WO2008035758A1 - Lead-free solder paste - Google Patents

Lead-free solder paste Download PDF

Info

Publication number
WO2008035758A1
WO2008035758A1 PCT/JP2007/068363 JP2007068363W WO2008035758A1 WO 2008035758 A1 WO2008035758 A1 WO 2008035758A1 JP 2007068363 W JP2007068363 W JP 2007068363W WO 2008035758 A1 WO2008035758 A1 WO 2008035758A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
lead
solder paste
flux
free solder
Prior art date
Application number
PCT/JP2007/068363
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihito Takaura
Kazuya Kitazawa
Original Assignee
Senju Metal Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co., Ltd. filed Critical Senju Metal Industry Co., Ltd.
Priority to JP2008501086A priority Critical patent/JP4162707B2/en
Publication of WO2008035758A1 publication Critical patent/WO2008035758A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder

Definitions

  • the present invention relates to a solder paste used for soldering electronic equipment, and more particularly to a Sn—Zn-based lead-free solder paste.
  • a method for soldering electronic components there are a brazing method, a flow method, a reflow method, and the like.
  • the brazing method is a method of soldering by applying a greased solder wire to a soldered part! /, And heating and melting the solder wire with a soldering iron.
  • This brazing method has a problem in productivity because soldering is performed for each soldered portion, and is not suitable for mass production.
  • the flow method is to perform soldering by bringing the soldering surface of the printed circuit board into contact with the molten solder, and is capable of soldering the entire printed circuit board in one operation. It is.
  • this flow method can form a bridge where solder adheres across electronic components with a narrow pitch, or molten solder directly onto electronic components that are vulnerable to heat. In some cases, the electronic components may be damaged due to heat, resulting in functional deterioration.
  • a connection component such as a connector is mounted on the soldering surface of the printed circuit board, there is a problem that the molten solder penetrates into the connector hole and cannot be used.
  • solder paste consisting of solder powder and flux is applied only to the necessary parts of the printed circuit board by a printing method or a discharge method, and an electronic component is mounted on the applied part, followed by heating like a reflow furnace.
  • This is a method in which solder paste is melted by an apparatus and the electronic component and the printed circuit board are soldered.
  • This reflow method not only enables soldering at many locations in a single operation, but also reduces the occurrence of bridging even for electronic components with narrow pitch, and also improves productivity and reliability that solder does not adhere to unnecessary locations. Excellent soldering is possible.
  • solder paste used in the conventional reflow method has solder powder of Pb-Sn compound. It was money.
  • This Pb-Sn alloy has an eutectic composition (Pb_63Sn) with a melting point of 183 ° C, and it has little heat effect even on electronic components that are vulnerable to heat or has excellent solderability. There are few occurrences of soldering defects such as dewetting! When an electronic device soldered with a solder paste using this Pb-Sn alloy becomes old or fails, it has been disposed of without being upgraded or repaired.
  • Lead-free solder is composed mainly of Sn, and currently used lead-free solder is Sn-3.5Ag (melting point: 221 ° C), Sn_0.7Cu (melting point: 227 ° C), Sn_9Zn (melting point: 199 ° C), Sn-58 Bi (melting point: 139 ° C) and other binary alloys, Ag, Cu, Zn, Al, Bi, In, Sb, Ni, etc.
  • a third element such as Cr, Co, Fe, Mn, P, Ge, or Ga is appropriately added.
  • the “system” in the present invention is an alloy itself or an alloy to which one or more third elements are added based on a binary alloy.
  • Sn-Ag-based lead-free solder, Sn-Cu-based lead-free solder, etc. have a melting point of 220 ° C or higher. Therefore, when solder paste is used in the reflow method, the peak temperature force during reflow is 3 ⁇ 450 ° C. As a result, there is a problem that electronic components and printed circuit boards are thermally damaged.
  • Sn-Bi eutectic lead-free solder has a melting point of around 139 ° C, and even when used as a solder paste in the reflow method, the peak temperature is 200 ° C or less. There is no thermal effect on the printed circuit board.
  • the lead-free solder containing a large amount of Bi has a problem in heat resistance because its melting point is too low. In other words, the case inside the electronic device When the heat generated by the power transistor etc. is high, the soldered portion of the printed circuit board soldered with the lead-free solder may be peeled off due to a decrease in bonding strength.
  • Pb-free solder containing a large amount of brittle Bi has a problem that it can be easily peeled off even if a slight impact is applied to the soldered part.
  • the lead-free solder of Sn-9Zn eutectic has a melting point of 199 ° C, which is close to the melting point of conventional Pb_Sn eutectic solder.
  • the power is less than 3 ⁇ 430 ° C and there is little thermal effect on electronic components and printed circuit boards.
  • Sn_9Zn eutectic solder paste has poor solderability to the soldered part of copper and does not adhere to solder! /! “Unsoldered” or wet! / In some cases, soldering defects such as “dewetting” that would cause repellency! Such poor soldering deteriorates the strength and strength of the joint when the joint strength is weakened.
  • solder paste of Sn_9Zn eutectic has been discolored from the interface of the copper foil and copper land after many years have passed since the solder paste of the copper land printed circuit board and the copper lead has been soldered. There was something to do. The peeling of the soldered portion causes a failure in the electronic device. Furthermore, the Sn_9Zn eutectic solder paste also had a chip standing that caused a small chip component to rise during soldering. When a chip stands on a printed circuit board, the electronic device incorporating it cannot function at all.
  • solder paste that has improved solderability includes Sn-8Zn_3Bi lead-free solder paste in which Bi is added to an alloy near Sn-Zn eutectic, and this solder paste is currently widely used.
  • present applicants have proposed lead-free solder in which Ag is added to an alloy near Sn_9Zn eutectic to improve corrosion resistance.
  • Sn-Zn-based lead-free solder has a melting point close to that of conventional Sn_Pb solder and uses Zn, which is an essential component for humans. Therefore, it is more harmful to the human body than other lead-free solders. Not that, Zn has excellent properties compared to other lead-free solders, such as In, Ag, Bi, etc. For this reason, Sn-Ag lead-free solder is used as solder paste solder, despite its poor solderability. One solder does not have heat resistance of the part! /, So it cannot be used! /
  • Patent Document 2 there has been proposed a method for improving the soldering strength with Cu at high temperature by adding a small amount of A1 to Sn-Zn lead-free solder.
  • A1 is a metal that easily oxidizes, it is oxidized prior to other components during the production of solder powder, and the components of 0.002% to 0.008% by mass disclosed in this document must be maintained in mass production. Is Have difficulty.
  • a small amount of A1 added to Sn-Zn lead-free solder is effective for improving the soldering strength at high temperatures. It has no effect on moisture resistance. High temperatures such as 85 ° C and 85% RH, high It cannot withstand humidity.
  • Sn-Zn lead-free solder powder (Patent Document 4) that adsorbs amine on the surface of Sn-Zn lead-free solder powder and prevents oxidation of the solder powder due to preheating during reflow is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-224880
  • Patent Document 2 US Pat. No. 6,361,626
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-21958
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-212692
  • Sn-Zn lead-free solder solder paste with liquid paraffin and paraffin wax added to the flux of solder paste has an excellent effect on strength at high temperatures S, flow added to the flux Paraffin or paraffin wax remains almost in the flux residue after soldering, and if a large amount of liquid paraffin or paraffin wax is added in order to expect a moisture-proof effect, There was a problem that the paste residue increased and the appearance was uncomfortable. In addition, when soldering with Sn-Zn lead-free solder paste, the ceramic capacitor soldered when placed under high temperature and high humidity causes the insulation resistance to deteriorate.
