WO2008035438A1 - Device for measuring thickness of rotator and method for measuring thickness of rotator - Google Patents

Device for measuring thickness of rotator and method for measuring thickness of rotator Download PDF

Info

Publication number
WO2008035438A1
WO2008035438A1 PCT/JP2006/318867 JP2006318867W WO2008035438A1 WO 2008035438 A1 WO2008035438 A1 WO 2008035438A1 JP 2006318867 W JP2006318867 W JP 2006318867W WO 2008035438 A1 WO2008035438 A1 WO 2008035438A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
injection nozzle
rotating body
nozzles
back pressure
Prior art date
Application number
PCT/JP2006/318867
Other languages
French (fr)
Japanese (ja)
Inventor
Michikuni Yamauchi
Original Assignee
Marposs Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marposs Kk filed Critical Marposs Kk
Priority to PCT/JP2006/318867 priority Critical patent/WO2008035438A1/en
Publication of WO2008035438A1 publication Critical patent/WO2008035438A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/02Measuring arrangements characterised by the use of fluids for measuring length, width or thickness
    • G01B13/06Measuring arrangements characterised by the use of fluids for measuring length, width or thickness for measuring thickness

Definitions

  • the present invention relates to an apparatus and a method for measuring the thickness of a rotating body.
  • a pair of ejection nozzles that eject fluid
  • an ejection nozzle driving unit that drives the pair of ejection nozzles in an approaching and separating direction
  • an inter-nozzle distance measuring unit that measures a distance between the pair of ejection nozzles
  • a back pressure measuring means for measuring the back pressure of the pair of injection nozzles
  • a data processing unit for performing a calculation based on the measurement data of the inter-nozzle distance measuring means and the measurement data of the back pressure measuring means
  • the data processing unit stores a pre-measured correlation between the distance between the stationary sample and the injection nozzle and the back pressure value of the injection nozzle, and based on the back pressure of the injection nozzle measured by the back pressure measuring means and the correlation.
  • the distance between the stationary measurement object positioned between the pair of injection nozzles and each injection nozzle is calculated, and the distance between nozzles measured by the means for measuring the distance between nozzles, the stationary measurement object and each injection nozzle are calculated.
  • Distance Toka et between nozzle, the non-contact thickness measuring apparatus and calculates a stationary thickness to be measured is disclosed in Patent Document 1 les, Ru.
  • Patent Document 1 JP 2001-221624
  • the correlation between the distance between the stationary sump nore and the injection nozzle and the back pressure value of the injection nozzle is based on the fact that the sump nore with a known thickness is placed on a surface plate and measured with a linear gauge.
  • the distance between the nozzle and the sample calculated from the distance to the platen and the thickness of the sampnore, and the spray nozzle force when spraying the fluid toward the sampnore measured using the back pressure measurement means
  • the relationship with the back pressure of the nozzle is measured by obtaining a large number of samples while varying the distance between the sample and the injection nozzle by moving the injection nozzle facing the sample closer to and away from the sample nozzle.
  • An object of this invention is to provide the non-contact-type rotary body thickness measuring apparatus which was not provided for practical use conventionally, and the method of measuring the thickness of a rotary body non-contactingly.
  • a pair of injection nozzles for injecting fluid an injection nozzle driving means for driving the pair of injection nozzles in the approaching and separating directions, and a distance between the pair of injection nozzles are set.
  • the data processing unit injects fluid from the injection nozzle toward the distance and the sump nore between the stationary sample and the nozzle that are made of the same material as the rotating object to be measured.
  • the previously measured correlation with the back pressure value of the injection nozzle at the time is stored, and the back pressure of the injection nozzle when the fluid is injected from the injection nozzle toward the rotating body measured by the back pressure measuring means and the phase
  • the distance between the rotary body positioned between the pair of jet nozzles and each jet nozzle is calculated from the distance between the nozzles measured by the internozzle distance measuring means, and the rotary body and each jet nozzle.
  • a rotating body thickness measuring device that calculates the thickness of a rotating body from the distance between them.
  • the inventor of the present invention has found that the correlation between the distance between the stationary sample and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample is It was found that the relationship was established between the distance between the rotating sample and the injection nozzle and the back pressure value of the injection nozzle when fluid was injected from the injection nozzle toward the sump nore.
  • the present invention has been made on the basis of the above knowledge. If the sample and the rotating body are made of the same material, the distance between the stationary sample and the injection nozzle and the fluid from the injection nozzle toward the sample are injected.
  • Correlation force with the back pressure value of the injection nozzle at the time of rotation The distance between the rotating body and the injection nozzle and the fluid was injected from the injection nozzle toward the rotating body
  • a non-contact type rotating body thickness measuring device is provided by utilizing the fact that it is also established between the back pressure value of the injection nozzle at the time.
  • the data processing unit calculates a distance between the rotating body and each injection nozzle using the linear portion of the correlation.
  • the correlation between the distance between the stationary sump nore and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample is as follows. As the distance increases from zero on the Cartesian coordinates with the horizontal axis as, the curve continuously changes from an upward convex curve to a negative slope ⁇ downward convex curve. In the curve portion of the correlation, the distance changes greatly with a slight change in back pressure. Therefore, the curve portion of the correlation is difficult to use for accurately measuring the distance based on the back pressure. By using the linear portion of the correlation, the distance between the rotating body and each injection nozzle can be accurately measured based on the back pressure.
  • the pair of injection nozzles is fixed to the other end portion of the columnar member having one end extending in parallel and fixed, and the injection nozzle driving means includes the pair of injection nozzles.
  • These columnar members are biased to displace the other ends of the pair of columnar members in the approaching / separating direction.
  • a ball screw is screwed to a base to which an injection nozzle is attached, and a ball screw is driven by a stepping motor to drive the base in the extending direction of the ball screw, thereby driving the injection nozzle. is doing.
  • the base is considered to be slidably engaged with the guide rail.
  • An injection nozzle is fixed to the other end portion of the pair of columnar members fixed at one end extending in parallel, and the pair of columnar members are urged by using an injection nozzle driving means, and the other of the pair of columnar members By displacing the end portion in the approaching / separating direction, it is possible to move the injection nozzle smoothly.
  • a fragile portion that is deformed in a shearing and elastic manner is disposed at a portion closer to the fixed end than the point of application of the injection nozzle driving means of the columnar member. It is desirable that the injection nozzle is always directed in the direction perpendicular to the surface of the rotating body. If a weakened portion that is shear-elastically deformed is disposed at a position closer to the fixed end than the point of application of the injection-nozzle driving means of the columnar member, the weakened shear-elastically deforms when energized using the injection nozzle driving means. Since the portion closer to the other end portion than the weak portion moves in parallel without being inclined, the injection nozzle can always be directed in the direction orthogonal to the surface of the rotating body.
  • the spray nozzle driving means mechanically interlocks the pair of columnar members to displace the other end in the approaching / separating direction.
  • a pair of ball screws are driven to rotate using a stepping motor, and a pair of injection nozzles are driven in the approaching and separating directions, and a pair of injection nozzles are used using a pair of drive sources.
  • the pair of injection nozzles can be driven using a single driving source, and the thickness measuring apparatus has a configuration. Simplified.
  • the rotating body thickness measuring device is mounted and fixed on a table of a surface grinder together with the rotating crane inning device adjacent to the rotating crane inking device.
  • the thickness of the rotating grindstone of the surface grinder which is finished by a crushing device and positioned between the pair of injection nozzles by the movement of the table, is measured.
  • the rotating body thickness measuring apparatus is placed and fixed on a table of a surface grinder together with the rotating crane lining apparatus adjacent to the rotating vine tooling apparatus, and finished by the rotary vine tooling apparatus. Measure the thickness of the rotating grindstone of the surface grinder immediately after finishing by positioning the rotating grindstone of the surface grinder, which is positioned between the pair of spray nozzles of this device by moving the table. can do.
  • the distance between a stationary sample nozzle made of the same material as the rotating body to be measured and the injection nozzle, and the back pressure of the injection nozzle when the fluid is injected from the injection nozzle toward the sample nozzle Measure the correlation with the value in advance, measure the back pressure of the spray nozzle when fluid is sprayed from the spray nozzle toward the rotating body, and position between the pair of spray nozzles based on the back pressure and the correlation Calculate the distance between the rotating body and each injection nozzle
  • a rotating body thickness measuring method characterized by measuring the separation and calculating the thickness of the rotating body from the distance between the rotating body and each injection nozzle and the distance between the nozzles.
  • the distance between the stationary sample and the injection nozzle, and the nozzle from the injection nozzle toward the sample Correlation force with the back pressure value of the injection nozzle when the fluid is injected
  • the distance between the rotating body and the injection nozzle, and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the rotating body Therefore, the distance between the stationary sampler that has the same material force as the rotating body to be measured and the injection nozzle, and the back pressure value of the injection nozzle when fluid is injected from the injection nozzle toward the sample Is measured in advance, the back pressure of the injection nozzle when the fluid is ejected from the ejection nozzle toward the rotating body is measured, and the rotation positioned between the pair of ejection nozzles is determined from the back pressure and the correlation.
  • the thickness of the rotating body is calculated by calculating the distance between the nozzles, measuring the distance between the nozzles, and calculating the thickness of the rotating body from the distance between the rotating body and each injection nozzle and the distance between the nozzles. Can measure force without contact S.
  • the inventor of the present invention correlates the distance between the stationary sump nore and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample. It was found that the relationship between the distance to the injection nozzle and the back pressure value of the injection nozzle when fluid was injected toward the sump nore was also established.
  • the distance between the stationary sample and the injection nozzle and the fluid from the injection nozzle toward the sample Correlation force between the back pressure value of the injection nozzle when jetting a fluid and the distance between the rotating body and the injection nozzle and the back pressure value of the injection nozzle when fluid is ejected from the injection nozzle toward the rotating body It also holds in between. Therefore, the correlation between the distance between the stationary sample having the same material force as that of the rotating body to be measured and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample is obtained in advance.
  • the rotating body thickness measuring apparatus A includes a base 1 and a pair of columnar members 2 a and 2 b each having one end fixed to the base 1.
  • the columnar members 2a and 2b stand upright from the base 1 and extend parallel to each other.
  • fragile portions 2a ′ and 2b ′ that are sheared and elastically deformed in parallel to the base 1 are disposed as indicated by a dashed line in FIG.
  • a ball screw 3 is screwed into a portion farther from the base 1 than the weakened portions 2a ′ and 2b ′ of the columnar members 2a and 2b.
  • the ball screw 3 passes through the columnar members 2a and 2b.
  • a handle 4 is fixed to one end of the ball screw 3.
  • the other end of the ball screw 3 is rotatably supported around the central axis of the ball screw 3 by a stopper 6 fixed to the base 1 via a sphere 5 fixed to the other end.
