WO2008035754A1 - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
WO2008035754A1
WO2008035754A1 PCT/JP2007/068337 JP2007068337W WO2008035754A1 WO 2008035754 A1 WO2008035754 A1 WO 2008035754A1 JP 2007068337 W JP2007068337 W JP 2007068337W WO 2008035754 A1 WO2008035754 A1 WO 2008035754A1
Authority
WO
WIPO (PCT)
Prior art keywords
resolver
holder
stator
bracket
rotor
Prior art date
Application number
PCT/JP2007/068337
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Shinfuku
Masayuki Okubo
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to JP2008535392A priority Critical patent/JP5064401B2/en
Publication of WO2008035754A1 publication Critical patent/WO2008035754A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil

Definitions

  • the present invention relates to a brushless motor, and more particularly, to a mounting structure for a rotor position detecting device in a brushless motor.
  • a stator-side coil (stator coil) is sequentially excited to rotationally drive the rotor.
  • detection devices using encoders, Hall ICs, etc. have been used to detect the rotational position of the rotor.
  • brushless motors using resolvers have also increased.
  • the resolver has a simple structure that is resistant to high temperatures and vibrations and is not easily damaged.
  • FIG. 8 is a cross-sectional view showing a configuration of a conventional brushless motor using a resolver.
  • a resorno 102 is used to detect the rotational position of the rotor 101.
  • the resolver 102 includes a resolver stator 103 and a resolver rotor 104, and an exciting coil 105 is wound around the stator.
  • a resolver rotor 104 formed of a magnetic material is disposed on the rotor side, and the resolver rotor 104 is fixed to the rotor shaft 106 of the motor 100.
  • the detection signal accuracy of the resolver is indicated by an error between the rotor rotation angle and the resolver detection signal, and the more linear the relationship between the two, the more accurate the sensor.
  • the higher the rotor position detection accuracy the more accurate energization is possible, and torque fluctuations can be suppressed and the steering feeling can be improved. Therefore, in the resolver origin adjustment, the induced voltage waveform of the motor and the detection signal of the resolver are compared, and the resolver stator mounting position is finely adjusted in the rotational direction, so that the rise of the resolver signal reaches the determined rotor rotational position. adjust.
  • it is possible to obtain a brushless motor with little torque fluctuation in which the rising force S position of the resolver signal corresponds to the rotor rotational position and the rotational left-right difference is eliminated.
  • an origin adjustment function is usually provided on a bracket attached to the end surface of the motor.
  • a bracket attached to the end surface of the motor.
  • an adjustment hole is formed in the bracket 108 at the left end of the motor in order to adjust the attachment position of the resolver holder 107 to which the resolver stator 103 is attached.
  • FIG. 9 is a left side view of the motor 100, and the bracket 108 is provided with a resolver adjustment hole 109 and a resolver mounting hole 110.
  • the resolver holder 107 is attached to the motor 108 inward force, and the bracket 108.
  • the fixed piece 107 a force of the resolver holder 107 is output from the resolver mounting hole 110 to the outside of the bracket 108.
  • the resolver holder 107 is rotated in the circumferential direction, and the fixing screw 111 is temporarily fixed.
  • the bracket assembly 112 includes a bracket 108, a resolver holder 107 to which a bearing 115 and a resolver stator 103 are attached, and the bracket 115 and the resolver holder 107 are assembled to the bracket 108.
  • a sensor wire 116 is connected to the resolver stator 103. The sensor wire 116 is drawn out in the radial direction from the outer periphery of the bracket assembly 112.
  • the rotor assembly 113 includes a motor rotor 101 and a resolver rotor 104.
  • the rotor 101 has a configuration in which a rotor core 117 is fixed to a rotor shaft 106, a magnet holder 118 is attached, a magnet 119 is press-fitted into the magnet holder 118, and a magnet cover 120 is attached to the outside of the magnet 119. ing.
  • the resolver rotor 104 is also fixed to the rotor shaft 106 and is arranged adjacent to the end of the magnet holder 118 of the rotor 101.
  • the stator assembly 114 includes a case 121, a stator core 123 fixed in the case 121 and wound with a motor coil 122, and a bus bar unit 124 attached to the end of the stator core 123.
  • the stator core 123 is press-fitted or adhesively fixed in the case 121 !.
  • the motor 100 After each assembly 112, 113, 114 is threaded, the motor 100 first assembles the rotor assembly 113 to the bracket assembly 112 (procedure A in FIG. 10). Next, the assembly of the bracket assembly 112 and the rotor assembly 113 is assembled to the stator assembly 114 (step B in FIG. 10). Thereafter, the lead wire 126 for power supply is fixed to the bus bar unit 124 by welding via the lead wire welding hole 125 provided in the bracket 108. As a result, the motor 100 configured as shown in FIG. 8 is assembled. In the motor 100, the origin adjustment described above is performed after checking the resistance value and insulation state of the motor. After completing various characteristic checks, the brushless motor is completed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-229721
  • An object of the present invention is to prevent misalignment between a resolver stator and a resolver rotor in a brushless motor, and to improve rotor position detection accuracy.
  • a brushless motor of the present invention includes a stator including a core around which a drive coil is wound and a case that accommodates the core, a bracket that is attached to one end of the case, and the case and the bracket that are freely rotatable.
  • a rotor having a shaft supported by the shaft and a magnet attached to the shaft and rotatably disposed inside the stator, a resolver rotor attached to the shaft and rotating together with the magnet, and an outer side of the resolver rotor
  • a resolver stator having a detection coil that changes a phase of an output signal as the resolver rotor rotates, wherein the resolver stator is a cylindrical resolver.
  • the resolver holder is housed in the holder, and the resolver holder is mounted on the bracket. It is mounted on a holder mounting part formed concentrically with the shaft.
  • the resolver stator is accommodated in the cylindrical resolver holder, and a holder mounting portion is formed concentrically with the shaft on the bracket, and the resolver holder is mounted on the holder mounting portion.
  • the resolver stator can be attached to the rotor shaft with high accuracy, and misalignment between the resolver stator and the resolver rotor can be suppressed. For this reason, the linearity between the rotor rotation angle and the detection signal of the resolver is increased, and the rotor position detection accuracy is improved.
  • the resolver holder is provided with a holder portion in which the resolver stator is accommodated concentrically, and the holder portion is fitted to the outer periphery of the holder mounting portion, that is, the holder portion is attached to the holder. It may be attached by fitting to the outer periphery of the attachment portion. Further, the holder part may be fitted to the outer periphery of the holder attaching part in a light press-fit state. Furthermore, the holder mounting portion may be formed so as to protrude along the axial direction at the central portion of the bracket.
  • the resolver holder may be formed of a material having a thermal expansion coefficient approximate to that of the resolver stator, so that the thermal expansion of the resolver stator or the resolver holder may occur between the two. There is no gap, and play due to thermal deformation between the resolver holder and the resolver stator is suppressed, and it is possible to prevent a decrease in the accuracy of the resolver signal.
  • the resolver stator is accommodated in the cylindrical resolver holder by the brushless motor having the resolver rotor and the resolver stator, and the resolver holder is attached to the bracket.
  • the resolver stator can be attached to the rotor shaft with good core accuracy because it is mounted on the holder mounting portion formed concentrically with the shaft. Accordingly, the misalignment between the resolver stator and the resolver rotor can be suppressed, the linearity between the rotor rotation angle and the detection signal of the resolver is increased, and the rotor position detection accuracy can be improved. For this reason, for example, when the brushless motor is used for EPS, the torque fluctuation of the motor is suppressed, and the steering feeling can be improved.
  • FIG. 1 is a cross-sectional view of a brushless motor that is Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the brushless motor of FIG.
  • FIG. 3 is a perspective view showing a configuration of a bracket holder unit.
  • FIG. 4 is an explanatory diagram showing a configuration of a resolver holder.
  • FIG. 5 is an explanatory view showing an angle error between a rotor rotation angle and a resolver detection signal, and shows a comparison between a conventional brushless motor and a motor according to the present invention.
  • FIG. 6 is an explanatory view showing the structure of the bracket.
  • FIG. 7 is a cross-sectional view showing a configuration of a brushless motor that is Embodiment 2 of the present invention.
  • FIG. 8 is a c [9] a left side view of the brushless motor of FIG. 8 is a sectional view showing a conventional brushless motor configuration using resolver.
  • FIG. 10 is an explanatory view showing an assembly configuration of the brushless motor of FIG.
  • FIG. 1 is a cross-sectional view of a brushless motor that is Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view of the brushless motor of FIG.
  • a brushless motor 1 (hereinafter abbreviated as “motor 1”) is an inner rotor type brushless motor having a stator 2 on the outside and a rotor 3 on the inside.
  • the motor 1 is, for example, a column assist type electric power steerer. It is used as a power source for the driving device (EPS), and provides operational assistance to the steering shaft of the car.
  • the motor 1 is attached to a reduction mechanism (not shown) provided on the steering shaft, and the rotation of the motor 1 is transmitted to the steering shaft by being reduced by the reduction mechanism.
  • EPS driving device
  • the stator 2 includes a bottomed cylindrical case 4, a stator core 5, a stator coil 6 wound around the stator core 5 (hereinafter abbreviated as coil 6), and a bus bar unit attached to the stator core 5. (Terminal unit) 7
  • the case 4 is formed in a bottomed cylindrical shape with iron or the like, and a bracket 24 made of aluminum die cast is attached to the opening by a fixing screw 23.
  • the stator core 5 is composed of a plurality of divided cores 8 and nine divided cores 8 are assembled in the circumferential direction.
  • the split core 8 is formed by stacking core pieces made of electromagnetic steel plates, and an insulator 9 made of synthetic resin is attached around the core.
  • a coil 6 is wound around the outside of the insulator 9. The end portion 6 a of the coil 6 is drawn out in the radial direction at one end side of the stator core 5.
  • a bus bar unit 7 is attached to one end side of the stator core 5.
  • a copper bus bar is insert-molded in a synthetic resin main body.
  • a plurality of power supply terminals 11 protrude in the radial direction.
  • the coil end 6 a is welded to the power supply terminal 11.
  • the number of bus bars corresponding to the number of phases of the motor 1 here, three for the U phase, V phase, and W phase
  • Each coil 6 is electrically connected to a power supply terminal 11 corresponding to the phase.
  • a rotor 3 is inserted inside the stator 2.
  • the rotor 3 has a rotor shaft 21.
  • the rotor shaft 21 is rotatably supported by bearings 22a and 22b.
  • the bearing 22a is fixed to the center of the bottom of the case 4, and the bearing 22b is fixed to the center of the bracket 24.
  • a cylindrical rotor core 25 is fixed to the rotor shaft 21.
  • a segment type magnet (permanent magnet) 26 is attached to the outer periphery of the rotor core 25.
  • a magnet holder 27 made of synthetic resin is attached to the rotor shaft 21. It has been deceived.
  • the magnet 26 is disposed on the outer periphery of the rotor core 25 so as to be held by the magnet holder 27.
  • six magnets 26 are arranged along the circumferential direction.
  • a magnet cover 28 having a bottomed cylindrical shape is attached to the outside of the magnet 26.
  • FIG. 3 is a perspective view showing the configuration of the bracket holder unit 35. As shown in FIG. 3, at the center of the bracket holder unit 35, a holder accommodating portion 35a into which the resolver holder 34 is inserted is provided. A plurality of ribs 35b project from the inner wall of the holder accommodating portion 35a.
  • ribs 35b are equally provided in the circumferential direction, and project slightly less than lmm inward in the radial direction.
  • the resolver holder 34 is attached in the holder accommodating portion 35a so as to be lightly press-fitted inside the rib 35b, and is temporarily held in the bracket holder unit 35.
  • a sensor harness 36 is fixed to the resolver stator 33.
  • a signal output as the rotor 32 rotates is transmitted to a controller or the like (not shown) via the sensor harness 36.
  • the sensor harness 36 is welded to the terminal portion 33a of the stator 33.