  • the present inventors have found that the soldered portion is damaged in a high-temperature and high-humidity environment. Degradation causal force of capacitor insulation resistance S, due to corrosion of Zn, and by making the flux residue after soldering neutral and basic, the Zn-H20 series in the measured corrosion area diagram of Zn The present inventors have found that it is possible to control to the passivated region and completed the present invention.
  • the cause of the decrease in strength of Sn-Zn lead-free solder is the ionization of Zn.
  • a passive film is formed on Zn by adding a material that adjusts the pH of the flux residue after soldering to neutral and basic so that Zn + ions are not generated.
  • the strength of the soldered part is prevented from decreasing.
  • the strength of the soldering part is prevented from decreasing by forming a passivating film of Zn (OH) 2. Yes.
  • the passivity of Zn-H20 system is not formed unless the flux residual force is in the neutral or basic region.
  • the formation of Zn—H20 passivity in the flux residue is effective for the deterioration of the insulation of the chip capacitor as well as the reduction in the strength of the Sn—Zn lead free solder.
  • a guanidine derivative has been found as a material for adjusting the pH of the flux residue after soldering in order to solve this conflicting problem.
  • the guanidine derivative has a high heat resistance, with H of the amino group substituted by an aromatic hydrocarbon, a melting point of around 150 ° C.
  • This guanidine derivative has the property that it remains reliably in the flux residue because it is hard to be decomposed by heat, which is strongly basic as an amine.
  • Guanidine derivatives have the same solderability as organic acids. For this reason, the flux residue after soldering can be adjusted to a pH value of 7 to 11, and solderability is also good.
  • the present invention uses 1,3 diphenyldanidine, 1,3 di-0-tolylguanidine, and 1-0-tolylbiguanide, more preferably the same effect as long as it is a guanidine derivative. And good. These guanidine derivatives may be used alone or in combination of two or more. These guanidine derivatives are also excellent in solderability with solder paste that only adjusts the pH of the flux residue. In general, the addition of amines in the flux biases the flux to be basic, thus hindering the action of the activator. Only However, the guanidine derivatives of the present invention do not inhibit the action of the active agent.
  • the present invention is a solder paste in which a Sn-Zn-based lead-free solder alloy powder and a flux are kneaded, wherein a guanidine derivative is added to the flux.
  • the Sn—Zn alloy powder in the present invention includes Sn—Zn binary alloy powder and ternary or higher alloy powder obtained by adding other elements to the binary alloy powder.
  • solder paste of the present invention it is possible to prevent a decrease in bonding strength that occurs in a Sn-Zn-based lead-free solder alloy even in an environment of high temperature and high humidity, and a general lead-free solder alloy
  • the Sn-Ag-Cu solder alloy used as a high temperature can not be used at a high temperature! /, And the heat resistance is low, and electronic parts can be used with high reliability.
  • the guanidine derivative used in the present invention adjusts the pH of the flux unlike Patent Document 4 and the like, so it is always used together with the flux.
  • the amount of amine used to coat the solder powder of Patent Document 4 is not sufficient to adjust the pH of the flux residue, and it is not possible to use it by coating the powder!
  • the total amount of guanidine derivatives used in the present invention is preferably 10 to 30% by mass. Even more preferably, the amount of guanidine derivatives is 15 to 20% by mass in total.
  • an amine that reacts at a relatively low temperature can be added to the solder paste flux as an amine.
  • diamine, tripropylamine, dihexylamine, trihexyloleamine, decylamine, didecylamine, undecylamine, didecylamine, dodecylamine, didodecylamine, hexadecylamine, octadecylamine , Siku Examples include oral hexylamine, dicyclohexylamine, polyoxyethylene dicyclohexylamine, dimethylaniline, diphenylamine, and triphenylamine.
  • the guanidine derivative used in the present invention can prevent a decrease in solder joint strength at higher temperatures and higher humidity by coexisting with liquid paraffin or paraffin wax.
  • Liquid paraffin or paraffin wax itself is neutral and, when added to the solder paste flux, hardly changes the pH of the flux residue.
  • a layer that does not allow moisture to pass through is formed on the surface of the flux residue, and the solder alloy is prevented from being ionized by separating it from moisture and the solder alloy. Furthermore, it prevents the solder joint strength from decreasing at high temperature and high humidity.
  • Caro liquid paraffin or paraffin wax to the present invention is preferably 5 to 20 mass 0/0 during the solder paste flux. Liquid paraffin or paraffin wax added to the present invention may be added alone or in combination.
  • the Sn-Zn lead-free solder has poor wettability, and in the present invention, the pH of the flux residue must be 7.0 to 11;
  • the amine hydrohalide generally used as a flux activator is used in the solder paste of the present invention, the ⁇ ⁇ of the flux residue increases (acidic region).
  • Suitable as the activator of the present invention is that the pH in the flux is not biased to the acidic range! /
  • Organic halogen compounds are suitable! /.
  • the organic halogen compounds include hexasuboxycyclodidecane, trans ns-2,3 dib-mouth mode 2 butene 1,4-diol, 2,3 dib-mouth mode 1,4 as aliphatic organic halogen compounds.
  • Tris (2,3 dibromopropyl) isocyanurate is also suitable, although it is not an aliphatic organic halogen compound.
  • Example 1 As the Sn-Zn lead-free solder composition, the general Sn-3Bi_8Zn and Sn_9Zn compositions were used. Table 1 shows the flux composition.
  • test substrate Preheat the test substrate to 150 ⁇ ; 170. C, 90 seconds, peak temperature 220. C, 200. Reflow soldering under the reflow conditions of C and 30 seconds, oxygen concentration 3000ppm.
  • test substrate After allowing the test substrate to cool, measure the shear strength using a shear strength tester under conditions of test speed SOO ⁇ m / sec and test height 15 ⁇ .
  • test substrate Preheat the test substrate to 150 ⁇ ; 170. C, 90 seconds, peak temperature 220. C, 200. Reflow soldering under the reflow conditions of C and 30 seconds, oxygen concentration 3000ppm.
  • Judgment criteria of insulation deterioration test were determined to be 1 X 107 ⁇ or less as a failure.
  • the solder paste of the present invention had a strength that hardly deteriorated the insulation resistance and hardly deteriorated even in an environment of 85 ° C and 85% RH.
  • the solder paste of the comparative example showed a decrease in strength and an insulation resistance in an environment of 85 ° C. and 85% RH.
  • solder paste of the present invention can also be used for general lead-free solder alloys other than Sn-Zn-based lead-free solder pastes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Conventional Sn-Zn lead-free solders have the drawback of joint strength dropped when placed in an environment of high humidity. Although alloys having been improved in strength by addition of a minute amount of Group 1B metal or Al to solder have been proposed, they have poor wetting property and thus have drawback and advantage. There is provided an Sn-Zn lead-free solder paste excelling in prevention of joint strength decrease and prevention of insulation resistance deterioration (for example, prevention of deterioration of the insulation resistance of soldered chip capacitor). The Sn-Zn lead-free solder paste is a solder paste of alloy powder blended with a flux, to which 10 to 30% of guanidine derivative is added. Accordingly, the pH value of flux residue after soldering is adjusted to neutrality or basicity to thereby suppress the generation of Zn+ ion. Further, hydroxyl of amine and Zn in the solder are reacted with each other so as to form a Zn-H2O passive state, thereby preventing a strength decrease of soldered part. Therefore, the joint strength can be maintained even in an environment of high humidity.

