WO2008034371A1 - Procédé de transmission de données, dispositif et système de réseau de communication sans fil - Google Patents

Procédé de transmission de données, dispositif et système de réseau de communication sans fil Download PDF

Info

Publication number
WO2008034371A1
WO2008034371A1 PCT/CN2007/070537 CN2007070537W WO2008034371A1 WO 2008034371 A1 WO2008034371 A1 WO 2008034371A1 CN 2007070537 W CN2007070537 W CN 2007070537W WO 2008034371 A1 WO2008034371 A1 WO 2008034371A1
Authority
WO
WIPO (PCT)
Prior art keywords
hop count
link
hop
wireless communication
communication network
Prior art date
Application number
PCT/CN2007/070537
Other languages
English (en)
French (fr)
Inventor
Shulan Feng
Ting Li
Hanfeng Zhang
Jingyang Lv
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008034371A1 publication Critical patent/WO2008034371A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a data transmission method, device, and system for a wireless communication network. Background of the invention
  • the structure of the wireless communication system can be divided into two types:
  • a network structure in which a source and a sink can communicate directly such as a cellular structure
  • a network structure for realizing data communication between the source and the sink through a relay node (RS).
  • RS relay node
  • a relay network, an ad hoc network, a multi-hop network, a mesh network, and the like involved in the research of the communication field belong to such a network structure, and a network having such a network structure is called a forwarding network.
  • the branch of the present invention refers to a path from a source to a sink.
  • the relay node needs to forward data, it needs to occupy different radio resources from the source and the sink. Therefore, it is necessary to set an appropriate data transmission mode for the forwarding network, and allocate radio resources reasonably in the forwarding network to avoid an increase in system interference. At the same time, when the nodes of the forwarding network move, it is necessary to ensure that the data transmission mode can adapt to changes in the network structure.
  • the source node is defined as a node with a hop count of 0.
  • the hop count of the node is increased by one hop, and the hop count of the branch is also increased by one hop.
  • the link between the N-1 hop node and the N hop node is the Nth hop link. Similar
  • the cellular network can be regarded as a forwarding network with a hop count of 1.
  • the link from the source node to the node with the hop count of 1 has the minimum number of hops, from the node with the hop count of n - 1 to the destination node (defined as the node with the hop count of N) and the link between them has the largest The number of hops.
  • a transmission mode of a forwarding network in the prior art is: a fixed transmission mode.
  • the fixed transmission mode determines the transmission mode according to the maximum hop count of the forwarding network. First, according to the maximum hop count in the forwarding network, the time is divided into the same time zone as the hop count in one frame, and the links of different hops are allocated differently. Transmission time slot.
  • the source node (0th hop) transmits data to the nearest first hop RS or user station (SS). After receiving the data, the first hop forwards the data to the second hop RS or SS. , and so on, until the data is received by the destination node.
  • the transmission steps of the uplink are the opposite of the downlink.
  • the above fixed transmission mode control is simple, since a complete transmission process can be completed in one frame, the transmission process includes data from the source node to the destination node, and the feedback data is returned from the destination node to the source node, so the service delay can be limited. In one frame time.
  • the inventors have found that the above fixed transmission method has the disadvantages that: in the same time, only the entity of a certain hop in the entire forwarding network is transmitting or transmitting data, and the spatial resources of the forwarding network cannot be fully utilized, and the spectrum efficiency is low.
  • the frame structure of the data limits the maximum hop count of the forwarding network. When the maximum hop count of the forwarding network changes, the data transmission mode cannot be adjusted according to the network structure.
  • the dynamic transmission mode does not limit the number of network hops, and only transmits one hop of data in one frame.
  • time and frequency resources can be reused, and the spatial resources of the forwarding network can be fully utilized, and the frequency efficiency is high, and at the same time, the network structure can be adapted to ensure the free expansion of the network.
  • the invention provides a data transmission method, device and system for a wireless communication network, thereby ensuring real-time transmission of forwarding network services, improving spectrum utilization efficiency of the forwarding network, and ensuring dynamic expansion of the forwarding network.
  • a data transmission method for a wireless communication network comprising:
  • the resource transmission data of the set hop count is multiplexed on the link having the smallest hop count to the link having the largest hop count.
  • a device for data transmission of a wireless communication network configured as:
  • a first unit configured to set a set hop count of the wireless communication network
  • a second unit configured to: when a hop count of a branch of the wireless communication network is greater than a set hop count set by the first unit, on a link with a minimum hop count to a link with a maximum hop count Data is transmitted using the resource of the set hop count.
  • a data transmission system for a wireless communication network comprising:
  • a first device configured to allocate, when a hop count of a branch of the wireless communication network is greater than a set hop count, to allocate the set hop count resource from a link having a minimum hop count to a link having a maximum hop count And multiplexing the resource transmission data of the set hop count on the link having the smallest hop count to the link having the largest hop count;
  • At least one second device configured to transmit data between the set hop count resource allocated by the first device and the first device, and/or to use the first device to allocate the The data of the set hop count is transmitted with other second devices.
  • each hop link can multiplex the resources of the hop count to ensure real-time transmission of the forwarding network (especially the mobile forwarding network) and improve the spectrum utilization efficiency of the forwarding network. Ensure the dynamic expansion of the forwarding network. It effectively solves the problems of service delay, spectrum efficiency, and adaptation to network structure changes in multi-hop networks.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the basic frame structure of a time division in a time division duplex (TDD) mode according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a composite frame according to an embodiment of the present invention.
  • FIG. 4 is a flow chart showing a data transmission method of an embodiment of the present invention incorporating a process of adjusting a basic frame structure
  • FIG. 5 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a basic frame structure of a multi-hop network according to an embodiment of the present invention. Mode for carrying out the invention