  • a synthetic resin insulator 37 is attached to the terminal portion 33a.
  • the sensor harness 36 is routed between the bracket 24 and the bracket holder unit 35 along the circumferential direction. Then, it is pulled out from the outer periphery of the bracket 24 through the rubber grommet 38 to the outside of the apparatus.
  • the resolver holder 34 is formed in a bottomed cylindrical shape, and is fitted into the central portion of the bracket holder unit 35.
  • FIG. 4 is an explanatory diagram showing the configuration of the resolver holder 34.
  • the resolver holder 34 includes a cylindrical holder part 61, a flange part 62 formed on one end side of the holder part 61, and a through hole formed in the center on the other end side of the holder part 61.
  • the bottom wall 63 is formed.
  • the resolver stator 33 is accommodated concentrically.
  • the terminal portion 33a of the stator 33 is disposed in the cutout portion 61a formed in the holder portion 61.
  • resolver stator 33 and resolver The holders 34 are formed of materials (preferably! /, Equal! /,) That are close to each other in thermal expansion coefficient (preferably within a difference of 10%, particularly preferably within 5%). Therefore, no gap is generated between the resolver holder 34 and the resolver stator 33 even if each member expands due to heat. For this reason, rattling due to thermal deformation between the resolver holder 34 and the resolver stator 33 is suppressed, and a decrease in the accuracy of the resolver signal is suppressed.
  • the flange portion 62 protrudes in the radial direction on one end side of the holder portion 61.
  • the flange portion 62 is further provided with protruding pieces 64a to 64c extending in the radial direction.
  • the projecting pieces 64a and 64b are formed at positions facing 1 80 °.
  • a long hole 65 is formed in each projecting piece 64a, 64b.
  • the long hole 65 is formed long in the circumferential direction and is used for fixing the resolver holder 34 and adjusting the origin of the resonance lever 31.
  • a round hole 66 is formed in the projecting piece 64c, and the round hole 66 is exclusively used for adjusting the origin. At the time of origin adjustment, an adjustment jig is inserted into the round hole 66 from the outside of the bracket 24, and the position of the resolver holder 34 is appropriately adjusted in the circumferential direction.
  • the open end portion (flange portion 62 side) of the resolver holder 34 is fitted to the outer periphery of the end portion of a holder mounting rib (holder mounting portion) 39 provided on the bracket 24.
  • the holder mounting rib 39 protrudes from the central portion of the bracket 24 in a partially cylindrical shape (cylindrical shape having a notch in a part) in the axial direction.
  • the outer diameter of the holder mounting rib 39 is slightly smaller than the inner diameter of the open end of the resolver holder 34. Therefore, the resolver holder 34 is mounted so as to be lightly press-fitted into the holder mounting rib 39.
  • a bearing fixing portion 40 is provided inside the holder mounting rib 39.
  • a bearing 22 b that supports the rotor shaft 21 is fixed to the bearing fixing portion 40.
  • the holder mounting rib 39 is formed concentrically with the bearing fixing portion 40. Therefore, when the resolver holder 34 is lightly press-fitted into the holder mounting rib 39, the resolver holder 34 is attached concentrically with the bearing fixing portion 40.
  • the resolver stator 33 in the holder 61 is attached to the bracket 24 concentrically with the bearing 22b, that is, concentrically with the rotor shaft 21, and the resolver stator 33 is attached to the rotor shaft 21 with high core accuracy. Installed in 1.
  • FIG. 5 is an explanatory diagram showing an angle error between the rotor rotation angle and the resolver detection signal, and shows a comparison between a conventional brushless motor (FIG. 8) and a motor according to the present invention.
  • the conventional motor shown by the alternate long and short dash line has an angular error width of about 5 °
  • the motor 1 according to the invention shown by the solid line 1 In the angular error width could be kept within about 1.5 °.
  • the motor 1 can detect the rotational position of the rotor 3 with three times higher accuracy than a conventional brushless motor. For this reason, the motor 1 can be driven with reduced torque fluctuation, and the steering feeling in EPS can be improved.
  • the bracket holder unit 35 is formed of a synthetic resin.
  • a metal resolver holder fixing nut 41 is insert-molded.
  • Two resolver holder fixing nuts 41 are provided corresponding to the long holes 65 of the resolver holder 34.
  • the bracket 24 is formed with a resolver fixing hole 48b for fixing the resolver and a resolver adjusting hole 48c for adjusting the origin of the resolver 31, as shown in FIG.
  • the resolver fixing hole 48b is disposed so as to face the long hole 65 and the resolver holder fixing nut 41, and is formed in a round hole through which the mounting screw 42 can pass.
  • the resolver adjusting hole 48c is arranged facing the round hole 66.
  • the resolver adjusting hole 48c is formed as a long hole extending in the circumferential direction so that the position of the resolver holder 34 can be adjusted in the circumferential direction.
  • An adjustment jig is inserted into the round hole 66 through the resolver adjustment hole 48c, and the position of the resolver holder 34 is adjusted (origin adjustment).
  • the resolver holder fixing nut 41 is connected to the outside of the motor 1 through the resolver fixing hole 48b.
  • Mounting screw 42 is screwed in from the part.
  • the resolver holder 34 is fixed while being sandwiched between the bracket 24 and the bracket holder unit 35.
  • a resolver adjustment hole 109 and a resolver mounting hole 110 extending in the circumferential direction are provided in the bracket 108.
  • the rigidity of the bracket 108 particularly the rigidity around the bearing 115 fixed at the center of the bracket, is lowered, and there is a possibility that the strength is insufficient.
  • vibration is applied to the resolver stator 103, which may reduce the sensing accuracy.
  • the bracket holder unit 35 is provided inside the bracket 24, and the resolver holder 34 is attached to the bracket holder unit 35, so that the resolver fixing hole needs to be a long hole. There is no.
  • the hole related to the resolver 31 is a mounting screw.
  • the through hole of the bracket 24 can be made smaller than the conventional motor, and the rigidity of the bracket 24 is improved correspondingly, and the strength thereof is also increased. Therefore, a decrease in sensing accuracy due to vibration can be suppressed, and rotor position detection accuracy can be improved.
  • the bracket holder unit 35 is also provided with three external power feeding terminals 43.
  • the external power feeding terminal 43 is provided for each of U, V, and W phases. These external power feeding terminals 43 are provided so as to protrude in the radial direction from the side surface of the bracket 24 when the bracket holder unit 35 is assembled to the bracket 24.
  • Each external power feeding terminal 43 (43U, 43V, 43W) is electrically connected to a connection terminal 44 (44U, 44V, 44W) provided in the bracket holder unit 35.
  • Each connection terminal 44 protrudes from the main body 45 of the bracket holder unit 35 in the axial direction, and is welded to the bus bar terminal 46 (46U, 46V, 46W) provided in the bus bar unit 7.
  • the bus bar terminal 46 also projects from the main body 47 of the bus bar unit 7 in the axial direction. Therefore, when the motor 1 is assembled, the bus bar terminal 46 and the connection terminal 44 face each other in parallel.
  • the bus bar terminal 46 and the connection terminal 44 are fixed by welding. As shown in Figure 6, the bracket 24 is welded for that purpose.
  • a working hole 48a is formed.
  • a bracket cap 49 is attached to the welding work hole 48a after the welding process.
  • Such a motor 1 is assembled as follows. First, the bracket assembly 51, the stator assembly 53, and the rotor assembly 54 are assembled individually.
  • the bracket assembly 51 is an assembly product in which the bracket 24 in which the bearing 22b is incorporated and the bracket holder unit 35 in which components related to the resolver stator 33 are assembled are integrated and fixed with the tapping pin screw 52.
  • a resolver holder 34 is temporarily held in the bracket holder unit 35 so as to be lightly press-fitted inside the rib 35b.
  • the resolver holder 34 itself is not fixed to the bracket 24 at this point (before the origin adjustment), and the position can be shifted in the circumferential direction during the origin adjustment.
  • the stator assembly 53 is an assembly product in which the bus bar unit 7 is attached to the stator core 5 around which the coil 6 is wound, and the power supply terminal 11 and the coil end portion 6a are welded and accommodated in the case 4.
  • Configure 2 The rotor assembly 54 is an assembly in which the rotor core 25 is fixed to the rotor shaft 21 and the magnet holder 27 is attached. Then, the magnet 26 is press-fitted and the magnet cover 28 is attached, and the resolver rotor 32 is press-fitted and fixed to the magnet holder 27.
  • the rotor 3 is configured.
  • the rotor assembly 54 is attached to the bracket assembly 51, the stator assembly 53 is externally mounted on the assembly, and the case 4 and the bracket 24 are fastened to the fixing screw 23.
  • the bus bar terminal 46 and the connection terminal 44 are fixed by welding through the welding work hole 48a. In this state, check the motor resistance and insulation state, and then adjust the origin of resolver 31.
  • the resolver adjustment hole 48c is formed in the bracket 24, and the origin adjustment is performed from the resolver adjustment hole 48c.
  • an adjusting jig (not shown) is inserted into the resolver adjusting hole 48c, the position of the resonator lever holder 34 is finely adjusted in the circumferential direction using the long hole 65, and the origin of the resolver 31 is adjusted.
  • the sensor wire 116 is drawn from the bracket assembly 112 and the lead wire 126 is drawn separately from the stator assembly 114, so that the sensor wire 116 and the lead wire 126 are obstructive. As a result, the assembly work may be difficult to perform.
  • the bracket holder unit 35 is integrated with the sensor harness 36 and the power supply lead wire, each wire can be easily handled and assembled easily.
  • the sensor harness 36 and the lead wire for power feeding are fixed by being sandwiched between the stator assembly 53 and the bracket assembly 51. It has been made easier.
  • the brushless motor 55 of the second embodiment (hereinafter abbreviated as the motor 55) has a configuration in which the position of the resolver 31 is arranged outside the motor, and the other configuration is almost the same as the motor 1 of the first embodiment. .
  • the same members and parts as those in Example 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 7 is a cross-sectional view showing the configuration of the motor 55.
  • both ends of the case 56 are open, and aluminum die-cast brackets 57a and 57b are attached to the both sides.
  • a bearing fixing portion 58 to which the bearing 22a is fixed is provided in a cylindrical shape.
  • a cylindrical holder mounting portion 59 is projected.
  • the holder mounting portion 59 is formed concentrically with the bearing fixing portion 58.
  • a resolver holder 34 to which a resolver stator 33 is fixed is attached to the holder attaching portion 59.
  • the outer diameter of the holder mounting portion 59 is slightly smaller than the inner diameter of the open end of the resolver holder 34. Therefore, the resolver holder 34 is mounted so as to be press-fitted into the holder mounting portion 59.
  • the holder mounting portion 59 is provided concentrically with the bearing fixing portion 58. Accordingly, the resolver holder 34 is mounted concentrically with the rotor shaft 21 by lightly press-fitting the resolver holder 34 into the holder mounting portion 59.
  • a seal fitting structure is employed, so that the resolver stator 33 is concentrically attached to the rotor shaft 21 with high core accuracy. For this reason, it is possible to suppress the misalignment between the stator 33 and the rotor 32 in the resolver 31, and the linearity between the rotor rotation angle and the detection signal of the resolver 31 is increased, thereby improving the rotor position detection accuracy. It is done.
  • a cylindrical boss shape may be used in the same manner as the holder mounting portion 59 of the 1S embodiment 2 in which the holder mounting rib 39 has a partially cylindrical shape.
  • the end portion of the holder portion 61 is configured to be fitted to the holder mounting rib 39, but the portion to be fitted to the holder mounting rib 39 is not limited to the holder portion 61.
  • a portion having a diameter larger than that of the holder portion 61 may be formed at the end portion of the holder portion 61, and this may be fitted to the holder mounting rib 39. That is, if the resolver holder 34 is mounted on the holder mounting rib 39 so that the resolver stator 33 is arranged concentrically with the rotor shaft 21, any part is mounted on the holder mounting rib 39. Also good.
  • the present invention can be applied to a force S indicating a brushless motor used for column-assisted EPS and other types of EPS motors.
  • the present invention can be widely applied to general brushless motors as well as motors for EPS and various in-vehicle electric products.

