JP2004091293A - Process for preparing granular, single-crystal silicon - Google Patents

Process for preparing granular, single-crystal silicon Download PDF

Info

Publication number
JP2004091293A
JP2004091293A JP2002258092A JP2002258092A JP2004091293A JP 2004091293 A JP2004091293 A JP 2004091293A JP 2002258092 A JP2002258092 A JP 2002258092A JP 2002258092 A JP2002258092 A JP 2002258092A JP 2004091293 A JP2004091293 A JP 2004091293A
Authority
JP
Japan
Prior art keywords
silicon
gas
granular
temperature
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002258092A
Other languages
Japanese (ja)
Inventor
Hideyoshi Tanabe
田辺 英義
Nobuyuki Kitahara
北原 暢之
Hisao Arimune
有宗 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002258092A priority Critical patent/JP2004091293A/en
Publication of JP2004091293A publication Critical patent/JP2004091293A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for preparing granular, single-crystal silicon which enables stable preparation of the low-cost, granular, single-crystal silicon showing high-quality and excellent mass-productivity, crystallinity and open circuit voltage property. <P>SOLUTION: In the process for preparing the granular, single-crystal silicon, granular silicon is heated in an atmospheric gas containing a reactive gas of an oxygen gas and a nitrogen gas to form a coated film of a silicon compound containing components of the gas on the surface, and the silicon contained therein is melted and subsequently solidified by lowering the temperature to perform single crystallization. Here, the introduction of the reactive gas is started at a temperature higher than room temperature but lower than melting point of the silicon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は粒状単結晶シリコンの製造方法に関し、特に太陽電池に用いる粒状シリコンを製造するのに好適な粒状単結晶シリコンの製造方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
太陽電池は、性能面での効率、資源の有限性、あるいは製造コストなどといった市場ニーズを捉えて開発がされている。有望な太陽電池の一つとして、粒状シリコンを用いた太陽電池がある。
【0003】
粒状シリコンを作製するための原料としては、単結晶シリコンを粉砕した結果として発生するシリコンの微小粒子や流動床法で気相合成された高純度シリコンを用いている。それら原料をサイズあるいは重量によって分別した後に、赤外線や高周波コイルを用いて容器内で溶融し、その後に自由落下させる方法(例えば特許文献1、特許文献2参照)や、同じく高周波プラズマを用いる方法(例えば特許文献3参照)で球状化させる。
【0004】
しかしながら、これらの方法で製造された粒状シリコンはそのほとんどが多結晶体である。多結晶体は微結晶の集合体であるため微結晶間には粒界が存在する。粒界は半導体装置の電気特性を劣化させる。粒界の境界にはキャリヤの再結合中心が集まっており、再結合が生ずることで少数キャリヤの寿命が大幅に低減するためである。
【0005】
太陽電池のように電気特性が少数キャリヤの寿命の増大とともに大幅に向上する装置の場合には、シリコン中の粒界の存在は特に大きな問題となる。逆に言えば多結晶体から単結晶体にできれば太陽電池の電気特性を著しく改善できる。
【0006】
また、粒界は粒状シリコンの機械的強度を弱くすることから、太陽電池を製造する各工程の熱履歴、熱歪、あるいは機械的な圧力などで粒状シリコンが破壊されるという問題もあった。
【0007】
以上のことから、粒状シリコンで太陽電池を製造する場合、粒界などが存在しない結晶性に優れた粒状シリコンの製造が必要不可欠となる。
【0008】
粒状の単結晶体を得る方法として、多結晶シリコンまたは無定形シリコンの表面上に酸化シリコンなどの珪素化合物の被膜を形成し、その被膜の内側のシリコンを溶融して冷却して固化させて単結晶体を製造する方法が知られている(例えば特許文献4参照)。
【0009】
酸化シリコン被膜の内側でシリコンを溶融させるためには被膜を充分に厚くする必要がある。しかし、シリコンと酸化シリコンとの界面に形成されているSi−O結合は非常に不安定であり、界面で歪や酸素誘起積層(OSF)欠陥が発生することを抑制できない。しかも被膜が厚くなればなるほど界面状態が劣化する。シリコンと酸化シリコンとの界面、つまりシリコンの表面の劣化は後工程で形成するpn接合部の劣化にもつながり、太陽電池の電気特性を大幅に低下させる原因となる。
【0010】
エッチング処理によって酸化被膜と劣化した界面付近のシリコン層を余分に除去する方法ことも考えられるが、酸化膜やSi−O結合は温度や雰囲気ガスなどの形成条件によって界面での存在状態や分布が異なるために完全には除去できない。また、酸化被膜のみならず必要以上にシリコン表面層まで除去することは、資源の有効活用、コスト、あるいは量産性の面からも問題である。
【0011】
さらに、酸化膜厚の増加や界面での欠陥の増加は被膜の内側のシリコン中への大量の酸素拡散を促進することになり、シリコン中に大量に混入した酸素は後工程の熱履歴によって析出すると積層欠陥となるため、太陽電池の電気特性を大幅に劣化させる。
【0012】
すなわち、多数のシリコン粒子が必要な太陽電池を形成するための粒状シリコンの作製工程としては不向きなものである。
【0013】
本発明は、このような従来技術の問題点に鑑みなされたものであり、多結晶シリコンを安定して高効率に単結晶化すると同時に、高い結晶性をもった粒状単結晶シリコンを低コストで製造する方法を提供することを目的とする。
【0014】
【特許文献1】
国際公開第99/22048号パンフレット
【特許文献2】
米国特許第4188177号明細書
【特許文献3】
特開平5−78115号公報
【特許文献4】
米国特許第290917号明細書
【0015】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る粒状単結晶シリコンの製造方法では、酸素ガスと窒素ガスの反応性ガスを含む雰囲気ガス中で粒状シリコンを加熱して表面に前記ガスの成分を含む珪素化合物被膜を形成して内側のシリコンを溶融した後、降温して凝固させて単結晶化する粒状単結晶シリコンの製造方法において、前記反応性ガスを室温より高くシリコンの融点より低い温度で導入し始めることを特徴とする。
【0016】
上記粒状単結晶シリコン製造方法では、前記反応性ガスの導入開始温度が1000〜1380℃であることが望ましい。
【0017】
また、上記粒状単結晶シリコンの製造方法では、前記雰囲気ガス中にアルゴンガスを含むことが望ましい。
【0018】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。
