tends to be spheroidized by the surface tension when it melts, whereas it is nitrided in the above temperature range. Since the silicon film can be sufficiently deformed, it can be controlled by the force of making the crystalline silicon particles obtained by single-crystallizing the inside into a shape close to a true sphere.
[0084] 一方、窒化珪素膜の厚みが 10 mを超えて厚くなる場合、窒化珪素膜が上記の温 度領域で変形しに《なり、得られる結晶シリコン粒子 101の形状が真球に近い形状 になりにくいので望ましくな!/、。  On the other hand, when the thickness of the silicon nitride film exceeds 10 m, the silicon nitride film is deformed in the above temperature region, and the shape of the obtained crystalline silicon particles 101 is a shape close to a true sphere. Desirable because it is hard to become! /.
[0085] 従って、シリコン粒子 101の表面の窒化珪素膜の厚みは、上記の平均粒径の範囲  Therefore, the thickness of the silicon nitride film on the surface of the silicon particles 101 is within the above average particle diameter range.
(30 a m〜; 1500 μ m)に対して、 lOOnm〜 0〃 mであることカ好ましく、これによつ て、真球に近い良好な形状の結晶シリコン粒子を安定して得ることができる。また、こ の結晶シリコン粒子を光電変換装置に用いることによって変換効率に優れた光電変 換装置を得ること力できる。  With respect to (30 am to 1500 μm), it is preferable that lOOnm to 0 μm, so that crystalline silicon particles having a good shape close to a true sphere can be stably obtained. In addition, by using these crystalline silicon particles in a photoelectric conversion device, it is possible to obtain a photoelectric conversion device having excellent conversion efficiency.
[0086] 次に、図 1 (c)に示すように、溶融したシリコン粒子 101を、窒化珪素膜の内側の溶 融したシリコンを固化させるために、融点以下の約 1400°C以下の温度まで降温させ て固化させる。この際、融点以下の比較的高温の温度(1360°C程度)に維持して固 化させる場合、シリコン粒子 101と台板 102との接触部分を固化起点(一方の極)とし て上方の対向する極へ向けて一方向に固化が進行するので、すでに固化したシリコ ン粒子 101との接触点を固化の起点として一方向性の固化が発生し、そのままシリコ ン粒子 101の全体に継承されて結晶が成長し、得られる結晶シリコン粒子が単結晶 となり、結晶性を大幅に向上させることができる。 Next, as shown in FIG. 1 (c), the molten silicon particles 101 are dissolved in the inner side of the silicon nitride film. In order to solidify the melted silicon, the temperature is lowered to a temperature of about 1400 ° C or less below the melting point and solidified. At this time, when solidifying by maintaining at a relatively high temperature (about 1360 ° C) below the melting point, the contact portion between the silicon particle 101 and the base plate 102 is set as the solidification starting point (one pole) and facing upward. Solidification progresses in one direction toward the pole, so that unidirectional solidification occurs at the point of contact with the already solidified silicon particle 101 and is inherited by the entire silicon particle 101 as it is. Crystals grow and the resulting crystalline silicon particles become single crystals, which can greatly improve crystallinity.
[0087] また、多数個のシリコン粒子 101が重層的に載置された状態であれば、先に結晶 化した台板 102上の結晶シリコン粒子との接触部分を固化起点にして、上に隣接す るシリコン粒子 101が固化することが可能となり、重層的に載置されたより上部の方へ 固化が連鎖的に広がるので、多数個の結晶シリコン粒子 101の結晶性を大幅に向上 させること力 Sでさる。 [0087] If a large number of silicon particles 101 are placed in a multilayered manner, the contact portion with the crystalline silicon particles on the base plate 102 that has been crystallized earlier is set as the solidification starting point and is adjacent to the top. Since the solidified silicon particles 101 can be solidified and the solidification spreads in a chained manner toward the upper part of the stacked layers, the crystallinity of a large number of crystalline silicon particles 101 can be greatly improved. I'll do it.
[0088] また、溶融したシリコン粒子 101を固化させる途中でシリコン粒子 101に対して熱ァ ニール処理、例えば 1000°C以上の一定温度で 30分間以上の熱ァニール処理を、 行うことが好ましい。この熱ァニール処理を行うことによって、固化時に発生した結晶 シリコン粒子の結晶中の歪み、結晶シリコン粒子の表面の窒化珪素膜と内側の結晶 シリコンとの界面に発生した界面歪み等を緩和除去して、良好な結晶性の結晶シリコ ン粒子とすること力でさる。  [0088] In addition, during the solidification of the molten silicon particles 101, it is preferable to perform a thermal annealing treatment on the silicon particles 101, for example, a thermal annealing treatment at a constant temperature of 1000 ° C or higher for 30 minutes or longer. By performing this thermal annealing treatment, the distortion in the crystal of the crystalline silicon particles generated at the time of solidification, the interface distortion generated at the interface between the silicon nitride film on the surface of the crystalline silicon particles and the inner crystalline silicon, etc. are alleviated and removed. Therefore, it is necessary to use crystalline silicon particles having good crystallinity.
[0089] 本発明の結晶シリコン粒子の製造方法によれば、以上のようにして、良好な結晶性 を有し、かつ不要な不純物量が低減された結晶シリコン粒子を安定して製造すること ができる。  [0089] According to the method for producing crystalline silicon particles of the present invention, as described above, it is possible to stably produce crystalline silicon particles having good crystallinity and a reduced amount of unnecessary impurities. it can.
[0090] 次に、本発明の光電変換装置の一実施形態を図 2に基づいて説明する。  Next, an embodiment of the photoelectric conversion device of the present invention will be described with reference to FIG.
[0091] 本発明の結晶シリコン粒子 406を用いた光電変換装置においては、導電性基板 4 07の一主面、この例では上面に、第 1の導電型(例えば p型)の結晶シリコン粒子 40 6が多数個、その下部を例えば接合層 408によって導電性基板 407に接合される。 互いに隣接する結晶シリコン粒子 406、 406の間には絶縁物質 409を介在させるとと もに、それら結晶シリコン粒子 406の上部を絶縁物質 409から露出させて配置し、こ れら結晶シリコン粒子 406に第 2の導電型 (例えば n型)の半導体層 410 (半導体部) 及び透光性導体層 41 1が順次設けられた構成となって!/、る。 [0091] In the photoelectric conversion device using the crystalline silicon particles 406 of the present invention, the first conductive type (for example, p-type) crystalline silicon particles 40 are formed on one main surface of the conductive substrate 407, in this example, the upper surface. A large number of 6 are bonded to the conductive substrate 407 at the lower portion thereof by, for example, a bonding layer 408. An insulating material 409 is interposed between the crystalline silicon particles 406 and 406 adjacent to each other, and an upper portion of the crystalline silicon particles 406 is disposed so as to be exposed from the insulating material 409. Second conductivity type (for example, n-type) semiconductor layer 410 (semiconductor portion) In addition, the translucent conductor layer 41 1 is provided in order.
[0092] 電極 412は、この光電変換装置を太陽電池として使用する際に、透光性導体層 41 1の上に所定のパターン形状に被着形成されるものであり、例えばフィンガー電極及 びバスバー電極である。また、電極 412は、銅,アルミニウム等から成る導電板であつ てもよい。 [0092] The electrode 412 is formed in a predetermined pattern shape on the translucent conductor layer 411 when the photoelectric conversion device is used as a solar cell. For example, the electrode 412 is a finger electrode and a bus bar. Electrode. The electrode 412 may be a conductive plate made of copper, aluminum or the like.
[0093] 上記構成の本発明の光電変換装置における結晶シリコン粒子 406は、上記の本発 明の結晶シリコン粒子の製造方法によって製造されたものである。本発明の結晶シリ コン粒子の製造方法によって製造された結晶シリコン粒子 406は、不純物濃度が極 めて低く高品質であるので、高い光電変換効率を得るために重要な因子となる少数 キャリアの寿命を向上させることができる。従って、光電変換装置の構成部品として好 ましい結晶シリコン粒子 406を得ることができる。  [0093] The crystalline silicon particles 406 in the photoelectric conversion device of the present invention having the above-described configuration are manufactured by the above-described manufacturing method of crystalline silicon particles of the present invention. Since the crystalline silicon particles 406 produced by the method for producing crystalline silicon particles of the present invention have a very low impurity concentration and high quality, the lifetime of minority carriers, which is an important factor for obtaining high photoelectric conversion efficiency, is obtained. Can be improved. Accordingly, crystalline silicon particles 406 that are preferable as a component of the photoelectric conversion device can be obtained.
[0094] 本発明の光電変換装置における結晶シリコン粒子 406の製造方法は、上述した結 晶シリコン粒子の製造方法と同様である。結晶シリコン粒子 406の出発材料であるシ リコン粒子 101は、所望の抵抗値になるように第 1の導電型のドーパントとして p型の 半導体不純物がドーピングされていることが好ましい。 p型ドーパントとしては、ホウ素 ,アルミニウム,ガリウム等が好ましぐその添加量は 1 X 1014〜1 X 1018atoms/cm 2が好ましい。以上の本発明の結晶シリコン粒子の製造方法によって製造された結晶 シリコン粒子 406は、本発明の光電変換装置を作製するために使用される。そして、 この光電変換装置を発電手段として用い、この発電手段からの発電電力を負荷に供 給するように成した光発電装置とすることができる。 [0094] The method for producing crystalline silicon particles 406 in the photoelectric conversion device of the present invention is the same as the method for producing crystalline silicon particles described above. The silicon particles 101 which are the starting material of the crystalline silicon particles 406 are preferably doped with a p-type semiconductor impurity as a first conductivity type dopant so as to have a desired resistance value. As the p-type dopant, boron, aluminum, gallium or the like is preferable, and the addition amount is preferably 1 × 10 14 to 1 × 10 18 atoms / cm 2. The crystalline silicon particles 406 produced by the above-described method for producing crystalline silicon particles of the present invention are used for producing the photoelectric conversion device of the present invention. The photoelectric conversion apparatus can be used as a power generation means, and a photovoltaic power generation apparatus configured to supply the generated power from the power generation means to a load can be obtained.
[0095] 図 2に示した例は、以上のようにして得られた結晶シリコン粒子 406を用いて作製さ れた光電変換装置である。この光電変換装置を得るには、まず、結晶シリコン粒子 4 06の表面に形成された窒化珪素膜をフッ酸でエッチング除去する。さらに、窒化珪 素膜と結晶シリコン粒子 406との界面歪み、及び結晶シリコン粒子 406の表面に偏 析された P型ドーパントや酸素,炭素や金属等の不純物を除去するために、結晶シリ コン粒子 406の表面をフッ硝酸等でエッチング除去しても構わな!/、。その際に除去さ れる結晶シリコン粒子 406の表面層の厚みは、径方向で 100 H m以下であることが 好ましい。 [0096] 次に、アルミニウム等から成る導電性基板 407の上に結晶シリコン粒子 406を多数 個配置する。そして、これを還元雰囲気中にて全体的に加熱して生じた接合層 408 を介して、結晶シリコン粒子 406を導電性基板 407に接合させる。なお、接合層 408 は、例えばアルミニウムとシリコンとの合金である。 The example shown in FIG. 2 is a photoelectric conversion device manufactured using the crystalline silicon particles 406 obtained as described above. In order to obtain this photoelectric conversion device, first, the silicon nitride film formed on the surface of the crystalline silicon particles 406 is removed by etching with hydrofluoric acid. Furthermore, in order to remove the interfacial strain between the silicon nitride film and the crystalline silicon particles 406 and impurities such as P-type dopant and oxygen, carbon, and metal segregated on the surface of the crystalline silicon particles 406, crystalline silicon particles The surface of 406 may be removed by etching with hydrofluoric acid or the like! The thickness of the surface layer of the crystalline silicon particles 406 removed at that time is preferably 100 Hm or less in the radial direction. Next, a large number of crystalline silicon particles 406 are arranged on a conductive substrate 407 made of aluminum or the like. Then, the crystalline silicon particles 406 are bonded to the conductive substrate 407 through the bonding layer 408 generated by heating the whole in a reducing atmosphere. Note that the bonding layer 408 is, for example, an alloy of aluminum and silicon.
[0097] このとき、導電性基板 407を、アルミニウム基板とする力、、または表面にアルミニウム を少なくとも含む金属基板にすることにより、低温で結晶シリコン粒子 406を接合する ことができ、軽量かつ低価格の光電変換装置を提供することができる。また、導電性 基板 407の表面を粗面にすることにより、導電性基板 407の表面の非受光領域に到 達する入射光の反射をランダムにすることができ、非受光領域で入射光を斜めに反 射させて、光電変換装置表面側へ再反射させることができ、これを結晶シリコン粒子 406の光電変換部でさらに光電変換することにより、入射光を有効に利用することが できる。  [0097] At this time, the conductive substrate 407 is made of an aluminum substrate, or a metal substrate containing at least aluminum on the surface, so that the crystalline silicon particles 406 can be bonded at a low temperature, which is lightweight and inexpensive. A photoelectric conversion device can be provided. In addition, by making the surface of the conductive substrate 407 rough, reflection of incident light reaching the non-light-receiving region of the surface of the conductive substrate 407 can be made random, and incident light is obliquely inclined in the non-light-receiving region. The light can be reflected and re-reflected toward the surface of the photoelectric conversion device, and incident light can be effectively used by further photoelectrically converting the light by the photoelectric conversion portion of the crystalline silicon particles 406.
[0098] 次に、接合された結晶シリコン粒子 406の隣接するもの同士の間に介在するように 、導電性基板 407上に絶縁物質 409を、これら結晶シリコン粒子 406の上部、少なく とも天頂部を絶縁物質 409から露出させて配置する。  [0098] Next, an insulating material 409 is placed on the conductive substrate 407 so as to be interposed between adjacent ones of the bonded crystalline silicon particles 406, and at the top of these crystalline silicon particles 406, at least the zenith portion. It is exposed from the insulating material 409.
[0099] ここで、隣接する結晶シリコン粒子 406同士の間の絶縁物質 409の表面形状を、結 晶シリコン粒子 406側が高くなつている凹形状をしているものとすることにより、絶縁 物質 409とこの上を被って形成される透明封止樹脂との屈折率の差により、結晶シリ コン粒子 406の無い非受光領域における、結晶シリコン粒子 406への入射光の乱反 射を促進すること力 Sできる。  [0099] Here, the surface shape of the insulating material 409 between the adjacent crystalline silicon particles 406 is assumed to be a concave shape that is higher on the crystalline silicon particle 406 side. Due to the difference in refractive index from the transparent encapsulating resin formed thereon, it is possible to promote the random reflection of incident light on the crystalline silicon particles 406 in the non-light-receiving region without the crystalline silicon particles 406. it can.
[0100] 次に、これら結晶シリコン粒子 406の露出した上部に第 2の導電型の半導体層 410 及び透光性導体層 411を設ける。半導体層 410は、アモルファスまたは多結晶の半 導体層 410を成膜することにより、あるいは熱拡散法等により半導体層 410を形成す ることにより設けられる。このとき、結晶シリコン粒子 406は p型であるので、半導体層 410であるシリコン層は n型の半導体層 410とする。さらに、その半導体層 410上に 透光性導体層 411を形成する。そして、太陽電池として所望の電力を取り出すため に所定のパターン形状に銀ペースト等を塗布して、グリッド電極あるいはフィンガー電 極及びバスバー電極等の電極 412を形成する。このようにして、導電性基板 407を 一方の電極にし、電極 412をもう他方の電極とすることにより、太陽電池としての光電 変換装置が得られる。 Next, a second conductive type semiconductor layer 410 and a translucent conductor layer 411 are provided on the exposed upper portions of the crystalline silicon particles 406. The semiconductor layer 410 is provided by forming the amorphous or polycrystalline semiconductor layer 410 or by forming the semiconductor layer 410 by a thermal diffusion method or the like. At this time, since the crystalline silicon particles 406 are p-type, the silicon layer which is the semiconductor layer 410 is an n-type semiconductor layer 410. Further, a translucent conductor layer 411 is formed on the semiconductor layer 410. Then, in order to extract desired power as a solar cell, a silver paste or the like is applied in a predetermined pattern shape to form electrodes 412 such as grid electrodes or finger electrodes and bus bar electrodes. In this way, the conductive substrate 407 is By using one electrode and the electrode 412 as the other electrode, a photoelectric conversion device as a solar cell can be obtained.
[0101] なお、第 2の導電型の半導体層 410を形成するには、結晶シリコン粒子 406の導電 性基板 407への接合に先立って、結晶シリコン粒子 406の表面に工程コストの低い 熱拡散法により形成してもよい。この場合、例えば、第 2の導電型のドーパントとして、 V族の P, As, Sbや III族の B, Al, Ga等を用い、石英からなる拡散炉に結晶シリコン 粒子 406を収容し、ドーパントを導入しながら加熱して結晶シリコン粒子 406の表面 に第 2の導電型の半導体層 410を形成する。  [0101] Note that in order to form the second conductivity type semiconductor layer 410, a thermal diffusion method with a low process cost is performed on the surface of the crystalline silicon particles 406 prior to the bonding of the crystalline silicon particles 406 to the conductive substrate 407. May be formed. In this case, for example, P, As, Sb of Group V, B, Al, Ga, etc. of Group III are used as the second conductivity type dopant, and the crystalline silicon particles 406 are accommodated in a diffusion furnace made of quartz. The semiconductor layer 410 of the second conductivity type is formed on the surface of the crystalline silicon particles 406 by heating while introducing.
[0102] <第 2の実施形態〉 [0102] <Second Embodiment>
次に本発明の第 2の実施形態を説明するが、第 1の実施形態と同じ工程および構 成部材については同一符号を付して詳細な説明を省略する場合がある。  Next, a second embodiment of the present invention will be described. The same steps and constituent members as those in the first embodiment may be denoted by the same reference numerals, and detailed description thereof may be omitted.
図 3 (a)〜(d)は、この実施形態に力、かる結晶シリコン粒子の製造方法を示す概略 断面図である。図 3 (a)は、結晶シリコン粒子 101の表面に、剛性の大きい下側回転 定盤 201、上側回転定盤 202および遊離砥粒 203を用いた研磨加工により加工変 質層を形成する方法を示している。また、図 3 (b)〜(d)は、台板 301上に重層的に 載置された多数個の結晶シリコン粒子 101を示す工程毎の断面図である。  3 (a) to 3 (d) are schematic cross-sectional views showing a method for producing crystalline silicon particles that are effective in this embodiment. FIG. 3 (a) shows a method of forming a work-affected layer on the surface of the crystalline silicon particles 101 by polishing using the lower rotating surface plate 201, the upper rotating surface plate 202, and the loose abrasive grains 203 having high rigidity. Show. 3 (b) to 3 (d) are cross-sectional views for each process showing a large number of crystalline silicon particles 101 placed on the base plate 301 in a multilayered manner.