Abstract

A resolver stator (33) is contained in a resolver holder (34). The resolver holder (34) includes a cylindrical holder part (61). The resolver stator (33) is coaxially contained in the holder part (61). A holder mounting rib (39) formed coaxially with a bearing fixing part (40) projects from a bracket (24). A bearing (22b) for supporting a rotor shaft (21) is fixed to the bearing fixing part (40). The holder part (61) of the resolver holder (34) is lightly press-fitted to the outer periphery of the holder mounting ribs (39). Thus, the resolver stator (33) can be installed on a rotor shaft (21) with high center accuracy.

Description

明 細 書  Specification
ブラシレスモータ 技術分野  Brushless motor technology
[0001] 本発明は、ブラシレスモータに関し、特に、ブラシレスモータにおけるロータ位置検 出装置の取付構造に関する。  TECHNICAL FIELD [0001] The present invention relates to a brushless motor, and more particularly, to a mounting structure for a rotor position detecting device in a brushless motor.
背景技術  Background art
[0002] 一般にブラシレスモータでは、ロータの回転位置を検出し、検出したロータ回転位 置に基づいて、ステータ側のコイル (ステータコイル)を順次励磁してロータを回転駆 動させている。ロータの回転位置検出には、従来より、エンコーダやホール IC等を用 いた検出装置が使用されている力 近年、レゾルバを使用したブラシレスモータも増 加している。レゾルバは、高温や振動環境下に強ぐ構造がシンプルで故障しにくい In general, in a brushless motor, the rotational position of a rotor is detected, and based on the detected rotor rotational position, a stator-side coil (stator coil) is sequentially excited to rotationally drive the rotor. Conventionally, detection devices using encoders, Hall ICs, etc. have been used to detect the rotational position of the rotor. In recent years, brushless motors using resolvers have also increased. The resolver has a simple structure that is resistant to high temperatures and vibrations and is not easily damaged.
。このため、車載用のモータ、特に、電動パワーステアリング装置(EPS)用モータへ のレゾルバの使用が増大している。 . For this reason, the use of resolvers for in-vehicle motors, especially motors for electric power steering devices (EPS), is increasing.
[0003] 図 8は、レゾルバを用いた従来のブラシレスモータの構成を示す断面図である。図 8 のブラシレスモータ 100 (以下、モータ 100と略記する)では、ロータ 101の回転位置を 検出するためレゾルノ 102が使用されている。レゾルバ 102は、レゾルバステータ 103と レゾルバロータ 104とからなり、ステータ側には励磁コイル 105が巻装されている。これ に対し、ロータ側には、磁性体にて形成されたレゾルバロータ 104が配置されており、 レゾルバロータ 104は、モータ 100のロータシャフト 106に固定されている。このようなレ ゾルバ 102では、ステータ側の励磁コイル 105に高周波信号を付与すると、ロータ 101 の回転位置によって、ステータ側の検出コイル(図示せず)に流れる信号の位相が変 化する。この検出信号と基準信号とを比較することにより、ロータ 101の回転位置が検 出される。 FIG. 8 is a cross-sectional view showing a configuration of a conventional brushless motor using a resolver. In the brushless motor 100 in FIG. 8 (hereinafter abbreviated as “motor 100”), a resorno 102 is used to detect the rotational position of the rotor 101. The resolver 102 includes a resolver stator 103 and a resolver rotor 104, and an exciting coil 105 is wound around the stator. On the other hand, a resolver rotor 104 formed of a magnetic material is disposed on the rotor side, and the resolver rotor 104 is fixed to the rotor shaft 106 of the motor 100. In such a resolver 102, when a high-frequency signal is applied to the stator-side excitation coil 105, the phase of the signal flowing through the stator-side detection coil (not shown) changes depending on the rotational position of the rotor 101. The rotational position of the rotor 101 is detected by comparing this detection signal with the reference signal.
[0004] 一方、レゾルバやモータには組み付け誤差が存在し、レゾルバ自体にも加工誤差 が存在する。このため、モータの回転方向によってロータ検出位置に差異が生じるお それがある。そこで、レゾルバを用いたブラシレスモータでは、モータの回転左右差 がなくなるように、レゾルバの原点調整を行う必要がある。特に、 EPS用のブラシレス モータにおいては、操舵フィーリングの向上のため、ロータ回転位置に基づいた細か な制御が必要である。従って、 EPS用モータでは、ロータ回転位置検出にも高い精 度が求められ、原点調整は必須とされている。 [0004] On the other hand, there are assembly errors in resolvers and motors, and processing errors also exist in the resolvers themselves. For this reason, the rotor detection position may vary depending on the rotation direction of the motor. Therefore, in a brushless motor using a resolver, it is necessary to adjust the origin of the resolver so that there is no difference between the left and right rotations of the motor. Especially for EPS brushless For motors, fine control based on the rotor rotational position is required to improve steering feeling. Therefore, EPS motors require high accuracy in detecting the rotor rotational position, and origin adjustment is essential.
[0005] 一般に、レゾルバの検出信号精度は、ロータ回転角とレゾルバ検出信号との誤差 にて示され、両者間の関係に直線性(リニアリティ)があるほど精度の良いセンサとさ れている。ブラシレスモータでは、ロータ位置検出精度が高いほど的確な通電が可 能であり、トルク変動を抑え、操舵フィーリングの向上を図ることが可能となる。そこで 、レゾルバの原点調整では、モータの誘起電圧波形とレゾルバの検出信号とを比較 し、レゾルバステータの取付位置を回転方向に微調整することにより、レゾルバ信号 の立ち上がりを決められたロータ回転位置に調整する。これにより、レゾルバ信号の 立ち上力 Sり位置がロータ回転位置と対応し、回転左右差がなぐトルク変動の少ない ブラシレスモータを得ることが可能となる。  [0005] In general, the detection signal accuracy of the resolver is indicated by an error between the rotor rotation angle and the resolver detection signal, and the more linear the relationship between the two, the more accurate the sensor. In brushless motors, the higher the rotor position detection accuracy, the more accurate energization is possible, and torque fluctuations can be suppressed and the steering feeling can be improved. Therefore, in the resolver origin adjustment, the induced voltage waveform of the motor and the detection signal of the resolver are compared, and the resolver stator mounting position is finely adjusted in the rotational direction, so that the rise of the resolver signal reaches the determined rotor rotational position. adjust. As a result, it is possible to obtain a brushless motor with little torque fluctuation, in which the rising force S position of the resolver signal corresponds to the rotor rotational position and the rotational left-right difference is eliminated.
[0006] また、このような原点調整のため、レゾルバを用いたブラシレスモータでは、通常、 モータ端面に取り付けられたブラケットに原点調整機能が設けられている。例えば、 図 8のモータ 100では、レゾルバステータ 103を取り付けたレゾルバホルダ 107の取付 位置を調整するため、モータ左端のブラケット 108に調整用の孔が形成されている。 図 9は、モータ 100の左側面図であり、ブラケット 108には、レゾルバ調整孔 109とレゾ ルバ取付孔 110が設けられている。レゾルバホルダ 107は、モータ内側方向力、らブラケ ット 108に取り付けられ、その際、レゾルバホルダ 107の固定片 107a力 レゾルバ取付 孔 110からブラケット 108の外側に出される。固定片 107aをレゾルバ取付孔 110から出 した後、レゾルバホルダ 107は周方向に回転され、固定ネジ 111が仮止めされる。  [0006] For such origin adjustment, in a brushless motor using a resolver, an origin adjustment function is usually provided on a bracket attached to the end surface of the motor. For example, in the motor 100 of FIG. 8, an adjustment hole is formed in the bracket 108 at the left end of the motor in order to adjust the attachment position of the resolver holder 107 to which the resolver stator 103 is attached. FIG. 9 is a left side view of the motor 100, and the bracket 108 is provided with a resolver adjustment hole 109 and a resolver mounting hole 110. The resolver holder 107 is attached to the motor 108 inward force, and the bracket 108. At this time, the fixed piece 107 a force of the resolver holder 107 is output from the resolver mounting hole 110 to the outside of the bracket 108. After the fixing piece 107a is taken out from the resolver mounting hole 110, the resolver holder 107 is rotated in the circumferential direction, and the fixing screw 111 is temporarily fixed.
[0007] この状態で原点調整が行われ、レゾルバホルダ 107が周方向に適宜移動される。モ ータ 100では、固定片 107aに固定ネジ 111を揷通する長孔が形成されている。レゾル バホルダ 107は、この長孔に沿って周方向に移動できるようになつている。そこで、原 点調整時には、長孔と調整孔 109を用いて、レゾルバホルダ 107を周方向に移動させ 、その取付位置を調整する。原点調整後、固定ネジ 111を締め付け、レゾルバホルダ 107をブラケット 108に固定する。なお、レゾルバ調整孔 109ゃレゾルバ取付孔 110には 、モータ組み付け後に封止用キャップが取り付けられる。 [0008] 次に、このようなモータ 100は、次のようにして組み付けられる。図 10は、モータ 100 の組み付け構成を示す説明図である。ここではまず、各アッセンブリ 112, 113, 114を組 み付ける。この場合、ブラケットアッセンブリ 112は、ブラケット 108と、ベアリング 115、レ ゾルバステータ 103が取り付けられたレゾルバホルダ 107とからなり、ブラケット 108にべ ァリング 115とレゾルバホルダ 107を組み付けた構成となっている。レゾルバステータ 10 3にはセンサ線 116が接続されている。センサ線 116は、ブラケットアッセンブリ 112の外 周から径方向に引き出されている。 In this state, origin adjustment is performed, and the resolver holder 107 is appropriately moved in the circumferential direction. In the motor 100, a long hole through which the fixing screw 111 is passed is formed in the fixing piece 107a. The resolver holder 107 can move in the circumferential direction along the long hole. Therefore, when adjusting the origin, the resolver holder 107 is moved in the circumferential direction by using the long hole and the adjustment hole 109 to adjust the mounting position. After adjusting the origin, tighten the fixing screw 111 to fix the resolver holder 107 to the bracket 108. Note that a sealing cap is attached to the resolver adjusting hole 109 after the motor has been assembled. Next, such a motor 100 is assembled as follows. FIG. 10 is an explanatory diagram showing the assembly configuration of the motor 100. First, the assemblies 112, 113, and 114 are assembled. In this case, the bracket assembly 112 includes a bracket 108, a resolver holder 107 to which a bearing 115 and a resolver stator 103 are attached, and the bracket 115 and the resolver holder 107 are assembled to the bracket 108. A sensor wire 116 is connected to the resolver stator 103. The sensor wire 116 is drawn out in the radial direction from the outer periphery of the bracket assembly 112.
[0009] ロータアッセンブリ 113は、モータのロータ 101とレゾルバロータ 104とを備えている。  The rotor assembly 113 includes a motor rotor 101 and a resolver rotor 104.
ロータ 101は、ロータシャフト 106にロータコア 117を固定し、マグネットホルダ 118を取り 付けた後、マグネットホルダ 118にマグネット 119を圧入し、さらに、マグネット 119の外 側にマグネットカバー 120を装着した構成となっている。レゾルバロータ 104もまたロー タシャフト 106に固定されており、ロータ 101のマグネットホルダ 118端部に隣接して配 置されている。さらに、ステータアッセンブリ 114は、ケース 121と、ケース 121内に固定 されモータコイル 122が巻装されたステータコア 123と、ステータコア 123の端部に取り 付けられたバスバーユニット 124とから構成されている。ステータコア 123は、ケース 12 1内に圧入又は接着固定されて!/、る。  The rotor 101 has a configuration in which a rotor core 117 is fixed to a rotor shaft 106, a magnet holder 118 is attached, a magnet 119 is press-fitted into the magnet holder 118, and a magnet cover 120 is attached to the outside of the magnet 119. ing. The resolver rotor 104 is also fixed to the rotor shaft 106 and is arranged adjacent to the end of the magnet holder 118 of the rotor 101. Further, the stator assembly 114 includes a case 121, a stator core 123 fixed in the case 121 and wound with a motor coil 122, and a bus bar unit 124 attached to the end of the stator core 123. The stator core 123 is press-fitted or adhesively fixed in the case 121 !.
