WO2008033054A2 - Procédé et dispositif de régénération d'une batterie d'accumulateurs - Google Patents

Procédé et dispositif de régénération d'une batterie d'accumulateurs Download PDF

Info

Publication number
WO2008033054A2
WO2008033054A2 PCT/RU2007/000445 RU2007000445W WO2008033054A2 WO 2008033054 A2 WO2008033054 A2 WO 2008033054A2 RU 2007000445 W RU2007000445 W RU 2007000445W WO 2008033054 A2 WO2008033054 A2 WO 2008033054A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
parameters
current
charging
temperature
Prior art date
Application number
PCT/RU2007/000445
Other languages
English (en)
Russian (ru)
Other versions
WO2008033054A3 (fr
Inventor
Konstantin Ivanovich Tyukhtin
Original Assignee
Konstantin Ivanovich Tyukhtin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konstantin Ivanovich Tyukhtin filed Critical Konstantin Ivanovich Tyukhtin
Publication of WO2008033054A2 publication Critical patent/WO2008033054A2/fr
Publication of WO2008033054A3 publication Critical patent/WO2008033054A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of electrical engineering, and can be used to restore various types of batteries intended for use on vehicles or other technical means.
  • a known method of restoring batteries, mainly lead-acid, by regeneration which consists in the fact that during the recovery process a variable DC voltage is supplied to the battery, and the current is supplied to the battery by short pulses, the duration of which is less than the duration of the pause between pulses, the amplitude of the current pulses is selected such that gas is generated in the battery and is sufficient for a voltage of at least 2.4 V to occur on each element of the battery Actions lt during the current pulse, wherein in the recovery process of the recording process parameters that are used to control the recovery process (WO0077911 Al, H02J7 / 00, 21.12.2000).
  • the disadvantages of the known method of restoring batteries is the incomplete restoration of the battery capacity, even if the restored battery was not subjected to operation and a slight decrease in the sulfation of the plates, which affects the reliability of the battery.
  • the technical result of the invention is to eliminate these drawbacks, namely: to reduce the process of sulphation of the plates and to ensure restoration of the battery capacity at a level of at least 80% of the nominal value.
  • the technical result of the invention in terms of the method is achieved by the fact that in the method of restoring the battery, in which the battery is pre-charged with direct current, after which the battery is charged by passing through it a series of rectangular current pulses, while the battery voltage is measured during the charge, the temperature of the electrolyte and its density and record the measured parameters in the memory of the measuring means, previously before battery recovery in the memory of the measuring means write the parameters of the battery recovery process, which is compared in the process of battery recovery with the current values of the parameters of the battery recovery process, which are corrected if they deviate from the set value of the process parameters, the battery charge with a constant current is stopped upon reaching the current values of the parameters to the given values of p of parameters recorded in the memory of the measuring means, after which the battery is charged by passing through it a sequence of rectangular current pulses, the duration of which is set in the range from 150 to 600 ms, and the pause between pulses is from 2 to 6 seconds, while the amplitude of the rectangular pulses the current is kept constant
  • the technical result of the invention in terms of the device is achieved by the fact that the known device for restoring a battery containing a block of charging current sources, the output of which is used to connect a battery, a current sensor, a voltage sensor, a temperature sensor, an electrolyte density meter and a memory unit, is additionally equipped with a processor, the interface unit, the display unit and the decoder, while the memory unit and the display unit are connected to the processor to which are connected via the interface unit Occupancy current, voltage sensor, a temperature sensor, and measuring the density of the electrolyte, the processor output being coupled to an input of the decoder, the first output of which is connected to the control input connection of the charging current source and the second output of the decoder is connected to the input of the control parameters of the charging current of the charging current source block.
  • the technical solution with the above set of features allows you to restore the battery capacity at a level close to 100% of the nominal value. Moreover, the above battery recovery process significantly reduces the negative process of sulfation of the battery plates.
  • Fig. L shows a functional diagram of a device for restoring a battery.
  • the battery recovery device comprises a charging current source unit 1, the output of which is used to connect a restored battery, a processor 2, to which a current sensor 4, a voltage sensor 5, a temperature sensor 6 and an electrolyte density meter 7 are connected through the interface unit 3, the processor output 2 is connected to the input of the decoder 8, the first output of which is connected to the control input of the charging current sources, and the second output of the decoder is connected to the input control parameters of the charging current of the unit 1 of the sources of the charging current, to the processor 2 are connected to the memory unit 9 and the display unit 10.
  • a device for restoring a battery operates as follows.
  • the battery to be restored is connected to the output (output terminals) of the unit 1 of the charging current sources.
  • the sensors 4, 5, 6 and 7 are installed.
  • the state of the restored battery is diagnosed, and block 10 displays the monitored parameters.