[0103] この実施形態に力、かる結晶シリコン粒子の製造方法は、シリコン融液が入った坩堝 のノズル部からシリコン融液を粒状として排出して落下させるとともに、粒状のシリコン 融液を落下中に冷却して凝固させることによって結晶シリコン粒子 101を作製し、次 に結晶シリコン粒子 101の表面に研磨加工を施すことによって結晶シリコン粒子 101 の表層部に加工変質層を形成する。次に窒素ガスから成る雰囲気ガスまたは窒素ガ スを主成分として含む雰囲気ガス中で、結晶シリコン粒子 101をシリコンの融点以下 の温度に加熱して結晶シリコン粒子 101の表面に窒化珪素膜を形成する。次に酸素 ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガス中で、 結晶シリコン粒子 101を加熱して窒化珪素膜の内側のシリコンを溶融させて降温して 凝固させて単結晶化する。  [0103] The method for producing crystalline silicon particles, which is particularly effective for this embodiment, is that the silicon melt is discharged as particles from the nozzle part of the crucible containing the silicon melt and dropped, and the granular silicon melt is being dropped. Then, the crystalline silicon particles 101 are produced by cooling and solidifying, and then the surface of the crystalline silicon particles 101 is polished to form a work-affected layer on the surface layer portion of the crystalline silicon particles 101. Next, the crystalline silicon particles 101 are heated to a temperature not higher than the melting point of silicon in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component to form a silicon nitride film on the surface of the crystalline silicon particles 101. . Next, in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and inert gas, the crystalline silicon particles 101 are heated to melt the silicon inside the silicon nitride film, and the temperature is lowered and solidified to form a single crystal. To do.
[0104] まず、図 4に示すように、結晶シリコン粒子 101の材料として半導体グレードの結晶 シリコンを用い、これを赤外線や高周波誘導コイルを用いて容器内で溶融し、しかる 後に溶融したシリコンを粒状のシリコン融液として自由落下させる溶融落下法 (ジエツ ト法)等によって多結晶の結晶シリコン粒子 101を得る。 [0104] First, as shown in FIG. 4, a semiconductor grade crystal is used as the material of the crystalline silicon particles 101. Polycrystalline silicon is melted in a container using silicon and infrared or high-frequency induction coils, and then melted and dropped freely as a granular silicon melt (jet method). Particle 101 is obtained.
[0105] 図 4に示す、溶融落下法による結晶シリコン粒子の製造装置 (ジェット装置)におい て、坩堝 1は、原料のシリコン粒子を加熱溶融してシリコン融液とするとともに、底部の ノズル部 l aから粒状シリコンの融液 4を排出するための容器である。坩堝 1内で加熱 溶融されたシリコン融液は、ノズル部 laより管 2中へ排出され、粒状シリコンの融液 4 となって管 2の内側を落下し、結晶シリコン粒子 5が得られる。管 2は坩堝 1の下方に 長手方向が上下方向となるように配置される。  [0105] In the crystalline silicon particle manufacturing apparatus (jet apparatus) shown in Fig. 4, the crucible 1 heats and melts the raw silicon particles to form a silicon melt, and the bottom nozzle section la This is a container for discharging the melt 4 of granular silicon. The silicon melt heated and melted in the crucible 1 is discharged into the tube 2 from the nozzle part la, becomes a granular silicon melt 4, falls inside the tube 2, and crystal silicon particles 5 are obtained. The tube 2 is arranged below the crucible 1 so that the longitudinal direction is the vertical direction.
坩堝 1は、シリコンの融点より高い融点を有する材料から成る。また坩堝 1は、シリコ ン融液との反応性が小さい材料からなることが好ましぐシリコン融液との反応が大き い場合、坩堝 1の材料が不純物として結晶シリコン粒子 5中へ多量に混入することと なるため好ましくない。坩堝 1には、石英等から成るガス導入管 3が設けられている。  The crucible 1 is made of a material having a melting point higher than that of silicon. The crucible 1 is preferably made of a material having low reactivity with the silicon melt. When the reaction with the silicon melt is large, the material of the crucible 1 is mixed in the crystalline silicon particles 5 as impurities. This is not preferable. The crucible 1 is provided with a gas introduction pipe 3 made of quartz or the like.
[0106] 例えば、坩堝 1の材料としては、炭素,炭化珪素質焼結体,炭化珪素結晶体,窒化 ホウ素質焼結体,酸窒化珪素質焼結体,石英,水晶,窒化珪素質焼結体,酸化アル ミニゥム質焼結体,サファイア,酸化マグネシウム質焼結体等が好ましい。また、これ らの材料の複合体、混合体または化合体であってもよい。また、上記材料から成る基 体の表面に炭化珪素膜,窒化珪素膜,酸化珪素膜をコーティングしてもよい。また、 坩堝 1内において原料を融点以上に加熱する加熱方法としては、電磁誘導加熱や 抵抗加熱等が好適である。  [0106] For example, the material of the crucible 1 is carbon, silicon carbide sintered body, silicon carbide crystal, boron nitride sintered body, silicon oxynitride sintered body, quartz, quartz crystal, silicon nitride sintered The body, aluminum oxide sintered body, sapphire, magnesium oxide sintered body and the like are preferable. Further, it may be a composite, mixture or combination of these materials. Further, a silicon carbide film, a silicon nitride film, or a silicon oxide film may be coated on the surface of the substrate made of the above material. Further, as a heating method for heating the raw material to the melting point or higher in the crucible 1, electromagnetic induction heating, resistance heating, or the like is suitable.
[0107] ノズル部 laは、炭化珪素 (炭化珪素結晶体または炭化珪素質焼結体)または窒化 珪素 (窒化珪素質焼結体)から成る。  [0107] The nozzle portion la is made of silicon carbide (silicon carbide crystal or silicon carbide sintered body) or silicon nitride (silicon nitride sintered body).
[0108] 溶融落下法で作製された多結晶の結晶シリコン粒子 101には、所望の導電型及び 抵抗値にするために、通常はドーパントがドーピングされる。シリコンに対するドーパ ントとしては、ホウ素,アルミニウム,ガリウム,インジウム,リン,ヒ素,アンチモンがある 力 S、シリコンに対する偏析係数が大きい点やシリコン溶融時の蒸発係数が小さい点か らは、ホウ素あるいはリンを用いることが望ましい。また、ドーパント濃度としては、シリ コンの結晶材料に 1 X 1014〜1 X 1018atoms/cm3程度添加される。 [0109] この溶融落下法によって結晶シリコン粒子 101を得た時点では、結晶シリコン粒子 101の形状は、ほぼ球形状のものの他にも涙滴型や流線形型、あるいは複数個の粒 子が連結した連結型等である。このままの多結晶の結晶シリコン粒子 101を用いて光 電変換装置を作製した場合、良好な光電変換特性を得られないものとなる。その原 因は、この多結晶の結晶シリコン粒子 101中に通常含有されている Fe, Cr, Ni, Mo 等の金属不純物、及び多結晶の結晶シリコン粒子 101の結晶粒界におけるキャリア の再結合効果によるものである。 [0108] Polycrystalline crystalline silicon particles 101 produced by the melt drop method are usually doped with a dopant in order to obtain a desired conductivity type and resistance value. Dopants for silicon include boron, aluminum, gallium, indium, phosphorous, arsenic, and antimony. S, boron and phosphorus are used because they have a large segregation coefficient for silicon and a small evaporation coefficient when silicon melts. It is desirable to use it. The dopant concentration is about 1 × 10 14 to 1 × 10 18 atoms / cm 3 added to the silicon crystal material. [0109] At the time when the crystalline silicon particles 101 are obtained by this melting and dropping method, the crystalline silicon particles 101 have a substantially spherical shape, a teardrop type, a streamline type, or a plurality of particles connected to each other. Connected type. When a photoelectric conversion device is produced using the polycrystalline silicon particles 101 as it is, good photoelectric conversion characteristics cannot be obtained. This is because metal impurities such as Fe, Cr, Ni, and Mo that are usually contained in the polycrystalline crystalline silicon particle 101 and the carrier recombination effect at the crystal grain boundary of the polycrystalline crystalline silicon particle 101. Is due to.
[0110] これを改善するために、溶融落下法によって得られた結晶シリコン粒子 101の表面 に研磨加工による加工変質層を形成し、次に、窒素ガスから成る雰囲気ガスまたは 窒素ガスを主成分として含む雰囲気ガス中で、温度制御した加熱炉の中で多結晶の 結晶シリコン粒子 101をシリコンの融点(1414°C)以下の温度(500〜; 1400°C)に加 熱して結晶シリコン粒子 101の表面に窒化珪素膜を形成し、その後、酸素ガスから成 る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガス中で結晶シリコン 粒子 101を加熱して窒化珪素膜の内側のシリコンを溶融させ、降温して凝固させて 単結晶化する。 [0110] In order to improve this, a work-affected layer is formed by polishing on the surface of the crystalline silicon particles 101 obtained by the melt drop method, and then an atmosphere gas composed of nitrogen gas or nitrogen gas is used as a main component. The polycrystalline silicon particles 101 are heated to a temperature (500 to 1400 ° C) below the melting point of silicon (1414 ° C) in a temperature-controlled heating furnace in an atmosphere gas containing the crystalline silicon particles 101 A silicon nitride film is formed on the surface, and then the crystalline silicon particles 101 are heated in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and an inert gas to melt silicon inside the silicon nitride film, The temperature is lowered and solidified to form a single crystal.
[0111] まず、研磨加工による加工変質層の形成について説明する。図 3 (a)に示された下 側回転定盤 201及び上側回転定盤 202は、結晶シリコン粒子 101の表面の研磨装 置として機能するものであり、少なくとも一方が回転するようになっていればよぐ両方 が回転するようになっていてもよい。また、両方が回転する場合、互いに反対方向に 回転してもよく、ある!/、は同方向に回転してそれぞれの回転速度が異なるようにして あよい。  First, the formation of a work-affected layer by polishing will be described. The lower rotary platen 201 and the upper rotary platen 202 shown in FIG. 3 (a) function as a polishing device for the surface of the crystalline silicon particles 101, and at least one of them can rotate. Both may be configured to rotate. Also, if both rotate, they may rotate in opposite directions, and some! / May rotate in the same direction so that their rotational speeds are different.
[0112] さらに、下側回転定盤 201の回転軸及び上側回転定盤 202の回転軸は固定され て!/、てもよく、あるいは一方の回転軸を固定し他方の回転軸を所定の軌跡(円形状、 楕円形状等の軌跡)を描くように運動させてもよい。または、両方の回転軸が所定の 軌跡(円形状、楕円形状等の軌跡)を描くように運動させてもよい。また、下側回転定 盤 201及び上側回転定盤 202の少なくとも一方は、上下方向に移動可能な構造に なっていてもよい。下側回転定盤 201及び上側回転定盤 202の材料は SUS (ステン レススチール)等である。また、下側回転定盤 201及び上側回転定盤 202の平面視 における形状は、円形、四角形等であり、その他の形状であってもよい。 [0112] Further, the rotation axis of the lower rotation platen 201 and the rotation axis of the upper rotation platen 202 may be fixed! /, Or one rotation axis may be fixed and the other rotation axis set to a predetermined locus. It may be moved so as to draw (a circular or elliptical trajectory). Alternatively, both rotary axes may be moved so as to draw a predetermined locus (circular, elliptical, etc.). Further, at least one of the lower rotating surface plate 201 and the upper rotating surface plate 202 may be configured to be movable in the vertical direction. The material of the lower rotating surface plate 201 and the upper rotating surface plate 202 is SUS (stainless steel) or the like. Also, a plan view of the lower rotating surface plate 201 and the upper rotating surface plate 202 is shown. The shape in is a circle, a quadrangle, etc., and may be other shapes.
[0113] また、下側回転定盤 201及び上側回転定盤 202間には、 1個または複数個の結晶 シリコン粒子 101を配置することができ、複数個配置する場合であれば、例えば 100 〜; 100000個程度配置する。また、下側回転定盤 201及び上側回転定盤 202間に 複数個の結晶シリコン粒子 101を配置する場合、個々の結晶シリコン粒子 101の大 きさの違いを考慮して、全ての結晶シリコン粒子 101にほぼ均一に圧力が加わるよう に、下側回転定盤 201及び上側回転定盤 202の押圧面(結晶シリコン粒子 101との 接触面)の少なくとも一方に、ゴム層、ゴム膜、ゴムシート等の弾性層を設けてもよい。  [0113] Further, one or a plurality of crystalline silicon particles 101 can be arranged between the lower rotating platen 201 and the upper rotating platen 202. ; Place around 100,000. Further, when a plurality of crystalline silicon particles 101 are arranged between the lower rotating surface plate 201 and the upper rotating surface plate 202, all the crystalline silicon particles 101 are considered in consideration of the difference in size of the individual crystalline silicon particles 101. A rubber layer, a rubber film, a rubber sheet or the like is applied to at least one of the pressing surfaces (contact surfaces with the crystalline silicon particles 101) of the lower rotating surface plate 201 and the upper rotating surface plate 202 so that pressure is applied to the 101 substantially uniformly. An elastic layer may be provided.
[0114] 遊離砥粒 203の材料としては、一般的に炭化珪素,アルミナ,ダイヤモンド等が用 いられる。遊離砥粒 203を使用しない場合は、下側回転定盤 201及び上側回転定 盤 202の少なくとも一方の押圧面に、炭化珪素,アルミナ,ダイヤモンド等から成る砥 石や砥石板を設置することも可能である。  [0114] As a material of the loose abrasive 203, silicon carbide, alumina, diamond or the like is generally used. When loose abrasive 203 is not used, a grindstone or grindstone plate made of silicon carbide, alumina, diamond, etc. can be installed on at least one of the pressing surfaces of lower rotating platen 201 and upper rotating platen 202 It is.
[0115] 結晶シリコン粒子 101の表層部に研磨加工によって加工変質層を形成するには、 例えば、平均粒径約 30 mの SiCから成る遊離砥粒 203を用い、下側回転定盤 20 1を固定し、上側回転定盤 202を 5〜250rpmの回転速度で回転させ、 3〜30分研 磨加工を行う。このとき、上側回転定盤 202を軸方向下方に移動させ、結晶シリコン 粒子 101に 0. 01MPa〜0. IMPa程度の圧力をかけてもよい。これにより、結晶シリ コン粒子 101の表層部に厚み約 10 in程度の加工変質層が形成される。  [0115] In order to form a work-affected layer on the surface layer portion of the crystalline silicon particles 101 by polishing, for example, loose abrasive 203 made of SiC having an average particle diameter of about 30 m is used, and the lower rotating surface plate 201 is used. Fix and rotate the upper rotating surface plate 202 at a rotation speed of 5 to 250 rpm, and perform polishing for 3 to 30 minutes. At this time, the upper rotating surface plate 202 may be moved downward in the axial direction, and a pressure of about 0.01 MPa to 0.1 IMPa may be applied to the crystalline silicon particles 101. As a result, a work-affected layer having a thickness of about 10 inches is formed on the surface layer of the crystalline silicon particles 101.
[0116] 加工変質層は、一般に、表面側から非晶質層、多結晶層、モザイク層、クラック層、 歪層等が存在する構成のものであり、これらの 5つの層を合わせて加工変質層と呼ぶ 。本発明における加工変質層は、実際には、非晶質層、多結晶層、モザイク層及び クラック層から成るものと推測される。また、加工変質層は、結晶シリコン粒子 101の 単結晶化のための再溶融(リメルト)工程により消失することとなる。  [0116] The work-affected layer generally has a structure in which an amorphous layer, a polycrystalline layer, a mosaic layer, a crack layer, a strained layer, etc. exist from the surface side. Call a layer. It is assumed that the work-affected layer in the present invention is actually composed of an amorphous layer, a polycrystalline layer, a mosaic layer, and a crack layer. In addition, the work-affected layer is lost by a remelting (remelting) step for single crystallization of the crystalline silicon particles 101.
[0117] 加工変質層の存在は、ラマン分光法等により、ラマンスペクトルの半値幅の広がり 等を確言忍することによって特定すること力 Sできる。  [0117] The existence of a work-affected layer can be identified by confirming the broadening of the half-value width of the Raman spectrum by Raman spectroscopy.
[0118] 次に、窒化珪素膜の形成工程(単結晶化の前工程)における窒素ガスから成る雰 囲気ガスまたは窒素ガスを主成分として含む雰囲気ガスの圧力は、 0. 01-0. 2MP a程度がよい。 [0119] 結晶シリコン粒子 101の表面に形成される窒化珪素膜の厚みは lOOnm〜; 10 μ m 程度であればよい。 [0118] Next, the pressure of the atmosphere gas composed of nitrogen gas or the atmosphere gas containing nitrogen gas as the main component in the silicon nitride film formation step (pre-step of single crystallization) is 0.01 to 0.2 MPa. The degree is good. [0119] The thickness of the silicon nitride film formed on the surface of the crystalline silicon particles 101 may be about lOOnm to about 10 μm.
[0120] 後工程(単結晶化のための再溶融(リメルト)工程)における酸素ガスから成る雰囲 気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガスの圧力は、 0. 01-0. 2 MPa程度がよい。  [0120] The pressure of the atmospheric gas composed of oxygen gas or the atmospheric gas composed of oxygen gas and inert gas in the post-process (remelting step for single crystallization) is 0.01-0.2. About MPa is good.
[0121] 後工程において酸素ガス及び不活性ガスを使用する場合、酸素ガスを 20体積% 以上含むものであればよぐアルゴンガス等の不活性ガスを 80体積%以下含むもの であればよい。  [0121] When oxygen gas and inert gas are used in the post-process, any gas containing 20% by volume or more of oxygen gas may be used as long as it contains 80% by volume or less of inert gas such as argon gas.
[0122] 単結晶の結晶シリコン粒子 101を作製するには、図 3 (b)に示すように、多数個(例 えば、数 100〜数 1000個程度)の多結晶の結晶シリコン粒子 101を台板 301の上 面に二層以上に重層的に載置する。本発明でいう重層的な載置とは、図 3 (b)の縦 断面図でみた場合、略球状の結晶シリコン粒子 101が厚み方向に複数の層を成す ように載置され、最密に充填されて積層され載置された状態を示す。  [0122] As shown in Fig. 3 (b), a large number (for example, several hundred to several thousand) of polycrystalline silicon particles 101 are prepared to produce single-crystal crystalline silicon particles 101. Two or more layers are stacked on the upper surface of the plate 301. The multi-layer placement referred to in the present invention means that the substantially spherical crystalline silicon particles 101 are placed so as to form a plurality of layers in the thickness direction as viewed in the longitudinal sectional view of FIG. It shows a state of being filled and stacked and placed.
[0123] 次に、結晶シリコン粒子 101を載置した台板 301を加熱炉(図示せず)内に導入し、 結晶シリコン粒子 101を加熱して!/、く。  [0123] Next, the base plate 301 on which the crystalline silicon particles 101 are placed is introduced into a heating furnace (not shown), and the crystalline silicon particles 101 are heated!
[0124] 加熱炉内で結晶シリコン粒子 101を窒素ガスから成る雰囲気ガスまたは窒素ガスを 主成分として含む雰囲気ガス中で加熱して、シリコンの融点(1414°C)より低い温度 へ昇温していく過程で、結晶シリコン粒子 101の表面には窒化珪素膜が形成される。 窒化珪素膜の形成温度は 500°C以上 1400°C以下が好ましい。  [0124] The crystalline silicon particles 101 are heated in an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component in a heating furnace, and the temperature is raised to a temperature lower than the melting point of silicon (1414 ° C). In the process, a silicon nitride film is formed on the surface of the crystalline silicon particles 101. The formation temperature of the silicon nitride film is preferably 500 ° C or higher and 1400 ° C or lower.