[0010] 各アッセンブリ 112, 113, 114を糸且み付けた後、モータ 100では、まず、ブラケットアツセ ンブリ 112にロータアッセンブリ 113を組み付ける(図 10の手順 A)。次に、ブラケットァ ッセンプリ 112とロータアッセンブリ 113が一体化されたものを、ステータアッセンブリ 11 4に組み付ける(図 10の手順 B)。その後、ブラケット 108に設けたリード線溶接孔 125 を介して、バスバーユニット 124に給電用のリード線 126を溶接固定する。これにより、 図 8のような構成のモータ 100が組み付けられる。モータ 100では、モータの抵抗値や 絶縁状態のチェックを行った後、前述の原点調整が実施される。そして、各種特性チ エック等を行った後、ブラシレスモータの完成品となる。  [0010] After each assembly 112, 113, 114 is threaded, the motor 100 first assembles the rotor assembly 113 to the bracket assembly 112 (procedure A in FIG. 10). Next, the assembly of the bracket assembly 112 and the rotor assembly 113 is assembled to the stator assembly 114 (step B in FIG. 10). Thereafter, the lead wire 126 for power supply is fixed to the bus bar unit 124 by welding via the lead wire welding hole 125 provided in the bracket 108. As a result, the motor 100 configured as shown in FIG. 8 is assembled. In the motor 100, the origin adjustment described above is performed after checking the resistance value and insulation state of the motor. After completing various characteristic checks, the brushless motor is completed.
特許文献 1:特開 2005-229721号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-229721
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] しかしな力 Sら、図 8のような従来のブラシレスモータでは、レゾルバのセンシング精度 (ロータ位置検出精度)が部品の組付誤差の影響受け易いという問題がある。すなわ ち、図 8のモータ 100は、レゾルバホルダ 107をブラケット 108にネジ止めする構成のた め、ネジ取付孔と固定ネジとの間の遊びにより、レゾルバホルダ 107の取付位置に誤 差が生じる可能性がある。レゾルバホルダ 107の取付位置に誤差が生じると、そこに 固定されたレゾルバステータ 103とレゾルバロータ 104の間に芯ズレが生じるおそれが ある。このような芯ズレがステータ一ロータ間に生じると、ロータ回転角とレゾルバの検 出信号との間の直線性が損なわれ、レゾルバの検出信号精度が低下するという問題 がある。特に、 EPS用モータでは操舵フィーリングの悪化の一因となるという問題があ り、その対策が求められていた。 [0011] However, with conventional brushless motors such as S et al., Fig. 8, the sensing accuracy of the resolver There is a problem that (rotor position detection accuracy) is easily affected by component assembly errors. That is, since the motor 100 in FIG. 8 is configured to screw the resolver holder 107 to the bracket 108, an error occurs in the mounting position of the resolver holder 107 due to play between the screw mounting hole and the fixing screw. there is a possibility. If an error occurs in the mounting position of the resolver holder 107, a misalignment may occur between the resolver stator 103 and the resolver rotor 104 fixed thereto. When such misalignment occurs between the stator and the rotor, there is a problem that the linearity between the rotor rotation angle and the detection signal of the resolver is lost, and the detection signal accuracy of the resolver is lowered. In particular, there is a problem that EPS motors contribute to the deterioration of steering feeling, and countermeasures have been demanded.
[0012] 本発明の目的は、ブラシレスモータにおいて、レゾルバステータとレゾルバロータの 芯ズレを防止し、ロータ位置検出精度の向上を図ることにある。  An object of the present invention is to prevent misalignment between a resolver stator and a resolver rotor in a brushless motor, and to improve rotor position detection accuracy.
課題を解決するための手段  Means for solving the problem
[0013] 本発明のブラシレスモータは、駆動コイルが巻装されたコアと前記コアを収容する ケースとを備えるステータと、前記ケースの一端側に取り付けられるブラケットと、前記 ケースと前記ブラケットに回転自在に支持されたシャフトと前記シャフトに取り付けら れ前記ステータの内側に回転自在に配置されるマグネットとを備えるロータと、前記 シャフトに取り付けられ前記マグネットと共に回転するレゾルバロータと、前記レゾル ノ ロータの外側に配置され前記レゾルバロータの回転に伴って出力信号の位相が変 化する検出コイルを備えるレゾルバステータと、を有してなるブラシレスモータであつ て、前記レゾルバステータは、円筒状に形成されたレゾルバホルダ内に収容され、前 記レゾルバホルダは、前記ブラケットに前記シャフトと同心状に形成されたホルダ取 付部に装着されることを特徴とする。  [0013] A brushless motor of the present invention includes a stator including a core around which a drive coil is wound and a case that accommodates the core, a bracket that is attached to one end of the case, and the case and the bracket that are freely rotatable. A rotor having a shaft supported by the shaft and a magnet attached to the shaft and rotatably disposed inside the stator, a resolver rotor attached to the shaft and rotating together with the magnet, and an outer side of the resolver rotor And a resolver stator having a detection coil that changes a phase of an output signal as the resolver rotor rotates, wherein the resolver stator is a cylindrical resolver. The resolver holder is housed in the holder, and the resolver holder is mounted on the bracket. It is mounted on a holder mounting part formed concentrically with the shaft.
[0014] 本発明にあっては、レゾルバステータを円筒状のレゾルバホルダ内に収容すると共 に、ブラケットにシャフトと同心状にホルダ取付部を形成し、レゾルバホルダをこのホ ルダ取付部に装着することにより、ロータシャフトに対し、レゾルバステータを芯精度 良く取り付けることができ、レゾルバステータとレゾルバロータ間の芯ズレを抑えられる 。このため、ロータ回転角とレゾルバの検出信号との間の直線性が高くなり、ロータ位 置検出精度が向上する。 [0015] 前記ブラシレスモータにおいて、前記レゾルバホルダに前記レゾルバステータが同 心状に収容されるホルダ部を設け、該ホルダ部を前記ホルダ取付部の外周に嵌着、 すなわち、前記ホルダ部を前記ホルダ取付部の外周に嵌めて取り付けるようにしても 良い。また、前記ホルダ部を前記ホルダ取付部の外周に軽圧入状態で嵌着するよう にしても良い。さらに、前記ホルダ取付部を、前記ブラケットの中央部に軸方向に沿 つて突出形成しても良い。 [0014] In the present invention, the resolver stator is accommodated in the cylindrical resolver holder, and a holder mounting portion is formed concentrically with the shaft on the bracket, and the resolver holder is mounted on the holder mounting portion. As a result, the resolver stator can be attached to the rotor shaft with high accuracy, and misalignment between the resolver stator and the resolver rotor can be suppressed. For this reason, the linearity between the rotor rotation angle and the detection signal of the resolver is increased, and the rotor position detection accuracy is improved. [0015] In the brushless motor, the resolver holder is provided with a holder portion in which the resolver stator is accommodated concentrically, and the holder portion is fitted to the outer periphery of the holder mounting portion, that is, the holder portion is attached to the holder. It may be attached by fitting to the outer periphery of the attachment portion. Further, the holder part may be fitted to the outer periphery of the holder attaching part in a light press-fit state. Furthermore, the holder mounting portion may be formed so as to protrude along the axial direction at the central portion of the bracket.
[0016] 加えて、前記レゾルバホルダを、前記レゾルバステータと熱膨張係数が近似した材 料にて形成しても良く、これにより、レゾルバステータゃレゾルバホルダに熱膨張が生 じても両者間に隙間が生じず、レゾルバホルダとレゾルバステータと間の熱変形によ るガタツキが抑えられ、レゾルバ信号の精度低下を防止することが可能となる。  [0016] In addition, the resolver holder may be formed of a material having a thermal expansion coefficient approximate to that of the resolver stator, so that the thermal expansion of the resolver stator or the resolver holder may occur between the two. There is no gap, and play due to thermal deformation between the resolver holder and the resolver stator is suppressed, and it is possible to prevent a decrease in the accuracy of the resolver signal.
発明の効果  The invention's effect
[0017] 本発明のブラシレスモータによれば、レゾルバロータとレゾルバステータを有してな るブラシレスモータにて、円筒状に形成されたレゾルバホルダ内にレゾルバステータ を収容し、このレゾルバホルダを、ブラケットにシャフトと同心状に形成したホルダ取 付部に装着するようにしたので、ロータシャフトに対し、レゾルバステータを芯精度良 く取り付けることが可能となる。従って、レゾルバステータとレゾルバロータ間の芯ズレ を抑えることができ、ロータ回転角とレゾルバの検出信号との間の直線性が高くなり、 ロータ位置検出精度を向上させることが可能となる。このため、例えば、当該ブラシレ スモータを EPS用として使用した場合、モータのトルク変動が抑えられ、操舵フィーリ ングの向上を図ることが可能となる。  [0017] According to the brushless motor of the present invention, the resolver stator is accommodated in the cylindrical resolver holder by the brushless motor having the resolver rotor and the resolver stator, and the resolver holder is attached to the bracket. In addition, the resolver stator can be attached to the rotor shaft with good core accuracy because it is mounted on the holder mounting portion formed concentrically with the shaft. Accordingly, the misalignment between the resolver stator and the resolver rotor can be suppressed, the linearity between the rotor rotation angle and the detection signal of the resolver is increased, and the rotor position detection accuracy can be improved. For this reason, for example, when the brushless motor is used for EPS, the torque fluctuation of the motor is suppressed, and the steering feeling can be improved.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の実施例 1であるブラシレスモータの断面図である。  FIG. 1 is a cross-sectional view of a brushless motor that is Embodiment 1 of the present invention.
[図 2]図 1のブラシレスモータの分解斜視図である。  2 is an exploded perspective view of the brushless motor of FIG.
[図 3]ブラケットホルダユニットの構成を示す斜視図である。  FIG. 3 is a perspective view showing a configuration of a bracket holder unit.
[図 4]レゾルバホルダの構成を示す説明図である。  FIG. 4 is an explanatory diagram showing a configuration of a resolver holder.
[図 5]ロータ回転角度とレゾルバ検出信号との角度誤差を示す説明図であり、従来の ブラシレスモータと本発明によるモータとを比較して示したものである。  FIG. 5 is an explanatory view showing an angle error between a rotor rotation angle and a resolver detection signal, and shows a comparison between a conventional brushless motor and a motor according to the present invention.
[図 6]ブラケットの構成を示す説明図である。 [図 7]本発明の実施例 2であるブラシレスモータの構成を示す断面図である。 FIG. 6 is an explanatory view showing the structure of the bracket. FIG. 7 is a cross-sectional view showing a configuration of a brushless motor that is Embodiment 2 of the present invention.
[図 8]レゾルバを用いた従来のブラシレスモータの構成を示す断面図である c [図 9]図 8のブラシレスモータの左側面図である。 8 is a c [9] a left side view of the brushless motor of FIG. 8 is a sectional view showing a conventional brushless motor configuration using resolver.
[図 10]図 8のブラシレスモータの組み付け構成を示す説明図である。 FIG. 10 is an explanatory view showing an assembly configuration of the brushless motor of FIG.
符号の説明 Explanation of symbols
1 ブラシレスモータ 2 ステータ  1 Brushless motor 2 Stator
3 ロータ 4 ケース  3 Rotor 4 Case
5 ステータコア 6 ステータコィノレ  5 Stator core 6 Stator coin
oa コイル端部 7 ノ スノ ーュ二、 ト  oa coil end 7
8 分割コア 9 インシュレータ  8 split core 9 insulator
11 給電用端子 21 ロータシャフト  11 Feeding terminal 21 Rotor shaft
22a,22b ベアリング 23 固定ネジ  22a, 22b Bearing 23 Fixing screw
24 ブラケット 25 ロータコア  24 Bracket 25 Rotor core
26 マグネット 27 マグネットホノレダ  26 Magnet 27 Magnet Honoreda
28 マグネットカノ一 31 レゾノレノ  28 Magnet Kanoichi 31 Resonoreno
32 ロータ 33 ステータ  32 Rotor 33 Stator
33a 端子部 34 レゾノレバホノレダ  33a Terminal 34 Resonor Leba Honoreda
35 ブラケットホルダユニット 35a ホルダ収容部  35 Bracket holder unit 35a Holder holder
35b リブ 36 センサハーネス  35b Rib 36 Sensor harness
37 インシュレータ 38 ゴムグロメット  37 Insulator 38 Rubber grommet
39 ホルダ取付リブ 40 ベアリング固定部  39 Holder mounting rib 40 Bearing fixing part
41 レゾルバホルダ固定用ラ -ット 42 取付ネジ  41 Resolver holder fixing rat 42 Mounting screw
43 外部給電用端子 44 接続端子  43 External power supply terminal 44 Connection terminal
45 本体部 46 バスバー端子  45 Main unit 46 Busbar terminal
47 本体部 48a 溶接作業孔  47 Body 48a Welding hole
48b レゾルバ固定孔 48c レゾルバ調整孔 54 ロー ータ 48b Resolver fixing hole 48c Resolver adjustment hole 54 Rotor
56 ケース  56 cases
58 ベアリング固定部  58 Bearing fixing part
61 ホルダ部  61 Holder
62  62
64a- -64c 突片  64a- -64c
66 丸孔  66 round holes