単結晶化するシリコンは所望の抵抗値に半導体不純物がドープされていることが望ましい。粒径は100〜800μmが望ましく、それらの形が球に近いことが望ましい。ただし、その他の形であってもよい。単結晶化するシリコンは、その表面に付着した異物を除去するために、RCA洗浄法であらかじめ溶液洗浄しておくことが望ましい。
【0019】
次に、単結晶化するシリコンをサヤ上に密に一層で充填する。密とはできるだけ隙間がないようにという意味であり、粒同士が接触していてもよい。サヤの材質は単結晶化するシリコンと反応を抑えるために、石英ガラス、酸化アルミニウム、炭化珪素、単結晶サファイヤなどが適するが、コストの面や扱い易さからは石英ガラスが適する。石英ガラスを用いる場合にはフッ酸による洗浄を行なった後、水洗と乾燥を行なって使用する。このサヤは何段に積み上げてもよい。
【0020】
図1は本発明に係る粒状シリコンの製造方法に用いる温度プロファイルを示す図である。製造装置にはセラミックの焼成などに用いられる雰囲気焼成炉あるいは半導体で一般的に用いられる横型酸化炉などが適する。このような製造装置にサヤ上に充填された単結晶化するシリコンを配設して、酸素ガスと窒素ガスを含むアルゴン雰囲気ガスで満たされた炉内で誘導加熱または抵抗加熱ヒータ(不図示)で単結晶化するシリコン全体を加熱する。
【0021】
RCA洗浄後のシリコン表面のダングリングボンドは結合状態が不安定であるために、炉の加熱を行う前に炉内の真空処理を行うか不活性ガスであるアルゴン雰囲気で充分にガス置換した後、炉内がアルゴン雰囲気のみで満たされていることが望ましい。
【0022】
次に、1では単結晶化するシリコンの表面にシリコンの酸窒化膜を形成するために、炉内の温度をシリコンの融点以下のより高い温度へ上げていく。そして9で酸素ガスと窒素ガスの反応性ガスを導入するが、望ましくは1000〜1380℃の温度がよい。
【0023】
熱処理してシリコン表面に酸窒化被膜を形成する場合、膜の密度、不純物の拡散防止力、あるいは耐酸性など、高温になるほど膜質は向上する。従って、酸化膜に比べて被膜が薄く不純物の拡散阻止力も向上した酸窒化被膜を高温状態からシリコン表面に形成すればシリコンと被膜との界面状態も酸化膜に比べて大幅に改善される。また、被膜を薄くでき品質も向上すれば粒状シリコンの大きさや形状も安定化させることができる。また、後工程でエッチング除去すべき歪や欠陥を多く含んだシリコンの表面層も少なくなり、資源の有効活用が可能となる。量産性向上やコスト低下も可能となる。被膜の内側のシリコン中に混入する酸素の量も大幅に低減する。
【0024】
酸素ガスと窒素ガスの反応性ガスの導入温度が1000℃以下あるいは1380℃以上では酸窒化被膜を除去した後のシリコンの表面形状の凹凸が大きく歪や欠陥が多く存在するので望ましくない。
【0025】
また、反応ガスの雰囲気は酸素分圧が1%以上で窒素分圧が4%以上であることが望ましい。すなわち、雰囲気ガス中の酸素分圧が1%未満で窒素分圧が4%未満の場合、粒子同志の結合が発生しやすくなって望ましくない。また、雰囲気ガス中の酸素分圧が20%以上で窒素分圧が80%以上の場合、単結晶化するシリコン表面に形成された酸窒化被膜に亀裂が発生しやすくなる。
【0026】
次に、1380℃まで温度を上昇させる。酸窒化被膜の内側でシリコンを溶融させる場合、2のように融点よりも若干低い1380℃程度の温度で3分間程度保持することが望ましい。すなわち約1380℃に保持することで炉内あるいはシリコンの温度分布の均一性が向上する。以上の状態で形成された酸窒化被膜はシリコンが溶融するときにそれを充分に保持できる。ただし、約1380℃で10分以上保持することはシリコン内部へ酸素が拡散されることを促進することになり望ましくない。
【0027】
次に、3において1420〜1440℃、すなわち1450℃を超えない温度へ昇温し、4において約2分間その温度を保持する。この間にシリコンが溶融し始める。
【0028】
酸窒化被膜の膜厚は1μm以上であることが望ましい。膜厚が1μm以下である場合にはシリコンの溶融時に被膜が破れやすくその結果サヤと融着固化反応するおそれがある。雰囲気中の酸素ガスと窒素ガスを導入することによって、高温における酸窒化被膜の割れ目などを補整できる。さらにシリコン溶融時には表面張力で球形化しようとするが、上記の温度領域であれば酸窒化被膜は充分に変形可能であり、単結晶化するシリコンを真球に近い形にできる。
【0029】
次に、5において溶融したシリコンを冷却するために約1380℃まで温度を下げる。そして、6において溶融後のシリコンを単結晶化させるために、約1380℃で10分程度温度を保持することが望ましい。保持時間が10分よりも短い場合は、サブグレインなどが生じ易く単結晶化させることができないため望ましくない。
【0030】
次に、酸窒化被膜を形成するときに酸窒化被膜の内側のシリコン中に混入した酸素を除去するために、あるいは溶融凝固後の単結晶シリコンの結晶性を向上させるために、7においてさらに降温し、8の600℃より高い温度、望ましく1250℃程度で2時間程度熱アニールする。600℃より温度が低い場合は酸素ドナー等のサーマルドナー発生があるために望ましくない。シリコン中に混入した酸素は後工程の熱履歴で析出すると積層欠陥となって電気特性が大幅に劣化する。酸素析出核の収縮と成長は温度に依存するため、高温になれば析出物のサイズが大きくなってその密度は減少する。また、溶融凝固後の単結晶の結晶性を向上させる方法としても熱アニールは有効である。高温で保持することにより、原子の再配列が起こって結晶内の歪低減や欠陥等を減少させる効果がある。アニール終了後は室温まで降温する。
【0031】
炉内のアルゴン不活性ガス、酸素ガス、および窒素ガスを含む雰囲気ガス中の酸素ガスと窒素ガスの分圧は、アルゴン流量に対する酸素ガスと窒素ガスの流量で調整できる。圧力とガス濃度が調整可能な機構を持つものであればよい。また、酸素ガスと窒素ガスの分圧は酸窒化膜の形成からアニール後の冷却まで変化させず一定に保ってもよい。
【0032】
このようにして得られる単結晶シリコン粒子は、太陽電池を形成するために使用される。
【0033】
図2に得られた粒状シリコン106を用いて形成する太陽電池を示す。まず、粒状シリコン106の表面に形成された酸窒化膜をフッ酸およびフッ硝酸でエッチング除去する。除去される酸窒化膜の膜厚は1μm以上である。次に、金属基板107の上に粒状シリコン106を配置する。次に、これを全体的に加熱して粒状シリコン106を金属基板107に接合層108を介して接合させる。粒状シリコン106の間に、金属基板107上に絶縁層109を形成する。これらの上側の全体にわたってアモルファスまたは多結晶のシリコン膜110を成膜する。このとき、粒状シリコン106は第1導電形のp型またはn型であるので、シリコン膜110は第2導電形のn型またはp型で成膜する。さらに、その上から透明導電膜111を形成する。このようにして、金属基板107を一方の電極にし、シリコン膜110上に銀ペースト等を塗布してもう一方の電極112とする光電変換素子が得られる。
【0034】
【実施例】
RCA洗浄した粒径約350μmの粒状シリコンを石英ガラスのサヤ上に一層に充填し、雰囲気焼成炉内にセットしてシリコン全体をアルゴンガスで満たされた環境下で加熱した。室温から約1380℃まで昇温させながら、酸素ガスと窒素ガスを含む反応ガスの導入開始温度を1150℃とし、酸窒化被膜をシリコン表面に形成し、約1425℃で約2分間保持して被膜の内側のシリコンを溶融させた後、凝固過程で約1380℃で約10分程度温度を保持した。その後、1250℃に降温し、約2時間熱アニールした。最後に室温まで降温して、粒状単結晶シリコンを作製した。
【0035】
炉内の酸素ガスと窒素ガスのアルゴンガスに対する分圧はそれぞれ7%と14%とし、アルゴン流量に対する酸素ガスと窒素ガスの流量で調整した。酸素ガスと窒素ガスの分圧は終始一定に保ちつつアニール後の降温で室温状態になるまで流しつづけた。
【0036】
回収した粒状単結晶シリコンの表面に形成された酸窒化膜をフッ酸およびフッ硝酸でエッチング除去した。フッ酸の処理時間は5分程度であり、エッチング処理後のシリコン表面は凹凸がなく平滑な面になっていた。外観形状写真を図3に示す。
【0037】
一方、比較例として、酸素ガスと窒素ガスの反応ガスの導入温度を室温とし、粒状単結晶シリコンを作製した。回収した粒状単結晶シリコンの表面に形成された酸窒化膜をフッ酸およびフッ硝酸でエッチング除去した。フッ酸の処理を30分以上行ってもシリコン表面は凹凸が発生しており、酸窒化膜が残存していた。外観形状写真を図4に示す。図3と同じような外観形状にするためにはフッ酸の処理時間は約45分必要であった。
【0038】
表1に示すように、酸素ガスと窒素ガスの反応ガスの導入温度を段階的に変化させた雰囲気で粒状単結晶シリコンを作製した。
【0039】
【表1】

