WO2008035515A1 - Liquid epoxy resin composition and epoxy resin cured product - Google Patents

Liquid epoxy resin composition and epoxy resin cured product Download PDF

Info

Publication number
WO2008035515A1
WO2008035515A1 PCT/JP2007/065693 JP2007065693W WO2008035515A1 WO 2008035515 A1 WO2008035515 A1 WO 2008035515A1 JP 2007065693 W JP2007065693 W JP 2007065693W WO 2008035515 A1 WO2008035515 A1 WO 2008035515A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
parts
liquid epoxy
component
Prior art date
Application number
PCT/JP2007/065693
Other languages
French (fr)
Japanese (ja)
Inventor
Ami Kamada
Kazuhiko Haba
Original Assignee
Maruzen Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co., Ltd. filed Critical Maruzen Petrochemical Co., Ltd.
Priority to JP2008535287A priority Critical patent/JP5301997B2/en
Publication of WO2008035515A1 publication Critical patent/WO2008035515A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used

Definitions

  • the present invention relates to a liquid epoxy resin composition and a cured product thereof, and more particularly to a liquid epoxy resin composition containing an ⁇ -buoxy ⁇ -glycidyl ether compound as a reactive diluent and a cured product thereof. It is.
  • Epoxy resins are excellent in heat resistance, adhesion, water resistance, mechanical strength, electrical properties, etc., so adhesives, paints, materials for civil engineering and construction, insulating materials for electrical and electronic parts, sealing Widely used as a material.
  • bisphenol-type epoxy resins that are liquid or solid at room temperature are most commonly used in various applications as shown above because they are excellent in various physical properties and economically. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-73453
  • the present invention has been made in view of the above-described problems, and is excellent in the effect of reducing the viscosity at a high curing speed, and has low strength and physical property reduction of the base epoxy resin! /, A liquid epoxy resin composition is to be provided.
  • the present inventor uses a compound having a bifunctional group of a bur group and a glycidyl group as a reactive diluent instead of the conventional diglycidyl ether.
  • the inventors have found that the above-mentioned problems can be achieved and have reached the present invention.
  • the present invention is the following liquid epoxy resin composition and cured product.
  • a liquid epoxy resin composition comprising:
  • Component (A) Strength At least 1 selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin and hydrogenated bisphenol F type epoxy resin
  • component (A) is an alicyclic epoxide containing at least one epoxycyclohexyl group.
  • liquid epoxy resin composition as described above, which is (5) component (B), 4-butoxybutanol glycidyl ether or 4 (butoxymethyl) -cyclohexyl methanol glycidyl ether.
  • the epoxy resin composition of the present invention has a low curing speed and a low viscosity, it is excellent in workability such as casting, coating, and impregnation, and contains a large amount of fillers such as inorganic fillers and conductive fillers. Even in this case, the liquid state can be maintained, and furthermore, the ability to obtain a cured product without impairing the physical properties of the main epoxy resin can be obtained. Therefore, the cured product obtained by curing the epoxy resin composition of the present invention can be suitably used for applications such as molding materials, sealing materials, electrical insulating materials, adhesives, paints, and inks for inkjet printers. .
  • the epoxy resin of component (A) used as the main ingredient in the liquid epoxy resin composition of the present invention is not particularly limited, but is preferably an aromatic epoxy resin or an alicyclic resin.
  • An epoxy resin etc. are mentioned.
  • aromatic epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenol type epoxy resins, and naphthalene type epoxy resins.
  • Glycidylamine type epoxy resins obtained from glycidyl ethers, aminophenols, etc. epoxy resins obtained from phenol nopolac, epoxy resins obtained from cresol nopolac, nopolak epoxy resins of bisphenol A, phenols and hydroxy Examples thereof include polyfunctional epoxy resins such as novolak epoxy resins obtained from benzaldehydes.
  • an epoxy resin obtained by directly hydrogenating the aromatic ring of the above aromatic epoxy resin or a polyhydric phenol is hydrogenated and then reacted with epichlorohydrin.
  • epoxy resin More specifically, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, hydrogenated biphenol type epoxy resin, hydrogenated phenol nopolac type epoxy resin, hydrogenated cresol nopolac epoxy resin, hydrogenated type Naphthalene type epoxy resin.
  • alicyclic epoxides containing at least one epoxycyclohexyl group can also be used.
  • the alicyclic epoxide has two or more unsaturated groups, at least one of which is a cyclohexene group, and is reacted with peracetic acid to form a cyclohexene group.
  • Epoxy resins having epoxidized heavy bonds preferably having two or more epoxy groups in one molecule.
  • 3,4-epoxycyclohexylmethyl-3 ′, 4 ′ epoxycyclohexanecarboxylate (trade names UVR-6110 and UVR-6105 manufactured by UCC, products manufactured by Daicel Chemical Industries, Ltd.) Name Celoxide 2021P, etc.), bis (3,4 epoxycyclohexylmethyl) adipate (trade name UVR-6128, etc., manufactured by UCC), ⁇ -force prolatatone modification 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxy Cyclohexanecarboxylate (Daicel Chemical Industries, Ltd., trade name: Celoxide 2081, etc.), 1-methyl-4-one (2 methyloxylanyl) 7 oxabicyclo [4.4.0] heptane (Daicel Chemicals, Inc., trade name) Celoxide 3000 etc.).
  • bisphenol ⁇ type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, and hydrogenated bisphenol F type epoxy resin Use of fat is preferable in that a low-viscosity epoxy resin can be obtained and a cured product having a good balance between moisture resistance and heat resistance can be obtained.
  • an alicyclic epoxide containing an epoxycyclohexyl group is preferable in terms of excellent properties as an ink for an ink jet printer, since it has good curability and high adhesion to a base material having a high cured film strength. .
  • the ⁇ -vininoleoxy ⁇ -glycidyl ether compound used as the component ( ⁇ ) acts as a reactive diluent and is a compound represented by the following general formula (1) It is.
  • ⁇ -vinyloxy ⁇ -glycidyl ether compound used as component (B) in the liquid epoxy resin composition of the present invention include 2-Buroxyethanol glycidyl ether, 3-Buroxypropanol Glycidyl ether, 4-Buroxybutanol glycidyl ether, 5-Buroxypentanol darcydyl ether, 6-Buroxyhexanol glycidyl ether, 3-Buroxy 2,2 dimethyl-propanol glycidyl ether, 5-Buroxy-3 methylol Examples thereof include pentanol glycidyl ether, 4 (butoxymethyl) -cyclohexyl methanol glycidyl ether, and the like.
  • the production method of the above-mentioned ⁇ -butoxy ⁇ -glycidyl ether compound as the component ( ⁇ ⁇ ) is not particularly limited.
  • ⁇ Alkanediol monobutyl ether and epihalohydrin can be reacted.
  • the epihalohydrins used here are epiclorehydrin, epiporphine mohydrin. ⁇ -methinorepichronohydrin. ⁇ -methinoreepib
  • Epic chlorohydrin is preferred, such as oral mohydrin and ⁇ -methylepyohydrin.
  • the above-mentioned reaction between the monobule ether of ⁇ , ⁇ alkanediol and epihalohydrin is, for example, (1) an acidic catalyst such as sulfuric acid, boron trifluoride ether ether, tin tetrachloride, or quaternary ammonium salts, In the presence of a phase transfer catalyst such as quaternary phosphonium salts and crown ethers, first, a halohydrin ether is produced, and then this halohydrin ether is reacted with a dehydrohalogenating agent such as sodium hydroxide.
  • an acidic catalyst such as sulfuric acid, boron trifluoride ether ether, tin tetrachloride, or quaternary ammonium salts
  • a phase transfer catalyst such as quaternary phosphonium salts and crown ethers
  • the ⁇ -butoxy ⁇ -glycidyl ether compound can be isolated by a conventional method. For example, a non-aqueous solvent such as a hydrocarbon is added, followed by washing with water to elute and remove the by-product salt. After that, by removing the solvent, dehydrating, filtering the salt precipitated in a trace amount or solid-liquid separation, it is possible to obtain the target ⁇ -buoxy ⁇ -glycidyl ether compound with the force S.
  • a non-aqueous solvent such as a hydrocarbon
  • the ⁇ -butoxy ⁇ -glycidyl ether compound thus obtained can be used as it is as a raw material for the liquid epoxy resin composition of the present invention. It can also be used after removing. By removing impurities in this way, an increase in viscosity due to crosslinking can be prevented, and the weather resistance of the resulting cured product can be improved.
  • Distillation purification is performed by dimerizing the liquid temperature of ⁇ -butoxy ⁇ -glycidyl ether compound.
  • the preferable purity of the ⁇ -butoxy ⁇ -glycidyl ether compound after purification by distillation is 90% by mass (hereinafter referred to as “%”) or more, more preferably 95% or more.
  • the amount of the ⁇ -butoxy ⁇ -glycidyl ether compound as the component ( ⁇ ) is preferably;! To 150 parts by mass, preferably 3 to; 120 masses with respect to 100 parts by mass of the epoxy resin as the component ( ⁇ ). More preferred is 10 to 100 parts by mass. If the proportion of component ( ⁇ ) is less than 1 part by mass, the effect of decreasing the viscosity may be reduced, and if it exceeds 150 parts by mass, the effect will be hard. Properties such as heat resistance of the chemical compound may deteriorate.
  • an acid anhydride curing agent examples thereof include a system curing agent, an amine curing agent, and a cationic polymerization catalyst.
  • an acid anhydride-based curing agent is preferable.
  • a phenol-based curing agent is preferable, and low temperature curing is preferable.
  • an amine curing agent is preferably a cationic polymerization catalyst.
  • the acid anhydride curing agent include aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and tetrahydrophthalic anhydride.
  • aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and tetrahydrophthalic anhydride.
  • Cyclic fats such as methyltetrahydrophthalic anhydride, hexahexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, cyclododecenyl succinic anhydride, and anhydrous trialkyltetrahydrophthalic acid And aromatic anhydrides, and mixtures and modified products thereof.
  • curing accelerators include, for example, tertiary amines such as pendinoledimethylamine, tris (dimethylaminomethyl) phenol, dimethylcyclohexylamine; tetraethylammonium bromide, tetraptylammonium.
  • Quaternary ammonium salts such as bromide; imidazoles such as 1-cyanoethyl-2-ethyl 4-methyl imidazole, 2-ethyl 4-methyl imidazole, 1 benzyl 2-methyl imidazole; phosphines such as triphenyl phosphine; tetra Examples include quaternary phosphonium salts such as phenylphosphonium bromide and tetra-n-butylphosphonium bromide. These curing accelerators can be used alone or in admixture of two or more.
  • phenolic curing agents include catechol, resorcin, hydroquinone, bisphenol F, bisphenol A, bisphenol S, biphenol, phenol novolaks, Cresolol novolacs, divalent phenol nopolacs such as bisphenolanol A, trishydroxyphenylmethanes, aralkylpolyphenols And dicyclopentadiene polyphenols.
  • amine-based curing agent of component (C) examples include triethylamine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5.4.
  • cation polymerization catalyst of component (C) it is possible to use noreic acid.
  • noreic acid for example, BF, PF, AsF, SbF, and these Lewis acids and methylamine,
  • thermal cationic polymerization catalyst or a light-power thione polymerization catalyst that is decomposed by heating or irradiation with ultraviolet rays or visible light to act as a curing agent
  • aromatic diazonium salts diarylhodonium Salts, triarylsulfonium salts, triarylselenium salts and the like.
  • aromatic diazo-yu salts such as p-chlorobenzene benzene hexafluorophosphate and p-methoxybenzene dihexafluorophosphate; diphenyl rhodium hexahexa Fluorophosphate, 4,4G t-Butyl fuel Dirhoordonium salt such as dirhodonium hexafluorophosphate; Trifen Nolesnorehonum hexaphnorenophosphate phosphate, Bis [4— (Difenenoles Norehonio) Hue Ninore] It is also possible to use triarylsulfonium salts such as snorefido bishexafluorophosphate; triaryl selenium salts such as triphenyl selenium hexafluorophosphate, and the like.
  • organic acid hydrazides such as dicyandiamides, adipic acid dihydrazide and phthalic acid dihydrazide can also be used. These curing agents may be used alone or in combination of two or more.
  • the amount used is the sum of these components (A) and (B). 50-200 parts by mass is preferable with respect to 100 parts by mass in total. 80-; 150 parts by mass is more preferable.
  • the amount of the curing accelerator used is 100 mass in total of the component (A) and the component (B). To 10 parts by weight is more preferred 0.3 to 6 parts by weight.
  • the amount used is preferably 0.;! To 20 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B). 10 to 5 parts by weight is more preferable.
  • the blending ratio of the component (C) as the curing agent is out of these ranges, unreacted materials remain, and various physical properties of the cured product may be impaired.
  • curing agent (C) is liquid at 25 ° C so that the viscosity of the epoxy resin composition does not increase. It is preferable to use a curing agent.
  • liquid epoxy resin composition of the present invention has various additive components such as powdery reinforcing agents and fillers, colorants or pigments, flame retardants, and resin additives for the purpose of improving the properties of the cured product. Can be blended.
  • Examples of the powdery reinforcing agent and filler include metal oxides such as aluminum oxide and magnesium oxide, silicon compounds such as fine powder silica, fused silica, and crystalline silica, and glass beads.
  • Examples include fillers such as silica, metal hydroxides such as aluminum hydroxide, kaolin, my strength, quartz powder, graphite, and molybdenum disulfide. These blends are optional. Generally, 10 to 100 parts by mass is appropriate for 100 parts by mass of the epoxy resin composition.
  • colorants or pigments examples include titanium dioxide, molybdenum red, bitumen, ultramarine blue, cadmium yellow, cadmium red, and organic dyes.
  • flame retardants such as antimony trioxide, bromine compounds and phosphorus compounds can be mentioned.
  • the compounding of these additives is optional. Generally, 0.0;! To 30 parts by mass is compounded with respect to 100 parts by mass of the epoxy resin composition.
  • Examples of the resin additive include one kind or a combination of two or more kinds of fluorine resin, acrylic resin, silicone resin and the like.
  • the blending ratio of these resin additives is preferably 50 parts by mass or less with respect to 100 parts by mass of the epoxy resin composition of the present invention, that is, an amount in a range not impairing the original properties of the epoxy resin composition of the present invention. .
  • the liquid epoxy resin composition of the present invention can be obtained by mixing the above-mentioned essential component (A)! /, And (C) with optional component (D) as required.
  • liquid means liquid at 25 ° C.
  • the liquid epoxy resin composition of the present invention obtained as described above is heated or activated energy rays in the same manner as in the case of an ordinary thermosetting epoxy resin composition or photocurable epoxy resin composition. Can be cured by irradiation. Curing conditions are not particularly limited, but in the case of thermosetting, it can be cured by heating at a temperature of 60 to 250 ° C, preferably 80 to 200 ° C; When an active energy ray curing catalyst is used as component (C), it is irradiated with ultraviolet rays, visible light, electron beams, etc., and cured in the range of room temperature to 150 ° C.
  • the water produced during the reaction was azeotroped with epichlorohydrin, the vapor was condensed, and the epichlorohydrin was circulated in the system with a separator, and only water was removed outside the system.
  • the amount of water distilled off was 9 g, which was almost the theoretical amount.
  • the reaction mixture was cooled to 30 ° C and filtered to remove the precipitate.
  • the precipitate was washed with 50 g of epichlorohydrin and combined with the filtrate. This filtrate was distilled under reduced pressure, and epichlorohydrin was distilled off and collected.
  • a 300 ml stirred glass reactor equipped with a condenser and a water separator was charged with 10-2.2 g (0.6- (Buoxymethyl) cyclohexylmethanol (also known as: 1,4-cyclohexanedimethanol monovininoreethenore). mol), 100 g of epichloronohydrin, 37.5 g of granular sodium hydroxide, and benzyl trimethylammonium chloride O.lg, and the reactor is cooled and stirred vigorously while maintaining the temperature at 40 ° C. Time reaction was performed.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 14BD-VGE was changed to 4-butoxybutanol glycidyl etherate (CHDM-VGE) obtained in Synthesis Example 2.
  • CHDM-VGE 4-butoxybutanol glycidyl etherate
  • a liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 10 parts of 14BD-VGE were changed to 20 parts of CHDM-VGE.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 14BD—VGE was not used! /.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 10 parts of 14BD-VGE were changed to 20 parts of 1,4 butanediol diglycidyl ether (14BD-DGE).
  • a liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 10 parts of 14BD-VGE were changed to 20 parts of 1,4-cyclohexanedimethanol diglycidyl ether (CH DM-DGE).
  • the prepared epoxy resin composition was put in an aluminum cup and cured with a hot air dryer at 100 ° C for 3 hours and at 150 ° C for 4 hours to obtain a cured product.
  • the glass transition temperature was measured by differential scanning calorimetry (DSC method) using fragments of the cured product. In nitrogen, heating rate 20 ° C / min, 150
  • the temperature was raised to ° C.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 14BD-VGE was changed to CHDM-VGE.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 10 parts of 14BD-VGE were replaced with 20 parts of CHDM-VGE and HBPA-DGE was changed from 90 parts to 80 parts.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 14BD-VGE was not used.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 10 parts of 14BD-VGE were replaced with 20 parts of 14BD-DGE and HBPA-DGE was changed from 90 parts to 80 parts.
  • a liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 10 parts of 14BD-VGE were changed to 20 parts of CHDM-DGE and HBPA-DGE was changed from 90 parts to 80 parts.
  • Examples 4 to 6 blended with ⁇ -bulu ⁇ -glycidyl ether as component (B) are less viscous than epoxy resin composition of Comparative Example 4 and have a low viscosity and a curing rate. It was excellent in low water absorption.
  • 4 buroxybutanol daricidyl ether of Example 4 showed a high low viscosity effect even in a small amount.
  • 4 (vinyloxymethyl) cyclohexylmethanol glycidyl ether of Examples 5 and 6 was excellent in low water absorption.
  • the obtained photo-curable epoxy resin composition was applied to an aluminum plate to a thickness of 50 m using an applicator (YOSHIMITSU Co., Ltd., Type 2), and then irradiated with ultraviolet light equipped with a DeepUV lamp. Ultraviolet rays were irradiated for 180 seconds at 4 mW / cm 2 using an apparatus (trade name “Spot Cure SP-7” manufactured by Usio Electric Co., Ltd.). Next, post-curing was performed at 120 ° C. for 30 minutes with a hot air dryer to obtain a cured product. The glass transition temperature of the obtained cured product was measured by the DSC method in the same manner as in Example 1. As a result, it was 77 ° C.
  • a photocurable liquid epoxy resin composition was prepared by mixing 20 parts of CHDM-VGE obtained in Synthesis Example 2, 80 parts of HBPA-DGE as an epoxy resin, and 0.46 mol% of IRGACURE250 as a photothion polymerization initiator.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 8 except that CHDM-VGE was 40 parts and HBPA-DGE was 60 parts.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 8 except that 100 parts of HBPA-DGE was used and CHDM-VGE was not used.
  • UV irradiating apparatus (trade name, manufactured by Usio Electric Co., Ltd.) having a DeepUV lamp, which is obtained by applying the photocurable epoxy resin composition O.lg obtained in Examples 8 to 10 and Comparative Example 7 to an aluminum plate.
  • spot cure SP-7 was used to irradiate ultraviolet rays at 2.5 mW / cm 2 and measured the time until the resin hardened to obtain the gel time. The results are shown in Table 3.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 11 except that 40 parts of CHDM-VGE and 60 parts of celoxide 2081 were used.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 11 except that 50 parts of CHDM-VGE and 50 parts of celoxide 2081 were used. [0085] Comparative Example 8
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 11 except that 100 parts of Celoxide 2081 was used and CHDM-VGE was not used.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that CHDM-VGE was 40 parts and HBPA-DGE was 60 parts.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that 50 parts of CHDM-VGE and 50 parts of HBPA-DGE were used. [0092]
  • Example 17 A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that 50 parts of CHDM-VGE and 50 parts of HBPA-DGE were used. [0092]
  • Example 17 A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that 50 parts of CHDM-VGE and 50 parts of HBPA-DGE were used.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that HBPA-DGE was replaced with Celoxide 2081.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that 100 parts of HBPA-DGE was used and CHDM-VGE was not used.
  • the photocurable epoxy resin composition obtained in Examples 15 to 17 and Comparative Example 9 was applied to a mild steel plate using an applicator (YOSHIMITSU, YA-2 type) to a thickness of 50 ⁇ m.
  • the sample was applied and irradiated with ultraviolet rays at 10.6 mW / cm 2 for 30 seconds using an ultraviolet irradiation device equipped with a high-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd., trade name “Non-Dicarab”).
  • post-curing was performed at 150 ° C for 30 minutes with a hot air dryer to obtain a cured film.
  • curing material was performed with the following method. The results are shown in Table 5.
  • the film thickness was measured using a film thickness meter (LZ900J, manufactured by Kett Scientific Laboratory).
  • the surface condition was visually observed to check for the presence of coloring, wrinkles and cracks.
  • a cross-cut peel test was performed according to the JISK5400 method. The number of cells that remained without peeling out of 100 cells was shown.
  • a photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except for V.
  • Test example 6 The photocurable liquid epoxy resin composition obtained in Example 14, Example 17, Comparative Example 9 and Comparative Example 10 was 50 ⁇ m in thickness using an applicator (YOSHIMITSU, YA-2 type). It applied to PET film so that it might become. Next! /, Using a UV irradiation device equipped with a high-pressure mercury lamp (Sen Special Light Source Co., Ltd., trade name “NO, Nycyu Arab”) at 10.6 mW / cm 2
  • a cured film was obtained by irradiating with ultraviolet rays for 30 seconds. Test the properties of the cured film
  • the liquid epoxy resin composition of the present invention has a low viscosity, excellent workability, and a cured product obtained with a high curing speed is excellent in that the physical property value is less decreased. It was revealed that the heat resistance and the low water absorption were exhibited.
  • the liquid epoxy resin composition of the present invention can be cured by irradiation with active energy rays as shown in Examples 7 to 17; the coating film has excellent adhesion, hardness, and surface condition. Industrial availability
  • the liquid epoxy resin composition of the present invention has a low viscosity with a high curing rate, excellent workability such as casting, coating and impregnation, and a large amount of fillers such as inorganic fillers and conductive fillers.
  • the liquid state can be maintained, and furthermore, it is possible to obtain a cured product without damaging the physical properties of the main epoxy resin.
  • the cured product obtained by curing the liquid epoxy resin composition of the present invention is suitably used for applications such as molding materials, sealing materials, electrical insulating materials, adhesives, paints, and inks for inkjet printers. be able to.