101 ロータ  101 rotor
103 レゾノレバステータ  103 Resonator Leva Stator
105 励磁コイル  105 excitation coil
107 レゾノレバホノレダ  107 Resonorebaho Noreda
108  108
110 取付孔  110 Mounting hole
112  112
114 ステ一  114 steps
116 センサ線  116 Sensor wire
118  118
120 ケース  120 cases
122 モータコィノレ ステータコア  122 Motor coiler Stator core
124 ノ スノ ーュ - リード線溶接孔  124 Nossue-Lead wire weld hole
126 リード線  126 Lead wire
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1  Example 1
[0021] 図 1は本発明の実施例 1であるブラシレスモータの断面図、図 2は図 1のブラシレス モータの分解斜視図である。図 1に示すように、ブラシレスモータ 1 (以下、モータ 1と 略記する)は、外側にステータ 2、内側にロータ 3を配したインナーロータ型のブラシレ スモータとなっている。モータ 1は、例えば、コラムアシスト式の電動パワーステアリン グ装置 (EPS)の動力源として使用され、自動車のステアリングシャフトに対し動作補 助力を付与する。モータ 1は、ステアリングシャフトに設けられた図示しない減速機構 部に取り付けられ、モータ 1の回転は、この減速機構部によってステアリングシャフト に減速されて伝達される。 FIG. 1 is a cross-sectional view of a brushless motor that is Embodiment 1 of the present invention, and FIG. 2 is an exploded perspective view of the brushless motor of FIG. As shown in FIG. 1, a brushless motor 1 (hereinafter abbreviated as “motor 1”) is an inner rotor type brushless motor having a stator 2 on the outside and a rotor 3 on the inside. The motor 1 is, for example, a column assist type electric power steerer. It is used as a power source for the driving device (EPS), and provides operational assistance to the steering shaft of the car. The motor 1 is attached to a reduction mechanism (not shown) provided on the steering shaft, and the rotation of the motor 1 is transmitted to the steering shaft by being reduced by the reduction mechanism.
[0022] ステータ 2は、有底円筒形状のケース 4と、ステータコア 5、ステータコア 5に巻装さ れたステータコイル 6 (以下、コイル 6と略記する)、及び、ステータコア 5に取り付けら れるバスバーユニット(端子ユニット) 7とから構成されている。ケース 4は、鉄等にて有 底円筒状に形成されており、その開口部には、固定ネジ 23によって、アルミダイキヤ スト製のブラケット 24が取り付けられる。ステータコア 5は、複数個の分割コア 8からな り、分割コア 8を周方向に 9個集成した構成となっている。分割コア 8は、電磁鋼板か らなるコアピースを積層して形成され、その周囲には合成樹脂製のインシュレータ 9 が取り付けられている。 The stator 2 includes a bottomed cylindrical case 4, a stator core 5, a stator coil 6 wound around the stator core 5 (hereinafter abbreviated as coil 6), and a bus bar unit attached to the stator core 5. (Terminal unit) 7 The case 4 is formed in a bottomed cylindrical shape with iron or the like, and a bracket 24 made of aluminum die cast is attached to the opening by a fixing screw 23. The stator core 5 is composed of a plurality of divided cores 8 and nine divided cores 8 are assembled in the circumferential direction. The split core 8 is formed by stacking core pieces made of electromagnetic steel plates, and an insulator 9 made of synthetic resin is attached around the core.
[0023] インシュレータ 9の外側にはコイル 6が巻装されている。コイル 6の端部 6aは、ステー タコア 5の一端側にて径方向に引き出されている。また、ステータコア 5の一端側には 、バスバーユニット 7が取り付けられる。バスバーユニット 7には、合成樹脂製の本体 部内に、銅製のバスバーがインサート成形されている。バスバーユニット 7の周囲には 、複数個の給電用端子 11が径方向に突設されている。バスバーユニット 7の取り付け に際し、コイル端部 6aは、この給電用端子 11と溶接される。バスバーユニット 7では、 バスバーは、モータ 1の相数に対応した個数 (ここでは、 U相, V相, W相分の 3個)設 けられている。各コイル 6は、その相に対応した給電用端子 11と電気的に接続される 。ステータコア 5は、バスバーユニット 7を取り付けた後、ケース 4内に圧入され、ケー ス内周面に接着固定される。  A coil 6 is wound around the outside of the insulator 9. The end portion 6 a of the coil 6 is drawn out in the radial direction at one end side of the stator core 5. A bus bar unit 7 is attached to one end side of the stator core 5. In the bus bar unit 7, a copper bus bar is insert-molded in a synthetic resin main body. Around the bus bar unit 7, a plurality of power supply terminals 11 protrude in the radial direction. When the bus bar unit 7 is attached, the coil end 6 a is welded to the power supply terminal 11. In the bus bar unit 7, the number of bus bars corresponding to the number of phases of the motor 1 (here, three for the U phase, V phase, and W phase) is provided. Each coil 6 is electrically connected to a power supply terminal 11 corresponding to the phase. After the bus bar unit 7 is attached, the stator core 5 is press-fitted into the case 4 and fixedly adhered to the inner peripheral surface of the case.
[0024] ステータ 2の内側にはロータ 3が揷入されている。ロータ 3は、ロータシャフト 21を有 している。ロータシャフト 21は、ベアリング 22a,22bによって回転自在に支持されてい る。ベアリング 22aはケース 4の底部中央に、ベアリング 22bはブラケット 24の中央部 にそれぞれ固定されている。ロータシャフト 21には、円筒形状のロータコア 25が固定 されている。ロータコア 25の外周には、セグメントタイプのマグネット(永久磁石) 26が 取り付けられている。ロータシャフト 21には、合成樹脂製のマグネットホルダ 27が外 揷されている。マグネット 26は、マグネットホルダ 27に保持される形でロータコア 25の 外周に配置される。モータ 1では、マグネット 26は、周方向に沿って 6個配置されてい る。マグネット 26の外側には、有底円筒形状のマグネットカバー 28が取り付けられて いる。 A rotor 3 is inserted inside the stator 2. The rotor 3 has a rotor shaft 21. The rotor shaft 21 is rotatably supported by bearings 22a and 22b. The bearing 22a is fixed to the center of the bottom of the case 4, and the bearing 22b is fixed to the center of the bracket 24. A cylindrical rotor core 25 is fixed to the rotor shaft 21. A segment type magnet (permanent magnet) 26 is attached to the outer periphery of the rotor core 25. A magnet holder 27 made of synthetic resin is attached to the rotor shaft 21. It has been deceived. The magnet 26 is disposed on the outer periphery of the rotor core 25 so as to be held by the magnet holder 27. In the motor 1, six magnets 26 are arranged along the circumferential direction. A magnet cover 28 having a bottomed cylindrical shape is attached to the outside of the magnet 26.
[0025] マグネットホルダ 27の端部には、回転角度検出手段であるレゾルバ 31のロータ(レ ゾルバロータ) 32が取り付けられている。これに対し、レゾルバ 31のステータ(レゾル バステータ)33は、金属製のレゾルバホルダ 34内に圧入され、その状態でブラケット ホルダユニット 35に固定されている。図 3は、ブラケットホルダユニット 35の構成を示 す斜視図である。図 3に示すように、ブラケットホルダユニット 35の中央部には、レゾ ルバホルダ 34が揷入されるホルダ収容部 35aが設けられて!/、る。ホルダ収容部 35a の内壁には、複数個のリブ 35bが突設されている。ここでは、リブ 35bは周方向に等 分に 8個設けられており、径方向内側に向かって lmm弱突出している。レゾルバホル ダ 34は、リブ 35bの内側に軽圧入される形でホルダ収容部 35a内に取り付けられ、ブ ラケットホルダユニット 35に仮保持される。  A rotor (resolver rotor) 32 of a resolver 31 that is a rotation angle detection means is attached to the end of the magnet holder 27. On the other hand, the stator (resolver stator) 33 of the resolver 31 is press-fitted into a metal resolver holder 34 and is fixed to the bracket holder unit 35 in this state. FIG. 3 is a perspective view showing the configuration of the bracket holder unit 35. As shown in FIG. 3, at the center of the bracket holder unit 35, a holder accommodating portion 35a into which the resolver holder 34 is inserted is provided. A plurality of ribs 35b project from the inner wall of the holder accommodating portion 35a. Here, eight ribs 35b are equally provided in the circumferential direction, and project slightly less than lmm inward in the radial direction. The resolver holder 34 is attached in the holder accommodating portion 35a so as to be lightly press-fitted inside the rib 35b, and is temporarily held in the bracket holder unit 35.
[0026] レゾルバステータ 33にはセンサハーネス 36が固定されている。ロータ 32の回転に 伴って出力される信号は、このセンサハーネス 36を介して、図示しないコントローラ等 に伝送される。センサハーネス 36は、ステータ 33の端子部 33aに溶接されている。端 子部 33aの部分には、合成樹脂製のインシュレータ 37が取り付けられる。センサハー ネス 36は、ブラケット 24とブラケットホルダユニット 35との間を周方向に沿って引き回 される。そして、ゴムグロメット 38を介して、ブラケット 24の外周部から装置外へと引き 出される。  A sensor harness 36 is fixed to the resolver stator 33. A signal output as the rotor 32 rotates is transmitted to a controller or the like (not shown) via the sensor harness 36. The sensor harness 36 is welded to the terminal portion 33a of the stator 33. A synthetic resin insulator 37 is attached to the terminal portion 33a. The sensor harness 36 is routed between the bracket 24 and the bracket holder unit 35 along the circumferential direction. Then, it is pulled out from the outer periphery of the bracket 24 through the rubber grommet 38 to the outside of the apparatus.
[0027] モータ 1では、レゾルバホルダ 34は有底円筒形状に形成されており、ブラケットホル ダユニット 35の中央部に揷入装着される。図 4は、レゾルバホルダ 34の構成を示す 説明図である。図 4に示すように、レゾルバホルダ 34は、円筒形状のホルダ部 61と、 ホルダ部 61の一端側に形成されたフランジ部 62、ホルダ部 61の他端側に設けられ 中央に貫通孔が形成された底壁部 63とから構成されている。ホルダ部 61内には、レ ゾルバステータ 33が同心状に収容される。ホルダ部 61に形成された切欠部 61aには 、ステータ 33の端子部 33aが配置される。この場合、レゾルバステータ 33とレゾルバ ホルダ 34は、互いに熱膨張係数の近レ、(ある!/、は等し!/、)材料 (好ましくは差異が 10 %以内、特に好ましくは 5%以内)によって形成されている。従って、熱により各部材 に膨張が生じても、レゾルバホルダ 34とレゾルバステータ 33との間には隙間が生じな いようになっている。このため、レゾルバホルダ 34とレゾルバステータ 33と間の熱変 形によるガタツキが抑えられ、レゾルバ信号の精度低下が抑えられる。 In the motor 1, the resolver holder 34 is formed in a bottomed cylindrical shape, and is fitted into the central portion of the bracket holder unit 35. FIG. 4 is an explanatory diagram showing the configuration of the resolver holder 34. As shown in FIG. 4, the resolver holder 34 includes a cylindrical holder part 61, a flange part 62 formed on one end side of the holder part 61, and a through hole formed in the center on the other end side of the holder part 61. The bottom wall 63 is formed. In the holder part 61, the resolver stator 33 is accommodated concentrically. The terminal portion 33a of the stator 33 is disposed in the cutout portion 61a formed in the holder portion 61. In this case, resolver stator 33 and resolver The holders 34 are formed of materials (preferably! /, Equal! /,) That are close to each other in thermal expansion coefficient (preferably within a difference of 10%, particularly preferably within 5%). Therefore, no gap is generated between the resolver holder 34 and the resolver stator 33 even if each member expands due to heat. For this reason, rattling due to thermal deformation between the resolver holder 34 and the resolver stator 33 is suppressed, and a decrease in the accuracy of the resolver signal is suppressed.
[0028] フランジ部 62は、ホルダ部 61の一端側に径方向に突設されている。フランジ部 62 にはさらに、径方向に延びる突片 64a〜64cが突設されている。突片 64a,64bは、 1 80° 対向する位置に形成されている。各突片 64a,64bには、長孔 65が形成されて いる。長孔 65は周方向に長く形成されており、レゾルバホルダ 34の固定と共にレゾ ノレバ 31の原点調整に使用される。突片 64cには丸孔 66が形成されており、丸孔 66 は専ら原点調整の際に使用される。原点調整時には、ブラケット 24の外側から丸孔 6 6に調整用治具が揷入され、レゾルバホルダ 34の位置が周方向に適宜調整される。  [0028] The flange portion 62 protrudes in the radial direction on one end side of the holder portion 61. The flange portion 62 is further provided with protruding pieces 64a to 64c extending in the radial direction. The projecting pieces 64a and 64b are formed at positions facing 1 80 °. A long hole 65 is formed in each projecting piece 64a, 64b. The long hole 65 is formed long in the circumferential direction and is used for fixing the resolver holder 34 and adjusting the origin of the resonance lever 31. A round hole 66 is formed in the projecting piece 64c, and the round hole 66 is exclusively used for adjusting the origin. At the time of origin adjustment, an adjustment jig is inserted into the round hole 66 from the outside of the bracket 24, and the position of the resolver holder 34 is appropriately adjusted in the circumferential direction.