  • Embodiments of the present invention provide a data transmission method, device, and system for a wireless communication network, including: setting a basic frame structure and a data transmission mode of data transmission according to network structure information and other factors, and multiplexing basic frames, and The data transmission mode is re-adjusted according to the change information of the network structure monitored in real time.
  • FIG. 1 The specific processing flow of the method in the embodiment of the present invention is as shown in FIG. 1 and includes the following steps:
  • Step 1 -1 Set the basic frame structure of the data transmission of the wireless communication network.
  • the basic frame structure of the data transmission of the wireless communication network needs to be set first, and the basic frame structure is a frame structure that can accommodate a certain number of hops (defined as the hop count factor n), and the basic frame can be set according to the wireless Factors such as the probability distribution of the hops of the communication network, the main service quality of service (QoS) requirements, and the characteristics of the network structure change, find an appropriate hop count factor n, and use n as the hop count that the basic frame can accommodate.
  • the wireless Factors such as the probability distribution of the hops of the communication network, the main service quality of service (QoS) requirements, and the characteristics of the network structure change, find an appropriate hop count factor n, and use n as the hop count that the basic frame can accommodate.
  • the above basic frame structure may adopt time division, frequency division, code division or a mixed structure of two or three or other structures to ensure data transmission of different hop links, and FIG. 2 is a TDD mode.
  • FIG. 2 is a TDD mode.
  • the base station (BS) (0th hop) transmits data to the nearest first hop RS or SS, and after receiving the data, the first hop forwards the data to the second hop RS or SS, in turn By analogy, until the data is received by the destination node.
  • the transmission step of the uplink is the reverse of the downlink.
  • the above process of setting the basic frame structure can be performed by the control node of the wireless communication network.
  • Steps 1 - 2 Monitor network structure information.
  • the control nodes and common nodes in the wireless communication network need to monitor the corresponding network structure information in real time.
  • the control node in the wireless communication network needs to monitor the structural information of the entire network in real time, for example, to monitor whether the network structure changes due to the joining of new nodes, the movement of the original nodes, the state transition of the nodes, or the shutdown. It is also possible to monitor the number of nodes, the order of nodes, the neighbor node information of each node, and the like in all branches of the wireless communication network.
  • the ordinary nodes in the wireless communication network only monitor the network structure information related to itself, including its own position in the branch, upper and lower node information (if there is a lower node), and neighbor node information of its own node.
  • the monitoring mode of the control node may include: periodically querying the normal node, the active reporting of the common node, and indirectly through the neighboring nodes of the ordinary node (including the neighboring node and the upper and lower nodes) Query or calculation; the monitoring mode of the common node may include: directly reading the structural information that the system has queried or calculated for itself, and calculating its own structural information according to information of its neighboring nodes (including neighbor nodes and lower and upper nodes). .
  • Steps 1 - 3 According to the monitored information, determine whether the network structure has changed.
  • the control node and the normal node judge whether the network structure changes according to the above monitored information. If no change occurs, perform steps 1 - 2, and the control node and the normal node continue to monitor the corresponding network structure information; otherwise, perform steps 1 - 4.
  • Steps 1 -4 Store and update network structure information.
  • the control node or the normal node monitors that the network structure has changed, the corresponding network structure change information is reported to the corresponding network structure information base.
  • the network structure information base of the control node stores the existing network structure information of the entire network, and updates the network structure information in real time.
  • the network structure information may include an update trace within a certain time range of the information, for example, structural information of a node before and after the handover.
  • the network structure information base of the ordinary node stores its own existing network structure information, and updates the network structure information in real time.
  • the network structure information may also include an update trace within a certain time range of the information.
  • Steps 1 - 5 Perform resource allocation.
  • the control node of the wireless communication network needs to store the structural information of the entire network stored in its network structure information base, and allocate corresponding resources to different hop links in different branches of the entire network.
  • the control node of the wireless communication network allocates the basic frame to the different hop link of the branch. Transmission resources in different hop counts.
  • the branch spatially multiplexes the basic frame, and the control node of the wireless communication network allocates transmission resources when different hop counts in different basic frames are allocated to different hop links of the branch.
  • the links with the same number of hops after n modulo (such as the first hop link and the n+1th hop link) may be allocated different basic frames.
  • the link transmission resource of the same hop count. "n" indicates the number of hops the basic frame can hold.
  • the control node of the wireless communication network allocates resources of the same hop count in the basic frame to links of the same hop count in different branches of the wireless communication network.
  • the control node may also allocate different resources of the same hop count in the basic frame for the links with the same hop count under different branches in the wireless communication network, for example, there are two links with the same hop count. Then each link can occupy one-half of the resources of the same hop count in the basic frame.
  • the control node of the wireless communication network also adjusts the data transmission mode (that is, the resource allocated to the link of each hop count) in real time according to the structural information of the entire network stored in the network structure information base, so as to adapt the data transmission mode. Changes in the network structure.
  • a common node of a wireless communication network allocates resources to its own different service flows according to its own structural information stored in its network structure information base.
  • Steps 1 -6 Data transfer.
  • the control node of the wireless communication network completes the transceiving operation of data with the normal node in the above-mentioned allocated resources by using the basic frame structure set as described above.