Figure 2004091293
【0040】
以上のように、酸素ガスと窒素ガスの反応ガスの導入温度が1000℃以下の場合は、酸窒化膜を完全に除去するためのエッチング処理におけるフッ酸の処理時間が30分以上必要であった。
【0041】
また、酸素ガスと窒素ガスの反応ガスの導入温度が1380℃を超えた場合、シリコンの溶融に充分耐えられる厚みの酸窒化被膜が得られず、粒状シリコンが石英ガラスサヤと溶着して固化反応を生じた。
【0042】
上記のように作製したフッ酸と硝酸の混酸で表面の酸窒被膜をエッチング除去した各粒子から、図2に示すような太陽電池を作製し、所定の強度、所定の波長の光を照射して、太陽電池の電気特性を示す開放電圧(Voc:open circuit voltage)を測定した結果を表2に示した。
【0043】
【表2】
Figure 2004091293
【0044】
上記のように、酸素ガスと窒素ガスの反応ガスの導入温度が1000℃以下の場合はいずれも開放電圧が低く、1380℃以上の場合は粒状シリコンと石英ガラスとが融着して固化反応を起こし、開放電圧特性を示さなかった。
【0045】
【発明の効果】
以上のように、本発明に係る粒状単結晶シリコンの製造方法では、シリコン表面に酸窒化被膜を形成するための反応性ガスを室温より高くシリコンの融点より低い温度で導入し始めることから、シリコンの表面には密度が高く単位膜厚あたりの強度が大きいシリコンの酸窒化被膜が形成され、シリコンを溶融させるための被膜を酸化膜ほど厚くする必要がない。また、窒素の導入効果はシリコンと酸化シリコンとの界面に形成されている不安定なSi−O結合を減少させるために界面での歪や欠陥の発生を抑制でき、バリア性も高くできるために汚染物や不純物のシリコン中への拡散阻止力を大幅に向上させることができる。
【0046】
また、熱処理してシリコン表面に酸窒化被膜を形成することから、膜の密度、不純物の拡散防止力、あるいは耐酸性など、高温になるほど膜質は向上する。従って、酸化膜に比べて被膜が薄く不純物の拡散阻止力も向上した酸窒化被膜を高温状態からシリコン表面に形成すれば、シリコンと被膜との界面状態も酸化膜に比べ大幅に改善される。
【0047】
被膜を薄くでき品質も向上すれば、粒状シリコンの大きさや形状も安定化させることができる。また、後工程でエッチング除去すべき歪や欠陥を多く含んだシリコンの表面層も少なくなり、資源の有効活用が可能となる。量産性向上やコスト低下も可能となる。被膜の内側のシリコン中に混入する酸素の量も大幅に低減する。
【0048】
以上より、太陽電池向けに用いる高品質化された粒状単結晶シリコンを安価に量産性よく製造できるため、太陽電池に効率的なシリコン材料を利用できると同時にその高効率化と信頼性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る粒状単結晶シリコンの製造方法に用いる温度プロファイルを示す。
【図2】本発明の製造方法で得られる粒状単結晶シリコンを用いて作製した太陽電池を示す図である。
【図3】本発明に係る粒状単結晶シリコンの製造方法で得られる粒状単結晶シリコンの外観形状を示す写真である。
【図4】従来の製造方法で得られる粒状シリコンの外観形状を示す写真である。
【符号の説明】
1 室温〜1380℃
2 1380℃(3分間)
3 1380℃〜1440℃(8分間)
4 1440℃(2分間)
5 1440℃〜1380℃(5分間)
6 1380℃(10分間)
7 1380℃〜1250℃
8 1250℃(2時間)
9 酸素ガスと窒素ガスの反応ガス導入開始温度
106 粒状シリコン
107 金属基板
108 接合層
109 絶縁層
110 シリコン膜
111 透明導電層
112 電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing granular single crystal silicon, and more particularly, to a method for producing granular single crystal silicon suitable for producing granular silicon used for solar cells.
[0002]
2. Description of the Related Art
Solar cells are being developed in response to market needs such as efficiency in terms of performance, limited resources, and manufacturing costs. As one of promising solar cells, there is a solar cell using granular silicon.
[0003]
As a raw material for producing granular silicon, fine particles of silicon generated as a result of pulverizing single-crystal silicon or high-purity silicon synthesized in a gas phase by a fluidized bed method are used. After the raw materials are separated by size or weight, they are melted in a container using an infrared or high-frequency coil and then dropped freely (for example, see Patent Documents 1 and 2) or a method using high-frequency plasma ( For example, see Patent Document 3).
[0004]
However, most of the granular silicon produced by these methods is polycrystalline. Since a polycrystal is an aggregate of microcrystals, a grain boundary exists between the microcrystals. Grain boundaries degrade electrical characteristics of the semiconductor device. The reason is that the recombination centers of the carriers are gathered at the boundaries of the grain boundaries, and the recombination causes the life of minority carriers to be greatly reduced.
[0005]
The presence of grain boundaries in silicon is particularly problematic in devices such as solar cells, where the electrical properties are significantly improved with increasing minority carrier lifetime. Conversely, if a polycrystalline body can be converted to a single crystal body, the electrical characteristics of the solar cell can be significantly improved.
[0006]
In addition, since the grain boundary weakens the mechanical strength of the granular silicon, there is also a problem that the granular silicon is broken by heat history, thermal strain, mechanical pressure, or the like in each step of manufacturing a solar cell.
[0007]
From the above, when manufacturing a solar cell using granular silicon, it is indispensable to produce granular silicon having excellent crystallinity without grain boundaries and the like.
[0008]
As a method for obtaining a granular single crystal, a film of a silicon compound such as silicon oxide is formed on the surface of polycrystalline silicon or amorphous silicon, and the silicon inside the film is melted, cooled, solidified, and cooled. A method for producing a crystal is known (for example, see Patent Document 4).
[0009]
In order to melt silicon inside the silicon oxide film, the film needs to be sufficiently thick. However, the Si—O bond formed at the interface between silicon and silicon oxide is very unstable, and cannot prevent the occurrence of strain and oxygen-induced stacking (OSF) defects at the interface. Moreover, the thicker the coating, the worse the interface condition. Deterioration of the interface between silicon and silicon oxide, that is, deterioration of the silicon surface, also leads to deterioration of a pn junction formed in a later step, which significantly reduces the electrical characteristics of the solar cell.
[0010]
Although it is conceivable to remove the silicon layer in the vicinity of the interface deteriorated with the oxide film by the etching process, the presence or distribution of the oxide film or Si—O bond at the interface depends on the forming conditions such as temperature and atmospheric gas. It cannot be completely removed because it is different. Further, removing not only the oxide film but also the silicon surface layer more than necessary is a problem in terms of effective utilization of resources, cost, and mass productivity.
[0011]
Furthermore, an increase in oxide film thickness and an increase in defects at the interface will promote a large amount of oxygen diffusion into the silicon inside the film, and a large amount of oxygen mixed into the silicon will precipitate due to the heat history of the subsequent process. This causes stacking faults, which significantly deteriorates the electrical characteristics of the solar cell.
[0012]
That is, it is not suitable as a process for producing granular silicon for forming a solar cell requiring a large number of silicon particles.
[0013]
The present invention has been made in view of such problems of the related art, and stably and highly efficiently single-crystallizes polycrystalline silicon, and at the same time, can produce granular single-crystal silicon having high crystallinity at low cost. It is intended to provide a method of manufacturing.
[0014]
[Patent Document 1]
WO 99/22048 pamphlet [Patent Document 2]
US Pat. No. 4,188,177 [Patent Document 3]
JP-A-5-78115 [Patent Document 4]
US Patent No. 290917 [0015]
[Means for Solving the Problems]
In order to achieve the above object, in the method for producing granular single-crystal silicon according to claim 1, the granular silicon is heated in an atmosphere gas containing a reactive gas of oxygen gas and nitrogen gas so that the components of the gas are deposited on the surface. A method for producing granular single crystal silicon, in which a silicon compound film containing a silicon compound film is formed and the inner silicon is melted, then cooled and solidified to form a single crystal, wherein the reactive gas is heated to a temperature higher than room temperature and lower than the melting point of silicon. It is characterized by starting to introduce.
[0016]
In the method for producing granular single crystal silicon, it is preferable that the introduction start temperature of the reactive gas is 1000 to 1380 ° C.
[0017]
In the method for producing granular single crystal silicon, it is preferable that the atmosphere gas contains an argon gas.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
It is desirable that silicon to be single-crystallized is doped with a semiconductor impurity to a desired resistance value. The particle size is desirably 100 to 800 μm, and their shape is desirably close to a sphere. However, other forms may be used. It is desirable that the silicon to be single-crystallized be subjected to solution cleaning in advance by an RCA cleaning method in order to remove foreign substances attached to the surface.
[0019]
Next, the layer to be single-crystallized is densely packed on the sheath. Dense means that there is as little gap as possible, and the grains may be in contact with each other. Quartz glass, aluminum oxide, silicon carbide, single-crystal sapphire, or the like is suitable for the material of the sheath to suppress the reaction with silicon to be single-crystallized, but quartz glass is suitable in terms of cost and ease of handling. When quartz glass is used, it is washed with hydrofluoric acid and then washed with water and dried before use. This sheath may be stacked in any number of layers.
[0020]
FIG. 1 is a diagram showing a temperature profile used in the method for producing granular silicon according to the present invention. An atmosphere firing furnace used for firing ceramics or the like, or a horizontal oxidation furnace generally used for semiconductors, is suitable for the manufacturing apparatus. In such a manufacturing apparatus, silicon for single crystallization filled on a sheath is provided, and induction heating or resistance heating heater (not shown) is placed in a furnace filled with an argon atmosphere gas containing an oxygen gas and a nitrogen gas. Heats the entire silicon to be single-crystallized.
[0021]
Since the bonding state of the dangling bond on the silicon surface after the RCA cleaning is unstable, perform vacuum processing in the furnace or perform sufficient gas replacement in an argon atmosphere as an inert gas before heating the furnace. It is desirable that the furnace is filled only with an argon atmosphere.
[0022]
Next, in 1, in order to form a silicon oxynitride film on the surface of silicon to be single-crystallized, the temperature in the furnace is raised to a higher temperature equal to or lower than the melting point of silicon. Then, at step 9, a reactive gas of oxygen gas and nitrogen gas is introduced, preferably at a temperature of 1000 to 1380 ° C.
[0023]
When a heat treatment is performed to form an oxynitride film on the silicon surface, the higher the temperature, such as the film density, the ability to prevent diffusion of impurities, or the acid resistance, the better the film quality. Therefore, if an oxynitride film, which is thinner than an oxide film and has an improved ability to prevent the diffusion of impurities, is formed on the silicon surface from a high temperature, the interface between silicon and the film is greatly improved as compared with the oxide film. Further, if the thickness of the film can be reduced and the quality can be improved, the size and shape of the granular silicon can be stabilized. In addition, the number of silicon surface layers containing many strains and defects to be removed by etching in a later process is reduced, and resources can be effectively used. Mass productivity can be improved and costs can be reduced. The amount of oxygen incorporated into the silicon inside the coating is also significantly reduced.
[0024]
If the introduction temperature of the reactive gas of the oxygen gas and the nitrogen gas is 1000 ° C. or lower or 1380 ° C. or higher, the surface shape of silicon after removing the oxynitride film has large irregularities, which is not desirable because many distortions and defects are present.
[0025]
The atmosphere of the reaction gas preferably has an oxygen partial pressure of 1% or more and a nitrogen partial pressure of 4% or more. That is, when the oxygen partial pressure in the atmosphere gas is less than 1% and the nitrogen partial pressure is less than 4%, the particles are likely to be bonded to each other, which is not desirable. When the oxygen partial pressure in the atmosphere gas is 20% or more and the nitrogen partial pressure is 80% or more, cracks are likely to occur in the oxynitride film formed on the silicon surface to be single-crystallized.
[0026]