[0125] また、窒化珪素膜は酸素を含んでいることがよい。酸素含有量は、 10モル%程度 以下がよい。 10モル%を超えると、窒化珪素膜中の結晶構造の変化や結晶欠陥の 増加によって膜質が劣化し易くなる。また、窒化珪素膜は酸素を含んでいると、膜の 柔軟性がより向上する。窒化珪素膜に酸素を含ませるには、窒素ガスに酸素ガスを 適量混合した雰囲気ガス中で熱処理するという方法等がある。  [0125] Further, the silicon nitride film preferably contains oxygen. The oxygen content is preferably about 10 mol% or less. If it exceeds 10 mol%, the film quality tends to deteriorate due to the change in crystal structure and increase of crystal defects in the silicon nitride film. Further, when the silicon nitride film contains oxygen, the flexibility of the film is further improved. In order to include oxygen in the silicon nitride film, there is a method in which heat treatment is performed in an atmospheric gas in which an appropriate amount of oxygen gas is mixed with nitrogen gas.
[0126] 次に、図 3 (c)に示すように、酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活 性ガスから成る雰囲気ガス中で、結晶シリコン粒子 101をシリコンの融点(1414°C)よ り高い温度(1414°Cを超え 1480°C以下)へ昇温していく。図 3 (b) , (c)の工程は、 それぞれ別に行っても連続して行っても力、まわない。 [0127] 台板 301は、結晶シリコン粒子 101を溶融後に冷却し固化させて結晶化させるとき の固化起点を生じさせるものとしても機能する。 Next, as shown in FIG. 3 (c), crystalline silicon particles 101 are melted in silicon at a melting point (1414 ° C.) in an atmospheric gas composed of oxygen gas or an atmospheric gas composed of oxygen gas and inert gas. The temperature is raised to a higher temperature (over 1414 ° C and below 1480 ° C). The processes in Fig. 3 (b) and (c) can be performed separately or consecutively. [0127] Base plate 301 also functions as a starting point for solidification when crystalline silicon particles 101 are cooled and solidified after being melted.
[0128] また、多数個の結晶シリコン粒子 101を重層的に載置させた状態であるので、先に 結晶化した台板 301上の結晶シリコン粒子との接触部分を固化起点にして、その上 に隣接する結晶シリコン粒子 101が固化することが可能となる。その結果、重層的に 載置されたより上部の方へ固化が連鎖反応的に広がるので、多数個の結晶シリコン 粒子 101の結晶性を大幅に向上させることができる。  [0128] Further, since a large number of crystalline silicon particles 101 are placed in a multi-layered manner, the contact portion with the crystalline silicon particles on the base plate 301 crystallized first is set as a solidification starting point, It becomes possible for the crystalline silicon particles 101 adjacent to to solidify. As a result, the solidification spreads in a chain reaction toward the upper part of the stacked layers, so that the crystallinity of the large number of crystalline silicon particles 101 can be greatly improved.
[0129] 次に、図 3 (d)に示すように、結晶シリコン粒子 101における窒化珪素膜の内側の 溶融したシリコンを固化させるために、シリコンの融点以下の約 1400°C以下の温度 まで降温させて固化させる。この際、シリコンの融点以下の比較的高温の温度(136 0°C程度)に維持して固化させる力 この場合結晶シリコン粒子 101と台板 301との接 触部分を固化起点(一方の極)として上方の対向する極 向けて一方向に固化が進 行するので、すでに固化した結晶シリコン粒子 101との接触点を固化の起点として一 方向性の固化が発生し、そのまま結晶シリコン粒子 101の全体に継承されて結晶が 成長し、得られる結晶シリコン粒子 101が単結晶となり、結晶性を大幅に向上させる こと力 Sでさる。  Next, as shown in FIG. 3 (d), in order to solidify the molten silicon inside the silicon nitride film in the crystalline silicon particles 101, the temperature is lowered to a temperature of about 1400 ° C. or lower, which is lower than the melting point of silicon. Let it solidify. At this time, the force to solidify by maintaining at a relatively high temperature (about 1360 ° C) below the melting point of silicon. In this case, the contact portion between the crystalline silicon particle 101 and the base plate 301 is the solidification starting point (one pole). As the solidification progresses in one direction toward the upper facing pole, the unidirectional solidification occurs starting from the contact point with the already solidified crystalline silicon particle 101, and the entire crystalline silicon particle 101 remains as it is. The crystal grows in succession, and the resulting crystalline silicon particle 101 becomes a single crystal.
[0130] また、多数個の結晶シリコン粒子 101が重層的に載置された状態であれば、先に 結晶化した台板 301上の結晶シリコン粒子 101との接触部分を固化起点にして、上 に隣接する結晶シリコン粒子 101が固化することが可能となり、重層的に載置された より上部の方へ固化が連鎖的に広がるので、多数個の結晶シリコン粒子 101の結晶 性を大幅に向上させることができる。  [0130] If a large number of crystalline silicon particles 101 are placed in a multi-layered manner, the contact portion with the crystalline silicon particles 101 on the base plate 301 that has been crystallized first is set as the solidification starting point. It is possible to solidify the crystalline silicon particles 101 adjacent to each other, and the solidification spreads in a chain toward the upper part rather than the multi-layered structure, so that the crystallinity of a large number of crystalline silicon particles 101 is greatly improved. be able to.
[0131] また、内部が溶融した結晶シリコン粒子 101を固化させる途中で結晶シリコン粒子 1 01に対して熱ァニール処理、例えば 1000°C以上の一定温度で 30分間以上の熱ァ ニール処理を行うことが好ましレ、。  [0131] Further, during the solidification of the crystalline silicon particles 101 whose inside is melted, thermal annealing treatment is performed on the crystalline silicon particles 101, for example, a thermal annealing treatment at a constant temperature of 1000 ° C or more for 30 minutes or more. Is preferred.
[0132] この実施形態に力、かる結晶シリコン粒子の製造方法によれば、以上のようにして、 良好な結晶性を有し、かつ不要な不純物量が低減された結晶シリコン粒子を安定し て製造すること力できる。その他は前述の実施形態と同じであるので、説明を省略す <第 3の実施形態〉 [0132] According to the method for producing crystalline silicon particles, which is advantageous for this embodiment, as described above, the crystalline silicon particles having good crystallinity and having a reduced amount of unnecessary impurities can be stabilized. You can power to manufacture. Others are the same as in the previous embodiment, so the description is omitted. <Third embodiment>
[0133] 次に本発明の第 2の実施形態を説明するが、第 1および/または第 2の実施形態と 同じ工程および構成部材については同一符号を付して詳細な説明を省略する場合 力 sある。 [0133] Next, a second embodiment of the present invention will be described. The same steps and components as those in the first and / or second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. There are s .
図 5 ω〜(c)は、本発明の結晶シリコン粒子の製造方法について一実施形態を示 すものであり、台板 102上に載置された多数個のシリコン粒子 101を示す工程毎の 断面図である。  FIG. 5 ω to (c) show an embodiment of the method for producing crystalline silicon particles of the present invention, and shows a cross section for each process showing a large number of silicon particles 101 placed on a base plate 102. FIG.
[0134] 本発明の結晶シリコン粒子の製造方法は、シリコン粒子 101をその形状を保持した ままシリコンの融点 Tm (1412°C)以上の温度 T1に加熱して内部のシリコンを溶融さ せて、温度 T1から融点 Tm未満であって 1383°C以上の温度 T2まで過冷却するェ 程 1と、次に溶融したシリコン粒子 101が全て凝固するまで Tm〜T2の範囲内の所定 の温度に保持する工程 2とを具備する。  [0134] In the method for producing crystalline silicon particles of the present invention, the silicon particles 101 are heated to a temperature T1 equal to or higher than the melting point Tm (1412 ° C) of silicon while maintaining the shape thereof, and the silicon inside is melted. The temperature is lower than the melting point Tm, and it is kept at a predetermined temperature in the range of Tm to T2 until the molten silicon particle 101 is completely solidified, and the temperature is lower than the melting point Tm and is 1383 ° C or higher. Step 2 is provided.
[0135] 温度 T1は 1415〜; 1450°C力 く、 1415°C未満では、シリコン粒子が完全に溶融 するのに時間がかかってしまい、 1450°Cを超えると、シリコン粒子の溶融時に形状を 安定に保つことが難しくなり、隣接するシリコン粒子 101同士の合体も生じやすくなり 、またシリコン粒子 101が台板 102と融着し易くなる。  [0135] Temperature T1 is 1415-; 1450 ° C strong. Below 1415 ° C, it takes time for silicon particles to melt completely. When it exceeds 1450 ° C, the shape of silicon particles melts. It becomes difficult to keep stable, and the adjacent silicon particles 101 are likely to coalesce, and the silicon particles 101 are easily fused to the base plate 102.
[0136] 工程 1における温度 T2はシリコンの融点 Tm未満であって 1383°C以上であるが、 T2が Tm以上である場合、シリコン粒子 101の凝固が開始されず、 T2が 1383°C未 満である場合、過冷却度 (Tm— T2)が大きい温度領域で凝固を生ずるために、凝 固終端部における突起の形成、粒界や結晶欠陥の発生が起こり、多結晶化となりうる 均一核生成ゃデンドライト成長になってしまう。  [0136] The temperature T2 in step 1 is less than the melting point Tm of silicon and is 1383 ° C or more. However, when T2 is Tm or more, solidification of the silicon particles 101 is not started and T2 is less than 1383 ° C. In this case, solidification occurs in the temperature range where the degree of supercooling (Tm-T2) is large, so that formation of protrusions at the end of the solidification, generation of grain boundaries and crystal defects can occur, and uniform nucleation that can result in polycrystallization Nya dendritic growth.
[0137] 工程 2にお!/、て、溶融したシリコン粒子 101が全て凝固するまで Tm未満で 1383°C 以上の範囲内の所定の温度に保持するが、所定の温度は 1410以下で 1383°C以 上がよい。 1383°C未満では、工程 1と同様に過冷却度 (Tm— T2)が大きい温度領 域で凝固を生ずるために、凝固終端部における突起の形成、粒界や結晶欠陥の発 生が起こり、多結晶化となりうる均一核生成ゃデンドライト成長になってしまう。 1410 °Cを超えると、過冷却度 (Tm— T2)が小さすぎるために凝固が開始され難ぐ隣接 するシリコン粒子 101同士の合体も生じやすくなり、またシリコン粒子 101が台板 102 と融着し易くなる。 [0137] In step 2, the molten silicon particles 101 are kept at a predetermined temperature within 1383 ° C or less below Tm until all the molten silicon particles 101 are solidified, but the predetermined temperature is 1410 or less and 1383 ° C or better. Below 1383 ° C, solidification occurs in the temperature range where the degree of supercooling (Tm-T2) is large, as in step 1.Therefore, formation of protrusions at the end of solidification and generation of grain boundaries and crystal defects occur. Uniform nucleation that can be polycrystallized results in dendrite growth. If the temperature exceeds 1410 ° C, the degree of supercooling (Tm-T2) is too small, and solidification of adjacent silicon particles 101 that are difficult to start coagulation tends to occur. It becomes easy to fuse.
[0138] また、所定の温度に保持する時間は;!〜 120分間程度がよぐ 1分間未満では、シリ コン粒子 101の凝固がまだ開始されていないか、凝固中のシリコン粒子 101が存在 する可能性もある。 120分間を超えると、シリコン粒子 101の溶融時に形状を安定に 保つことが難しくなり、隣接するシリコン粒子 101同士の合体も生じやすくなり、シリコ ン粒子 101が台板 102と融着し易くなる、また石英ガラス製の基体を有する台板 102 が高温により熱変形を生じてしてしまう。  [0138] In addition, the time for holding at a predetermined temperature is about !! ~ 120 minutes is sufficient. If less than 1 minute, solidification of the silicon particles 101 has not yet started, or there is silicon particles 101 being solidified. There is a possibility. If it exceeds 120 minutes, it becomes difficult to keep the shape stable when the silicon particles 101 are melted, and it is easy for the adjacent silicon particles 101 to coalesce, and the silicon particles 101 are easily fused to the base plate 102. Further, the base plate 102 having the quartz glass substrate is thermally deformed due to a high temperature.
[0139] まず、結晶シリコン粒子の材料として半導体グレードの結晶シリコンを用い、これを 赤外線や高周波コイルを用いて容器内で溶融し、しかる後に溶融したシリコンを粒状 の融液として自由落下させる溶融落下法 (ジェット法)等によって多結晶のシリコン粒 子 101を得る。  [0139] First, semiconductor grade crystalline silicon is used as a material for crystalline silicon particles, which is melted in a container using infrared rays or a high-frequency coil, and then the molten silicon is freely dropped as a granular melt. Polycrystalline silicon particles 101 are obtained by a method (jet method) or the like.
[0140] 溶融落下法で作製された多結晶のシリコン粒子 101には、所望の導電型及び抵抗 値にするために、通常はドーパントがドーピングされる。シリコンに対するドーパントと しては、ホウ素,アルミニウム,ガリウム,インジウム,リン,ヒ素,アンチモンがあるが、 シリコンに対する偏析係数が大きレ、点やシリコン溶融時の蒸発係数が小さ!/、点から は、ホウ素あるいはリンを用いることが好ましい。また、ドーパント濃度としては、シリコ ンの結晶材料に 1 X 1014〜1 X 1018atoms/cm3程度添加される。 [0140] The polycrystalline silicon particles 101 produced by the melt drop method are usually doped with a dopant in order to obtain a desired conductivity type and resistance value. The dopants for silicon include boron, aluminum, gallium, indium, phosphorus, arsenic, and antimony, but the segregation coefficient for silicon is large, and the point and the evaporation coefficient when silicon melts are small! / It is preferable to use boron or phosphorus. The dopant concentration is about 1 × 10 14 to 1 × 10 18 atoms / cm 3 added to the silicon crystal material.
[0141] 溶融落下法によってシリコン粒子 101を得た時点では、シリコン粒子 101の形状は 、涙滴型、流線形型、複数個の粒子が連結した連結型、ほぼ球形状であるが固化膨 張による突起形成された形状等がある。シリコン粒子 101の形状が涙滴型の場合は グレイン数が数個レベルであり、他の形状に比較して形状均一性にも優れて V、て好 ましい。しかし、溶融落下法によって得られた涙滴型等のシリコン粒子 101をそのまま 用いて光電変換装置を作製した場合、良好な光電変換特性は得られない。その原 因は、多結晶のシリコン粒子 101中に通常含有されている Fe, Cr, Ni, Mo等の金 属不純物及び多結晶の結晶粒界におけるキャリアの再結合効果によるものである。  [0141] At the time of obtaining the silicon particles 101 by the melt drop method, the shape of the silicon particles 101 is a teardrop type, a streamline type, a connected type in which a plurality of particles are connected, and a substantially spherical shape, but is solidified and expanded. There are projections formed by the above. When the shape of the silicon particle 101 is a teardrop type, the number of grains is several, and the shape uniformity is superior to other shapes. However, when a photoelectric conversion device is produced using silicon particles 101 such as a teardrop type obtained by the melt-drop method as it is, good photoelectric conversion characteristics cannot be obtained. This is due to metal impurities such as Fe, Cr, Ni, and Mo usually contained in the polycrystalline silicon particles 101 and the carrier recombination effect at the crystal grain boundaries.
[0142] 多結晶のシリコン粒子 101の金属不純物の影響や結晶粒界におけるキャリアの再 結合による劣化を改善するために、本発明の結晶シリコン粒子の製造方法によって、 温度制御した加熱炉等の加熱装置の中で多結晶のシリコン粒子 101を加熱してシリ コン粒子 101の表面に酸窒化珪素膜を形成し、シリコン粒子 101の内部を溶融させ 降温して凝固させることにより、単結晶化された結晶シリコン粒子を作製することがで きる。 [0142] In order to improve the influence of the metal impurities on the polycrystalline silicon particles 101 and the deterioration due to carrier recombination at the grain boundaries, the temperature of the heating furnace or the like is controlled by the method for producing crystalline silicon particles of the present invention. In the device, the polycrystalline silicon particles 101 are heated to By forming a silicon oxynitride film on the surface of the con particle 101, melting the inside of the silicon particle 101, lowering the temperature, and solidifying it, a single crystallized crystalline silicon particle can be manufactured.
[0143] 本発明の製造方法によるシリコン粒子 101の単結晶化は、例えば 1000個のシリコ ン粒子 101のうち 999個程度が完全に単結晶化される程度の割合 (個数割合で 99. 9%程度)で行うこと力 Sできる。  [0143] The single crystallization of the silicon particles 101 by the production method of the present invention is, for example, a ratio in which about 999 out of 1000 silicon particles 101 are completely single-crystallized (number ratio is 99.9%). Degree) Power to do S
[0144] また、シリコン粒子 101を単結晶化した後に、その表面の酸窒化珪素膜を除去する とともに、結晶シリコン粒子の表層部に偏析した、 Fe, Cr, Ni, Mo等の金属不純物 含有部も除去することができる。その結果、本発明の製造方法によって得られた結晶 シリコン粒子を光電変換装置に用いた場合、良好な光電変換特性を得ることができ  [0144] In addition, after the silicon particles 101 were monocrystallized, the silicon oxynitride film on the surface was removed, and metal impurity containing portions such as Fe, Cr, Ni, and Mo segregated on the surface layer portion of the crystalline silicon particles Can also be removed. As a result, when the crystalline silicon particles obtained by the production method of the present invention are used in a photoelectric conversion device, good photoelectric conversion characteristics can be obtained.
[0145] シリコン粒子 101をシリコンの融点(1414°C)より高い温度へ昇温していく工程での 加熱炉内の雰囲気ガスは、酸素ガス及び不活性ガスから成る雰囲気ガスとするのが よい。不活性ガスとしては、アルゴンガス,窒素ガス,ヘリウムガスが好適であり、また 水素ガスも適するが、コストが低いという点や扱い易いという点からは、窒素ガスある いはアルゴンガスがより好適である。また、酸素ガスからなる成る雰囲気ガスとしても かまわない。融点 Tm以下の温度でシリコン粒子 101の表面に酸窒化珪素膜が形成 されて!/、れば、融点 Tm以上では酸素ガスだけでも問題な!/、。 [0145] The atmosphere gas in the heating furnace in the process of raising the temperature of the silicon particles 101 to a temperature higher than the melting point of silicon (1414 ° C) should be an atmosphere gas composed of oxygen gas and inert gas. . As the inert gas, argon gas, nitrogen gas, and helium gas are preferable, and hydrogen gas is also preferable. However, nitrogen gas or argon gas is more preferable because it is low in cost and easy to handle. is there. Further, it may be an atmospheric gas made of oxygen gas. If a silicon oxynitride film is formed on the surface of the silicon particle 101 at a temperature below the melting point Tm! /, If the melting point is above the Tm, there is no problem with oxygen gas alone!