Abstract

Disclosed is a liquid epoxy resin composition having high curing rate and excellent viscosity lowering effect, wherein physical properties of an epoxy resin serving as the base do not deteriorate much. The liquid epoxy resin composition is characterized by containing the following components (A), (B) and (C). (A) an epoxy resin (B) an α-vinyloxy-ω-glycidylether compound represented by the following general formula (1): CH2=CH-O-X-O-G (1) (In the formula, X represents a divalent linear or branched alkylene group having 2-12 carbon atoms or an alicyclic alkylene group containing a cyclohexylene group; and G represents a glycidyl group.) (C) a curing agent

Description

明 細 書  Specification
液状エポキシ樹脂組成物及びエポキシ樹脂硬化物  Liquid epoxy resin composition and cured epoxy resin
技術分野  Technical field
[0001] 本発明は、液状エポキシ樹脂組成物及びその硬化物に関し、更に詳しくは、 α — ビュルォキシ ω—グリシジルエーテル化合物を反応性希釈剤として含む液状ェポ キシ樹脂組成物及びその硬化物に関するものである。 TECHNICAL FIELD [0001] The present invention relates to a liquid epoxy resin composition and a cured product thereof, and more particularly to a liquid epoxy resin composition containing an α-buoxy ω -glycidyl ether compound as a reactive diluent and a cured product thereof. It is.
背景技術  Background art
[0002] エポキシ樹脂は、耐熱性、接着性、耐水性、機械的強度及び電気特性等に優れて いることから、接着剤、塗料、土木建築用材料、電気 ·電子部品の絶縁材料、封止材 料等として広く用いられている。なかでも、常温で液状や固体状であるビスフエノール Α型のエポキシ樹脂は、各種物性的に、更には経済的にも優れることから、上記に示 したような各種用途に最も多く使用されている。  [0002] Epoxy resins are excellent in heat resistance, adhesion, water resistance, mechanical strength, electrical properties, etc., so adhesives, paints, materials for civil engineering and construction, insulating materials for electrical and electronic parts, sealing Widely used as a material. Among these, bisphenol-type epoxy resins that are liquid or solid at room temperature are most commonly used in various applications as shown above because they are excellent in various physical properties and economically. .
[0003] このようなエポキシ樹脂は一般に粘度が高いため、実際の使用ではハンドリング性 の向上や他材料との混合性を良くするために未反応或いは反応タイプの各種希釈 剤と併用されている。この場合、未反応型の希釈剤を用いると移行等、硬化後に変 化が起き易いのに対し、反応型のものは硬化物の安定性に優れるといった長所があ  [0003] Since such an epoxy resin generally has a high viscosity, in actual use, it is used in combination with various unreacted or reactive type diluents in order to improve handling properties and improve mixing with other materials. In this case, when unreacted diluent is used, changes such as migration are likely to occur after curing, whereas reactive type has the advantage of excellent stability of the cured product.
[0004] 従来、反応性希釈剤としては、ブチルダリシジルエーテル、ァリルグリシジルエーテ ル、フエニルダリシジルエーテル等の低分子量モノグリシジルエーテルの蒸留精製品 が公知である力 低分子量モノグリシジノレエーテルは非常に強!/、皮膚刺激性と変異 原性を持っため、最近ではより低毒性の 1 ,6—へキサンジオールやネオペンチルグリ コール等の 2価のアルコールのジグリシジルエーテルが使用されることが多くなつてき た。し力、し、これらのジグリシジルエーテルは、 2価のアルコールとェピクロルヒドリンの 反応から得られるため、残存塩素量が多ぐ使用分野が限定されるという欠点があつ た。 [0004] Conventionally, as a reactive diluent, distillation purified products of low molecular weight monoglycidyl ethers such as butyldaricidyl ether, allylic glycidyl ether, and phenyldaricidyl ether are known. Since ethers are very strong! / And have skin irritation and mutagenic properties, diglycidyl ethers of dihydric alcohols such as 1,6-hexanediol and neopentylglycol, which are less toxic, have recently been used. There has been a lot going on. However, since these diglycidyl ethers are obtained from the reaction of dihydric alcohol and epichlorohydrin, there is a drawback that the field of use is limited because of the large amount of residual chlorine.
[0005] このため、塩素の含有量を低下させた反応性希釈剤も検討されており、例えば、特 許文献 1では、蒸留精製したジグリシジル体純度が 90質量%以上、全塩素 0.3質量 %以下の脂肪族エポキシ化合物とエポキシ樹脂用硬化剤を含む液状エポキシ樹脂 組成物等が開示されている。し力、しながら、残存塩素量を低減させたジグリシジルェ 一テルにおいても、粘性低下効果は十分ではなぐまた、これらのジグリシジルエー テルの添加により、得られる硬化物の機械的物性が低下したり、吸水性及び耐熱性 が低下するという問題があった。 [0005] For this reason, reactive diluents with a reduced chlorine content have also been studied. For example, in Patent Document 1, the purity of a diglycidyl compound purified by distillation is 90% by mass or more, and the total chlorine is 0.3% by mass. A liquid epoxy resin composition containing a% or less aliphatic epoxy compound and a curing agent for epoxy resin is disclosed. However, even diglycidyl ether with reduced residual chlorine content is not sufficiently effective in reducing the viscosity.Addition of these diglycidyl ethers may decrease the mechanical properties of the resulting cured product. There was a problem that water absorption and heat resistance were lowered.
[0006] また、従来のエポキシ樹脂組成物は、酸無水物等の硬化剤を配合し熱硬化を行つ ているが、硬化速度が遅いことが問題となっており、生産効率の向上のため、硬化が 短時間で終了することが強く要求されていた。  [0006] Although conventional epoxy resin compositions are thermally cured by adding a curing agent such as an acid anhydride, there is a problem that the curing speed is slow, and this is in order to improve production efficiency. There was a strong demand for curing to be completed in a short time.
[0007] 特許文献 1 :特開 2003— 73453号公報  [0007] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-73453
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上記のような問題に鑑みなされたものであり、硬化速度が速ぐ粘度を 低下させる効果に優れ、し力、もベースとなるエポキシ樹脂の物性低下の少な!/、液状 エポキシ樹脂組成物を提供しょうとするものである。 [0008] The present invention has been made in view of the above-described problems, and is excellent in the effect of reducing the viscosity at a high curing speed, and has low strength and physical property reduction of the base epoxy resin! /, A liquid epoxy resin composition is to be provided.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者は、前記の課題を解決するため鋭意検討を重ねた結果、従来のジグリシ ジルエーテルに替えて、ビュル基とグリシジル基の 2官能基を有する化合物を反応性 希釈剤として用いることにより、上記課題が達成されることを見出し、本発明に至った[0009] As a result of intensive studies to solve the above-mentioned problems, the present inventor uses a compound having a bifunctional group of a bur group and a glycidyl group as a reactive diluent instead of the conventional diglycidyl ether. As a result, the inventors have found that the above-mentioned problems can be achieved and have reached the present invention.
Yes
[0010] 即ち、本発明は、以下に示す液状エポキシ樹脂組成物及び硬化物である。  That is, the present invention is the following liquid epoxy resin composition and cured product.
(1)次の成分 (A)、(B)および (C)  (1) The following components (A), (B) and (C)
(A)エポキシ樹脂  (A) Epoxy resin
(B)下記一般式(1)  (B) The following general formula (1)
CH =CH O X O G (1)  CH = CH O X O G (1)
2  2
(式中、 Xは炭素数 2〜; 12の 2価の直鎖または分岐鎖アルキレン基またはシクロへ キシレン基を含む脂環式アルキレン基を表し、 Gはグリシジル基を表す) で示される α—ビュルォキシ ω—グリシジルエーテル化合物  (Wherein X represents a C2-C12 divalent linear or branched alkylene group or alicyclic alkylene group containing a cyclohexylene group, and G represents a glycidyl group) α— Buroxy ω-glycidyl ether compound
(C)硬化剤 を含有することを特徴とする液状エポキシ樹脂組成物。 (C) Curing agent A liquid epoxy resin composition comprising:
[0011] (2)成分 (A)が、芳香族エポキシ樹脂および/または脂環式エポキシである前記の 液状エポキシ樹脂組成物。 [0011] (2) The liquid epoxy resin composition as described above, wherein the component (A) is an aromatic epoxy resin and / or an alicyclic epoxy.
[0012] (3)成分 (A)力 ビスフエノール A型エポキシ樹脂、ビスフエノール F型エポキシ樹脂 、水素化ビスフエノール A型エポキシ樹脂および水素化ビスフエノール F型エポキシ 樹脂からなる群から選ばれる少なくとも 1種のエポキシ樹脂である前記の液状ェポキ シ樹脂組成物。  [0012] (3) Component (A) Strength At least 1 selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin and hydrogenated bisphenol F type epoxy resin The liquid epoxy resin composition as described above, which is a kind of epoxy resin.
[0013] (4)成分 (A)が、少なくとも 1個のエポキシシクロへキシル基を含む脂環式エポキシド である前記の液状エポキシ樹脂組成物。  [0013] (4) The liquid epoxy resin composition as described above, wherein component (A) is an alicyclic epoxide containing at least one epoxycyclohexyl group.
[0014] (5)成分(B) 、 4—ビュルォキシブタノールグリシジルエーテルまたは 4 (ビュル ォキシメチル)ーシクロへキシルメタノールグリシジルエーテルである前記の液状ェポ キシ樹脂組成物。 [0014] The liquid epoxy resin composition as described above, which is (5) component (B), 4-butoxybutanol glycidyl ether or 4 (butoxymethyl) -cyclohexyl methanol glycidyl ether.
[0015] (6) 100質量部の成分 (A)に対して、成分(B)を 1〜 150質量部含有する前記の液 状エポキシ樹脂組成物。  [0015] (6) The liquid epoxy resin composition described above containing 1 to 150 parts by mass of the component (B) with respect to 100 parts by mass of the component (A).
[0016] (7)前記(1)な!/、し (6)の液状エポキシ樹脂組成物を硬化して得られるエポキシ樹脂 硬化物。  [0016] (7) A cured epoxy resin obtained by curing the liquid epoxy resin composition of (1) above! /, (6).
発明の効果  The invention's effect
[0017] 本発明のエポキシ樹脂組成物は硬化速度が速ぐ低粘度であるため注型、塗布、 含浸等の作業性に優れ、無機充填剤、導電性充填剤等の充填剤を多量に配合して も液状を保つことができ、更に、主剤となるエポキシ樹脂の物性を損なうことなく硬化 物を得ること力 Sできる。したがって本発明のエポキシ樹脂組成物を硬化して得られる 硬化物は、成形材料、封止材料、電気絶縁材料、接着剤、塗料、インクジェットプリン タ用インク等の用途に好適に使用することができる。  [0017] Since the epoxy resin composition of the present invention has a low curing speed and a low viscosity, it is excellent in workability such as casting, coating, and impregnation, and contains a large amount of fillers such as inorganic fillers and conductive fillers. Even in this case, the liquid state can be maintained, and furthermore, the ability to obtain a cured product without impairing the physical properties of the main epoxy resin can be obtained. Therefore, the cured product obtained by curing the epoxy resin composition of the present invention can be suitably used for applications such as molding materials, sealing materials, electrical insulating materials, adhesives, paints, and inks for inkjet printers. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] (A)エポキシ樹脂  [0018] (A) Epoxy resin