  • a screw in the opposite direction to the threaded portion 3b of the ball screw 3 with the columnar member 2b is formed in the threaded portion 3a of the ball screw 3 with the columnar member 2a.
  • the columnar members 2a and 2b receive the urging force from the ball screw 3 and deform in the approaching / separating direction, and the other ends of the columnar members 2a and 2b are displaced in the approaching / separating direction.
  • the weakened portions 2a 'and 2b' are elastically deformed in the previous stage, so that the portions of the columnar members 2a and 2b that are farther from the base 1 than the weakened portions 2a 'and 2b' remain upright with respect to the base 1. While moving in parallel.
  • a pair of panels 7a and 7b for urging the columnar members 2a and 2b toward each other are provided.
  • Injection nozzles 8a and 8b are attached to the other ends of the columnar members 2a and 2b that are separated from the base 1.
  • the injection nozzles 8a and 8b are arranged facing each other.
  • the injection nozzles 8a and 8b are connected to compressed air supply sources 9a and 9b for supplying compressed air having a predetermined pressure via pipes 10a and 10b.
  • AE converters l la and l ib for measuring the back pressure of the injection nozzles 8a and 8b are arranged in the middle of the pipes 10a and 10b.
  • the AE converters l la and l ib are devices that convert the back pressure of the injection nozzles 8a and 8b into the displacement of the diaphragm, and convert the displacement of the diaphragm into an electrical signal using a differential transformer, and are commercially available.
  • AE converter l la, l ib output The signal is input to the data processor 12.
  • Linear gauges 13a and 13b for measuring the amount of movement of the injection nozzles 8a and 8b are fixed to the other ends of the columnar members 2a and 2b via arm members.
  • the output signals of the linear gauges 13a and 13b are also input to the data processing device 12.
  • the rotating body thickness measuring device A is mounted and fixed on the table C of the surface grinding machine together with the rotating tooling device B adjacent to the rotating tooling device B.
  • the rotary crane 1 / fung device B is a device that finish-cuts the peripheral edge portion 101 of the rotating grindstone 100 of the surface grinder to a predetermined thickness by using two rotary grinding disks B1, B2.
  • the peripheral edge 101 of the rotating grindstone 100 is positioned or rotated between the rotating grinding disks Bl and B2 of the rotary claw unit B. Positioning can be performed between the pair of spray nozzles 8a and 8b of the body thickness measuring apparatus A.
  • the data processing unit 12 injects compressed air from the injection nozzles 8a and 8b toward the sample, and the distance between the stationary sample nozzle having the same material force as the rotating grindstone 100 to be measured and the injection nozzles 8a and 8b.
  • the previously measured correlations ⁇ and i3 with the back pressure values of the injection nozzles 8a and 8b are stored.
  • Correlation ⁇ is the assembly of the injection nozzle 8a, compressed air supply source 9a, piping 10a, AE converter 1 1a, and data processor 12 before being incorporated into the rotating body thickness measuring device A, and incorporated into the rotating body thickness measuring device A. Measured using assembly of previous injection nozzle 8b, compressed air supply source 9b, piping 10b, AE converter l ib and data processor 12.
  • Correlation ⁇ is calculated by placing the sample of the same material as the rotating whetstone 100 on the surface plate and measuring the distance between the injection nozzle 8a and the surface plate measured using a reduction gauge, the thickness and force of the sample. The relationship between the distance between the injection nozzle 8a and the sample and the back pressure of the injection nozzle 8a when compressed air is injected from the injection nozzle 8a toward the sump nore measured using the AE converter 1 1a. Measurement is performed by obtaining a large number of spray nozzles 8a opposed to the sample by moving them closer to and away from the sample and changing the distance between the sample nozzle and the spray nozzle 8a in various ways.
  • the correlation ⁇ is an orthogonal coordinate with the back pressure on the vertical axis and the distance on the horizontal axis.
  • the distance increases from zero, it continuously changes from an upward convex curve to a negative slope straight line to a downward convex curve.
  • the correlation curve portion the distance changes greatly with a slight change in back pressure. Therefore, it is difficult to use the correlation curve portion to accurately measure the distance based on the back pressure.
  • the data processor 12 stores the linear portion of the correlation string.
  • the minimum back pressure value pi and the maximum back pressure p2 of the linear portion of the correlation string are displayed on the display unit of the data processing device 12.
  • Correlation / 3 is also measured in the same way as a correlation person.
  • the data processor 12 stores the linear portion of correlation / 3.
  • the minimum back pressure value and the maximum back pressure value of the linear portion of the correlation ⁇ are displayed on the display unit of the data processing device 12.
  • the data processing device 12 stores the output values of the linear gauges 13a and 13b when the injection nozzles 8a and 8b come close to each other and come into contact with each other.
  • the worker moves the table C, and as shown in FIG. 2, the outer peripheral edge 101 of the rotating grindstone 100 during rotation of the surface grinder is placed between the injection nozzles 8a and 8b of the rotating body thickness measuring apparatus A. Position.
  • the worker turns the handle 4 to make the injection nozzles 8a and 8b asymptotic to the outer peripheral edge 101 of the rotating grindstone 100 while injecting compressed air from the injection nozzles 8a and 8b.
  • the back pressure of the injection nozzles 8a and 8b measured by the AE converters 11a and ib is displayed on the display unit of the data processing device 12.
  • the worker is responsible for the minimum back pressure value and the maximum back pressure value of the linear portion of the correlation and ⁇ displayed on the display unit of the data processing device 12, and the injection nozzles 8a and 8b measured by the converters lla and l ib.
  • the back pressure of the injection nozzle 8a measured by the AE converter 1 1a is between the minimum back pressure value and the maximum back pressure value of the linear part of the correlation a, and the AE converter l ib measured
  • the back pressure of the injection nozzle 8b correlates between the minimum back pressure value and the maximum back pressure value of the linear part When it is, stop rotating the handle 4 and press the thickness measurement start button on the data processor 12.
  • the data processing device 12 uses a linear portion of the correlation ⁇ and the back pressure value of the injection nozzle 8a measured by the power converter 1 1a to determine the distance between the injection nozzle 8a and the outer peripheral edge 101 of the rotating grindstone 100. The distance is calculated, and the distance between the injection nozzle 8b and the outer peripheral edge 101 of the rotating grindstone 100 is calculated from the linear part of the correlation ⁇ and the back pressure value of the injection nozzle 8b measured by the ⁇ converter l ib.
  • the data processing device 12 uses the output values of the linear gauges 13a and 13b when the pre-stored injection nozzles 8a and 8b come close to each other and the current output values of the linear gauges 13a and 13b. The distance between the injection nozzles 8a and 8b is calculated.
  • the data processing device 12 determines the distance between the injection nozzle 8a and the outer peripheral edge 101 of the rotating grindstone 100, the injection nozzle 8b and the outer peripheral edge 101 of the rotating grindstone 100 from the distance between the injection nozzles 8a and 8b.
  • the thickness of the outer peripheral edge 101 of the rotating grindstone 100 is calculated by subtracting the sum of the distances between them and displayed on the display.
  • the thickness force of the outer peripheral edge 101 of the rotating grindstone 100 immediately after finishing by the rotary clawing device B in the above procedure is measured with the rotating grindstone 100 rotated. If the measured value is larger than the desired value, move the table C and position the outer peripheral edge 101 of the rotating grindstone 100 between the two rotating grinding disks B 1 and B2 of the rotary clawing device B. And rotate the rotating grinding disks B1, B2 to further finish the peripheral edge 101 of the rotating grindstone 100.
  • the outer peripheral edge 101 of the rotating grindstone 100 is finished to a desired thickness.
  • a rotating grindstone 100 having a thickness of 0.3 mm is attached to a surface grinder, and using the rotary clawing device B, the peripheral edge 101 of the rotating grindstone 100 is shaved to a thickness of about 0.1 mm, Using the rotating body thickness measuring device A, the distance between the injection nozzles 8a, 8b and the rotating grindstone 100 is fixed to a predetermined point in the linear part of the correlations a, ⁇ , and a plurality of Orpm and Orpm to 3000 rpm are set. The thickness of the peripheral portion 101 of the rotating grindstone 100 was measured by the number of rotations. The above measurement was performed at a plurality of predetermined points in the linear part of the correlation ⁇ .
  • the measured value was a force with a variation of about 0.5 zm. From this, the distance between the stationary sumnore and the injection nozzle and the sample Nozzle force toward the nozzle Correlation with the back pressure value of the injection nozzle when compressed air is injected is determined by the distance between the rotating sample and the injection nozzle and the compressed air from the injection nozzle toward the sampler. It was proved that it was also established between the back pressure value of the injection nozzle when the fuel was injected.
  • the thickness of the peripheral edge 101 of the rotary whetstone 100 finished by the rotary clawing device B is about 100 am at the minimum, and the rotation speed of the rotary whetstone 100 when the surface inspection grinder is in operation is about 1500 rpm.
  • the rotating body thickness measuring apparatus A capable of measuring the thickness of the peripheral portion 101 of about 0.1 mm with an error of about 0.5 zm in the range of Orpm to 3000 rpm can be sufficiently put into practical use.
  • the sample used when measuring the correlation / 3 in advance is the rotation target for thickness measurement. It is considered necessary to use the same material as the grinding wheel 100.
  • the injection nozzles 8a and 8b are fixed to the other ends of the columnar members 2a and 2b with one end extending in parallel, and the pair of columnar members 2a and 2b are fixed. 2b is urged by using the ball screw 3 and the other ends of the pair of columnar members 2a, 2b are displaced in the approaching / separating direction, so that the injection nozzles 8a, 8b can be moved smoothly and accurately.
  • ordinary screws may be used to urge the columnar members 2a and 2b in the approaching / separating direction.
  • the springs 7a and 7b urge the columnar members 2a and 2b toward each other so that there is no backlash when the ball screw 3 rotates, and the movement of the injection nozzles 8a and 8b becomes smoother.
  • the injection nozzles 8a and 8b are always directed in a direction orthogonal to the surface of the rotating grindstone. If the weakened parts 2a 'and 2b' that are cut elastically deformed are located closer to the fixed end than the force applied to the ball screw 3 of the columnar members 2a and 2b, the ball screw 3 is rotated to urge the columnar members 2a and 2b. In this case, the fragile portions 2a 'and 2b' are sheared and elastically deformed as indicated by the alternate long and short dashed lines in FIG. 2, and the portions of the columnar members 2a and 2b closer to the other end than the fragile portions 2a 'and 2b' are inclined.
  • the spray nozzles 8a and 8b can always be directed perpendicularly to the surface of the rotating grindstone 100.
  • the pair of columnar members 2a and 2b having the injection nozzles 8a and 8b attached to the other end are mechanically interlocked using a ball screw 3, thereby A pair of injection nozzles 8a and 8b can be driven using a single driving source that rotates. As a result, the configuration of the thickness measuring apparatus A is simplified.
  • FIG. 4 shows a rotating body thickness measuring apparatus A ′ according to another embodiment of the present invention.
  • a spring 14 is provided in the rotating body thickness measuring device A ′.
  • a spring 14 is provided in the rotating body thickness measuring device A ′.
  • the columnar members 2a and 2b are mechanically linked to drive the injection nozzles 8a and 8b in the approaching and separating directions.
  • compressed gas or liquid may be ejected from the ejection nozzles 8a and 8b.
  • the present invention can be widely used for measuring the thickness of a rotating body.
  • FIG. 1 is a top view of a rotating body thickness measuring device and a rotating crane laying device according to an embodiment of the present invention mounted and fixed on a table of a surface grinding machine.
  • FIG. 2 is a view taken along the line II-II in FIG.
  • FIG. 3 is a diagram showing a correlation between a distance between a stationary sample and an injection nozzle and a back pressure value of the injection nozzle when compressed air is injected from the injection nozzle toward the sample.
  • FIG. 4 is a partial structural diagram of a rotating body thickness measuring apparatus according to another embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