[0146] なお、加熱炉内の雰囲気ガス中の各ガス分圧は、全ガス流量に対する各ガス流量 で調整できる。雰囲気ガスは例えばガス供給手段からガスフィルタを通してペルジャ 一内に供給される力 このガス供給手段にガスを供給する装置がガス圧力とガス濃 度とを調整可能な機構を持つものであればよい。  [0146] Each gas partial pressure in the atmospheric gas in the heating furnace can be adjusted by each gas flow rate with respect to the total gas flow rate. The atmospheric gas may be, for example, a force supplied from the gas supply means through the gas filter into the purger as long as the apparatus for supplying the gas to the gas supply means has a mechanism capable of adjusting the gas pressure and the gas concentration.
[0147] シリコン粒子 101の表面に酸窒化珪素膜を形成する際の雰囲気ガスとして、酸素ガ ス及び不活性ガスから成る雰囲気ガスを使用する場合、その圧力は 0. 01MPa〜0 . 2MPa程度がよい。 0. OlMPa未満では、酸窒化珪素膜からの窒素や酸素の蒸発 により酸窒化珪素膜の膜厚低減や膜質劣化が生じ易くなり、 0. 2MPaを超えると、酸 窒化珪素膜の膜厚バラツキが生じ易くなる。  [0147] When an atmospheric gas composed of an oxygen gas and an inert gas is used as the atmospheric gas for forming the silicon oxynitride film on the surface of the silicon particle 101, the pressure is about 0.01 MPa to 0.2 MPa. Good. If less than OlMPa, evaporation of nitrogen and oxygen from the silicon oxynitride film tends to cause reduction in film thickness and deterioration of the silicon oxynitride film, and if it exceeds 0.2 MPa, variation in film thickness of the silicon oxynitride film occurs. It tends to occur.
[0148] 酸素ガス及び不活性ガスから成る場合の酸素ガス分圧は 10%以上であることが好 ましい。雰囲気ガス中の酸素ガス分圧が 10%未満の場合、酸窒化珪素膜からの酸 素蒸発が促進されやすくなり、またシリコン粒子 101内部のシリコンの溶融時に形状 を安定に保てず形状制御が難しくなる。従って、窒素ガスやアルゴンガス等の不活性 ガス分圧は 90%以下であればよ!/、。 [0148] In the case of oxygen gas and inert gas, the oxygen gas partial pressure is preferably 10% or more. Good. When the oxygen gas partial pressure in the atmospheric gas is less than 10%, the oxygen evaporation from the silicon oxynitride film is easily promoted, and the shape cannot be maintained stably when the silicon inside the silicon particles 101 is melted, so that the shape control can be performed. It becomes difficult. Therefore, the partial pressure of inert gas such as nitrogen gas or argon gas should be 90% or less! /.
[0149] 単結晶の結晶シリコン粒子 101を作製するには、まず、図 1 (a)に示すように、多数 個(例えば、数個〜数 1000個程度)の多結晶のシリコン粒子 101を台板 102の上面 に一層に載置する。 [0149] In order to produce the single-crystal crystalline silicon particles 101, first, as shown in Fig. 1 (a), a large number (for example, several to several thousand) of polycrystalline silicon particles 101 are placed on the surface. A single layer is placed on the upper surface of the plate 102.
[0150] 台板 102上に載置された多数個のシリコン粒子 101は、それら同士が接触していて も構わない。  [0150] The multiple silicon particles 101 placed on the base plate 102 may be in contact with each other.
[0151] 台板 102上への多数個のシリコン粒子 101の載置は、二層以上に重層的に載置し てもよい。即ち、多数個(例えば、数 100〜数 1000個程度)の多結晶のシリコン粒子 101が、台板 102の上面に、図 1 (a)の縦断面図でみた場合に略球状のシリコン粒子 101が厚み方向に複数の層を成すように載置された状態であり、最密に充填されて 積層され載置された状態である。重層的に載置することにより、シリコン粒子 101を高 密度に配置することができ、多数個のシリコン粒子 101を一度に単結晶化することが でき、安価に量産性よく結晶シリコン粒子を製造することが可能となる。従って、光電 変換装置等に使用する結晶シリコン粒子を効率的に製造できる。  [0151] The multiple silicon particles 101 placed on the base plate 102 may be placed in two or more layers. That is, a large number (for example, several hundred to several thousand) of polycrystalline silicon particles 101 are formed on the upper surface of the base plate 102 in the shape of a substantially spherical silicon particle 101 when viewed in the longitudinal sectional view of FIG. Is a state of being placed so as to form a plurality of layers in the thickness direction, and is a state of being stacked and placed in close packing. By placing them in multiple layers, the silicon particles 101 can be arranged at a high density, and a large number of silicon particles 101 can be single-crystallized at a time, producing crystalline silicon particles at low cost and with high productivity. It becomes possible. Therefore, it is possible to efficiently produce crystalline silicon particles used for a photoelectric conversion device or the like.
[0152] 多数個のシリコン粒子 101は涙滴型であることが好ましい。この場合、グレイン数が 数個レベルであり、他の形状のものに比較して形状の均一性にも優れている。ただし 、涙滴型以外にも、流線形型、複数個の粒子が連結した連結型、ほぼ球形状である が固化膨張による突起が形成された形状ものであっても力、まわない。  [0152] The large number of silicon particles 101 are preferably teardrop-shaped. In this case, the number of grains is on the order of several, and the uniformity of the shape is superior to those of other shapes. However, in addition to the teardrop type, a streamlined type, a connected type in which a plurality of particles are connected, or a substantially spherical shape but a shape in which a protrusion due to solidification expansion is formed does not affect the force.
[0153] 台板 102は、上蓋がない箱状か板状のものがよぐ板状の場合には複数段に積み 上げて使用してもよい。台板 102の材質は、シリコン粒子 101との反応を抑えるため に、石英ガラス,ムライト,酸化アルミニウム,炭化珪素,単結晶サフアイャ等が適する 1S 耐熱性,耐久性,耐薬品性に優れコストも安ぐかつ扱い易いという点からは、石 英ガラスが好適である。  [0153] The base plate 102 may be stacked and used in a plurality of stages when the box shape without the upper lid or the plate shape is a plate shape. For the material of the base plate 102, quartz glass, mullite, aluminum oxide, silicon carbide, single crystal sapphire, etc. are suitable for suppressing the reaction with the silicon particles 101. Excellent 1S heat resistance, durability, chemical resistance and low cost. From the viewpoint of being easy to handle, Sekiei glass is preferred.
[0154] 台板 102は石英ガラス製の基体の表面にクリストバライト結晶層が形成されているこ とが好ましい。即ち、シリコン粒子 101と台板 102の表面のクリストバライト結晶層との 接点が凝固起点となり、不均一核生成を生じてシリコン粒子 101を一方向に凝固さ せて容易に単結晶化することができる。また、石英ガラス製の基体の表面のクリストバ ライト結晶層は、 1400°C前後の温度で安定しており、石英ガラス製の基体の表面構 造材 (表面補強層)としての機能を有するものとなる。その結果、石英ガラス製の基体 が熱変形をしょうとするのを妨げるように作用し、熱による基体の変形を防ぐことがで きる。 [0154] It is preferable that the base plate 102 has a cristobalite crystal layer formed on the surface of a quartz glass substrate. That is, the silicon particles 101 and the cristobalite crystal layer on the surface of the base plate 102 The contact point becomes a solidification starting point, and non-uniform nucleation occurs, so that the silicon particles 101 are solidified in one direction and can be easily single-crystallized. In addition, the cristobalite crystal layer on the surface of the quartz glass substrate is stable at a temperature of around 1400 ° C and has a function as a surface structure material (surface reinforcing layer) of the quartz glass substrate. Become. As a result, the quartz glass substrate acts to prevent the thermal deformation of the substrate, and the deformation of the substrate due to heat can be prevented.
[0155] クリストバライト結晶層を形成するには、石英ガラス製の基体を室温から 1200°Cを 超える温度まで酸素を含む例えば大気のような雰囲気中で熱処理 (焼成)することを 繰り返すことによって、行うこと力 Sできる。熱処理の繰り返し回数は 1回以上行えばよ い。  [0155] The cristobalite crystal layer is formed by repeatedly heat-treating (baking) a quartz glass substrate from room temperature to a temperature exceeding 1200 ° C in an atmosphere containing oxygen, for example, air. That power S. The heat treatment may be repeated one or more times.
[0156] 次に、シリコン粒子 101を載置した台板 102を加熱炉(図示せず)内に導入し、シリ コン粒子 101を加熱していく。加熱炉としては、半導体材料の種類に応じて種々のも のが使用できる。  [0156] Next, the base plate 102 on which the silicon particles 101 are placed is introduced into a heating furnace (not shown), and the silicon particles 101 are heated. Various furnaces can be used depending on the type of semiconductor material.
[0157] 加熱炉内でシリコン粒子 101を酸素ガス及び不活性ガスから成る雰囲気ガス中で 加熱して、シリコンの融点(1414°C)より低い温度へ昇温していく過程で、シリコン粒 子 101の表面には酸窒化珪素膜が形成される。酸窒化珪素膜の形成温度は室温以 上の温度が好まし!/、。室温から酸素ガス及び不活性ガスから成る雰囲気ガスを導入 し加熱することによって、 500°C以下の低温領域では成長速度が遅く膜厚分布を生 じた酸窒化珪素膜が形成される力 S、シリコン粒子 101の表面に付着したコンタミや金 属不純物を酸窒化珪素膜中に取り込むことによって、シリコン内部への汚染防止の ノ リヤー層となる。また、酸窒化珪素膜がゲッタサイトとして働くため、加熱中の周囲 環境からの金属不純物による汚染等をゲッタリングすることができる。また、シリコンの 融点付近の高い温度においても、一部溶融が生じて酸窒化珪素膜が破れたところを 修復するという作用効果を有する。  [0157] In the process of heating silicon particles 101 in an atmosphere gas consisting of oxygen gas and inert gas in a heating furnace to raise the temperature to a temperature lower than the melting point of silicon (1414 ° C), A silicon oxynitride film is formed on the surface of 101. The formation temperature of the silicon oxynitride film is preferably above room temperature! By introducing and heating an atmospheric gas consisting of oxygen gas and inert gas from room temperature, the force S that forms a silicon oxynitride film with a slow growth rate and a film thickness distribution in a low temperature region of 500 ° C. or lower. By incorporating contaminants and metal impurities adhering to the surface of the silicon particles 101 into the silicon oxynitride film, it becomes a noble layer for preventing contamination inside the silicon. In addition, since the silicon oxynitride film functions as a getter site, contamination by metal impurities from the surrounding environment during heating can be gettered. Further, even at a high temperature near the melting point of silicon, there is an effect of repairing a portion where the silicon oxynitride film is broken due to partial melting.
[0158] シリコン粒子 101の表面に形成される酸窒化珪素膜は、酸化珪素膜等と比べて、 被膜の密度が高くて単位膜厚当りの強度が高いため、汚染物や不純物等のシリコン 粒子 101の内部への拡散阻止力が大きいという作用効果を有する。  [0158] Since the silicon oxynitride film formed on the surface of the silicon particle 101 has a higher film density and higher strength per unit film thickness than a silicon oxide film or the like, silicon particles such as contaminants and impurities 101 has an effect of preventing diffusion into the inside of 101.
[0159] また、シリコン粒子 101の表面に酸窒化珪素膜を形成する際の加熱炉内の雰囲気 ガスは、酸素ガス分圧が 10%以上であることが好ましい。雰囲気ガス中の酸素ガス 分圧が 10%未満の場合、シリコン粒子 101同士の合体が発生し易くなり、また酸窒 化珪素膜の強度も劣化し、シリコン粒子 101を重層的に載置した状態で上部のシリコ ン粒子 101の重さにより下部のシリコン粒子 101が溶融時につぶれやすくなる。 [0159] The atmosphere in the heating furnace when the silicon oxynitride film is formed on the surface of the silicon particle 101 The gas preferably has an oxygen gas partial pressure of 10% or more. When the partial pressure of oxygen gas in the atmospheric gas is less than 10%, coalescence of silicon particles 101 tends to occur, and the strength of the silicon oxynitride film deteriorates, and the silicon particles 101 are placed in a multilayered state. On the other hand, the weight of the upper silicon particles 101 makes it easier for the lower silicon particles 101 to collapse during melting.
[0160] 次に、図 5 (b)に示すように、酸素ガス及び不活性ガスあるいは酸素ガスから成る雰 囲気ガス中で、シリコン粒子 101をシリコンの融点( 1414°C )より高!/、温度へ昇温して いく。なお、図 5 (a) , (b)の工程は、それぞれ別に行っても連続して行ってもかまわな い。 [0160] Next, as shown in FIG. 5 (b), in an atmosphere gas composed of oxygen gas and inert gas or oxygen gas, the silicon particles 101 are higher than the melting point of silicon (1414 ° C)! /, Raise to temperature. Note that the steps in FIGS. 5 (a) and 5 (b) may be performed separately or sequentially.
[0161] 台板 102は、シリコン粒子 101を溶融後に過冷却し凝固させて結晶化させるときの 凝固起点を生じさせるものとしても機能する。特に、台板 102は、石英ガラス製の基 体の表面にクリストバライト結晶層が形成されているものである場合、シリコン粒子 10 1と台板 102の表面のクリストバライト結晶層との接点が凝固起点となり、不均一核生 成を生じて、シリコン粒子 101を一方向(例えば上方向)に凝固させて容易に単結晶 化すること力 Sできる。また、石英ガラス製の基体の表面に形成されたクリストバライト結 晶層は、 1400°C前後の温度で安定しており、石英ガラス製の基体の表面構造材 (表 面補強層)としての機能を有するものとなる。その結果、石英ガラス製の基体が熱変 形をしょうとするのを妨げるように作用し、熱による基体の変形を防ぐことができる。  [0161] The base plate 102 also functions as a starting point for solidification when the silicon particles 101 are melted and supercooled and solidified to be crystallized. In particular, in the case where the base plate 102 has a cristobalite crystal layer formed on the surface of a quartz glass substrate, the contact point between the silicon particles 101 and the cristobalite crystal layer on the surface of the base plate 102 becomes a solidification start point. In addition, non-uniform nucleation is generated, and the silicon particles 101 can be solidified in one direction (for example, upward) and easily single-crystallized. In addition, the cristobalite crystal layer formed on the surface of the quartz glass substrate is stable at a temperature of around 1400 ° C, and functions as a surface structural material (surface reinforcing layer) for the quartz glass substrate. It will have. As a result, the quartz glass substrate acts to prevent the thermal deformation of the substrate, thereby preventing the substrate from being deformed by heat.
[0162] また、台板 102の上面に多数個のシリコン粒子 101を載置することにより、それぞれ のシリコン粒子 101と台板 102との接触部分に凝固起点を設定することができるため 、凝固起点を一方の極としてこの一方の極から上方の対向する極に向けて凝固(単 結晶化)方向を設定することができる。その結果、種結晶を用いることなく一方向に凝 固させることが可能となり、サブグレイン等の発生を抑制して結晶シリコン粒子の結晶 性を大幅に向上させることができる。  [0162] In addition, by placing a large number of silicon particles 101 on the upper surface of the base plate 102, a solidification start point can be set at a contact portion between each silicon particle 101 and the base plate 102. As one pole, the solidification (single crystallization) direction can be set from this one pole toward the upper facing pole. As a result, it is possible to solidify in one direction without using a seed crystal, and generation of subgrains can be suppressed and crystallinity of crystalline silicon particles can be greatly improved.
[0163] 多数個のシリコン粒子 101を台板 102上に重層的に載置させた状態であっても、先 に結晶化した台板 102上の結晶シリコン粒子との接触部分を凝固起点にして、その 上に隣接するシリコン粒子 101が凝固することが可能となり、重層的に載置されたより 上部の方へ凝固が連鎖反応的に広がるので、多数個の結晶シリコン粒子の結晶性 を大幅に向上させることができる。 [0164] シリコン粒子 101は、通常は形状がほぼ球状であることから、その平均粒径は 1500 in以下が良い。シリコン粒子 101の平均粒径が 1500 mを超える場合、シリコン 粒子 101の表面に形成される酸窒化珪素膜の厚みがシリコン粒子 101本体に対して 相対的に薄くなることによって、シリコン粒子 101の内側のシリコンの溶融時に、シリコ ン粒子 101の形状を安定に保つことが難しくなる。また、シリコン粒子 101の内側のシ リコンを完全に溶融させることも困難となって、溶融が不完全な場合にはサブグレイン が生じ易くなる。他方、シリコン粒子 101の平均粒径が 30 m未満の場合、シリコン 粒子 101の内側のシリコンの溶融時にシリコン粒子 101の形状を安定に維持すること が困難となる。 [0163] Even when a large number of silicon particles 101 are placed on the base plate 102 in a multilayered manner, the contact portion with the crystalline silicon particles on the base plate 102 crystallized first is used as a solidification start point. The adjacent silicon particles 101 can be solidified, and the solidification spreads in a chain reaction toward the upper part rather than the multi-layered structure, greatly improving the crystallinity of a large number of crystalline silicon particles. Can be made. [0164] Since the silicon particles 101 are generally almost spherical in shape, the average particle size is preferably 1500 in or less. When the average particle diameter of the silicon particles 101 exceeds 1500 m, the thickness of the silicon oxynitride film formed on the surface of the silicon particles 101 becomes relatively thin with respect to the silicon particle 101 main body, thereby When silicon is melted, it becomes difficult to keep the shape of the silicon particles 101 stable. Further, it is difficult to completely melt the silicon inside the silicon particles 101, and subgrains are likely to occur when the melting is incomplete. On the other hand, when the average particle size of the silicon particles 101 is less than 30 m, it is difficult to stably maintain the shape of the silicon particles 101 when the silicon inside the silicon particles 101 is melted.
[0165] 従って、シリコン粒子 101の平均粒径は 30 m〜1500 mであることが好ましく、 これによつてシリコン粒子 101の形状を安定に維持して、サブダレインの発生がない 球形状で良質な結晶性を有する結晶シリコン粒子を安定して作製することができる。  Therefore, it is preferable that the average particle diameter of the silicon particles 101 is 30 m to 1500 m, thereby stably maintaining the shape of the silicon particles 101 and generating a spherical shape with no generation of subdahrain. Crystalline silicon particles having crystallinity can be stably produced.
[0166] また、シリコン粒子 101の形状は涙滴型であることが好ましい。涙滴型のものはダレ イン数が数個レベルであり、他の形状に比較して形状均一性にも優れている。ただし 、涙滴型以外にも、流線形型、複数個の粒子が連結した連結型、ほぼ球形状である が固化膨張による突起が形成された形状であってもよい。なお、シリコン粒子 101の 形状は球状等に限られるものではなぐ立方体状、直方体状、その他の不定形の形 状であってもよい。  [0166] The shape of the silicon particles 101 is preferably a teardrop-shaped. The teardrop type has several levels of dullness and is superior in shape uniformity compared to other shapes. However, in addition to the teardrop type, a streamlined type, a connected type in which a plurality of particles are connected, or a substantially spherical shape, but may have a shape in which a protrusion due to solidification expansion is formed. Note that the shape of the silicon particles 101 is not limited to a spherical shape, but may be a cubic shape, a rectangular parallelepiped shape, or other irregular shapes.