本発明の液状エポキシ樹脂組成物にぉレ、て、主剤として用いる成分 (A)のェポキ シ樹脂としては、特に限定されるものではないが、好ましいものとして、芳香族ェポキ シ樹脂、脂環式エポキシ樹脂等が挙げられる。 [0019] このうち、芳香族エポキシ樹脂の例としては、ビスフエノール A型エポキシ樹脂、ビス フエノール F型エポキシ樹脂、ビスフエノール S型エポキシ樹脂、ビフエノール型ェポ キシ樹脂、ナフタレン型エポキシ樹脂等のジグリシジルエーテル類、ァミノフエノール 類等から得られるグリシジルァミン型エポキシ樹脂、フエノールノポラックから得られる エポキシ樹脂、クレゾールノポラックから得られるエポキシ樹脂、ビスフエノール Aのノ ポラックエポキシ樹脂、フエノール類とヒドロキシベンズアルデヒド類から得られるノボ ラックエポキシ樹脂等の多官能エポキシ樹脂などが挙げられる。 The epoxy resin of component (A) used as the main ingredient in the liquid epoxy resin composition of the present invention is not particularly limited, but is preferably an aromatic epoxy resin or an alicyclic resin. An epoxy resin etc. are mentioned. [0019] Among these, examples of aromatic epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenol type epoxy resins, and naphthalene type epoxy resins. Glycidylamine type epoxy resins obtained from glycidyl ethers, aminophenols, etc., epoxy resins obtained from phenol nopolac, epoxy resins obtained from cresol nopolac, nopolak epoxy resins of bisphenol A, phenols and hydroxy Examples thereof include polyfunctional epoxy resins such as novolak epoxy resins obtained from benzaldehydes.
[0020] また、脂環式エポキシ樹脂の例としては、上記の芳香族エポキシ樹脂の芳香環を 直接水素化したエポキシ樹脂または多価フエノール類を水素化した後、ェピクロルヒ ドリンと反応させることにより得られるエポキシ樹脂等が挙げられる。より具体的には、 水素化ビスフエノール A型エポキシ樹脂、水素化ビスフエノール F型エポキシ樹脂、 水素化ビフエノール型エポキシ樹脂、水素化フエノールノポラック型エポキシ樹脂、 水素化クレゾールノポラックエポキシ樹脂、水素化ナフタレン型エポキシ樹脂等が挙 げられる。更に、これらの化合物の他に、少なくとも 1個のエポキシシクロへキシル基 を含む脂環式エポキシドを用いることもできる。当該脂環式エポキシドは、不飽和基 を 2個以上有し、そのうちの少なくとも 1個がシクロへキセン基である環状脂肪族不飽 和化合物に、過酢酸を作用させてシクロへキセン基の二重結合をエポキシ化したェ ポキシ樹脂であり、 1分子中にエポキシ基を 2個以上有するものが好ましい。具体的 には、例えば、 3,4—エポキシシクロへキシルメチルー 3',4' エポキシシクロへキサ ンカルボキシレート(UCC社製商品名 UVR— 6110および UVR— 6105、ダイセ ル化学工業 (株)製商品名 セロキサイド 2021P等)、ビス(3,4 エポキシシクロへキ シルメチル)アジペート(UCC社製商品名 UVR— 6128等)、 ε 力プロラタトン変 性 3,4—エポキシシクロへキシルメチルー 3',4 '—エポキシシクロへキサンカルボキシ レート (ダイセル化学工業 (株)製商品名 セロキサイド 2081等)、 1ーメチルー 4一(2 メチルォキシラニル) 7 ォキサビシクロ [4· 4. 0]ヘプタン(ダイセル化学(株)製 商品名 セロキサイド 3000等)が挙げられる。  [0020] Further, as an example of the alicyclic epoxy resin, an epoxy resin obtained by directly hydrogenating the aromatic ring of the above aromatic epoxy resin or a polyhydric phenol is hydrogenated and then reacted with epichlorohydrin. And epoxy resin. More specifically, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, hydrogenated biphenol type epoxy resin, hydrogenated phenol nopolac type epoxy resin, hydrogenated cresol nopolac epoxy resin, hydrogenated type Naphthalene type epoxy resin. In addition to these compounds, alicyclic epoxides containing at least one epoxycyclohexyl group can also be used. The alicyclic epoxide has two or more unsaturated groups, at least one of which is a cyclohexene group, and is reacted with peracetic acid to form a cyclohexene group. Epoxy resins having epoxidized heavy bonds, preferably having two or more epoxy groups in one molecule. Specifically, for example, 3,4-epoxycyclohexylmethyl-3 ′, 4 ′ epoxycyclohexanecarboxylate (trade names UVR-6110 and UVR-6105 manufactured by UCC, products manufactured by Daicel Chemical Industries, Ltd.) Name Celoxide 2021P, etc.), bis (3,4 epoxycyclohexylmethyl) adipate (trade name UVR-6128, etc., manufactured by UCC), ε-force prolatatone modification 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxy Cyclohexanecarboxylate (Daicel Chemical Industries, Ltd., trade name: Celoxide 2081, etc.), 1-methyl-4-one (2 methyloxylanyl) 7 oxabicyclo [4.4.0] heptane (Daicel Chemicals, Inc., trade name) Celoxide 3000 etc.).
[0021] これらの中で、ビスフエノール Α型エポキシ樹脂、ビスフエノール F型エポキシ樹脂、 水素化ビスフエノール A型エポキシ樹脂、及び水素化ビスフエノール F型エポキシ樹 脂を用いることが、低粘度のエポキシ樹脂が得られ、耐湿性及び耐熱性のバランスに 優れる硬化物が得られるという点で好ましい。また、エポキシシクロへキシル基を含む 脂環式エポキシドは、硬化性が良好で硬化膜の強度が高ぐ基材への密着性も良好 であり、インクジェットプリンタ用インクとしての特性に優れる点で好ましい。 [0021] Among these, bisphenol Α type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, and hydrogenated bisphenol F type epoxy resin Use of fat is preferable in that a low-viscosity epoxy resin can be obtained and a cured product having a good balance between moisture resistance and heat resistance can be obtained. In addition, an alicyclic epoxide containing an epoxycyclohexyl group is preferable in terms of excellent properties as an ink for an ink jet printer, since it has good curability and high adhesion to a base material having a high cured film strength. .
[0022] (B) a—ビュルォキシ ω—グリシジルエーテル化合物 [0022] (B) a-Buroxy ω-glycidyl ether compound
本発明の液状エポキシ樹脂組成物において、成分 (Β)として用いられる α—ビニ ノレォキシ ω—グリシジルエーテル化合物は、反応性希釈剤として作用するもので あり、下記一般式(1 )で表される化合物である。  In the liquid epoxy resin composition of the present invention, the α-vininoleoxy ω-glycidyl ether compound used as the component (Β) acts as a reactive diluent and is a compound represented by the following general formula (1) It is.
CH = CH Ο X Ο G ( 1 )  CH = CH Ο X Ο G (1)
2  2
(式中、 Xは炭素数 2〜; 12の 2価の直鎖または分岐鎖アルキレン基またはシクロへ キシレン基を含む脂環式アルキレン基を表し、 Gはグリシジル基を表す)  (Wherein X represents a C2-C12 divalent linear or branched alkylene group or an alicyclic alkylene group containing a cyclohexylene group, and G represents a glycidyl group)
[0023] 本発明の液状エポキシ樹脂組成物において、成分 (B)として用いられる α—ビニ ルォキシー ω—グリシジルエーテル化合物の具体的な例としては、 2—ビュルォキシ エタノールグリシジルエーテル、 3—ビュルォキシプロパノールグリシジルエーテル、 4 ビュルォキシブタノールグリシジルエーテル、 5—ビュルォキシペンタノールダリ シジルエーテル、 6—ビュルォキシへキサノールグリシジルエーテル、 3—ビュルォキ シー2,2 ジメチループロパノールグリシジルエーテル、 5—ビュルォキシー3 メチ ノレペンタノールグリシジルエーテル、 4 (ビュルォキシメチル)ーシクロへキシルメタ ノールグリシジルエーテルなどが挙げられる。  [0023] Specific examples of the α-vinyloxy ω-glycidyl ether compound used as component (B) in the liquid epoxy resin composition of the present invention include 2-Buroxyethanol glycidyl ether, 3-Buroxypropanol Glycidyl ether, 4-Buroxybutanol glycidyl ether, 5-Buroxypentanol darcydyl ether, 6-Buroxyhexanol glycidyl ether, 3-Buroxy 2,2 dimethyl-propanol glycidyl ether, 5-Buroxy-3 methylol Examples thereof include pentanol glycidyl ether, 4 (butoxymethyl) -cyclohexyl methanol glycidyl ether, and the like.
[0024] これらの化合物の中でも、粘度を低下させる効果 (低粘度化効果)の点において、 4  [0024] Among these compounds, in terms of the effect of lowering the viscosity (lowering viscosity effect), 4
ビュルォキシブタノールグリシジルエーテルが好ましぐまた、吸水性が低ぐ耐熱 性が良い点で、 4 (ビュルォキシメチル)ーシクロへキシルメタノールグリシジルエー テルが好ましい。  4 (Buroxymethyl) -cyclohexylmethanol glycidyl ether is preferred from the standpoint that buloxybutanol glycidyl ether is preferred, and water absorption is low and heat resistance is good.
[0025] 成分(Β)である上記 α ビュルォキシ ω—グリシジルエーテル化合物の製造方 法は特に限定されないが、例えば、炭素数 2〜; 12の直鎖、分岐状またはシクロへキ シレン基を含む α, ω アルカンジオールのモノビュルエーテルと、ェピハロヒドリンと を反応させる方法を挙げることができる。ここで使用するェピハロヒドリンとしては、ェ ピクロノレヒドリン、ェピブ口モヒドリン. βーメチノレエピクロノレヒドリン. βーメチノレエピブ 口モヒドリン、 β メチルェピョ一ドヒドリン等が好ましぐェピクロルヒドリンがより好まし い。 [0025] The production method of the above-mentioned α-butoxy ω-glycidyl ether compound as the component (な い) is not particularly limited. For example, α-containing a linear, branched or cyclohexylene group having 2 to 12 carbon atoms. , Ω Alkanediol monobutyl ether and epihalohydrin can be reacted. The epihalohydrins used here are epiclorehydrin, epiporphine mohydrin. Β-methinorepichronohydrin. Β-methinoreepib Epic chlorohydrin is preferred, such as oral mohydrin and β-methylepyohydrin.
[0026] 上記の、 α, ω アルカンジオールのモノビュルエーテルとェピハロヒドリンとの反応 は、例えば、(1 )硫酸、三弗化ホウ素ェチルエーテル、四塩化錫等の酸性触媒また は第 4級アンモニゥム塩類、第 4級ホスホニゥム塩類、クラウンエーテル類等の相間移 動触媒の存在下に、まず、ハロヒドリンエーテル体を製造し、次いで、このハロヒドリン エーテル体を水酸化ナトリウム等の脱ハロゲン化水素剤と反応させて閉環せしめる 2 段階法、または(2)水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金 属水酸化物の存在下に、一段階で脱ハロゲン化水素反応を行!/、グリシジルエーテ ルを得る 1段階法等により行うことができる。  [0026] The above-mentioned reaction between the monobule ether of α, ω alkanediol and epihalohydrin is, for example, (1) an acidic catalyst such as sulfuric acid, boron trifluoride ether ether, tin tetrachloride, or quaternary ammonium salts, In the presence of a phase transfer catalyst such as quaternary phosphonium salts and crown ethers, first, a halohydrin ether is produced, and then this halohydrin ether is reacted with a dehydrohalogenating agent such as sodium hydroxide. In two steps, or (2) Dehydrohalogenation in one step in the presence of alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, etc./, glycidyl It can be done by a one-step method to obtain ether.
[0027] 反応終了後の α ビュルォキシ ω—グリシジルエーテル化合物の単離は、常法 によって行うことができ、例えば、炭化水素等の非水溶媒を加え、次いで水洗して副 生塩を溶出除去した後、脱溶媒、脱水、微量に析出する塩のろ過または固液分離を 行うことによって、 目的の α—ビュルォキシ ω—グリシジルエーテル化合物を得る こと力 Sでさる。  [0027] After completion of the reaction, the α-butoxy ω-glycidyl ether compound can be isolated by a conventional method. For example, a non-aqueous solvent such as a hydrocarbon is added, followed by washing with water to elute and remove the by-product salt. After that, by removing the solvent, dehydrating, filtering the salt precipitated in a trace amount or solid-liquid separation, it is possible to obtain the target α-buoxy ω-glycidyl ether compound with the force S.
[0028] このようにして得られた α—ビュルォキシ ω—グリシジルエーテル化合物は、そ のまま本発明の液状エポキシ樹脂組成物の原料として用いることも可能である力 更 に、蒸留精製等により不純物を除去して用いることもできる。このように不純物を除去 することにより、架橋による粘度の上昇を防止することができ、また、得られる硬化物 の耐候性を向上させることができる。  [0028] The α-butoxy ω-glycidyl ether compound thus obtained can be used as it is as a raw material for the liquid epoxy resin composition of the present invention. It can also be used after removing. By removing impurities in this way, an increase in viscosity due to crosslinking can be prevented, and the weather resistance of the resulting cured product can be improved.
[0029] 蒸留精製は、液温を α ビュルォキシ ω—グリシジルエーテル化合物の二量化  [0029] Distillation purification is performed by dimerizing the liquid temperature of α-butoxy ω-glycidyl ether compound.
(重合)が起こらない温度に保持しながら減圧下で行うことが好ましい。この蒸留精製 後の α ビュルォキシ ω—グリシジルエーテル化合物の好ましい純度は 90質量 % (以下、「%」と示す)以上であり、より好ましくは 95%以上である。  It is preferable to carry out under reduced pressure while maintaining a temperature at which (polymerization) does not occur. The preferable purity of the α-butoxy ω-glycidyl ether compound after purification by distillation is 90% by mass (hereinafter referred to as “%”) or more, more preferably 95% or more.
[0030] 成分(Β)である α ビュルォキシ ω—グリシジルエーテル化合物の添加量は、 成分 (Α)であるエポキシ樹脂 100質量部に対して;!〜 150質量部が好ましく、 3〜; 12 0質量部がより好ましく 10〜; 100質量部が特に好ましい。成分 (Β)の割合が 1質量部 未満であると粘度の低下効果が少なくなる場合があり、また 1 50質量部を超えると硬 化物の耐熱性等の特性が低下する場合がある。 [0030] The amount of the α-butoxy ω-glycidyl ether compound as the component (Β) is preferably;! To 150 parts by mass, preferably 3 to; 120 masses with respect to 100 parts by mass of the epoxy resin as the component (Α). More preferred is 10 to 100 parts by mass. If the proportion of component (Β) is less than 1 part by mass, the effect of decreasing the viscosity may be reduced, and if it exceeds 150 parts by mass, the effect will be hard. Properties such as heat resistance of the chemical compound may deteriorate.