  • the ordinary node of the wireless communication network completes the transceiving operation of data with other common nodes and control nodes in the resources allocated by the above-mentioned control node and the local node by using the basic frame structure set as described above.
  • Step 4 is the same as the flow shown in FIG. 1.
  • Step 4-1, Step 4-2, and Step 4-3 are the same as Step 1-1, Step 1-2, and Step 1-3, respectively.
  • Step 4 -5, Step 4-6, Step 4-7 and steps respectively Steps 1 - 4, steps 1 - 5, and steps 1 - 6 are the same, except that step 4-4 of resetting the basic frame structure is added.
  • step 4-4 of resetting the basic frame structure is added.
  • control node 4 in the process of monitoring the network structure information, if the control node finds that the network structure changes greatly, or needs to adjust the basic frame structure due to service requirements, the control node resets the basic frame. Structure, reduce or increase the number of hops of the basic frame or adjust the radio resources occupied by each or part of the hop link. Then, continue to monitor the structural information of the entire network.
  • the system of the method comprises one or more control nodes and one or more common nodes, wherein one control node corresponds to a plurality of common nodes.
  • the specific structure of an embodiment of the system described in the method is as shown in FIG. 5, and includes a control node and a plurality of ordinary nodes.
  • the control node comprises: a monitoring module, a structure information base, a scheduling module, a transceiver module and a basic frame setting module.
  • the functions of each part are as follows:
  • Monitoring module Real-time monitoring of the structural information of the entire network, and transmitting the monitored structural information to the structural information base. When it is judged that the network structure has changed according to the monitored structural information, the corresponding network structure change information is transmitted to the structural information base.
  • Structure information base Update and save the structural information of the entire network according to the structural information and network structure change information transmitted by the monitoring module.
  • the scheduling module allocates corresponding resources to each hop link of the wireless communication network by using the basic frame structure according to the structural information of the entire network stored in the structural information database, and adjusts the allocated resources according to requirements.
  • Transceiver module With the basic frame structure, data transmission and reception operations between the common node and other control nodes are completed in the resources allocated by the scheduling module.
  • the basic frame setting module sets the basic frame structure of the entire network data transmission according to the structure information of the entire network stored in the structure information base; if the network structure is found to vary greatly, or the basic frame structure is adjusted due to service requirements, etc. , complete the reconstruction of the basic frame structure.
  • the common node includes: a monitoring module, a structure information base, a scheduling module, and a transceiver data module. The functions of each part are as follows:
  • the monitoring module monitors network structure information related to the node, and transmits the monitored network structure information to the structural information database. When it is judged that the network structure of the node has changed according to the monitored structural information, the corresponding network structure change information is transmitted to the structural information base.
  • Structure information base Update and save the structure information of the node according to the structural information and network structure change information transmitted by the monitoring module.
  • the scheduling module implements allocation of transmission resources to different service flows of the node according to the structural information of the node stored in the structure information base;
  • Transceiver module With the basic frame structure, data transmission and reception operations with other common nodes and/or control nodes are completed in the resources allocated by the control node and the scheduling module of the local node.
  • the wireless communication network in the above method and system of the embodiments of the present invention includes a wireless forwarding network, such as a multi-hop network.
  • the invention also provides an embodiment of the above method. That is, the application of the method of the present invention in a multi-hop network.
  • the specific processing process includes the following steps:
  • a base station belongs to a control node, and a relay base station and a mobile terminal belong to a normal node.
  • the basic frame structure of the multi-hop network is shown in Figure 6.
  • the basic frame structure is two hops. When the hop count is more than two hops. In the case of spatial multiplexing, the odd-numbered link multiplexes the same transmission resource as the first hop link, and the even-hop link uses the same transmission resource as the second hop link.
  • the base station (0th hop) transmits data to the 1st hop relay base station.
  • the first hop relay base station transmits data to the base station.
  • the above process of setting the basic frame structure of the multi-hop network can be completed by the scheduling module of the base station.
  • the base station monitors the network structure and obtains the location information of the new node.
  • Reasons for changes in the network structure in a multi-hop network include: new relay base station/mobile terminal join (including status update), relay base station/mobile terminal handover, relay base station/mobile terminal state transition (no longer need to operate normally) Certain transmission resources), the relay base station/mobile terminal exits the network.
  • the relay base station/mobile terminal can read the broadcast information of the service or the target relay base station/base station to obtain its own location information, and the base station can pass through After the base station/mobile terminal reports, the relay base station/mobile terminal's serving relay base station/base station reporting mode obtains the location information of the relay base station/mobile terminal, thereby obtaining structural information of the entire network.
  • the relay base station/mobile terminal changes state or exits the network, status transfer or exit request signaling is issued, and the base station can obtain the network structure after the relay base station/mobile terminal exits.
  • the base station in the multi-hop network can obtain the structural information of the entire network in real time and save it in the network structure database in the base station.
  • the scheduling module in the base station reads the network structure information in the network structure database, performs resource allocation through the scheduling module, and transmits the new relay base station/mobile terminal or the handover relay base station in the broadcast information in the downlink. Resource allocation information of the mobile terminal.
  • the scheduling module of the base station can also adjust the basic frame structure, but in general, for the simple control of the system, it is not easy Change the basic frame structure.
  • the relay base station/mobile terminal reads the resource allocation information of the local node in the downlink, and can transmit the uplink and downlink data in the allocated wireless link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