[0167] シリコン粒子 101はシリコンの融点(1414°C)以上で、好ましくは 1450°C以下の温 度 T1まで加熱される。この間にシリコン粒子 101において表面の酸窒化珪素膜の内 側のシリコンが溶融する。このとき、シリコン粒子 101の表面に形成された酸窒化珪素 膜によって、内側のシリコンを溶融させながらもシリコン粒子 101の形状を維持するこ とが可能である。ただし、シリコン粒子 101の形状を安定に維持するのが困難となるよ うな温度、例えばシリコン粒子 101の場合であれば 1450°Cを超える温度まで昇温さ せた場合、シリコン粒子 101の内部のシリコンの溶融時にシリコン粒子 101の形状を 安定に保つことが難しくなり、隣接するシリコン粒子 101同士の合体が生じやすくなり 、またシリコン粒子 101が台板 102と融着し易くなる。  [0167] The silicon particles 101 are heated to a temperature T1 not lower than the melting point (1414 ° C) of silicon, preferably not higher than 1450 ° C. During this time, silicon inside the silicon oxynitride film on the surface melts in the silicon particles 101. At this time, the silicon oxynitride film formed on the surface of the silicon particle 101 can maintain the shape of the silicon particle 101 while melting the inner silicon. However, if the temperature of the silicon particle 101 is difficult to maintain stably, for example, in the case of the silicon particle 101, if the temperature is raised to a temperature exceeding 1450 ° C, It becomes difficult to keep the shape of the silicon particles 101 stable when the silicon melts, and the adjacent silicon particles 101 tend to coalesce with each other, and the silicon particles 101 are easily fused to the base plate 102.
[0168] なお、シリコン粒子 101の表面に形成される酸窒化珪素膜の厚みは、シリコン粒子 101の上記平均粒径の範囲において、 lOOnm以上であることが好ましい。厚みが 1 OOnm未満の場合、シリコン粒子 101内部のシリコンの溶融時に、シリコン粒子 101 表面の酸窒化珪素膜が破れやすくなる。 Note that the thickness of the silicon oxynitride film formed on the surface of the silicon particles 101 is determined by the silicon particles In the above average particle diameter range of 101, it is preferably lOOnm or more. When the thickness is less than 1 OOnm, the silicon oxynitride film on the surface of the silicon particles 101 is easily broken when the silicon inside the silicon particles 101 is melted.
[0169] また、厚みが lOOnm以上で必要な強度を有する酸窒化珪素膜であれば、シリコン 粒子 101内部のシリコンがその溶融時には表面張力で球形化しようとするのに対し、 上記の温度領域であれば酸窒化珪素膜は充分に変形可能であるため、内部を単結 晶化して得られる結晶シリコン粒子を真球に近い形状とすることができる。  [0169] In addition, in the case of a silicon oxynitride film having a thickness of lOOnm or more and having a required strength, the silicon inside the silicon particles 101 tends to be spheroidized by surface tension when melted, whereas in the above temperature range, If there is, the silicon oxynitride film can be sufficiently deformed, so that the crystalline silicon particles obtained by single-crystallizing the inside can be made into a shape close to a true sphere.
[0170] 一方、酸窒化珪素膜の厚みが 10 を超えて厚くなる場合、酸窒化珪素膜が上記 の温度領域で変形しにくくなり、得られる結晶シリコン粒子 101の形状が真球に近!/、 形状になりにくいので好ましくな!/、。  [0170] On the other hand, when the silicon oxynitride film is thicker than 10, the silicon oxynitride film is hardly deformed in the above temperature range, and the shape of the obtained crystalline silicon particles 101 is close to a true sphere! / , Which is preferable because it is difficult to shape!
[0171] 従って、シリコン粒子 101の表面の酸窒化珪素膜の厚みは、上記の平均粒径の範 囲 (30 a m〜; 1500 μ m)に対して、 lOOnm〜 0〃 mであることカ好ましく、これによ つて、真球に近い良好な形状の結晶シリコン粒子を安定して得ることができる。また、 この結晶シリコン粒子を光電変換装置に用いることによって変換効率に優れた光電 変換装置を得ることができる。  [0171] Accordingly, the thickness of the silicon oxynitride film on the surface of the silicon particle 101 is preferably lOOnm to 0 mm with respect to the above average particle diameter range (30 am to 1500 μm). This makes it possible to stably obtain crystalline silicon particles having a good shape close to a true sphere. Further, by using the crystalline silicon particles for a photoelectric conversion device, a photoelectric conversion device having excellent conversion efficiency can be obtained.
[0172] 次に、図 5 (c)に示すように、溶融したシリコン粒子 101を、酸窒化珪素膜の内側の 溶融したシリコンを凝固させるために、融点 Tm未満で約 1383°C以上の温度 T2まで 過冷却によって降温させ凝固させる。  Next, as shown in FIG. 5 (c), in order to solidify the molten silicon particles 101 inside the silicon oxynitride film, the temperature is lower than the melting point Tm and is about 1383 ° C. or higher. Decrease the temperature by supercooling to T2 and solidify.
[0173] 過冷却の温度勾配は 2°C/分以上であることが好ましい。過冷却の温度勾配が 2°C /分より小さい場合、時間当たりの温度変化が小さいために、凝固が開始され難くな る。その結果、過冷却状態を維持したまま降温されてしまい、隣接するシリコン粒子 1 01同士の合体も生じ易くなり好ましくない。  [0173] The temperature gradient of the supercooling is preferably 2 ° C / min or more. If the temperature gradient of subcooling is less than 2 ° C / min, solidification is difficult to start because the temperature change per hour is small. As a result, the temperature is lowered while maintaining the supercooled state, and coalescence of adjacent silicon particles 101 is likely to occur, which is not preferable.
[0174] 一方、過冷却の温度勾配が 200°C/分を超える場合、時間当たりの温度変化が大 きいために、僅かな時間で深い過冷却となってしまい、シリコン粒子 101の内部と表 面の温度差が大きくなり、均一核生成による粒界発生、固化膨張による突起の形成、 結晶欠陥の発生等があり好ましくない。  [0174] On the other hand, when the temperature gradient of supercooling exceeds 200 ° C / min, since the temperature change per hour is large, deep supercooling occurs in a short period of time, and the inside of the silicon particles 101 and The temperature difference of the surface becomes large, and grain boundaries are generated by uniform nucleation, protrusions are formed by solidification expansion, and crystal defects are generated.
[0175] 従って、過冷却の温度勾配は 2°C/分〜 200°C/分であることが好ましぐこれによ り 1383°C以上の高温であってシリコンの融点 Tmからの過冷却度の小さい温度領域 で凝固が開始され易くなる。また、凝固は、凝固界面が一方向に移動する一方向凝 固の二次元成長となり、凝固終端部における突起の形成がなぐ粒界や結晶欠陥を 含まない、高品質な結晶性を有する単結晶の結晶シリコン粒子を作製することができ [0175] Therefore, it is preferable that the temperature gradient of the supercooling is 2 ° C / min to 200 ° C / min. This makes the supercooling from the melting point Tm of silicon at a high temperature of 1383 ° C or higher. Small temperature range It becomes easy to start coagulation. Solidification is a two-dimensional growth of unidirectional solidification in which the solidification interface moves in one direction, and does not include grain boundaries or crystal defects due to the formation of protrusions at the solidification end, and has a high quality crystallinity. Can produce crystalline silicon particles
[0176] 過冷却時の温度 T2は、 1410°C以下であって 1383°C以上の範囲内にあることが 好ましい。即ち、 1410°Cを超える温度においては、過冷却度 (Tm— T2)が小さすぎ るために、シリコン粒子 101の凝固が開始され難くなる。過冷却時の温度 T2が 1410 °C以下であれば、シリコン粒子 101の凝固が開始され易くなるとともに、粒界や結晶 欠陥を含まない高品質な結晶性を有する単結晶の結晶シリコン粒子を作製すること ができる。 [0176] The temperature T2 at the time of supercooling is preferably 1410 ° C or lower and 1383 ° C or higher. That is, at a temperature exceeding 1410 ° C., the degree of supercooling (Tm−T2) is too small, so that the solidification of the silicon particles 101 is difficult to start. If the temperature T2 at the time of supercooling is 1410 ° C or less, the solidification of the silicon particles 101 is easy to start, and high-quality crystalline silicon particles that do not contain grain boundaries or crystal defects are produced. can do.
[0177] また、過冷却時の温度 T2が 1383°C未満の場合、過冷却度 (Tm— T2)が大きい 温度領域で凝固を生ずるために、より低温になるに従って均一核生成となりやすくな り、従って一方向凝固の二次元成長とはならず、凝固終端部における突起の形成が あり、粒界や結晶欠陥を有する、多結晶の結晶シリコン粒子となるため、好ましくない  [0177] In addition, when the temperature T2 at the time of supercooling is less than 1383 ° C, solidification occurs in a temperature range where the degree of supercooling (Tm-T2) is large. Therefore, two-dimensional growth of unidirectional solidification is not achieved, and protrusions are formed at the end of solidification, resulting in polycrystalline crystalline silicon particles having grain boundaries and crystal defects.
[0178] 更に、溶融したシリコン粒子 101が全て凝固するまで、 Tm以下で 1383°C以上の 温度 T2の範囲内の所定の温度に保持することによって、凝固終端部における突起 の形成、粒界や結晶欠陥の発生、多結晶化となりうる均一核生成、デンドライト成長 を防止すること力できる。 [0178] Further, until all the molten silicon particles 101 are solidified, they are maintained at a predetermined temperature within a range of T2 and a temperature T2 of 1383 ° C or higher, thereby forming protrusions at the solidification end, It can prevent the generation of crystal defects, the generation of uniform nuclei that can be polycrystallized, and dendrite growth.
[0179] ただし、過冷却時の温度 T2が 1383°Cよりも低温であっても 1368°C以上の温度で あれば、結晶シリコン粒子は単結晶のものが得られる力 凝固終端部のごく一部に突 起が形成され易くなる。突起の部分には結晶欠陥や結晶方位の乱れがあり、その突 起が形成された結晶シリコン粒子を用いて光電変換装置を作製した場合、突起部で の pn接合劣化や電流リーク発生による光電変換特性の劣化となり易い。し力、しながら 、この場合には突起を研磨法等によって除去した結晶シリコン粒子を用いれば、突起 による光電変換特性の劣化が生じない光電変換装置を製造できる。ただし、製造ェ 程が増えることによるコストアップ等の問題が生ずる。 1383°C以上の温度では、突起 の形成もなく真球により近い形状にできるので、その結晶シリコン粒子を光電変換装 置に用いた場合、良好な光電変換特性を得ることができる。 [0179] However, even if the temperature T2 at the time of supercooling is lower than 1383 ° C, if the temperature is 1368 ° C or higher, the crystalline silicon particles can be obtained as a single crystal. Protrusions are likely to be formed in the parts. There are crystal defects and crystal orientation disturbances in the protrusions. When a photoelectric conversion device is fabricated using crystalline silicon particles with protrusions, photoelectric conversion due to pn junction deterioration or current leakage at the protrusions It tends to deteriorate characteristics. However, in this case, if the crystalline silicon particles from which the protrusions are removed by a polishing method or the like are used, a photoelectric conversion device in which the photoelectric conversion characteristics are not deteriorated by the protrusions can be manufactured. However, problems such as increased costs due to an increase in the manufacturing process arise. At a temperature of 1383 ° C or higher, there is no formation of protrusions and the shape can be made closer to a true sphere. When used in a device, good photoelectric conversion characteristics can be obtained.
[0180] 従って、 1410°C以下であって 1383°C以上の温度 T2まで過冷却し、溶融したシリ コン粒子 101が全て凝固するまで Tm未満であって 1383°C以上の範囲内の所定の 温度に保持することによって、不均一核成長であって一方向凝固の二次元成長とな り、凝固終端部における突起の形成がなぐ粒界や結晶欠陥を含まない、高品質な 結晶性を有する単結晶の結晶シリコン粒子を作製することができる。  [0180] Therefore, it is subcooled to a temperature T2 of 1410 ° C or lower and 1383 ° C or higher, and until the molten silicon particles 101 are all solidified, it is less than Tm and within a predetermined range of 1383 ° C or higher. Maintaining the temperature results in heterogeneous nucleation and two-dimensional growth of unidirectional solidification, and has high-quality crystallinity that does not include grain boundaries and crystal defects that are not formed by protrusions at the solidification end. Single crystal crystalline silicon particles can be manufactured.
[0181] また、多数個のシリコン粒子 101を重層的に載置させた状態であっても、 1410°C 以下で 1383°C以上の温度 T2まで過冷却し、溶融したシリコン粒子 101が全て凝固 するまで所定の温度に保持することによって、シリコン粒子 101と台板 102との接触 部分を凝固起点(一方の極)として上方の対向する極 向けて一方向に固化が進行 するので、すでに凝固したシリコン粒子 101との接触点を凝固の起点として一方向性 の凝固が発生する。そして、そのままシリコン粒子 101の全体に凝固が一方向(例え ば上方向)に継承されて結晶が成長し、得られる結晶シリコン粒子が単結晶となり、 結晶性を大幅に向上させることができる。  [0181] Also, even when a large number of silicon particles 101 are placed in multiple layers, the molten silicon particles 101 are all solidified by supercooling to a temperature T2 of 1410 ° C or lower and 1383 ° C or higher. By holding at a predetermined temperature until solidification, solidification progresses in one direction from the contact portion between the silicon particle 101 and the base plate 102 to the upper facing pole as the solidification start point (one pole), so that the solidification has already occurred. Unidirectional solidification occurs at the point of contact with the silicon particle 101 as the starting point of solidification. Then, as it is, solidification is inherited in one direction (for example, upward direction) as a whole and the crystal grows, and the resulting crystalline silicon particle becomes a single crystal, which can greatly improve the crystallinity.
[0182] また、溶融したシリコン粒子 101を凝固させた後に、結晶シリコン粒子に対して熱ァ ニール処理、例えば 1000°C以上の一定温度で 30分間以上の熱ァニール処理を行 うことが好ましい。ただし、一定温度で保持しなくても 1000°C以上の温度領域での累 計時間が 30分間以上であればかまわない。この熱ァニール処理を行うことによって、 凝固時に発生した結晶シリコン粒子の結晶中の歪み、結晶シリコン粒子の表面の酸 窒化珪素膜と内側の結晶シリコンとの界面に発生した界面歪み等を緩和除去し、金 属不純物のゲッタリングも促進するため良好な結晶性の結晶シリコン粒子とすること ができる。  [0182] Further, after solidifying the molten silicon particles 101, it is preferable to subject the crystalline silicon particles to a thermal annealing treatment, for example, a thermal annealing treatment at a constant temperature of 1000 ° C or higher for 30 minutes or longer. However, even if it is not held at a constant temperature, the accumulated time in the temperature range of 1000 ° C or higher may be 30 minutes or longer. By carrying out this thermal annealing treatment, the strain in the crystal of the crystalline silicon particles generated during solidification and the interface strain generated at the interface between the silicon oxynitride film on the surface of the crystalline silicon particles and the inner crystalline silicon are alleviated and removed. Further, since gettering of metal impurities is also promoted, crystalline silicon particles having good crystallinity can be obtained.
[0183] また、本発明の結晶シリコン粒子の製造方法は、シリコン粒子を単結晶化した後に 、酸窒化珪素膜を除去するとともに、酸窒化珪素膜と結晶シリコン粒子との界面歪み を除去することが好ましい。即ち、結晶シリコン粒子の表層部に偏析した、 Fe, Cr, N i, Mo等の金属不純物、及び酸素,炭素等の軽元素不純物等の含有部である酸窒 化珪素膜を除去する。酸窒化珪素膜はフッ酸によって除去でき、酸窒化珪素膜を除 去した後の結晶シリコン粒子の表面はフッ硝酸等によってエッチング除去することが できる。その際に除去される結晶シリコン粒子の表面層の厚みは、径方向で 100 m 以下であることが好ましい。 [0183] In addition, the method for producing crystalline silicon particles of the present invention includes removing the silicon oxynitride film and removing interfacial strain between the silicon oxynitride film and the crystalline silicon particles after the silicon particles are monocrystallized. Is preferred. That is, the silicon oxynitride film, which contains metal impurities such as Fe, Cr, Ni, and Mo, and light element impurities such as oxygen and carbon, segregated on the surface layer of the crystalline silicon particles, is removed. The silicon oxynitride film can be removed by hydrofluoric acid, and the surface of the crystalline silicon particles after removing the silicon oxynitride film can be removed by etching with hydrofluoric acid or the like. it can. The thickness of the surface layer of the crystalline silicon particles removed at that time is preferably 100 m or less in the radial direction.
[0184] シリコン粒子 101の温度の測定は、光波長分解測定法等によって行うことができる。  [0184] The temperature of the silicon particles 101 can be measured by an optical wavelength decomposition measurement method or the like.
即ち、シリコン粒子 101の発光スペクトルを解析することにより行う。具体的には、予 めシリコンの温度による発光スペクトルをデータテーブルとして測定しておき、加熱装 置内のシリコン粒子 101の発光スペクトルを測定し、データテーブルの発光スぺタト ルと比較することによって、シリコン粒子 101と非接触で温度を特定することができる 。また、炉内雰囲気ガス温度、炉壁温度、炉内ガス圧力、炉内ガス種等から、熱解析 によってもシリコン粒子 101の温度を特定することができる。  That is, the analysis is performed by analyzing the emission spectrum of the silicon particles 101. Specifically, the emission spectrum according to the temperature of silicon is measured in advance as a data table, the emission spectrum of silicon particles 101 in the heating device is measured, and compared with the emission spectrum in the data table. The temperature can be specified without contact with the silicon particles 101. In addition, the temperature of the silicon particles 101 can be specified by thermal analysis from the furnace atmosphere gas temperature, furnace wall temperature, furnace gas pressure, furnace gas type, and the like.
[0185] 次に、本発明の結晶シリコン粒子の製造方法について実施例を作製工程に沿って 説明するが、本発明は以下の実施例に限定されるものではない。  Next, examples of the method for producing crystalline silicon particles of the present invention will be described along the production steps, but the present invention is not limited to the following examples.
実施例 1  Example 1
[0186] 図 1 (a)に示すように、まずホウ素濃度が 0. 6 X 1016atoms/cm3であり、平均粒径 力 S500 mのシリコン粒子 101の 1000個を、石英ガラス製の箱状の台板 102上に重 層的に載置し、加熱炉である雰囲気焼成炉の内部に設置した石英ガラス製のベルジ ヤー内に収容した。そして、窒素ガスをガス供給装置から導入しながら加熱し、窒素 ガス圧力 0. IMPaでシリコンの融点以下の 1300°Cまで加熱し 60分間保持して、シ リコン粒子 101の表面に厚さ 200nmの窒化珪素膜を形成した。 1300°Cで 60分間の 加熱を行った後、室温まで降温させた。 As shown in FIG. 1 (a), first, 1000 pieces of silicon particles 101 having a boron concentration of 0.6 × 10 16 atoms / cm 3 and an average particle size force of S500 m were placed in a quartz glass box. Were placed in layers on a base plate 102 and housed in a quartz glass bell jar installed in an atmosphere firing furnace as a heating furnace. Then, nitrogen gas is heated while being introduced from the gas supply device, heated to 1300 ° C below the melting point of silicon with a nitrogen gas pressure of 0. IMPa, and held for 60 minutes, with a thickness of 200 nm on the surface of the silicon particles 101. A silicon nitride film was formed. After heating at 1300 ° C for 60 minutes, the temperature was lowered to room temperature.