[0031] (C)硬化剤 [0031] (C) Curing agent
本発明の液状エポキシ樹脂組成物に用いる成分(C)の硬化剤としては、従来から この分野で使用されているものを特に制限なく使用することができ、例えば、酸無水 物系硬化剤、フエノール系硬化剤、アミン系硬化剤、カチオン重合触媒等が挙げら れる。なかでも、より低粘度が要求される場合には酸無水物系硬化剤が好ましぐより 高度な耐湿性ゃ耐加水分解性が要求される場合にはフエノール系硬化剤が好ましく 、低温硬化が必要な場合には、アミン系硬化剤ゃカチオン重合触媒が好ましい。  As the curing agent of the component (C) used in the liquid epoxy resin composition of the present invention, those conventionally used in this field can be used without particular limitation. For example, an acid anhydride curing agent, phenol Examples thereof include a system curing agent, an amine curing agent, and a cationic polymerization catalyst. In particular, when a lower viscosity is required, an acid anhydride-based curing agent is preferable. When a higher moisture resistance or hydrolysis resistance is required, a phenol-based curing agent is preferable, and low temperature curing is preferable. If necessary, an amine curing agent is preferably a cationic polymerization catalyst.
[0032] 成分(C)のうち、酸無水物系硬化剤の具体的な例としては、無水フタル酸、無水トリ メリット酸、無水ピロメリット酸等の芳香族酸無水物類、無水テトラヒドロフタル酸、無水 メチルテトラヒドロフタル酸、無水へキサヒドロフタル酸、無水メチルへキサヒドロフタル 酸、無水メチルエンドメチレンテトラヒドロフタル酸、無水シクロドデセニルコハク酸、無 水トリアルキルテトラヒドロフタル酸等の環状脂肪族酸無水物類及びこれらの混合物 や変性物等を挙げることができる。  [0032] Among the component (C), specific examples of the acid anhydride curing agent include aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and tetrahydrophthalic anhydride. , Cyclic fats such as methyltetrahydrophthalic anhydride, hexahexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, cyclododecenyl succinic anhydride, and anhydrous trialkyltetrahydrophthalic acid And aromatic anhydrides, and mixtures and modified products thereof.
[0033] 酸無水物系硬化剤には、さらに一般的にこの分野で使われている硬化促進剤を用 いること力 Sできる。硬化促進剤の具体的な例としては、例えば、ペンジノレジメチルアミ ン、トリス(ジメチルアミノメチル)フエノール、ジメチルシクロへキシルァミン等の 3級ァ ミン類;テトラエチルアンモニゥムブロマイド、テトラプチルアンモニゥムブロマイド等の 4級アンモニゥム塩類; 1ーシァノエチルー 2—ェチルー 4ーメチルイミダゾール、 2— ェチルー 4ーメチルイミダゾール、 1一べンジルー 2—メチルイミダゾール等のイミダゾ ール類;トリフエニルホスフィン等のホスフィン類;テトラフェニルホスホニゥムブロマイド 、テトラー n—ブチルホスホニゥムブロマイド等の 4級ホスホニゥム塩類等を挙げること ができる。これらの硬化促進剤は単独でまたは 2種以上を混合して使用することがで きる。  [0033] As the acid anhydride curing agent, a curing accelerator generally used in this field can be used. Specific examples of curing accelerators include, for example, tertiary amines such as pendinoledimethylamine, tris (dimethylaminomethyl) phenol, dimethylcyclohexylamine; tetraethylammonium bromide, tetraptylammonium. Quaternary ammonium salts such as bromide; imidazoles such as 1-cyanoethyl-2-ethyl 4-methyl imidazole, 2-ethyl 4-methyl imidazole, 1 benzyl 2-methyl imidazole; phosphines such as triphenyl phosphine; tetra Examples include quaternary phosphonium salts such as phenylphosphonium bromide and tetra-n-butylphosphonium bromide. These curing accelerators can be used alone or in admixture of two or more.
[0034] また、成分(C)のうち、フエノール系硬化剤の具体的な例としては、カテコール、レ ゾルシン、ハイドロキノン、ビスフエノール F、ビスフエノール A、ビスフエノール S、ビフ ェノール、フエノールノボラック類、クレゾ一ルノボラック類、ビスフエノーノレ A等の 2価 フエノールのノポラック化物類、トリスヒドロキシフエニルメタン類、ァラルキルポリフエノ ール類、ジシクロペンタジエンポリフエノール類等を挙げることができる。 [0034] Among the component (C), specific examples of phenolic curing agents include catechol, resorcin, hydroquinone, bisphenol F, bisphenol A, bisphenol S, biphenol, phenol novolaks, Cresolol novolacs, divalent phenol nopolacs such as bisphenolanol A, trishydroxyphenylmethanes, aralkylpolyphenols And dicyclopentadiene polyphenols.
[0035] 更に、成分(C)のァミン系硬化剤の具体的な例としては、トリェチルァミン、ベンジ ルジメチルァミン、 2,4,6—トリス(ジメチルアミノメチル)フエノール、 1,8—ジァザビシ クロー(5.4.0)—ゥンデセンー7、 1,5—ジァザビシクロー(4.3.0)—ノネンー 7等の 3 級ァミン類及びその塩類; 1ーシァノエチルー 2—ェチルー 4ーメチルイミダゾール、 2 ーェチルー 4ーメチルイミダゾール、 1一べンジルー 2—メチルイミダゾール、 2—メチ ノレイミダゾーノレ、トリスジメチルアミノメチルイミダゾール及び 2—フエ二ルイミダゾール 等のイミダゾール類;トリェチルァミン、ベンジルジメチルァミン、 2,4,6—トリス(ジメチ ノレアミノメチノレ)フエノール、 1,8—ジァザビシクロ一(5.4.0)—ゥンデセン一 7、 1,5- ジァザビシクロー(4.3.0)—ノネンー 7等の 3級ァミン類及びその塩類;メタキシレンジ ァミン、ジアミノジフエニルメタン、ジアミノジフエニルスルホン等の芳香族ポリアミン類 ;ペンタエチレンへキサミン、テトラエチレンペンタミン、トリエチレンテトラミン、ジェチ レントリアミン等の脂肪族ポリアミン類;シクロへキサンジァミン、 1,3-ビス(アミノメチ ノレ)シクロへキサン、ノルボルナジァミン、イソホロンジァミン、 N—アミノエチルピペラ ジン、 3,9—ビス(3—ァミノプロピル)一 2,4,8,10—テトラオキサスピロ [5.5]ゥンデ力 ン等の脂環族ポリアミン類及びそれらの混合物や、カルボン酸類、エポキシ化合物、 メタクリル酸メチル、フエノール 'ホルムアルデヒド、アクリロニトリル等による変性物等 を挙げること力 Sでさる。 [0035] Further, specific examples of the amine-based curing agent of component (C) include triethylamine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5.4. 0) —undecene-7, 1,5-diazabicyclo (4.3.0) —nonene 7 and other tertiary amines and their salts; 1-cyanethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 1 Imidazoles such as 2-methylimidazole, 2-methinoreidamidole, trisdimethylaminomethylimidazole and 2-phenylimidazole; triethylamine, benzyldimethylamine, 2,4,6-tris (dimethinoreaminomethinole ) Phenols, 1,8-Diazabicyclo (5.4.0) —Undecene 7, 1,5-Diazabicyclo (4.3.0) —No Tertiary amines such as N-7 and salts thereof; aromatic polyamines such as meta-xylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone; pentaethylenehexamine, tetraethylenepentamine, triethylenetetramine, and jet triethylenetriamine Aliphatic polyamines: cyclohexanediamine, 1,3-bis (aminomethylol) cyclohexane, norbornadiamine, isophoronediamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) ) Modification by alicyclic polyamines such as 2,4,8,10-tetraoxaspiro [5.5] unde force and mixtures thereof, carboxylic acids, epoxy compounds, methyl methacrylate, phenol 'formaldehyde, acrylonitrile, etc. Lifting things with power S
[0036] 更にまた、成分(C)のカチオン重合触媒としては、ノレイス酸を用いることが可能であ り、例えば、 BF 、 PF 、 AsF 、 SbF及びこれらのルイス酸とメチルァミン、ェチノレアミ  [0036] Furthermore, as the cation polymerization catalyst of component (C), it is possible to use noreic acid. For example, BF, PF, AsF, SbF, and these Lewis acids and methylamine,
3 5 5 6  3 5 5 6
ン、 n—ブチルァミン等の有機一級アミン類との錯体、好ましくはェチルァミンとの BF  , Complexes with organic primary amines such as n-butylamine, preferably BF with ethylamine
3 錯体、及びトリフエニルホスフィン等を使用することも可能である。  It is also possible to use 3 complexes and triphenylphosphine.
[0037] また、加熱または紫外線、可視光線の照射により該触媒が分解して硬化剤として作 用する熱カチオン重合触媒や光力チオン重合触媒として、芳香族ジァゾニゥム塩、ジ ァリールョードニゥム塩、トリアリールスルホニゥム塩、トリアリールセレニウム塩等が挙 げられる。具体的には、 p—クロ口ベンゼンジァゾニゥムへキサフルォロホスフェート、 p—メトキシベンゼンジァゾニゥムへキサフルォロホスフェート等の芳香族ジァゾユウ ム塩;ジフエ二ルョードニゥムへキサフルォロホスフェート、 4,4ージー t—ブチルフエ 二ルョードニゥムへキサフルォロホスフェート等のジァリールョードニゥム塩;トリフエ二 ノレスノレホニゥムへキサフノレオ口ホスフェート、ビス一 [4— (ジフエニノレスノレホニォ)フエ 二ノレ]スノレフイド ビス へキサフルォロホスフェート等のトリァリ一ルスルホニゥム塩; トリフエ二ルセレニウムへキサフルォロホスフェート等のトリアリールセレニウム塩等を 使用することも可能である。 [0037] In addition, as a thermal cationic polymerization catalyst or a light-power thione polymerization catalyst that is decomposed by heating or irradiation with ultraviolet rays or visible light to act as a curing agent, aromatic diazonium salts, diarylhodonium Salts, triarylsulfonium salts, triarylselenium salts and the like. Specifically, aromatic diazo-yu salts such as p-chlorobenzene benzene hexafluorophosphate and p-methoxybenzene dihexafluorophosphate; diphenyl rhodium hexahexa Fluorophosphate, 4,4G t-Butyl fuel Dirhoordonium salt such as dirhodonium hexafluorophosphate; Trifen Nolesnorehonum hexaphnorenophosphate phosphate, Bis [4— (Difenenoles Norehonio) Hue Ninore] It is also possible to use triarylsulfonium salts such as snorefido bishexafluorophosphate; triaryl selenium salts such as triphenyl selenium hexafluorophosphate, and the like.
[0038] この他、ジシアンジアミド類、アジピン酸ジヒドラジッド及びフタル酸ジヒドラジッド等 の有機酸ヒドラジッド類等も用いることができる。これらの硬化剤は、単独で使用して も良いし、 2種以上を併用して使用することも可能である。  In addition, organic acid hydrazides such as dicyandiamides, adipic acid dihydrazide and phthalic acid dihydrazide can also be used. These curing agents may be used alone or in combination of two or more.
[0039] 成分(C)として、上記酸無水物系硬化剤、アミン系硬化剤またはフエノール系硬化 剤を使用する場合の使用量は、これらの合計として、成分 (A)および成分 (B)の合 計 100質量部に対して、 50〜200質量部が好ましぐ 80〜; 150質量部がより好まし い。  [0039] When the above acid anhydride curing agent, amine curing agent or phenol curing agent is used as the component (C), the amount used is the sum of these components (A) and (B). 50-200 parts by mass is preferable with respect to 100 parts by mass in total. 80-; 150 parts by mass is more preferable.
[0040] また、成分(C)として、上記酸無水物系硬化剤と硬化促進剤とを併用する場合の硬 化促進剤の使用量は、成分 (A)と成分 (B)の合計 100質量部に対して、 0.;!〜 10質 量部が好ましぐ 0.3〜6質量部がより好ましい。  [0040] Further, as the component (C), when the acid anhydride curing agent and the curing accelerator are used in combination, the amount of the curing accelerator used is 100 mass in total of the component (A) and the component (B). To 10 parts by weight is more preferred 0.3 to 6 parts by weight.
[0041] 更に、成分 (C)としてカチオン重合触媒を使用する場合の使用量は、成分 (A)と成 分(B)の合計 100質量部に対し、 0.;!〜 20質量部が好ましぐ 0.5〜; 10質量部がより 好ましい。 [0041] Further, when the cationic polymerization catalyst is used as the component (C), the amount used is preferably 0.;! To 20 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B). 10 to 5 parts by weight is more preferable.
[0042] 硬化剤である成分(C)の配合割合がこれらの範囲を外れると、未反応物が残り、硬 化物の諸物性が損なわれる場合があるため好ましくない。なお、成分 (A)と成分 (B) の合計 100質量部に対し、硬化剤(C)を 100質量部以上使用する場合は、エポキシ 樹脂組成物粘度が高くならないよう、 25°Cで液状の硬化剤を用いることが好ましい。  [0042] If the blending ratio of the component (C) as the curing agent is out of these ranges, unreacted materials remain, and various physical properties of the cured product may be impaired. When 100 parts by mass or more of curing agent (C) is used with respect to 100 parts by mass in total of component (A) and component (B), it is liquid at 25 ° C so that the viscosity of the epoxy resin composition does not increase. It is preferable to use a curing agent.
[0043] (D)任意成分  [0043] (D) Optional component