[0029] レゾルバホルダ 34の開口端部(フランジ部 62側)は、ブラケット 24に設けられたホ ルダ取付リブ(ホルダ取付部) 39の端部外周に嵌着される。ホルダ取付リブ 39は、ブ ラケット 24の中央部に、軸方向に向かって部分円筒形状(一部に切欠を有する円筒 形状)に突設されている。ホルダ取付リブ 39の外径は、レゾルバホルダ 34の開口端 内径よりも若干小さくなつている。従って、レゾルバホルダ 34は、このホルダ取付リブ 39に軽圧入される形で装着される。  [0029] The open end portion (flange portion 62 side) of the resolver holder 34 is fitted to the outer periphery of the end portion of a holder mounting rib (holder mounting portion) 39 provided on the bracket 24. The holder mounting rib 39 protrudes from the central portion of the bracket 24 in a partially cylindrical shape (cylindrical shape having a notch in a part) in the axial direction. The outer diameter of the holder mounting rib 39 is slightly smaller than the inner diameter of the open end of the resolver holder 34. Therefore, the resolver holder 34 is mounted so as to be lightly press-fitted into the holder mounting rib 39.
[0030] 一方、ホルダ取付リブ 39の内側には、ベアリング固定部 40が設けられている。ベア リング固定部 40には、ロータシャフト 21を支持するベアリング 22bが固定されている。 ホルダ取付リブ 39は、ベアリング固定部 40と同心状に形成されている。このため、ホ ルダ取付リブ 39にレゾルバホルダ 34を軽圧入すると、レゾルバホルダ 34は、ベアリン グ固定部 40と同心状に取り付けられる。これにより、ホルダ部 61内のレゾルバステー タ 33は、ベアリング 22bと同心状、すなわち、ロータシャフト 21と同心状にブラケット 2 4に取り付けられ、レゾルバステータ 33は、ロータシャフト 21に対し芯精度良くモータ 1内に設置される。  On the other hand, a bearing fixing portion 40 is provided inside the holder mounting rib 39. A bearing 22 b that supports the rotor shaft 21 is fixed to the bearing fixing portion 40. The holder mounting rib 39 is formed concentrically with the bearing fixing portion 40. Therefore, when the resolver holder 34 is lightly press-fitted into the holder mounting rib 39, the resolver holder 34 is attached concentrically with the bearing fixing portion 40. As a result, the resolver stator 33 in the holder 61 is attached to the bracket 24 concentrically with the bearing 22b, that is, concentrically with the rotor shaft 21, and the resolver stator 33 is attached to the rotor shaft 21 with high core accuracy. Installed in 1.
[0031] 前述のように、レゾルバ 31のステータ 33とロータ 32の間に芯ズレが生じると、ロータ 位置検出精度が低下し、 EPSでは操舵フィーリングの低下につながる。これに対し、 当該モータ 1では、レゾルバホルダ 34をブラケット 24のホルダ取付リブ 39に軽圧入 する印籠嵌合構造を採っているため、レゾルバステータ 33がロータシャフト 21に対し 芯精度良く同心状に取り付けられる。このため、レゾルバ 31におけるステータ 33と口 ータ 32の間の芯ズレを抑えることができ、ロータ回転角とレゾルバ 31の検出信号との 間の直線性が高くなり、ロータ位置検出精度の向上を図ることが可能となる。また、レ ゾルバホルダ 34とレゾルバステータ 33が熱膨張係数の近似した材料にて形成され ているため、熱変形によるガタツキが抑えられ、この点においてもロータ位置検出精 度の向上が図られている。 [0031] As described above, when a misalignment occurs between the stator 33 and the rotor 32 of the resolver 31, the rotor position detection accuracy is lowered, and in EPS, the steering feeling is lowered. In contrast, Since the motor 1 employs a seal fitting structure in which the resolver holder 34 is lightly press-fitted into the holder mounting rib 39 of the bracket 24, the resolver stator 33 is attached to the rotor shaft 21 concentrically with high core accuracy. For this reason, misalignment between the stator 33 and the rotor 32 in the resolver 31 can be suppressed, the linearity between the rotor rotation angle and the detection signal of the resolver 31 is increased, and the rotor position detection accuracy is improved. It becomes possible to plan. Further, since the resolver holder 34 and the resolver stator 33 are formed of materials having approximate thermal expansion coefficients, rattling due to thermal deformation is suppressed, and in this respect also, the rotor position detection accuracy is improved.
[0032] 図 5は、ロータ回転角度とレゾルバ検出信号との角度誤差を示す説明図であり、従 来のブラシレスモータ(図 8)と本発明によるモータとを比較して示したものである。図 5から明らかなように、発明者らの実験によれば、一点鎖線にて示した従来のモータ では角度誤差幅が 5° 程度であるのに対し、実線にて示した本発明によるモータ 1で は角度誤差幅を 1.5° 程度に収めることができた。すなわち、当該モータ 1では、従 来のブラシレスモータに比して 3倍以上の高精度でロータ 3の回転位置を検出できる ことが明ら力、となった。このため、モータ 1では、トルク変動を抑えた駆動が可能となり 、 EPSにおける操舵フィーリングの向上も図られる。  [0032] FIG. 5 is an explanatory diagram showing an angle error between the rotor rotation angle and the resolver detection signal, and shows a comparison between a conventional brushless motor (FIG. 8) and a motor according to the present invention. As is clear from FIG. 5, according to the experiments by the inventors, the conventional motor shown by the alternate long and short dash line has an angular error width of about 5 °, whereas the motor 1 according to the invention shown by the solid line 1 In, the angular error width could be kept within about 1.5 °. In other words, it has become clear that the motor 1 can detect the rotational position of the rotor 3 with three times higher accuracy than a conventional brushless motor. For this reason, the motor 1 can be driven with reduced torque fluctuation, and the steering feeling in EPS can be improved.
[0033] ブラケットホルダユニット 35は、合成樹脂にて形成されている。ブラケットホルダュニ ット 35には、金属製のレゾルバホルダ固定用ナット 41がインサート成形されている。 レゾルバホルダ固定用ナット 41は、レゾルバホルダ 34の長孔 65に対応して 2個設け られている。これに対し、ブラケット 24には、図 6に示すように、レゾルバ固定用のレゾ ノレバ固定孔 48bと、レゾルバ 31の原点調整用のレゾルバ調整孔 48cが形成されてい る。レゾルバ固定孔 48bは、長孔 65及びレゾルバホルダ固定用ナット 41に臨んで配 置され、取付ネジ 42が揷通可能な丸孔に形成されて!/、る。  [0033] The bracket holder unit 35 is formed of a synthetic resin. In the bracket holder unit 35, a metal resolver holder fixing nut 41 is insert-molded. Two resolver holder fixing nuts 41 are provided corresponding to the long holes 65 of the resolver holder 34. On the other hand, the bracket 24 is formed with a resolver fixing hole 48b for fixing the resolver and a resolver adjusting hole 48c for adjusting the origin of the resolver 31, as shown in FIG. The resolver fixing hole 48b is disposed so as to face the long hole 65 and the resolver holder fixing nut 41, and is formed in a round hole through which the mounting screw 42 can pass.
[0034] 一方、レゾルバ調整孔 48cは、丸孔 66に臨んで配置されている。また、レゾルバ調 整孔 48cは、レゾルバホルダ 34の位置が周方向に調整可能なように、周方向に延び る長孔に形成されている。丸孔 66には、レゾルバ調整孔 48cを介して調整用治具が 揷入され、レゾルバホルダ 34の位置が調整される(原点調整)。ホルダ位置の調整後 、レゾルバホルダ固定用ナット 41には、レゾルバ固定孔 48bを介して、モータ 1の外 部から取付ネジ 42がねじ込まれる。これにより、レゾルバホルダ 34は、ブラケット 24と ブラケットホルダユニット 35の間に挟持された状態で固定される。 On the other hand, the resolver adjusting hole 48c is arranged facing the round hole 66. The resolver adjusting hole 48c is formed as a long hole extending in the circumferential direction so that the position of the resolver holder 34 can be adjusted in the circumferential direction. An adjustment jig is inserted into the round hole 66 through the resolver adjustment hole 48c, and the position of the resolver holder 34 is adjusted (origin adjustment). After adjusting the holder position, the resolver holder fixing nut 41 is connected to the outside of the motor 1 through the resolver fixing hole 48b. Mounting screw 42 is screwed in from the part. As a result, the resolver holder 34 is fixed while being sandwiched between the bracket 24 and the bracket holder unit 35.
[0035] なお、従来のモータ 100 (図 8)では、ブラケット 108に周方向に延びるレゾルバ調整 孔 109ゃレゾルバ取付孔 110が設けられている。このため、ブラケット 108の剛性、特に 、ブラケット中央に固定されたベアリング 115周りの剛性が低下し、強度不足が生じる おそれがある。また、ベアリング周りの剛性低下に伴い、レゾルバステータ 103に振動 が加わり、センシング精度が低下するおそれもある。これに対し、図 1のモータ 1では 、ブラケット 24の内側にブラケットホルダユニット 35を設け、レゾルバホルダ 34をブラ ケットホルダユニット 35に取り付ける構成としたことにより、レゾルバ固定孔を長孔とす る必要がない。 In the conventional motor 100 (FIG. 8), a resolver adjustment hole 109 and a resolver mounting hole 110 extending in the circumferential direction are provided in the bracket 108. For this reason, the rigidity of the bracket 108, particularly the rigidity around the bearing 115 fixed at the center of the bracket, is lowered, and there is a possibility that the strength is insufficient. In addition, as the rigidity around the bearing is reduced, vibration is applied to the resolver stator 103, which may reduce the sensing accuracy. On the other hand, in the motor 1 of FIG. 1, the bracket holder unit 35 is provided inside the bracket 24, and the resolver holder 34 is attached to the bracket holder unit 35, so that the resolver fixing hole needs to be a long hole. There is no.
[0036] すなわち、図 6から分かるように、モータ 1では、レゾルバ 31関係の孔は、取付ネジ  That is, as can be seen from FIG. 6, in the motor 1, the hole related to the resolver 31 is a mounting screw.
42用の小さなレゾルバ固定孔 48b (丸孔)と、長さ 10mm程度のレゾルバ調整孔 48c のみで足りる。このため、図 9と比較すれば明らかなように、ブラケット 24の貫通孔を 従来のモータよりも小さくでき、その分、ブラケット 24の剛性が向上し、その強度も高く なる。従って、振動によるセンシング精度の低下も抑えられ、ロータ位置検出精度の 向上が図られる。  Only a small resolver fixing hole 48b (round hole) for 42 and a resolver adjusting hole 48c of about 10mm in length are sufficient. Therefore, as is clear from comparison with FIG. 9, the through hole of the bracket 24 can be made smaller than the conventional motor, and the rigidity of the bracket 24 is improved correspondingly, and the strength thereof is also increased. Therefore, a decrease in sensing accuracy due to vibration can be suppressed, and rotor position detection accuracy can be improved.
[0037] ブラケットホルダユニット 35にはまた、外部給電用端子 43が 3個設けられている。外 部給電用端子 43は、 U,V,Wの各相ごとに設けられている。これらの外部給電用端 子 43は、ブラケットホルダユニット 35をブラケット 24に組み付けたとき、ブラケット 24 の側面から径方向に突出するように設けられている。各外部給電用端子 43 (43U, 4 3V,43W)は、ブラケットホルダユニット 35内に設けられた接続端子 44 (44U, 44V, 4 4W)と電気的に接続されている。各接続端子 44は、ブラケットホルダユニット 35の本 体部 45から軸方向に向かって突設されており、バスバーユニット 7に設けられたバス バー端子 46 (46U,46V,46W)と溶接される。  [0037] The bracket holder unit 35 is also provided with three external power feeding terminals 43. The external power feeding terminal 43 is provided for each of U, V, and W phases. These external power feeding terminals 43 are provided so as to protrude in the radial direction from the side surface of the bracket 24 when the bracket holder unit 35 is assembled to the bracket 24. Each external power feeding terminal 43 (43U, 43V, 43W) is electrically connected to a connection terminal 44 (44U, 44V, 44W) provided in the bracket holder unit 35. Each connection terminal 44 protrudes from the main body 45 of the bracket holder unit 35 in the axial direction, and is welded to the bus bar terminal 46 (46U, 46V, 46W) provided in the bus bar unit 7.
[0038] バスバー端子 46もまた、バスバーユニット 7の本体部 47から軸方向に向かって突設 されている。従って、モータ 1を組み付けると、バスバー端子 46と接続端子 44が並列 に対向する。モータ 1では、ケース 4にブラケット 24を取り付けた後、バスバー端子 46 と接続端子 44を溶接固定する。図 6に示すように、ブラケット 24にはそのための溶接 作業孔 48aが形成されている。溶接作業孔 48aには、溶接工程後にブラケットキヤッ プ 49が取り付けられる。 [0038] The bus bar terminal 46 also projects from the main body 47 of the bus bar unit 7 in the axial direction. Therefore, when the motor 1 is assembled, the bus bar terminal 46 and the connection terminal 44 face each other in parallel. In the motor 1, after the bracket 24 is attached to the case 4, the bus bar terminal 46 and the connection terminal 44 are fixed by welding. As shown in Figure 6, the bracket 24 is welded for that purpose. A working hole 48a is formed. A bracket cap 49 is attached to the welding work hole 48a after the welding process.