Next, the temperature is increased to 1380 ° C. When silicon is melted inside the oxynitride film, it is desirable to keep the temperature at about 1380 ° C. slightly lower than the melting point, such as 2, for about 3 minutes. That is, by maintaining the temperature at about 1380 ° C., the uniformity of the temperature distribution in the furnace or silicon is improved. The oxynitride film formed in the above state can sufficiently hold silicon when it is melted. However, holding at about 1380 ° C. for 10 minutes or more promotes diffusion of oxygen into silicon, which is not desirable.
[0027]
Next, the temperature is raised to 1420 to 1440 ° C. in 3, which is not to exceed 1450 ° C., and the temperature is maintained in 4 for about 2 minutes. During this time, the silicon begins to melt.
[0028]
The thickness of the oxynitride film is desirably 1 μm or more. When the film thickness is 1 μm or less, the film is easily broken when the silicon is melted, and as a result, there is a possibility that a fusion-solidification reaction with the sheath occurs. By introducing oxygen gas and nitrogen gas in the atmosphere, cracks in the oxynitride film at a high temperature can be corrected. Furthermore, when silicon is melted, it tends to be spherical due to surface tension. However, in the above temperature range, the oxynitride film can be sufficiently deformed, and silicon to be single-crystallized can have a shape close to a true sphere.
[0029]
Next, at 5 the temperature is reduced to about 1380 ° C. to cool the molten silicon. Then, it is desirable to keep the temperature at about 1380 ° C. for about 10 minutes in order to crystallize the silicon after melting in 6. If the holding time is shorter than 10 minutes, sub-grains and the like are liable to be formed and single crystal cannot be formed, which is not desirable.
[0030]
Next, in order to remove oxygen mixed in the silicon inside the oxynitride film when forming the oxynitride film, or to improve the crystallinity of the single-crystal silicon after melt-solidification, the temperature is further lowered at 7. Then, thermal annealing is performed at a temperature higher than 600 ° C., preferably about 1250 ° C. for about 2 hours. If the temperature is lower than 600 ° C., it is not desirable because thermal donors such as oxygen donors are generated. Oxygen mixed into silicon precipitates as a stacking fault when deposited in a heat history of a later process, and electrical characteristics are significantly deteriorated. Since shrinkage and growth of oxygen precipitation nuclei depend on temperature, the size of precipitates increases and the density decreases at higher temperatures. Thermal annealing is also effective as a method for improving the crystallinity of a single crystal after melt solidification. Holding at a high temperature has an effect of causing rearrangement of atoms and reducing strain and defects in the crystal. After the annealing, the temperature is lowered to room temperature.
[0031]
The partial pressure of the oxygen gas and the nitrogen gas in the atmosphere gas including the argon inert gas, the oxygen gas, and the nitrogen gas in the furnace can be adjusted by the flow rate of the oxygen gas and the nitrogen gas with respect to the flow rate of the argon. What is necessary is just to have a mechanism which can adjust pressure and gas concentration. Further, the partial pressures of the oxygen gas and the nitrogen gas may be kept constant without changing from the formation of the oxynitride film to the cooling after the annealing.
[0032]
The single crystal silicon particles thus obtained are used for forming a solar cell.
[0033]
FIG. 2 shows a solar cell formed using the obtained granular silicon 106. First, the oxynitride film formed on the surface of the granular silicon 106 is removed by etching with hydrofluoric acid and hydrofluoric acid. The thickness of the oxynitride film to be removed is 1 μm or more. Next, the granular silicon 106 is arranged on the metal substrate 107. Next, the whole is heated to bond the granular silicon 106 to the metal substrate 107 via the bonding layer 108. An insulating layer 109 is formed on the metal substrate 107 between the granular silicon 106. An amorphous or polycrystalline silicon film 110 is formed over the entire upper side. At this time, since the granular silicon 106 is of the first conductivity type of p-type or n-type, the silicon film 110 is formed of the second conductivity type of n-type or p-type. Further, a transparent conductive film 111 is formed thereon. In this manner, a photoelectric conversion element in which the metal substrate 107 is used as one electrode and a silver paste or the like is applied on the silicon film 110 to be the other electrode 112 is obtained.
[0034]
【Example】
RCA-cleaned granular silicon having a particle size of about 350 μm was filled in a layer on a quartz glass sheath, set in an atmosphere firing furnace, and heated entirely in an environment filled with argon gas. While raising the temperature from room temperature to about 1380 ° C., the introduction start temperature of the reaction gas containing oxygen gas and nitrogen gas is set to 1150 ° C., an oxynitride film is formed on the silicon surface, and the film is held at about 1425 ° C. for about 2 minutes to form a film. After the silicon inside was melted, the temperature was maintained at about 1380 ° C. for about 10 minutes during the solidification process. Thereafter, the temperature was lowered to 1250 ° C., and thermal annealing was performed for about 2 hours. Finally, the temperature was lowered to room temperature to produce granular single crystal silicon.
[0035]
The partial pressures of the oxygen gas and the nitrogen gas in the furnace with respect to the argon gas were 7% and 14%, respectively, and were adjusted by the flow rates of the oxygen gas and the nitrogen gas with respect to the flow rate of the argon gas. The partial pressures of the oxygen gas and the nitrogen gas were kept constant from start to finish, and the flow was continued until the room temperature reached the temperature after annealing.
[0036]