[0187] 次に、図 1 (b),(c)に示すように、酸素ガスまたは混合ガス(酸素ガスとアルゴンガス ) (表 1 ,表 2参照)をガス供給装置から導入しながら加熱し、酸素ガス圧力 0. 02MP aでシリコンの融点以上の 1440°Cまで加熱し 5分間保持して、シリコン粒子 101表面 の窒化珪素膜の内側のシリコンを溶融させた後、降温速度を毎分 2°Cとして冷却させ ながら固化させた。その後、さらに 1250°Cまで降温させてから、不活性ガスとしての アルゴンガスを導入しながら 120分間の熱ァニール処理を行った。この熱ァニール処 理後に室温付近まで降温させた。  Next, as shown in FIGS. 1 (b) and (c), oxygen gas or a mixed gas (oxygen gas and argon gas) (see Tables 1 and 2) is heated while being introduced from the gas supply device. After heating to 1440 ° C above the melting point of silicon at an oxygen gas pressure of 0.02 MPa and holding for 5 minutes to melt the silicon inside the silicon nitride film on the surface of the silicon particles 101, the rate of temperature decrease is 2 The solution was solidified while being cooled to ° C. Thereafter, the temperature was further lowered to 1250 ° C., and then a thermal annealing treatment was performed for 120 minutes while introducing an argon gas as an inert gas. After this heat annealing treatment, the temperature was lowered to near room temperature.
[0188] 回収した結晶シリコン粒子の表面に形成されたシリコンの窒化珪素膜をフッ酸にて 除去し、所定の厚さまでフッ硝酸で結晶シリコン粒子の表面を深さ方向にエッチング 除去した。 [0188] The silicon silicon nitride film formed on the surface of the recovered crystalline silicon particles is removed with hydrofluoric acid, and the surface of the crystalline silicon particles is etched in the depth direction with hydrofluoric acid to a predetermined thickness. Removed.
[0189] この結晶シリコン粒子を石英製ボートに乗せて、 900°Cに制御された石英管の中に 導入し、 POC1ガスを窒素でバブリングさせて石英管に送り込み、熱拡散法によって  [0189] The crystalline silicon particles are placed on a quartz boat, introduced into a quartz tube controlled at 900 ° C, and POC1 gas is bubbled with nitrogen and sent into the quartz tube, and then by a thermal diffusion method.
3  Three
30分で結晶シリコン粒子の表面に約 1 [I mの厚さの n型の半導体層 410を形成し、 その後、フッ酸にて表面の酸窒化膜を除去した。  In 30 minutes, an n-type semiconductor layer 410 having a thickness of about 1 [I m was formed on the surface of the crystalline silicon particles, and then the surface oxynitride film was removed with hydrofluoric acid.
[0190] 次に、導電性基板 407として 50mm X 50mm X厚さ 0. 3mmのアルミニウム基板を 用い、この上面に 1000個の結晶シリコン粒子 406を最密充填して配置した。その後 、アルミニウムとシリコンとの共晶温度である 577°Cを超える 600°Cで、 5体積0 /0の水 素ガスを含む窒素ガスの還元雰囲気炉中で加熱して、結晶シリコン粒子 406の下部 を導電性基板 407に接合させた。このとき、結晶シリコン粒子 406が導電性基板 407 と接触して!/、る部分には、アルミニウムとシリコンとの共晶から成る接合層 408が形成 されており、強い接着強度を呈していた。 Next, a 50 mm × 50 mm × 0.3 mm thick aluminum substrate was used as the conductive substrate 407, and 1000 crystalline silicon particles 406 were closely packed on the upper surface. Thereafter, at 600 ° C of greater than 577 ° C which is the eutectic temperature of aluminum and silicon, by heating in a reducing atmosphere furnace a nitrogen gas containing 5 volume 0/0 of hydrogen gas, the crystalline silicon particles 406 The lower part was bonded to the conductive substrate 407. At this time, a bonding layer 408 made of a eutectic of aluminum and silicon was formed on the portion where the crystalline silicon particles 406 were in contact with the conductive substrate 407, and exhibited strong adhesive strength.
[0191] さらに、この上から結晶シリコン粒子 406同士の間に、それらの上部を露出させてポ リイミド樹脂から成る絶縁物質 409を塗布し乾燥させて、下部電極となる導電性基板 407と、上部電極となる透光性導体層 411とを電気的に絶縁分離するようにした。こ の上に上部電極膜としての透光性導体層 411を、スパッタリング法によって全面に約 lOOnmの厚みで形成した。  [0191] Furthermore, between the crystalline silicon particles 406 from above, an upper portion thereof is exposed and an insulating material 409 made of a polyimide resin is applied and dried to form a conductive substrate 407 serving as a lower electrode, and an upper portion. The translucent conductor layer 411 serving as an electrode is electrically insulated and separated. A translucent conductor layer 411 as an upper electrode film was formed on the entire surface with a thickness of about lOOnm by sputtering.
[0192] 最後に、銀ペーストをディスペンサーでグリッド状にパターン形成して、フィンガー電 極及びバスバー電極からなる電極 412を形成した。なお、この銀ペーストのパターン は、大気中 500°Cで焼成を行った。  [0192] Finally, a silver paste pattern was formed in a grid using a dispenser to form an electrode 412 composed of a finger electrode and a bus bar electrode. This silver paste pattern was fired at 500 ° C in the atmosphere.
[0193] そして、上記のように本発明の光電変換装置を製造するに際して、窒化珪素膜の 形成工程の有無、酸素ガスまたは混合ガス中での溶融工程の区別をし、さらに、シリ コン粒子を石英ガラス製の箱状の台板上に 1層、または最密充填で重層的に載置し た状態で単結晶化した際のシリコン粒子の合体率を調べた。その結果を、実施例 1- 1〜4及び比較例 1-1 , 2として、表 1に示す。  [0193] Then, when manufacturing the photoelectric conversion device of the present invention as described above, the presence or absence of the silicon nitride film forming step, the melting step in oxygen gas or mixed gas, and the silicon particles are further distinguished. We examined the coalescence rate of silicon particles when single-crystallized in a single-layer or close-packed and stacked state on a quartz glass box-like base plate. The results are shown in Table 1 as Examples 1-1 to 4 and Comparative Examples 1-1 and 2.
合体率は、全体の個数に対する合体した個数の比 { (合体した個数) X 100/ (全 体の個数) }から求めた。たとえば、 95個の非合体の個数と、 2個の合体と 3個の合体 がある場合、全体の個数は 100個で合体率は 5%となる。 [0194] また、上記の製造方法によって得られた実施例 1-;!〜 4及び比較例 1-1 , 2の光電 変換装置について、 AMI . 5のソーラーシミュレーターで光電変換装置の電気特性 を示す光電変換効率(単位:%) (表 2においては「変換効率」と示す)を測定した。そ の結果を表 1に示す。 The coalescence rate was determined from the ratio of the number of coalesced to the total number {(the number of coalesced) X 100 / (the number of the whole)}. For example, if there are 95 non-merged pieces, two mergers and three mergers, the total number is 100 and the coalescence rate is 5%. [0194] Further, regarding the photoelectric conversion devices of Examples 1-;! To 4 and Comparative Examples 1-1 and 2 obtained by the above manufacturing method, the electrical characteristics of the photoelectric conversion devices are shown by the solar simulator of AMI. Photoelectric conversion efficiency (unit:%) (shown as “conversion efficiency” in Table 2) was measured. The results are shown in Table 1.
[表 1]  [table 1]
Figure imgf000041_0001
Figure imgf000041_0001
[0195] 表 1に示す通り、窒化珪素膜を形成せずに酸素ガスから成る雰囲気ガス中でシリコ ン粒子の表面に酸化珪素膜を形成して溶融、凝固させて作製した結晶シリコン粒子 (比較例; 1-1 , 2)と比較して、シリコン粒子の表面に窒化珪素膜を形成し、酸素ガス 力、ら成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガス中で溶融、 凝固させて作製した結晶シリコン粒子(実施例 1-;!〜 4)では、合体率が低ぐ良好な 結果であった。 [0195] As shown in Table 1, a crystalline silicon particle was produced by forming a silicon oxide film on the surface of a silicon particle in an atmospheric gas composed of oxygen gas without forming a silicon nitride film, and melting and solidifying it (Comparison Example: Compared with 1-1, 2), a silicon nitride film is formed on the surface of silicon particles, and it is melted and solidified in an atmospheric gas consisting of oxygen gas force or atmospheric gas consisting of oxygen gas and inert gas. The crystalline silicon particles (Example 1- ;! to 4) produced in this way had good results with a low coalescence rate.
[0196] なお、実施例 1-3, 4の合体率が、実施例 1-1 , 2の合体率よりも大きいのは、アル ゴンガスを雰囲気ガス中に用いたため窒化珪素膜の表面結合状態が変わり、シリコ ン粒子の表面張力も変化してより合体しやすくなつたためと考えられる。  [0196] Note that the coalescence rate of Examples 1-3 and 4 is larger than the coalescence rate of Examples 1-1 and 2, because the surface bonding state of the silicon nitride film is due to the use of argon gas in the atmospheric gas. This is thought to be due to the fact that the surface tension of the silicon particles also changed, making it easier to unite.
[0197] また、表 1に示す通り、比較例 1-1 , 2に対して実施例 1-;!〜 4では変換効率が高く 良好な結果であった。  [0197] Further, as shown in Table 1, compared with Comparative Examples 1-1 and 2, Examples 1-;! To 4 had high conversion efficiency and good results.
[0198] なお、実施例 1-1 , 2の変換効率が、実施例 1-3, 4の変換効率よりも大きいのは、 結晶シリコン粒子の粒子同士の接触部でのサブグレイン発生等による結晶劣化が低 減されたためと考えられる。  [0198] The conversion efficiencies of Examples 1-1 and 2 are higher than those of Examples 1-3 and 4 because the crystals are due to the generation of subgrains at the contact portions between the crystalline silicon particles. This is thought to be due to the reduction in deterioration.
実施例 2  Example 2
[0199] 図 3 (a)に示すように、まずホウ素濃度が 0. 6 X 1016atoms/cm3であり、平均粒径 力 S500 mの結晶シリコン粒子 101の 1000個を、ラップ研磨装置の下側回転定盤 2 01上に配置し、上側回転定盤 202を降下させた。次に、下側回転定盤 201を 20rp m、上側回転定盤 202を 5rpmで、上下側回転定盤 202, 201が互いに逆方向に回 転するように回転させ、平均粒子径が 30 mの SiCの遊離砥粒 203を用いて、 5分 間結晶シリコン粒子 101の表面の研磨処理をした。 [0199] As shown in Fig. 3 (a), first, 1000 pieces of crystalline silicon particles 101 having a boron concentration of 0.6 X 10 16 atoms / cm 3 and an average particle size force of S500 m were added to the lapping apparatus. Lower rotating surface plate 2 It was placed on 01 and the upper rotating platen 202 was lowered. Next, the lower rotary platen 201 is rotated at 20 rpm and the upper rotary platen 202 is rotated at 5 rpm so that the upper and lower rotary platens 202 and 201 rotate in opposite directions, and the average particle size is 30 m. The surface of the crystalline silicon particles 101 was polished for 5 minutes using SiC free abrasive grains 203.
[0200] 表面が研磨処理された結晶シリコン粒子 101の厚み約 10 mの表層部に、多数の マイクロクラック等を有する加工変質層が形成されていることが、ラマン分光法によつ て特定できた。 [0200] It can be confirmed by Raman spectroscopy that a work-affected layer having a large number of microcracks or the like is formed on the surface layer portion of the crystalline silicon particle 101 whose surface is polished by a thickness of about 10 m. It was.
[0201] 次に、図 3 (b)に示すように、石英ガラス製の箱状の台板 301上に、多数(1000個) の結晶シリコン粒子 101を重層的に載置し、加熱炉である雰囲気焼成炉の内部に設 置した石英ガラス製のベルジャー内に収容した。そして、窒素ガスをガス供給装置か ら導入しながら加熱し、窒素ガス圧力 0. IMPaでシリコンの融点以下の 1300°Cまで 加熱し 60分間保持して、結晶シリコン粒子 101の表面に窒化珪素膜を形成した。 13 00°Cで 60分間の加熱を行った後、室温まで降温させた。  [0201] Next, as shown in FIG. 3 (b), a large number (1000 pieces) of crystalline silicon particles 101 are placed in a multilayer manner on a quartz glass box-like base plate 301, and heated in a heating furnace. It was housed in a quartz glass bell jar installed inside an atmosphere firing furnace. Then, nitrogen gas is heated while being introduced from a gas supply device, heated to 1300 ° C. below the melting point of silicon with a nitrogen gas pressure of 0.1 IMPa, and held for 60 minutes to form a silicon nitride film on the surface of the crystalline silicon particles 101 Formed. After heating at 1300 ° C. for 60 minutes, the temperature was lowered to room temperature.
[0202] 次に、図 3 (c) , (d)に示すように、酸素ガスまたは混合ガス(酸素ガスとアルゴンガ ス)(表 1参照)をガス供給装置から導入しながら、酸素ガス圧力 0. 02MPaでシリコン の融点以上の 1440°Cまで結晶シリコン粒子 101を加熱し 5分間保持して、結晶シリ コン粒子 101表面の窒化珪素膜の内側のシリコンを溶融させた後、降温速度を毎分 2°Cとして冷却しながら結晶シリコン粒子 101を固化させた。その後、さらに 1250°Cま で降温させてから、不活性ガスとしてのアルゴンガスを導入しながら 120分間の熱ァ ニール処理を行った。この熱ァニール処理後に室温付近まで降温させた。  [0202] Next, as shown in FIGS. 3 (c) and 3 (d), while introducing oxygen gas or a mixed gas (oxygen gas and argon gas) (see Table 1) from the gas supply device, the oxygen gas pressure 0 The crystalline silicon particles 101 were heated to 1440 ° C, which is above the melting point of silicon at 02 MPa, and held for 5 minutes to melt the silicon inside the silicon nitride film on the surface of the crystalline silicon particles 101, and then the cooling rate was reduced every minute. The crystalline silicon particles 101 were solidified while cooling at 2 ° C. After that, the temperature was further lowered to 1250 ° C., and a thermal annealing treatment was performed for 120 minutes while introducing an argon gas as an inert gas. After this thermal annealing treatment, the temperature was lowered to near room temperature.
[0203] 回収した結晶シリコン粒子 101の表面に形成された窒化珪素膜をフッ酸によって除 去し、フッ硝酸で結晶シリコン粒子 101の表面を深さ方向に 20 H mの厚み分をエツ チング除去した。  [0203] The silicon nitride film formed on the surface of the recovered crystalline silicon particles 101 was removed with hydrofluoric acid, and the surface of the crystalline silicon particles 101 was etched away to a depth of 20 Hm with hydrofluoric acid. did.
[0204] この結晶シリコン粒子 101を石英製ボートに載せて、 900°Cに制御された石英管の 中に導入し、 POC1ガスを窒素でパブリングさせて石英管に送り込み、熱拡散法によ  [0204] The crystalline silicon particles 101 were placed on a quartz boat, introduced into a quartz tube controlled at 900 ° C, POC1 gas was published with nitrogen and fed into the quartz tube, and the thermal diffusion method was used.
3  Three
つて 30分で結晶シリコン粒子 101の表面に約 1 μ mの厚さの η型の半導体層 410を 形成し、その後、フッ酸にて表面の酸窒化膜を除去した。  In 30 minutes, a η-type semiconductor layer 410 having a thickness of about 1 μm was formed on the surface of the crystalline silicon particle 101, and then the oxynitride film on the surface was removed with hydrofluoric acid.
[0205] 次に、導電性基板として 50mm X 50mm X厚さ 0. 3mmのアルミニウム基板を用い 、この上面に 1000個の結晶シリコン粒子を最密充填して配置した。その後、アルミ二 ゥムとシリコンとの共晶温度である 577°Cを超える 600°Cで、 5体積%の水素ガスを含 む窒素ガスの還元雰囲気炉中で加熱して、結晶シリコン粒子の下部を導電性基板に 接合させた。このとき、結晶シリコン粒子が導電性基板と接触している部分には、アル ミニゥムとシリコンとの共晶から成る接合層が形成されており、強い接着強度を呈して いた。 [0205] Next, an aluminum substrate of 50 mm X 50 mm X thickness 0.3 mm was used as the conductive substrate. The top surface was arranged with 1000 crystalline silicon particles packed closest. After that, it is heated in a reducing atmosphere furnace of nitrogen gas containing 5% by volume of hydrogen gas at 600 ° C, which exceeds the eutectic temperature of aluminum and silicon of 577 ° C. The lower part was bonded to the conductive substrate. At this time, a bonding layer made of eutectic of aluminum and silicon was formed at the portion where the crystalline silicon particles were in contact with the conductive substrate, and exhibited strong adhesive strength.
[0206] さらに、この上から結晶シリコン粒子同士の間に、それらの上部を露出させてポリイ ミド樹脂から成る絶縁物質を塗布し乾燥させて、下部電極となる導電性基板と、上部 電極となる透光性導体層とを電気的に絶縁分離するようにした。この上に上部電極 膜としての透光性導体層を、スパッタリング法によって全面に約 lOOnmの厚みで形 成した。  [0206] Furthermore, between the crystalline silicon particles from above, an upper portion thereof is exposed and an insulating material made of polyimide resin is applied and dried to form a conductive substrate serving as a lower electrode and an upper electrode. The light-transmitting conductor layer is electrically insulated and separated. A translucent conductor layer as an upper electrode film was formed on the entire surface with a thickness of about lOOnm by sputtering.
[0207] 最後に、銀ペーストをディスペンサーでグリッド状にパターン形成して、フィンガー電 極及びバスバー電極からなる電極を形成した。なお、この銀ペーストのパターンは、 大気中 500°Cで焼成を行った。  [0207] Finally, a silver paste pattern was formed in a grid pattern with a dispenser to form an electrode composed of a finger electrode and a bus bar electrode. The silver paste pattern was fired at 500 ° C in the atmosphere.