更に、本発明の液状エポキシ樹脂組成物には、硬化物の性質を改善する目的で 粉末状の補強剤や充填剤、着色剤または顔料、難燃剤、樹脂添加剤等の種々の添 加剤成分を配合することができる。  Furthermore, the liquid epoxy resin composition of the present invention has various additive components such as powdery reinforcing agents and fillers, colorants or pigments, flame retardants, and resin additives for the purpose of improving the properties of the cured product. Can be blended.
[0044] 粉末状の補強剤や充填剤としては、例えば酸化アルミニウム、酸化マグネシウム等 の金属酸化物、微粉末シリカ、溶融シリカ、結晶シリカ等のケィ素化合物、ガラスビー ズ等のフイラ一、水酸化アルミニウム等の金属水酸化物、その他、カオリン、マイ力、 石英粉末、グラフアイト、二硫化モリブデン等を挙げることができる。これらの配合は、 任意である力 一般にエポキシ樹脂組成物 100質量部に対して、 10〜; 100質量部 が適当である。 [0044] Examples of the powdery reinforcing agent and filler include metal oxides such as aluminum oxide and magnesium oxide, silicon compounds such as fine powder silica, fused silica, and crystalline silica, and glass beads. Examples include fillers such as silica, metal hydroxides such as aluminum hydroxide, kaolin, my strength, quartz powder, graphite, and molybdenum disulfide. These blends are optional. Generally, 10 to 100 parts by mass is appropriate for 100 parts by mass of the epoxy resin composition.
[0045] 着色剤または顔料としては、例えば二酸化チタン、モリブデン赤、紺青、群青、カド ミゥム黄、カドミウム赤及び有機色素等を挙げることができる。また、難燃剤、例えば、 三酸化アンチモン、ブロム化合物及びリン化合物等を挙げることができる。これらの添 加剤の配合は任意である力 一般にエポキシ樹脂組成物 100質量部に対して、 0.0 ;!〜 30質量部配合される。  [0045] Examples of colorants or pigments include titanium dioxide, molybdenum red, bitumen, ultramarine blue, cadmium yellow, cadmium red, and organic dyes. In addition, flame retardants such as antimony trioxide, bromine compounds and phosphorus compounds can be mentioned. The compounding of these additives is optional. Generally, 0.0;! To 30 parts by mass is compounded with respect to 100 parts by mass of the epoxy resin composition.
[0046] 樹脂添加剤としては、フッ素樹脂、アクリル樹脂、シリコーン樹脂等の 1種または 2種 以上の組み合わせを挙げることができる。これらの樹脂添加剤の配合割合は、本発 明のエポキシ樹脂組成物の本来の性質を損なわない範囲の量、すなわち本発明の エポキシ樹脂組成物 100質量部に対して、 50質量部以下が好ましい。  [0046] Examples of the resin additive include one kind or a combination of two or more kinds of fluorine resin, acrylic resin, silicone resin and the like. The blending ratio of these resin additives is preferably 50 parts by mass or less with respect to 100 parts by mass of the epoxy resin composition of the present invention, that is, an amount in a range not impairing the original properties of the epoxy resin composition of the present invention. .
[0047] 本発明の液状エポキシ樹脂組成物は、上記必須成分 (A)な!/、し (C)と必要により 任成分 (D)を常法により混合して得られる。なお、本発明において「液状」とは 25°C で液状であることを意味する。 [0047] The liquid epoxy resin composition of the present invention can be obtained by mixing the above-mentioned essential component (A)! /, And (C) with optional component (D) as required. In the present invention, “liquid” means liquid at 25 ° C.
[0048] 以上のようにして得られる本発明の液状エポキシ樹脂組成物は、通常の熱硬化性 エポキシ樹脂組成物または光硬化性エポキシ樹脂組成物の場合と同様に、加熱ま たは活性エネルギー線の照射により硬化させることができる。硬化条件は特に限定さ れないが、熱硬化の場合、温度 60〜250°C、好ましくは 80〜200°Cの範囲で、;!〜 2 4時間程度加熱して硬化することができる。成分(C)として活性エネルギー線硬化触 媒を用いる場合は、紫外線、可視光、電子線等を照射し、室温〜 150°Cの範囲で硬 ィ匕することあでさる。 [0048] The liquid epoxy resin composition of the present invention obtained as described above is heated or activated energy rays in the same manner as in the case of an ordinary thermosetting epoxy resin composition or photocurable epoxy resin composition. Can be cured by irradiation. Curing conditions are not particularly limited, but in the case of thermosetting, it can be cured by heating at a temperature of 60 to 250 ° C, preferably 80 to 200 ° C; When an active energy ray curing catalyst is used as component (C), it is irradiated with ultraviolet rays, visible light, electron beams, etc., and cured in the range of room temperature to 150 ° C.
実施例  Example
[0049] 以下に、実施例、合成例、試験例及び比較例を挙げて本発明を更に詳しく説明す る力 本発明はこれら実施例等によって何ら制限されるものではない。なお、例中の 部は特に断りのない限り質量部を意味する。  [0049] The ability to further explain the present invention in the following examples, synthesis examples, test examples and comparative examples The present invention is not limited in any way by these examples. In addition, unless otherwise indicated, the part in an example means a mass part.
[0050] 合 成 例 1 4 ビュルォキシブタノールグリシジルエーテルの合成: [0050] Synthesis Example 1 4 Synthesis of buroxybutanol glycidyl ether:
凝縮器及び水分分離器を備えた 300mlの攪拌式ガラス製反応器に、 4—ビュルォ キシブタノール(別名:1 , 4 ブタンジオールモノビュルエーテル) 51.8g (0.5mol)、 ェピクロルヒドリン 92.5g、粒状水酸化ナトリウム 20g及びテトラメチルアンモニゥムクロ ライド 1.2gを仕込み、激しく攪拌しながら反応温度 75〜80°C、 20〜25kPaの減圧 下で、 1.5時間反応を行った。反応中に生成する水は、ェピクロルヒドリンと共沸させ 、その蒸気を凝縮し、分離機にてェピクロルヒドリンは系内に循環させ、水のみ系外 へ除去した。留去した水の量は 9gでほぼ理論量であった。反応混合物を 30°Cまで 冷却後、ろ過して沈殿物を除去した。沈殿物をェピクロルヒドリン 50gで洗浄し、ろ液 と合わせた。このろ過液を減圧下で蒸留し、ェピクロルヒドリンを留去し、回収した。残 存オイルを 25°Cまで冷却後、沈殿物をろ過により除去し、得られた油性生成物を高 真空下で蒸留し、 4 ビュルォキシブタノールグリシジルエーテル(以下、 「14BD— VGE」と記す) 76.5gを得た(塔頂 75— 80°C/0.1kPa、収率 89%、ガスクロ法によ る純度 99.5%)。  In a 300 ml stirred glass reactor equipped with a condenser and a water separator, 51.8 g (0.5 mol) of 4-Buluoxybutanol (also known as 1,4 butanediol monobutyl ether), 92.5 g of epichlorohydrin Then, 20 g of granular sodium hydroxide and 1.2 g of tetramethylammonium chloride were charged, and the reaction was carried out under vigorous stirring at a reaction temperature of 75 to 80 ° C. and a reduced pressure of 20 to 25 kPa for 1.5 hours. The water produced during the reaction was azeotroped with epichlorohydrin, the vapor was condensed, and the epichlorohydrin was circulated in the system with a separator, and only water was removed outside the system. The amount of water distilled off was 9 g, which was almost the theoretical amount. The reaction mixture was cooled to 30 ° C and filtered to remove the precipitate. The precipitate was washed with 50 g of epichlorohydrin and combined with the filtrate. This filtrate was distilled under reduced pressure, and epichlorohydrin was distilled off and collected. After the remaining oil is cooled to 25 ° C, the precipitate is removed by filtration, and the resulting oily product is distilled under high vacuum to give 4 butyloxybutanol glycidyl ether (hereinafter referred to as “14BD-VGE”). ) 76.5 g was obtained (top 75–80 ° C / 0.1 kPa, yield 89%, purity 99.5% by gas chromatography).
合 成 例 2 Synthesis example 2
4 (ビニノレ才キシメチノレ)ーシクロへキシノレメタノーノレグリシジノレエーテノレ の合成:  4 (Vininore aged xymethinole)-Synthesis of cyclohexenoremethanoreglycidinoreatenore:
凝縮器及び水分分離器を備えた 300mlの攪拌式ガラス製反応器に、 4— (ビュル ォキシメチル)シクロへキシルメタノール(別名: 1,4ーシクロへキサンジメタノールモノ ビニノレエーテノレ) 102.2g (0.6mol)、ェピクロノレヒドリン 100g、粒状水酸化ナトリウム 37.5g及びべンジルトリメチルアンモニゥムクロライド O. lgを仕込み、反応器を冷却し て温度を 40°Cに保ちながら激しく撹拌させて 10時間反応を行った。次に、シクロへ キサン 100gを添加し、反応混合物をろ過して沈殿物を除去し、ろ液中に残存するァ ルカリ成分を水洗を繰り返して除去して油状生成物を得た。油状生成物からシクロへ キサンと未反応のェピクロルヒドリンを回収した後、高真空下で蒸留し、 4- (ビュルォ キシメチル)シクロへキシルメタノールグリシジルエーテル(以下、 「CHDM— VGEJと 記す) 112.7gを得た(塔頂 140— 145°C/0.4kPa、収率 83%、ガスクロ法による純 度 99%)。 [0052] 実 施 例 1 A 300 ml stirred glass reactor equipped with a condenser and a water separator was charged with 10-2.2 g (0.6- (Buoxymethyl) cyclohexylmethanol (also known as: 1,4-cyclohexanedimethanol monovininoreethenore). mol), 100 g of epichloronohydrin, 37.5 g of granular sodium hydroxide, and benzyl trimethylammonium chloride O.lg, and the reactor is cooled and stirred vigorously while maintaining the temperature at 40 ° C. Time reaction was performed. Next, 100 g of cyclohexane was added, the reaction mixture was filtered to remove the precipitate, and the alkaline component remaining in the filtrate was removed by repeated washing with water to obtain an oily product. After recovering cyclohexane and unreacted epichlorohydrin from the oily product, it was distilled under high vacuum, and 4- (butoxymethyl) cyclohexylmethanol glycidyl ether (hereinafter referred to as “CHDM—VGEJ”). 112.7 g was obtained (top 140—145 ° C / 0.4 kPa, yield 83%, purity by gas chromatography 99%). [0052] Example 1
合成例 1で得られた 14BD—VGE10部、水素化ビスフエノーノレ A型エポキシ樹脂( 以下、「HBPA—DGE」と記す;丸善石油化学株式会社製、商品名「水素化ビスフエ ノーノレ Aジグリシジルエーテル」、エポキシ等量 200) 100部、 1ーメチルシクロへキサ ン - 1,2 ジカルボン酸無水物 71部及び 2 ェチル -4ーメチルイミダゾール 1部を混 合して液状エポキシ樹脂組成物を調製した。  14BD—VGE 10 parts obtained in Synthesis Example 1, hydrogenated bisphenol A type epoxy resin (hereinafter referred to as “HBPA-DGE”; manufactured by Maruzen Petrochemical Co., Ltd., trade name “hydrogenated bisphenol nore A diglycidyl ether”, Epoxy equivalent 200) 100 parts, 71 parts of 1-methylcyclohexane-1,2 dicarboxylic acid anhydride and 1 part of 2-ethyl-4-methylimidazole were mixed to prepare a liquid epoxy resin composition.
[0053] 実 施 例 2 [0053] Example 2
14BD— VGEを合成例 2で得られた 4 -ビュルォキシブタノールグリシジルエーテ ノレ(CHDM— VGE)に変更する以外は、実施例 1と同様にして液状エポキシ樹脂組 成物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 14BD-VGE was changed to 4-butoxybutanol glycidyl etherate (CHDM-VGE) obtained in Synthesis Example 2.
[0054] 実 施 例 3 [0054] Example 3
14BD—VGE10部を CHDM—VGE20部に変更する以外は、実施例 1と同様に して液状エポキシ樹脂組成物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 10 parts of 14BD-VGE were changed to 20 parts of CHDM-VGE.
[0055] 比 較 例 1  [0055] Comparative Example 1
14BD— VGEを使用しな!/、以外は、実施例 1と同様にして液状エポキシ樹脂組成 物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 14BD—VGE was not used! /.
[0056] 比 較 例 2 [0056] Comparative Example 2
14BD—VGE10部を 1,4 ブタンジオールジグリシジルエーテル(14BD— DGE) 20部に変更する以外は、実施例 1と同様にして液状エポキシ樹脂組成物を調製した  A liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 10 parts of 14BD-VGE were changed to 20 parts of 1,4 butanediol diglycidyl ether (14BD-DGE).
[0057] 比 較 例 3 [0057] Comparative Example 3
14BD—VGE10部を 1,4ーシクロへキサンジメタノールジグリシジルエーテル(CH DM-DGE) 20部に変更する以外は、実施例 1と同様にして液状エポキシ樹脂組成 物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 1 except that 10 parts of 14BD-VGE were changed to 20 parts of 1,4-cyclohexanedimethanol diglycidyl ether (CH DM-DGE).
[0058] 試 験 例 1 [0058] Test Example 1
実施例;!〜 2および比較例;!〜 3で得られた液状エポキシ樹脂組成物の特性評価 を以下の方法により行った。この結果を組成と合わせて表 1に示す。  The characteristics of the liquid epoxy resin compositions obtained in Examples;! To 2 and Comparative Examples;! To 3 were evaluated by the following methods. The results are shown in Table 1 together with the composition.
[0059] ( 評価方法 ) < 粘 度 〉 [0059] (Evaluation method) <Viscosity>
粘度計 (株式会社エー'アンド ' ·ディ社製、 SV— 10型)を用い、 23°Cにて測定した  Measured at 23 ° C using a viscometer (manufactured by A & D Co., Ltd., SV-10 type)
[0060] < ゲノレタイム 〉 [0060] <Genore Time>
約 0.5gのエポキシ樹脂組成物を 120°Cほたは 150°C)に加熱した熱板上に置き、 スパチュラ一の先端でかき混ぜながら樹脂組成物の状態を観察した。組成物を熱板 上に置!/、てから、樹脂がゲル化して粘着性が無くなるまでの時間を計測し、ゲルタイ ムとした。  About 0.5 g of the epoxy resin composition was placed on a hot plate heated to 120 ° C or 150 ° C, and the state of the resin composition was observed while stirring with the tip of a spatula. After the composition was placed on a hot plate !, the time from when the resin gelled until the tackiness disappeared was measured to obtain a gel time.
[0061] < ガラス転移温度 〉 [0061] <Glass transition temperature>
調製したエポキシ樹脂組成物をアルミカップに入れ、熱風乾燥機にて 100°Cで 3時 間、 150°Cで 4時間硬化させ、硬化物を得た。硬化物の破片を用いて示差走査熱量 法(DSC法)にてガラス転移温度を測定した。窒素中、昇温速度 20°C/min、 150 The prepared epoxy resin composition was put in an aluminum cup and cured with a hot air dryer at 100 ° C for 3 hours and at 150 ° C for 4 hours to obtain a cured product. The glass transition temperature was measured by differential scanning calorimetry (DSC method) using fragments of the cured product. In nitrogen, heating rate 20 ° C / min, 150
°Cまで昇温を行った。 The temperature was raised to ° C.
[0062] ( 結 果 ) [0062] (Result)
[表 1] [table 1]
Figure imgf000015_0001
Figure imgf000015_0001
表 1から、硬化剤として酸無水物系硬化剤を配合した場合、比較例 1の反応性希釈 剤なしと比較して、実施例;!〜 3の a ビュル ω—グリシジルエーテル(成分(Β) ) を配合したものは、エポキシ樹脂組成物の粘度を低下させる性能及び硬化速度に優 れており、特に実施例 1の 4 ビュルォキシブタノールグリシジルエーテルは、少量で 高い粘度低下効果を示した。また、比較例 2及び 3のジグリシジルエーテルを配合し た場合に比べ、実施例;!〜 3の a ビュル ω—グリシジルエーテルを配合したもの は、希釈効果、硬化速度及び耐熱性に優れるものであった。 From Table 1, when an acid anhydride-based curing agent was blended as a curing agent, compared to Example 1 without reactive diluent, Examples;! To 3 a bul ω-glycidyl ether (component (Β) ) Was excellent in the ability to lower the viscosity of the epoxy resin composition and the curing speed, and in particular, the 4-butoxybutanol glycidyl ether of Example 1 showed a high viscosity reducing effect even in a small amount. Also, compared to the case where the diglycidyl ethers of Comparative Examples 2 and 3 were blended, Examples;! -3 blended with a bul ω-glycidyl ether Was excellent in dilution effect, curing rate and heat resistance.
[0064] 実 施 例 4 [0064] Example 4
合成例 1で得られた 14BD—VGE10部、 HBPA—DGE90部及び熱カチオン重 合開始剤としてアデカオプトン CP— 66 (株式会社 ADEKA社製、商品名) 1部を混 合して液状エポキシ樹脂組成物を調製した。  10 parts of 14BD-VGE obtained in Synthesis Example 1 and 90 parts of HBPA-DGE and 1 part of Adeka Opton CP-66 (trade name, manufactured by ADEKA Co., Ltd.) as a thermal cationic polymerization initiator are mixed to form a liquid epoxy resin composition. Was prepared.
[0065] 実 施 例 5 [0065] Example 5
14BD—VGEを CHDM—VGEに変更する以外は、実施例 4と同様にして液状ェ ポキシ樹脂組成物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 14BD-VGE was changed to CHDM-VGE.
[0066] 実 施 例 6 [0066] Example 6
14BD— VGE10部を、 CHDM— VGE20部に代え、 HBPA— DGEを 90部から 8 0部に代える以外は実施例 4と同様にして液状エポキシ樹脂組成物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 10 parts of 14BD-VGE were replaced with 20 parts of CHDM-VGE and HBPA-DGE was changed from 90 parts to 80 parts.
[0067] 比 較 例 4 [0067] Comparative Example 4
14BD— VGEを使用しない以外は、実施例 4と同様にして液状エポキシ樹脂組成 物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 14BD-VGE was not used.
[0068] 比 較 例 5 [0068] Comparative Example 5
14BD— VGE10部を 14BD— DGE20部に代え、 HBPA— DGEを 90部から 80 部に代える以外は実施例 4と同様にして液状エポキシ樹脂組成物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 10 parts of 14BD-VGE were replaced with 20 parts of 14BD-DGE and HBPA-DGE was changed from 90 parts to 80 parts.
[0069] 比 較 例 6 [0069] Comparative Example 6
14BD— VGE10部を CHDM— DGE20部に代え、 HBPA— DGEを 90部から 80 部に代える以外は実施例 4と同様にして液状エポキシ樹脂組成物を調製した。  A liquid epoxy resin composition was prepared in the same manner as in Example 4 except that 10 parts of 14BD-VGE were changed to 20 parts of CHDM-DGE and HBPA-DGE was changed from 90 parts to 80 parts.
[0070] 試 験 例 2 [0070] Test example 2
実施例 4〜6および比較例 4〜6で得たエポキシ樹脂組成物につ!/、て、吸水率を下 記方法で測定した。また、試験例 1と同様にして組成物特性及び硬化物特性を評価 した(但し、ゲルタイムの測定温度は 150°Cとした)。この結果を組成と合わせ、表 2に 示す。  For the epoxy resin compositions obtained in Examples 4 to 6 and Comparative Examples 4 to 6, the water absorption was measured by the following method. In addition, composition characteristics and cured product characteristics were evaluated in the same manner as in Test Example 1 (however, the gel temperature measurement temperature was 150 ° C.). The results are shown in Table 2 together with the composition.
[0071] ( 評価方法 )  [0071] (Evaluation method)
< 吸水率 〉  <Water absorption rate>
調製したエポキシ樹脂組成物をアルミカップに入れ、熱風乾燥機にて 100°Cで 3時 間、 120°Cで 4時間硬化させ、硬化物を得た。これを一辺 30mmの正方形で、厚さ 1 mmとになるよう機械加工を施し、試験片を作製した。この試験片を用いて JISK720 9に準じて吸水率を測定した。 Put the prepared epoxy resin composition in an aluminum cup and use a hot air dryer at 100 ° C for 3 o'clock. In the meantime, it was cured at 120 ° C. for 4 hours to obtain a cured product. This was machined to make a square with a side of 30 mm and a thickness of 1 mm to produce a test piece. Using this test piece, the water absorption was measured according to JISK7209.
( 結 果 ) (Result)
[表 2] [Table 2]
Figure imgf000017_0001
Figure imgf000017_0001
表 2から、成分(C)の硬化剤としてカチオン重合開始剤を配合した場合において、 成分(B)として α ビュル ω—グリシジルエーテルを配合した実施例 4〜6のもの は、比較例 4の反応性希釈剤なしと比較して、エポキシ樹脂組成物の低粘度性、硬 化速度及び低吸水性に優れており、特に実施例 4の 4 ビュルォキシブタノールダリ シジルエーテルは、少量で高い低粘度効果を示した。また、実施例 5及び 6の 4 (ビ ニルォキシメチル)シクロへキシルメタノールグリシジルエーテルは、低吸水性に優れ るものであった。更に、実施例 4〜6の α—ビュル ω—グリシジルエーテルを配合 したものは、比較例 5及び 6のジグリシジルエーテルを配合した場合に比べ、高いガ ラス転移温度を示し、硬化速度及び耐熱性に優れて!/、るものであった。 From Table 2, when a cationic polymerization initiator is blended as the curing agent for component (C), Examples 4 to 6 blended with α-bulu ω-glycidyl ether as component (B) are less viscous than epoxy resin composition of Comparative Example 4 and have a low viscosity and a curing rate. It was excellent in low water absorption. In particular, 4 buroxybutanol daricidyl ether of Example 4 showed a high low viscosity effect even in a small amount. In addition, 4 (vinyloxymethyl) cyclohexylmethanol glycidyl ether of Examples 5 and 6 was excellent in low water absorption. Furthermore, the blends of α-bul ω-glycidyl ethers of Examples 4 to 6 showed a higher glass transition temperature than the blends of diglycidyl ethers of Comparative Examples 5 and 6, and the curing speed and heat resistance. It was excellent!
[0074] 実 施 例 7  [0074] Example 7
合成例 2で得られた CHDM— VGE20部、 HBPA— DGE100部、 1—メチルシク 口へキサン- 1,2 ジカルボン酸無水物 71部及び 2 ェチル -4ーメチルイミダゾール 1部と、光力チオン重合開始剤である IRGACURE 250 (商品名、チバ'スぺシャリテ ィ'ケミカルズ社製) 1部を混合して光硬化性液状エポキシ樹脂組成物を調製した。  CHDM-VGE 20 parts, HBPA-DGE 100 parts obtained in Synthesis Example 2, 1-methylcyclohexane-1,2-dicarboxylic anhydride 71 parts and 2-ethyl-4-methylimidazole 1 part, and photodynamic thione polymerization started One part of IRGACURE 250 (trade name, manufactured by Ciba “Specialty” Chemicals), which is an agent, was mixed to prepare a photocurable liquid epoxy resin composition.
[0075] 得られた光硬化性エポキシ樹脂組成物をアプリケーター (YOSHIMITSU (株)製 、 ΥΑ— 2型)を用いて厚さ 50 mとなるようアルミ板に塗布し、 DeepUVランプを備 えた紫外線照射装置 (ゥシォ電機株式会社製、商品名「スポットキュア SP— 7」)を用 いて 4mW/cm2で 180秒間紫外線を照射した。次いで、熱風乾燥機にて 120°Cで 3 0分ポストキュアを行い硬化物を得た。得られた硬化物のガラス転移温度を、実施例 1と同様に DSC法にて測定したところ、 77°Cであった。 [0075] The obtained photo-curable epoxy resin composition was applied to an aluminum plate to a thickness of 50 m using an applicator (YOSHIMITSU Co., Ltd., Type 2), and then irradiated with ultraviolet light equipped with a DeepUV lamp. Ultraviolet rays were irradiated for 180 seconds at 4 mW / cm 2 using an apparatus (trade name “Spot Cure SP-7” manufactured by Usio Electric Co., Ltd.). Next, post-curing was performed at 120 ° C. for 30 minutes with a hot air dryer to obtain a cured product. The glass transition temperature of the obtained cured product was measured by the DSC method in the same manner as in Example 1. As a result, it was 77 ° C.
[0076] 実 施 例 8  [0076] Example 8
合成例 2で得られた CHDM—VGE20部と、エポキシ樹脂として HBPA—DGE80 部及び光力チオン重合開始剤として IRGACURE250 0.46mol%とを混合して光 硬化性液状エポキシ樹脂組成物を調製した。  A photocurable liquid epoxy resin composition was prepared by mixing 20 parts of CHDM-VGE obtained in Synthesis Example 2, 80 parts of HBPA-DGE as an epoxy resin, and 0.46 mol% of IRGACURE250 as a photothion polymerization initiator.
[0077] 実 施 例 9  [0077] Example 9
CHDM—VGEを 40部、 HBPA—DGEを 60部とする以外は、実施例 8と同様にし て光硬化性液状エポキシ樹脂組成物を調製した。  A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 8 except that CHDM-VGE was 40 parts and HBPA-DGE was 60 parts.
[0078] 実 施 例 10  [0078] Example 10
CHDM—VGEを 50部、 HBPA—DGEを 50部とする以外は、実施例 8と同様にし て光硬化性液状エポキシ樹脂組成物を調製した。 Same as Example 8 except 50 parts CHDM-VGE and 50 parts HBPA-DGE. Thus, a photocurable liquid epoxy resin composition was prepared.
[0079] 比 較 例 7  [0079] Comparative Example 7
HBPA— DGEを 100部とし、 CHDM— VGEを使用しない以外は、実施例 8と同 様にして光硬化性液状エポキシ樹脂組成物を調製した。  A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 8 except that 100 parts of HBPA-DGE was used and CHDM-VGE was not used.
[0080] 試 験 例 3  [0080] Test Example 3
上記実施例 8〜; 10および比較例 7で得られた光硬化性エポキシ樹脂組成物 O. lg をアルミ板に塗布し、 DeepUVランプを備えた紫外線照射装置(ゥシォ電機株式会 社製、商品名「スポットキュア SP— 7」)を用いて 2.5mW/cm2で紫外線を照射し、樹 脂が硬化するまでの時間を計測して、ゲルタイムとした。結果を表 3に示す。 UV irradiating apparatus (trade name, manufactured by Usio Electric Co., Ltd.) having a DeepUV lamp, which is obtained by applying the photocurable epoxy resin composition O.lg obtained in Examples 8 to 10 and Comparative Example 7 to an aluminum plate. “Spot cure SP-7”) was used to irradiate ultraviolet rays at 2.5 mW / cm 2 and measured the time until the resin hardened to obtain the gel time. The results are shown in Table 3.
[0081] ( 結 果 )  [0081] (Result)
[表 3]  [Table 3]
Figure imgf000019_0001
Figure imgf000019_0001
*1 および *2 は、 前出と同じものである。  * 1 and * 2 are the same as above.