[0039] このようなモータ 1は次のように組み付けられる。まず、ブラケットアッセンブリ 51ゃス テータアッセンブリ 53、ロータアッセンブリ 54を個々に組み付ける。この場合、ブラケ ットアッセンブリ 51は、ベアリング 22bを組み込んだブラケット 24と、レゾルバステータ 33関係の部品を組み付けたブラケットホルダユニット 35とを一体化し、タツピンネジ 5 2にて固定したアッセンブリ品である。ブラケットホルダユニット 35には、レゾルバホル ダ 34がリブ 35bの内側に軽圧入される形で仮保持されている。但し、レゾルバホルダ 34自体は、この時点(原点調整前)ではブラケット 24には固定されておらず、原点調 整時には周方向に位置をずらすことができるようになってレ、る。  [0039] Such a motor 1 is assembled as follows. First, the bracket assembly 51, the stator assembly 53, and the rotor assembly 54 are assembled individually. In this case, the bracket assembly 51 is an assembly product in which the bracket 24 in which the bearing 22b is incorporated and the bracket holder unit 35 in which components related to the resolver stator 33 are assembled are integrated and fixed with the tapping pin screw 52. A resolver holder 34 is temporarily held in the bracket holder unit 35 so as to be lightly press-fitted inside the rib 35b. However, the resolver holder 34 itself is not fixed to the bracket 24 at this point (before the origin adjustment), and the position can be shifted in the circumferential direction during the origin adjustment.
[0040] ステータアッセンブリ 53は、コイル 6を巻装したステータコア 5にバスバーユニット 7を 取り付け、給電用端子 11とコイル端部 6aを溶接したものをケース 4内に収容固定した アッセンブリ品であり、ステータ 2を構成する。また、ロータアッセンブリ 54は、ロータシ ャフト 21にロータコア 25を固定し、マグネットホルダ 27を取り付けた後、マグネット 26 を圧入しマグネットカバー 28を装着すると共に、マグネットホルダ 27にレゾルバロー タ 32を圧入固定したアッセンブリ品であり、ロータ 3を構成する。  [0040] The stator assembly 53 is an assembly product in which the bus bar unit 7 is attached to the stator core 5 around which the coil 6 is wound, and the power supply terminal 11 and the coil end portion 6a are welded and accommodated in the case 4. Configure 2 The rotor assembly 54 is an assembly in which the rotor core 25 is fixed to the rotor shaft 21 and the magnet holder 27 is attached. Then, the magnet 26 is press-fitted and the magnet cover 28 is attached, and the resolver rotor 32 is press-fitted and fixed to the magnet holder 27. The rotor 3 is configured.
[0041] このようなアッセンブリ品をそれぞれ組み立てた後、ロータアッセンブリ 54をブラケッ トァッセンブリ 51に取り付け、そこにステータアッセンブリ 53を外装し、固定ネジ 23に てケース 4とブラケット 24を締結する。次に、溶接作業孔 48aを介して、バスバー端子 46と接続端子 44を溶接固定する。この状態にてモータの抵抗値や絶縁状態のチェ ック等を行い、その後、レゾルバ 31の原点調整を行う。前述のように、ブラケット 24に はレゾルバ調整孔 48cが形成されており、原点調整は、このレゾルバ調整孔 48cから 行われる。その際、レゾルバ調整孔 48cには図示しない調整用治具が揷入され、レゾ ノレバホルダ 34の位置が長孔 65を利用して周方向に微調整され、レゾルバ 31の原点 が調整される。  [0041] After assembling such assemblies, the rotor assembly 54 is attached to the bracket assembly 51, the stator assembly 53 is externally mounted on the assembly, and the case 4 and the bracket 24 are fastened to the fixing screw 23. Next, the bus bar terminal 46 and the connection terminal 44 are fixed by welding through the welding work hole 48a. In this state, check the motor resistance and insulation state, and then adjust the origin of resolver 31. As described above, the resolver adjustment hole 48c is formed in the bracket 24, and the origin adjustment is performed from the resolver adjustment hole 48c. At that time, an adjusting jig (not shown) is inserted into the resolver adjusting hole 48c, the position of the resonator lever holder 34 is finely adjusted in the circumferential direction using the long hole 65, and the origin of the resolver 31 is adjusted.
[0042] 原点調整後、ブラケット 24の外側から取付ネジ 42を揷入し、レゾルバホルダ固定用 ナット 41にねじ込み、固定する。これにより、レゾルバホルダ 34のフランジ部 62が、ブ ラケット 24とブラケットホルダユニット 35との間に挟まれる形で固定される。取付ネジ 4 2を締め付けた後、ブラケットキャップ 49を取り付ける。これにてモータ 1の組み付け 作業は完了し、その後、各種特性チェック等が行われ、完成品となる。 [0042] After adjusting the origin, insert the mounting screw 42 from the outside of the bracket 24 and screw it into the resolver holder fixing nut 41 to fix it. As a result, the flange portion 62 of the resolver holder 34 is fixed so as to be sandwiched between the bracket 24 and the bracket holder unit 35. Mounting screw 4 After tightening 2, attach the bracket cap 49. This completes the assembly work of the motor 1, and after that, various characteristic checks, etc. are performed and the product is completed.
[0043] なお、図 8のモータ 1では、ブラケットアッセンブリ 112からセンサ線 116が、また、ステ ータアッセンブリ 114からリード線 126がそれぞれ別個に引き出されているため、セン サ線 116やリード線 126が邪魔になり、組み付け作業が行いにくい場合があった。これ に対し、当該モータ 1では、センサハーネス 36や給電用リード線をブラケットホルダュ ニット 35が集約されているため、各線が取り扱いやすぐ組み付け作業が容易になつ ている。また、センサハーネス 36や給電用リード線は、ステータアッセンブリ 53とブラ ケットアッセンブリ 51との間に挟み込んで固定されるため、センサ線 116等を適宜引き 回して固定する構造に比して組み付け作業が容易化されている。 [0043] In the motor 1 in FIG. 8, the sensor wire 116 is drawn from the bracket assembly 112 and the lead wire 126 is drawn separately from the stator assembly 114, so that the sensor wire 116 and the lead wire 126 are obstructive. As a result, the assembly work may be difficult to perform. On the other hand, in the motor 1, since the bracket holder unit 35 is integrated with the sensor harness 36 and the power supply lead wire, each wire can be easily handled and assembled easily. In addition, the sensor harness 36 and the lead wire for power feeding are fixed by being sandwiched between the stator assembly 53 and the bracket assembly 51. It has been made easier.
実施例 2  Example 2
[0044] 次に、本発明の実施例 2であるブラシレスモータについて説明する。実施例 2のブ ラシレスモータ 55 (以下、モータ 55と略記する)は、レゾルバ 31の位置をモータ外側 に配した構成となっており、それ以外の構成は実施例 1のモータ 1とほぼ同様である。 なお、実施例 1と同様の部材、部分については同一の符号を付し、その説明は省略 する。  Next, a brushless motor that is Embodiment 2 of the present invention will be described. The brushless motor 55 of the second embodiment (hereinafter abbreviated as the motor 55) has a configuration in which the position of the resolver 31 is arranged outside the motor, and the other configuration is almost the same as the motor 1 of the first embodiment. . The same members and parts as those in Example 1 are denoted by the same reference numerals, and the description thereof is omitted.
[0045] 図 7は、モータ 55の構成を示す断面図である。モータ 55では、ケース 56の両端が 開口となっており、その両側にアルミダイキャスト製のブラケット 57a,57bが取り付けら れている。ブラケット 57aの中央には、ベアリング 22aが固定されるベアリング固定部 5 8が円筒状に設けられている。一方、ブラケット 57aの外側には、円筒形状のホルダ 取付部 59が突設されている。ホルダ取付部 59は、ベアリング固定部 58と同心に形 成されている。ホルダ取付部 59には、レゾルバステータ 33が固定されたレゾルバホ ルダ 34が取り付けられる。ホルダ取付部 59の外径は、レゾルバホルダ 34の開口端 内径よりも若干小さくなつている。従って、レゾルバホルダ 34は、このホルダ取付部 5 9に圧入される形で装着される。  FIG. 7 is a cross-sectional view showing the configuration of the motor 55. In the motor 55, both ends of the case 56 are open, and aluminum die-cast brackets 57a and 57b are attached to the both sides. In the center of the bracket 57a, a bearing fixing portion 58 to which the bearing 22a is fixed is provided in a cylindrical shape. On the other hand, on the outside of the bracket 57a, a cylindrical holder mounting portion 59 is projected. The holder mounting portion 59 is formed concentrically with the bearing fixing portion 58. A resolver holder 34 to which a resolver stator 33 is fixed is attached to the holder attaching portion 59. The outer diameter of the holder mounting portion 59 is slightly smaller than the inner diameter of the open end of the resolver holder 34. Therefore, the resolver holder 34 is mounted so as to be press-fitted into the holder mounting portion 59.
[0046] 前述のように、ホルダ取付部 59はベアリング固定部 58と同心に設けられている。従 つて、ホルダ取付部 59にレゾルバホルダ 34を軽圧入することにより、レゾルバステー タ 33がロータシャフト 21と同心状に取り付けられる。このように、モータ 55においても 、レゾルバホルダ 34をホルダ取付部 59に軽圧入する印籠嵌合構造を採っているた め、レゾルバステータ 33がロータシャフト 21に対し芯精度良く同心状に取り付けられ る。このため、レゾルバ 31におけるステータ 33とロータ 32の間の芯ズレを抑えること ができ、ロータ回転角とレゾルバ 31の検出信号との間の直線性が高くなり、ロータ位 置検出精度の向上が図られる。 As described above, the holder mounting portion 59 is provided concentrically with the bearing fixing portion 58. Accordingly, the resolver holder 34 is mounted concentrically with the rotor shaft 21 by lightly press-fitting the resolver holder 34 into the holder mounting portion 59. Thus, even in the motor 55 Since the resolver holder 34 is lightly press-fitted into the holder mounting portion 59, a seal fitting structure is employed, so that the resolver stator 33 is concentrically attached to the rotor shaft 21 with high core accuracy. For this reason, it is possible to suppress the misalignment between the stator 33 and the rotor 32 in the resolver 31, and the linearity between the rotor rotation angle and the detection signal of the resolver 31 is increased, thereby improving the rotor position detection accuracy. It is done.
[0047] 本発明は前記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種 々変更可能であることは言うまでもなレ、。 [0047] Needless to say, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
例えば、前述の実施例 1では、ホルダ取付リブ 39を部分円筒形状とした例を示した 1S 実施例 2のホルダ取付部 59と同様に、円筒ボス形状としても良い。また、レゾル バホルダ 34では、ホルダ部 61の端部がホルダ取付リブ 39に嵌着される構成となって いるが、ホルダ取付リブ 39に嵌め込まれる部位はホルダ部 61には限定されない。例 えば、ホルダ部 61の端部にホルダ部 61よりも大径の部位を形成し、これをホルダ取 付リブ 39に嵌着するようにしても良い。すなわち、レゾルバホルダ 34をホルダ取付リ ブ 39に装着することにより、レゾルバステータ 33がロータシャフト 21と同心状に配置 される構成であれば、何れの部位をホルダ取付リブ 39に取り付ける構成であっても 良い。  For example, in the above-described first embodiment, a cylindrical boss shape may be used in the same manner as the holder mounting portion 59 of the 1S embodiment 2 in which the holder mounting rib 39 has a partially cylindrical shape. In the resolver holder 34, the end portion of the holder portion 61 is configured to be fitted to the holder mounting rib 39, but the portion to be fitted to the holder mounting rib 39 is not limited to the holder portion 61. For example, a portion having a diameter larger than that of the holder portion 61 may be formed at the end portion of the holder portion 61, and this may be fitted to the holder mounting rib 39. That is, if the resolver holder 34 is mounted on the holder mounting rib 39 so that the resolver stator 33 is arranged concentrically with the rotor shaft 21, any part is mounted on the holder mounting rib 39. Also good.
[0048] 加えて、前述の実施例では、コラムアシスト式の EPSに使用されるブラシレスモータ を示した力 S、他の方式の EPS用モータにも本発明は適用可能である。加えて、 EPS や各種車載電動品用のモータのみならず、本発明は、広くブラシレスモータ一般にも 適用可能である。  In addition, in the above-described embodiment, the present invention can be applied to a force S indicating a brushless motor used for column-assisted EPS and other types of EPS motors. In addition, the present invention can be widely applied to general brushless motors as well as motors for EPS and various in-vehicle electric products.