Description

明 細 書  Specification
鉛フリーソルダペースト  Lead-free solder paste
技術分野  Technical field
[0001] 本発明は、電子機器のはんだ付けに使用するソルダペースト、特に Sn— Zn系鉛フ リーソルダペーストに関する。  TECHNICAL FIELD [0001] The present invention relates to a solder paste used for soldering electronic equipment, and more particularly to a Sn—Zn-based lead-free solder paste.
背景技術  Background art
[0002] 電子部品のはんだ付け方法としては、鏝付け法、フロー法、リフロー法、等がある。  As a method for soldering electronic components, there are a brazing method, a flow method, a reflow method, and the like.
[0003] 鏝付け法とは、脂入りはんだ線をはんだ付け部にあてが!/、、該はんだ線をはんだ鏝 で加熱溶融することにより、はんだ付けを行う方法である。この鏝付け法は、はんだ付 け部一箇所毎にはんだ付けを行うため生産性に問題があり、大量生産には適さない [0003] The brazing method is a method of soldering by applying a greased solder wire to a soldered part! /, And heating and melting the solder wire with a soldering iron. This brazing method has a problem in productivity because soldering is performed for each soldered portion, and is not suitable for mass production.
[0004] フロー法は、プリント基板のはんだ付け面を溶融はんだに接触させてはんだ付けを 行うものであり、一回の作業でプリント基板全体のはんだ付けができるという生産性に 優れたはんだ付け方法である。し力もながら、このフロー法は、ピッチ間が狭い電子 部品に対しては、はんだが跨って付着するというブリッジを形成したり、或いは熱に弱 い電子部品に対しては溶融はんだが直接電子部品に接触するため、電子部品が熱 損傷して機能劣化を起こしたりすることがあった。またプリント基板のはんだ付け面に コネクターのような接続部品が搭載されていると、溶融はんだがコネクターの穴の中 に侵入して使用できなくなるという問題もある。 [0004] The flow method is to perform soldering by bringing the soldering surface of the printed circuit board into contact with the molten solder, and is capable of soldering the entire printed circuit board in one operation. It is. However, this flow method can form a bridge where solder adheres across electronic components with a narrow pitch, or molten solder directly onto electronic components that are vulnerable to heat. In some cases, the electronic components may be damaged due to heat, resulting in functional deterioration. In addition, when a connection component such as a connector is mounted on the soldering surface of the printed circuit board, there is a problem that the molten solder penetrates into the connector hole and cannot be used.
[0005] リフロー法は、はんだ粉とフラックスからなるソルダペーストをプリント基板の必要箇 所だけに印刷法や吐出法で塗布し、該塗布部に電子部品を搭載してからリフロー炉 のような加熱装置でソルダペーストを溶融させて電子部品とプリント基板をはんだ付 けする方法である。このリフロー法は、一度の作業で多数箇所のはんだ付けができる ばかりでなぐ狭いピッチの電子部品に対してもブリッジの発生がなぐしかも不要箇 所にははんだが付着しないという生産性と信頼性に優れたはんだ付けが行えるもの である。  [0005] In the reflow method, a solder paste consisting of solder powder and flux is applied only to the necessary parts of the printed circuit board by a printing method or a discharge method, and an electronic component is mounted on the applied part, followed by heating like a reflow furnace. This is a method in which solder paste is melted by an apparatus and the electronic component and the printed circuit board are soldered. This reflow method not only enables soldering at many locations in a single operation, but also reduces the occurrence of bridging even for electronic components with narrow pitch, and also improves productivity and reliability that solder does not adhere to unnecessary locations. Excellent soldering is possible.
[0006] ところで従来のリフロー法に用いられていたソルダペーストは、はんだ粉が Pb-Sn合 金であった。この Pb-Sn合金は、共晶組成(Pb_63Sn)では融点が 183°Cであり、熱に 弱い電子部品に対しても熱影響が少なぐまたはんだ付け性に優れているため未は んだゃディウエット等のはんだ付け不良の発生も少な!/、と!/、う特長を有して!/、る。この Pb-Sn合金を用いたソルダペーストではんだ付けされた電子機器が古くなつたり、故 障したりした場合、機能アップや修理をせず廃棄処分されていた。プリント基板を廃 棄する場合、焼却処分でなく埋め立て処分をしていた力 埋め立て処分をするのは、 プリント基板の銅箔にはんだが金属的に付着しており、銅箔とはんだを分離して再使 用することができないからである。この埋め立て処分されたプリント基板に酸性雨が接 触すると、はんだ中の Pbが溶出し、それが地下水を汚染するようになる。そして Pbを 含んだ地下水を長年月にわたつて人や家畜が飲用すると Pb中毒を起こすことが懸念 されている。そこで電子機器業界からは Pbを含まない所謂「鉛フリーはんだ」が強く要 求されてきている。 [0006] By the way, the solder paste used in the conventional reflow method has solder powder of Pb-Sn compound. It was money. This Pb-Sn alloy has an eutectic composition (Pb_63Sn) with a melting point of 183 ° C, and it has little heat effect even on electronic components that are vulnerable to heat or has excellent solderability. There are few occurrences of soldering defects such as dewetting! When an electronic device soldered with a solder paste using this Pb-Sn alloy becomes old or fails, it has been disposed of without being upgraded or repaired. When discarding printed circuit boards, the power of landfill disposal instead of incineration landfill disposal is because the solder is metallicly attached to the copper foil of the printed circuit board, and the copper foil and solder are separated. This is because it cannot be reused. When acid rain comes into contact with this landfilled printed circuit board, Pb in the solder elutes and contaminates groundwater. There is a concern that Pb poisoning will occur if people and livestock drink Pb-containing groundwater for many years. Therefore, the so-called “lead-free solder” that does not contain Pb has been strongly demanded by the electronic equipment industry.
[0007] 鉛フリーはんだとは、 Snを主成分としたものであり、現在使われている鉛フリーはん だは、 Sn-3.5Ag (融点: 221°C)、 Sn_0.7Cu (融点: 227°C)、 Sn_9Zn (融点: 199°C)、 Sn-58 Bi (融点: 139°C)等の二元合金の他、これらに Ag、 Cu、 Zn、 Al、 Bi、 In、 Sb、 Ni、 Cr、 Co 、 Fe、 Mn、 P、 Ge、 Ga等の第三元素を適宜添加したものである。なお本発明でいう「 系」とは、合金そのもの、或いは二元合金を基に第三元素を一種以上添加した合金 である。例えば Sn-Zn系とは、 Sn-Zn合金そのもの、或いは Sn-Ζηに前述第三元素を 一種以上添加した合金であり、 Sn-Ag系とは Sn-Ag合金そのもの、或いは Sn_Agに前 述第三元素を一種以上添加した合金である。  [0007] Lead-free solder is composed mainly of Sn, and currently used lead-free solder is Sn-3.5Ag (melting point: 221 ° C), Sn_0.7Cu (melting point: 227 ° C), Sn_9Zn (melting point: 199 ° C), Sn-58 Bi (melting point: 139 ° C) and other binary alloys, Ag, Cu, Zn, Al, Bi, In, Sb, Ni, etc. A third element such as Cr, Co, Fe, Mn, P, Ge, or Ga is appropriately added. The “system” in the present invention is an alloy itself or an alloy to which one or more third elements are added based on a binary alloy. For example, the Sn-Zn alloy is an Sn-Zn alloy itself or an alloy obtained by adding one or more of the aforementioned third elements to Sn-Ζη, and the Sn-Ag alloy is an Sn-Ag alloy itself or Sn_Ag as described above. An alloy with one or more elements added.
[0008] Sn-Ag系鉛フリーはんだや Sn-Cu系鉛フリーはんだ等は、融点が 220°C以上である ため、ソルダペーストにしてリフロー法に使用すると、リフロー時のピーク温度力 ¾50°C 以上となってしまい、電子部品やプリント基板を熱損傷させてしまうという問題があつ た。  [0008] Sn-Ag-based lead-free solder, Sn-Cu-based lead-free solder, etc. have a melting point of 220 ° C or higher. Therefore, when solder paste is used in the reflow method, the peak temperature force during reflow is ¾50 ° C. As a result, there is a problem that electronic components and printed circuit boards are thermally damaged.
[0009] Sn-Biの共晶系鉛フリーはんだは、融点が 139°C近辺であり、ソルダペーストにしてリ フロー法に使用してもピーク温度は 200°C以下であるため、電子部品やプリント基板 への熱影響は全くない。し力、しながらこの Biを大量に含む鉛フリーはんだは、融点が 低すぎることから耐熱性に問題があった。つまり電子機器のケース内が使用時にコィ ルゃパワートランジスタ一等の発熱で高温になると、該鉛フリーはんだではんだ付け したプリント基板のはんだ付け部は、接合強度が低下して剥離してしまう恐れがあつ た。また脆い Biを大量に含有している Pbフリーはんだは、はんだ付け部に少しの衝撃 が加わっただけで簡単に剥離してしまうという問題もあった。 [0009] Sn-Bi eutectic lead-free solder has a melting point of around 139 ° C, and even when used as a solder paste in the reflow method, the peak temperature is 200 ° C or less. There is no thermal effect on the printed circuit board. However, the lead-free solder containing a large amount of Bi has a problem in heat resistance because its melting point is too low. In other words, the case inside the electronic device When the heat generated by the power transistor etc. is high, the soldered portion of the printed circuit board soldered with the lead-free solder may be peeled off due to a decrease in bonding strength. In addition, Pb-free solder containing a large amount of brittle Bi has a problem that it can be easily peeled off even if a slight impact is applied to the soldered part.
[0010] Sn-9Zn共晶の鉛フリーはんだは、融点が 199°Cであり、従来の Pb_Sn共晶はんだの 融点に近いものであるため、ソルダペーストにしてリフロー法に使用してもピーク温度 力 ¾30°C以下ですみ、電子部品やプリント基板に対する熱影響も少ない。しかしなが ら、 Sn_9Zn共晶のソルダペーストは、銅のはんだ付け部に対してはんだ付け性が悪く 、はんだが付着しな!/ヽ「未はんだ」や、濡れて!/、ても部分的にはじ!/、た状態となる「デ ィウエット」等のはんだ付け不良が発生することがあった。このようなはんだ付け不良 は、接合強度を弱くするば力、りでなぐ外観を悪くするものである。また Sn_9Zn共晶の ソルダペーストは、銅ランドのプリント基板や銅製リードのはんだ付けを行った後、長 年月経過すると、腐食によりはんだが黒く変色し、また銅箔や銅ランドの界面から剥 離することがあった。はんだ付け部の剥離は、電子機器における故障の原因となる。 さらに Sn_9Zn共晶のソルダペーストは、はんだ付け時に微小なチップ部品が立ち上 力 ¾というチップ立ちも発生していた。プリント基板でチップ立ちが起こると、これを組 み込んだ電子機器が全く機能を果たせなくなってしまうものである。  [0010] The lead-free solder of Sn-9Zn eutectic has a melting point of 199 ° C, which is close to the melting point of conventional Pb_Sn eutectic solder. The power is less than ¾30 ° C and there is little thermal effect on electronic components and printed circuit boards. However, Sn_9Zn eutectic solder paste has poor solderability to the soldered part of copper and does not adhere to solder! /! “Unsoldered” or wet! / In some cases, soldering defects such as “dewetting” that would cause repellency! Such poor soldering deteriorates the strength and strength of the joint when the joint strength is weakened. In addition, the solder paste of Sn_9Zn eutectic has been discolored from the interface of the copper foil and copper land after many years have passed since the solder paste of the copper land printed circuit board and the copper lead has been soldered. There was something to do. The peeling of the soldered portion causes a failure in the electronic device. Furthermore, the Sn_9Zn eutectic solder paste also had a chip standing that caused a small chip component to rise during soldering. When a chip stands on a printed circuit board, the electronic device incorporating it cannot function at all.
[0011] そこで Sn_9Zn共晶のソルダペーストにおける問題点を改良するために、第三元素 を添加した Sn-Zn系鉛フリーはんだが各種提案されている。例えばはんだ付け性を改 良したものとしては、 Sn-Zn共晶近辺の合金に Biを添加した Sn-8Zn_3Bi鉛フリーはん だ使用のソルダペーストがあり、このソルダペーストは現在多く使用されている。また S n_9Zn共晶近辺の合金に Agを添加して耐食性を向上させた鉛フリーはんだが本願出 願人らから提案されている。  [0011] Accordingly, various Sn-Zn-based lead-free solders added with a third element have been proposed to improve the problems in Sn_9Zn eutectic solder paste. For example, the solder paste that has improved solderability includes Sn-8Zn_3Bi lead-free solder paste in which Bi is added to an alloy near Sn-Zn eutectic, and this solder paste is currently widely used. . In addition, the present applicants have proposed lead-free solder in which Ag is added to an alloy near Sn_9Zn eutectic to improve corrosion resistance.
[0012] Sn-Zn系鉛フリーはんだは、融点が従来の Sn_Pbはんだに近いこと、なおかつ人に 対する必須成分である Znを使用しているため、他の鉛フリーはんだに比較して人体 に有害でないこと、 Znは In、 Ag、 Biなどに比較して地球上の埋蔵量が多ぐ単価も安 V、ことなど他の鉛フリーはんだに比較して優れた特性を持って!/、る。そのためはんだ 付け性が悪いにもかかわらずソルダペースト用のはんだとして、特に Sn-Ag系鉛フリ 一はんだでは部品の耐熱性がな!/、ため使用できな!/、プリント基板に使用されてレ、る[0012] Sn-Zn-based lead-free solder has a melting point close to that of conventional Sn_Pb solder and uses Zn, which is an essential component for humans. Therefore, it is more harmful to the human body than other lead-free solders. Not that, Zn has excellent properties compared to other lead-free solders, such as In, Ag, Bi, etc. For this reason, Sn-Ag lead-free solder is used as solder paste solder, despite its poor solderability. One solder does not have heat resistance of the part! /, So it cannot be used! /
Yes
[0013] しかし Sn-Zn系鉛フリーはんだは、一般的に使用される FR-4などの Cuランドのプリン ト基板ではんだ付けを行った後、高温に放置するとはんだ付けの接合強度が低下す る問題があった。これは、 Znと Cuとの反応性が高いため Cuランドの基板を使用した場 合、高温の状態を長く続けると Sn-Zn系鉛フリーはんだ中の Znが合金層を通過して C u中に入り込み、カーケンダルダルボイドと呼ばれる金属間化合物とはんだ間に多数 のボイドを発生させる(非特許文献 1参照)。つまりボイドの発生は、はんだ付けの接 合強度を低下させて信頼性が損なわれるようになる。そのため Sn-Zn系鉛フリーはん だを使用するときは、 Cuランドに Mめっきを施して Mのバリアを作る必要性があるが、 Niはぬれ性が悪いため Niの上に Auめっきを施さないと使用できない。それ故、 Sn-Zn 系鉛フリーはんだを使用する場合、 Auめっきが必須となることから、電子機器の製造 コストが高騰する問題が生じていた。  [0013] However, Sn-Zn-based lead-free solder, when soldered on a commonly used Cu land printed circuit board such as FR-4, and then left at high temperature, the soldering joint strength decreases. There was a problem. This is because the reactivity between Zn and Cu is high. When a Cu land substrate is used, Zn in the Sn-Zn lead-free solder passes through the alloy layer and remains in the Cu layer if the high temperature state is continued for a long time. It penetrates and generates a lot of voids between the intermetallic compound called Kirkendall void and solder (see Non-Patent Document 1). In other words, the generation of voids decreases the bonding strength of soldering and deteriorates reliability. For this reason, when using Sn-Zn lead-free solder, it is necessary to create an M barrier by applying M plating to Cu land. However, since Ni is poor in wettability, Au plating is applied to Ni. It cannot be used without it. Therefore, when using Sn-Zn based lead-free solder, Au plating is essential, which raises the problem of increased manufacturing costs for electronic devices.
[0014] また、 Sn-Zn系鉛フリーはんだを Cuランドのプリント基板にはんだ付けしたときに温 度とともに接合強度を低下させる要因として湿度がある。湿度が高いと合金相から Zn が溶出し酸化物を形成し、その酸化物とはんだの界面でクラックが生じる。この現象 は、湿度が 80%以上になると温度力 S100°C以下でも顕著に現れる。  In addition, when Sn—Zn-based lead-free solder is soldered to a Cu land printed circuit board, humidity is a factor that decreases the joint strength along with the temperature. When the humidity is high, Zn elutes from the alloy phase to form an oxide, and cracks occur at the interface between the oxide and the solder. This phenomenon is prominent even at temperatures below S100 ° C when the humidity exceeds 80%.
[0015] Sn-Zn系鉛フリーはんだと Cuとの高温下でのはんだ付け強度を向上させる方法とし て、 Sn-Zn系鉛フリーはんだ粉末に、 1B族の金属を粉末として添加する方法が提案 されている(特許文献 1)。しかし、 Sn-Zn系鉛フリーはんだ粉末に添加する 1B族の金 属粉末は、 Sn-Zn系鉛フリーはんだ粉末に対して 1割以上存在しているため、リフロー のピーク温度を上げな!/、とはんだが溶融せず、従来の Sn-Pbはんだとほぼ同一の温 度プロファイルでリフロー可能であるという Sn-Zn系鉛フリーはんだの利点を無くしてし まう。  [0015] As a method to improve the soldering strength of Sn-Zn-based lead-free solder and Cu at high temperatures, a method of adding a Group 1B metal to Sn-Zn-based lead-free solder powder is proposed. (Patent Document 1). However, since the 1B group metal powder added to the Sn-Zn lead-free solder powder is more than 10% of the Sn-Zn lead-free solder powder, do not raise the peak temperature of reflow! / This eliminates the advantage of Sn-Zn lead-free solder that the solder does not melt and can be reflowed with almost the same temperature profile as conventional Sn-Pb solder.
[0016] また、 Sn-Zn系鉛フリーはんだに微量の A1を添加することにより高温下での Cuとの はんだ付け強度を向上させる方法が提案されている(特許文献 2)。しかし A1は酸化し 易い金属であるため、はんだ粉末の製造時に他の成分より先に酸化してしまい、量 産でこの文献で開示されている 0.002%〜0.008質量%の成分を維持管理することは 困難である。また、 Sn-Zn系鉛フリーはんだの微量の A1の添加は、高温下のはんだ付 け強度の向上には効果がある力 耐湿には効果がなぐ 85°C、 85%RHなどの高温 、高湿度には耐えられない。 [0016] In addition, there has been proposed a method for improving the soldering strength with Cu at high temperature by adding a small amount of A1 to Sn-Zn lead-free solder (Patent Document 2). However, since A1 is a metal that easily oxidizes, it is oxidized prior to other components during the production of solder powder, and the components of 0.002% to 0.008% by mass disclosed in this document must be maintained in mass production. Is Have difficulty. In addition, a small amount of A1 added to Sn-Zn lead-free solder is effective for improving the soldering strength at high temperatures. It has no effect on moisture resistance. High temperatures such as 85 ° C and 85% RH, high It cannot withstand humidity.
[0017] 本出願人は、 Sn-Zn系鉛フリーはんだと Cuとの高温下(→あくまで高温高湿下であり 、 150°C等の高温下は関係ありません。高温高湿の定義はありませんが 60°C/90 %RHや 85°C/45%〜85%RHです。特に 85°C/85%RHでの課題です)でのは んだ付け強度を向上させる方法として、ソルダペーストのフラックス中に流動パラフィ ンゃパラフィンワックスを添加した Sn-Zn系鉛フリーはんだソルダペースト(特許文献 3 )を開示している。 [0017] The present applicant, Sn-Zn based lead-free solder and Cu under high temperature (→ high temperature and high humidity, not related to high temperature such as 150 ° C. There is no definition of high temperature and high humidity Solder paste flux as a method to improve soldering strength at 60 ° C / 90% RH and 85 ° C / 45% -85% RH (especially at 85 ° C / 85% RH) A Sn-Zn lead-free solder solder paste (Patent Document 3) in which fluid paraffin or paraffin wax is added is disclosed.
また、 Sn-Zn系鉛フリーはんだ粉末表面にアミンを吸着させてリフロー時のプリヒート によるはんだ粉末の酸化を防止する Sn-Zn系鉛フリーはんだ粉末(特許文献 4)も開 示している。  In addition, Sn-Zn lead-free solder powder (Patent Document 4) that adsorbs amine on the surface of Sn-Zn lead-free solder powder and prevents oxidation of the solder powder due to preheating during reflow is disclosed.
[0018] 特許文献 1:特開 2002-224880号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-224880
特許文献 2:米国特許第 6361626号公報  Patent Document 2: US Pat. No. 6,361,626
特許文献 3:特開 2005-21958号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-21958
特許文献 4:特開 2001-212692号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-212692
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0019] ところで前述のように Sn-Zn系合金と Cuを接合して高温、高湿下に曝されると、はん だの接合強度が著しく低下する問題があった。そのため一般的に使用される FR-4の ような Cuランドの基板が使用できず、高価な Auめっきのプリント基板が必須で製造コ ストが押し上げられて!/、た。また Cuとの接合に Sn-Zn系合金に微量の添加元素をカロ えて高温下の強度を維持する方法もあるが、 Sn-Zn系合金に微量の添加元素はぬれ 性を悪くするという問題があった。ソルダペーストのフラックス中に流動パラフィンゃパ ラフィンワックスを添加した Sn-Zn系鉛フリーはんだソルダペーストは、高温下の強度 については優れた効果を示すものである力 S、フラックス中に添加された流動パラフィ ンゃパラフィンワックスは、はんだ付け後のフラックス残渣中にほとんど残り、防湿効 果を期待するために流動パラフィンやパラフィンワックスの量を多く添加するとソルダ ペーストの残渣が多くなつてしまい、外観的に違和感があるという問題点があった。 また、 Sn-Zn系鉛フリーはんだソルダペーストではんだ付けすると、高温、高湿下に 置かれたときにはんだ付けしたセラミックコンデンサーが絶縁抵抗の劣化を起こすと いう問題点もあった。 [0019] By the way, as described above, there is a problem that when the Sn-Zn alloy and Cu are bonded and exposed to high temperature and high humidity, the bonding strength of the solder is remarkably lowered. For this reason, a commonly used Cu land substrate such as FR-4 cannot be used, and an expensive Au-plated printed circuit board is indispensable, resulting in increased manufacturing costs! In addition, there is a method of maintaining a high temperature strength by adding a small amount of additive element to the Sn-Zn alloy for bonding with Cu, but there is a problem that a small amount of additive element deteriorates the wettability in the Sn-Zn alloy. there were. Sn-Zn lead-free solder solder paste with liquid paraffin and paraffin wax added to the flux of solder paste has an excellent effect on strength at high temperatures S, flow added to the flux Paraffin or paraffin wax remains almost in the flux residue after soldering, and if a large amount of liquid paraffin or paraffin wax is added in order to expect a moisture-proof effect, There was a problem that the paste residue increased and the appearance was uncomfortable. In addition, when soldering with Sn-Zn lead-free solder paste, the ceramic capacitor soldered when placed under high temperature and high humidity causes the insulation resistance to deteriorate.
課題を解決するための手段  Means for solving the problem
[0020] 本発明者らは、 Sn-Zn系の鉛フリーソルダペーストにおいて、はんだ付けされた箇 所が高温、高湿環境下におレ、て発生する接合強度の劣化やはんだ付けしたセラミツ クコンデンサーの絶縁抵抗の劣化原因力 S、 Znの腐食によるものであること、はんだ付 け後のフラックス残渣を中性および塩基性にすることにより、 Znの実測腐食領域図で の Zn— H20系の不動態化領域にコントロールすることが可能であることを見出し、本 発明を完成させた。 [0020] In the Sn-Zn-based lead-free solder paste, the present inventors have found that the soldered portion is damaged in a high-temperature and high-humidity environment. Degradation causal force of capacitor insulation resistance S, due to corrosion of Zn, and by making the flux residue after soldering neutral and basic, the Zn-H20 series in the measured corrosion area diagram of Zn The present inventors have found that it is possible to control to the passivated region and completed the present invention.
[0021] Sn-Zn系鉛フリーはんだではんだ付けした Cuのはんだ付け部の強度が低下する原 因は、銅とはんだの界面に酸化されやすい Cu-Znの合金層が生成されるためである 。従来の Sn-Pbはんだ、 Sn-Ag系鉛フリーはんだおよび Sn-Bi系鉛フリーはんだなどは 、 Cuとはんだ付けされるときにはんだ中の Snと Cuが反応して Sn-Cuの合金層を形成 する。し力、し、 Sn-Zn系鉛フリーはんだで Cuをはんだ付けした場合では Cu-Znの合金 層が形成される。 Cu-Zn合金相は、高温高湿環境下におかれると合金相から Znが 溶出し、 Znの酸化物が生成される。このためその Znの酸化物とはんだの界面にクラッ クが生じ、最後には接合界面で剥離するようになる。はんだそのものも同様に Znの酸 化物が生成されるために強度が劣化する。  [0021] The reason why the strength of the soldered portion of Cu soldered with Sn-Zn lead-free solder is reduced is that an easily oxidized Cu-Zn alloy layer is formed at the interface between copper and solder. . Conventional Sn-Pb solder, Sn-Ag lead-free solder and Sn-Bi lead-free solder, etc., when soldered with Cu, Sn and Cu in the solder react with the Sn-Cu alloy layer Form. When Cu is soldered with Sn-Zn lead-free solder, a Cu-Zn alloy layer is formed. When the Cu-Zn alloy phase is placed in a high-temperature and high-humidity environment, Zn elutes from the alloy phase and Zn oxide is produced. For this reason, a crack is generated at the interface between the Zn oxide and the solder, and finally, it peels off at the joint interface. Similarly, the strength of the solder itself deteriorates due to the formation of Zn oxide.
[0022] 接合強度の低下を起こす現象は、 Sn_9Znの 2元合金だけでなく Sn-Zn系鉛フリーペ 一ストの組成としてよく使用されている Sn-3Bi_8Znの組成でも発生する。従来は、特 許文献 1、 2のように Sn-Zn系鉛フリーはんだに微量の 1B族の金属やアルミなどを添 加することによって強度低下を防ぐ方法がとられていた。し力、しこれらの方法は、平均 的な湿度である 40〜60%の環境下で、高温の場合を想定している。はんだ付け部が 100°C以上の高温に曝されることは車載部品および電源部品などを除けばほとんど 無ぐ 日本では湿度が 80%以上になるような高湿度下での環境の方が多い。  [0022] The phenomenon of reducing the bonding strength occurs not only in the Sn_9Zn binary alloy but also in the Sn-3Bi_8Zn composition, which is often used as the composition of Sn-Zn-based lead-free paste. Conventionally, as described in Patent Documents 1 and 2, a method of preventing a decrease in strength by adding a small amount of Group 1B metal or aluminum to Sn-Zn lead-free solder has been used. These methods assume high temperatures in an environment with an average humidity of 40-60%. The soldered part is hardly exposed to high temperatures of 100 ° C or more except in-vehicle parts and power supply parts. In Japan, there are many environments with high humidity where the humidity is over 80%.