无线通信网络的数据传输方法、 设备及系统
技术领域
本发明涉及无线通信领域, 尤其涉及一种无线通信网络的数据传输 方法、 设备及系统。 发明背景
根据无线通信系统中信源和信宿之间通信的路径, 可以将无线通信 系统的结构分为两种:
1、 信源和信宿之间可以直接进行通信的网络结构, 比如蜂窝结构;
2、 在信源和信宿之间通过中继节点 (RS )进行数据转发从而实现 通信的网络结构。 目前通信领域研究所涉及的中继网络、临时(Ad hoc ) 网络、 多跳网络、 网格网等属于这种网络结构, 具备这种网络结构的网 络被称为转发网络。
如果在上述蜂窝网中的部分支路的信源、 信宿之间加入中继节点 (如直放站) , 那么这部分支路也属于转发网络。 本发明所述的支路是 指从信源到信宿之间的一条路径。
在转发网络中, 由于中继节点需要对数据进行转发, 需要与信源、 信宿占用不同的无线资源。 因此, 就需要给转发网络设置合适的数据传 输方式, 在转发网络中合理地分配无线资源, 避免系统干扰的增加。 同 时, 当转发网络的节点移动时, 要保证数据传输方式能够适应网络结构 的变化。
在转发网络中, 定义源节点为跳数为 0的节点, 按照从源节点到目 的节点的方向, 每增加一个节点, 节点的跳数就增加一跳, 支路的跳数 也增加一跳, 而在 N-1跳节点与 N跳节点之间的链路为第 N跳链路。 相似 的, 可以将蜂窝网络看作是跳数为 1的转发网络。 从源节点到跳数为 1的 节点之间的链路具有最小跳数, 从跳数为 n - 1的节点到目的节点 (定义 为跳数为 N的节点)与之间的链路具有最大跳数。
现有技术中一种转发网络的传输方式为: 固定传输方式。 固定传输 方式根据转发网络的最大跳数确定传输方式, 首先根据转发网络中的最 大跳数, 在一帧内将时间划分为与跳数相同的时间区域, 给不同跳数的 链路分配不同的传输时隙。 在下行链路, 源节点 (第 0跳)将数据发射 到距离最近的第 1跳 RS或用户台 (SS ) , 第 1跳在接收到该数据后, 将 数据转发给第 2跳 RS或 SS, 依次类推, 直到数据被目的节点接收。 上行 链路的传输步骤与下行链路相反。
上述固定传输方式控制简单, 由于在一帧内可以完成一个完整的传 输过程, 该传输过程包括数据从源节点到目的节点、 反馈数据从目的节 点返回到源节点, 因此, 可以将业务时延限制在一帧时间内。
然而, 发明人发现, 上述固定传输方式的缺点为: 在同一时间内整 个转发网络中只有某一跳的实体在进行数据传输或发射, 不能充分利用 转发网络的空间资源, 频谱效率较低。 同时, 数据的帧结构限制了转发 网络的最大跳数, 而当转发网络的最大跳数发生变化时, 不能根据网络 结构对数据传输方式进行调整。
现有技术中另一种转发网络的传输方式为: 动态传输方式。 动态传 输方式不对网络跳数加以限制, 在一帧内只传输一跳的数据。 在该数据 传输方式下, 可以复用时间、 频率资源, 可充分利用转发网络的空间资 源, 频语效率较高, 同时可以适应网络结构的变化, 保证网络的自由扩 展。
然而, 发明人发现, 上述动态传输方式的缺点为: 给转发网络业务 引入了较长时延。 发明内容
本发明提供了一种无线通信网络的数据传输方法、 设备及系统, 从 而可以保证转发网络业务的实时传输, 提高转发网络的频谱利用效率 , 保证转发网络的动态扩展。
一种无线通信网络的数据传输方法, 包括:
当无线通信网络的一条支路的跳数大于设定跳数时 , 在从具有最小 跳数的链路到具有最大跳数的链路上 , 复用所述设定跳数的资源传输数 据。
一种无线通信网络的数据传输的设备, 配置为:
第一单元, 用于设置无线通信网络的设定跳数;
第二单元, 用于当无线通信网络的一条支路的跳数大于所述第一单 元设置的设定跳数时 , 在从具有最小跳数的链路到具有最大跳数的链路 上复用所述设定跳数的资源传输数据。
一种无线通信网络的数据传输系统, 包括:
第一设备, 用于当无线通信网络的一条支路的跳数大于设定跳数 时, 为从具有最小跳数的链路到具有最大跳数的链路分配所述设定跳数 的资源 , 并在所述从具有最小跳数的链路到具有最大跳数的链路上复用 所述设定跳数的资源传输数据;
至少一个第二设备, 用于利用所述第一设备所分配的所述设定跳数 的资源与所述第一设备之间传输数据,和 /或利用所述第一设备所分配的 所述设定跳数的资源与其它第二设备之间传输数据。
由上述本发明的技术方案可以看出, 各个跳数链路通过复用设定跳 数的资源, 可以保证转发网络(尤其是移动转发网络)业务的实时传输, 提高转发网络的频谱利用效率, 保证转发网络的动态扩展。 有效地解决 了多跳网络中业务时延、 频谱效率、 适应网络结构变化等问题。 附图简要说明
图 1为本发明一实施例的数据传输方法的流程图;
图 2为本发明一实施例的时分双工 (TDD ) 方式下时分的基本帧结 构示意图;
图 3为本发明一实施例的复合帧结构示意图;
图 4为加入了调整基本帧结构过程的本发明一实施例的数据传输方 法的流程图;
图 5为本发明一实施例的系统结构示意图;
图 6为本发明一实施例设置的多跳网络的基本帧结构示意图。 实施本发明的方式
本发明实施例提供了一种无线通信网络的数据传输方法、 设备及系 统, 包括: 根据网络结构信息和其它因素来设置数据传输的基本帧结构 和数据传输方式, 对基本帧进行复用, 并根据实时监控到的网络结构的 变化信息, 来重新调整数据传输方式。
下面结合附图来伴细描述本发明实施例, 本发明一个实施例所述方 法的具体处理流程如图 1所示, 包括如下步骤:
步骤 1 -1 : 设置无线通信网络的数据传输的基本帧结构。