Claims

請求の範囲 The scope of the claims
[1] 駆動コイルが巻装されたコアと、前記コアを収容するケースとを備えるステータと、 前記ケースの一端側に取り付けられるブラケットと、  [1] A stator including a core around which a drive coil is wound, a case for housing the core, a bracket attached to one end side of the case,
前記ケースと前記ブラケットに回転自在に支持されたシャフトと、前記シャフトに取り 付けられ前記ステータの内側に回転自在に配置されるマグネットとを備えるロータと、 前記シャフトに取り付けられ、前記マグネットと共に回転するレゾルバロータと、 前記レゾルバロータの外側に配置され、前記レゾルバロータの回転に伴って出力 信号の位相が変化する検出コイルを備えるレゾルバステータと、を有してなるブラシ レスモータであって、  A rotor including a shaft rotatably supported by the case and the bracket; and a magnet attached to the shaft and rotatably disposed inside the stator; and attached to the shaft and rotated together with the magnet. A brushless motor comprising: a resolver rotor; and a resolver stator that is disposed outside the resolver rotor and includes a detection coil that changes a phase of an output signal as the resolver rotor rotates.
前記レゾルバステータは、円筒状に形成されたレゾルバホルダ内に収容され、 前記レゾルバホルダは、前記ブラケットに前記シャフトと同心状に形成されたホルダ 取付部に装着されることを特徴とするブラシレスモータ。  The resolver stator is housed in a resolver holder formed in a cylindrical shape, and the resolver holder is attached to a holder mounting portion formed concentrically with the shaft on the bracket.
[2] 請求項 1記載のブラシレスモータにおいて、前記レゾルバホルダは、前記レゾルバ ステータが同心状に収容されるホルダ部を有し、該ホルダ部は前記ホルダ取付部の 外周に嵌着されることを特徴とするブラシレスモータ。  [2] The brushless motor according to claim 1, wherein the resolver holder has a holder portion in which the resolver stator is accommodated concentrically, and the holder portion is fitted on an outer periphery of the holder mounting portion. Features a brushless motor.
[3] 請求項 1記載のブラシレスモータにおいて、前記ホルダ部は前記ホルダ取付部の 外周に軽圧入状態で嵌着されることを特徴とするブラシレスモータ。 3. The brushless motor according to claim 1, wherein the holder portion is fitted into the outer periphery of the holder mounting portion in a light press-fit state.
[4] 請求項 1記載のブラシレスモータにおいて、前記ホルダ取付部は、前記ブラケットの 中央部に軸方向に沿って突設されてなることを特徴とするブラシレスモータ。 [4] The brushless motor according to claim 1, wherein the holder mounting portion projects from the center portion of the bracket along the axial direction.
[5] 請求項 1記載のブラシレスモータにおいて、前記レゾルバホルダは、前記レゾルバ ステータと熱膨張係数が近似した材料にて形成されてなることを特徴とするブラシレ スモータ。 5. The brushless motor according to claim 1, wherein the resolver holder is formed of a material having a thermal expansion coefficient approximate to that of the resolver stator.
PCT/JP2007/068337 2006-09-22 2007-09-21 Brushless motor WO2008035754A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535392A JP5064401B2 (en) 2006-09-22 2007-09-21 Brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006258113 2006-09-22
JP2006-258113 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008035754A1 true WO2008035754A1 (en) 2008-03-27

Family

ID=39200577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068337 WO2008035754A1 (en) 2006-09-22 2007-09-21 Brushless motor

Country Status (2)

Country Link
JP (1) JP5064401B2 (en)
WO (1) WO2008035754A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041870A (en) * 2008-08-07 2010-02-18 Mitsuba Corp Brushless motor
JP2013106409A (en) * 2011-11-11 2013-05-30 Mitsuba Corp Brushless motor
CN109923772A (en) * 2016-06-27 2019-06-21 Abb瑞士股份有限公司 Motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331458A (en) * 1986-07-25 1988-02-10 Toshiba Corp Rotating-speed detector for motor
JPS6416164U (en) * 1987-07-20 1989-01-26
JPH01238444A (en) * 1987-11-02 1989-09-22 Seagate Technol Stepping motor with enclosed capsule
JP2000136942A (en) * 1998-10-30 2000-05-16 Sanyo Denki Co Ltd Electromagnetic induction-type rotation sensor
JP2001078393A (en) * 1999-09-08 2001-03-23 Aisin Seiki Co Ltd Rotary machine with resolver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331458A (en) * 1986-07-25 1988-02-10 Toshiba Corp Rotating-speed detector for motor
JPS6416164U (en) * 1987-07-20 1989-01-26
JPH01238444A (en) * 1987-11-02 1989-09-22 Seagate Technol Stepping motor with enclosed capsule
JP2000136942A (en) * 1998-10-30 2000-05-16 Sanyo Denki Co Ltd Electromagnetic induction-type rotation sensor
JP2001078393A (en) * 1999-09-08 2001-03-23 Aisin Seiki Co Ltd Rotary machine with resolver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041870A (en) * 2008-08-07 2010-02-18 Mitsuba Corp Brushless motor
JP2013106409A (en) * 2011-11-11 2013-05-30 Mitsuba Corp Brushless motor
CN109923772A (en) * 2016-06-27 2019-06-21 Abb瑞士股份有限公司 Motor

Also Published As

Publication number Publication date
JP5064401B2 (en) 2012-10-31
JPWO2008035754A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4061130B2 (en) Brushless motor
JP5603045B2 (en) Motor device for electric power steering device
JP4502912B2 (en) Rotating electric machine and manufacturing method thereof
US20080277189A1 (en) Electric power steering apparatus
US20160297470A1 (en) Drive device and electric power steering apparatus
US8169111B2 (en) Brushless motor
JP4685519B2 (en) Electric power steering apparatus and sensor position adjusting method for electric power steering apparatus
JP4144364B2 (en) Torque detection device
JP5112321B2 (en) Brushless motor
JP2010115022A (en) Brushless motor
JP2008079468A (en) Brushless motor
JP2012186913A (en) Motor and electric power steering motor
JP5064401B2 (en) Brushless motor
JP5150244B2 (en) Resolver positioning mechanism and electric power steering device
JP2004304945A (en) Brushless motor
JP5446045B2 (en) Rotating electric machine and electric power steering device
JP2007006570A (en) Brushless motor and method of adjusting sensor position of brushless motor
WO2008059736A1 (en) Brushless motor
JP5234939B2 (en) Brushless motor
JP2011131775A (en) Electric power steering device with control device and dynamo-electric machine
JP5293256B2 (en) Rotating electric machine and electric power steering apparatus using the same
JP2008079469A (en) Terminal structure of motor
JP5413619B2 (en) Electric power steering device
JP5299706B2 (en) Rotating electric machine and electric power steering device
JP5233403B2 (en) Rotating electric machine and electric power steering apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535392

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807687

Country of ref document: EP

Kind code of ref document: A1