[0023] 前述のように、 Sn-Zn系鉛フリーはんだの強度低下の発生原因が Znのイオン化であ る。そこで本発明では、 Zn +イオンが発生しないようにソルダペーストのフラックスに はんだ付け後のフラックス残渣の pHを中性および塩基性に調整する材料を添加す ることにより Znに不動態膜を形成させ Znの溶出を抑制させることで、はんだ付け部の 強度低下を防止している。 Zn-H20系の不動態化領域である pHにフラックス残渣の p Hを調整することで、 Zn(OH)2の不動態膜を形成させることによりはんだ付け部の強 度が低下を防止している。 Zn— H20系の不動態はフラックス残渣力 中性若しくは塩 基性領域で無ければ形成されない。本発明では、フラックス残渣中に Zn— H20系の 不動態を形成させることにより Sn-Zn系鉛フリーはんだの強度低下だけでなぐチップ コンデンサーの絶縁劣化にも有効である。 Sn-Zn系鉛フリーはんだの強度低下を起こ さないためにはフラックス残渣の pHを塩基性に偏らせることが重要である力 S、ソルダ ペースト自体のフラックスが塩基性に偏ると、はんだ付け時にはんだボールが発生し て、はんだ付け不良を起こしやすい。つまり、はんだボールが少なく良好なはんだ付 けを得るためには、ソルダペースト自体のフラックスは酸性域に偏らせた方が良い。 本発明では、この相反する課題を解決するためのはんだ付け後のフラックス残渣の p Hを調整する材料として、グァニジン誘導体を見出した。 [0023] As described above, the cause of the decrease in strength of Sn-Zn lead-free solder is the ionization of Zn. The Therefore, in the present invention, a passive film is formed on Zn by adding a material that adjusts the pH of the flux residue after soldering to neutral and basic so that Zn + ions are not generated. By suppressing the elution of Zn, the strength of the soldered part is prevented from decreasing. By adjusting the pH of the flux residue to the pH that is the passivating region of the Zn-H20 system, the strength of the soldering part is prevented from decreasing by forming a passivating film of Zn (OH) 2. Yes. The passivity of Zn-H20 system is not formed unless the flux residual force is in the neutral or basic region. In the present invention, the formation of Zn—H20 passivity in the flux residue is effective for the deterioration of the insulation of the chip capacitor as well as the reduction in the strength of the Sn—Zn lead free solder. In order to prevent the strength of Sn-Zn lead-free solder from lowering the strength, it is important to bias the pH of the flux residue to basic S. If the flux of the solder paste itself is biased to basic, Solder balls are generated and soldering defects are likely to occur. In other words, in order to obtain good soldering with fewer solder balls, the solder paste flux should be biased toward the acidic range. In the present invention, a guanidine derivative has been found as a material for adjusting the pH of the flux residue after soldering in order to solve this conflicting problem.
[0024] グァニジンは (NH2)C=NHの構造を持つァミンで、そのアミノ基の Hを置換したグァニ ジン誘導体は有機ゴムの加硫促進剤などに使用されてレ、る。グァニジン誘導体は、 ァミノ基の Hを芳香族炭化水素で置換しており、融点が 150°C前後であって耐熱性 が高い。このグァニジン誘導体は、ァミンとしての塩基性は強ぐ熱によって分解させ にくいためフラックス残渣にも確実に残る性質がある。またグァニジン誘導体は、有機 酸と同等のはんだ付け性がある。その為はんだ付け後のフラックス残渣を pH値 7〜11 とすることができ、はんだ付け性も良い。  [0024] Guanidine is an amine having a structure of (NH2) C = NH, and a guanidine derivative substituted with H of its amino group is used as a vulcanization accelerator for organic rubber. The guanidine derivative has a high heat resistance, with H of the amino group substituted by an aromatic hydrocarbon, a melting point of around 150 ° C. This guanidine derivative has the property that it remains reliably in the flux residue because it is hard to be decomposed by heat, which is strongly basic as an amine. Guanidine derivatives have the same solderability as organic acids. For this reason, the flux residue after soldering can be adjusted to a pH value of 7 to 11, and solderability is also good.
[0025] 本発明は、グァニジン誘導体であればすべて同じ作用効果を呈する力 より好まし くは 1 , 3ジフエニルダァニジン、 1 , 3ジ -0-トリルグァニジン、 1-0-トリルビグアニドを用 いると良い。これらのグァニジン誘導体は、単独で用いても良いし、二つ以上混合し て用いても良い。これらのグァニジン誘導体はフラックス残渣の pHを調整するだけで なぐソルダペーストでのはんだ付け性にも優れている。一般的にフラックス中のアミ ン類の添加は、フラックスを塩基性に偏らせるので活性剤の働きが阻害される。しか しながら、本発明のグァニジン誘導体は活性剤の作用を阻害しない。 [0025] The present invention uses 1,3 diphenyldanidine, 1,3 di-0-tolylguanidine, and 1-0-tolylbiguanide, more preferably the same effect as long as it is a guanidine derivative. And good. These guanidine derivatives may be used alone or in combination of two or more. These guanidine derivatives are also excellent in solderability with solder paste that only adjusts the pH of the flux residue. In general, the addition of amines in the flux biases the flux to be basic, thus hindering the action of the activator. Only However, the guanidine derivatives of the present invention do not inhibit the action of the active agent.
[0026] 本発明は、 Sn-Zn系鉛フリーはんだ合金粉末とフラックスを混練したソルダペースト において、フラックス中にグァニジン誘導体が添加されていることを特徴とするソルダ ペーストである。 [0026] The present invention is a solder paste in which a Sn-Zn-based lead-free solder alloy powder and a flux are kneaded, wherein a guanidine derivative is added to the flux.
本発明における Sn-Zn系合金粉とは、 Sn-Znの二元合金粉のほか、該ニ元合金粉 に他の元素を添加した三元以上の合金粉も含まれる。  The Sn—Zn alloy powder in the present invention includes Sn—Zn binary alloy powder and ternary or higher alloy powder obtained by adding other elements to the binary alloy powder.
発明の効果  The invention's effect
[0027] 本発明のソルダペーストを用いることにより、高温.多湿下の環境でも Sn-Zn系鉛フリ 一はんだ合金で発生する接合強度の低下を防止することができ、一般的な鉛フリー はんだ合金として使用されている Sn-Ag-Cu系はんだ合金では、温度が高くて使用で きな!/、ような耐熱性のなレ、電子部品を高!/、信頼性をもって使用可能となる。  [0027] By using the solder paste of the present invention, it is possible to prevent a decrease in bonding strength that occurs in a Sn-Zn-based lead-free solder alloy even in an environment of high temperature and high humidity, and a general lead-free solder alloy The Sn-Ag-Cu solder alloy used as a high temperature can not be used at a high temperature! /, And the heat resistance is low, and electronic parts can be used with high reliability.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 本発明に使用するグァニジン誘導体は、特許文献 4などとは異なりフラックスの pH を調整するものなので、必ずフラックスと共存させて使用される。特許文献 4のはんだ 粉末の被覆に使用されるァミン量では、フラックス残渣の pHを調整するだけの量が足 りず、粉末に被覆して用いるような使用方法はできな!/、。  [0028] The guanidine derivative used in the present invention adjusts the pH of the flux unlike Patent Document 4 and the like, so it is always used together with the flux. The amount of amine used to coat the solder powder of Patent Document 4 is not sufficient to adjust the pH of the flux residue, and it is not possible to use it by coating the powder!
本発明のフラックスに添加するグァニジン誘導体の量が 10質量%未満では、フラッ タス残渣の pHを中性または塩基性に維持することができないので、高温、高湿環境 下における接合強度が低下する。フラックスに添加するグァニジン誘導体が 30質量 %を超えてしまうと、はんだ付け前のフラックスが塩基性に偏ってしまい、はんだボー ルが多くなる。そのため本発明に使用するグァニジン誘導体の量は、合計で 10〜30 質量%が好ましい。さらにより好ましくは、グァニジン誘導体の量が合計で 15〜20質 量%のときである。  If the amount of the guanidine derivative added to the flux of the present invention is less than 10% by mass, the pH of the flat residue cannot be maintained neutral or basic, so that the bonding strength in a high temperature and high humidity environment decreases. If the guanidine derivative added to the flux exceeds 30% by mass, the flux before soldering will be biased to basicity, resulting in an increase in solder balls. Therefore, the total amount of guanidine derivatives used in the present invention is preferably 10 to 30% by mass. Even more preferably, the amount of guanidine derivatives is 15 to 20% by mass in total.
[0029] 本発明では、ソルダペーストのフラックスにァミンとしてグァニジン誘導体の他に比 較的低温で反応するァミンを添加することもできる。本発明のグァニジン誘導体の他 に添加できるァミンとして、ジプロピルァミン, トリプロピルァミン,ジへキシルァミン, ト リへキシノレアミン, デシルァミン,ジデシルァミン,ゥンデシルァミン,ジゥンデシルアミ ン, ドデシルァミン,ジドデシルァミン,へキサデシルァミン,ォクタデシルァミン,シク 口へキシルァミン,ジシクロへキシルァミン,ポリオキシエチレンジシクロへキシルアミ ン,ジメチルァニリン,ジフエニルァミン, トリフエニルァミン等があげられる。 In the present invention, in addition to the guanidine derivative, an amine that reacts at a relatively low temperature can be added to the solder paste flux as an amine. In addition to the guanidine derivative of the present invention, diamine, tripropylamine, dihexylamine, trihexyloleamine, decylamine, didecylamine, undecylamine, didecylamine, dodecylamine, didodecylamine, hexadecylamine, octadecylamine , Siku Examples include oral hexylamine, dicyclohexylamine, polyoxyethylene dicyclohexylamine, dimethylaniline, diphenylamine, and triphenylamine.