The oxynitride film formed on the surface of the collected granular single crystal silicon was removed by etching with hydrofluoric acid and hydrofluoric nitric acid. The hydrofluoric acid treatment time was about 5 minutes, and the silicon surface after the etching treatment was smooth without irregularities. FIG. 3 shows a photograph of the external shape.
[0037]
On the other hand, as a comparative example, granular single-crystal silicon was manufactured by setting the temperature for introducing a reaction gas of oxygen gas and nitrogen gas to room temperature. The oxynitride film formed on the surface of the collected granular single crystal silicon was removed by etching with hydrofluoric acid and hydrofluoric nitric acid. Even after the hydrofluoric acid treatment was performed for 30 minutes or more, the silicon surface was still uneven, and the oxynitride film remained. Fig. 4 shows a photograph of the external shape. Approximately 45 minutes were required for the hydrofluoric acid treatment time to obtain the same appearance as in FIG.
[0038]
As shown in Table 1, granular single crystal silicon was manufactured in an atmosphere in which the introduction temperature of the reaction gas of oxygen gas and nitrogen gas was changed stepwise.
[0039]
[Table 1]
Figure 2004091293
[0040]
As described above, when the introduction temperature of the reaction gas of the oxygen gas and the nitrogen gas is 1000 ° C. or lower, the hydrofluoric acid processing time in the etching processing for completely removing the oxynitride film was required for 30 minutes or more. .
[0041]
When the temperature of the reaction gas of the oxygen gas and the nitrogen gas exceeds 1380 ° C., an oxynitride film having a thickness enough to withstand the melting of silicon cannot be obtained, and the granular silicon is deposited on the quartz glass sheath to cause a solidification reaction. occured.
[0042]
A solar cell as shown in FIG. 2 is prepared from each particle obtained by etching and removing the oxynitride film on the surface with the mixed acid of hydrofluoric acid and nitric acid prepared as described above, and irradiated with light of a predetermined intensity and a predetermined wavelength. Table 2 shows the results of measuring open circuit voltage (Voc) indicating the electrical characteristics of the solar cell.
[0043]
[Table 2]
Figure 2004091293
[0044]
As described above, when the introduction temperature of the reaction gas of oxygen gas and nitrogen gas is 1000 ° C. or lower, the open-circuit voltage is low, and when the temperature is 1380 ° C. or higher, the granular silicon and the quartz glass are fused to perform a solidification reaction. And did not exhibit open-circuit voltage characteristics.
[0045]
【The invention's effect】
As described above, in the method for producing granular single crystal silicon according to the present invention, the reactive gas for forming the oxynitride film on the silicon surface is introduced at a temperature higher than room temperature and lower than the melting point of silicon, A silicon oxynitride film having a high density and a high strength per unit film thickness is formed on the surface of the substrate, and it is not necessary to make a film for melting silicon as thick as an oxide film. In addition, the effect of introducing nitrogen is to reduce unstable Si—O bonds formed at the interface between silicon and silicon oxide, thereby suppressing the occurrence of distortion and defects at the interface and increasing the barrier property. The ability to prevent contaminants and impurities from diffusing into silicon can be greatly improved.
[0046]
In addition, since the heat treatment forms an oxynitride film on the silicon surface, the higher the temperature, such as the film density, the ability to prevent impurity diffusion, or the resistance to acid, the higher the film quality. Therefore, if an oxynitride film, which is thinner than an oxide film and has an improved ability to inhibit diffusion of impurities, is formed on the silicon surface from a high temperature, the interface between silicon and the film is greatly improved as compared with the oxide film.
[0047]
If the film can be made thinner and the quality can be improved, the size and shape of the granular silicon can be stabilized. In addition, the number of silicon surface layers containing many strains and defects to be removed by etching in a later process is reduced, and resources can be effectively used. Mass productivity can be improved and costs can be reduced. The amount of oxygen incorporated into the silicon inside the coating is also significantly reduced.
[0048]
As described above, since high-quality granular single-crystal silicon used for solar cells can be manufactured at low cost and with good mass productivity, it is possible to use efficient silicon materials for solar cells and at the same time to improve the efficiency and reliability. Can be planned.
[Brief description of the drawings]
FIG. 1 shows a temperature profile used in a method for producing granular single crystal silicon according to the present invention.
FIG. 2 is a view showing a solar cell manufactured using granular single crystal silicon obtained by the manufacturing method of the present invention.
FIG. 3 is a photograph showing the appearance of granular single crystal silicon obtained by the method for producing granular single crystal silicon according to the present invention.
FIG. 4 is a photograph showing the external shape of granular silicon obtained by a conventional manufacturing method.
[Explanation of symbols]
1 room temperature to 1380 ° C
2 1380 ° C (3 minutes)
3 1380 ° C to 1440 ° C (8 minutes)
4 1440 ° C (2 minutes)
5 1440 ° C to 1380 ° C (5 minutes)
6 1380 ° C (10 minutes)
7 1380 ° C to 1250 ° C
8 1250 ° C (2 hours)
9 Reaction gas introduction start temperature of oxygen gas and nitrogen gas 106 Granular silicon 107 Metal substrate 108 Bonding layer 109 Insulating layer 110 Silicon film 111 Transparent conductive layer 112 Electrode