  • the block 9 of the memory record the parameters of the technological process of restoring the battery, taking into account preliminary diagnostics of the state of the restored battery.
  • a signal is supplied to the control input for connecting the charging current sources, while the output of unit 1 is connected to a constant charging current source.
  • the battery is pre-charged, while the processor compares the current values of the parameters of the battery pre-charge process with the set values of the parameters recorded in the memory unit 9.
  • the processor 2 Upon reaching the set values of the parameters, the processor 2 generates a signal, which through the decoder 8 enters the control input for connecting the charging current sources and connects the source of rectangular current pulses to the output of unit 1.
  • the battery is charged by passing through it a sequence of rectangular current pulses, duration which, depending on the type and condition of the battery, is set in the range from 150 to 600 ms, and the pause between pulses is from 2 to 6 seconds, etc. This amplitude rectangular current pulses is maintained constant.
  • the current parameters of the process of charging the battery when passing through it a sequence of rectangular current pulses are compared with the specified values of the parameters recorded in block 9 of the memory.
  • the processor 2 When the parameters of the process of charging the battery from the set values of the parameters of the process, the processor 2 generates a signal that through the decoder 8 is fed to the control input of the charging current parameters of unit 1 and carries out the adjustment of the output parameters of the source of rectangular current pulses to the specified values of the process. The charge process is stopped when the measured values of the parameters determine the end of the battery charge process. These data are pre-recorded in the memory unit 9. At the end of the charge, the processor 2 generates a signal that ensures that the charging current source is disconnected from the output of unit 1. Next, the battery capacity is measured by discharging it. To do this, a load is connected to the battery terminals, which provides a given value of the discharge current. The battery discharge is stopped when the battery voltage reaches the maximum permissible value set for this battery, the battery recovery cycle is repeated as described above, if the battery capacity is less than 80% of the nominal value.
  • the method of restoring the battery can be implemented as follows.
  • Battery Recovery Management can be carried out using a computing device (computer), in the memory of which the parameters of the technological process of battery recovery are recorded.
  • a computing device computer
  • electrolyte temperature sensors, electrolyte density meters are installed and measuring tools are connected to control the charging current and voltage on the battery cells.
  • Information on current values of temperature and electrolyte density, values of charging current and voltage on the battery cells and other parameters of the battery recovery process is supplied to the computing device, where incoming information is processed, current parameters are compared with the specified parameters of the recovery process and generation of charging control signals device.
  • the battery is connected to the output terminals of the charger.
  • the computing device generates signals supplied to the control inputs of the charger, which first provides a preliminary charge of the battery with direct current.
  • the pre-charge time depends on the degree of charge of the restored battery and can range from 0 to 255 minutes.
  • the pre-charge of the battery with direct current is stopped when the current parameter values are reached to the specified parameter values recorded in the memory of the computing device or measuring means.
  • the pre-charge can be stopped when the electrolyte density reaches 1.18 ⁇ 1.19 g / cm and the voltage on the battery cell reaches 1.85 v.
  • the values of the above parameters are recorded in the memory of the computing device or measuring means and correspond to approximately 30% of the battery charge.
  • the battery is charged by a sequence of rectangular current pulses, the duration and pulse repetition rate are selected based on the type and condition of the electrodes. Moreover, in the process of charging a sequence of rectangular current pulses through predetermined periods of time, a discrete change in the amplitude of the current pulses is carried out to the optimum value, which is determined by the voltage value on the battery cells.
  • the voltage on the battery cells must be between 2 V and 2.6 V for acid batteries and ranging from 1.1 V to 1.6 V for alkaline batteries.
  • the process of charging the battery is carried out at the optimal value of the amplitude of the pulses of the charging current.
  • the value of the charging current is reduced at which the electrolyte temperature does not go beyond the permissible limits.
  • the charging process is stopped when the measured values of the parameters that determine the end of the battery charging process and previously recorded in the memory of the measuring tool.
  • parameters can be used, for example, the stability (immutability) of the voltage on the battery cells and the density of the electrolyte.
  • the battery capacity is measured by its discharge, which is stopped when the voltage at the battery terminals decreases to the maximum permissible voltage set for this type of battery.
  • the value of the discharge current must correspond to the value indicated in the passport data of the product that is undergoing the recovery process.
  • the above recovery cycle is repeated again.
  • the product may undergo several cycles of the recovery described above. In this case, it is possible to adjust the parameters of the technological process of battery recovery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