[0030] 本発明に使用するグァニジン誘導体は、流動パラフィンまたはパラフィンワックスと 共存させることによって、さらに高温、高湿下のはんだ接合強度の低下を防止するこ とができる。流動パラフィンまたはパラフィンワックス自体は中性であり、ソルダペース トのフラックス中に添加しても、フラックス残渣の pHをほとんど変化させない。ソルダ ペーストのフラックス中に流動パラフィンまたはパラフィンワックスを添加することにより 、フラックス残渣の表面に水分を通過させない層を形成して、湿気とはんだ合金と隔 離することによりはんだ合金のイオン化を防止して、さらに高温、高湿下のはんだ接 合強度の低下を防止する。本発明に流動パラフィンまたはパラフィンワックスを添カロ するときは、ソルダペーストのフラックス中に 5〜20質量0 /0するのが好ましい。本発明 に添加する流動パラフィンまたはパラフィンワックスは、それぞれが単独で添加しても 良いし、これらを一緒に使用しても良い。 [0030] The guanidine derivative used in the present invention can prevent a decrease in solder joint strength at higher temperatures and higher humidity by coexisting with liquid paraffin or paraffin wax. Liquid paraffin or paraffin wax itself is neutral and, when added to the solder paste flux, hardly changes the pH of the flux residue. By adding liquid paraffin or paraffin wax to the solder paste flux, a layer that does not allow moisture to pass through is formed on the surface of the flux residue, and the solder alloy is prevented from being ionized by separating it from moisture and the solder alloy. Furthermore, it prevents the solder joint strength from decreasing at high temperature and high humidity. When added Caro liquid paraffin or paraffin wax to the present invention is preferably 5 to 20 mass 0/0 during the solder paste flux. Liquid paraffin or paraffin wax added to the present invention may be added alone or in combination.
[0031] Sn-Zn系鉛フリーはんだはぬれ性が悪ぐなおかつ本発明ではフラックス残渣の pH を 7· 0〜; 11としなければならない。本発明のソルダペーストに一般的にフラックスの 活性剤として使用されるァミンのハロゲン化水素酸塩を用いると、フラックス残渣の ρ Ηが上昇(酸性域)してしまう。本発明の活性剤として適するのは、フラックス中の pH を酸性域に偏らせな!/、有機ハロゲン化合物が適して!/、る。有機ハロゲン化合物の好 適な例として、脂肪族の有機ハロゲン化合物として、へキサブ口モシクロドデカン、 tra ns- 2, 3ジブ口モー 2 ブテン 1 , 4ージオール、 2, 3 ジブ口モー 1 , 4 ブタン ジオール、 2, 3 ジブ口モー 1 プロパノール、 1 , 3 ジブ口モー 2 プロパノーノレ がある。また、脂肪族の有機ハロゲン化合物ではないが、トリス(2, 3 ジブロモプロ ピル)イソシァヌレートも好適である。  [0031] The Sn-Zn lead-free solder has poor wettability, and in the present invention, the pH of the flux residue must be 7.0 to 11; When the amine hydrohalide generally used as a flux activator is used in the solder paste of the present invention, the ρ 残渣 of the flux residue increases (acidic region). Suitable as the activator of the present invention is that the pH in the flux is not biased to the acidic range! / Organic halogen compounds are suitable! /. Preferable examples of the organic halogen compounds include hexasuboxycyclodidecane, trans ns-2,3 dib-mouth mode 2 butene 1,4-diol, 2,3 dib-mouth mode 1,4 as aliphatic organic halogen compounds. There are butane diol, 2,3 dib mouth-moe 1 propanol, 1,3 dib mouth moe 2 propanol. Tris (2,3 dibromopropyl) isocyanurate is also suitable, although it is not an aliphatic organic halogen compound.
[0032] 本発明における有機ハロゲン化合物および芳香族ァミン、複素環ァミンなどのアミ ンの添加は、単独で添加しても効果が期待できる。さらにこれらを同時に添加するこ とにより、流動パラフィンおよびパラフィンワックスのはんだ付け性に対する欠点を補 い、相乗効果が期待できる。  [0032] The addition of an organic halogen compound and an amine such as an aromatic amine or heterocyclic amine in the present invention can be expected to be effective even when added alone. Furthermore, by adding these at the same time, the shortcomings of the solderability of liquid paraffin and paraffin wax can be compensated and a synergistic effect can be expected.
実施例 Sn-Zn系鉛フリーはんだの組成として、一般的な Sn-3Bi_8Znおよび Sn_9Znの組成 を用いた。フラックス配合は表 1に示す。 Example As the Sn-Zn lead-free solder composition, the general Sn-3Bi_8Zn and Sn_9Zn compositions were used. Table 1 shows the flux composition.
1. ソルダペースト配合 1. Contains solder paste
Sn-3Bi-8Znおよび Sn-9Znはんだ粉末(20〜40 μ m) 88質量% Sn-3Bi-8Zn and Sn-9Zn solder powder (2 0~ 4 0 μ m) 88 wt%
フラックス (表 1に配合を記載) 12質量%  Flux (The composition is listed in Table 1) 12% by mass
フラックスおよびはんだ粉末を混和してソルダペーストを作り、その特性を比較した。 実施例および比較例の試験結果も表 1に示す。 Flux and solder powder were mixed to make a solder paste and its properties were compared. The test results of the examples and comparative examples are also shown in Table 1.
[表 1] [table 1]
Figure imgf000012_0001
Figure imgf000012_0001
<BR> <BR>
[0034] 1.フラックス残渣の pH試験方法  [0034] 1.Flux residue pH test method
1.) JISH3100に規定された 50 X 50 X 0. 5mmの銅版に 6· 5mm φの穴の空い たメタルマスクを用いて、実施例および比較例のソルダペーストを印刷する。 2·) 試験銅板をプリヒート温度 150〜; 170。C、 90秒、ピーク温度 220。C、 200。C以上 30 秒、酸素濃度 3000ppmのリフロー条件で、リフローはんだ付けを行う。  1.) Print the solder pastes of the examples and comparative examples on a 50 x 50 x 0.5 mm copper plate specified in JISH3100 using a metal mask with a 6.5 mm diameter hole. 2) Pre-heat temperature of test copper plate from 150 to 170; C, 90 seconds, peak temperature 220. C, 200. Reflow soldering under reflow conditions of C and 30 seconds, oxygen concentration 3000ppm.
3. ) 放冷後、スパチュラ等で残渣を搔き落とし残渣を集める。  3.) After standing to cool, scrape the residue with a spatula etc. and collect the residue.
4. ) かき集めた残渣の 1 %水溶液を煮沸し、冷却後 pHを測定する。  4.) Boil a 1% aqueous solution of the collected residue, measure the pH after cooling.
[0035] 2.剪断強度試験 [0035] 2. Shear strength test
1. ) 試験基板に 1005チップコンデンサーをマウンターで搭載する。  1.) Mount a 1005 chip capacitor on the test board with a mounter.
2. ) 試験基板をプリヒー卜温度 150〜; 170。C、 90秒、ピーク温度 220。C、 200。C以 上 30秒、酸素濃度 3000ppmのリフロー条件で、リフローはんだ付けを行う。  2.) Preheat the test substrate to 150 ~; 170. C, 90 seconds, peak temperature 220. C, 200. Reflow soldering under the reflow conditions of C and 30 seconds, oxygen concentration 3000ppm.
3. ) 試験基板を放冷後、剪断強度試験機を用いて、テストスピード SOO ^ m/sec 、テスト高さ 15 πιの条件で剪断強度を測定する。  3.) After allowing the test substrate to cool, measure the shear strength using a shear strength tester under conditions of test speed SOO ^ m / sec and test height 15 πι.
[0036] 3.絶縁劣化試験  [0036] 3. Insulation degradation test
1. )試験基板に 1608Cコンデンサー (静電容量 1 a F、定格電圧 6.3V)をマウンターで 搭載する。  1.) Mount a 1608C capacitor (capacitance 1 a F, rated voltage 6.3V) on the test board with a mounter.
2. ) 試験基板をプリヒー卜温度 150〜; 170。C、 90秒、ピーク温度 220。C、 200。C以 上 30秒、酸素濃度 3000ppmのリフロー条件で、リフローはんだ付けを行う。  2.) Preheat the test substrate to 150 ~; 170. C, 90 seconds, peak temperature 220. C, 200. Reflow soldering under the reflow conditions of C and 30 seconds, oxygen concentration 3000ppm.
3. ) 試験基板を放冷後、 85°C/85%RH環境下で 6.3Vの電圧を印可して、絶縁抵抗 を 500hまで測定する。測定電圧 6.3Vとした。  3.) After allowing the test board to cool, apply a voltage of 6.3V in an environment of 85 ° C / 85% RH and measure the insulation resistance up to 500h. The measurement voltage was 6.3V.
4. ) 絶縁劣化試験の判定基準は、 1 X 107 Ω以下を不合格と判断した。  4.) Judgment criteria of insulation deterioration test were determined to be 1 X 107 Ω or less as a failure.
[0037] 本発明のソルダペーストは 85°C、 85%RHの環境下でも強度の劣化が少なぐ絶縁 抵抗もほとんど低下しな力 た。それに対して、比較例のソルダペーストは 85°C、 85 %RHの環境下の強度低下および絶縁抵抗の低下が見られた。  [0037] The solder paste of the present invention had a strength that hardly deteriorated the insulation resistance and hardly deteriorated even in an environment of 85 ° C and 85% RH. In contrast, the solder paste of the comparative example showed a decrease in strength and an insulation resistance in an environment of 85 ° C. and 85% RH.
産業上の利用可能性  Industrial applicability
[0038] 本発明のソルダペーストは、 Sn-Zn系の鉛フリーソルダペーストだけでなぐ一般的 な鉛フリーはんだ合金にも使用可能である。 [0038] The solder paste of the present invention can also be used for general lead-free solder alloys other than Sn-Zn-based lead-free solder pastes.