Claims (3)

酸素ガスと窒素ガスの反応性ガスを含む雰囲気ガス中で粒状シリコンを加熱して表面に前記ガスの成分を含む珪素化合物被膜を形成して内側のシリコンを溶融した後、降温して凝固させて単結晶化する粒状単結晶シリコンの製造方法において、前記反応性ガスを室温より高くシリコンの融点より低い温度で導入し始めることを特徴とする粒状単結晶シリコン製造方法。After heating the granular silicon in an atmosphere gas containing a reactive gas of oxygen gas and nitrogen gas to form a silicon compound film containing the components of the gas on the surface and melting the silicon inside, the temperature is reduced and solidified. A method for producing granular single-crystal silicon to be single-crystallized, wherein the reactive gas is introduced at a temperature higher than room temperature and lower than the melting point of silicon. 前記反応性ガスの導入開始温度が1000〜1380℃であることを特徴とする請求項1に記載の粒状単結晶シリコンの製造方法。The method for producing granular single-crystal silicon according to claim 1, wherein the introduction start temperature of the reactive gas is 1000 to 1380 ° C. 前記雰囲気ガス中にアルゴンガスを含むことを特徴とする請求項1または2に記載の粒状単結晶シリコンの製造方法。3. The method for producing granular single crystal silicon according to claim 1, wherein the atmosphere gas contains an argon gas.
JP2002258092A 2002-09-03 2002-09-03 Process for preparing granular, single-crystal silicon Pending JP2004091293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258092A JP2004091293A (en) 2002-09-03 2002-09-03 Process for preparing granular, single-crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258092A JP2004091293A (en) 2002-09-03 2002-09-03 Process for preparing granular, single-crystal silicon

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007331878A Division JP2008110914A (en) 2007-12-25 2007-12-25 Method for producing granular single crystal silicon

Publications (1)

Publication Number Publication Date
JP2004091293A true JP2004091293A (en) 2004-03-25

Family

ID=32062848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258092A Pending JP2004091293A (en) 2002-09-03 2002-09-03 Process for preparing granular, single-crystal silicon

Country Status (1)

Country Link
JP (1) JP2004091293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112293A1 (en) * 2012-01-25 2013-08-01 The Trustees Of Dartmouth College Method of forming single-crystal semiconductor layers and photovoltaic cell thereon
JP2014077624A (en) * 2012-09-18 2014-05-01 Panasonic Corp Heat treatment device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112293A1 (en) * 2012-01-25 2013-08-01 The Trustees Of Dartmouth College Method of forming single-crystal semiconductor layers and photovoltaic cell thereon
US9356171B2 (en) 2012-01-25 2016-05-31 The Trustees Of Dartmouth College Method of forming single-crystal semiconductor layers and photovaltaic cell thereon
JP2014077624A (en) * 2012-09-18 2014-05-01 Panasonic Corp Heat treatment device and method

Similar Documents

Publication Publication Date Title
TW200814347A (en) Method for fabricating a photovoltaic element with stabilised efficiency
JP2005159312A (en) Base material of polycrystalline silicon substrate for solar battery, and the polycrystalline silicon substrate for solar battery
TW201500603A (en) Silicon epitaxial wafer and method for manufacturing silicon epitaxial wafer
TWI442478B (en) Silicon substrate manufacturing method
WO2003044845A1 (en) Silicon epitaxial wafer and manufacturing method thereof
JP2008110914A (en) Method for producing granular single crystal silicon
JP2004091293A (en) Process for preparing granular, single-crystal silicon
JP4164267B2 (en) Polycrystalline silicon substrate and method for manufacturing solar cell
JP2007194513A (en) Manufacturing method for crystal semiconductor particle, and photovoltaic conversion device
JP4142931B2 (en) Granular silicon crystal production apparatus and production method
JP2004091292A (en) Single crystallization process of semiconductor material
WO2008035793A1 (en) Method for fabricating crystalline silicon grains
JP2004217489A (en) Method for producing granular silicon crystal, and granular silicon crystal
JP2004161565A (en) Method of manufacturing granular silicon crystal
JP2004244286A (en) Method for manufacturing granular silicon single crystal, and granular silicon single crystal
JP2009292652A (en) Production method of crystalline silicon grain
JP2007022859A (en) Method for producing silicon crystal particle, photoelectronic converter, and light power generation system
JP4025608B2 (en) Method for producing granular silicon crystal
JP2005086033A (en) Photoelectric converter
JP2007173528A (en) Method for manufacturing crystal semiconductor particles, photovoltaic conversion device, and photovoltaic generator
JP2007281168A (en) Process for producing crystal silicon particle
JP2007184496A (en) Crystal semiconductor particle manufacturing method and photoelectric conversion device
JP2005038991A (en) Photoelectric converter
JP4638012B2 (en) Semiconductor substrate, solar cell using the same, and manufacturing method thereof
JP2009256177A (en) Single crystal silicon particle and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080218

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080307