[0208] そして、上記のように本発明の光電変換装置を製造するに際して、結晶シリコン粒 子表面の加工変質層形成工程の有無、窒化珪素膜の形成工程の有無、酸素ガスま たは混合ガス中での溶融工程の区別をし、さらに、結晶シリコン粒子を石英ガラス製 の箱状の台板上に 1層で載置した状態、または細密充填で重層的に載置した状態と して単結晶化した際の結晶シリコン粒子の合体率を実施例 1と同様にして調べた。そ の結果を、実施例 2-;!〜 4及び比較例 2-1 , 2として、表 2に示す。  [0208] When the photoelectric conversion device of the present invention is manufactured as described above, the presence or absence of a work-affected layer forming step on the surface of crystalline silicon particles, the presence or absence of a silicon nitride film forming step, oxygen gas or mixed gas And the crystalline silicon particles are simply placed on a quartz glass box-like base plate in a single layer, or in a state of being placed in layers with close packing. The coalescence rate of the crystalline silicon particles upon crystallization was examined in the same manner as in Example 1. The results are shown in Table 2 as Examples 2-;! To 4 and Comparative Examples 2-1 and 2.
[0209] また、上記の製造方法によって得られた実施例 2-;!〜 4及び比較例 2-1 , 2の光電 変換装置について、 AMI . 5のソーラーシミュレーターで光電変換装置の電気特性 を示す光電変換効率(単位:%) (表 1において「変換効率」で表す)を測定した。その 結果を表 2に示す。  [0209] Further, regarding the photoelectric conversion devices of Examples 2-;! To 4 and Comparative Examples 2-1 and 2 obtained by the above-described manufacturing method, the electrical characteristics of the photoelectric conversion device are shown by a solar simulator of AMI. Photoelectric conversion efficiency (unit:%) (expressed as “conversion efficiency” in Table 1) was measured. The results are shown in Table 2.
[表 2] ェ 程 [Table 2] About
加工変質層 窒化珪素膜 載置 合体率 変換効率 溶融工程での  Work-affected layer Silicon nitride film Mount ratio Conversion efficiency Melting process
形成工程 形成工程 状態 (%) ( ) 雰囲気ガス  Formation process Formation process State (%) () Atmospheric gas
の有無 の有無  Presence or absence
実施例 2-1 有り 有り 酸素ガス 1層 5 9.6 実施例 2 - 2 有り 有り 酸素ガス 重層 1 1 8.5 混合ガス  Example 2-1 Yes Yes Oxygen gas 1 layer 5 9.6 Example 2-2 Yes Yes Oxygen gas Multilayer 1 1 8.5 Mixed gas
実施例 2 - 3 有り 有り 1層 9 7.4  Example 2-3 Yes Yes 1 layer 9 7.4
(酸素ガス +アルゴンガス)  (Oxygen gas + argon gas)
混合ガス  Gas mixture
実施例 2-4 有り 有り 重層 16 6.1  Example 2-4 Yes Yes Multilayer 16 6.1
(酸素ガス +アルゴンガス)  (Oxygen gas + argon gas)
比較例 2-1 し 有り 酸素ガス 1層 23 3.9 比較例 2 - 2 無し 有り 酸素ガス 重層 68 4.2 比較例 2 - 3 有り 無し 酸素ガス 1層 29 4.9 比較例 2-4 有り 無し 酸素ガス 重層 71 3.2  Comparative example 2-1 Yes Yes Oxygen gas 1 layer 23 3.9 Comparative example 2-2 No Yes Oxygen gas multilayer 68 4.2 Comparative example 2-3 Yes No Oxygen gas 1 layer 29 4.9 Comparative example 2-4 Yes No Oxygen gas multilayer 71 3.2
[0210] 表 2に示す通り、結晶シリコン粒子の表面に研磨による加工変質層を形成せずに酸 素ガスから成る雰囲気ガス中で結晶シリコン粒子の表面に酸化珪素膜を形成して溶 融、凝固させて作製した結晶シリコン粒子(比較例 2-1 , 2)、及び窒化珪素膜を形成 せずに酸素ガスから成る雰囲気ガス中で結晶シリコン粒子の表面に酸化珪素膜を形 成して溶融、凝固させて作製した結晶シリコン粒子(比較例 2-3, 4)と比較して、結晶 シリコン粒子の表面に研磨による加工変質層を形成し、さらに結晶シリコン粒子の表 面に窒化珪素膜を形成し、酸素ガスから成る雰囲気ガスまたは混合ガス(酸素ガス及 び不活性ガス)から成る雰囲気ガス中で溶融、凝固させて作製した結晶シリコン粒子 (実施例 2-;!〜 4)は、いずれも合体率が低ぐ良好な結果であった。 [0210] As shown in Table 2, a silicon oxide film was formed on the surface of the crystalline silicon particles in the atmosphere gas composed of oxygen gas without forming a work-affected layer by polishing on the surface of the crystalline silicon particles. Crystal silicon particles produced by solidification (Comparative Examples 2-1 and 2) and a silicon oxide film formed on the surface of the crystalline silicon particles in an atmosphere gas composed of oxygen gas without forming a silicon nitride film and melted Compared with the crystalline silicon particles produced by solidification (Comparative Examples 2-3, 4), a work-affected layer is formed by polishing on the surface of the crystalline silicon particles, and a silicon nitride film is formed on the surface of the crystalline silicon particles. The crystalline silicon particles (Example 2-;! To 4) prepared and melted and solidified in an atmospheric gas composed of oxygen gas or an atmospheric gas composed of mixed gas (oxygen gas and inert gas) Was a good result with a low coalescence rate
[0211] なお、実施例 2-3の合体率が実施例 2-1の合体率よりも大きぐ及び実施例 2-4の 合体率が実施例 2-2の合体率よりも大きいことの原因は、アルゴンガスを雰囲気ガス 中に用いたため、窒化珪素膜の表面結合状態が変わり、結晶シリコン粒子の表面張 力も変化してより合体しやすくなつたためと考えられる。  [0211] The cause of the coalescence rate of Example 2-3 being greater than the coalescence rate of Example 2-1 and the coalescence rate of Example 2-4 being greater than the coalescence rate of Example 2-2 This is probably because the use of argon gas in the atmosphere gas changed the surface bonding state of the silicon nitride film and the surface tension of the crystalline silicon particles, making it easier to merge.
[0212] また、比較例 2-;!〜 4に対して実施例 2-;!〜 4では変換効率が高く良好な結果であ つた。  [0212] In contrast to Comparative Example 2-;! ~ 4, Example 2-;! ~ 4 showed high conversion efficiency and good results.
[0213] なお、実施例 2-1 , 2の変換効率が、実施例 2-3, 4の変換効率よりも大きいのは、 結晶シリコン粒子の粒子同士の接触部でのサブグレイン発生等による結晶劣化が低 減されたためと考えられる。  [0213] The conversion efficiencies of Examples 2-1 and 2 are larger than those of Examples 2-3 and 4 because crystals due to the generation of subgrains at the contact portions between the crystalline silicon particles, etc. This is thought to be due to the reduction in deterioration.
実施例 3 [0214] 図 5 (a)に示すように、まずホウ素濃度が 1. 0 X 1016atoms/cm3であり、平均粒径 力 00 mのシリコン粒子 101の 20個を、石英ガラス製の箱状の台板 102上に一層 に載置し、カーボンヒーター式の加熱炉内に設置した石英ガラス製の管の内部に収 容した。 Example 3 [0214] As shown in Fig. 5 (a), first, 20 silicon particles 101 having a boron concentration of 1.0 X 10 16 atoms / cm 3 and an average particle size force of 00 m were placed in a quartz glass box. The sample was placed on the base plate 102 in a single layer and housed in a quartz glass tube installed in a carbon heater type heating furnace.
[0215] 次に、石英ガラス製の箱状の台板 102は前処理を施した。即ち、大気雰囲気中で 室温から 1430°C付近まで、昇温時間 2時間、降温時間 4時間の温度プロファイルを 5回繰り返す熱処理を行った。熱処理後の台板 102の表面は白色に変色しており、 X 線回折法により確認したところ、初期の石英ガラスのブロードなピークから、クリストバ ライト結晶に起因する急峻なピークへのシフトが確認できた。  [0215] Next, the box-shaped base plate 102 made of quartz glass was pretreated. That is, heat treatment was repeated 5 times in the air atmosphere from room temperature to around 1430 ° C with a temperature profile of 2 hours for temperature rise and 4 hours for temperature fall. The surface of the base plate 102 after heat treatment has turned white, and when confirmed by X-ray diffraction, a shift from the broad peak of the early quartz glass to the steep peak due to the cristobalite crystal can be confirmed. It was.
[0216] 次に、図 5 (b) , (c)に示すように、加熱炉内に酸素ガス及び窒素ガスを、酸素ガス 分圧 20%、窒素ガス分圧 80%の比率で導入しながらシリコン粒子 101を加熱して、 シリコン粒子 101の表面に酸窒化珪素膜を形成した。弓 Iき続き酸素ガスを導入しなが らシリコンの融点以上の 1430°Cまでシリコン粒子 101を加熱し、 5分間保持して、シリ コン粒子 101の表面の酸窒化珪素膜の内側のシリコンを溶融させた。  Next, as shown in FIGS. 5 (b) and 5 (c), oxygen gas and nitrogen gas are introduced into the heating furnace at a ratio of oxygen gas partial pressure of 20% and nitrogen gas partial pressure of 80%. The silicon particles 101 were heated to form a silicon oxynitride film on the surface of the silicon particles 101. Bow I While continuing to introduce oxygen gas, heat silicon particle 101 to 1430 ° C, which is above the melting point of silicon, and hold it for 5 minutes to remove the silicon inside the silicon oxynitride film on the surface of silicon particle 101. Melted.
[0217] 次に、降温の温度勾配を 60°C/分として、温度 T2 (1410°C, 1400°C, 1390°C, 1383°Cの 4種の温度を設定した)まで過冷却し、引き続きそれぞれの温度 T2 (1410 °C, 1400°C, 1390°C, 1383。C)にて温度一定で 30分間保持することにより、シリコ ン粒子 101を凝固させた。  [0217] Next, the temperature gradient of the temperature drop was set to 60 ° C / min, and the mixture was supercooled to temperature T2 (four temperatures of 1410 ° C, 1400 ° C, 1390 ° C, and 1383 ° C were set) Subsequently, the silicon particles 101 were coagulated by holding at the respective temperatures T2 (1410 ° C, 1400 ° C, 1390 ° C, 1383.C) for 30 minutes at a constant temperature.
[0218] その後、 1000°Cまで降温させる過程において 60分間の熱ァニール処理を行った 。この熱ァニール処理後に室温付近まで降温させた。  [0218] Thereafter, a heat annealing treatment for 60 minutes was performed in the process of lowering the temperature to 1000 ° C. After this thermal annealing treatment, the temperature was lowered to near room temperature.
[0219] 上記各工程において、加熱炉の上部にモニターとしての CCDカメラを設置し、シリ コン粒子 101の溶融と凝固のその場観察を行えるようにして、凝固開始の温度と凝固 形態をモニターにより観察した。  [0219] In each of the above steps, a CCD camera as a monitor was installed at the top of the heating furnace to enable in-situ observation of the melting and solidification of the silicon particles 101, and the solidification start temperature and solidification form were monitored. Observed.
[0220] また、比較例として、シリコン粒子 101を溶融させ過冷却するときの過冷却温度 T2 ( 1380°C, 1368°C, 1322°C, 1250°Cの 4種の温度を設定した)まで過冷却し、引き 続きそれぞれの温度 T2 (1380。C, 1368°C, 1322°C, 1250。C)にて温度一定で 30 分間保持することにより、シリコン粒子 101を凝固させた。  [0220] Also, as a comparative example, up to the supercooling temperature T2 (four temperatures of 1380 ° C, 1368 ° C, 1322 ° C, 1250 ° C were set) when melting and supercooling the silicon particles 101 The silicon particles 101 were solidified by supercooling and subsequently holding at the respective temperatures T2 (1380. C, 1368 ° C, 1322 ° C, 1250.C) at a constant temperature for 30 minutes.
[0221] 実施例 3- 1 (T2 = 1410。C)、実施例 3- 2 (T2 = 1400。C)、実施例 3- 3 (T2 = 139 0°C)、実施例 3-4 (T2 = 1383°C)、比較例 3-l (T2 = 1380°C)、比較例 3-2 (T2 = 1368。 、比較例3_3 (丁2 = 1322。 、比較例3_4 (丁2 = 1250。 のそれぞれの 結晶シリコン粒子について、結晶性を調べた。結晶性の評価は、結晶シリコン粒子を 樹脂に埋めて樹脂とともに研磨する鏡面研磨を施し、 JIS (Japan Industry Standard) の B液(HF : HNO : CH COOH : H 0= 1 : 12. 7 : 3 : 5. 7)から成るエツチャントを [0221] Example 3-1 (T2 = 1410. C), Example 3-2 (T2 = 1400. C), Example 3-3 (T2 = 139) 0 ° C), Example 3-4 (T2 = 1383 ° C), Comparative Example 3-l (T2 = 1380 ° C), Comparative Example 3-2 (T2 = 1368), Comparative Example 3_3 (Ding 2 = 1132) Each of the crystalline silicon particles in Comparative Example 3_4 (Ding 2 = 1250) was examined for crystallinity. The crystallinity was evaluated by performing mirror polishing in which the crystalline silicon particles were embedded in a resin and polished together with the resin. Japan Industry Standard) B liquid (HF: HNO: CH COOH: H 0 = 1: 12. 7: 3: 5. 7)
3 3 2  3 3 2
用いて選択エッチングを行い、粒界やピット (結晶欠陥)の観察を行った。その結果の 結晶シリコン粒子の断面写真を図 6、図 7に示す。  Using this, selective etching was performed, and grain boundaries and pits (crystal defects) were observed. Figures 6 and 7 show cross-sectional photographs of the resulting crystalline silicon particles.
[0222] 図 6に示すように、過冷却温度 T2が 1410°C〜; 1383°Cである実施例 3-;!〜 4にお いては、凝固終端部における突起の形成、粒界や結晶欠陥、転位は観察されず、単 結晶であることが分力、つた。 [0222] As shown in Fig. 6, in Example 3-;! To 4 in which the supercooling temperature T2 is 1410 ° C to 1383 ° C, formation of protrusions at the solidification terminal portion, grain boundaries and crystals Defects and dislocations were not observed, and it was a component that it was a single crystal.
[0223] T2が 1380°Cである比較例 3-1においては、粒界、結晶欠陥、転位は観察されず、 単結晶であることが分力、つた力 凝固終端部において突起が形成されていた。 [0223] In Comparative Example 3-1, in which T2 is 1380 ° C, grain boundaries, crystal defects, and dislocations are not observed, and it is a single crystal that has a component force. It was.
[0224] T2が 1368°Cである比較例 3-2においては、転位や線状の欠陥が観察されたが、 線状の欠陥の形状からは OSF (酸化誘起積層欠陥)であり、粒界ではなく単結晶で あることが確認された。しかし、 T2が 1380°Cである比較例 3-1と同様に凝固終端部 にお!/、て突起が形成されて!/、た。 [0224] In Comparative Example 3-2 where T2 is 1368 ° C, dislocations and linear defects were observed, but the shape of the linear defects was OSF (oxidation-induced stacking faults), and grain boundaries Instead, it was confirmed to be a single crystal. However, as in Comparative Example 3-1, where T2 was 1380 ° C,! /, A protrusion was formed at the end of solidification! /.
[0225] T2が 1322°Cである比較例 3-3、 T2が 1250°Cである比較例 3-4においては、粒 界ゃ結晶欠陥に起因するピット(黒色)が観察され、単結晶ではなく多結晶であること が分かった。 [0225] In Comparative Example 3-3, where T2 is 1322 ° C, and in Comparative Example 3-4, where T2 is 1250 ° C, pits (black) due to crystal defects are observed in the grain boundaries. It turned out to be polycrystalline.
[0226] よって、過冷却温度 T2が 1410°C〜; 1383°Cであれば結晶シリコン粒子は凝固終 端部において突起が形成されていない単結晶であり(実施例 3-;!〜 4)、実施例 3-1 〜4の結晶シリコン粒子は、比較例 3-;!〜 2の単結晶であるが凝固終端部において 突起が形成されていた結晶シリコン粒子や、比較例 3_3〜4の多結晶の結晶シリコン 粒子に比べ、形状や結晶性に優れたものとなった。  [0226] Therefore, if the supercooling temperature T2 is from 1410 ° C to 1383 ° C, the crystalline silicon particles are single crystals with no protrusions formed at the end of solidification (Example 3-;! To 4). The crystalline silicon particles of Examples 3-1 to 4 are the single crystals of Comparative Example 3-;! To 2, but the crystalline silicon particles in which protrusions were formed at the solidification termination portion, and the comparative Examples 3_3 to 4 Compared to crystalline silicon particles, the shape and crystallinity were excellent.
[0227] 図 8には本発明の結晶シリコン粒子の製造方法についての温度プロファイルを示す FIG. 8 shows a temperature profile for the method for producing crystalline silicon particles of the present invention.
Yes
[0228] 結晶性と過冷却度との関連については、より過冷却度が小さい状態で不均一核生 成による一方向凝固を生ずれば、より単結晶になり易いと考えられる。ただし、より過 冷却度が小さい状態で凝固を開始するためには、より大きな凝固開始のトリガーが必 要であり、本発明では過冷却という手法により降温の温度勾配を大きくすることによつ て、より大きな凝固開始のトリガーを実現した。また、不均一核生成を発生させるため には、石英ガラス製の基体の表面にクリストバライト結晶層が形成されていることが有 効と考えられる。 [0228] Regarding the relationship between the crystallinity and the degree of supercooling, it is considered that if unidirectional solidification by heterogeneous nucleation occurs in a state where the degree of supercooling is smaller, a single crystal is more likely to be formed. However, more In order to start solidification in a state where the degree of cooling is small, a larger trigger for the start of solidification is necessary.In the present invention, a larger solidification temperature is obtained by increasing the temperature gradient of the temperature drop by the method of supercooling. Realized the start trigger. In order to generate heterogeneous nucleation, it is considered effective that a cristobalite crystal layer is formed on the surface of a quartz glass substrate.
[0229] T2が 1368°C以上で 1380°C以下では、結晶シリコン粒子の内部は単結晶であつ ても、凝固終端部のごく一部に結晶欠陥や結晶方位の乱れがある突起が形成され 易ぐその突起を有する結晶シリコン粒子を用いて光電変換装置を作製した場合、突 起部での pn接合の劣化や電流リーク発生による光電変換特性の劣化となり、その点 では好ましくない。しかし、この場合、突起を研磨法等によって除去した結晶シリコン 粒子を用いれば、突起による光電変換特性の劣化が生じない光電変換装置を製造 できる力 コストアップ等の問題が生じてしまう。  [0229] When T2 is 1368 ° C or more and 1380 ° C or less, even if the inside of the crystalline silicon particle is a single crystal, protrusions having crystal defects and disorder of crystal orientation are formed in a very small part of the solidification terminal portion. Producing a photoelectric conversion device using crystalline silicon particles having such protrusions easily results in deterioration of the pn junction at the protrusion and deterioration of photoelectric conversion characteristics due to current leakage, which is not preferable. However, in this case, if the crystalline silicon particles from which the protrusions are removed by a polishing method or the like are used, problems such as an increase in cost and the like that can produce a photoelectric conversion device in which the photoelectric conversion characteristics do not deteriorate due to the protrusions occur.