[PROBLEMS] To provide a noncontact measuring device and a noncontact measuring method of the thickness of a rotator. [MEANS FOR SOLVING PROBLEMS] A device for measuring the thickness of a rotator comprising a pair of jet nozzles for jetting fluid, a means for driving the pair of jet nozzles in the approaching/separating direction, a means for measuring the distance between nozzles for measuring the distance between the pair of jet nozzles, a back pressure measuring means for measuring the back pressures of the pair of jet nozzles, and a data processing section performing operation based on the measurement data by the means for measuring the distance between nozzles and the measurement data by the back pressure measuring means. The data processing section stores the previously measured correlation between the distance between a stationary sample composed of the same material as that of a measurement object, i.e. a rotator, and the jet nozzle and the back pressure value of the jet nozzle when fluid is jetted from the jet nozzle toward the sample, calculates the distance between each jet nozzle and the rotator which is positioned between the pair of jet nozzles from the correlation and the back pressure of the jet nozzle measured by the back pressure measuring means when fluid is jetted from the jet nozzle toward the rotator, and then calculates the thickness of the rotator from the distance between nozzles measured by the means for measuring the distance between nozzles, and the distance between the rotator and each jet nozzle.

Description

明 細 書  Specification
回転体厚み測定装置および回転体厚み測定方法  Rotating body thickness measuring apparatus and rotating body thickness measuring method
技術分野  Technical field
[0001] 本発明は、回転体の厚みを測定する装置および方法に関するものである。  [0001] The present invention relates to an apparatus and a method for measuring the thickness of a rotating body.
背景技術  Background art
[0002] 流体を噴射する一対の噴射ノズルと、前記一対の噴射ノズルを接近離隔方向へ駆動 する噴射ノズル駆動手段と、前記一対の噴射ノズル間の距離を測定するノズノレ間距 離測定手段と、前記一対の噴射ノズルの背圧を測定する背圧測定手段と、前記ノズ ル間距離測定手段の測定データと前記背圧測定手段の測定データとに基づいて演 算を行うデータ処理部とを備え、データ処理部は、静止したサンプルと噴射ノズルと の間の距離と噴射ノズノレの背圧値との予め測定した相関を記憶し、背圧測定手段が 測定した噴射ノズノレの背圧と前記相関とから前記一対の噴射ノズノレの間に位置決め された静止した測定対象と各噴射ノズルとの間の距離を算出し、ノズノレ間距離測定 手段の測定したノズル間距離と、静止した測定対象と各噴射ノズルとの間の距離とか ら、前記静止した測定対象の厚みを算出することを特徴とする非接触式の厚み測定 装置が特許文献 1に開示されてレ、る。  [0002] A pair of ejection nozzles that eject fluid, an ejection nozzle driving unit that drives the pair of ejection nozzles in an approaching and separating direction, an inter-nozzle distance measuring unit that measures a distance between the pair of ejection nozzles, A back pressure measuring means for measuring the back pressure of the pair of injection nozzles, and a data processing unit for performing a calculation based on the measurement data of the inter-nozzle distance measuring means and the measurement data of the back pressure measuring means, The data processing unit stores a pre-measured correlation between the distance between the stationary sample and the injection nozzle and the back pressure value of the injection nozzle, and based on the back pressure of the injection nozzle measured by the back pressure measuring means and the correlation. The distance between the stationary measurement object positioned between the pair of injection nozzles and each injection nozzle is calculated, and the distance between nozzles measured by the means for measuring the distance between nozzles, the stationary measurement object and each injection nozzle are calculated. Distance Toka et between nozzle, the non-contact thickness measuring apparatus and calculates a stationary thickness to be measured is disclosed in Patent Document 1 les, Ru.
特許文献 1 :特開 2001— 221624  Patent Document 1: JP 2001-221624
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 静止したサンプノレと噴射ノズルとの間の距離と噴射ノズルの背圧値との相関は、厚み が既知のサンプノレを定盤上に載置し、リニアゲージを用いて測定した噴射ノズノレと定 盤との間の距離とサンプノレの厚みとから算出した噴射ノズルとサンプルとの間の距離 と、背圧測定手段を用いて測定したサンプノレへ向けて噴射ノズル力 流体を噴射し た時の噴射ノズルの背圧との関係を、サンプルに対峙させた噴射ノズノレをサンプノレ に接近離隔させて、サンプルと噴射ノズルとの間の距離を種々に変えつつ、多数取 得することにより、測定される。 [0003] The correlation between the distance between the stationary sump nore and the injection nozzle and the back pressure value of the injection nozzle is based on the fact that the sump nore with a known thickness is placed on a surface plate and measured with a linear gauge. The distance between the nozzle and the sample calculated from the distance to the platen and the thickness of the sampnore, and the spray nozzle force when spraying the fluid toward the sampnore measured using the back pressure measurement means The relationship with the back pressure of the nozzle is measured by obtaining a large number of samples while varying the distance between the sample and the injection nozzle by moving the injection nozzle facing the sample closer to and away from the sample nozzle.
回転体の厚みを測定するためには、回転するサンプルと噴射ノズルとの間の距離と、 回転するサンプルへ向けて噴射ノズルから流体を噴射した時の噴射ノズノレの背圧と の相関を測定する必要があると考えられており、前記相関を測定するのが技術的に 困難と考えられてレ、たために、回転体の厚みを測定する非接触式の厚み測定装置 は、未だ実用に供されていない。 In order to measure the thickness of the rotating body, the distance between the rotating sample and the injection nozzle, It is considered necessary to measure the correlation with the back pressure of the injection nozzle when the fluid is injected from the injection nozzle toward the rotating sample, and it is considered technically difficult to measure the correlation. Therefore, a non-contact type thickness measuring device for measuring the thickness of the rotating body has not been put into practical use yet.
本発明は、従来実用に供されていなかった非接触式の回転体厚み測定装置および 非接触で回転体の厚みを測定する方法を提供することを目的とする。 An object of this invention is to provide the non-contact-type rotary body thickness measuring apparatus which was not provided for practical use conventionally, and the method of measuring the thickness of a rotary body non-contactingly.
課題を解決するための手段 Means for solving the problem
本発明においては、上記課題を解決するために、流体を噴射する一対の噴射ノズル と、前記一対の噴射ノズルを接近離隔方向へ駆動する噴射ノズル駆動手段と、前記 一対の噴射ノズル間の距離を測定するノズノレ間距離測定手段と、前記一対の噴射ノ ズルの背圧を測定する背圧測定手段と、前記ノズル間距離測定手段の測定データと 前記背圧測定手段の測定データとに基づいて演算を行うデータ処理部とを備え、デ ータ処理部は、測定対象である回転体と同一素材から成る静止したサンプノレと噴射 ノズノレとの間の距離とサンプノレへ向けて噴射ノズルから流体を噴射した時の噴射ノズ ルの背圧値との予め測定した相関を記憶し、背圧測定手段が測定した回転体へ向 けて噴射ノズルから流体を噴射した時の噴射ノズルの背圧と前記相関とから前記一 対の噴射ノズルの間に位置決めされた回転体と各噴射ノズルとの間の距離を算出し 、ノズノレ間距離測定手段の測定したノズル間距離と、回転体と各噴射ノズルとの間の 距離とから、回転体の厚みを算出することを特徴とする回転体厚み測定装置を提供 する。 In the present invention, in order to solve the above problems, a pair of injection nozzles for injecting fluid, an injection nozzle driving means for driving the pair of injection nozzles in the approaching and separating directions, and a distance between the pair of injection nozzles are set. Calculation based on the distance measurement means for measuring the distance between the nozzles, the back pressure measurement means for measuring the back pressure of the pair of injection nozzles, the measurement data of the distance measurement means between the nozzles, and the measurement data of the back pressure measurement means The data processing unit injects fluid from the injection nozzle toward the distance and the sump nore between the stationary sample and the nozzle that are made of the same material as the rotating object to be measured. The previously measured correlation with the back pressure value of the injection nozzle at the time is stored, and the back pressure of the injection nozzle when the fluid is injected from the injection nozzle toward the rotating body measured by the back pressure measuring means and the phase The distance between the rotary body positioned between the pair of jet nozzles and each jet nozzle is calculated from the distance between the nozzles measured by the internozzle distance measuring means, and the rotary body and each jet nozzle. Provided is a rotating body thickness measuring device that calculates the thickness of a rotating body from the distance between them.
本発明の発明者は、鋭意研究の結果、静止したサンプルと噴射ノズルとの間の距離 と、当該サンプルへ向けて噴射ノズルから流体を噴射した時の噴射ノズノレの背圧値と の相関が、回転中の前記サンプルと噴射ノズルとの間の距離と、当該サンプノレへ向 けて噴射ノズルから流体を噴射した時の噴射ノズルの背圧値との間にも成立すること を見出した。本発明は上記知見に基づいてなされたものであり、サンプルと回転体と が同一素材であれば、静止したサンプルと噴射ノズルとの間の距離と、当該サンプル へ向けて噴射ノズルから流体を噴射した時の噴射ノズルの背圧値との相関力 回転 体と噴射ノズルとの間の距離と、当該回転体へ向けて噴射ノズルから流体を噴射した 時の噴射ノズルの背圧値との間にも成立することを利用して、非接触式の回転体厚 み測定装置を提供するものである。 As a result of earnest research, the inventor of the present invention has found that the correlation between the distance between the stationary sample and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample is It was found that the relationship was established between the distance between the rotating sample and the injection nozzle and the back pressure value of the injection nozzle when fluid was injected from the injection nozzle toward the sump nore. The present invention has been made on the basis of the above knowledge. If the sample and the rotating body are made of the same material, the distance between the stationary sample and the injection nozzle and the fluid from the injection nozzle toward the sample are injected. Correlation force with the back pressure value of the injection nozzle at the time of rotation The distance between the rotating body and the injection nozzle and the fluid was injected from the injection nozzle toward the rotating body A non-contact type rotating body thickness measuring device is provided by utilizing the fact that it is also established between the back pressure value of the injection nozzle at the time.
[0005] 本発明の好ましい態様においては、データ処理部は、前記相関の直線部分を用い て、回転体と各噴射ノズルとの間の距離を算出する。  In a preferred aspect of the present invention, the data processing unit calculates a distance between the rotating body and each injection nozzle using the linear portion of the correlation.