本实施例首先需要设置无线通信网络的数据传输的基本帧结构, 该 基本帧结构是可容纳一定跳数(定义为跳数因子 n ) 的帧结构, 在进行 基本帧的设置时, 可以根据无线通信网络的支路跳数概率分布、 主要业 务服务质量(QoS )需求、 网络结构变化特点等因素, 找到一个恰当的 跳数因子 n, 将 n作为上述基本帧所能够容纳的跳数
上述基本帧结构可以采用时分、 频分、 码分或其中两者或三者混合 结构或其它结构来保证不同跳数链路的数据传输, 图 2为一种 TDD方式 下时分的基本帧结构示意图。 在下行链路, 基站(BS ) (第 0跳)将数 据发射到距离最近的第 1跳 RS或 SS, 第 1跳在接收到该数据后, 将数据 转发给第 2跳 RS或 SS, 依次类推, 直到数据被目的节点接收。 上行链路 的传输步骤与下行链路相反。
当无线通信网络的最大跳数不大于上述设置的基本帧可容纳的跳 数时, 无线通信网络的业务的传播时延被限制在一帧之内; 当无线通信 网络的最大跳数大于上述设置的基本帧可容纳的跳数时 , 无线通信网络 将在空间上复用上述基本帧, 形成如图 3所示的复合帧。 在该复合帧的 结构下, 链路跳数大于基本帧结构的跳数, 第 n*N+1 ( N=1 , 2, ... )跳 链路要在空间复用其所在链路使用的第 1跳链路所占用的无线资源, 而 n*N+2跳链 复用其所在链路使用的第 2跳链路所占用的无线资源 ,以 此类推。 N表示被复用的次数。
上述设置基本帧结构的过程可以由无线通信网络的控制节点来完 成。
步骤 1 -2: 监控网络结构信息。
无线通信网络中的控制节点和普通节点要实时监控相应的网络结 构信息。
无线通信网络中的控制节点要实时监控整个网络的结构信息, 比 如, 监控是否由于新节点的加入、 原有节点移动、 节点状态转移或关机 等引起网络结构变化。 还可以监控无线通信网络的所有支路中的节点 数、 节点顺序、 每个节点的邻居节点信息等。 而无线通信网络中的普通 节点只监控与自身相关的网络结构信息, 包括自身在支路中的位置、 上 下级节点信息(如果有下级节点的话)、及自身节点的邻居节点信息等。
控制节点的监控方式可以包括: 定期查询普通节点、 普通节点的主 动汇报、 通过普通节点的相邻节点 (包括邻居节点和上下级节点) 间接 查询或计算等; 普通节点的监控方式可以包括: 直接读取系统已经为自 身查询或计算出的结构信息、 根据自己的相邻节点 (包括邻居节点和上 下级节点)信息计算得到自身结构信息等。
步骤 1 -3: 根据监控的信息, 判断网络结构是否发生变化。
控制节点和普通节点根据上述监控到的信息 , 判断网络结构是否发 生变化。 如果没有发生变化, 则执行步骤 1 -2,控制节点和普通节点继续 监控相应的网络结构信息; 否则, 执行步骤 1 -4。
步骤 1 -4: 存储并更新网络结构信息。
如果控制节点或普通节点监视到网络结构发生了变化, 则要将相应 的网络结构变化信息报告给相应的网络结构信息库。
控制节点的网络结构信息库中要存储整个网络的已有的网络结构 信息, 并实时更新该网络结构信息。 同时, 该网络结构信息中可以包括 信息的一定时间范围内的更新踪迹, 比如, 某个节点在切换前后的结构 信息。
普通节点的网络结构信息库中要存储自身的已有的网络结构信息, 并实时更新该网络结构信息。 同时, 该网络结构信息中也可以包括信息 的一定时间范围内的更新踪迹。
步骤 1 -5: 进行资源分配。
无线通信网络的控制节点要 居其网络结构信息库中存储的整个 网络的结构信息 , 给整个网络的不同支路中的不同跳数链路分配相应的 资源。
当无线通信网络的支路的跳数不大于所述设定跳数时, 即基本帧可 容纳的跳数, 则无线通信网络的控制节点给所述支路的不同跳数链路分 配基本帧中的不同跳数时的传输资源。
当所述无线通信网络的支路的跳数大于所述基本帧可容纳的设定 跳数时, 则所述支路在空间上复用所述基本帧, 无线通信网络的控制节 点给所述支路的不同跳数链路分配不同基本帧中的不同跳数时的传输 资源。 同时为了减少空间复用基本帧所带来的干扰, 对 n取模后的余数 相等的跳数的链路(如第 1跳链路与第 n+1跳链路) , 可以分配不同基本 帧中相同跳数的链路传输资源。 "n" 表示基本帧可容纳的跳数。
无线通信网络的控制节点给所述无线通信网络的不同支路中相同 跳数的链路分配基本帧中相同跳数下的资源。 为了避免干扰增加, 控制 节点还可以为无线通信网络中不同支路下具有相同跳数的链路分配基 本帧中同一跳数的不同资源, 例如, 具有相同跳数的链路一共有两条, 那么每条链路可以各占基本帧中同一跳数的资源的二分之一。
无线通信网络的控制节点还才 据其网络结构信息库中存储的整个 网络的结构信息, 对上述数据传输方式(即给各个跳数的链路分配的资 源)进行实时调整, 使数据传输方式适应网络结构的变化。
无线通信网络的普通节点根据其网络结构信息库中存储的自身的 结构信息, 对自身的不同业务流实现资源的分配。
步骤 1 -6: 进行数据传输。
无线通信网络的控制节点利用上述设置的基本帧结构 , 在上述分配 的资源中完成和普通节点之间的数据的收发操作。
无线通信网络的普通节点利用上述设置的基本帧结构 , 在上述控制 节点和本节点分配的资源中完成和其它普通节点以及控制节点之间的 数据的收发操作。
在实际应用中, 可以对上述处理流程进行改进, 在上述处理流程中 加入了重新设置基本帧结构过程后的具体处理流程如图 4所示。 图 4所示 的流程和图 1所示的流程相比, 步骤 4-1、 步骤 4-2、 步骤 4-3分别与步骤 1 -1、 步骤 1 -2、 步骤 1 -3相同, 步骤 4-5、 步骤 4-6、 步骤 4-7分别与步骤 1 -4、步骤 1 -5、步骤 1 -6相同,只是增加了重新设置基本帧结构的步骤 4-4。 在图 4所示的流程中, 控制节点在监控网络结构信息的过程中, 如果发 现网络结构变化较大, 或由于业务需求等原因, 需要对基本帧结构进行 调整, 则控制节点重新设置基本帧结构, 减少或增加基本帧的跳数或者 调整每个或部分跳数链路占用的无线资源。 然后, 继续监控整个网络的 结构信息。