La présente invention relève du domaine du génie électrique et peut être utilisée pour la régénération de différents types de batteries d'accumulateurs. Le procédé de régénération de cette invention consiste d'abord à obtenir, en chargeant la batterie d'accumulateurs, des valeurs définies des paramètres du processus technologique de régénération, puis à charger la batterie d'accumulateurs en faisant passer à travers ladite batterie d'accumulateurs une succession d'impulsions rectangulaires de courant dont la durée est comprise entre 150 et 600 μs, un intervalle de 2 à 6 secondes séparant chaque impulsion, à une amplitude constante ou réduite selon, respectivement, que la température est inférieure ou supérieure à une valeur donnée. Une fois la charge de la batterie d'accumulateurs terminée, le procédé consiste ensuite à mesurer la capacité de la batterie d'accumulateurs au moyen d'une décharge jusqu'à la valeur admissible de la tension. Le cycle de régénération est répété si la capacité de la batterie est inférieure à 80% de la valeur nominale. Le dispositif de cette invention comprend un ensemble de sources de courant de charge, un capteur de courant, un capteur de tension, un capteur de température, une unité de mesure de la densité de l'électrolyte, une unité de mémoire, une unité de couplage, une unité d'identification, un processeur et un décodeur. Cette invention permet d'augmenter l'efficacité de régénération de la capacité de la batterie d'accumulateurs.
PCT/RU2007/000445 2006-08-08 2007-08-13 Procédé et dispositif de régénération d'une batterie d'accumulateurs WO2008033054A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006128784 2006-08-08
RU2006128784 2006-08-08

Publications (2)

Publication Number Publication Date
WO2008033054A2 true WO2008033054A2 (fr) 2008-03-20
WO2008033054A3 WO2008033054A3 (fr) 2008-07-24

Family

ID=39184225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000445 WO2008033054A2 (fr) 2006-08-08 2007-08-13 Procédé et dispositif de régénération d'une batterie d'accumulateurs

Country Status (1)

Country Link
WO (1) WO2008033054A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529602A1 (es) * 2013-08-22 2015-02-23 Soretsel Lab Consulting, S.L. Método de reparación de baterías
CN111856300A (zh) * 2020-07-31 2020-10-30 深圳市佳维恒信科技有限公司 一种车载动力电池的检测修复控制方法及装置
CN113824198A (zh) * 2021-11-23 2021-12-21 北京智芯微电子科技有限公司 电力蓄电池在线核容保护系统及其控制方法
RU2767486C1 (ru) * 2021-09-07 2022-03-17 Открытое акционерное общество "Севернефтегазпром" Устройство восстановления заряда взрывозащищенных литий-ионных аккумуляторных батарей
WO2022198806A1 (fr) * 2021-03-22 2022-09-29 复旦大学 Procédé d'amélioration d'état de santé de batterie de stockage au plomb-acide régulée par soupape basé sur des impulsions de courant résonant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077911A1 (fr) * 1999-06-15 2000-12-21 Holgia Aktiebolag Procede et dispositif pour batteries
JP2001118611A (ja) * 1999-10-15 2001-04-27 New & S:Kk 電気処理による鉛蓄電池の再生方法
EP1184928A1 (fr) * 2000-01-24 2002-03-06 T & K Co., Ltd Procede de regeneration d'accumulateurs au plomb
RU2226019C2 (ru) * 2002-03-28 2004-03-20 Сарапов Станислав Викторович Способ заряда и восстановления аккумулятора
JP2006032065A (ja) * 2004-07-14 2006-02-02 Eco Just:Kk 二次電池再生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077911A1 (fr) * 1999-06-15 2000-12-21 Holgia Aktiebolag Procede et dispositif pour batteries
JP2001118611A (ja) * 1999-10-15 2001-04-27 New & S:Kk 電気処理による鉛蓄電池の再生方法
EP1184928A1 (fr) * 2000-01-24 2002-03-06 T & K Co., Ltd Procede de regeneration d'accumulateurs au plomb
RU2226019C2 (ru) * 2002-03-28 2004-03-20 Сарапов Станислав Викторович Способ заряда и восстановления аккумулятора
JP2006032065A (ja) * 2004-07-14 2006-02-02 Eco Just:Kk 二次電池再生装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529602A1 (es) * 2013-08-22 2015-02-23 Soretsel Lab Consulting, S.L. Método de reparación de baterías
CN111856300A (zh) * 2020-07-31 2020-10-30 深圳市佳维恒信科技有限公司 一种车载动力电池的检测修复控制方法及装置
WO2022198806A1 (fr) * 2021-03-22 2022-09-29 复旦大学 Procédé d'amélioration d'état de santé de batterie de stockage au plomb-acide régulée par soupape basé sur des impulsions de courant résonant
RU2767486C1 (ru) * 2021-09-07 2022-03-17 Открытое акционерное общество "Севернефтегазпром" Устройство восстановления заряда взрывозащищенных литий-ионных аккумуляторных батарей
CN113824198A (zh) * 2021-11-23 2021-12-21 北京智芯微电子科技有限公司 电力蓄电池在线核容保护系统及其控制方法

Also Published As

Publication number Publication date
WO2008033054A3 (fr) 2008-07-24

Similar Documents

Publication Publication Date Title
RU2437190C2 (ru) Способ восстановления аккумуляторной батареи и устройство для его осуществления
JP7145865B2 (ja) 充電可能電池短絡予測装置および充電可能電池短絡予測方法
US10976373B2 (en) Lead acid battery device, control device for lead acid battery, and control method for lead acid battery
CN111164824B (zh) 电池组的管理装置和电池组系统
EP1189326B1 (fr) Procédé de surveillancde de l'état de charge d'un accumulateur alcalin étanche
AU2011250189B2 (en) Bipolar overvoltage battery pulser and method
CN1246946C (zh) 用于电池再生处理的方法、装置与系统
WO2008033054A2 (fr) Procédé et dispositif de régénération d'une batterie d'accumulateurs
CN105990615A (zh) 工业蓄电池智能再生修复方法
JP2010256210A (ja) 制御弁式鉛蓄電池の短絡検査方法および制御弁式鉛蓄電池の短絡検査装置
US6259231B1 (en) Rapid battery charger
CN113437370A (zh) 基于谐振脉冲修复技术的蓄电池效能维护方法及设备
RU2309509C1 (ru) Способ и устройство для восстановления аккумуляторной батареи
CN113671393B (zh) 一种电流采集检测方法、电池包与用电装置
RU59337U1 (ru) Устройство для восстановления аккумуляторной батареи
US20040056640A1 (en) Method and device to resist sulfatizing in electric accumulators
JP2001118611A (ja) 電気処理による鉛蓄電池の再生方法
EP1184928A1 (fr) Procede de regeneration d'accumulateurs au plomb
JP4515046B2 (ja) 鉛蓄電池の化成方法
EP2658074B1 (fr) Contrôleur de décharge
CN205028978U (zh) 一种铅酸蓄电池智能自动保护修复装置
JP2021034264A (ja) リチウムイオン二次電池の制御装置
Belarbi et al. Operating limits of battery charge controllers
KR20240069649A (ko) 배터리 관리 시스템, 이를 포함하는 배터리 팩 및 이차전지의 퇴화 여부 진단 방법
RU128016U1 (ru) Устройство для восстановления свинцово-кислотных аккумуляторных батарей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07834969

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 07834969

Country of ref document: EP

Kind code of ref document: A2