静止したサンプノレと噴射ノズルとの間の距離と、当該サンプルへ向けて噴射ノズルか ら流体を噴射した時の噴射ノズルの背圧値との相関は、前記背圧を縦軸に、前記距 離を横軸にとった直交座標上において、前記距離が零から増大するのに伴って、上 に凸の曲線→負の傾斜を有する直線→下に凸の曲線と連続的に変化する。前記相 関の曲線部分においては、僅かの背圧変化で距離が大きく変化するので、前記相関 の曲線部分は、背圧に基づいて距離を正確に測定するのに利用し難い。前記相関 の直線部分を用いることにより、背圧に基づいて回転体と各噴射ノズルとの間の距離 を正確に測定することができる。  The correlation between the distance between the stationary sump nore and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample is as follows. As the distance increases from zero on the Cartesian coordinates with the horizontal axis as, the curve continuously changes from an upward convex curve to a negative slope → downward convex curve. In the curve portion of the correlation, the distance changes greatly with a slight change in back pressure. Therefore, the curve portion of the correlation is difficult to use for accurately measuring the distance based on the back pressure. By using the linear portion of the correlation, the distance between the rotating body and each injection nozzle can be accurately measured based on the back pressure.
[0006] 本発明の好ましい態様においては、前記一対の噴射ノズルは、一対の平行に延在 する一端が固定された柱状部材の他端部に固定されており、噴射ノズル駆動手段は 、前記一対の柱状部材を付勢し前記一対の柱状部材の他端部を接近離隔方向に変 位させる。 [0006] In a preferred aspect of the present invention, the pair of injection nozzles is fixed to the other end portion of the columnar member having one end extending in parallel and fixed, and the injection nozzle driving means includes the pair of injection nozzles. These columnar members are biased to displace the other ends of the pair of columnar members in the approaching / separating direction.
特許文献 1の厚み測定装置においては、噴射ノズノレを取り付けたベースにボールネ ジを螺合させ、ボールネジをステッピングモータで回転駆動してベースをボールネジ の延在方向へ駆動することにより、噴射ノズルを駆動している。ベースはガイドレール に摺動可能に係合していると考えられる。上記構造には、ガイドレールとベースとの 間の摺動係合に不具合が生ずると、ベースのスムーズな移動、ひいては噴射ノズル のスムーズな移動が阻害されて、正確な厚み測定が不可能になるという問題がある。 一対の平行に延在する一端が固定された柱状部材の他端部に噴射ノズノレを固定し 、前記一対の柱状部材を噴射ノズル駆動手段を用いて付勢し、前記一対の柱状部 材の他端部を接近離隔方向に変位させることにより、噴射ノズルをスムーズに移動さ せること力 sできる。  In the thickness measurement device of Patent Document 1, a ball screw is screwed to a base to which an injection nozzle is attached, and a ball screw is driven by a stepping motor to drive the base in the extending direction of the ball screw, thereby driving the injection nozzle. is doing. The base is considered to be slidably engaged with the guide rail. In the above structure, if there is a failure in the sliding engagement between the guide rail and the base, the smooth movement of the base, and hence the smooth movement of the injection nozzle, will be hindered, making accurate thickness measurement impossible. There is a problem. An injection nozzle is fixed to the other end portion of the pair of columnar members fixed at one end extending in parallel, and the pair of columnar members are urged by using an injection nozzle driving means, and the other of the pair of columnar members By displacing the end portion in the approaching / separating direction, it is possible to move the injection nozzle smoothly.
[0007] 本発明の好ましレ、態様にぉレ、ては、前記柱状部材の噴射ノズル駆動手段の着力点 よりも固定端寄りの部位に剪断弾性変形する脆弱部が配設されている。 噴射ノズノレは回転体表面に対して直交方向に常時差し向けられていることが望まし レ、。柱状部材の噴射ノズノレ駆動手段の着力点よりも固定端寄りの部位に剪断弾性変 形する脆弱部を配設すると、噴射ノズル駆動手段を用いて付勢した際に、前記脆弱 が剪断弾性変形し、前記脆弱部よりも前記他端部寄りの部分は傾斜することなく平行 移動するので、噴射ノズノレを回転体表面に対して直交方向に常時差し向けることが できる。 [0007] In the preferred embodiment and aspect of the present invention, a fragile portion that is deformed in a shearing and elastic manner is disposed at a portion closer to the fixed end than the point of application of the injection nozzle driving means of the columnar member. It is desirable that the injection nozzle is always directed in the direction perpendicular to the surface of the rotating body. If a weakened portion that is shear-elastically deformed is disposed at a position closer to the fixed end than the point of application of the injection-nozzle driving means of the columnar member, the weakened shear-elastically deforms when energized using the injection nozzle driving means. Since the portion closer to the other end portion than the weak portion moves in parallel without being inclined, the injection nozzle can always be directed in the direction orthogonal to the surface of the rotating body.
[0008] 本発明の好ましい態様においては、前記噴射ノズル駆動手段は、前記一対の柱状 部材を機械的に連動させて前記他端部を接近離隔方向に変位させる。  [0008] In a preferred aspect of the present invention, the spray nozzle driving means mechanically interlocks the pair of columnar members to displace the other end in the approaching / separating direction.
特許文献 1の厚み測定装置においては、一対のボールネジをそれぞれステッピング モータを用いて回転駆動して、一対の噴射ノズルを接近離隔方向へ駆動しており、 一対の駆動源を用いて一対の噴射ノズルを駆動している。他端部に噴射ノズルを取 り付けた一対の柱状部材を、機械的に連動させることにより、単一の駆動原を用いて 一対の噴射ノズルを駆動することができ、厚み測定装置の構成が簡素化される。  In the thickness measuring apparatus of Patent Document 1, a pair of ball screws are driven to rotate using a stepping motor, and a pair of injection nozzles are driven in the approaching and separating directions, and a pair of injection nozzles are used using a pair of drive sources. Is driving. By mechanically interlocking a pair of columnar members with an injection nozzle attached to the other end, the pair of injection nozzles can be driven using a single driving source, and the thickness measuring apparatus has a configuration. Simplified.
[0009] 本発明の好ましい態様においては、回転体厚み測定装置は、回転式ツル一イング装 置に隣接して回転式ツル一イング装置と共に平面研削盤のテーブル上に載置固定 され、回転式ツル一イング装置により仕上げ削りされ、前記テーブルの移動により前 記一対の噴射ノズルの間に位置決めされた前記平面研削盤の回転する砥石の厚み を測定する。  [0009] In a preferred aspect of the present invention, the rotating body thickness measuring device is mounted and fixed on a table of a surface grinder together with the rotating crane inning device adjacent to the rotating crane inking device. The thickness of the rotating grindstone of the surface grinder, which is finished by a crushing device and positioned between the pair of injection nozzles by the movement of the table, is measured.
本発明に係る回転体厚み測定装置を、回転式ツル一イング装置に隣接して回転式 ツル一イング装置と共に平面研削盤のテーブル上に載置固定し、回転式ツル一イン グ装置により仕上げ削りされた平面研削盤の回転する砥石を、前記テーブルを移動 させることにより本装置の一対の噴射ノズルの間に位置決めして、仕上げ削りされた 直後の前記平面研削盤の回転する砥石の厚みを測定することができる。  The rotating body thickness measuring apparatus according to the present invention is placed and fixed on a table of a surface grinder together with the rotating crane lining apparatus adjacent to the rotating vine tooling apparatus, and finished by the rotary vine tooling apparatus. Measure the thickness of the rotating grindstone of the surface grinder immediately after finishing by positioning the rotating grindstone of the surface grinder, which is positioned between the pair of spray nozzles of this device by moving the table. can do.
[0010] 本発明においては、測定対象である回転体と同一素材から成る静止したサンプノレと 噴射ノズノレとの間の距離とサンプノレへ向けて噴射ノズルから流体を噴射した時の噴 射ノズルの背圧値との相関を予め測定し、回転体へ向けて噴射ノズルから流体を噴 射した時の噴射ノズルの背圧を測定し、当該背圧と前記相関とから一対の噴射ノズ ルの間に位置決めされた回転体と各噴射ノズルとの間の距離を算出し、ノズル間距 離を測定し、回転体と各噴射ノズルとの間の距離とノズノレ間距離とから、回転体の厚 みを算出することを特徴とする回転体厚み測定方法を提供する。 [0010] In the present invention, the distance between a stationary sample nozzle made of the same material as the rotating body to be measured and the injection nozzle, and the back pressure of the injection nozzle when the fluid is injected from the injection nozzle toward the sample nozzle Measure the correlation with the value in advance, measure the back pressure of the spray nozzle when fluid is sprayed from the spray nozzle toward the rotating body, and position between the pair of spray nozzles based on the back pressure and the correlation Calculate the distance between the rotating body and each injection nozzle Provided is a rotating body thickness measuring method characterized by measuring the separation and calculating the thickness of the rotating body from the distance between the rotating body and each injection nozzle and the distance between the nozzles.
サンプノレと回転体とが同一素材であれば、サンプルの表面状態と回転体の表面状態 とは同一であり、静止したサンプノレと噴射ノズノレとの間の距離と、当該サンプルへ向 けて噴射ノズルから流体を噴射した時の噴射ノズルの背圧値との相関力 回転体と 噴射ノズルとの間の距離と、当該回転体へ向けて噴射ノズルから流体を噴射した時 の噴射ノズルの背圧値との間にも成立するので、測定対象である回転体と同一素材 力 成る静止したサンプノレと噴射ノズルとの間の距離とサンプルへ向けて噴射ノズル から流体を噴射した時の噴射ノズルの背圧値との相関を予め測定し、回転体へ向け て噴射ノズルから流体を噴射した時の噴射ノズノレの背圧を測定し、当該背圧と前記 相関とから一対の噴射ノズルの間に位置決めされた回転体と各噴射ノズルとの間の 距離を算出し、ノズル間距離を測定し、回転体と各噴射ノズルとの間の距離とノズノレ 間距離とから、回転体の厚みを算出することにより、回転体の厚みを非接触で測定す ること力 Sできる。 発明の効果 If the sample and the rotating body are the same material, the surface state of the sample and the surface state of the rotating body are the same, the distance between the stationary sample and the injection nozzle, and the nozzle from the injection nozzle toward the sample. Correlation force with the back pressure value of the injection nozzle when the fluid is injected The distance between the rotating body and the injection nozzle, and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the rotating body Therefore, the distance between the stationary sampler that has the same material force as the rotating body to be measured and the injection nozzle, and the back pressure value of the injection nozzle when fluid is injected from the injection nozzle toward the sample Is measured in advance, the back pressure of the injection nozzle when the fluid is ejected from the ejection nozzle toward the rotating body is measured, and the rotation positioned between the pair of ejection nozzles is determined from the back pressure and the correlation. Body and each jet The thickness of the rotating body is calculated by calculating the distance between the nozzles, measuring the distance between the nozzles, and calculating the thickness of the rotating body from the distance between the rotating body and each injection nozzle and the distance between the nozzles. Can measure force without contact S. The invention's effect
本発明の発明者は、静止したサンプノレと噴射ノズルとの間の距離と、当該サンプル へ向けて噴射ノズルから流体を噴射した時の噴射ノズルの背圧値との相関力 回転 中の前記サンプルと噴射ノズルとの間の距離と、当該サンプノレへ向けて噴射ノズノレ 力 流体を噴射した時の噴射ノズノレの背圧値との間にも成立することを見出した。 サンプノレと回転体とが同一素材であれば、サンプルの表面状態と回転体の表面状態 とは同一なので、静止したサンプルと噴射ノズルとの間の距離と、当該サンプノレへ向 けて噴射ノズルから流体を噴射した時の噴射ノズルの背圧値との相関力 回転体と 噴射ノズルとの間の距離と、当該回転体へ向けて噴射ノズルから流体を噴射した時 の噴射ノズルの背圧値との間にも成立する。従って、測定対象である回転体と同一 素材力 成る静止したサンプルと噴射ノズルとの間の距離とサンプルへ向けて噴射ノ ズルから流体を噴射した時の噴射ノズルの背圧値との相関を予め測定し、回転体へ 向けて噴射ノズルから流体を噴射した時の噴射ノズルの背圧と前記相関とから一対 の噴射ノズルの間に位置決めされた回転体と各噴射ノズルとの間の距離を算出し、ノ ズノレ間距離を測定し、回転体と各噴射ノズルとの間の距離とノズル間距離とから、回 転体の厚みを算出することにより、回転体の厚みを非接触で測定することができる。 発明を実施するための最良の形態 The inventor of the present invention correlates the distance between the stationary sump nore and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample. It was found that the relationship between the distance to the injection nozzle and the back pressure value of the injection nozzle when fluid was injected toward the sump nore was also established. If the sample material and the rotating body are the same material, the surface state of the sample and the surface state of the rotating body are the same, so the distance between the stationary sample and the injection nozzle and the fluid from the injection nozzle toward the sample Correlation force between the back pressure value of the injection nozzle when jetting a fluid and the distance between the rotating body and the injection nozzle and the back pressure value of the injection nozzle when fluid is ejected from the injection nozzle toward the rotating body It also holds in between. Therefore, the correlation between the distance between the stationary sample having the same material force as that of the rotating body to be measured and the injection nozzle and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample is obtained in advance. Measure and calculate the distance between each jet nozzle and the rotary body positioned between the pair of jet nozzles from the back pressure of the jet nozzle when fluid is jetted from the jet nozzle toward the rotor and the above correlation And By measuring the distance between the nozzles and calculating the thickness of the rotating body from the distance between the rotating body and each injection nozzle and the distance between the nozzles, the thickness of the rotating body can be measured in a non-contact manner. BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の実施例を、図 1、 2に基づいて説明する。 An embodiment of the present invention will be described with reference to FIGS.
回転体厚み測定装置 Aは、ベース 1と、一端がベース 1に固定された一対の柱状部 材 2a、 2bとを備えている。柱状部材 2a、 2bはベース 1から直立し互いに平行に延在 している。柱状部材 2a、 2bの固定端近傍部には、図 2に一点鎖線で示すようにべ一 ス 1に平行に剪断弾性変形する脆弱部 2a'、 2b 'が配設されている。  The rotating body thickness measuring apparatus A includes a base 1 and a pair of columnar members 2 a and 2 b each having one end fixed to the base 1. The columnar members 2a and 2b stand upright from the base 1 and extend parallel to each other. In the vicinity of the fixed ends of the columnar members 2a and 2b, fragile portions 2a ′ and 2b ′ that are sheared and elastically deformed in parallel to the base 1 are disposed as indicated by a dashed line in FIG.
柱状部材 2a、 2bの脆弱部 2a'、 2b 'よりもベース 1から離隔した部位に、ボールネジ 3 が螺合している。ボールネジ 3は柱状部材 2a、 2bを貫通している。ボールネジ 3の一 端にはハンドル 4が固定されている。ボールネジ 3の他端は、当該他端に固定された 球体 5を介して、ベース 1に固定されたストッパー 6により、ボールネジ 3の中心軸線回 りに回転可能に支持されている。  A ball screw 3 is screwed into a portion farther from the base 1 than the weakened portions 2a ′ and 2b ′ of the columnar members 2a and 2b. The ball screw 3 passes through the columnar members 2a and 2b. A handle 4 is fixed to one end of the ball screw 3. The other end of the ball screw 3 is rotatably supported around the central axis of the ball screw 3 by a stopper 6 fixed to the base 1 via a sphere 5 fixed to the other end.
ボールネジ 3の柱状部材 2aとの螺合部 3aには、ボールネジ 3の柱状部材 2bとの螺 合部 3bとは逆向きのネジが形成されている。この結果、ハンドル 4を回転させると、柱 状部材 2a、 2bはボールネジ 3から付勢力を受けて接近離隔方向に変形し、柱状部 材 2a、 2bの他端部が、接近離隔方向に変位する。この際、脆弱部 2a'、 2b 'が前段 弾性変形するので、柱状部材 2a、 2bの脆弱部 2a'、 2b 'よりもベース 1から離隔した 部分は、ベース 1に対して直立した状態を維持しつつ平行移動する。  A screw in the opposite direction to the threaded portion 3b of the ball screw 3 with the columnar member 2b is formed in the threaded portion 3a of the ball screw 3 with the columnar member 2a. As a result, when the handle 4 is rotated, the columnar members 2a and 2b receive the urging force from the ball screw 3 and deform in the approaching / separating direction, and the other ends of the columnar members 2a and 2b are displaced in the approaching / separating direction. . At this time, the weakened portions 2a 'and 2b' are elastically deformed in the previous stage, so that the portions of the columnar members 2a and 2b that are farther from the base 1 than the weakened portions 2a 'and 2b' remain upright with respect to the base 1. While moving in parallel.
柱状部材 2a、 2bを互いに接近する方向へ付勢する一対のパネ 7a、 7bが配設されて いる。  A pair of panels 7a and 7b for urging the columnar members 2a and 2b toward each other are provided.
[0013] 柱状部材 2a、 2bのベース 1から離隔した他端部に、噴射ノズノレ 8a、 8bが取り付けら れている。噴射ノズノレ 8a、 8bは、互いに正対して配設されている。噴射ノズノレ 8a、 8b は、所定圧の圧縮空気を供給する圧縮空気供給源 9a、 9bに、配管 10a、 10bを介し て接続されている。配管 10a、 10bの途上に噴射ノズル 8a、 8bの背圧を測定する AE コンバータ l la、 l ibが配設されている。 AEコンバータ l la、 l ibは、噴射ノズル 8a、 8bの背圧をダイァフラムの変位に変換し、差動トランスを用いてダイァフラムの変位 を電気信号に変換する装置であり、市販されている。 AEコンバータ l la、 l ibの出力 信号はデータ処理装置 12に入力される。 [0013] Injection nozzles 8a and 8b are attached to the other ends of the columnar members 2a and 2b that are separated from the base 1. The injection nozzles 8a and 8b are arranged facing each other. The injection nozzles 8a and 8b are connected to compressed air supply sources 9a and 9b for supplying compressed air having a predetermined pressure via pipes 10a and 10b. AE converters l la and l ib for measuring the back pressure of the injection nozzles 8a and 8b are arranged in the middle of the pipes 10a and 10b. The AE converters l la and l ib are devices that convert the back pressure of the injection nozzles 8a and 8b into the displacement of the diaphragm, and convert the displacement of the diaphragm into an electrical signal using a differential transformer, and are commercially available. AE converter l la, l ib output The signal is input to the data processor 12.
噴射ノズル 8a、 8bの移動量を測定するリニアゲージ 13a、 13bが、腕部材を介して柱 状部材 2a、 2bの他端部に固定されている。リニアゲージ 13a、 13bの出力信号もデ ータ処理装置 12に入力される。  Linear gauges 13a and 13b for measuring the amount of movement of the injection nozzles 8a and 8b are fixed to the other ends of the columnar members 2a and 2b via arm members. The output signals of the linear gauges 13a and 13b are also input to the data processing device 12.
[0014] 回転体厚み測定装置 Aは、回転式ツル一イング装置 Bに隣接して回転式ツル一イン グ装置 Bと共に平面研削盤のテーブル C上に載置固定されている。  The rotating body thickness measuring device A is mounted and fixed on the table C of the surface grinding machine together with the rotating tooling device B adjacent to the rotating tooling device B.
回転式ツル一/ fング装置 Bは、 2枚の回転研削円板 B l、 B2により、平面研削盤の回 転砥石 100の周縁部 101を所定の厚みに仕上げ削りする装置である。  The rotary crane 1 / fung device B is a device that finish-cuts the peripheral edge portion 101 of the rotating grindstone 100 of the surface grinder to a predetermined thickness by using two rotary grinding disks B1, B2.
テーブル Cを図 1の白抜矢印方向へ移動させることにより、回転砥石 100の周縁部 1 01を回転式ツル一^ fング装置 Bの回転研削円板 Bl、 B2の間に位置決めし、或いは 回転体厚み測定装置 Aの一対の噴射ノズル 8a、 8b間に位置決めすることができる。  By moving the table C in the direction of the white arrow in Fig. 1, the peripheral edge 101 of the rotating grindstone 100 is positioned or rotated between the rotating grinding disks Bl and B2 of the rotary claw unit B. Positioning can be performed between the pair of spray nozzles 8a and 8b of the body thickness measuring apparatus A.
[0015] 回転体厚み測定装置 Aの作動を説明する。  [0015] The operation of the rotating body thickness measuring apparatus A will be described.
データ処理部 12は、測定対象である回転砥石 100と同一素材力 成る静止したサン プノレと噴射ノズル 8a、 8bとの間の距離と、前記サンプルへ向けて噴射ノズノレ 8a、 8b から圧縮空気を噴射した時の噴射ノズル 8a、 8bの背圧値との予め測定した相関 α、 i3を記憶している。  The data processing unit 12 injects compressed air from the injection nozzles 8a and 8b toward the sample, and the distance between the stationary sample nozzle having the same material force as the rotating grindstone 100 to be measured and the injection nozzles 8a and 8b. The previously measured correlations α and i3 with the back pressure values of the injection nozzles 8a and 8b are stored.
相関 α、 は、回転体厚み測定装置 Aに組み込む前の噴射ノズル 8aと圧縮空気供 給源 9aと配管 10aと AEコンバータ 1 1 aとデータ処理装置 12の組立体、回転体厚み 測定装置 Aに組み込む前の噴射ノズノレ 8bと圧縮空気供給源 9bと配管 10bと AEコン バータ l ibとデータ処理装置 12の組立体を用いて測定する。  Correlation α, is the assembly of the injection nozzle 8a, compressed air supply source 9a, piping 10a, AE converter 1 1a, and data processor 12 before being incorporated into the rotating body thickness measuring device A, and incorporated into the rotating body thickness measuring device A. Measured using assembly of previous injection nozzle 8b, compressed air supply source 9b, piping 10b, AE converter l ib and data processor 12.
相関 αは、回転砥石 100と同一素材の厚みが既知のサンプルを定盤上に載置し、リ ユアゲージを用いて測定した噴射ノズル 8aと定盤との間の距離とサンプノレの厚みと 力 算出した噴射ノズル 8aとサンプルとの間の距離と、 AEコンバータ 1 1 aを用いて測 定したサンプノレへ向けて噴射ノズル 8aから圧縮空気を噴射した時の噴射ノズル 8aの 背圧との関係を、サンプルに対峙させた噴射ノズノレ 8aをサンプルに接近離隔させて 、サンプノレと噴射ノズル 8aとの間の距離を種々に変えつつ、多数取得することにより 、測定される。  Correlation α is calculated by placing the sample of the same material as the rotating whetstone 100 on the surface plate and measuring the distance between the injection nozzle 8a and the surface plate measured using a reduction gauge, the thickness and force of the sample. The relationship between the distance between the injection nozzle 8a and the sample and the back pressure of the injection nozzle 8a when compressed air is injected from the injection nozzle 8a toward the sump nore measured using the AE converter 1 1a. Measurement is performed by obtaining a large number of spray nozzles 8a opposed to the sample by moving them closer to and away from the sample and changing the distance between the sample nozzle and the spray nozzle 8a in various ways.
相関 αは、図 3に示すように、前記背圧を縦軸に、前記距離を横軸にとった直交座標 上において、前記距離が零から増大するのに伴って、上に凸の曲線→負の傾斜を有 する直線→下に凸の曲線と連続的に変化する。前記相関の曲線部分においては、 僅かの背圧変化で距離が大きく変化するので、前記相関の曲線部分は、背圧に基 づいて距離を正確に測定するのに利用し難い。前記相関の直線部分を用いることに より、背圧に基づいて回転体と各噴射ノズルとの間の距離を正確に測定することがで きる。従って、データ処理装置 12は相関ひの直線部分を記憶している。データ処理 装置 12の表示部に、相関ひの直線部分の最小背圧値 p iと最大背圧 p2とが表示さ れる。 As shown in FIG. 3, the correlation α is an orthogonal coordinate with the back pressure on the vertical axis and the distance on the horizontal axis. On the top, as the distance increases from zero, it continuously changes from an upward convex curve to a negative slope straight line to a downward convex curve. In the correlation curve portion, the distance changes greatly with a slight change in back pressure. Therefore, it is difficult to use the correlation curve portion to accurately measure the distance based on the back pressure. By using the linear portion of the correlation, the distance between the rotating body and each injection nozzle can be accurately measured based on the back pressure. Therefore, the data processor 12 stores the linear portion of the correlation string. The minimum back pressure value pi and the maximum back pressure p2 of the linear portion of the correlation string are displayed on the display unit of the data processing device 12.