本方法所述系统包括一个或多个控制节点和一个或多个普通节点, 其中一个控制节点对应若干个普通节点。 本方法所述系统的一个实施例 的具体结构如图 5所示, 包括一个控制节点和若干普通节点。
控制节点包括: 监控模块、 结构信息库、 调度模块、 收发模块和基 本帧设置模块组成。 各部分的功能如下:
监控模块: 实时监控整个网络的结构信息, 将监控到的结构信息传 递给结构信息库。 当根据监控的结构信息判断网络结构发生了变化, 将 相应的网络结构变化信息传递给结构信息库。
结构信息库: 根据监控模块传递过来的结构信息和网络结构变化信 息, 更新和保存整个网络的结构信息。
调度模块: 根据结构信息库中保存的整个网络的结构信息, 利用所 述基本帧结构给所述无线通信网络的各个跳数链路分配相应的资源 , 并 根据需要对分配的资源进行调整。
收发模块: 利用所述基本帧结构, 在调度模块分配的资源中完成和 普通节点之间或其它控制节点之间的数据的收发操作。
基本帧设置模块: 根据结构信息库中保存的整个网络的结构信息 , 设置整个网络数据传输的基本帧结构; 如果发现网络结构变化较大, 或 由于业务需求等原因, 对上述基本帧结构进行调整, 完成基本帧结构的 重构。 普通节点包括: 监控模块、 结构信息库、 调度模块和收发数据模块 组成。 各部分的功能如下:
监控模块: 监控与本节点相关的网络结构信息, 将监控到的网络结 构信息传递给结构信息库。 当 据监控的结构信息判断本节点的网络结 构发生了变化, 将相应的网络结构变化信息传递给结构信息库。
结构信息库: 根据监控模块传递过来的结构信息和网络结构变化信 息, 更新和保存本节点的结构信息。
调度模块: 根据结构信息库中保存的本节点的结构信息, 对本节点 的不同业务流实现传输资源的分配;
收发模块: 利用所述基本帧结构, 在控制节点和本节点的调度模块 分配的资源中完成和其它普通节点和 /或控制节点之间的数据的收发操 作。
上述本发明实施例所述方法和系统中的无线通信网络包括无线转 发网络, 比如多跳网络。
本发明还提供了上述方法的一个实施例。 即本发明所述方法在多跳 网络中的应用。 具体处理过程包括如下步骤:
1、 设置基本帧结构。
在多跳网络中, 基站属于控制节点, 而中继基站、 移动终端属于普 通节点。
在实际应用中, 两跳情况较为常见, 考虑频语效率与业务时延, 设 定多跳网络的基本帧结构如图 6所示, 该基本帧结构为两跳, 当跳数多 于两跳时, 采用空间复用的传输方式, 即奇数链路复用与第一跳链路相 同的传输资源, 而偶数跳链路采用与第二跳链路相同的传输资源。 在下 行链路, 基站(第 0跳)将数据发射到第 1跳中继基站。 在上行链路, 第 1跳中继基站将数据发送到基站。 上述设置多跳网络的基本帧结构的过程可以由基站的调度模块来 完成。
2、 基站监控网络结构, 获得新节点的位置信息。
多跳网络中网络结构发生变化的原因包括:新中继基站 /移动终端加 入(包括状态更新) 、 中继基站 /移动终端切换、 中继基站 /移动终端发 生状态转移(不再需要正常运行下的某些传输资源)、 中继基站 /移动终 端退出网络。 新中继基站 /移动终端加入和中继基站 /移动终端切换时, 中继基站 /移动终端都可以读取服务或目标中继基站 /基站的广播信息获 得自身的位置信息, 而基站可以通过中继基站 /移动终端上报、 中继基站 /移动终端的服务中继基站 /基站上报方式得到中继基站 /移动终端的位置 信息,从而获得整个网络的结构信息。 当中继基站 /移动终端发生状态转 移或退出网络时, 会发出状态转移或退出请求信令, 基站就可以获得中 继基站 /移动终端退出后的网络结构。
因此, 多跳网络中基站可以实时获得整个网络的结构信息, 并保存 在基站中的网络结构数据库中。
3、 基站中的调度模块读取网络结构数据库中的网络结构信息, 通 过调度模块进行资源分配, 并在下行链路中的广播信息中发送对新中继 基站 /移动终端或切换中继基站 /移动终端的资源分配信息。
如果基站检测到整个网络的网络结构发生了重大变化, 或由于其它 业务等重大因素影响, 基站的调度模块还可以对上述基本帧结构进行调 整, 但一般情况下, 为了系统的控制简单, 不要轻易改变基本帧结构。
4、中继基站 /移动终端在下行链路中读取对本节点的资源分配信息 , 就可以在分配的无线链路中传输上下行数据。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范 围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此 , 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求书
1、 一种无线通信网络的数据传输方法, 其特征在于, 包括步骤: 当无线通信网络的一条支路的跳数大于设定跳数时 , 在从具有最小 跳数的链路到具有最大跳数的链路上 , 复用所述设定跳数的资源传输数 据。
2、 根据权利要求 1所述的方法, 其特征在于, 进一步包括: 根据无线通信网络的结构信息和业务需求设置所述设定跳数。