Claims

請求の範囲 The scope of the claims
[1] Sn— Zn系鉛フリーはんだ合金粉末とフラックスを混練したソルダペーストにおいて、 フラックス中にァミンとして、グァニジン誘導体を 10〜30%含有することを特徴とする [1] A solder paste kneaded with Sn—Zn-based lead-free solder alloy powder and flux, characterized by containing 10-30% of a guanidine derivative as an amine in the flux
Sn— Zn系鉛フリーソルダペースト。 Sn—Zn-based lead-free solder paste.
[2] 前記グァニジンの誘導体は、 1 , 3ジフエニルダァニジン、 1 , 3ジ -0-トリルグァニジン[2] The derivatives of guanidine are 1,3 diphenyldanidine, 1,3 di-0-tolylguanidine.
、 1-0-トリルビグアニドであることを特徴とする請求項 1に記載の Sn— Zn系鉛フリーソ ノレダペースト。 2. The Sn—Zn-based lead-free sonoreda paste according to claim 1, which is 1-0-tolylbiguanide.
[3] 前記フラックスは、ハロゲンフリーのフラックスを用いることを特徴とする請求項 1及び 2 に記載の Sn— Zn系鉛フリーソルダペースト。  [3] The Sn—Zn-based lead-free solder paste according to claim 1 or 2, wherein the flux uses a halogen-free flux.
[4] Sn— Zn系鉛フリーはんだ合金粉末とハロゲンフリーのフラックスを混練したソルダぺ 一ストを用いたはんだ付けにおいて、はんだ付け後のフラックス残渣の pHを 7〜11と することを特徴とする Sn— Zn系鉛フリーソルダーペーストのはんだ付け方法。  [4] In soldering using a solder paste in which Sn—Zn-based lead-free solder alloy powder and halogen-free flux are kneaded, the pH of the flux residue after soldering is 7 to 11 Sn—Zn-based lead-free solder paste soldering method.
PCT/JP2007/068363 2006-09-22 2007-09-21 Lead-free solder paste WO2008035758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501086A JP4162707B2 (en) 2006-09-22 2007-09-21 Lead-free solder paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006258074 2006-09-22
JP2006-258074 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008035758A1 true WO2008035758A1 (en) 2008-03-27

Family

ID=39200581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068363 WO2008035758A1 (en) 2006-09-22 2007-09-21 Lead-free solder paste

Country Status (2)

Country Link
JP (1) JP4162707B2 (en)
WO (1) WO2008035758A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642101A (en) * 2010-12-02 2012-08-22 罗门哈斯电子材料有限公司 Amine flux composition and method of soldering
CN104476017A (en) * 2014-11-13 2015-04-01 无锡伊佩克科技有限公司 Soldering aid agent for lead-free solder and preparation method thereof
JP6390989B1 (en) * 2017-11-24 2018-09-19 千住金属工業株式会社 Flux and solder paste

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107378313A (en) * 2017-08-01 2017-11-24 东莞市盟纬电子有限公司 A kind of low-solid content is without rosin halogen-free scaling powder and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327789A (en) * 1996-06-10 1997-12-22 Senju Metal Ind Co Ltd Solder paste
JPH10175092A (en) * 1996-12-16 1998-06-30 Senju Metal Ind Co Ltd Solder paste
JP2000271781A (en) * 1999-03-23 2000-10-03 Matsushita Electric Ind Co Ltd Solder paste
JP2002103085A (en) * 2000-10-03 2002-04-09 Fujifilm Arch Co Ltd Reduction type flux composition
JP2002114754A (en) * 2000-10-03 2002-04-16 Fujifilm Arch Co Ltd Biguanide compound
JP2005021958A (en) * 2003-07-01 2005-01-27 Senju Metal Ind Co Ltd Lead-free solder paste
WO2006126564A1 (en) * 2005-05-25 2006-11-30 Senju Metal Industry Co., Ltd Lead-free solder paste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327789A (en) * 1996-06-10 1997-12-22 Senju Metal Ind Co Ltd Solder paste
JPH10175092A (en) * 1996-12-16 1998-06-30 Senju Metal Ind Co Ltd Solder paste
JP2000271781A (en) * 1999-03-23 2000-10-03 Matsushita Electric Ind Co Ltd Solder paste
JP2002103085A (en) * 2000-10-03 2002-04-09 Fujifilm Arch Co Ltd Reduction type flux composition
JP2002114754A (en) * 2000-10-03 2002-04-16 Fujifilm Arch Co Ltd Biguanide compound
JP2005021958A (en) * 2003-07-01 2005-01-27 Senju Metal Ind Co Ltd Lead-free solder paste
WO2006126564A1 (en) * 2005-05-25 2006-11-30 Senju Metal Industry Co., Ltd Lead-free solder paste

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642101A (en) * 2010-12-02 2012-08-22 罗门哈斯电子材料有限公司 Amine flux composition and method of soldering
CN104476017A (en) * 2014-11-13 2015-04-01 无锡伊佩克科技有限公司 Soldering aid agent for lead-free solder and preparation method thereof
CN104476017B (en) * 2014-11-13 2016-09-21 兑元工业科技(惠州)有限公司 A kind of lead-free solder scaling powder and preparation method thereof
JP6390989B1 (en) * 2017-11-24 2018-09-19 千住金属工業株式会社 Flux and solder paste
WO2019102671A1 (en) 2017-11-24 2019-05-31 千住金属工業株式会社 Flux and solder paste
KR20190069426A (en) 2017-11-24 2019-06-19 센주긴조쿠고교 가부시키가이샤 Flux and Solder Paste
JP2019093426A (en) * 2017-11-24 2019-06-20 千住金属工業株式会社 Flux and solder paste
CN109996646A (en) * 2017-11-24 2019-07-09 千住金属工业株式会社 Scaling powder and soldering paste
KR102026848B1 (en) 2017-11-24 2019-09-30 센주긴조쿠고교 가부시키가이샤 Flux and solder paste
US10843298B2 (en) 2017-11-24 2020-11-24 Senju Metal Industry Co., Ltd. Flux and solder paste
EP3683005A4 (en) * 2017-11-24 2021-01-06 Senju Metal Industry Co., Ltd Flux and solder paste

Also Published As

Publication number Publication date
JPWO2008035758A1 (en) 2010-01-28
JP4162707B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
EP2017031B1 (en) Solder paste
JP4613823B2 (en) Solder paste and printed circuit board
EP1914035B1 (en) Lead free solder paste and application thereof
JP4493658B2 (en) Lead-free solder paste
JP3788335B2 (en) Solder paste
JP5115915B2 (en) Lead-free solder, processed solder, solder paste and electronic component soldering board
EP2589459B1 (en) Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
US20040217152A1 (en) Lead-free solder paste for reflow soldering
EP2474383B1 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
JP5242521B2 (en) Solder bonding composition
JP4392020B2 (en) Lead-free solder balls
WO2008035758A1 (en) Lead-free solder paste
JP4396162B2 (en) Lead-free solder paste
US7282174B2 (en) Lead-free solder and soldered article
JP4447798B2 (en) Solder paste composition and reflow soldering method
KR101125865B1 (en) Solder paste, soldered joint formed using the same, and printed circuit board having the soldered joint
EP1180411A1 (en) Lead-free paste for reflow soldering
JP3654161B2 (en) Solder paste and soldering method
JP6916243B2 (en) Lead-free solder alloys, electronic circuit boards and electronic control devices
JP6796108B2 (en) Lead-free solder alloy, solder paste, electronic circuit board and electronic control device
JP4242725B2 (en) Lead-free soldering flux and solder paste
JP2005021975A (en) Flux for joining unleaded solder, and solder paste
JP3752942B2 (en) Solder powder for solder paste
JP2004283841A (en) Solder paste and method for coating solder powder for solder paste
JP2005021973A (en) Flux for joining unleaded solder, and solder paste

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008501086

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807713

Country of ref document: EP

Kind code of ref document: A1