*9 は、 光力チオン重合開始剤 (チバ ■ スぺシャリティ ■ ケミカルズ社製) である。  * 9 is a light thione polymerization initiator (Ciba ■ Specialty ■ Chemicals).
[0082] 実 施 例 11 [0082] Example 11
合成例 2で得られた CHDM—VGE20部と、エポキシ樹脂としてセロキサイド 2081 (商品名、ダイセル化学工業 (株)製) 80部及び光力チオン重合開始剤として IRGA CURE250 0.46mol%とを混合して光硬化性液状エポキシ樹脂組成物を調製した  20 parts of CHDM-VGE obtained in Synthesis Example 2 were mixed with 80 parts of Celoxide 2081 as an epoxy resin (trade name, manufactured by Daicel Chemical Industries, Ltd.) and 0.46 mol% of IRGA CURE250 as a photopower thione polymerization initiator. A photocurable liquid epoxy resin composition was prepared.
[0083] 実 施 例 12 [0083] Example 12
CHDM—VGEを 40部、セロキサイド 2081を 60部とする以外は、実施例 11と同様 にして光硬化性液状エポキシ樹脂組成物を調製した。  A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 11 except that 40 parts of CHDM-VGE and 60 parts of celoxide 2081 were used.
[0084] 実 施 例 13 [0084] Example 13
CHDM—VGEを 50部、セロキサイド 2081を 50部とする以外は、実施例 11と同様 にして光硬化性液状エポキシ樹脂組成物を調製した。 [0085] 比 較 例 8 A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 11 except that 50 parts of CHDM-VGE and 50 parts of celoxide 2081 were used. [0085] Comparative Example 8
セロキサイド 2081を 100部とし、 CHDM— VGEを使用しない以外は、実施例 11と 同様にして光硬化性液状エポキシ樹脂組成物を調製した。  A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 11 except that 100 parts of Celoxide 2081 was used and CHDM-VGE was not used.
[0086] 試 験 例 4 [0086] Test example 4
実施例 11〜 13および比較例 8で得られた光硬化性液状エポキシ樹脂組成物につ V、て試験例 3と同様にしてゲルタイムを計測した。この結果を表 4に示す。  The gel time was measured in the same manner as in Test Example 3 for the photocurable liquid epoxy resin compositions obtained in Examples 11 to 13 and Comparative Example 8. The results are shown in Table 4.
[0087] ( 結 果 ) [0087] (Result)
[表 4]  [Table 4]
Figure imgf000020_0001
Figure imgf000020_0001
*1 および *9 は、 前出と同じものである。  * 1 and * 9 are the same as above.
*1 0 は、 エポキシ樹脂 (ダイセル化学工業 (株) 製) である。  * 1 0 is an epoxy resin (manufactured by Daicel Chemical Industries, Ltd.).
[0088] 表 3及び表 4から、反応希釈剤として CHDM— VGEを配合したものは、反応希釈 剤なしの場合と比較して硬化速度が速くなり、硬化促進剤として有用であることがわ かる。 [0088] From Tables 3 and 4, it can be seen that the compound containing CHDM-VGE as the reaction diluent has a faster curing speed than that without the reaction diluent and is useful as a curing accelerator. .
[0089] 実 施 例 14  [0089] Example 14
合成例 2で得られた CHDM— VGE20部と、エポキシ樹脂として HBPA—DGE80 部、光力チオン重合開始剤として IRGACURE250 3部及びシリコーン系表面調整 剤としてディスパロン 1761 (商品名、楠木化成 (株)) 1部を混合して光硬化性液状ェ ポキシ樹脂組成物を調製した。  20 parts of CHDM-VGE obtained in Synthesis Example 2, 80 parts of HBPA-DGE as an epoxy resin, 3 parts of IRGACURE250 as a photothione polymerization initiator, and Disparon 1761 as a silicone-based surface conditioner (trade name, Kashiwagi Kasei Co., Ltd.) One part was mixed to prepare a photocurable liquid epoxy resin composition.
[0090] 実 施 例 15 [0090] Example 15
CHDM—VGEを 40部、 HBPA—DGEを 60部とする以外は、実施例 14と同様に して光硬化性液状エポキシ樹脂組成物を調製した。  A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that CHDM-VGE was 40 parts and HBPA-DGE was 60 parts.
[0091] 実 施 例 16 [0091] Example 16
CHDM—VGEを 50部、 HBPA—DGEを 50部とする以外は、実施例 14と同様に して光硬化性液状エポキシ樹脂組成物を調製した。 [0092] 実 施 例 17 A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that 50 parts of CHDM-VGE and 50 parts of HBPA-DGE were used. [0092] Example 17
HBPA— DGEをセロキサイド 2081に代える以外は、実施例 14と同様にして光硬 化性液状エポキシ樹脂組成物を調製した  A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that HBPA-DGE was replaced with Celoxide 2081.
[0093] 比 較 例 9 [0093] Comparative Example 9
HBPA—DGEを 100部とし、 CHDM—VGEを使用しない以外は、実施例 14と同 様にして光硬化性液状エポキシ樹脂組成物を調製した。  A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except that 100 parts of HBPA-DGE was used and CHDM-VGE was not used.
[0094] 試 験 例 5 [0094] Test Example 5
実施例 15〜; 17および比較例 9で得られた光硬化性エポキシ樹脂組成物をアプリ ケーター(YOSHIMITSU (株)製、 YA— 2型)を用いて厚さ 50 μ mとなるよう軟鋼 板に塗布し、高圧水銀ランプを備えた紫外線照射装置 (セン特殊光源 (株)製、商品 名「ノヽンディキュアラブ」)を用いて 10.6mW/cm2で 30秒間紫外線を照射した。次 いで、熱風乾燥機にて 150°Cで 30分ポストキュアを行い塗膜硬化物を得た。得られ た塗膜硬化物の特性評価を以下の方法により行った。結果を表 5に示す。 The photocurable epoxy resin composition obtained in Examples 15 to 17 and Comparative Example 9 was applied to a mild steel plate using an applicator (YOSHIMITSU, YA-2 type) to a thickness of 50 μm. The sample was applied and irradiated with ultraviolet rays at 10.6 mW / cm 2 for 30 seconds using an ultraviolet irradiation device equipped with a high-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd., trade name “Non-Dicarab”). Next, post-curing was performed at 150 ° C for 30 minutes with a hot air dryer to obtain a cured film. The characteristics evaluation of the obtained coating-film cured | curing material was performed with the following method. The results are shown in Table 5.
[0095] ( 評価方法 ) [0095] (Evaluation method)
< 膜 厚 〉  <Thickness>
膜厚計 (株式会社ケット科学研究所製、 LZ900J)を用いて測定した。  The film thickness was measured using a film thickness meter (LZ900J, manufactured by Kett Scientific Laboratory).
[0096] < 外 観 〉 [0096] <Appearance>
目視により表面状態を観測し、着色、しわ、割れの有無を確認した。  The surface condition was visually observed to check for the presence of coloring, wrinkles and cracks.
[0097] < 密着性 〉 [0097] <Adhesion>
JISK5400方法に準じて碁盤目剥離試験を行った。 100マスのうち剥離せずに残 存したマスの数を示した。  A cross-cut peel test was performed according to the JISK5400 method. The number of cells that remained without peeling out of 100 cells was shown.
[0098] < 鉛筆硬度 〉 [0098] <Pencil hardness>
JISK5400に準じて評価を行った。  Evaluation was performed according to JISK5400.
[0099] ( 結 果 ) [0099] (Result)
[表 5] to 、 [Table 5] to,
m m
m ¾  m ¾
^?  ^?
§5 ェ §5
 Long
 匝
S鰂 S 鰂
' ヽ: く R D * ^  'ヽ: Ku R D * ^
■rt- LU O ¾ '、  ■ rt- LU O ¾ ',
_ ^ I  _ ^ I
闩 ¾Η Λ απ  Η ¾ΗΛ απ
1 V 1 1 V 1
z *  z *
< Q- -H- QQ O O  <Q- -H- QQ O O
m□ *せ  m □ *
く R I く R *  R I R R *
[0100] 表 5より、反応希釈剤として CHDM— VGEを配合したものは、反応希釈剤なしの 場合と比較して塗膜の硬度が向上することがわかる。 [0100] From Table 5, it can be seen that when CHDM-VGE is blended as a reaction diluent, the hardness of the coating film is improved as compared with the case without reaction diluent.
[0101] 比 較 例 10 [0101] Comparative Example 10
HBPA— DGE80部をセロキサイド 2081 100部とし、 CHDM— VGEを使用しな HBPA—DGE 80 parts into Celoxide 2081 100 parts, CHDM—VGE not used.
V、以外は、実施例 14と同様にして光硬化性液状エポキシ樹脂組成物を調製した。 A photocurable liquid epoxy resin composition was prepared in the same manner as in Example 14 except for V.
[0102] 試 験 例 6 実施例 14、実施例 17、比較例 9および比較例 10で得た光硬化性液状エポキシ樹 脂組成物をアプリケーター(YOSHIMITSU (株)製、 YA— 2型)を用いて厚さ 50 μ mとなるよう PETフィルムに塗布した。次!/、で高圧水銀ランプを備えた紫外線照射装 置 (セン特殊光源 (株)製、商品名「ノ、ンディキュアラブ」)を用いて 10.6mW/cm2[0102] Test example 6 The photocurable liquid epoxy resin composition obtained in Example 14, Example 17, Comparative Example 9 and Comparative Example 10 was 50 μm in thickness using an applicator (YOSHIMITSU, YA-2 type). It applied to PET film so that it might become. Next! /, Using a UV irradiation device equipped with a high-pressure mercury lamp (Sen Special Light Source Co., Ltd., trade name “NO, Nycyu Arab”) at 10.6 mW / cm 2
011ϊϋ ^一 6  011ϊϋ ^ 1 6
30秒間紫外線を照射して塗膜硬化物を得た。得られた塗膜硬化物の特性評価を試 A cured film was obtained by irradiating with ultraviolet rays for 30 seconds. Test the properties of the cured film
。 〔細¾^ Ψ〕 (ΛΗ - 験例 5と同様に行った v^。 802.この結果を組成と共に表 6に示す。  . [Fine ^ Ψ] (ΛΗ-performed in the same manner as in Experiment 5. 802. The results are shown in Table 6 together with the composition.
( 結 果 ) N ω o > I (Result) N ω o> I
[表 6] sp ^s) ¾ (υ [Table 6] sp ^ s) ¾ (υ
¾ ¾ ¾ ε ε ε山 anovodi 9 Λ□  ¾ ¾ ¾ ε ε ε mountain anovodi 9 Λ □
§5 ^ la一 _ik law ±_  §5 ^ la one _ik law ± _
一 is«蝴 (m) ¾  Is «蝴 (m) ¾
¾¾U ¾匝Iίιί 6hsι i** *;- , , ¾¾U ¾ 匝 Iίιί 6hsι i ** * ;-,,
Figure imgf000023_0001
Figure imgf000023_0001
 Ye
CM  CM
o ェ D□ ^ェ o d D ^
ェ [0104] 表 6より、反応希釈剤として CHDM— VGEを配合したものは、反応希釈剤なしの 場合と比較して、塗膜の硬度が向上すると共に、外観が平坦で塗膜の収縮によるし わの発生が無ぐ寸法安定性に優れていることがわかる。 Ye [0104] From Table 6, the compound containing CHDM-VGE as the reaction diluent improves the hardness of the coating film as compared to the case without the reaction diluent, and has a flat appearance and shrinkage of the coating film. It can be seen that there is no wrinkle generation and the dimensional stability is excellent.
[0105] 以上の各実施例および試験例より、本発明の液状エポキシ樹脂組成物は、粘度が 低く作業性に優れ、硬化速度が速ぐ得られた硬化物は物性値の低下が少なぐ優 れた耐熱性及び低吸水性を示すものであることが明らかになった。また、本発明の液 状エポキシ樹脂組成物は、実施例 7〜; 17に示したように、活性エネルギー線照射に よっても硬化可能であり、密着性、硬度及び表面状態に優れた塗膜硬化物が得られ 産業上の利用可能性  [0105] From each of the above Examples and Test Examples, the liquid epoxy resin composition of the present invention has a low viscosity, excellent workability, and a cured product obtained with a high curing speed is excellent in that the physical property value is less decreased. It was revealed that the heat resistance and the low water absorption were exhibited. In addition, the liquid epoxy resin composition of the present invention can be cured by irradiation with active energy rays as shown in Examples 7 to 17; the coating film has excellent adhesion, hardness, and surface condition. Industrial availability
[0106] 本発明の液状エポキシ樹脂組成物は硬化速度が速ぐ低粘度で注型、塗布、含浸 等の作業性に優れ、無機充填剤、導電性充填剤等の充填剤を多量に配合しても液 状を保つことができ、更に、主剤となるエポキシ樹脂の物性を損なうことなく硬化物を 得ること力 Sでさるあのである。  [0106] The liquid epoxy resin composition of the present invention has a low viscosity with a high curing rate, excellent workability such as casting, coating and impregnation, and a large amount of fillers such as inorganic fillers and conductive fillers. However, the liquid state can be maintained, and furthermore, it is possible to obtain a cured product without damaging the physical properties of the main epoxy resin.
[0107] したがって本発明の液状エポキシ樹脂組成物を硬化して得られる硬化物は、成形 材料、封止材料、電気絶縁材料、接着剤、塗料、インクジェットプリンタ用インク等の 用途に好適に使用することができる。  Therefore, the cured product obtained by curing the liquid epoxy resin composition of the present invention is suitably used for applications such as molding materials, sealing materials, electrical insulating materials, adhesives, paints, and inks for inkjet printers. be able to.

Claims

請求の範囲 The scope of the claims
[1] 次の成分 (A)、(B)および (C) [1] Next ingredients (A), (B) and (C)
(A)エポキシ樹脂  (A) Epoxy resin
(B)下記一般式(1)  (B) The following general formula (1)
CH =CH O X O G (1)  CH = CH O X O G (1)
2  2
(式中、 Xは炭素数 2〜; 12の 2価の直鎖または分岐鎖アルキレン基またはシクロ へキシレン基を含む脂環式アルキレン基を表し、 Gはグリシジル基を表す) で示される α ビュルォキシ ω—グリシジルエーテル化合物  (Wherein X represents an alicyclic alkylene group containing 2 to 12 carbon atoms; a divalent linear or branched alkylene group having 12 carbon atoms or a cyclohexylene group, and G represents a glycidyl group). ω-glycidyl ether compound
(C)硬化剤  (C) Curing agent
を含有することを特徴とする液状エポキシ樹脂組成物。  A liquid epoxy resin composition comprising:
[2] 成分 (Α)が、芳香族エポキシ樹脂および/または脂環式エポキシ樹脂である請求 項 1記載の液状エポキシ樹脂組成物。 [2] The liquid epoxy resin composition according to claim 1, wherein the component (成分) is an aromatic epoxy resin and / or an alicyclic epoxy resin.
[3] 成分 (Α)力 ビスフエノール Α型エポキシ樹脂、ビスフエノール F型エポキシ樹脂、 水素化ビスフエノール A型エポキシ樹脂および水素化ビスフエノール F型エポキシ樹 脂からなる群から選ばれる少なくとも 1種のエポキシ樹脂である請求項 1または 2記載 の液状エポキシ樹脂組成物。 [3] Ingredient (Α) force Bisphenol A bis-type epoxy resin, a bisphenol F-type epoxy resin, a hydrogenated bisphenol A-type epoxy resin and a hydrogenated bisphenol F-type epoxy resin. The liquid epoxy resin composition according to claim 1, which is an epoxy resin.
[4] 成分 (A)力 少なくとも 1個のエポキシシクロへキシル基を含む脂環式エポキシドで ある請求項 1または 2記載の液状エポキシ樹脂組成物。 [4] Component (A) force The liquid epoxy resin composition according to claim 1 or 2, which is an alicyclic epoxide containing at least one epoxycyclohexyl group.
[5] 成分(B) 、 4—ビュルォキシブタノールグリシジルエーテルまたは 4 (ビュルォ キシメチル)ーシクロへキシルメタノールグリシジルエーテルである請求項 1〜4の何 れかに記載の液状エポキシ樹脂組成物。 [5] The liquid epoxy resin composition according to any one of [1] to [4], which is Component (B), 4-Buroxybutanol glycidyl ether or 4 (Buroxymethyl) -cyclohexylmethanol glycidyl ether.
[6] 100質量部の成分 (A)に対して、成分(B)を 1〜150質量部含有する請求項 1〜5 の何れかに記載の液状エポキシ樹脂組成物。 [6] The liquid epoxy resin composition according to any one of claims 1 to 5, which contains 1 to 150 parts by mass of the component (B) with respect to 100 parts by mass of the component (A).
[7] 請求項 1〜6の何れかに記載の液状エポキシ樹脂組成物を硬化して得られるェポ キシ樹脂硬化物。 [7] A cured epoxy resin obtained by curing the liquid epoxy resin composition according to any one of claims 1 to 6.
PCT/JP2007/065693 2006-09-20 2007-08-10 Liquid epoxy resin composition and epoxy resin cured product WO2008035515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008535287A JP5301997B2 (en) 2006-09-20 2007-08-10 Liquid epoxy resin composition and cured epoxy resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-254484 2006-09-20
JP2006254484 2006-09-20

Publications (1)

Publication Number Publication Date
WO2008035515A1 true WO2008035515A1 (en) 2008-03-27

Family

ID=39200344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065693 WO2008035515A1 (en) 2006-09-20 2007-08-10 Liquid epoxy resin composition and epoxy resin cured product

Country Status (2)

Country Link
JP (1) JP5301997B2 (en)
WO (1) WO2008035515A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157460A (en) * 2010-02-01 2011-08-18 Sumitomo Bakelite Co Ltd Epoxy group-containing compound
JP2011207915A (en) * 2010-03-26 2011-10-20 Sumitomo Bakelite Co Ltd Epoxy group-containing compound
JP2018087308A (en) * 2016-11-30 2018-06-07 公立大学法人大阪府立大学 Method for producing cured product of photocurable resin composition and light irradiation device
CN112341975A (en) * 2020-11-25 2021-02-09 中路交科科技股份有限公司 Second-order epoxy adhesive layer oil, preparation method and application method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151303A (en) * 1995-09-25 1997-06-10 Nissan Chem Ind Ltd Epoxy resin composition
JP2003026766A (en) * 2001-07-13 2003-01-29 New Japan Chem Co Ltd Epoxy-based reactive diluent and liquid epoxy resin composition containing the same
WO2003051955A1 (en) * 2001-12-13 2003-06-26 Henkel Corporation Epoxidized acetals and thioacetals, episulfidized acetals and thioacetals, and reworkable thermosetting resin compositions formulated therefrom
JP2006016448A (en) * 2004-06-30 2006-01-19 Sanyo Chem Ind Ltd Epoxy resin composition
JP2006241081A (en) * 2005-03-03 2006-09-14 Itochu Chemical Frontier Corp METHOD FOR PRODUCING alpha-HYDROXY-omega-GLYCIDYL ETHER

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035514A1 (en) * 2006-09-20 2008-03-27 Maruzen Petrochemical Co., Ltd. Liquid curable composition and cured product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151303A (en) * 1995-09-25 1997-06-10 Nissan Chem Ind Ltd Epoxy resin composition
JP2003026766A (en) * 2001-07-13 2003-01-29 New Japan Chem Co Ltd Epoxy-based reactive diluent and liquid epoxy resin composition containing the same
WO2003051955A1 (en) * 2001-12-13 2003-06-26 Henkel Corporation Epoxidized acetals and thioacetals, episulfidized acetals and thioacetals, and reworkable thermosetting resin compositions formulated therefrom
JP2006016448A (en) * 2004-06-30 2006-01-19 Sanyo Chem Ind Ltd Epoxy resin composition
JP2006241081A (en) * 2005-03-03 2006-09-14 Itochu Chemical Frontier Corp METHOD FOR PRODUCING alpha-HYDROXY-omega-GLYCIDYL ETHER

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157460A (en) * 2010-02-01 2011-08-18 Sumitomo Bakelite Co Ltd Epoxy group-containing compound
JP2011207915A (en) * 2010-03-26 2011-10-20 Sumitomo Bakelite Co Ltd Epoxy group-containing compound
JP2018087308A (en) * 2016-11-30 2018-06-07 公立大学法人大阪府立大学 Method for producing cured product of photocurable resin composition and light irradiation device
CN112341975A (en) * 2020-11-25 2021-02-09 中路交科科技股份有限公司 Second-order epoxy adhesive layer oil, preparation method and application method thereof
CN112341975B (en) * 2020-11-25 2022-03-08 中路交科科技股份有限公司 Second-order epoxy adhesive layer oil, preparation method and application method thereof

Also Published As

Publication number Publication date
JP5301997B2 (en) 2013-09-25
JPWO2008035515A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
KR102344209B1 (en) Epoxy compound, curable composition, cured product, method for preparing epoxy compound and reactive diluent
JP7273603B2 (en) Alicyclic epoxy compound products
WO2014181787A1 (en) Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound
JP3415047B2 (en) Curable epoxy resin composition
TW201429963A (en) Novel epoxide compound
WO2008035515A1 (en) Liquid epoxy resin composition and epoxy resin cured product
JP5310690B2 (en) Epoxy resin composition and cured epoxy resin
JP7171619B2 (en) Method for producing alicyclic epoxy compound product
JP2002097251A (en) Alicyclic compound containing glycidyl group, its production method and epoxy resin composition using the same
JP2004231787A (en) Epoxy resin diluent, epoxy resin composition and epoxy resin cured product
JP5213547B2 (en) Curable composition containing epoxy group-containing ester compound, method for producing the composition, and epoxy group-containing ester compound
JP2020172574A (en) Curable composition and cured product thereof
JP3480552B2 (en) Epoxy resin composition
JP5642930B2 (en) Liquid curable composition and cured product thereof
KR102304633B1 (en) Epoxy compound, curable composition containing same, and cured product obtained by curing curable composition
JP2008001758A (en) Novel oligomer-containing epoxy compound and curable epoxy resin composition using the same
JP2006306900A (en) Curable composition and cured material
JP2016084295A (en) Polyhydroxy compound and producing method thereof
JP4701846B2 (en) Curable composition
JP7320805B1 (en) Epoxy resin composition, its cured product and laminate
JP4397084B2 (en) Novel alicyclic group-containing compound and production method thereof
JP2001181268A (en) Alicyclic epoxy compound and its composition
JPWO2006115011A1 (en) Method for producing epoxy compound and curable epoxy resin composition
JP4834987B2 (en) Epoxy resin composition for forming cured coating film and cured coating film
JP2023145203A (en) Epoxy compound, curable composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008535287

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07792338

Country of ref document: EP

Kind code of ref document: A1