3、 根据权利要求 2所述的方法, 其特征在于, 进一步包括: 实时监控所述无线通信网络的结构信息和业务需求, 并对该结构信 息和业务需求进行保存和更新。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 进一步包括: 当所述无线通信网络的结构信息或业务需求变化时, 对所述设定跳 数进行调整, 并对从具有最小跳数的链路到具有最大跳数的链路上的资 源进行调整。
5、 根据权利要求 1所述的方法, 其特征在于, 所述在从具有最小跳 数的链路到具有最大跳数的链路上, 复用所述设定跳数的资源传输数据 包括:
在链路的跳数不大于所述设定跳数时, 在具有所述跳数的链路上利 用第一跳数的资源传输数据 , 所述第一跳数与所述链路的跳数相同; 在所述链路的跳数大于所述设定跳数时 , 在具有所述跳数的链路上 利用第二跳数的资源传输数据, 所述第二跳数与所述链路的跳数对所述 设定跳数 ^莫后的余数相同。
6、 根据权利要求 1所述的方法, 其特征在于, 进一步包括: 将所述从具有最小跳数的链路的跳数到具有最大跳数的链路的跳 数对所述设定跳数耳4莫;
在余数相等的跳数的链路上利用相同跳数下的不同资源。
7、 根据权利要求 1所述的方法, 其特征在于, 所述设定跳数为 2跳; 在所述无线通信网络的具有各个跳数的链路上复用所述设定跳数 的资源传输数据包括:
在奇数链路上利用所述设定跳数中的第一跳的资源传输数据 , 在偶 数链路上利用所述设定跳数中的第二跳的资源传输数据。
8、 根据权利要求 1所述的方法, 其特征在于, 进一步包括: 在所述无线通信网络的不同支路中具有相同跳数的链路上利用相 同跳数的不同资源。
9、 根据权利要求 1-8任一项所述的方法, 其特征在于, 所述的无线 通信网络为无线转发网络。
10、 一种无线通信网络的数据传输的设备, 其特征在于, 包括: 第一单元, 用于设置无线通信网络的设定跳数;
第二单元, 用于当无线通信网络的一条支路的跳数大于所述第一单 元设置的设定跳数时 , 在从具有最小跳数的链路到具有最大跳数的链路 上复用所述设定跳数的资源传输数据。
11、 根据权利要求 10所述的设备, 其特征在于, 所述设备还包括: 第三单元, 用于实时监控所述无线通信网络的结构信息和业务需 求, 并更新和保存所述结构信息和业务需求;
所述第一单元为跳数设定单元, 用于根据所述第三单元监控的无线 通信网络的结构信息和业务需求设置所述设定跳数。
12、 根据权利要求 11所述的设备, 其特征在于, 所述设备还包括: 第四单元, 用于在所述第三单元监控的无线通信网络的结构信息或 业务需求变化时, 调整所述设定跳数。
13、 根据权利要求 11所述的设备, 其特征在于, 所述设备还包括: 第五单元, 用于在所述第三单元监控的无线通信网络的结构信息或 业务需求变化时, 调整所述从具有最小跳数的链路到具有最大跳数的链 路上的资源。
14、根据权利要求 12所述的设备,其特征在于, 所述第二单元包括: 第一子单元, 用于在链路的跳数不大于所述设定跳数时, 在具有所 述跳数的链路上利用第一跳数的资源传输数据, 所述第一跳数与所述链 路的跳数相同;
第二子单元, 用于在所述链路的跳数大于所述设定跳数时, 在具有 所述跳数的链路上利用第二跳数的资源传输数据, 所述第二跳数与所述 链路的跳数对所述设定跳数取模后的余数相同。
15、 根据权利要求 14所述的设备, 其特征在于, 所述设定跳数为 2 跳。
16、 一种无线通信网络的数据传输系统, 其特征在于, 包括: 第一设备, 用于当无线通信网络的一条支路的跳数大于设定跳数 时, 为从具有最小跳数的链路到具有最大跳数的链路分配所述设定跳数 的资源 , 并在所述从具有最小跳数的链路到具有最大跳数的链路上复用 所述设定跳数的资源传输数据;
至少一个第二设备, 用于利用所述第一设备所分配的所述设定跳数 的资源与所述第一设备之间传输数据,和 /或利用所述第一设备所分配的 所述设定跳数的资源与其它第二设备之间传输数据。
17、根据权利要求 16所述的系统,其特征在于, 所述第一设备包括: 第一单元, 用于在链路的跳数不大于所述设定跳数时, 在具有所述 跳数的链路上利用第一跳数的资源传输数据, 所述第一跳数与所述链路 的跳数相同; 第二单元, 用于在所述链路的跳数大于所述设定跳数时, 在具有所 述跳数的链路上利用第二跳数的资源传输数据, 所述第二跳数与所述链 路的跳数对所述设定跳数耳4莫后的余数相同。
18、根据权利要求 17所述的系统,其特征在于, 所述第一设备包括: 第三单元, 用于实时监控所述无线通信网络的结构信息和业务需 求, 并更新和保存所述结构信息和业务需求;
第四单元, 用于根据所述第三单元监控的无线通信网络的结构信息 和业务需求设置所述设定跳数。
19、 根据权利要求 18所述的系统, 其特征在于, 所述第一设备还包 括: 第五单元, 用于在所述第三单元监控到的所述结构信息和业务需求 变化时, 调整所述设定跳数, 并调整所述从具有最小跳数的链路到具有 最大跳数的链路上的资源。
PCT/CN2007/070537 2006-08-22 2007-08-22 Procédé de transmission de données, dispositif et système de réseau de communication sans fil WO2008034371A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200610109910.9 2006-08-22
CN200610109910 2006-08-22
CN200610154149.0 2006-09-13
CN2006101541490A CN101132308B (zh) 2006-08-22 2006-09-13 无线通信网络的数据传输方法、节点及系统

Publications (1)

Publication Number Publication Date
WO2008034371A1 true WO2008034371A1 (fr) 2008-03-27

Family

ID=39113325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070537 WO2008034371A1 (fr) 2006-08-22 2007-08-22 Procédé de transmission de données, dispositif et système de réseau de communication sans fil

Country Status (3)

Country Link
US (1) US7929477B2 (zh)
CN (1) CN101132308B (zh)
WO (1) WO2008034371A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481561B1 (ko) 2008-06-30 2015-01-13 엘지전자 주식회사 중계국 정보 송수신 방법
US8493931B1 (en) * 2008-09-12 2013-07-23 Google Inc. Efficient handover of media communications in heterogeneous IP networks using handover procedure rules and media handover relays
US20100260113A1 (en) * 2009-04-10 2010-10-14 Samsung Electronics Co., Ltd. Adaptive resource allocation protocol for newly joining relay stations in relay enhanced cellular systems
CN102149195A (zh) * 2010-02-09 2011-08-10 中兴通讯股份有限公司 公共配置信息处理方法及系统
KR20120016388A (ko) * 2010-08-16 2012-02-24 삼성전자주식회사 휴대용 단말기에서 신체 정보 획득을 위한 장치 및 방법
WO2011113378A2 (zh) * 2011-04-26 2011-09-22 华为技术有限公司 一种用户面缓冲器内存的恢复方法及装置
CN102761883B (zh) * 2011-12-30 2015-04-15 慕福奇 一种宽带多跳无线通信系统及其无线节点装置
US9515913B2 (en) * 2012-06-06 2016-12-06 The Boeing Company Method providing adhoc network state to support distributed scheduling
WO2014026389A1 (zh) * 2012-08-17 2014-02-20 华为技术有限公司 一种无线承载的建立方法、装置及系统
CN104519509A (zh) * 2013-09-29 2015-04-15 索尼公司 无线通信系统中的无线网络监控装置、方法和装置
EP3138345A1 (en) * 2014-05-02 2017-03-08 Convida Wireless, LLC Apparatus and method of using time reuse frame structures for multi-hop communications
CN103974423B (zh) * 2014-05-08 2017-10-31 江苏中科羿链通信技术有限公司 一种无线帧长自适应的通信方法及节点设备
CN106034341B (zh) * 2015-03-13 2019-08-27 北京信威通信技术股份有限公司 一种基于协作分集的主动路由转发方法
DE102015106205A1 (de) * 2015-04-22 2016-10-27 Wiesemann & Theis Gmbh Verfahren zur Vergabe von Timeslots
JP6414120B2 (ja) 2016-03-30 2018-10-31 トヨタ自動車株式会社 無線通信装置および無線通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912212B1 (en) * 1999-10-21 2005-06-28 Rockwell Collins Method and apparatus for managing communication resources using dynamic and static assignment of communication slots
WO2006065036A1 (en) * 2004-12-16 2006-06-22 Korea Advanced Institute Of Science And Technology Orthogonal resource block hopping multiplexing method and apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US691212A (en) * 1901-09-05 1902-01-14 Frank A Wardwell Loom-picker.
US5737318A (en) * 1995-12-27 1998-04-07 Philips Electronics North America Corporation Method for initializing a wireless, packet-hopping network
US7283494B2 (en) * 2001-04-18 2007-10-16 Skypilot Networks, Inc. Network channel access protocol-interference and load adaptive
US6950667B2 (en) * 2003-02-11 2005-09-27 Inter Digital Technology Corporation System and method using adaptive antennas to selectively reuse common physical channel timeslots for dedicated channels
US6970713B2 (en) * 2003-07-09 2005-11-29 Interdigital Technology Corporation Method and system wherein timeslots allocated for common control channels may be reused for user traffic
US8072928B2 (en) * 2006-05-31 2011-12-06 Honeywell International Inc. Optimal time slot assignment for networks
US8055189B2 (en) * 2006-08-03 2011-11-08 Institute For Information Industry Wireless communication system, method, and tangible machine-readable medium thereof for transmitting data based on a frame structure of a multi-hop relay standard
CA2717985A1 (en) * 2007-03-09 2008-10-23 Zte (Usa) Inc. Radio resource management in wireless cellular networks having multi-hop relay stations
US7440427B1 (en) * 2008-03-12 2008-10-21 Daniel A. Katz Increasing channel capacity of TDMA transmitters in satellite based networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912212B1 (en) * 1999-10-21 2005-06-28 Rockwell Collins Method and apparatus for managing communication resources using dynamic and static assignment of communication slots
WO2006065036A1 (en) * 2004-12-16 2006-06-22 Korea Advanced Institute Of Science And Technology Orthogonal resource block hopping multiplexing method and apparatus

Also Published As

Publication number Publication date
US20080049657A1 (en) 2008-02-28
CN101132308B (zh) 2010-04-14
US7929477B2 (en) 2011-04-19
CN101132308A (zh) 2008-02-27

Similar Documents

Publication Publication Date Title
WO2008034371A1 (fr) Procédé de transmission de données, dispositif et système de réseau de communication sans fil
Rajendran et al. Energy-efficient, application-aware medium access for sensor networks
KR100929275B1 (ko) Mmr 확장된 802.16e 시스템을 위한 중앙집중식스케줄러 중계국
CN100596235C (zh) 一种基于无线系统的资源调度方法和系统
WO2021027860A1 (zh) 路由方法、bsr的生成方法、装置和存储介质
US20060198337A1 (en) Method and apparatus for operating a node in an ad-hoc communication system
CN101932062B (zh) 一种Ad Hoc网络环境下的多路径路由方法
US20120099458A1 (en) Terminal apparatus, communication system, and communication method
JP5627816B2 (ja) 通信システム、通信端末および通信方法
Kamruzzaman et al. An energy efficient QoS routing protocol for cognitive radio ad hoc networks
Lee et al. FlexiMAC: A flexible TDMA-based MAC protocol for fault-tolerant and energy-efficient wireless sensor networks
CN102761931A (zh) 异步占空比无线传感器网络中进行动态数据传输的方法
Liu et al. Slot allocation algorithms in centralized scheduling scheme for IEEE 802.16 based wireless mesh networks
JP4757770B2 (ja) 通信ルート選択制御装置、無線装置及び通信ルート選択方法
KR20100049042A (ko) 무선 통신 네트워크 내에서 전송을 관리하는 방법
WO2015154644A1 (zh) 一种实现通信模式调整的方法、微基站及宏基站
JP5515072B2 (ja) ネットワークシステム、ノード、パケットフォワーディング方法、プログラム及び記録媒体
CN101719820A (zh) 无线多跳中继网络中多播广播业务的数据同步方法
Chen et al. A multicast mechanism in WiMax mesh network
Chiu et al. WSN15-2: J-CAR: an Efficient Channel Assignment and Routing Protocol for Multi-channel Multi-interface Mobile Ad Hoc Networks
CN101317422A (zh) 无线通信网络的数据传输方法、设备及系统
Al-Hemyari et al. Centralized scheduling, routing tree in WiMAX mesh networks
CN101262625B (zh) 一种基于多源中继无线网络的减少信令开销的方法
Song et al. Performance analysis and enhancement of cooperative retransmission strategy for delay-sensitive real-time services
KR100770878B1 (ko) 모바일 애드 혹 네트워크에서 라우팅 경로 설정 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000339.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07785435

Country of ref document: EP

Kind code of ref document: A1