相関 /3も、相関ひと同様の方法で測定される。データ処理装置 12は相関 /3の直線 部分を記憶している。データ処理装置 12の表示部に、相関 βの直線部分の最小背 圧値と最大背圧値とが表示される。  Correlation / 3 is also measured in the same way as a correlation person. The data processor 12 stores the linear portion of correlation / 3. The minimum back pressure value and the maximum back pressure value of the linear portion of the correlation β are displayed on the display unit of the data processing device 12.
[0016] 噴射ノズル 8a、 8bが接近して相互に当接した時のリニアゲージ 13a、 13bの出力値 を、データ処理装置 12は記憶している。 [0016] The data processing device 12 stores the output values of the linear gauges 13a and 13b when the injection nozzles 8a and 8b come close to each other and come into contact with each other.
[0017] 作業員が、テーブル Cを移動させ、平面研削盤の回転中の回転砥石 100の外周縁 部 101を、回転式ツル一イング装置 Bの 2枚の回転研削円板 B l、 B2の間に位置決 めし、回転研削円板 B l、 B2を回転させて、回転砥石 100の周縁部 101を略所定の 厚みに仕上げ削りする。 [0017] An operator moves the table C and moves the outer peripheral edge 101 of the rotating grindstone 100 during rotation of the surface grinder to the two rotary grinding disks B l and B2 of the rotary clawing device B. Positioning between them, the rotary grinding disks B1 and B2 are rotated, and the peripheral edge 101 of the rotary grindstone 100 is finished to a substantially predetermined thickness.
前記作業員は、テーブル Cを移動させ、図 2に示すように、平面研削盤の回転中の 回転砥石 100の外周縁部 101を、回転体厚み測定装置 Aの噴射ノズル 8a、 8bの間 に位置決めする。  The worker moves the table C, and as shown in FIG. 2, the outer peripheral edge 101 of the rotating grindstone 100 during rotation of the surface grinder is placed between the injection nozzles 8a and 8b of the rotating body thickness measuring apparatus A. Position.
前記作業員は、噴射ノズル 8a、 8bから圧縮空気を噴射させつつ、ハンドル 4を回して 噴射ノズノレ 8a、 8bを回転砥石 100の外周縁部 101に漸近させる。 AEコンバータ 1 1 a、 l ibが測定した噴射ノズル 8a、 8bの背圧がデータ処理装置 12の表示部に表示さ れる。前記作業員は、データ処理装置 12の表示部に表示された相関ひ、 βの直線 部分の最小背圧値と最大背圧値と、 ΑΕコンバータ l l a、 l ibが測定した噴射ノズノレ 8a、 8bの背圧とを比較し、 AEコンバータ 1 1 aが測定した噴射ノズノレ 8aの背圧が相関 aの直線部分の最小背圧値と最大背圧値との間に在り、 AEコンバータ l ibが測定 した噴射ノズル 8bの背圧が相関 βの直線部分の最小背圧値と最大背圧値との間に 在る状態になった時に、ハンドル 4の回転操作を停止し、データ処理装置 12の厚み 測定開始ボタンを押す。 The worker turns the handle 4 to make the injection nozzles 8a and 8b asymptotic to the outer peripheral edge 101 of the rotating grindstone 100 while injecting compressed air from the injection nozzles 8a and 8b. The back pressure of the injection nozzles 8a and 8b measured by the AE converters 11a and ib is displayed on the display unit of the data processing device 12. The worker is responsible for the minimum back pressure value and the maximum back pressure value of the linear portion of the correlation and β displayed on the display unit of the data processing device 12, and the injection nozzles 8a and 8b measured by the converters lla and l ib. Compared with the back pressure, the back pressure of the injection nozzle 8a measured by the AE converter 1 1a is between the minimum back pressure value and the maximum back pressure value of the linear part of the correlation a, and the AE converter l ib measured The back pressure of the injection nozzle 8b correlates between the minimum back pressure value and the maximum back pressure value of the linear part When it is, stop rotating the handle 4 and press the thickness measurement start button on the data processor 12.
[0018] データ処理装置 12は、相関 αの直線部分と ΑΕコンバータ 1 1 aが測定した噴射ノズ ル 8aの背圧値とから、噴射ノズル 8aと回転砥石 100の外周縁部 101との間の距離を 算出し、相関 βの直線部分と ΑΕコンバータ l ibが測定した噴射ノズノレ 8bの背圧値と から、噴射ノズル 8bと回転砥石 100の外周縁部 101との間の距離を算出する。 [0018] The data processing device 12 uses a linear portion of the correlation α and the back pressure value of the injection nozzle 8a measured by the power converter 1 1a to determine the distance between the injection nozzle 8a and the outer peripheral edge 101 of the rotating grindstone 100. The distance is calculated, and the distance between the injection nozzle 8b and the outer peripheral edge 101 of the rotating grindstone 100 is calculated from the linear part of the correlation β and the back pressure value of the injection nozzle 8b measured by the ΑΕ converter l ib.
データ処理装置 12は、予め記憶している噴射ノズル 8a、 8bが接近して相互に当接 した時のリニアゲージ 13a、 13bの出力値と、現在のリニアゲージ 13a、 13bの出力値 とから、噴射ノズル 8a、 8b間の距離を算出する。  The data processing device 12 uses the output values of the linear gauges 13a and 13b when the pre-stored injection nozzles 8a and 8b come close to each other and the current output values of the linear gauges 13a and 13b. The distance between the injection nozzles 8a and 8b is calculated.
データ処理装置 12は、噴射ノズル 8a、 8b間の距離から、噴射ノズル 8aと回転砥石 1 00の外周縁部 101との間の距離と、噴射ノズノレ 8bと回転砥石 100の外周縁部 101と の間の距離との和を差し引いて、回転砥石 100の外周縁部 101の厚みを算出し、表 示部に表示する。  The data processing device 12 determines the distance between the injection nozzle 8a and the outer peripheral edge 101 of the rotating grindstone 100, the injection nozzle 8b and the outer peripheral edge 101 of the rotating grindstone 100 from the distance between the injection nozzles 8a and 8b. The thickness of the outer peripheral edge 101 of the rotating grindstone 100 is calculated by subtracting the sum of the distances between them and displayed on the display.
上述の手順で、回転式ツル一イング装置 Bによって仕上げ削りされた直後の、回転 砥石 100の外周縁部 101の厚み力 回転砥石 100を回転させたままで測定される。 測定値が所望値よりも大きい場合には、テーブル Cを移動させて回転砥石 100の外 周縁部 101を回転式ツル一イング装置 Bの 2枚の回転研削円板 B 1、 B2の間に位置 決めし、回転研削円板 B l、 B2を回転させて、回転砥石 100の周縁部 101を更に仕 上げ削りする。  The thickness force of the outer peripheral edge 101 of the rotating grindstone 100 immediately after finishing by the rotary clawing device B in the above procedure is measured with the rotating grindstone 100 rotated. If the measured value is larger than the desired value, move the table C and position the outer peripheral edge 101 of the rotating grindstone 100 between the two rotating grinding disks B 1 and B2 of the rotary clawing device B. And rotate the rotating grinding disks B1, B2 to further finish the peripheral edge 101 of the rotating grindstone 100.
仕上げ削りと、厚み測定を繰り返すことにより、回転砥石 100の外周縁部 101が所望 の厚みに仕上げられる。  By repeating the finishing and thickness measurement, the outer peripheral edge 101 of the rotating grindstone 100 is finished to a desired thickness.
[0019] 厚みが 0. 3mmの回転砥石 100を平面研削盤に取付け、回転式ツル一イング装置 B を使用して、回転砥石 100の周縁部 101を 0. 1mm程度の厚みまで削り、次いで、回 転体厚み測定装置 Aを用い、噴射ノズル 8a、 8bと回転砥石 100との間の距離を相関 a、 βの直線部分の所定点に固定して、 Orpmと、 Orpm乃至 3000rpm内の複数の 回転数とで、回転砥石 100の周縁部 101の厚みを測定した。相関ひ、 βの直線部分 の複数の所定点で、上記測定を行った。測定値には 0. 5 z m程度のばらつきしかな 力、つた。このことから、静止したサンプノレと噴射ノズルとの間の距離と、当該サンプル へ向けて噴射ノズル力 圧縮空気を噴射した時の噴射ノズルの背圧値との相関が、 回転中の前記サンプルと噴射ノズルとの間の距離と、当該サンプノレへ向けて噴射ノ ズルから圧縮空気を噴射した時の噴射ノズノレの背圧値との間にも成立することが裏 付けられた。 [0019] A rotating grindstone 100 having a thickness of 0.3 mm is attached to a surface grinder, and using the rotary clawing device B, the peripheral edge 101 of the rotating grindstone 100 is shaved to a thickness of about 0.1 mm, Using the rotating body thickness measuring device A, the distance between the injection nozzles 8a, 8b and the rotating grindstone 100 is fixed to a predetermined point in the linear part of the correlations a, β, and a plurality of Orpm and Orpm to 3000 rpm are set. The thickness of the peripheral portion 101 of the rotating grindstone 100 was measured by the number of rotations. The above measurement was performed at a plurality of predetermined points in the linear part of the correlation β. The measured value was a force with a variation of about 0.5 zm. From this, the distance between the stationary sumnore and the injection nozzle and the sample Nozzle force toward the nozzle Correlation with the back pressure value of the injection nozzle when compressed air is injected is determined by the distance between the rotating sample and the injection nozzle and the compressed air from the injection nozzle toward the sampler. It was proved that it was also established between the back pressure value of the injection nozzle when the fuel was injected.
回転式ツル一イング装置 Bによって仕上げ削りされた回転砥石 100の周縁部 101の 厚みは最小で 100 a m程度であり、また平面検研削盤稼働時の回転砥石 100の回 転数は 1500rpm程度なので、 Orpm乃至 3000rpmの範囲で、 0. 5 z m程度の誤差 で、 0. 1mm程度の周縁部 101の厚みが測定できる回転体厚み測定装置 Aは、十分 実用に供することができる。  The thickness of the peripheral edge 101 of the rotary whetstone 100 finished by the rotary clawing device B is about 100 am at the minimum, and the rotation speed of the rotary whetstone 100 when the surface inspection grinder is in operation is about 1500 rpm. The rotating body thickness measuring apparatus A capable of measuring the thickness of the peripheral portion 101 of about 0.1 mm with an error of about 0.5 zm in the range of Orpm to 3000 rpm can be sufficiently put into practical use.
[0020] サンプノレの素材が変わればサンプルの表面状態も変わり相関ひ、 /3も変わると考え られので、相関ひ、 /3を予め測定する際に使用するサンプルは、厚み測定対象であ る回転砥石 100と同一素材とする必要があると考えられる。  [0020] If the material of the sample is changed, the surface condition of the sample will also change and the correlation and / 3 will also change. Therefore, the sample used when measuring the correlation / 3 in advance is the rotation target for thickness measurement. It is considered necessary to use the same material as the grinding wheel 100.
[0021] 回転体厚み測定装置 Aにおいては、一対の平行に延在する一端が固定された柱状 部材 2a、 2bの他端部に噴射ノズル 8a、 8bを固定し、前記一対の柱状部材 2a、 2bを ボールネジ 3を用いて付勢し、一対の柱状部材 2a、 2bの他端部を接近離隔方向に 変位させているので、噴射ノズル 8a、 8bをスムーズに且つ精度良く移動させることが できる。ボールネジに代えて、普通のネジを用いて柱状部材 2a、 2bを接近離隔方向 へ付勢しても良い。  [0021] In the rotating body thickness measuring apparatus A, the injection nozzles 8a and 8b are fixed to the other ends of the columnar members 2a and 2b with one end extending in parallel, and the pair of columnar members 2a and 2b are fixed. 2b is urged by using the ball screw 3 and the other ends of the pair of columnar members 2a, 2b are displaced in the approaching / separating direction, so that the injection nozzles 8a, 8b can be moved smoothly and accurately. Instead of the ball screw, ordinary screws may be used to urge the columnar members 2a and 2b in the approaching / separating direction.
バネ 7a、 7bが柱状部材 2a、 2bを互いに接近する方向へ付勢することにより、ボール ネジ 3が回転する際のガタツキが無くなり、噴射ノズル 8a、 8bの移動が更にスムーズ になる。  The springs 7a and 7b urge the columnar members 2a and 2b toward each other so that there is no backlash when the ball screw 3 rotates, and the movement of the injection nozzles 8a and 8b becomes smoother.
[0022] 噴射ノズル 8a、 8bは回転砥石の表面に対して直交方向に常時差し向けられているこ とが望ましい。柱状部材 2a、 2bのボールネジ 3の着力点よりも固定端寄りの部位に剪 断弾性変形する脆弱部 2a'、 2b'を配設すると、ボールネジ 3を回転させて柱状部材 2a、 2bを付勢した際に、脆弱部 2a'、 2b 'が図 2に一点鎖線で示すように剪断弾性 変形し、柱状部材 2a、 2bの脆弱部 2a'、 2b 'よりも他端部寄りの部分は傾斜すること なく平行移動するので、噴射ノズル 8a、 8bを回転砥石 100の表面に対して直交方向 に常時差し向けることができる。 [0023] 回転体厚み測定装置 Aにおいては、他端部に噴射ノズル 8a、 8bを取り付けた一対 の柱状部材 2a、 2bを、ボールネジ 3を用いて機械的に連動させることにより、ハンド ル 4を回転駆動する単一の駆動原を用いて一対の噴射ノズル 8a、 8bを駆動すること ができる。この結果、厚み測定装置 Aの構成が簡素化される。 [0022] It is desirable that the injection nozzles 8a and 8b are always directed in a direction orthogonal to the surface of the rotating grindstone. If the weakened parts 2a 'and 2b' that are cut elastically deformed are located closer to the fixed end than the force applied to the ball screw 3 of the columnar members 2a and 2b, the ball screw 3 is rotated to urge the columnar members 2a and 2b. In this case, the fragile portions 2a 'and 2b' are sheared and elastically deformed as indicated by the alternate long and short dashed lines in FIG. 2, and the portions of the columnar members 2a and 2b closer to the other end than the fragile portions 2a 'and 2b' are inclined. Therefore, the spray nozzles 8a and 8b can always be directed perpendicularly to the surface of the rotating grindstone 100. [0023] In the rotating body thickness measuring apparatus A, the pair of columnar members 2a and 2b having the injection nozzles 8a and 8b attached to the other end are mechanically interlocked using a ball screw 3, thereby A pair of injection nozzles 8a and 8b can be driven using a single driving source that rotates. As a result, the configuration of the thickness measuring apparatus A is simplified.
[0024] 本発明の他の実施例に係る回転体厚み測定装置 A'を図 4に示す。  FIG. 4 shows a rotating body thickness measuring apparatus A ′ according to another embodiment of the present invention.
回転体厚み測定装置 A'においては、他端部に噴射ノズル 8a、 8bを取り付けた一対 の柱状部材 2a、 2bを、ボールネジ 3を用いて機械的に連動させるのに代えて、バネ 1 4を用いて柱状部材 2a、 2bを互いに接近する方向へ付勢しつつ、柱状部材 2a、 2b の脆弱部 2a'、 2b 'よりも他端部寄りの部位に係合するカム 15を回転させて、柱状部 材 2a、 2bを機械的に連動さ、噴射ノズル 8a、 8bを接近離隔方向へ駆動する。  In the rotating body thickness measuring device A ′, instead of mechanically interlocking the pair of columnar members 2a and 2b, each having an injection nozzle 8a and 8b attached to the other end, using a ball screw 3, a spring 14 is provided. Using the urging of the columnar members 2a, 2b in a direction approaching each other, rotating the cam 15 that engages the portion closer to the other end than the fragile portions 2a ', 2b' of the columnar members 2a, 2b, The columnar members 2a and 2b are mechanically linked to drive the injection nozzles 8a and 8b in the approaching and separating directions.
[0025] 圧縮空気に代えて、圧縮された気体、液体を噴射ノズル 8a、 8bから噴射しても良い。  [0025] Instead of compressed air, compressed gas or liquid may be ejected from the ejection nozzles 8a and 8b.
産業上の利用可能性  Industrial applicability
[0026] 本発明は、回転体の厚み測定に広く利用可能である。 The present invention can be widely used for measuring the thickness of a rotating body.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]平面研削盤のテーブル上に載置固定された本発明の実施例に係る回転体厚 み測定装置と回転式ツル一イング装置の上面図である。  FIG. 1 is a top view of a rotating body thickness measuring device and a rotating crane laying device according to an embodiment of the present invention mounted and fixed on a table of a surface grinding machine.
[図 2]図 1の II-II矢視図である。  FIG. 2 is a view taken along the line II-II in FIG.
[図 3]静止したサンプルと噴射ノズルとの間の距離とサンプルへ向けて噴射ノズルか ら圧縮空気を噴射した時の噴射ノズルの背圧値との相関を示す図である。  FIG. 3 is a diagram showing a correlation between a distance between a stationary sample and an injection nozzle and a back pressure value of the injection nozzle when compressed air is injected from the injection nozzle toward the sample.
[図 4]本発明の他の実施例に係る回転体厚み測定装置の部分構造図である。  FIG. 4 is a partial structural diagram of a rotating body thickness measuring apparatus according to another embodiment of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 流体を噴射する一対の噴射ノズルと、前記一対の噴射ノズルを接近離隔方向へ駆動 する噴射ノズル駆動手段と、前記一対の噴射ノズル間の距離を測定するノズノレ間距 離測定手段と、前記一対の噴射ノズルの背圧を測定する背圧測定手段と、前記ノズ ル間距離測定手段の測定データと前記背圧測定手段の測定データとに基づいて演 算を行うデータ処理部とを備え、データ処理部は、測定対象である回転体と同一素 材力 成る静止したサンプノレと噴射ノズルとの間の距離とサンプルへ向けて噴射ノズ ノレから流体を噴射した時の噴射ノズノレの背圧値との予め測定した相関を記憶し、背 圧測定手段が測定した回転体へ向けて噴射ノズルから流体を噴射した時の噴射ノズ ルの背圧と前記相関とから前記一対の噴射ノズルの間に位置決めされた回転体と各 噴射ノズルとの間の距離を算出し、ノズノレ間距離測定手段の測定したノズル間距離 と、回転体と各噴射ノズルとの間の距離とから、回転体の厚みを算出することを特徴と する回転体厚み測定装置。  [1] A pair of injection nozzles for injecting fluid, an injection nozzle driving means for driving the pair of injection nozzles in an approaching / separating direction, an inter-nozzle distance measuring means for measuring a distance between the pair of injection nozzles, A back pressure measuring means for measuring the back pressure of the pair of injection nozzles, and a data processing unit for performing a calculation based on the measurement data of the inter-nozzle distance measuring means and the measurement data of the back pressure measuring means, The data processing unit determines the distance between the stationary sump nore that has the same material force as the rotating body to be measured and the injection nozzle, and the back pressure value of the injection nose when the fluid is injected from the injection nozzle toward the sample. Is stored between the pair of injection nozzles based on the back pressure of the injection nozzle when the fluid is injected from the injection nozzle toward the rotating body measured by the back pressure measuring means and the correlation. The The distance between the rotating body and each injection nozzle is calculated, and the thickness of the rotating body is calculated from the distance between nozzles measured by the distance measuring means and the distance between the rotating body and each injection nozzle. Rotating body thickness measuring device characterized by that.
[2] データ処理部は、前記相関の直線部分を用いて、回転体と各噴射ノズルとの間の距 離を算出することを特徴とする請求項 1に記載の回転体厚み測定装置。  [2] The rotating body thickness measuring apparatus according to [1], wherein the data processing unit calculates a distance between the rotating body and each injection nozzle using the linear portion of the correlation.
[3] 前記一対の噴射ノズルは、一対の平行に延在する一端が固定された柱状部材の他 端部に固定されており、噴射ノズル駆動手段は、前記一対の柱状部材を付勢し前記 一対の柱状部材の他端部を接近離隔方向に変位させることを特徴とする請求項 1又 は 2に記載の回転体厚み測定装置。  [3] The pair of injection nozzles is fixed to the other end of a pair of columnar members having one end extending in parallel, and the injection nozzle driving means urges the pair of columnar members to 3. The rotating body thickness measuring apparatus according to claim 1, wherein the other end portions of the pair of columnar members are displaced in the approaching / separating direction.
[4] 前記柱状部材の噴射ノズル駆動手段の着力点よりも固定端寄りの部位に剪断弾性 変形する脆弱部が配設されていることを特徴とする請求項 3に記載の回転体厚み測 定装置。  [4] The rotating body thickness measurement according to [3], wherein a fragile portion that undergoes shear elastic deformation is disposed in a portion of the columnar member closer to the fixed end than the point of application of the spray nozzle driving means. apparatus.
[5] 前記噴射ノズノレ駆動手段は、前記一対の柱状部材を機械的に連動させて前記他端 部を接近離隔方向に変位させることを特徴とする請求項 3又は 4に記載の回転体厚 み測定装置。  [5] The rotating body thickness according to claim 3 or 4, wherein the injection nozzle driving means mechanically interlocks the pair of columnar members to displace the other end in the approaching / separating direction. measuring device.
[6] 回転式ツル一イング装置に隣接して回転式ツル一イング装置と共に平面研削盤のテ 一ブル上に載置固定され、回転式ツル一イング装置により仕上げ削りされ、前記テー ブルの移動により前記一対の噴射ノズルの間に位置決めされた前記平面研削盤の 回転する砥石の厚みを測定することを特徴とする請求項 1乃至 5の何れ力 1項に記載 の回転体厚み測定装置。 [6] Adjacent to the rotary clawing device and mounted on the table of the surface grinder together with the rotary clawing device, finished by the rotary clawing device, and moved by the table Of the surface grinder positioned between the pair of injection nozzles The rotating body thickness measuring device according to any one of claims 1 to 5, wherein the thickness of the rotating grindstone is measured.
測定対象である回転体と同一素材力 成る静止したサンプノレと噴射ノズノレとの間の 距離とサンプノレへ向けて噴射ノズルから流体を噴射した時の噴射ノズノレの背圧値と の相関を予め測定し、回転体へ向けて噴射ノズルから流体を噴射した時の噴射ノズ ルの背圧を測定し、前記背圧と前記相関とから一対の噴射ノズルの間に位置決めさ れた回転体と各噴射ノズルとの間の距離を算出し、ノズル間距離を測定し、回転体と 各噴射ノズルとの間の距離とノズル間距離とから、回転体の厚みを算出することを特 徴とする回転体厚み測定方法。 Preliminarily measure the correlation between the distance between the stationary sample and the injection nozzle that has the same material force as the rotating body to be measured and the back pressure value of the injection nozzle when the fluid is injected from the injection nozzle toward the sample. The back pressure of the injection nozzle when fluid is ejected from the injection nozzle toward the rotating body is measured, and the rotating body positioned between the pair of injection nozzles and each injection nozzle are determined from the back pressure and the correlation. Rotating body thickness measurement, characterized by calculating the distance between the nozzles, measuring the distance between nozzles, and calculating the thickness of the rotating body from the distance between the rotating body and each injection nozzle and the distance between nozzles. Method.
PCT/JP2006/318867 2006-09-22 2006-09-22 Device for measuring thickness of rotator and method for measuring thickness of rotator WO2008035438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318867 WO2008035438A1 (en) 2006-09-22 2006-09-22 Device for measuring thickness of rotator and method for measuring thickness of rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318867 WO2008035438A1 (en) 2006-09-22 2006-09-22 Device for measuring thickness of rotator and method for measuring thickness of rotator