[0230] T2が 1383°C以上で 1410°C以下では、突起の形成もなく真球により近い形状の 結晶シリコン粒子を製造できるので、その結晶シリコン粒子を光電変換装置に用いた 場合、良好な光電変換特性を得ることができる。  [0230] When T2 is 1383 ° C or higher and 1410 ° C or lower, crystal silicon particles having a shape closer to a true sphere can be produced without formation of protrusions, which is good when the crystal silicon particles are used in a photoelectric conversion device. Photoelectric conversion characteristics can be obtained.
[0231] 比較例 3-3, 4のように粒界や結晶欠陥が発生した多結晶の結晶シリコン粒子とな つたのは、過冷却度 (Tm— T2)が大きいために、凝固がシリコン粒子の表面の複数 箇所から同時に発生する均一核生成ゃデンドライト成長を生じたためと考えられる。  [0231] Polycrystalline crystalline silicon particles with grain boundaries and crystal defects as in Comparative Examples 3-3 and 4 have a high degree of supercooling (Tm-T2), so that solidification is It is thought that uniform nucleation that occurs simultaneously from multiple points on the surface caused dendrite growth.
[0232] なお、本発明は以上の実施形態及び実施例に限定されるものではなぐ本発明の 要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。例えば、結晶 シリコン粒子を加熱して溶融させるのに、加熱炉ではなぐ台板の上面に載置した結 晶シリコン粒子の上方から光エネルギーを照射することで溶融させる方式を用いても よい。  It should be noted that the present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the gist of the present invention. For example, in order to heat and melt the crystalline silicon particles, a method may be used in which the crystalline silicon particles are melted by irradiating light energy from above the crystalline silicon particles placed on the upper surface of the base plate.

Claims

請求の範囲 The scope of the claims
[1] 窒素ガスから成る雰囲気ガスまたは窒素ガスを主成分として含む雰囲気ガス中で、 シリコン粒子をシリコンの融点以下の温度に加熱し、  [1] In an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component, silicon particles are heated to a temperature below the melting point of silicon,
次に酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気 ガス中で、前記シリコン粒子を加熱して形状を保持した状態でシリコンを溶融させ、 ついで降温し凝固させて単結晶化することを特徴とする結晶シリコン粒子の製造方 法。  Next, in an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and inert gas, the silicon particles are heated to melt the silicon while maintaining its shape, and then cooled and solidified to form a single crystal. A method for producing crystalline silicon particles.
[2] 窒素ガスから成る雰囲気ガスまたは窒素ガスを主成分として含む雰囲気ガス中で、 シリコン粒子をシリコンの融点以下の温度に加熱して前記シリコン粒子の表面に内部 よりも硬質の硬質膜を形成し、  [2] In an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component, silicon particles are heated to a temperature below the melting point of silicon to form a hard film harder than the inside on the surface of the silicon particles. And
次に酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気 ガス中で、前記シリコン粒子を加熱して前記硬質膜に酸素を含ませることによって軟 化させて前記硬質膜の内側のシリコンを溶融させ、つ V、で降温し凝固させて単結晶 化することを特徴とする結晶シリコン粒子の製造方法。  Next, in the atmosphere gas composed of oxygen gas or in the atmosphere gas composed of oxygen gas and inert gas, the silicon particles are heated to be softened by adding oxygen to the hard film, and silicon inside the hard film A method for producing crystalline silicon particles, characterized in that a single crystal is obtained by melting and solidifying by cooling with V.
[3] 窒素ガスから成る雰囲気ガスまたは窒素ガスを主成分として含む雰囲気ガス中で、 シリコン粒子をシリコンの融点以下の温度に加熱して前記シリコン粒子の表面に窒化 珪素膜を形成し、 [3] In an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component, the silicon particles are heated to a temperature below the melting point of silicon to form a silicon nitride film on the surfaces of the silicon particles,
次に酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気 ガス中で、前記シリコン粒子を加熱して前記窒化珪素膜の内側のシリコンを溶融させ 、つ!/、で降温し凝固させて単結晶化することを特徴とする結晶シリコン粒子の製造方 法。  Next, in the atmosphere gas composed of oxygen gas or the atmosphere gas composed of oxygen gas and inert gas, the silicon particles are heated to melt the silicon inside the silicon nitride film, and the temperature is lowered and solidified by using! /. A method for producing crystalline silicon particles, characterized by being single-crystallized.
[4] 前記窒化珪素膜は酸素を含んでいることを特徴とする請求項 3記載の結晶シリコン 粒子の製造方法。  4. The method for producing crystalline silicon particles according to claim 3, wherein the silicon nitride film contains oxygen.
[5] 酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気ガス 中で、前記シリコン粒子を加熱して前記窒化珪素膜の内側のシリコンを溶融させ、つ いで降温して凝固させて単結晶化する工程力 多数個の前記シリコン粒子を台板上 に重層的に載置した状態で行われることを特徴とする請求項 3記載の結晶シリコン粒 子の製造方法。 [5] In an atmosphere gas composed of oxygen gas or an atmosphere gas composed of oxygen gas and inert gas, the silicon particles are heated to melt the silicon inside the silicon nitride film, and then cooled to solidify. 4. The method for producing crystalline silicon particles according to claim 3, wherein the process power for single crystallization is performed in a state where a large number of the silicon particles are placed in a multilayered manner on a base plate.
[6] 前記シリコン粒子を単結晶化した後に前記窒化珪素膜を除去することを特徴とする 請求項 3記載の結晶シリコン粒子の製造方法。 6. The method for producing crystalline silicon particles according to claim 3, wherein the silicon nitride film is removed after the silicon particles are monocrystallized.
[7] 前記窒化珪素膜は金属不純物を含有することを特徴とする請求項 6記載の結晶シ リコン粒子の製造方法。 7. The method for producing crystalline silicon particles according to claim 6, wherein the silicon nitride film contains a metal impurity.
[8] 前記窒素ガスから成る雰囲気ガスまたは窒素ガスを主成分として含む雰囲気ガス は、圧力が 0. 01-0. 2MPaであることを特徴とする請求項 3記載の結晶シリコン粒 子の製造方法。 8. The method for producing crystalline silicon particles according to claim 3, wherein the pressure of the atmospheric gas composed of nitrogen gas or the atmospheric gas containing nitrogen gas as a main component is 0.01 to 0.2 MPa. .
[9] 前記窒素ガスから成る雰囲気ガスまたは窒素ガスを主成分として含む雰囲気ガス は、窒素ガス分圧が 70%以上であることを特徴とする請求項 3記載の結晶シリコン粒 子の製造方法。  9. The method for producing crystalline silicon particles according to claim 3, wherein the atmospheric gas composed of nitrogen gas or the atmospheric gas containing nitrogen gas as a main component has a nitrogen gas partial pressure of 70% or more.
[10] 前記窒化珪素膜の厚みが lOOnm〜; 10 mであることを特徴とする請求項 3記載 の結晶シリコン粒子の製造方法。  10. The method for producing crystalline silicon particles according to claim 3, wherein the silicon nitride film has a thickness of lOOnm to 10 m.
[11] 前記酸素ガスから成る雰囲気ガスまたは酸素ガス及び不活性ガスから成る雰囲気 ガスは、圧力が 0. 01-0. 2MPaであることを特徴とする請求項 3記載の結晶シリコ ン粒子の製造方法。  11. The production of crystalline silicon particles according to claim 3, wherein the atmospheric gas comprising oxygen gas or the atmospheric gas comprising oxygen gas and an inert gas has a pressure of 0.01 to 0.2 MPa. Method.
[12] 台板は、石英ガラス,ムライト,酸化アルミニウム,炭化珪素またはサフアイャから成 ることを特徴とする請求項 5記載の結晶シリコン粒子の製造方法。  12. The method for producing crystalline silicon particles according to claim 5, wherein the base plate is made of quartz glass, mullite, aluminum oxide, silicon carbide, or sapphire.
[13] 前記窒化珪素膜に含まれる酸素の含有量が 10モル%以下であることを特徴とする 請求項 4記載の結晶シリコン粒子の製造方法。  13. The method for producing crystalline silicon particles according to claim 4, wherein the content of oxygen contained in the silicon nitride film is 10 mol% or less.
[14] 結晶シリコン粒子の表面に研磨加工を施すことによって前記結晶シリコン粒子の表 層部に加工変質層を形成した後に、窒素ガスから成る雰囲気ガスまたは窒素ガスを 主成分として含む雰囲気ガス中で、シリコン粒子をシリコンの融点以下の温度に加熱 して前記シリコン粒子の表面に窒化珪素膜を形成することを特徴とする請求項 1記載 の結晶シリコン粒子の製造方法。  [14] After forming a work-affected layer on the surface portion of the crystalline silicon particles by subjecting the surface of the crystalline silicon particles to polishing, an atmosphere gas composed of nitrogen gas or an atmosphere gas containing nitrogen gas as a main component 2. The method for producing crystalline silicon particles according to claim 1, wherein the silicon particles are heated to a temperature below the melting point of silicon to form a silicon nitride film on the surface of the silicon particles.
[15] 前記結晶シリコン粒子力 シリコン融液が入った坩堝のノズル部から前記シリコン融 液を粒状として排出して落下させ、粒状の前記シリコン融液を落下中に冷却して凝固 させることによって作製されることを特徴とする請求項 3または 14に記載の結晶シリコ ン粒子の製造方法。 [15] Crystalline silicon particle force Prepared by discharging and dropping the silicon melt in a granular form from a nozzle part of a crucible containing silicon melt, and cooling and solidifying the granular silicon melt during the fall. 15. The method for producing crystalline silicon particles according to claim 3 or 14, wherein:
[16] 酸素ガス及び窒素ガスから成る雰囲気ガス中で、シリコン粒子をその融点以下の温 度に加熱して前記シリコン粒子の表面に酸窒化珪素膜を形成した後に、前記シリコ ン粒子の表面に形成された酸窒化珪素膜によって前記シリコン粒子をその形状を保 持したままシリコンの融点 Tm以上の温度 T1に加熱して内部のシリコンを溶融させ、 ついで前記温度 T1から前記融点 Tm未満であって 1383°C以上の温度 T2まで過冷 却する工程 1と、 [16] A silicon oxynitride film is formed on the surface of the silicon particle by heating the silicon particle to a temperature below its melting point in an atmosphere gas composed of oxygen gas and nitrogen gas, and then on the surface of the silicon particle. With the formed silicon oxynitride film, the silicon particles are heated to a temperature T1 equal to or higher than the melting point Tm of the silicon while maintaining the shape thereof, and the silicon inside is melted, and then the temperature T1 is less than the melting point Tm. Step 1 of supercooling to a temperature T2 above 1383 ° C, and
次に、溶融したシリコン粒子が全て凝固するまで前記融点 Tm未満で 1383°C以上 の範囲内の所定の温度に保持する工程 2と、  Next, the step 2 of maintaining the molten silicon particles at a predetermined temperature within the range of 1383 ° C or more below the melting point Tm until all the molten silicon particles are solidified,
を具備することを特徴とする請求項 12記載の結晶シリコン粒子の製造方法。  13. The method for producing crystalline silicon particles according to claim 12, comprising:
[17] 前記工程 1において、前記温度 T1から 1410°C以下であって 1383°C以上の温度[17] In the step 1, from the temperature T1, the temperature is 1410 ° C or lower and 1383 ° C or higher
T2まで過冷却することを特徴とする請求項 16記載の結晶シリコン粒子の製造方法。 17. The method for producing crystalline silicon particles according to claim 16, wherein supercooling is performed to T2.
[18] 前記工程 1において、上面にシリコン粒子が載置された台板を加熱装置内に設置 するとともに酸素ガス及び窒素ガスから成る雰囲気ガス中で前記シリコン粒子をその 融点 Tm以下の温度に加熱して前記シリコン粒子の表面に酸窒化珪素膜を形成する ことを特徴とする請求項 16記載の結晶シリコン粒子の製造方法。 [18] In step 1, a base plate having silicon particles placed on the upper surface is placed in a heating device, and the silicon particles are heated to a temperature below its melting point Tm in an atmospheric gas composed of oxygen gas and nitrogen gas. 17. The method for producing crystalline silicon particles according to claim 16, wherein a silicon oxynitride film is formed on a surface of the silicon particles.
[19] 多数個の前記シリコン粒子を前記台板上に重層的に載置した状態で単結晶化する ことを特徴とする請求項 18記載の結晶シリコン粒子の製造方法。 [19] The method for producing crystalline silicon particles according to [18], wherein a plurality of silicon particles are single-crystallized in a state of being stacked on the base plate.
[20] 前記台板は、石英ガラス製の基体の表面にクリストバライト結晶層が形成されている ことを特徴とする請求項 18記載の結晶シリコン粒子の製造方法。 20. The method for producing crystalline silicon particles according to claim 18, wherein the base plate has a cristobalite crystal layer formed on a surface of a quartz glass substrate.
[21] 前記シリコン粒子を単結晶化した後に前記酸窒化珪素膜を除去することを特徴と する請求項 18記載の結晶シリコン粒子の製造方法。 21. The method for producing crystalline silicon particles according to claim 18, wherein the silicon oxynitride film is removed after the silicon particles are monocrystallized.
[22] 前記酸窒化珪素膜は金属不純物を含有することを特徴とする請求項 21記載の結 晶シリコン粒子の製造方法。 22. The method for producing crystalline silicon particles according to claim 21, wherein the silicon oxynitride film contains a metal impurity.
[23] 前記工程 1にお!/、て、過冷却の温度勾配が 2°C/分〜 200°C/分であることを特 徴とする請求項 16記載の結晶シリコン粒子の製造方法。  23. The method for producing crystalline silicon particles according to claim 16, wherein the temperature gradient of the supercooling in step 1 is 2 ° C./min to 200 ° C./min.
PCT/JP2007/068578 2006-09-22 2007-09-25 Method for fabricating crystalline silicon grains WO2008035793A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-258054 2006-09-22
JP2006258054A JP2009292650A (en) 2006-09-22 2006-09-22 Method for producing crystal silicon particles
JP2006321796A JP2009292652A (en) 2006-11-29 2006-11-29 Production method of crystalline silicon grain
JP2006-321796 2006-11-29
JP2007117134A JP2009292653A (en) 2007-04-26 2007-04-26 Method for producing crystal silicon particles
JP2007-117134 2007-04-26

Publications (1)

Publication Number Publication Date
WO2008035793A1 true WO2008035793A1 (en) 2008-03-27

Family

ID=39200614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068578 WO2008035793A1 (en) 2006-09-22 2007-09-25 Method for fabricating crystalline silicon grains

Country Status (1)

Country Link
WO (1) WO2008035793A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126592A (en) * 2010-12-14 2012-07-05 Clean Venture 21 Corp Method for producing crystal semiconductor particle
WO2012102343A1 (en) * 2011-01-26 2012-08-02 国立大学法人山口大学 Silicon melt contacting member and process for production thereof, and process for production of crystalline silicon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855393A (en) * 1981-08-07 1983-04-01 テキサス・インスツルメンツ・インコ−ポレイテツド Method of changing polycrystal or amorphous semiconductor substance to single crystal
JP2004091292A (en) * 2002-09-03 2004-03-25 Kyocera Corp Single crystallization process of semiconductor material
JP2004099357A (en) * 2002-09-06 2004-04-02 Kyocera Corp Method of manufacturing granular silicon crystal
JP2004244286A (en) * 2003-02-17 2004-09-02 Kyocera Corp Method for manufacturing granular silicon single crystal, and granular silicon single crystal
JP2005086033A (en) * 2003-09-09 2005-03-31 Kyocera Corp Photoelectric converter
JP2006151722A (en) * 2004-11-26 2006-06-15 Kyocera Corp Silicon particle treating bedplate, its manufacturing method and method for manufacturing single crystal silicon particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855393A (en) * 1981-08-07 1983-04-01 テキサス・インスツルメンツ・インコ−ポレイテツド Method of changing polycrystal or amorphous semiconductor substance to single crystal
JP2004091292A (en) * 2002-09-03 2004-03-25 Kyocera Corp Single crystallization process of semiconductor material
JP2004099357A (en) * 2002-09-06 2004-04-02 Kyocera Corp Method of manufacturing granular silicon crystal
JP2004244286A (en) * 2003-02-17 2004-09-02 Kyocera Corp Method for manufacturing granular silicon single crystal, and granular silicon single crystal
JP2005086033A (en) * 2003-09-09 2005-03-31 Kyocera Corp Photoelectric converter
JP2006151722A (en) * 2004-11-26 2006-06-15 Kyocera Corp Silicon particle treating bedplate, its manufacturing method and method for manufacturing single crystal silicon particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126592A (en) * 2010-12-14 2012-07-05 Clean Venture 21 Corp Method for producing crystal semiconductor particle
WO2012102343A1 (en) * 2011-01-26 2012-08-02 国立大学法人山口大学 Silicon melt contacting member and process for production thereof, and process for production of crystalline silicon
CN103154332A (en) * 2011-01-26 2013-06-12 国立大学法人山口大学 Silicon melt contacting member and process for production thereof, and process for production of crystalline silicon
JP5875529B2 (en) * 2011-01-26 2016-03-02 国立大学法人山口大学 Silicon melt contact member, method for producing the same, and method for producing crystalline silicon

Similar Documents

Publication Publication Date Title
JP3679366B2 (en) CZ silicon single crystal for Ga-added solar cell, silicon single crystal wafer for solar cell, and method for producing the same
JP2011528308A (en) Method and apparatus for producing cast silicon from seed crystals
CN106715765B (en) Method for producing single crystal and method for producing silicon wafer
JP4528995B2 (en) Method for producing Si bulk polycrystalline ingot
CN102312291A (en) Doped casting monocrystalline silicon and preparation method
CN102312292A (en) Doped Czochralski monocrystalline silicon
WO2008035793A1 (en) Method for fabricating crystalline silicon grains
JP2007194513A (en) Manufacturing method for crystal semiconductor particle, and photovoltaic conversion device
JP2009292652A (en) Production method of crystalline silicon grain
JP4817761B2 (en) Method for manufacturing semiconductor ingot and solar cell element
JP2009256177A (en) Single crystal silicon particle and method for manufacturing the same
JP2008110914A (en) Method for producing granular single crystal silicon
JP2007173528A (en) Method for manufacturing crystal semiconductor particles, photovoltaic conversion device, and photovoltaic generator
JP2007184496A (en) Crystal semiconductor particle manufacturing method and photoelectric conversion device
JP2007022859A (en) Method for producing silicon crystal particle, photoelectronic converter, and light power generation system
JP4142931B2 (en) Granular silicon crystal production apparatus and production method
JP2009292653A (en) Method for producing crystal silicon particles
JP2009167052A (en) Method for manufacturing single crystal silicon particle
JP2004091292A (en) Single crystallization process of semiconductor material
JP2008085056A (en) Crystal grain manufacturing method
JP2007281168A (en) Process for producing crystal silicon particle
JP2009292650A (en) Method for producing crystal silicon particles
JP2004091293A (en) Process for preparing granular, single-crystal silicon
JP4025608B2 (en) Method for producing granular silicon crystal
JP2004217489A (en) Method for producing granular silicon crystal, and granular silicon crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP