WO2008032727A1 - Single-phase brushless motor drive device - Google Patents

Single-phase brushless motor drive device Download PDF

Info

Publication number
WO2008032727A1
WO2008032727A1 PCT/JP2007/067707 JP2007067707W WO2008032727A1 WO 2008032727 A1 WO2008032727 A1 WO 2008032727A1 JP 2007067707 W JP2007067707 W JP 2007067707W WO 2008032727 A1 WO2008032727 A1 WO 2008032727A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switching element
control
turned
voltage
Prior art date
Application number
PCT/JP2007/067707
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetoshi Ueda
Original Assignee
Panasonic Electric Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co., Ltd. filed Critical Panasonic Electric Works Co., Ltd.
Priority to JP2008534356A priority Critical patent/JP4915965B2/en
Publication of WO2008032727A1 publication Critical patent/WO2008032727A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators

Definitions

  • the present invention relates generally to single-phase brushless motor drives. More specifically, the present invention relates to a magnetic core coil composed of a rotatable magnet 'rotor having a plurality of magnetic poles, a motor' coil, and a stator 'core disposed so as to face a side peripheral portion of the rotor.
  • a drive used in a single-phase brushless motor comprising:
  • Japanese Patent Application Publication No. 2004-135374 discloses a single-phase brushless motor drive.
  • This device includes a full bridge circuit (drive circuit) composed of first to fourth switching elements, a detection circuit composed of a detection element and a comparator, a control circuit composed of a distribution circuit and a delay circuit, Can be divided into
  • the first switching element is connected between the positive terminal of the DC power supply and the first end of a motor coil (winding) provided in the motor.
  • the second switching element is connected between the positive terminal and the second end of the motor coil.
  • the third switching element is connected between the first end and the negative terminal of the DC power supply.
  • the fourth switching element is connected between the second end and the negative terminal.
  • the detection element detects the position of the magnetic pole of the rotor provided in the motor.
  • the comparator converts the output signal from the detection element into a rectangular wave signal and supplies it to the distribution circuit and the delay circuit. Further, the position of the detection element is changed so that the timing of the output signal of the delay circuit is substantially equal to that of the rectangular wave signal obtained from the corresponding comparator in the conventional single-phase brushless motor driving device.
  • the delay circuit delays the rectangular wave signal from the comparator and supplies it to the distribution circuit.
  • the distribution circuit turns on and off the first to fourth switching elements based on the rectangular wave signal from the comparator and the output signal of the delay circuit.
  • the distribution circuit turns off the second switching element in accordance with the rising edge of the rectangular wave signal from the comparator. Thereafter, according to the rising edge of the output signal of the delay circuit, the distribution circuit turns on the first and fourth switching elements and turns on the third switching element. H Subsequently, the distribution circuit turns off the first switching element in response to the falling edge of the rectangular wave signal from the comparator. Thereafter, in response to the falling edge of the output signal of the delay circuit, the distribution circuit turns on the second and third switching elements, and the fourth switching element.
  • the combination of the first and fourth switching elements and the combination of the second and third switching elements are not alternately turned on and off at the same time, so that it is possible to prevent the occurrence of back electromotive force. .
  • Such a control circuit generally includes a dedicated IC or a microcomputer. Since the dedicated IC is more expensive than the general-purpose IC, and the microcomputer is also expensive, the control circuit, and hence the drive device having the control circuit, is expensive. If a general-purpose IC is used as a drive device, the device can be made cheaper, but the design flexibility and output performance of a product incorporating the device are limited. Moreover, since it is necessary to connect all control terminals of the first to fourth switching elements to the dedicated or general-purpose IC, wiring of the conductor pattern on the printed circuit board is generally complicated. It is also desirable to connect fewer wires (eg conductor patterns) between the full bridge circuit and the control circuit to avoid noise.
  • An object of the present invention is to reduce the cost of the control circuit, eliminate the limitation on the design flexibility and output performance of the product equipped with the drive device of the present invention, and eliminate the restriction between the full bridge circuit and the control circuit. For example, the wiring is simplified to avoid noise.
  • the present invention provides a drive device for a single-phase brushless motor.
  • the motor includes a rotatable magnet 'rotor and a magnetic core coil.
  • the rotor has a plurality of magnetic poles.
  • the magnetic core is composed of a stator core disposed so as to face the side periphery of the rotor, and a motor coil having first and second ends.
  • the drive device of the present invention includes a full bridge circuit, a detection circuit, and a control circuit.
  • the full bridge circuit consists of the first to fourth switching elements.
  • the first switching element is between the positive terminal of the motor drive power supply and the first end. Connected between.
  • the second switching element is connected between the positive terminal and the second end.
  • the third switching element is connected between the first end and the negative terminal of the motor drive power source.
  • the fourth switching element is connected between the second end and the negative terminal.
  • the detection circuit has a field sensor that generates a detection signal corresponding to the position of the magnetic pole of the rotor, and generates an on / off control signal from the detection signal.
  • the control circuit turns on and off the first to fourth switching elements using the voltage of the control power supply based on the on / off control signal.
  • the control terminal of the first switching element is connected to the second end, and the first switching element passes through any potential of the motor drive power source when the fourth switching element is turned on or off, respectively. Turn on or off.
  • the control terminal of the second switching element is connected to the first terminal, and the second switching element is turned on or off through any potential of the motor drive power supply when the third switching element is turned on or off.
  • the control circuit alternately applies the voltage of the control power supply to the control terminals of the third and fourth switching elements so as to alternately turn on and off the third and fourth switching elements in accordance with the on / off control signal.
  • control circuit is made inexpensive, the flexibility of the design of the product equipped with the drive device of the present invention and the limitation on the output performance are eliminated, and the wiring between the full bridge circuit and the control circuit is eliminated. For example, noise can be avoided.
  • the drive device further comprises a monitoring circuit and a stop circuit.
  • the monitoring circuit is configured to detect abnormal conditions where the full 'bridge circuit begins to short circuit.
  • the stop circuit is configured to turn off the third and fourth switching elements when the monitoring circuit detects the abnormal state.
  • the full bridge circuit stops driving the single-phase brushless motor, so that a short-circuit current can be prevented from flowing into the full bridge circuit.
  • the monitoring circuit is configured to monitor the voltage of the control power source and detect the abnormal state when the voltage of the control power source falls below the reference voltage.
  • the monitoring circuit monitors a current flowing through the third or fourth switching element, and detects the abnormal state when the current flowing through the third or fourth switching element exceeds a reference current.
  • FIG. 1 is a circuit diagram of a drive device for a single-phase brushless motor according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a monitoring circuit and a stop circuit in the embodiment.
  • FIG. 3 illustrates an operation waveform of the embodiment.
  • FIG. 4 is a circuit diagram of a monitoring circuit and a stop circuit in a modified embodiment.
  • FIG. 5 illustrates an operation waveform of the modified embodiment.
  • FIG. 6 illustrates an example of the monitoring circuit of FIG.
  • FIG. 1 illustrates a single-phase brushless motor drive, according to one embodiment of the present invention.
  • the driving device 10 is composed of a full bridge circuit 11, a detection circuit 12, a control circuit 13, a monitoring circuit 14 and a stop circuit 15, and is used for a specific brushless motor.
  • This particular brushless 'motor is a single phase brushless' motor 19, which includes a rotatable magnet rotor 191 and a magnetic core coil 192.
  • the rotor 191 has a plurality of magnetic poles (not shown), and is mounted on a rotatable motor shaft 190, for example.
  • the magnetic core coil 192 is composed of a stator core 193 disposed so as to face the side periphery (cylindrical surface) of the rotor 191 and a motor coil 194 having first and second ends 195 and 196 (for example, see Japanese Patent Application Publication Nos. 2006-333585 and 2001-224156).
  • the rotor 191 is formed of a cylindrical cage in which the magnetic core coil 192 is placed, and the coil 192 is disposed so as to face the inner surface of the side peripheral portion of the rotor 191.
  • the full bridge circuit 11 has first to fourth switching elements 111 to 114 and is connected between the positive and negative terminals of a DC power source (motor drive power source) 1. That is, the first switching element 111 is connected between the positive terminal of the power source 1 and the first end 195. The second switching element 112 is connected between the positive terminal and the second end 196. Third switching element 113 is connected between first end 195 and the negative terminal of power supply 1. The fourth switching element 114 has a second end 196 and Connected between the negative terminal.
  • the element 111 is a P-channel FET, and its source and drain terminals are connected to the positive terminal and the first end 195, respectively.
  • the element 112 is a P-channel FET, and its source and drain terminals are connected to the positive terminal and the second end 196, respectively.
  • the element 113 is an N-channel FET, and its drain and source terminals are connected to the first end 195 and the negative terminal, respectively.
  • the element 114 is an N-channel FET, and its drain and source terminals are connected to the second end 196 and the negative terminal, respectively.
  • each of the first to fourth switching elements of the present invention may be, for example, a combination of a bipolar transistor (NPN type or PNP type transistor) having a corresponding function and a diode.
  • the control terminal (gate) of the first switching element 111 is connected to the second end 1 96 and the control terminal (gate) of the second switching element 112 is connected to the first end 195. It is done.
  • the present invention is not limited to this, and the control terminals of the first and second switching elements of the present invention may be connected to the second and first ends via resistors or diodes, respectively.
  • the circuit 11 further includes resistors 115 and 116, and the control terminals of the elements 111 and 112 are connected to the positive terminal of the power source 1 through the resistors 115 and 116, respectively. . Therefore, element 111 is turned on or off through any potential of power supply 1 when element 114 is turned on or off, respectively. Similarly, element 112 is turned on or off through any potential of power supply 1 when element 113 is turned on or off, respectively.
  • the detection circuit 12 includes a field sensor 120 that generates a detection signal corresponding to the position of the magnetic pole of the rotor 191, and generates the detection signal force on / off control signal to control the control signal Supply to circuit 13.
  • the circuit 12 is a Hall IC including a Hall element as the field 'sensor 120 and is disposed in the vicinity of the rotor 191.
  • the Hall IC further includes, for example, an amplifier, a Schmitt circuit (Schmitt's trigger), and one or more output transistors.
  • the on / off control signal is, for example, a rectangular wave signal.
  • the detection circuit 12 is a discrete circuit comprising a Hall element, an amplifier, a Schmitt circuit, and one or more output transistors.
  • the control circuit 13 is controlled by a control power supply (based on an on / off control signal from the detection circuit 12. (DC power supply)
  • the first to fourth switching elements 111 to 114 are turned on and off using the voltage Vcc of 2.
  • the circuit 13 alternately turns on the elements 113 and 114 by alternately applying the voltage Vcc to the control terminals of the third and fourth switching elements 113 and 114 according to the on / off control signal. And configured to turn off.
  • the circuit 13 in response to the rising edge of the on / off control signal, the circuit 13 connects the control terminal of the element 114 to the ground so as to turn off the element 114. After the first delay time from the rising edge, the circuit 13 applies the voltage Vcc to the control terminal of the element 113 so that the element 113 is turned on. Thereafter, in response to the falling edge of the on / off control signal, the circuit 13 connects the control terminal of the element 113 to the ground so as to turn off the element 113. After the second delay time from the falling edge, the circuit 13 applies the voltage Vcc to the control terminal of the element 114 so that the element 114 is turned on. Thereafter, the circuit 13 repeats the same switching operation.
  • the element 111 is turned on or off in response to the turning on or off of the element 114, and the element 112 is turned on or off in response to the turning on or off of the element 113, respectively. That is, when the element 114 is turned off, the positive potential (voltage Vs) of the power supply 1 is applied to the control terminal of the element 111 via the resistor 115, so that the element 111 is also turned off. At this time, the circuit 11 stops applying the voltage Vs to the motor coil 194. When the element 113 is turned on, the negative potential (ground potential) of the power supply 1 is applied to the control terminal of the element 112, so that the element 112 is also turned on.
  • the power supply 1 applies + Vs to the coil 194.
  • the element 113 is turned off, since a positive potential is applied to the control terminal of the element 112 via the resistor 116, the element 112 is also turned off.
  • the circuit 11 stops applying the voltage Vs to the coil 194.
  • element 114 is turned on, a negative potential is applied to the control terminal of element 111, so element 111 is also turned on.
  • the power source 1 applies —Vs to the coil 194.
  • the control circuit 13 for alternately turning on and off the elements 113 and 114 can be constituted by resistors 130 and 131, switching elements 132 and 133, and a NOT circuit 134.
  • Resistor 130 is connected in series with element 132, and the series set of resistor 130 and element 132 is connected in parallel with power supply 2.
  • the junction point of the resistor 130 and the element 132 is connected to the control terminal of the element 114.
  • Element 132 is a bipolar 'transistor (For example, NPN transistor) or FET, and the control terminal of the element 132 is connected to the output terminal of the detection circuit 12.
  • the resistor 131 is connected in series with the element 133, and the series set of the resistor 131 and the element 133 is connected in parallel with the power supply 2.
  • the junction point of the resistor 131 and the element 133 is connected to the control terminal of the element 113.
  • the element 133 is a bipolar transistor (for example, an NPN transistor) or an FET, and the control terminal of the element 133 is connected to the output terminal of the circuit 12 via the NOT circuit 134.
  • the circuit 13 further includes two delay circuits. That is, the capacitor 135 is connected in parallel with the element 132, and the resistor 130 and the capacitor 135 constitute a first delay circuit that determines the first delay time. Further, the capacitor 136 is connected in parallel with the element 133, and the resistor 131 and the capacitor 136 constitute a second delay circuit that determines the second delay time. The second delay time is set to be substantially equal to the first delay time. Therefore, the elements 132 and 133 are turned on in response to the rising and falling edges of the on / off control signal to turn off the elements 114 and 113, respectively. Elements 133 and 132 are turned off and elements 113 and 114 are turned on after the first and second delay times from the rising and falling edges, respectively.
  • the monitoring circuit 14 is configured to detect an abnormal condition in which the full bridge circuit 11 begins to short circuit.
  • the circuit 14 can be constituted by a Zener diode 140, resistors 141 and 142, and an amplifier circuit 143.
  • the circuit 143 can be formed of, for example, a transistor.
  • the diode 140 and the resistors 141 and 142 are connected in series with each other, and the series set is connected in parallel with the power supply 2.
  • the input terminal of circuit 1 43 is connected to the junction point of resistors 141 and 142, and circuit 143 monitors the voltage Vcc of power supply 2 through diode 140 and resistors 141 and 142.
  • circuit 143 detects an abnormal condition and provides a LOW signal to stop circuit 15. That is, when the voltage Vcc falls below the reference voltage, the diode 140 is turned off and the ground potential is applied to the input terminal of the circuit 143, so that the circuit 143 supplies the LOW signal to the circuit 15.
  • the diode 140 is turned on, so that the voltage obtained by dividing the voltage Vcc by the diode 140 and the resistors 141 and 142 is Input terminal Applied to the child. As a result, the circuit 143 supplies a HIGH signal to the circuit 15.
  • the reference voltage is set to a voltage equal to or higher than the voltage Vcc immediately before the element 111 or 112 is turned off when the voltage Vcc decreases. Further, the reference voltage can be limited to a voltage equal to or lower than a voltage at which the on-resistance of the element 113 or 114 starts to increase. Desirably, the reference voltage is set to a voltage equal to or lower than the voltage at which the on-resistance of the element 113 or 114 starts to increase!
  • the stop circuit 15 is configured to turn off the third and fourth switching elements 113 and 114 when the monitoring circuit 14 detects an abnormal state.
  • the circuit 15 can be constituted by switch elements 150 and 151 and a NOT circuit 152.
  • the circuit 152 can be composed of, for example, a transistor.
  • the element 150 is an NPN transistor, for example, and is connected between the control terminal of the element 113 and the ground.
  • the element 151 is an NPN transistor, for example, and is connected between the control terminal of the element 114 and the ground.
  • the input terminal of the circuit 152 is connected to the output terminal of the amplifier circuit 143, and the output terminal of the circuit 152 is connected to the control terminals (bases) of the elements 150 and 151.
  • circuit 14 When the circuit 14 detects an abnormal state and supplies a LOW signal to the circuit 15, the circuit 152 applies a HIGH signal to the control terminals of the elements 150 and 151. As a result, since the elements 150 and 151 are turned on and the elements 113 and 114 are turned off, the full bridge circuit 11 stops driving the motor 19. In short, it is possible to stop driving the motor 19 while the circuit 14 detects the abnormal state.
  • circuit 14 When power supply 2 is normal, circuit 14 provides a HIGH signal to circuit 15 so that circuit 152 provides a LOW signal to the control terminals of elements 150 and 151. As a result, circuit 11 is allowed to drive motor 19 because elements 150 and 151 are turned off and elements 113 and 114 are allowed to turn on and off.
  • the circuit 13 alternately applies the voltage Vcc of the power supply 2 to the control terminals of the elements 113 and 114 in accordance with the on / off control signal from the circuit 12 to thereby generate the elements 113 and 114. Alternately turn on and off. For example, at the time tl, the circuit 13 turns on the element 132 so as to turn off the element 114 by connecting the control terminal of the element 114 to the ground in response to the rising edge of the on / off control signal. At this time, the elements 111 and 114 are turned off, and the elements 112 and 113 are turned off.
  • circuit 11 stops applying voltage Vs from power supply 1 to motor coil 194.
  • the circuit 13 turns off the element 133 so as to turn on the element 113 by applying the voltage Vcc to the control terminal of the element 113.
  • the elements 112 and 113 force S are turned on, and each of the elements 111 and 114 is in the OFF state, so that the circuit 11 marks + V s in the coinlet 194.
  • the circuit 13 turns on the element 133 so as to turn off the element 113 by connecting the control terminal of the element 113 to the ground in response to the falling edge of the on / off control signal.
  • the circuit 11 stops applying + Vs to the coil 194.
  • the circuit 13 turns off the element 132 so that the element 114 is turned on.
  • the circuit 11 applies Vs to the coil 194.
  • a short-circuit current may flow through the circuit 11 if the voltage Vcc falls below the reference voltage Vref due to several causes (eg, voltage drop or power down).
  • the gate voltage of the element 113 decreases and the on-resistance of the element 113 increases.
  • the gate voltage of the element 112 rises from the ground potential to the drain-source voltage. As a result, the element 112 may be turned off.
  • the circuit 14 when the voltage Vcc falls below the voltage Vref, the circuit 14 supplies the LO W signal to the circuit 15, and the circuit 15 turns off the elements 113 and 114. Therefore, times Since the path 11 stops driving the motor 19, the force S prevents the short-circuit current from flowing into the circuit 11.
  • control circuit 13 is made inexpensive, the flexibility of the design of the product equipped with the drive device 10 and the restriction on the output performance are eliminated, and the wiring between the full bridge circuit 11 and the control circuit 13 is eliminated. For example, noise can be avoided.
  • the monitoring circuit 14 includes a microcomputer and an A / D converter.
  • the microcomputer monitors the voltage Vcc through the A / D converter and supplies a LOW signal to the stop circuit 15 when the digital value of the voltage Vcc is smaller than the reference voltage value.
  • the amplifier circuit 143 is composed of an operational amplifier or the like
  • the NOT circuit 152 is also composed of an operational amplifier or the like.
  • These operational amplifiers operate with power from a second control power supply (not shown! /), Which is a DC power supply.
  • the monitoring circuit 14 is disposed between the junction of the source terminals of the elements 113 and 114 and the ground.
  • the NOT circuit 152 of the stop circuit 15 is deleted.
  • the circuit 14 is configured to monitor the current flowing through the element 113 or 114 and detect the abnormal condition when the current flowing through the element 113 or 114 exceeds a reference current (Iref).
  • the reference current is set to the current up to the maximum rating of each switching element in circuit 11.
  • the reference current is set to the lowest current to ensure the current flowing through the motor coil 194 during normal operation.
  • the circuit 14 of this modified embodiment can be configured by resistors 145 to 147 and an operational amplifier (op amp) 148.
  • the amplifier 148 operates with power from the second control power supply (DC power supply) 3.
  • the resistor 145 is, for example, a shunt resistor, and is connected between the junction point A of the source terminals of the elements 113 and 114 and the ground.
  • the resistor 145 detects a current (detection current) flowing through the element 113 or 114, and generates a voltage corresponding to the detection current.
  • Resistor 146 is connected in series with resistor 147, and the series set of resistors 146 and 147 is connected in parallel with power supply 3.
  • Resistors 146 and 147 generate a voltage corresponding to the reference current from the voltage of the power source 3.
  • the non-inverting input terminal of the amplifier 148 is connected to the junction A, and the inverting input terminal of the amplifier 148 is connected to the junction point of the resistors 146 and 147.
  • the output terminal of the amplifier 148 is connected to the elements 150 and 1 of the stop circuit 15. Connected to 51 control terminals. Thereby, the operational amplifier 148 operates as a comparator.
  • the operational amplifier (comparator) 148 compares the detected current with the reference current by comparing the voltage corresponding to the detected current with the voltage corresponding to the reference current. As shown in FIG. 5, when the detected current is equal to or greater than the reference current Iref, the amplifier 148 supplies a HIGH signal to each control terminal of the elements 150 and 151. As a result, since the elements 150 and 151 are turned on and the elements 113 and 114 are turned off, the full bridge circuit 11 stops driving the motor 19. When the detected current is smaller than the reference current Iref, the amplifier 148 supplies a LOW signal to each control terminal of the elements 150 and 151. As a result, circuit 11 is allowed to drive motor 19 since elements 150 and 151 are turned off and elements 113 and 114 are allowed to turn on and off.
  • the circuit 14 further includes a holding circuit.
  • the holding circuit is configured to hold the HIGH signal supplied by amplifier 148 until the holding circuit is reset or a certain time has elapsed.
  • the holding circuit 149 can be composed of a diode 1490, a capacitor 1491, and resistors 1492 and 1493.
  • amplifier 148 can continue to supply a HIGH signal to each of the controller P terminals of elements 150 and 151 for a hold time that is adjusted according to the capacitance of capacitor 1491.

Abstract

A single-phase brushless motor drive device includes: a bridge circuit having a first to a fourth switching element; a detection circuit; and a control circuit. The first switching element has a control terminal connected to one end of a motor coil. When the fourth switching element turns ON or OFF, the first switching element turns ON or OFF via one of the potentials of the motor drive power source. The second switching element has a control terminal connected to the other end of the motor coil. When the third switching element turns ON or OFF, the second switching element turns ON or OFF via one of the potentials of the power source. The control circuit alternately applies voltage of the control power source to the control terminals of the third and the fourth switching element so as to alternately turn ON and OFF the third and the fourth switching element according to the ON/OFF control signal from the detection circuit.

Description

明 細 書  Specification
単相ブラシレス ·モータ用駆動装置  Single-phase brushless motor drive
技術分野  Technical field
[0001] 本発明は、一般に、単相ブラシレス'モータ用駆動装置に関連する。より詳細には、 本発明は、複数の磁極を持つ回転自在のマグネット 'ロータと、モータ'コイル及び該 ロータの側周部と対向するように配置されるステータ 'コアから構成される磁心コイル とを備える単相ブラシレス'モータに使用される駆動装置に関連する。  [0001] The present invention relates generally to single-phase brushless motor drives. More specifically, the present invention relates to a magnetic core coil composed of a rotatable magnet 'rotor having a plurality of magnetic poles, a motor' coil, and a stator 'core disposed so as to face a side peripheral portion of the rotor. Related to a drive used in a single-phase brushless motor comprising:
背景技術  Background art
[0002] 2004年 4月 30日発行の日本国特許出願公開番号 2004— 135374は、単相ブラ シレス'モータ用駆動装置を開示する。この装置は、第 1から第 4スイッチング素子に より構成されるフル'ブリッジ回路 (駆動回路)と、検出素子及びコンパレータより構成 される検出回路と、分配回路及び遅延回路により構成される制御回路とに分けること カできる。第 1スイッチング素子は、直流電源の正端子と該モータに具備されるモー タ.コイル (巻線)の第 1端との間に接続される。第 2スイッチング素子は、正端子とモ ータ 'コイルの第 2端との間に接続される。第 3スイッチング素子は、第 1端と直流電源 の負端子との間に接続される。第 4スイッチング素子は、第 2端と負端子との間に接 続される。検出素子は、該モータに具備されるロータの磁極の位置を検出する。コン パレータは、検出素子からの出力信号を矩形波信号に変換して分配回路及び遅延 回路に供給する。また、検出素子の位置は、遅延回路の出力信号のタイミングが従 来の単相ブラシレス'モータ用駆動装置における対応するコンパレータから得られる 矩形波信号のそれと実質的に等しくなるように変更される。遅延回路は、コンパレー タからの矩形波信号を遅延して分配回路に供給する。分配回路は、コンパレータか らの矩形波信号及び遅延回路の出力信号に基づいて、第 1から第 4スイッチング素 子をオン及びオフする。  [0002] Japanese Patent Application Publication No. 2004-135374, issued April 30, 2004, discloses a single-phase brushless motor drive. This device includes a full bridge circuit (drive circuit) composed of first to fourth switching elements, a detection circuit composed of a detection element and a comparator, a control circuit composed of a distribution circuit and a delay circuit, Can be divided into The first switching element is connected between the positive terminal of the DC power supply and the first end of a motor coil (winding) provided in the motor. The second switching element is connected between the positive terminal and the second end of the motor coil. The third switching element is connected between the first end and the negative terminal of the DC power supply. The fourth switching element is connected between the second end and the negative terminal. The detection element detects the position of the magnetic pole of the rotor provided in the motor. The comparator converts the output signal from the detection element into a rectangular wave signal and supplies it to the distribution circuit and the delay circuit. Further, the position of the detection element is changed so that the timing of the output signal of the delay circuit is substantially equal to that of the rectangular wave signal obtained from the corresponding comparator in the conventional single-phase brushless motor driving device. The delay circuit delays the rectangular wave signal from the comparator and supplies it to the distribution circuit. The distribution circuit turns on and off the first to fourth switching elements based on the rectangular wave signal from the comparator and the output signal of the delay circuit.
[0003] 即ち、分配回路は、コンパレータからの矩形波信号の立上りエッジに応じて、第 2ス イッチング素子をオフする。その後、遅延回路の出力信号の立上りエッジに応じて、 分配回路は、第 1及び第 4スィッチング素子をオンし、また第 3スィッチング素子をォ フする。続いて、分配回路は、コンパレータからの矩形波信号の立下りエッジに応じ て、第 1スイッチング素子をオフする。その後、遅延回路の出力信号の立下りエッジに 応じて、分配回路は、第 2及び第 3スイッチング素子をオンし、また第 4スイッチング素 That is, the distribution circuit turns off the second switching element in accordance with the rising edge of the rectangular wave signal from the comparator. Thereafter, according to the rising edge of the output signal of the delay circuit, the distribution circuit turns on the first and fourth switching elements and turns on the third switching element. H Subsequently, the distribution circuit turns off the first switching element in response to the falling edge of the rectangular wave signal from the comparator. Thereafter, in response to the falling edge of the output signal of the delay circuit, the distribution circuit turns on the second and third switching elements, and the fourth switching element.
[0004] この装置では、第 1及び第 4スイッチング素子の組合せ及び第 2及び第 3スィッチン グ素子の組合せが、同時に交互にオン及びオフされないので、逆起電力が生じるの を防止すること力できる。 [0004] In this device, the combination of the first and fourth switching elements and the combination of the second and third switching elements are not alternately turned on and off at the same time, so that it is possible to prevent the occurrence of back electromotive force. .
[0005] ところで、単相ブラシレス'モータをフル'ブリッジ回路により駆動する場合、フル'ブ リッジ回路の第 1から第 4スイッチング素子を、制御回路を通じてオン及びオフする必 要がある。そのような制御回路は、一般に専用 IC又はマイコン (マイクロコンピュータ) を含む。専用 ICは汎用 ICと比べて高価であり、またマイコンも高価であるため、該制 御回路、引いてはそれを有する駆動装置は高価となる。もし汎用 ICを駆動装置に使 用すれば、該装置をより低価格にすることができるが、該装置を搭載する製品の設計 の柔軟性及び出力性能が制限される。しかも、第 1から第 4スイッチング素子の全制 御端子を該専用又は汎用 IC等に接続する必要があるので、プリント回路基板上の導 体パターンの配線は一般に煩雑である。また、ノイズを避けるベぐより少ないワイヤ( 例えば導体パターン)をフル'ブリッジ回路と制御回路との間に接続することが望まし い。  By the way, when a single-phase brushless “motor” is driven by a full bridge circuit, the first to fourth switching elements of the full bridge circuit must be turned on and off through a control circuit. Such a control circuit generally includes a dedicated IC or a microcomputer. Since the dedicated IC is more expensive than the general-purpose IC, and the microcomputer is also expensive, the control circuit, and hence the drive device having the control circuit, is expensive. If a general-purpose IC is used as a drive device, the device can be made cheaper, but the design flexibility and output performance of a product incorporating the device are limited. Moreover, since it is necessary to connect all control terminals of the first to fourth switching elements to the dedicated or general-purpose IC, wiring of the conductor pattern on the printed circuit board is generally complicated. It is also desirable to connect fewer wires (eg conductor patterns) between the full bridge circuit and the control circuit to avoid noise.
発明の開示  Disclosure of the invention
[0006] 本発明の目的は、制御回路を安価にし、本発明の駆動装置を搭載する製品の設 計の柔軟性及び出力性能への制限を排除し、フル'ブリッジ回路と制御回路との間 の配線を簡素化して、例えばノイズを避けることにある。  [0006] An object of the present invention is to reduce the cost of the control circuit, eliminate the limitation on the design flexibility and output performance of the product equipped with the drive device of the present invention, and eliminate the restriction between the full bridge circuit and the control circuit. For example, the wiring is simplified to avoid noise.
[0007] 本発明は、単相ブラシレス'モータ用駆動装置を提供する。モータは、回転自在の マグネット 'ロータ及び磁心コイルを備える。該ロータは複数の磁極を持つ。磁心コィ ノレは、該ロータの側周部と対向するように配置されるステータ 'コア、及び第 1及び第 2端を持つモータ'コイルから構成される。本発明の駆動装置は、フル'ブリッジ回路、 検出回路及び制御回路を備える。フル'ブリッジ回路は、第 1から第 4スイッチング素 子から構成される。第 1スィッチング素子は、モータ駆動電源の正端子と該第 1端との 間に接続される。第 2スイッチング素子は、該正端子と該第 2端との間に接続される。 第 3スィッチング素子は、該第 1端とモータ駆動電源の負端子との間に接続される。 第 4スイッチング素子は、該第 2端と該負端子との間に接続される。検出回路は、該ロ ータの磁極の位置に対応する検知信号を発生するフィールド ' ·センサを有し、該検知 信号からオン/オフ制御信号を生成する。制御回路は、該オン/オフ制御信号に基 づいて、制御電源の電圧を使用して第 1から第 4スイッチング素子をオン及びオフす る。本発明の特徴において、第 1スイッチング素子の制御端子は該第 2端と接続され 、第 1スイッチング素子は、第 4スイッチング素子がオン又はオフされるときにそれぞれ モータ駆動電源の何れかの電位を通じてオン又はオフする。第 2スイッチング素子の 制御端子は該第 1端と接続され、第 2スイッチング素子は、第 3スイッチング素子がォ ン又はオフされるときにそれぞれモータ駆動電源の何れかの電位を通じてオン又は オフする。制御回路は、該オン/オフ制御信号に従って、第 3及び第 4スイッチング 素子を交互にオン及びオフするように、第 3及び第 4スイッチング素子の制御端子に 制御電源の電圧を交互に印加する。 [0007] The present invention provides a drive device for a single-phase brushless motor. The motor includes a rotatable magnet 'rotor and a magnetic core coil. The rotor has a plurality of magnetic poles. The magnetic core is composed of a stator core disposed so as to face the side periphery of the rotor, and a motor coil having first and second ends. The drive device of the present invention includes a full bridge circuit, a detection circuit, and a control circuit. The full bridge circuit consists of the first to fourth switching elements. The first switching element is between the positive terminal of the motor drive power supply and the first end. Connected between. The second switching element is connected between the positive terminal and the second end. The third switching element is connected between the first end and the negative terminal of the motor drive power source. The fourth switching element is connected between the second end and the negative terminal. The detection circuit has a field sensor that generates a detection signal corresponding to the position of the magnetic pole of the rotor, and generates an on / off control signal from the detection signal. The control circuit turns on and off the first to fourth switching elements using the voltage of the control power supply based on the on / off control signal. In a feature of the present invention, the control terminal of the first switching element is connected to the second end, and the first switching element passes through any potential of the motor drive power source when the fourth switching element is turned on or off, respectively. Turn on or off. The control terminal of the second switching element is connected to the first terminal, and the second switching element is turned on or off through any potential of the motor drive power supply when the third switching element is turned on or off. The control circuit alternately applies the voltage of the control power supply to the control terminals of the third and fourth switching elements so as to alternately turn on and off the third and fourth switching elements in accordance with the on / off control signal.
[0008] この発明では、制御回路を安価にし、本発明の駆動装置を搭載する製品の設計の 柔軟性及び出力性能への制限を排除し、フル'ブリッジ回路と制御回路との間の配 線を簡素化して、例えばノイズを避けることができる。  [0008] According to the present invention, the control circuit is made inexpensive, the flexibility of the design of the product equipped with the drive device of the present invention and the limitation on the output performance are eliminated, and the wiring between the full bridge circuit and the control circuit is eliminated. For example, noise can be avoided.
[0009] 一の強化実施形態において、駆動装置は、監視回路及び停止回路を更に備える。  [0009] In one enhancement embodiment, the drive device further comprises a monitoring circuit and a stop circuit.
監視回路は、フル 'ブリッジ回路が短絡に向かい始める異常状態を検出するように構 成される。停止回路は、監視回路が該異常状態を検出するとき、第 3及び第 4スイツ チング素子をオフするように構成される。この構成では、フル'ブリッジ回路が単相ブ ラシレス ·モータを駆動するのを停止するので、短絡電流がフル ·ブリッジ回路に流れ るのを防止することができる。  The monitoring circuit is configured to detect abnormal conditions where the full 'bridge circuit begins to short circuit. The stop circuit is configured to turn off the third and fourth switching elements when the monitoring circuit detects the abnormal state. In this configuration, the full bridge circuit stops driving the single-phase brushless motor, so that a short-circuit current can be prevented from flowing into the full bridge circuit.
[0010] 一実施形態にお!/、て、監視回路は、制御電源の電圧を監視し、制御電源の電圧が 基準電圧を下回るときに該異常状態を検出するように構成される。  [0010] In one embodiment, the monitoring circuit is configured to monitor the voltage of the control power source and detect the abnormal state when the voltage of the control power source falls below the reference voltage.
[0011] 一実施形態において、監視回路は、第 3又は第 4スイッチング素子を流れる電流を 監視し、第 3又は第 4スイッチング素子を流れる電流が基準電流を超えるときに該異 常状態を検出するように構成される。 図面の簡単な説明 [0011] In one embodiment, the monitoring circuit monitors a current flowing through the third or fourth switching element, and detects the abnormal state when the current flowing through the third or fourth switching element exceeds a reference current. Configured as follows. Brief Description of Drawings
[0012] 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利 点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである  [0012] Preferred embodiments of the invention are described in further detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
[図 1]本発明の一実施形態による、単相ブラシレス'モータ用駆動装置の回路図であ FIG. 1 is a circuit diagram of a drive device for a single-phase brushless motor according to an embodiment of the present invention.
[図 2]該実施形態における監視回路及び停止回路の回路図である。 FIG. 2 is a circuit diagram of a monitoring circuit and a stop circuit in the embodiment.
[図 3]該実施形態の動作波形を例示する。  FIG. 3 illustrates an operation waveform of the embodiment.
[図 4]一変形実施形態における監視回路及び停止回路の回路図である。  FIG. 4 is a circuit diagram of a monitoring circuit and a stop circuit in a modified embodiment.
[図 5]該変形実施形態の動作波形を例示する。  FIG. 5 illustrates an operation waveform of the modified embodiment.
[図 6]図 4の監視回路の一例を例示する。  FIG. 6 illustrates an example of the monitoring circuit of FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 図 1は本発明の一実施形態による、単相ブラシレス'モータ用駆動装置を示す。こ の駆動装置 10は、フル 'ブリッジ回路 11、検出回路 12、制御回路 13、監視回路 14 及び停止回路 15により構成され、特定のブラシレス'モータに使用される。この特定 のブラシレス'モータは、単相ブラシレス'モータ 19であり、これは、回転自在のマグ ネット ·ロータ 191及び磁心コイル 192を含む。ロータ 191は、複数の磁極(図示しな い)を持ち、例えば、回転自在のモータ'シャフト 190に搭載される。磁心コイル 192 は、ロータ 191の側周部(円柱面)と対向するように配置されるステータ 'コア 193、及 び第 1及び第 2端 195及び 196を持つモータ ·コイル 194により構成される(例えば、 日本国特許出願公開番号 2006 - 333585及び 2001— 224156等参照)。例えば 、ロータ 191は、磁心コイル 192が中に置かれる円筒形の椀より成り、コイル 192は、 ロータ 191の側周部の内面と対向するように配置される。  [0013] FIG. 1 illustrates a single-phase brushless motor drive, according to one embodiment of the present invention. The driving device 10 is composed of a full bridge circuit 11, a detection circuit 12, a control circuit 13, a monitoring circuit 14 and a stop circuit 15, and is used for a specific brushless motor. This particular brushless 'motor is a single phase brushless' motor 19, which includes a rotatable magnet rotor 191 and a magnetic core coil 192. The rotor 191 has a plurality of magnetic poles (not shown), and is mounted on a rotatable motor shaft 190, for example. The magnetic core coil 192 is composed of a stator core 193 disposed so as to face the side periphery (cylindrical surface) of the rotor 191 and a motor coil 194 having first and second ends 195 and 196 ( For example, see Japanese Patent Application Publication Nos. 2006-333585 and 2001-224156). For example, the rotor 191 is formed of a cylindrical cage in which the magnetic core coil 192 is placed, and the coil 192 is disposed so as to face the inner surface of the side peripheral portion of the rotor 191.
[0014] フル.ブリッジ回路 11は、第 1から第 4スイッチング素子 111から 114を持ち、直流電 源 (モータ駆動電源) 1の正及び負端子間に接続される。即ち、第 1スイッチング素子 111は、電源 1の正端子と第 1端 195との間に接続される。第 2スイッチング素子 112 は、該正端子と第 2端 196との間に接続される。第 3スイッチング素子 113は、第 1端 195と電源 1の負端子との間に接続される。第 4スイッチング素子 114は第 2端 196と 該負端子との間に接続される。 The full bridge circuit 11 has first to fourth switching elements 111 to 114 and is connected between the positive and negative terminals of a DC power source (motor drive power source) 1. That is, the first switching element 111 is connected between the positive terminal of the power source 1 and the first end 195. The second switching element 112 is connected between the positive terminal and the second end 196. Third switching element 113 is connected between first end 195 and the negative terminal of power supply 1. The fourth switching element 114 has a second end 196 and Connected between the negative terminal.
[0015] 図 1の例では、素子 111は、 Pチャネル FETであり、そのソース及びドレイン端子は 、それぞれ該正端子及び第 1端 195と接続される。素子 112は、 Pチャネル FETであ り、そのソース及びドレイン端子は、それぞれ該正端子及び第 2端 196と接続される。 素子 113は、 Nチャネル FETであり、そのドレイン及びソース端子は、それぞれ第 1端 195及び該負端子と接続される。素子 114は、 Nチャネル FETであり、そのドレイン 及びソース端子は、それぞれ第 2端 196及び該負端子と接続される。なお、これらに 限らず、本発明の第 1から第 4スイッチング素子の各々は、例えば、対応する機能を 持つバイポーラ 'トランジスタ(NPN型又は PNP型トランジスタ)及びダイオードの組 合せでもよい。 In the example of FIG. 1, the element 111 is a P-channel FET, and its source and drain terminals are connected to the positive terminal and the first end 195, respectively. The element 112 is a P-channel FET, and its source and drain terminals are connected to the positive terminal and the second end 196, respectively. The element 113 is an N-channel FET, and its drain and source terminals are connected to the first end 195 and the negative terminal, respectively. The element 114 is an N-channel FET, and its drain and source terminals are connected to the second end 196 and the negative terminal, respectively. Not limited to these, each of the first to fourth switching elements of the present invention may be, for example, a combination of a bipolar transistor (NPN type or PNP type transistor) having a corresponding function and a diode.
[0016] 本発明の特徴に従って、第 1スイッチング素子 111の制御端子(ゲート)は、第 2端 1 96と接続され、第 2スイッチング素子 112の制御端子(ゲート)は、第 1端 195と接続さ れる。なお、これに限らず、本発明の第 1及び第 2スイッチング素子の制御端子は、そ れぞれ、抵抗又はダイオード等を介して第 2及び第 1端と接続されてもよい。加えて、 図 1の構成の場合、回路 11には抵抗 115及び 116が更に具備され、素子 111及び 1 12の制御端子は、それぞれ抵抗 115及び 116を介して電源 1の正端子と接続される 。それ故に、素子 111は、素子 114がオン又はオフされるときにそれぞれ電源 1の何 れかの電位を通じてオン又はオフする。同様に、素子 112は、素子 113がオン又は オフされるときにそれぞれ電源 1の何れかの電位を通じてオン又はオフする。  In accordance with a feature of the present invention, the control terminal (gate) of the first switching element 111 is connected to the second end 1 96 and the control terminal (gate) of the second switching element 112 is connected to the first end 195. It is done. However, the present invention is not limited to this, and the control terminals of the first and second switching elements of the present invention may be connected to the second and first ends via resistors or diodes, respectively. In addition, in the configuration of FIG. 1, the circuit 11 further includes resistors 115 and 116, and the control terminals of the elements 111 and 112 are connected to the positive terminal of the power source 1 through the resistors 115 and 116, respectively. . Therefore, element 111 is turned on or off through any potential of power supply 1 when element 114 is turned on or off, respectively. Similarly, element 112 is turned on or off through any potential of power supply 1 when element 113 is turned on or off, respectively.
[0017] 検出回路 12は、ロータ 191の磁極の位置に対応する検知信号を発生するフィール ド ' ·センサ 120を有し、該検知信号力 オン/オフ制御信号を生成して該制御信号を 制御回路 13に供給する。例えば、回路 12は、フィールド '·センサ 120としてのホール 素子を含むホール ICであり、ロータ 191の近傍に配置される。ホール ICは、例えば、 増幅器、シュミット回路 (シュミット'トリガ)、及び 1又は複数の出力トランジスタ等を更 に備える。また、オン/オフ制御信号は、例えば矩形波信号である。一代替実施形 態において、検出回路 12は、ホール素子、増幅器、シュミット回路、及び 1又は複数 の出力トランジスタ等を備えるディスクリート回路である。  The detection circuit 12 includes a field sensor 120 that generates a detection signal corresponding to the position of the magnetic pole of the rotor 191, and generates the detection signal force on / off control signal to control the control signal Supply to circuit 13. For example, the circuit 12 is a Hall IC including a Hall element as the field 'sensor 120 and is disposed in the vicinity of the rotor 191. The Hall IC further includes, for example, an amplifier, a Schmitt circuit (Schmitt's trigger), and one or more output transistors. The on / off control signal is, for example, a rectangular wave signal. In an alternative embodiment, the detection circuit 12 is a discrete circuit comprising a Hall element, an amplifier, a Schmitt circuit, and one or more output transistors.
[0018] 制御回路 13は、検出回路 12からのオン/オフ制御信号に基づいて、制御電源( 直流電源) 2の電圧 Vccを使用して第 1から第 4スイッチング素子 111から 114をオン 及びオフするように構成される。本発明の特徴に従って、回路 13は、該オン/オフ制 御信号に従って、第 3及び第 4スイッチング素子 113及び 114の制御端子に電圧 Vc cを交互に印加して素子 113及び 114を交互にオン及びオフするように構成される。 The control circuit 13 is controlled by a control power supply (based on an on / off control signal from the detection circuit 12. (DC power supply) The first to fourth switching elements 111 to 114 are turned on and off using the voltage Vcc of 2. In accordance with a feature of the present invention, the circuit 13 alternately turns on the elements 113 and 114 by alternately applying the voltage Vcc to the control terminals of the third and fourth switching elements 113 and 114 according to the on / off control signal. And configured to turn off.
[0019] 例えば、オン/オフ制御信号の立上りエッジに応じて、回路 13は、素子 114をオフ するように素子 114の制御端子をグランドに接続する。立上りエッジより第 1遅延時間 後に、回路 13は、素子 113がオンするように素子 113の制御端子に電圧 Vccを印加 する。その後、オン/オフ制御信号の立下りエッジに応じて、回路 13は、素子 113を オフするように素子 113の制御端子をグランドに接続する。立下りエッジより第 2遅延 時間後に、回路 13は、素子 114がオンするように素子 114の制御端子に電圧 Vccを 印加する。その後、回路 13は、同じスイッチング動作を繰り返す。  For example, in response to the rising edge of the on / off control signal, the circuit 13 connects the control terminal of the element 114 to the ground so as to turn off the element 114. After the first delay time from the rising edge, the circuit 13 applies the voltage Vcc to the control terminal of the element 113 so that the element 113 is turned on. Thereafter, in response to the falling edge of the on / off control signal, the circuit 13 connects the control terminal of the element 113 to the ground so as to turn off the element 113. After the second delay time from the falling edge, the circuit 13 applies the voltage Vcc to the control terminal of the element 114 so that the element 114 is turned on. Thereafter, the circuit 13 repeats the same switching operation.
[0020] この場合には、素子 111は、素子 114のオン又はオフに応じてそれぞれオン又は オフし、素子 112は、素子 113のオン又はオフに応じてそれぞれオン又はオフする。 即ち、素子 114がオフされるとき、電源 1の正電位(電圧 Vs)が抵抗 115を介して素 子 111の制御端子に印加されるので、素子 111もオフする。このとき、回路 11は、電 圧 Vsをモータ'コイル 194に印加するのを止める。素子 113がオンされるとき、電源 1 の負電位(グランド電位)が素子 112の制御端子に印加されるので、素子 112もオン する。このとき、コイル 194に印加される電圧 Vsの第 2端(196)側の極性を正である ことに決めれば、電源 1は + Vsをコイル 194に印加する。素子 113がオフされるとき、 正電位が抵抗 116を介して素子 112の制御端子に印加されるので、素子 112もオフ する。このとき、回路 11は、電圧 Vsをコイル 194に印加するのを止める。素子 114が オンされるとき、負電位が素子 111の制御端子に印加されるので、素子 111もオンす る。このとき、電源 1は、—Vsをコイル 194に印加する。  In this case, the element 111 is turned on or off in response to the turning on or off of the element 114, and the element 112 is turned on or off in response to the turning on or off of the element 113, respectively. That is, when the element 114 is turned off, the positive potential (voltage Vs) of the power supply 1 is applied to the control terminal of the element 111 via the resistor 115, so that the element 111 is also turned off. At this time, the circuit 11 stops applying the voltage Vs to the motor coil 194. When the element 113 is turned on, the negative potential (ground potential) of the power supply 1 is applied to the control terminal of the element 112, so that the element 112 is also turned on. At this time, if it is determined that the polarity on the second end (196) side of the voltage Vs applied to the coil 194 is positive, the power supply 1 applies + Vs to the coil 194. When the element 113 is turned off, since a positive potential is applied to the control terminal of the element 112 via the resistor 116, the element 112 is also turned off. At this time, the circuit 11 stops applying the voltage Vs to the coil 194. When element 114 is turned on, a negative potential is applied to the control terminal of element 111, so element 111 is also turned on. At this time, the power source 1 applies —Vs to the coil 194.
[0021] 図 1に示すように、素子 113及び 114を交互にオン及びオフするための制御回路 1 3は、抵抗 130及び 131、スィッチング素子 132及び 133、及び NOT回路 134により 構成すること力できる。抵抗 130は素子 132と直列に接続されるとともに、抵抗 130及 び素子 132の直列の組は電源 2と並列に接続される。また、抵抗 130及び素子 132 の接合点は素子 114の制御端子と接続される。素子 132は、バイポーラ 'トランジスタ (例えば NPNトランジスタ)又は FET等であり、素子 132の制御端子は検出回路 12 の出力端子と接続される。同様に、抵抗 131は素子 133と直列に接続されるとともに 、抵抗 131及び素子 133の直列の組は電源 2と並列に接続される。また、抵抗 131 及び素子 133の接合点は素子 113の制御端子と接続される。素子 133は、バイポー ラ 'トランジスタ(例えば NPNトランジスタ)又は FET等であり、素子 133の制御端子は 、 NOT回路 134を介して回路 12の出力端子と接続される。 As shown in FIG. 1, the control circuit 13 for alternately turning on and off the elements 113 and 114 can be constituted by resistors 130 and 131, switching elements 132 and 133, and a NOT circuit 134. . Resistor 130 is connected in series with element 132, and the series set of resistor 130 and element 132 is connected in parallel with power supply 2. The junction point of the resistor 130 and the element 132 is connected to the control terminal of the element 114. Element 132 is a bipolar 'transistor (For example, NPN transistor) or FET, and the control terminal of the element 132 is connected to the output terminal of the detection circuit 12. Similarly, the resistor 131 is connected in series with the element 133, and the series set of the resistor 131 and the element 133 is connected in parallel with the power supply 2. The junction point of the resistor 131 and the element 133 is connected to the control terminal of the element 113. The element 133 is a bipolar transistor (for example, an NPN transistor) or an FET, and the control terminal of the element 133 is connected to the output terminal of the circuit 12 via the NOT circuit 134.
[0022] 本実施形態では、回路 13には、更に 2つの遅延回路が具備される。即ち、キャパシ タ 135が素子 132と並列に接続され、抵抗 130及びキャパシタ 135が、前記第 1遅延 時間を決める第 1遅延回路を構成する。また、キャパシタ 136が素子 133と並列に接 続され、抵抗 131及びキャパシタ 136が、前記第 2遅延時間を決める第 2遅延回路を 構成する。第 2遅延時間は、第 1遅延時間と実質的に等しくなるように設定される。従 つて、素子 132及び 133は、オン/オフ制御信号の立上り及び立下りエッジに応じて それぞれオンして素子 114及び 113をオフする。素子 133及び 132は、該立上り及 び立下りエッジより第 1及び第 2遅延時間後に、オフして素子 113及び 114をそれぞ れ才ンする。 In the present embodiment, the circuit 13 further includes two delay circuits. That is, the capacitor 135 is connected in parallel with the element 132, and the resistor 130 and the capacitor 135 constitute a first delay circuit that determines the first delay time. Further, the capacitor 136 is connected in parallel with the element 133, and the resistor 131 and the capacitor 136 constitute a second delay circuit that determines the second delay time. The second delay time is set to be substantially equal to the first delay time. Therefore, the elements 132 and 133 are turned on in response to the rising and falling edges of the on / off control signal to turn off the elements 114 and 113, respectively. Elements 133 and 132 are turned off and elements 113 and 114 are turned on after the first and second delay times from the rising and falling edges, respectively.
[0023] 監視回路 14は、フル 'ブリッジ回路 11が短絡に向かい始める異常状態を検出する ように構成される。例えば図 2に示すように、回路 14は、ツエナー ·ダイオード 140、抵 抗及 141及び 142、及び増幅回路 143により構成することができる。回路 143は、例 えばトランジスタで構成可能である。ダイオード 140及び抵抗 141及び 142は、互い に直列に接続されるとともに、それらの直列の組は電源 2と並列に接続される。回路 1 43の入力端子は、抵抗 141及び 142の接合点と接続され、回路 143は、ダイオード 140及び抵抗 141及び 142を介して、電源 2の電圧 Vccを監視する。電圧 Vccがダイ オード 140によって決定される基準電圧 (Vref )を下回るとき、回路 143は、異常状態 を検出して LOW信号を停止回路 15に供給する。即ち、電圧 Vccが基準電圧を下回 るとき、ダイオード 140がオフし、グランド電位が回路 143の入力端子に印加されるの で、回路 143は、 LOW信号を回路 15に供給する。電圧 Vccが基準電圧と等しいか 超える(即ち電源 2が正常である)とき、ダイオード 140がオンするので、電圧 Vccをダ ィオード 140及び抵抗 141及び 142で分圧して得られる電圧が、回路 143の入力端 子に印加される。その結果、回路 143は、 HIGH信号を回路 15に供給する。 [0023] The monitoring circuit 14 is configured to detect an abnormal condition in which the full bridge circuit 11 begins to short circuit. For example, as shown in FIG. 2, the circuit 14 can be constituted by a Zener diode 140, resistors 141 and 142, and an amplifier circuit 143. The circuit 143 can be formed of, for example, a transistor. The diode 140 and the resistors 141 and 142 are connected in series with each other, and the series set is connected in parallel with the power supply 2. The input terminal of circuit 1 43 is connected to the junction point of resistors 141 and 142, and circuit 143 monitors the voltage Vcc of power supply 2 through diode 140 and resistors 141 and 142. When voltage Vcc falls below a reference voltage (Vref) determined by diode 140, circuit 143 detects an abnormal condition and provides a LOW signal to stop circuit 15. That is, when the voltage Vcc falls below the reference voltage, the diode 140 is turned off and the ground potential is applied to the input terminal of the circuit 143, so that the circuit 143 supplies the LOW signal to the circuit 15. When the voltage Vcc is equal to or exceeds the reference voltage (ie, the power supply 2 is normal), the diode 140 is turned on, so that the voltage obtained by dividing the voltage Vcc by the diode 140 and the resistors 141 and 142 is Input terminal Applied to the child. As a result, the circuit 143 supplies a HIGH signal to the circuit 15.
[0024] 基準電圧は、電圧 Vccが低下して素子 111又は 112がオフする直前の電圧 Vcc以 上の電圧に設定される。また、基準電圧は、素子 113又は 114のオン抵抗が増大し 始める電圧以下の電圧に制限することができる。望ましくは、基準電圧は、素子 113 又は 114のオン抵抗が増大し始める電圧に等し!/、かやゃ低レ、電圧に設定される。 [0024] The reference voltage is set to a voltage equal to or higher than the voltage Vcc immediately before the element 111 or 112 is turned off when the voltage Vcc decreases. Further, the reference voltage can be limited to a voltage equal to or lower than a voltage at which the on-resistance of the element 113 or 114 starts to increase. Desirably, the reference voltage is set to a voltage equal to or lower than the voltage at which the on-resistance of the element 113 or 114 starts to increase!
[0025] 停止回路 15は、監視回路 14が異常状態を検出するとき、第 3及び第 4スイッチング 素子 113及び 114をオフするように構成される。例えば、回路 15は、スィッチ素子 15 0及び 151及び NOT回路 152により構成することができる。回路 152は、例えばトラ ンジスタで構成可能である。素子 150は、例えば NPN型トランジスタであり、素子 11 3の制御端子とグランドとの間に接続される。素子 151は、例えば NPN型トランジスタ であり、素子 114の制御端子とグランドとの間に接続される。回路 152の入力端子は 増幅回路 143の出力端子と接続され、回路 152の出力端子は、素子 150及び 151 の各制御端子(ベース)と接続される。 The stop circuit 15 is configured to turn off the third and fourth switching elements 113 and 114 when the monitoring circuit 14 detects an abnormal state. For example, the circuit 15 can be constituted by switch elements 150 and 151 and a NOT circuit 152. The circuit 152 can be composed of, for example, a transistor. The element 150 is an NPN transistor, for example, and is connected between the control terminal of the element 113 and the ground. The element 151 is an NPN transistor, for example, and is connected between the control terminal of the element 114 and the ground. The input terminal of the circuit 152 is connected to the output terminal of the amplifier circuit 143, and the output terminal of the circuit 152 is connected to the control terminals (bases) of the elements 150 and 151.
[0026] 回路 14が異常状態を検出して LOW信号を回路 15に供給するとき、回路 152は HI GH信号を素子 150及び 151の各制御端子に印加する。その結果、素子 150及び 1 51がオンして素子 113及び 114がオフするので、フル 'ブリッジ回路 11がモータ 19 を駆動するのを停止する。要するに、回路 14が異常状態を検出している間中、モー タ 19を駆動するのを停止することができる。電源 2が正常であるとき、回路 14が HIG H信号を回路 15に供給するので、回路 152は LOW信号を素子 150及び 151の各 制御端子に供給する。その結果、素子 150及び 151がオフして素子 113及び 114が オン及びオフするのを許容されるので、回路 11は、モータ 19を駆動するのを許容さ れる。 When the circuit 14 detects an abnormal state and supplies a LOW signal to the circuit 15, the circuit 152 applies a HIGH signal to the control terminals of the elements 150 and 151. As a result, since the elements 150 and 151 are turned on and the elements 113 and 114 are turned off, the full bridge circuit 11 stops driving the motor 19. In short, it is possible to stop driving the motor 19 while the circuit 14 detects the abnormal state. When power supply 2 is normal, circuit 14 provides a HIGH signal to circuit 15 so that circuit 152 provides a LOW signal to the control terminals of elements 150 and 151. As a result, circuit 11 is allowed to drive motor 19 because elements 150 and 151 are turned off and elements 113 and 114 are allowed to turn on and off.
[0027] 次に、図 3を参照して本実施形態の動作を説明する。電源 1及び 2が起動された後 、回路 13は、回路 12からのオン/オフ制御信号に従って、素子 113及び 114の制 御端子に電源 2の電圧 Vccを交互に印加して、素子 113及び 114を交互にオン及び オフする。例えば、時点 tlで、回路 13は、オン/オフ制御信号の立上りエッジに応じ て、素子 114の制御端子をグランドに接続して素子 114をオフするように素子 132を オンする。このとき、素子 111及び 114がオフし、素子 112及び 113の各々がオフ状 態にあるので、回路 11は、電源 1の電圧 Vsをモータ'コイル 194に印加するのを止め る。立上りエッジより第 1遅延時間後に (t2)、回路 13は、素子 113の制御端子に電 圧 Vccを印加して素子 113をオンするように素子 133をオフする。このとき、素子 112 及び 113力 Sオンし、素子 111及び 114の各々がオフ状態にあるので、回路 11は + V sをコィノレ 194に印カロする。 Next, the operation of the present embodiment will be described with reference to FIG. After the power supplies 1 and 2 are activated, the circuit 13 alternately applies the voltage Vcc of the power supply 2 to the control terminals of the elements 113 and 114 in accordance with the on / off control signal from the circuit 12 to thereby generate the elements 113 and 114. Alternately turn on and off. For example, at the time tl, the circuit 13 turns on the element 132 so as to turn off the element 114 by connecting the control terminal of the element 114 to the ground in response to the rising edge of the on / off control signal. At this time, the elements 111 and 114 are turned off, and the elements 112 and 113 are turned off. As such, circuit 11 stops applying voltage Vs from power supply 1 to motor coil 194. After the first delay time from the rising edge (t2), the circuit 13 turns off the element 133 so as to turn on the element 113 by applying the voltage Vcc to the control terminal of the element 113. At this time, the elements 112 and 113 force S are turned on, and each of the elements 111 and 114 is in the OFF state, so that the circuit 11 marks + V s in the coinlet 194.
[0028] 時点 t3で、回路 13は、オン/オフ制御信号の立下りエッジに応じて、素子 113の 制御端子をグランドに接続して素子 113をオフするように素子 133をオンする。このと き、素子 112及び 113がオフし、素子 111及び 114の各々がオフ状態にあるので、回 路 11は、 +Vsをコイル 194に印加するのを止める。立下りエッジより第 2遅延時間後 に(t4)、回路 13は、素子 114がオンするように素子 132をオフする。このとき、素子 1 11及び 114がオンし、素子 112及び 113の各々がオフ状態にあるので、回路 11は Vsをコイル 194に印加する。 [0028] At time t3, the circuit 13 turns on the element 133 so as to turn off the element 113 by connecting the control terminal of the element 113 to the ground in response to the falling edge of the on / off control signal. At this time, since the elements 112 and 113 are turned off and each of the elements 111 and 114 is in the off state, the circuit 11 stops applying + Vs to the coil 194. After the second delay time from the falling edge ( t4 ), the circuit 13 turns off the element 132 so that the element 114 is turned on. At this time, since the elements 111 and 114 are turned on and each of the elements 112 and 113 is in the off state, the circuit 11 applies Vs to the coil 194.
[0029] 回路 13がそのような制御を繰り返すことで、矩形波交番 (AC)電圧がコイル 194に 印加されて、矩形波交番 (AC)電流がコイル 194に供給される結果、磁針コイル 192 が交番磁界を発生させてロータ 191を回転させる。  [0029] As the circuit 13 repeats such control, a rectangular wave alternating (AC) voltage is applied to the coil 194, and a rectangular wave alternating (AC) current is supplied to the coil 194. As a result, the magnetic needle coil 192 The rotor 191 is rotated by generating an alternating magnetic field.
[0030] そのような動作において、電圧 Vccが幾つかの原因(例えば電圧降下又は電源停 止)により基準電圧 Vrefを下回ると、短絡電流が回路 11に流れることがある。例えば 、 t2— 13に対応する期間において、電圧 Vccが電圧 Vrefを下回ると、素子 113のゲ ート電圧が降下して、素子 113のオン抵抗が増大する。この場合、該オン抵抗にコィ ノレ 194を流れる電流を乗じて得られる電圧が素子 113のドレイン一ソース電圧となる ので、素子 112のゲート電圧がグランド電位から該ドレイン—ソース電圧に上昇する。 その結果、素子 112がオフすることがある。素子 112がオフすると、逆起電力がコイル 194に誘導される。該逆起電力の第 1端(195)側の極性が正であるので、素子 114 のボディ ·ダイオードがオンして素子 114のドレイン端子がグランド電位になる。その 結果、グランド電位より低い電圧が素子 111のゲートに印加されて、素子 111がオン するので、短絡電流が回路 11内の素子 111及び 113に流れる。  [0030] In such operation, a short-circuit current may flow through the circuit 11 if the voltage Vcc falls below the reference voltage Vref due to several causes (eg, voltage drop or power down). For example, in the period corresponding to t2-13, when the voltage Vcc falls below the voltage Vref, the gate voltage of the element 113 decreases and the on-resistance of the element 113 increases. In this case, since the voltage obtained by multiplying the on-resistance by the current flowing through the inductor 194 becomes the drain-source voltage of the element 113, the gate voltage of the element 112 rises from the ground potential to the drain-source voltage. As a result, the element 112 may be turned off. When element 112 is turned off, a back electromotive force is induced in coil 194. Since the polarity of the back electromotive force on the first end (195) side is positive, the body diode of the element 114 is turned on and the drain terminal of the element 114 becomes the ground potential. As a result, a voltage lower than the ground potential is applied to the gate of the element 111 and the element 111 is turned on, so that a short-circuit current flows through the elements 111 and 113 in the circuit 11.
[0031] しかしながら、本実施形態では、電圧 Vccが電圧 Vrefを下回るとき、回路 14が LO W信号を回路 15に供給し、回路 15が素子 113及び 114をオフする。それ故に、回 路 11がモータ 19を駆動するのを停止するので、短絡電流が回路 11に流れるのを防 止すること力 Sでさる。 However, in the present embodiment, when the voltage Vcc falls below the voltage Vref, the circuit 14 supplies the LO W signal to the circuit 15, and the circuit 15 turns off the elements 113 and 114. Therefore, times Since the path 11 stops driving the motor 19, the force S prevents the short-circuit current from flowing into the circuit 11.
[0032] 加えて、制御回路 13を安価にし、駆動装置 10を搭載する製品の設計の柔軟性及 び出力性能への制限を排除し、フル'ブリッジ回路 11と制御回路 13との間の配線を 簡素化して、例えばノイズを避けるができる。  [0032] In addition, the control circuit 13 is made inexpensive, the flexibility of the design of the product equipped with the drive device 10 and the restriction on the output performance are eliminated, and the wiring between the full bridge circuit 11 and the control circuit 13 is eliminated. For example, noise can be avoided.
[0033] 一代替実施形態において、監視回路 14は、マイコン及び A/D変換器等により構 成される。マイコンは、 A/D変換器を通じて電圧 Vccを監視し、電圧 Vccのデジタル 値が基準電圧値より小さいとき、 LOW信号を停止回路 15に供給する。  [0033] In an alternative embodiment, the monitoring circuit 14 includes a microcomputer and an A / D converter. The microcomputer monitors the voltage Vcc through the A / D converter and supplies a LOW signal to the stop circuit 15 when the digital value of the voltage Vcc is smaller than the reference voltage value.
[0034] 一代替実施形態において、増幅回路 143は演算増幅器等から構成され、 NOT回 路 152もまた演算増幅器等から構成される。これら演算増幅器は、直流電源である 第 2制御電源(図示しな!/、)からの電力で動作する。  In an alternative embodiment, the amplifier circuit 143 is composed of an operational amplifier or the like, and the NOT circuit 152 is also composed of an operational amplifier or the like. These operational amplifiers operate with power from a second control power supply (not shown! /), Which is a DC power supply.
[0035] 一変形実施形態において、監視回路 14は、素子 113及び 114のソース端子の接 合点とグランドとの間に配置される。加えて、停止回路 15の NOT回路 152は削除さ れる。回路 14は、素子 113又は 114を流れる電流を監視し、素子 113又は 114を流 れる電流が基準電流 (Iref)を超えるとき、該異常状態を検出するように構成される。 基準電流は、回路 11の各スィッチング素子の最大定格までの電流に設定される。望 ましくは、基準電流は、通常動作においてモータ'コイル 194に流れる電流を確保す るための最低電流に設定される。  [0035] In one variation, the monitoring circuit 14 is disposed between the junction of the source terminals of the elements 113 and 114 and the ground. In addition, the NOT circuit 152 of the stop circuit 15 is deleted. The circuit 14 is configured to monitor the current flowing through the element 113 or 114 and detect the abnormal condition when the current flowing through the element 113 or 114 exceeds a reference current (Iref). The reference current is set to the current up to the maximum rating of each switching element in circuit 11. Preferably, the reference current is set to the lowest current to ensure the current flowing through the motor coil 194 during normal operation.
[0036] 例えば、図 4に示すように、この変形実施形態の回路 14は、抵抗 145から 147及び 演算増幅器 (オペアンプ) 148により構成することができる。この場合、増幅器 148は 、第 2制御電源(直流電源) 3からの電力で動作する。抵抗 145は、例えばシャント抵 抗であり、素子 113及び 114のソース端子の接合点 Aとグランドとの間に接続される。 この抵抗 145は、素子 113又は 114を流れる電流(検出電流)を検出し、検出電流に 対応する電圧を生成する。抵抗 146は、抵抗 147と直列に接続されるとともに、抵抗 146及び 147の直列の組は、電源 3と並列に接続される。抵抗 146及び 147は、電 源 3の電圧から該基準電流に対応する電圧を生成する。増幅器 148の非反転入力 端子は接合点 Aと接続され、増幅器 148の反転入力端子は抵抗 146及び 147の接 合点と接続される。また、増幅器 148の出力端子は、停止回路 15の素子 150及び 1 51の各制御端子と接続される。これにより、演算増幅器 148は、コンパレータとして 動作する。 For example, as shown in FIG. 4, the circuit 14 of this modified embodiment can be configured by resistors 145 to 147 and an operational amplifier (op amp) 148. In this case, the amplifier 148 operates with power from the second control power supply (DC power supply) 3. The resistor 145 is, for example, a shunt resistor, and is connected between the junction point A of the source terminals of the elements 113 and 114 and the ground. The resistor 145 detects a current (detection current) flowing through the element 113 or 114, and generates a voltage corresponding to the detection current. Resistor 146 is connected in series with resistor 147, and the series set of resistors 146 and 147 is connected in parallel with power supply 3. Resistors 146 and 147 generate a voltage corresponding to the reference current from the voltage of the power source 3. The non-inverting input terminal of the amplifier 148 is connected to the junction A, and the inverting input terminal of the amplifier 148 is connected to the junction point of the resistors 146 and 147. The output terminal of the amplifier 148 is connected to the elements 150 and 1 of the stop circuit 15. Connected to 51 control terminals. Thereby, the operational amplifier 148 operates as a comparator.
[0037] 演算増幅器 (コンパレータ) 148は、検出電流に対応する電圧を基準電流に対応す る電圧と比較することにより、検出電流を基準電流と比較する。図 5に示すように、検 出電流が基準電流 Irefと等しいか大きいとき、増幅器 148は、 HIGH信号を素子 150 及び 151の各制御端子に供給する。その結果、素子 150及び 151がオンして素子 1 13及び 114がオフするので、フル 'ブリッジ回路 11がモータ 19を駆動するのを停止 する。検出電流が基準電流 Irefより小さいとき、増幅器 148は、 LOW信号を素子 150 及び 151の各制御端子に供給する。その結果、素子 150及び 151がオフして素子 1 13及び 114がオン及びオフするのを許容されるので、回路 11は、モータ 19を駆動 するのを許容される。  The operational amplifier (comparator) 148 compares the detected current with the reference current by comparing the voltage corresponding to the detected current with the voltage corresponding to the reference current. As shown in FIG. 5, when the detected current is equal to or greater than the reference current Iref, the amplifier 148 supplies a HIGH signal to each control terminal of the elements 150 and 151. As a result, since the elements 150 and 151 are turned on and the elements 113 and 114 are turned off, the full bridge circuit 11 stops driving the motor 19. When the detected current is smaller than the reference current Iref, the amplifier 148 supplies a LOW signal to each control terminal of the elements 150 and 151. As a result, circuit 11 is allowed to drive motor 19 since elements 150 and 151 are turned off and elements 113 and 114 are allowed to turn on and off.
[0038] 図 4の監視回路 14の一例において、回路 14は更に保持回路を備える。この保持 回路は、増幅器 148により供給される HIGH信号を、保持回路がリセットされるか又 は一定時間が経過するまで保持するように構成される。例えば、図 6に示すように、保 持回路 149は、ダイオード 1490、キャパシタ 1491及び抵抗 1492及び 1493から構 成すること力できる。この場合、増幅器 148の出力レベルが HIGHレベルであるとき、 そのレベルに対応する電圧が、キャパシタ 1491及び抵抗 1492を介して、増幅器 14 8の非反転入力端子に印加される。それ故に、増幅器 148は、キャパシタ 1491の静 電容量に応じて調整される保持時間の間、 HIGH信号を素子 150及び 151の各制 徒 P端子に供給し続けることカできる。  In the example of the monitoring circuit 14 in FIG. 4, the circuit 14 further includes a holding circuit. The holding circuit is configured to hold the HIGH signal supplied by amplifier 148 until the holding circuit is reset or a certain time has elapsed. For example, as shown in FIG. 6, the holding circuit 149 can be composed of a diode 1490, a capacitor 1491, and resistors 1492 and 1493. In this case, when the output level of the amplifier 148 is the HIGH level, a voltage corresponding to the level is applied to the non-inverting input terminal of the amplifier 148 via the capacitor 1491 and the resistor 1492. Therefore, amplifier 148 can continue to supply a HIGH signal to each of the controller P terminals of elements 150 and 151 for a hold time that is adjusted according to the capacitance of capacitor 1491.
[0039] 本発明を幾つかの好ましい実施形態について記述した力 この発明の本来の精神 および範囲を逸脱することなぐ当業者によって様々な修正および変形が可能である  [0039] Power describing the present invention in terms of several preferred embodiments Various modifications and variations can be made by those skilled in the art without departing from the true spirit and scope of the invention.

Claims

請求の範囲 The scope of the claims
[1] 単相ブラシレス'モータ用駆動装置、前記モータは、複数の磁極を持つ回転自在の マグネット 'ロータと、該ロータの側周部と対向するように配置されるステータ 'コア、及 び第 1及び第 2端を持つモータ'コイルから構成される磁心コイルとを備える、におい て、  [1] Single-phase brushless' motor drive device, wherein the motor includes a rotatable magnet having a plurality of magnetic poles, a stator core disposed so as to face a side peripheral portion of the rotor, and a first core And a magnetic core coil composed of a motor coil having a first end and a second end,
該装置は、  The device
モータ駆動電源の正端子と該第 1端との間に接続される第 1スイッチング素子、該 正端子と該第 2端との間に接続される第 2スイッチング素子、該第 1端と該モータ駆動 電源の負端子との間に接続される第 3スイッチング素子、及び該第 2端と該負端子と の間に接続される第 4スイッチング素子から構成されるフル'ブリッジ回路と、  A first switching element connected between the positive terminal of the motor drive power source and the first end; a second switching element connected between the positive terminal and the second end; the first end and the motor A full bridge circuit composed of a third switching element connected between the negative terminal of the drive power supply and a fourth switching element connected between the second end and the negative terminal;
該ロータの磁極の位置に対応する検知信号を発生するフィールド ' ·センサを有し、 該検知信号からオン/オフ制御信号を生成する検出回路と、  A detection circuit for generating a detection signal corresponding to the position of the magnetic pole of the rotor and generating an on / off control signal from the detection signal;
該オン/オフ制御信号に基づ!/、て、制御電源の電圧を使用して該第 1から第 4スィ ツチング素子をオン及びオフする制御回路と  A control circuit for turning on and off the first to fourth switching elements using the voltage of the control power supply based on the on / off control signal;
を備え、  With
該第 1スイッチング素子は、その制御端子が該第 2端と接続され、該第 4スィッチン グ素子がオン又はオフされるときにそれぞれ該モータ駆動電源の何れかの電位を通 じてオン又はオフし、  The control terminal of the first switching element is connected to the second end, and when the fourth switching element is turned on or off, the first switching element is turned on or off through any potential of the motor driving power source. And
該第 2スイッチング素子は、その制御端子が該第 1端と接続され、該第 3スィッチン グ素子がオン又はオフされるときにそれぞれ該モータ駆動電源の何れかの電位を通 じてオン又はオフし、  The control terminal of the second switching element is connected to the first end, and when the third switching element is turned on or off, the second switching element is turned on or off through any potential of the motor driving power source. And
該制御回路は、該オン/オフ制御信号に従って、該第 3及び第 4スイッチング素子 を交互にオン及びオフするように、該第 3及び第 4スイッチング素子の制御端子に該 制御電源の電圧を交互に印加する  The control circuit alternately switches the voltage of the control power supply to the control terminals of the third and fourth switching elements so as to alternately turn on and off the third and fourth switching elements according to the on / off control signal. Apply to
単相ブラシレス'モータ用駆動装置。  Single-phase brushless motor drive.
[2] 該フル'ブリッジ回路が短絡に向かい始める異常状態を検出するための監視回路と 該監視回路が該異常状態を検出するとき、該第 3及び第 4スイッチング素子をオフ する停止回路と [2] a monitoring circuit for detecting an abnormal state in which the full-bridge circuit starts to short-circuit, and when the monitoring circuit detects the abnormal state, the third and fourth switching elements are turned off. With stop circuit to
を更に備える請求項 1記載の単相ブラシレス'モータ用駆動装置。  The single-phase brushless motor drive device according to claim 1, further comprising:
[3] 該監視回路は、該制御電源の電圧を監視し、該制御電源の電圧が基準電圧を下 回るときに該異常状態を検出する請求項 2記載の単相ブラシレス'モータ用駆動装置 3. The single-phase brushless motor driving apparatus according to claim 2, wherein the monitoring circuit monitors the voltage of the control power supply and detects the abnormal state when the voltage of the control power supply falls below a reference voltage.
[4] 該監視回路は、該第 3又は第 4スイッチング素子を流れる電流を監視し、該第 3又 は第 4スイッチング素子を流れる電流が基準電流を超えるときに該異常状態を検出 する請求項 2記載の単相ブラシレス'モータ用駆動装置。 [4] The monitoring circuit monitors a current flowing through the third or fourth switching element, and detects the abnormal state when a current flowing through the third or fourth switching element exceeds a reference current. 2. Single-phase brushless motor drive device according to 2.
PCT/JP2007/067707 2006-09-13 2007-09-12 Single-phase brushless motor drive device WO2008032727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008534356A JP4915965B2 (en) 2006-09-13 2007-09-12 Single-phase brushless motor drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-248672 2006-09-13
JP2006248672 2006-09-13

Publications (1)

Publication Number Publication Date
WO2008032727A1 true WO2008032727A1 (en) 2008-03-20

Family

ID=39183783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067707 WO2008032727A1 (en) 2006-09-13 2007-09-12 Single-phase brushless motor drive device

Country Status (3)

Country Link
JP (1) JP4915965B2 (en)
TW (1) TWI336990B (en)
WO (1) WO2008032727A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329422B (en) * 2010-12-30 2016-10-05 达尔科技股份有限公司 Generate the coil switching signal for brushless DC motor
TWI482418B (en) * 2012-06-14 2015-04-21 Jscc Automation Xiamen Ltd A single - phase AC motor drive controller
TWI794805B (en) * 2021-05-05 2023-03-01 致新科技股份有限公司 Motor unit and motor controller therof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130795A (en) * 1991-11-05 1993-05-25 Fujitsu Ltd Motor driver and detecting method for malfunction thereof
JPH07274580A (en) * 1994-03-30 1995-10-20 Toshiba Corp Anomaly detecting apparatus and protective apparatus for inverter and air conditioner
JP2004519183A (en) * 2000-04-21 2004-06-24 ミネベア株式会社 Drive circuit for brushless DC motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291991B2 (en) * 2002-10-08 2009-07-08 オリエンタルモーター株式会社 Single-phase brushless motor drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130795A (en) * 1991-11-05 1993-05-25 Fujitsu Ltd Motor driver and detecting method for malfunction thereof
JPH07274580A (en) * 1994-03-30 1995-10-20 Toshiba Corp Anomaly detecting apparatus and protective apparatus for inverter and air conditioner
JP2004519183A (en) * 2000-04-21 2004-06-24 ミネベア株式会社 Drive circuit for brushless DC motor

Also Published As

Publication number Publication date
TWI336990B (en) 2011-02-01
TW200828774A (en) 2008-07-01
JPWO2008032727A1 (en) 2010-01-28
JP4915965B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
US7009351B2 (en) Single phase motor driving unit
US8183807B2 (en) Method of driving DC motor and related circuit for avoiding reverse current
US20100320946A1 (en) Brushless dc motor driver
US7688011B2 (en) Control circuit for an electronically commutated motor
US8541988B2 (en) Rotary electric machine improved to carry out load-dump protection
US8624536B2 (en) System and method for detecting a high current condition in a motor
US20070024225A1 (en) Electronically commutated motor (ecm) and method of controlling an ecm
US6995531B2 (en) Direct current motor drive circuit and fan motor including the same
JP4972439B2 (en) Motor restraint detection circuit
JPH082189B2 (en) DC brushless motor controller
US20070110410A1 (en) Stationary position detection circuit and motor drive circuit
JP2008072788A (en) Motor driver, brushless motor, and drive method therefor
JP4915965B2 (en) Single-phase brushless motor drive
US6747425B2 (en) System for sharing power and signal pins on a motor controller
US6741047B2 (en) Dual current-limiting circuit for DC brushless motor
US8680800B2 (en) Driving system for fan and method of driving fan
JPH08331839A (en) Power supply
JP2004135374A (en) Driver for single-phase brushless motor
US20230261594A1 (en) Driving circuit for motor systems and control method thereof
CN114285334B (en) Motor system
JP2005201665A (en) Voltage detection circuit
US20220149763A1 (en) Brushless dc electric (bldc) motor driver circuit and start-up control method thereof
JP2771605B2 (en) Charge / discharge control circuit
JP2516669Y2 (en) Rotation control circuit for brushless DC motor for fan
TW202213914A (en) Motor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534356

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807116

Country of ref document: EP

Kind code of ref document: A1