Publications (1)

Publication Number Publication Date
WO2008035438A1 true WO2008035438A1 (en) 2008-03-27

Family

ID=39200271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318867 WO2008035438A1 (en) 2006-09-22 2006-09-22 Device for measuring thickness of rotator and method for measuring thickness of rotator

Country Status (1)

Country Link
WO (1) WO2008035438A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093306A (en) * 2010-10-28 2012-05-17 Tokai Kiyouhan Kk Measuring head of air micrometer and thickness measuring apparatus
JP2012117940A (en) * 2010-12-01 2012-06-21 Tokai Kiyouhan Kk Thickness measurement device
JP2014050929A (en) * 2012-09-07 2014-03-20 Komatsu Ntc Ltd Double head grinding device and grinding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH011862A (en) * 1987-06-23 1989-01-06 株式会社日立製作所 Concrete pouring method for partition floor of concrete containment vessel
JPH01216771A (en) * 1988-02-22 1989-08-30 Mitsubishi Heavy Ind Ltd Noncontact detecting method for distance between grinding wheel and workpiece
JP2001221624A (en) * 2000-02-07 2001-08-17 Nippon Pneumatics Fluidics System Co Ltd Thickness-measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641862A (en) * 1987-06-23 1989-01-06 Hitachi Ltd Placing method for concrete partition floor of concrete container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH011862A (en) * 1987-06-23 1989-01-06 株式会社日立製作所 Concrete pouring method for partition floor of concrete containment vessel
JPH01216771A (en) * 1988-02-22 1989-08-30 Mitsubishi Heavy Ind Ltd Noncontact detecting method for distance between grinding wheel and workpiece
JP2001221624A (en) * 2000-02-07 2001-08-17 Nippon Pneumatics Fluidics System Co Ltd Thickness-measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093306A (en) * 2010-10-28 2012-05-17 Tokai Kiyouhan Kk Measuring head of air micrometer and thickness measuring apparatus
JP2012117940A (en) * 2010-12-01 2012-06-21 Tokai Kiyouhan Kk Thickness measurement device
JP2014050929A (en) * 2012-09-07 2014-03-20 Komatsu Ntc Ltd Double head grinding device and grinding method

Similar Documents

Publication Publication Date Title
US10809169B2 (en) System and method for in-situ testing of mechanical properties of materials in static and dynamic load spectra
CN101839681B (en) Measurement stand and method of its electrical control
GB0605796D0 (en) Apparatus and method of measuring workpieces
US8716039B2 (en) Monitoring apparatus and method for in-situ measurement of wafer thicknesses for monitoring the thinning of semiconductor wafers and thinning apparatus comprising a wet etching apparatus and a monitoring apparatus
US7610690B2 (en) Measurement stand for holding a measuring instrument
US8356500B2 (en) Method and device for creating a symbol in a workpiece surface via stamping
WO2008035438A1 (en) Device for measuring thickness of rotator and method for measuring thickness of rotator
JP5294949B2 (en) Measuring device for rotating body thickness etc.
EP2719994B1 (en) Thread profile measuring method
TW200727986A (en) A method for adjusting nozzle clearance of a liquid coater, and the liquid coater
CN202432999U (en) Non-contact measuring device for surface roughness of curved surface polishing
KR100895902B1 (en) Method of grinding back surface of semiconductor wafer and semiconductor wafer grinding apparatus
TW200924905A (en) Microscopic geometry cutting device and microscopic geometry cutting method
US10583565B2 (en) Control apparatus, robot and robot system
CN109342246A (en) A kind of coating sample array wearability fast appraisement method and its device
JP4601914B2 (en) Adhesive coating apparatus and adhesive coating method
CN105783677A (en) Simple detection device of circularity and linearity of bar stock
CN105043978A (en) Experimental method for measurement of friction coefficient of carbon fiber composite material
CN106182112A (en) Thin film sensor dither numerical control splitting system
CN202174478U (en) Device for automatically processing coating on surface of steel sheet
JP2004344916A (en) Surface processing machine and surface processing method
CN103063188A (en) Method and device of elbow pipe angle detection
CN108557756A (en) A kind of micromachined knife rest with force servo function
JP2005177874A (en) Spherical surface generating machining device and spherical surface generating machining method
CN110006379B (en) Structure detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP