WO2008032633A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2008032633A1
WO2008032633A1 PCT/JP2007/067386 JP2007067386W WO2008032633A1 WO 2008032633 A1 WO2008032633 A1 WO 2008032633A1 JP 2007067386 W JP2007067386 W JP 2007067386W WO 2008032633 A1 WO2008032633 A1 WO 2008032633A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
temperature
refrigerant
stage compression
heat exchanger
Prior art date
Application number
PCT/JP2007/067386
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Sakae
Iwao Shinohara
Hiroto Nakajima
Ryuuji Takeuchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008032633A1 publication Critical patent/WO2008032633A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus that includes a low-stage compression mechanism and a high-stage compression mechanism and compresses refrigerant in two stages, and particularly relates to measures for improving COP.
  • a refrigeration apparatus for a vapor compression refrigeration cycle is known to include a low-stage compression mechanism and a high-stage compression mechanism to compress refrigerant in two stages! Patent Document 1).
  • the refrigeration apparatus of Patent Document 1 includes a booster compressor that is a low-stage side compression mechanism, an outdoor compressor that is a high-stage side compression mechanism, an outdoor heat exchanger, a refrigeration expansion valve, and cooling in the freezer.
  • the refrigerant circuit is connected to a refrigeration heat exchanger that performs the above.
  • the refrigerant is compressed in two stages by the booster compressor and the outdoor compressor, so that the compression ratio becomes large and the inside of the refrigerator can be cooled to a low freezing temperature range.
  • such a refrigeration apparatus includes a liquid injection pipe that supplies part of the liquid refrigerant flowing through the liquid pipe between the outdoor heat exchanger and the refrigeration expansion valve to the suction side of the high-stage compression mechanism.
  • a liquid injection pipe that supplies part of the liquid refrigerant flowing through the liquid pipe between the outdoor heat exchanger and the refrigeration expansion valve to the suction side of the high-stage compression mechanism.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-325023
  • the present invention has been made in view of the force and the point, and in a refrigeration apparatus comprising a low-stage compression mechanism and a high-stage compression mechanism to compress refrigerant in two stages!
  • the purpose is to improve the COP while ensuring the reliability of the high-stage compression mechanism.
  • the first invention includes a low-stage compression mechanism (41) with variable operating capacity, a high-stage compression mechanism (11) with variable operating capacity, a condenser (13), an expansion mechanism (32), and an evaporator ( 31) is connected to the refrigerant circuit (10) in order, and the refrigeration apparatus compresses the refrigerant in two stages by the low-stage compression mechanism (41) and the high-stage compression mechanism (11).
  • the first capacity control means (101) operates the low-stage compression mechanism (41) so that the evaporation temperature in the evaporator (31) becomes the target evaporation temperature. Operate according to the refrigeration load by controlling the capacity.
  • the first capacity control means (101) may be provided with a controller P so that the evaporation pressure becomes a saturation pressure corresponding to the target evaporation temperature, instead of controlling the evaporation temperature.
  • the second capacity control means (102) reduces the operating capacity of the high-stage compression mechanism (11) when the discharge temperature of the low-stage compression mechanism (41) is higher than the target discharge temperature.
  • the discharge temperature of the low-stage compression mechanism (41) is lowered to the target discharge temperature.
  • the intake refrigerant of the high-stage compression mechanism (11) is set to a relatively low temperature. This reduces the amount of liquid refrigerant when supplying liquid refrigerant to the suction side of the high stage compression mechanism (11) as a measure to prevent the high stage compressor mechanism (11) from becoming too hot. .
  • the second capacity control means (102) operates the high-stage compression mechanism (11) when the discharge temperature of the low-stage compression mechanism (41) is lower than the target temperature! Reducing capacity
  • the discharge temperature of the low-stage compression mechanism (41) is increased to the target discharge temperature. That is, when the discharge temperature of the low-stage compression mechanism (41) is lower than the target discharge temperature, the high-stage compression mechanism (11) is not too hot! )
  • the high-stage compression mechanism (11) is not too hot!
  • the discharge pressure of the low-stage compression mechanism (41) includes the suction pressure and suction temperature of the low-stage compression mechanism (41), and the target discharge temperature.
  • the operating capacity of the high-stage compression mechanism (11) is controlled so that the target discharge pressure derived based on
  • the low-stage compression mechanism (41) 1 For example, in the case of a scroll type compressor, the refrigerant discharged from the compression chamber that compresses the refrigerant in the dome of the compressor fills the end dome. The dome is heated and discharged from the compressor. Therefore, when measuring the discharge temperature of the low-stage compressor mechanism (41), if a temperature sensor is provided in the discharge pipe of the low-stage compressor mechanism (41), the actual temperature of the refrigerant discharged from the compression chamber The discharge temperature is not measured quickly and the response time becomes longer. In addition, it is difficult to provide a temperature sensor for measuring the discharge temperature in the dome of the compressor.
  • the discharge temperature is set to the target discharge temperature.
  • the response time of the measurement is shorter than the control close to the degree of control, and the discharge temperature is controlled by controlling the discharge pressure of the low-stage compression mechanism (41).
  • the discharge pressure of the low-stage compressor mechanism (41) is determined based on the target discharge temperature of the low-stage compression mechanism (41) and the pressure and temperature of the low-stage compression mechanism (41) suction refrigerant. Control to achieve the target discharge pressure derived in advance.
  • the refrigerant circuit (10) is configured such that the liquid refrigerant flowing from the condenser (13) to the expansion mechanism (32) and a part of the liquid refrigerant are branched and decompressed.
  • a subcooling heat exchanger (50) that cools the liquid refrigerant by exchanging heat with the branched refrigerant, and the branch refrigerant that has flowed through the supercooling heat exchanger (50) It is configured to be supplied to the suction side of (11).
  • the refrigerant circuit (10) is a condenser (13).
  • a subcooling heat exchanger (50) that cools the liquid refrigerant by exchanging heat between the liquid refrigerant flowing to the expansion mechanism (32) and the branched refrigerant that is partly branched and decompressed.
  • the branched refrigerant that has flowed through the supercooling heat exchanger (50) is supplied to the suction side of the high-stage compression mechanism (11).
  • the liquid refrigerant is cooled by the supercooling heat exchanger (50), expanded by the expansion mechanism (32), and then sent to the evaporator (31).
  • the refrigerating capacity in the evaporator (31) is increased.
  • the branch passage (84) for supplying the branch refrigerant to the supercooling heat exchanger (50) is provided with a pressure reducing valve (58) whose opening degree is adjustable.
  • the branch refrigerant is replaced with the supercooling heat exchanger.
  • the branch passage (84) supplied to (50) is provided with a pressure reducing valve (58) whose opening degree can be adjusted, while the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) is equal to the target cooling temperature. As shown, it is equipped with valve control means (103) for controlling the opening of the pressure reducing valve (58).
  • valve control means (103) when the valve control means (103) is configured such that the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) is higher than the target cooling temperature! Increases the opening of the pressure reducing valve (58) and lowers the opening of the pressure reducing valve (58) when the opening is lower than the target cooling temperature, so that the liquid refrigerant flowing through the supercooling heat exchanger (50) Let temperature be the target cooling temperature.
  • the target cooling temperature is set as follows, for example. That is, the branched refrigerant that cools the liquid refrigerant is supplied to the suction side of the high-stage compression mechanism (11), and therefore, when flowing through the supercooling heat exchanger (50), the high-stage compression mechanism (11) It evaporates at a saturation temperature corresponding to the suction pressure.
  • the discharge pressure of the low-stage compression mechanism (41) corresponding to the suction pressure of the high-stage compression mechanism (11) is controlled to be the target discharge pressure, this target discharge pressure is controlled.
  • the saturation temperature corresponding to is the evaporation temperature of the branch refrigerant, and the target cooling temperature of the liquid refrigerant is set to a value slightly higher than the saturation temperature at the target discharge pressure, for example.
  • the evaporation temperature in the evaporator (31) becomes the target evaporation temperature.
  • the operation capacity of the low-stage compression mechanism (41) is controlled, the operation corresponding to the refrigeration load can be performed.
  • the intake refrigerant of the high stage compression mechanism (11) can be set to a relatively low temperature.
  • the amount of the liquid refrigerant is reduced. be able to.
  • the high-stage compression mechanism (11) is high enough to prevent the temperature from becoming too high. Since the operating capacity of the side compression mechanism (11) can be reduced, the power of the high stage compression mechanism (11) can be reduced as much as possible. In other words, the flow rate of the refrigerant evaporated in the evaporator (31) can be increased, and the power of the high-stage compression mechanism (11) can be reduced as much as possible, so that the power of both compression mechanisms (41, 11) can be reduced. This can increase the refrigeration capacity of the evaporator (31) against COP and improve the COP.
  • the second capacity control means (102) includes the high stage so that the discharge pressure of the low stage side compression mechanism (41) becomes the target discharge pressure. Since the operating capacity of the side compression mechanism (11) is controlled, even if the low-stage compression mechanism (41) has a configuration in which it is difficult to measure the discharge temperature quickly and precisely, the discharge temperature can be reduced. It can be used to control the discharge target temperature.
  • the liquid cooling medium is cooled by the supercooling heat exchanger (50)
  • the cooled liquid refrigerant is supplied to the evaporator ( Therefore, the refrigerating capacity of the evaporator (31) can be increased, and the COP of the refrigerating apparatus (1) can be improved reliably.
  • the pressure reducing valve (58) is opened so that the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) becomes a target cooling temperature. Since the temperature is controlled, the liquid refrigerant can be cooled more reliably, so that the COP of the refrigeration apparatus (1) can be improved more reliably.
  • FIG. 1 is a piping system diagram of a refrigerant circuit of a refrigeration apparatus according to an embodiment.
  • FIG. 2 is a piping diagram showing the refrigerant flow during the cooling operation of the refrigeration apparatus according to the embodiment.
  • FIG. 3 is a flowchart showing the operation capacity control of the high-stage compression mechanism of the second capacity control unit according to the embodiment.
  • FIG. 4 is a flow chart showing opening control of the second expansion valve of the valve control unit according to the embodiment.
  • Valve control unit (valve control means)
  • the embodiment of the present invention is a refrigeration apparatus (1) that cools the inside of a cabinet, and includes an outdoor unit (2), a refrigeration unit (3), and a booster unit (4). And a controller (100).
  • the outdoor unit (2) has an outdoor circuit (20) force S
  • the refrigeration unit (3) has a refrigeration circuit ( 30) Force S
  • the booster unit (4) is provided with a booster circuit (40).
  • the outdoor circuit (20) and the refrigeration circuit (30) are connected via a liquid communication pipe (21), and the refrigeration circuit (30) and the booster circuit (40) are connected to a first gas communication pipe (22 ) And the booster circuit (40) and the outdoor circuit (20) are connected via a second gas communication pipe (23).
  • the outdoor circuit (20), the refrigeration circuit (30), and the booster circuit (40) are connected in order to constitute a refrigerant circuit (10) of the vapor compression refrigeration cycle.
  • the outdoor circuit (20) includes a high-stage compression mechanism (11), an outdoor heat exchanger (13), a receiver (14), a supercooling heat exchanger (50), a first expansion valve (57), and a first expansion valve (57).
  • a two expansion valve (58) and a third expansion valve (59) are provided.
  • the outdoor circuit (20) is provided with a four-way switching valve (12), a liquid side closing valve (53), and a gas side closing valve (54).
  • one end of the liquid communication pipe (21) is connected to the liquid side shut-off valve (53), and one end of the second gas communication pipe (23) is connected to the gas-side shut-off valve (54).
  • the high stage compression mechanism (11) includes three compressors (11a, ib, 11c) connected in parallel to each other.
  • the above three compressors (11a, l ib, 11c) are high-pressure dome type scroll compressors.
  • each compressor (11a, ib, 11c) is not shown in the figure, but the fixed scroll and the movable scroll combine the spiral wraps to form a compression chamber.
  • the refrigerant compressed in the compression chamber is discharged from the compression chamber and fills the inside of the dome, and then is discharged by the compressors (11a, ib, 11c).
  • the first compressor (11a) is configured to have a variable operating capacity by supplying electric power to a compressor motor (not shown) via an inverter and changing the output frequency of the inverter.
  • the second compressor (l ib) and the third compressor (11c) are configured with a fixed operating capacity.
  • the first compressor (11a) of the three compressors (11a, lib, 11c) is preferentially driven during operation of the refrigeration system (1).
  • the second compressor (l ib) and the third compressor (11c) are sequentially driven in accordance with the cooling load in the cabinet.
  • a suction main pipe (55) is connected to the suction side of the high-stage compression mechanism (11).
  • the suction main pipe (55) has one end connected to the four-way selector valve (12) and the other end connected to the third suction pipe (61c).
  • the third inlet pipe (61c) is branched to the inlet / outlet pipe (56), and the other end of the third inlet pipe (61c) is connected to the inlet side of the third compressor (1 lc).
  • the suction connection pipe (56) is branched into a first suction pipe (61a) and a second suction pipe (61b), and the first suction pipe (61a) is connected to the suction side of the first compressor (11a).
  • the second suction pipe (61b) is connected to the suction side of the second compressor (lib).
  • a discharge main pipe (64) is connected to the discharge side of the high-stage compression mechanism (11). One end of the discharge main pipe (64) is connected to the four-way switching valve (12), while the other end is connected to the first discharge pipe (64a), the second discharge pipe (64b), and the third discharge pipe (64c). Branched to! / The first discharge pipe (64a) is on the discharge side of the first compressor (11a), the second discharge pipe (64b) is on the discharge side of the second compressor (lib), and the third discharge pipe (64c ) Are connected to the discharge side of the third compressor (11c).
  • Each discharge pipe (64a, 64b, 64c) has a check valve (CV) that allows only the flow of the refrigerant from the compressors (11a, ib, 11c) to the four-way selector valve (12). -1, CV-2, CV-3) are provided.
  • CV check valve
  • the outdoor heat exchanger (13) is a cross-fin fin-and-tube heat exchanger that exchanges heat between refrigerant and outdoor air. It is configured. One end of the outdoor heat exchanger (13) is connected to the four-way switching valve (12), and the other end is connected to the top of the receiver (14) via the first liquid pipe (81).
  • the first liquid pipe (81) is provided with a check valve (CV-4) that permits only the flow of refrigerant and the directional force from the outdoor heat exchanger (13) to the receiver (14).
  • One end of the second liquid pipe (82) is connected to the bottom of the receiver (14).
  • the supercooling heat exchanger (50) is a plate-type heat exchanger, and performs heat exchange between the refrigerant and the first flow path (50a) and the second flow path. (50b).
  • the first flow path (50a) of the supercooling heat exchanger (50) has one end connected to the other end of the second liquid pipe (82) and the other end connected to one end of the third liquid pipe (83). It is connected.
  • the other end of the third liquid pipe (83) is connected to one end of the liquid communication pipe (21) via the liquid side closing valve (53).
  • the third liquid pipe (83) is provided with a check valve (CV-5) that allows only the refrigerant to flow from the other end of the first flow path (50a) to the liquid side stop valve (53). Yes.
  • One end of a branch passage (84) is connected to the third liquid pipe (83) on the upstream side of the check valve (CV-5), and the other end of the branch passage (84) Second flow path (50b) of the supercooling heat exchanger (50) It is connected to one end.
  • the branch passage (84) is provided with a second expansion valve (58) which is a pressure reducing valve.
  • the second expansion valve (58) is an electronic expansion valve whose opening degree is adjustable.
  • the other end of the second flow path (50b) of the supercooling heat exchanger (50) is connected in the middle of the suction main pipe (55) via a gas injection pipe (85)! .
  • the gas injection pipe (85) injects a gas refrigerant into the suction side of each of the first to third compressors (11a, ib, 11c).
  • a fourth liquid pipe (88) is connected between the check valve (CV-5) and the liquid side shut-off valve (53).
  • the other end of the fourth liquid pipe (88) is connected between the check valve (CV-4) and the receiver (14) in the first liquid pipe (81).
  • the fourth liquid pipe (88) is provided with a check valve (CV-6) that allows only the refrigerant to flow from one end to the other end.
  • the first liquid pipe (81) is connected between the outdoor heat exchanger (13) and the check valve (CV-4).
  • the fifth liquid pipe (89) is provided with a first expansion valve (57).
  • the first expansion valve (57) is an electronic expansion valve whose opening degree is adjustable.
  • one end of the communication pipe (78) is connected between the check valve (CV-4) and the connection part of the fourth liquid pipe (88) in the first liquid pipe (81), The other end of the communication pipe (78) is connected to the discharge main pipe (64).
  • the communication pipe (78) is provided with a check valve (CV-7) that allows only the refrigerant to flow from the first liquid pipe (81) to the discharge main pipe (64).
  • the four-way selector valve (12) has a first port at the discharge main pipe (64), a second port at the suction main pipe (55), and a third port at one end of the outdoor heat exchanger (13).
  • the 4th port is connected to the gas side shutoff valve (54).
  • the four-way selector valve (12) is in the first state (the solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. And a second state (state indicated by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other.
  • the outdoor circuit (20) includes an oil separator (70), a first liquid injection passage (15), First to third three oil equalizing pipes (72a, 72b, 72c) and first to third oil recovery pipes (73a, 73b, 73c) are provided.
  • the oil separator (70) is provided in the discharge main pipe (64) and separates the refrigerant oil from the discharged refrigerant force of the compressors (11a, ib, 11c).
  • One end of an oil return pipe (71) is connected to the oil separator (70), and the other end of the oil return pipe (71) is connected to a connection portion of the gas injection pipe (85) in the suction main pipe (55).
  • the oil return pipe (71) is provided with a fourth solenoid valve (SV-4) that can be freely opened and closed. When the fourth solenoid valve (SV-4) is opened, the oil separator (70) separates the oil return pipe (71). Refrigerator oil is returned to the compressors (11a, ib, 11c) via the suction main pipe (55).
  • the first liquid injection passage (15) includes a first liquid injection main pipe (16) and first to fourth liquid injection branch pipes (16a, 16b, 16c, 16d).
  • One end of the first liquid injection main pipe (16) is connected between one end of the branch passage (84) and a connection portion of the fifth liquid pipe (89), and a shunt (26) is provided at the other end.
  • a third expansion valve (59) is provided in the middle of the first liquid injection main pipe (16).
  • the third expansion valve (59) is an electronic expansion valve whose opening degree is adjustable.
  • Each of the first to fourth liquid injection branch pipes (16a, 16b, 16c, 16d) is branched from the flow divider (26) of the first liquid injection main pipe (16), Each third liquid injection branch pipe (16a, 16b, 16c) is in the middle of each of the first to third suction pipes (61a, 61b, 61c), and the fourth liquid injection branch pipe (16d) is an oil return pipe. (71) The fourth solenoid valve (SV-4) is connected between the other end.
  • each of the first to fourth liquid injection branch pipes (16a, 16b, 16c, 16d) is provided with a capillary tube (17a, 17b, 17c, 17d) in the middle.
  • the first oil leveling pipe (72a) is connected between the dome of the first compressor (1 la) and the fourth liquid injection branch pipe (16d).
  • the first solenoid valve (SV-1) is provided on the way.
  • the second oil leveling pipe (72b) is connected to the dome of the second compressor (lib) and the middle of the first suction pipe (61a), and includes a second electromagnetic valve (SV-2).
  • the third oil equalizing pipe (72c) is connected to the dome of the third compressor (11c) and the suction connecting pipe (56) and includes a third solenoid valve (SV-3).
  • the oil return pipe (71) is used for suction.
  • the refrigeration oil returned to the main pipe (55) is configured to return in the order of the third compressor (11c), the second compressor (lib), and the first compressor (11a). Then, by the oil equalizing pipes (72a, 72b, 72c), the refrigerating machine oil of the third compressor (11c) is sequentially sent to the second compressor (lib) and the first compressor (11a), Furthermore, the excess of the refrigeration oil in the first compressor (11a) is sent to the oil return pipe (71) and is configured to equalize the oil between the compressors (11a, ib, 11c). .
  • one end of the first oil recovery pipe (73a) is in the middle of the first suction pipe (61a), and the second oil recovery pipe (73b)
  • One end of each oil recovery pipe (73b) is connected to one end of the second suction pipe (61b) and one end of the third oil recovery pipe (73c) to the middle of the third suction pipe (61c).
  • the other ends of 73b and 73c) are joined together.
  • the oil recovery pipes (73a, 73b, 73c) are connected to the compressors (lib, 11c) when a specific compressor (lib, 11c) is stopped according to the load during operation of the refrigeration system (1). )
  • Refrigeration oil accumulated in the suction pipes (61b, 61c) is sent to the suction pipes (61a, 61b) of the other compressors (11a, ib) that are driven.
  • the outdoor circuit (20) is provided with various sensors and pressure switches. Specifically, a suction pressure sensor (135) and a suction temperature sensor (136) are provided in the suction main pipe (55), a discharge pressure sensor (137) is provided in the discharge main pipe (64), and each discharge temperature sensor (138, 139, 140) are provided in each discharge pipe (64a, 64b, 64c). Further, in the vicinity of the outlet of the first flow path (50a) of the supercooling heat exchanger (50) in the third liquid pipe (83), the liquid that flows through the first flow path (50a) and measures the temperature of the liquid refrigerant. A refrigerant temperature sensor (141) is provided. In addition, pressure switches (151, 152, 153, 154) are provided in the discharge pipes (64a, 64b, 64c) and pipes between the gas side shut-off valve (54) and the four-way selector valve (12). ing.
  • the outdoor unit (2) is provided with an outdoor air temperature sensor (13a) and an outdoor fan (13f). Outdoor air is sent to the outdoor heat exchanger (13) by the outdoor fan (13f).
  • the refrigeration circuit (30) includes a refrigeration heat exchanger (31), a drain pan heater (36), and a refrigeration expansion valve (32).
  • the refrigeration heat exchanger (31) is a cross-fin type fin 'and' tube type heat exchanger that exchanges heat between the refrigerant and the air in the cabinet, and evaporates. Configured in a vessel Yes.
  • the refrigeration heat exchanger (31) has one end connected to one end of the drain pan heater (36) via the refrigeration expansion valve (32) and the other end connected to one end of the first gas communication pipe (22). ! /
  • the refrigeration expansion valve (32) is an electronic expansion valve whose opening degree can be adjusted, and is configured as an expansion mechanism.
  • the refrigeration heat exchanger (31) is provided with a first refrigerant temperature sensor (33) for measuring the evaporation temperature of the refrigerant in the heat transfer tube, while the other end of the refrigeration heat exchanger (31) is provided with A second refrigerant temperature sensor (34) is provided.
  • the temperature measured by the second refrigerant temperature sensor (34) is a predetermined temperature (for example, 5 ° C) higher than the vaporization temperature of the refrigerant measured by the first refrigerant temperature sensor (33). So-called superheat control is performed in which the opening degree is adjusted to be higher.
  • the drain pan heater (36) is disposed on the drain pan of the refrigeration heat exchanger (31) (not shown) to heat the drain pan and prevent frost formation and ice formation.
  • the other end of the drain pan heater (36) is connected to the other end of the liquid communication pipe (21).
  • the refrigeration unit (3) is provided with an internal temperature sensor (35f) and an internal fan (35a). To the refrigeration heat exchanger (31), the internal air is sent by the internal fan (35a).
  • the booster circuit (40) includes a booster compression mechanism (41), which is a low-stage side compression mechanism, a fourth expansion valve (38), and a fifth expansion valve (39).
  • the booster compression mechanism (41) includes first to third booster compressors (41a, 41b, 41c) connected in parallel to each other.
  • Each of the booster compressors (41a, 41b, 41c) is composed of a high-pressure dome type scroll compressor, similarly to the high-stage compressors (11a, lib, 11c).
  • each booster compressor (41a, 41b, 41c) is not shown in the figure, but the fixed scroll and the movable scroll are combined with each other in a spiral wrap to form a compression chamber, which is compressed in this compression chamber.
  • Each compressor (11a, lib, 11c) force is also discharged after the refrigerant is discharged from the compression chamber and fills the inside of the dome.
  • the first booster compressor (41a) is supplied with electric power via an inverter to a compressor motor (not shown), and the operating capacity can be increased by changing the output frequency of the inverter. It is structured strangely.
  • the second booster compressor (41b) and the third booster compressor (41c) have a fixed operating capacity.
  • the first booster compressor (41a) among the three booster compressors (41a, 41b, 41c) is preferentially driven.
  • the second booster compressor (41b) and the third booster compressor (41c) are sequentially driven in accordance with the load in the storage.
  • a booster suction main pipe (42) is connected to the suction side of the booster compression mechanism (41).
  • the suction main pipe (42) has one end connected to the other end of the first gas communication pipe (22) and the other end branched to a third booster suction pipe (44c) and a booster suction connection pipe (43).
  • the other end of the third booster suction pipe (44c) is connected to the suction side of the third booster compressor (41c).
  • the booster suction connection pipe (43) is branched into a first booster suction pipe (44a) and a second booster suction pipe (44b), and the first booster suction pipe (44a) is connected to the first booster compressor (44a).
  • the second booster suction pipe (44b) is connected to the suction side of the second booster compressor (41b) while being connected to the suction side of 41a).
  • a booster discharge main pipe (45) is connected to the discharge side of the booster compression mechanism (41).
  • One end of the booster discharge main pipe (45) is connected to one end of the second gas communication pipe (23) via the closing valve (51), while the other end is connected to the first booster discharge pipe (45a) and the second Branch to the booster discharge pipe (45b) and the third booster discharge pipe (45c)!
  • the first booster discharge pipe (45a) is connected to the discharge side of the first booster compressor (41a), and the second booster discharge pipe (45b) is connected to the discharge side of the second booster compressor (41b).
  • the third booster discharge pipe (45c) is connected to the discharge side of the third booster compressor (41c).
  • Each booster discharge pipe (45a, 45b, 45c) has a check valve (CV) that allows only the flow of refrigerant from the booster compressor (41a, 41b, 41c) to the booster discharge main pipe (45). -8, CV-9, and CV-10).
  • CV check valve
  • the booster circuit (40) includes an oil separator (46), two second and third liquid injection passages (27, 29), an oil feed pipe (76), a fourth and a fourth Two oil leveling pipes (74a, 74b) of No. 5 and three oil recovery pipes (75a, 75b, 75c) of No. 4 to No. 6 are provided.
  • the oil separator (46) is provided in the booster discharge main pipe (45), and separates the refrigerating machine oil from the refrigerant discharged from the first to third booster compressors (41a, 41b, 41c). To do It is.
  • One end of a first bypass pipe (47) is connected to the oil separator (46), and the other end of the first binose pipe (47) is connected to the booster suction main pipe (42). .
  • the first bypass pipe (47) has a fifth solenoid valve (SV-5), and the refrigerant discharged from the high-stage compression mechanism (11) is boosted during the defrosting operation of the refrigeration apparatus (1). This is to bypass the compression mechanism (41).
  • an oil return pipe (48) is connected between the fifth solenoid valve (SV-5) and one end of the first bypass pipe (47), and the other end of the oil return pipe (48) It is connected in the middle of the booster suction main pipe (42).
  • the oil return pipe (48) is provided with a sixth solenoid valve (SV-6) that can be freely opened and closed. When the sixth solenoid valve (SV-6) is opened, the oil separator (46) is refrigerated. Machine oil is returned to each booster compressor (41a, 41b, 41c) via the booster suction main pipe (42).
  • the second liquid injection passage (27) includes a second liquid injection main pipe (28) and fifth to seventh liquid injection branch pipes (28a, 28b, 28c).
  • one end of the second liquid injection main pipe (28) is connected to the middle of the liquid communication pipe (21), and the other end of the second liquid injection main pipe (28) is connected to the second liquid injection main pipe (28).
  • the fifth to seventh liquid injection branch pipes (28a, 28b, 28c) are branched, and the fifth to seventh liquid injection branch pipes (28a, 28b, 28c) are connected to the first to third liquid injection branch pipes (28a, 28b, 28c).
  • Each booster suction pipe (41a, 41b, 4 lc) is connected to each.
  • the second liquid injection main pipe (28) is provided with a fourth expansion valve (38), which is provided in the middle of the fifth to seventh liquid injection branch pipes (28a, 28b, 28c). Each is provided with a capillary tube (37a, 37b, 37c).
  • One end of the third liquid injection passage (29) is connected between one end of the second liquid injection main pipe (28) and the fourth expansion valve (38), and the other end of the booster discharge main pipe (45). It is connected between the oil separator (46) and the closing valve (51).
  • a fifth expansion valve (39) is provided in the third liquid injection passage (29).
  • the fourth and fifth expansion valves (38, 39) are electronic expansion valves whose degree of opening is adjustable.
  • the oil feed pipe (76) is connected to the dome of the first booster compressor (41a) and the middle of the booster discharge main pipe (45), and can be opened and closed in the middle of the seventh solenoid valve (SV-7) And a check valve (CV-11).
  • the fourth oil leveling pipe (74a) is connected to the dome of the second booster compressor (41b) and the middle of the first booster suction pipe (44a).
  • the fifth oil equalizing pipe (74b) is connected to the dome of the third booster compressor (41c) and the middle of the booster suction connecting pipe (43), and includes a ninth solenoid valve (SV-9).
  • the refrigeration oil returned to the booster suction main pipe (42) by the oil return pipe (48) is supplied to the third booster compressor (41c) and the second booster compressor (41b).
  • the first booster compressor (41a) is configured to return in order.
  • the refrigerating machine oil of the third booster compressor (41c) is transferred to the second booster compressor (41b) and the first booster compressor (41a) through the fourth and fifth oil equalizing pipes (74a, 74b).
  • the refrigeration oil surplus of the first booster compressor (41a) is sent to the compressors (11a, l ib, 11c) of the outdoor circuit (20) through the oil feed pipe (76). Has been.
  • the three oil recovery pipes (75a, 75b, 75c) have one end of the fourth oil recovery pipe (75a) in the middle of the first booster suction pipe (44a) and one end of the fifth oil recovery pipe (75b). Are connected in the middle of the second booster suction pipe (44b) and one end of the sixth oil recovery pipe (75c) is connected in the middle of the third booster suction pipe (44c), respectively, while the oil recovery pipes (75a, 75b, The other ends of 75c) are joined together.
  • the oil recovery pipe (75a, 75b, 75c) is connected to the booster compressor (41b, 41c) when a specific booster compressor (41b, 41c) is stopped according to the load during the operation of the refrigeration system (1). ) Of the refrigerating machine oil stored in the suction pipes (44b, 44c) of the other booster compressors (41a, 41b).
  • the booster circuit (40) is provided with a second bypass pipe (49) that connects the booster suction main pipe (42) and the booster discharge main pipe (45).
  • the second bypass pipe (49) bypasses the booster compression mechanism (41) and sends the refrigerant flowing through the booster suction main pipe (42) to the booster discharge main pipe (45).
  • a check valve (CV-12) that allows only the refrigerant to flow from the booster suction main pipe (42) to the booster discharge main pipe (45).
  • the booster circuit (40) is provided with various sensors and pressure switches. Specifically, a booster suction pressure sensor (142) and a booster suction temperature sensor (143) are provided in the booster suction main pipe (42), and the booster discharge pressure sensor (144) and the booster discharge main temperature sensor (145) are provided. Each booster discharge sub-temperature sensor (45) 148, 149, 150) and each pressure switch (155, 156, 157) are provided in each booster discharge pipe (45a, 45b, 45c).
  • the controller (100) performs switching and opening adjustment of various valves provided in the refrigerant circuit (10), as well as compressors (11a, ib, 11c, 41a, 41b, 41c) and fans ( 13f, 35f) are driven to control the operation of the refrigeration apparatus (1).
  • the controller (100) includes a first capacity controller (101), a second capacity controller (102), and a valve controller (103) as a feature of the present invention.
  • the first capacity control unit (101) is configured to increase the evaporating temperature in the refrigeration heat exchanger (31) to a target evaporating temperature suitable for maintaining the interior at a set temperature. 41) is used to control the operating capacity, and is configured as a first capacity control means.
  • the second capacity control unit (102) controls the operating capacity of the high stage compression mechanism (11) so that the discharge temperature of the booster compression mechanism (41) becomes the target discharge temperature. Yes, it is configured as the second capacity control means.
  • each of the compressors (4 la, 41b, 41c) of the booster compression mechanism (41) is a high-pressure dome type scroll compressor, it is the temperature of the refrigerant discharged from the compression chamber in the dome.
  • the discharge temperature of the booster compression mechanism (41) measured by the booster discharge pressure sensor (144) is derived in advance based on the suction pressure and suction temperature of the booster compression mechanism (41) and the target discharge temperature. The target discharge pressure is controlled.
  • the valve control unit (103) includes the second expansion valve (103) so that the temperature of the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50) becomes a target cooling temperature. 58), and is configured as a valve control means.
  • the refrigeration apparatus (1) performs a cooling operation for cooling the inside of the refrigerator and a defrosting operation for removing frost formation on the refrigeration heat exchanger (31).
  • the four-way selector valve (12) of the outdoor circuit (20) is in the first state.
  • the first expansion valve (57) is set to the fully closed state, and the first to third compressors (11a, l ib, 11c) of the high-stage compression mechanism (11) are driven to booster compression
  • the first to third booster compressors (41a, 41b, 41c) of the mechanism (41) are driven, and the refrigerant circulates in the direction indicated by the arrow in FIG.
  • Each fan (13f, 35f) is driven.
  • the opening degrees of the refrigeration expansion valve (32) and the second to fifth expansion valves (58, 59, 38, 39) are adjusted as appropriate.
  • the first to fourth solenoid valves (SV-1, 2, 3, 4) are intermittently controlled to be opened and closed appropriately, while in the booster circuit (40), the fifth The solenoid valve (SV-5) is set to the normally closed state, and the sixth to ninth solenoid valves (SV-6, 7, 8, 9) are intermittently controlled to open and close appropriately.
  • the refrigerant discharged from the first to third compressors (11a, ib, 11c) flows through the discharge pipes (64a, 64b, 64c) and discharge main pipes ( 64) and flows through the four-way selector valve (12) and the outdoor heat exchanger (13).
  • the refrigerant dissipates heat to the outdoor air and condenses.
  • the condensed liquid refrigerant flows through the first liquid pipe (81), passes through the receiver (14), flows through the second liquid pipe (82), and passes through the first flow path (50a) of the supercooling heat exchanger (50). ).
  • the branching refrigerant flowing through the second flow path (50b) absorbs heat from the liquid refrigerant flowing through the first flow path (50a) and evaporates.
  • the liquid refrigerant flowing through the passage (50a) is cooled to the target cooling temperature, as will be described later.
  • the refrigerant evaporated in the second flow path (50b) is supplied to the suction main pipe (55) via the gas induction pipe (85). Then, the cooled liquid refrigerant flows from the third liquid pipe (83) to the liquid communication pipe (21) and is introduced into the refrigeration circuit (30).
  • the liquid refrigerant introduced into the refrigeration circuit (30) flows through the drain pan heater (36), expands at the refrigeration expansion valve (32), and flows through the refrigeration heat exchanger (31).
  • the refrigerant absorbs heat from the air in the warehouse and evaporates, whereby the interior is cooled.
  • the gas refrigerant evaporated in the refrigeration heat exchanger (31) flows through the first gas communication pipe (22) and is introduced into the booster circuit (40).
  • the gas refrigerant introduced into the booster circuit (40) flows through the booster suction main pipe (42) and branches into the third booster suction pipe (44c) and the booster suction connection pipe (43). Suction pipe The refrigerant flowing through (44c) is sucked into the third booster compressor (41c) and compressed. On the other hand, the refrigerant flowing through the booster suction connection pipe (43) branches into the first booster suction pipe (44a) and the second booster suction pipe (44b), and the first and second booster compressors (41a , 41b) and compressed.
  • the refrigerant introduced into the outdoor circuit (20) flows through the suction main pipe (55) via the four-way switching valve (12).
  • the refrigerant flowing through the suction main pipe (55) branches into the third suction pipe (61c) and the suction connection pipe (56), and the refrigerant flowing through the third suction pipe (61c) passes through the third compressor (11c). ) Is inhaled and compressed.
  • the refrigerant flowing through the suction connection pipe (56) is branched into the first suction pipe (61a) and the second suction pipe (61b), and the first and second compressors (11a, ib) Inhaled and compressed.
  • the second capacity control unit (102) controls the capacity of the high-stage compression mechanism (11), so that the high-stage compression mechanism ( 11) is prevented from reaching a high temperature, but the degree of opening of each of the third to fifth expansion valves (59, 38, 39) is adjusted from the fully closed state to the open state as appropriate.
  • the high-stage compression mechanism (11) can prevent the temperature from becoming high. That is, a part of the refrigerant flowing through the branch passage (84) is appropriately supplied to the suction side of the high-stage compression mechanism (11) via the first liquid injection passage (15), and the second and third liquid injections. Liquid refrigerant is appropriately supplied to the suction side and the discharge side of the booster compression mechanism (41) via the passages (27, 29).
  • a reverse cycle defrost is performed in which the refrigerant circulates in the refrigerant circuit (10) in the direction opposite to that during the cooling operation.
  • the first and second compressors (11a, ib) of the high stage compression mechanism (11) are driven, and the other compressors (11c, 41a, 41b, 41c) are stopped.
  • the refrigeration heat exchanger (31) is defrosted by the condenser (31), expanded by the first expansion valve (57), evaporated by the outdoor heat exchanger (13), and again the first and second 2 Sucked into the compressor (11a, l ib).
  • the operating capacity of the booster compression mechanism (41) is determined by the first capacity control unit (101) by setting the evaporation temperature in the refrigeration heat exchanger (31) to a set temperature (for example, 30 ° C).
  • the target evaporation temperature (for example, 40 ° C) suitable for maintaining the temperature is controlled. That is, the first capacity control unit (101) performs control to increase the operating capacity of the booster compression mechanism (41) when the evaporation temperature in the refrigeration heat exchanger (31) is higher than the target evaporation temperature.
  • the flow rate of the refrigerant flowing through the refrigeration heat exchanger (31) increases, and the evaporation temperature gradually decreases to the target evaporation temperature.
  • the operating capacity of the high-stage compression mechanism (11) is controlled so that the discharge temperature of the booster compression mechanism (41) becomes the target discharge temperature TM based on the flowchart of FIG.
  • the target discharge temperature TM is set to, for example, 80 ° C or more and 90 ° C or less. In other words, if the discharge temperature is higher than 90 ° C, the compressor (11a, ib, 11c) of the high-stage compression mechanism (11) may become too hot, so the target discharge temperature TM should be 90 ° C. The following.
  • the discharge temperature is less than 80 ° C, even if the discharge temperature rises slightly by reducing the operating capacity of the high-stage compression mechanism (11), each compression of the high-stage compression mechanism (11) In such a case, the operating capacity of the high-stage compression mechanism (11) can be reduced to reduce the compression mechanism (11, 41). Since it is better to reduce the overall power, the discharge temperature should be 80 ° C or higher.
  • the target discharge pressure PMs of the booster compression mechanism (41) is set in step ST1.
  • the polytrope change equation of state shown in Step 1 includes the target discharge temperature TM of the booster compression mechanism (41), the suction temperature TL measured by the booster suction temperature sensor (143), and the booster suction pressure sensor.
  • the suction pressure PL measured in (142) is substituted, and the target discharge pressure PMs is calculated.
  • ⁇ used in the equation of step ST1 is a polytropic index.
  • step ST2 the discharge pressure PMr of the booster compression mechanism (41) measured by the booster discharge pressure sensor (144) approximates the target discharge pressure PMs set in step ST1 (the target discharge pressure PMs and Is within the range of soil ⁇ , a value that can be regarded as the target discharge pressure PMs, ⁇ is a force that is a predetermined allowable value), and the actual discharge pressure PMr approximates the target discharge pressure PMs It is judged whether it is larger or smaller than the target discharge pressure PMs.
  • the target discharge pressure PMs and Is within the range of soil ⁇ a value that can be regarded as the target discharge pressure PMs
  • is a force that is a predetermined allowable value
  • step ST2 if the actual discharge pressure PMr is not a value approximate to the target discharge pressure PMs but is larger than the target discharge pressure PMs, the process proceeds to step ST3, where the second capacity control unit (102) force S, high Control is performed to increase the operating capacity of the stage side compression mechanism (11).
  • the suction pressure of the high-stage compression mechanism (11) decreases, so that the discharge pressure PMr of the booster compression mechanism (41) decreases and approximates the target discharge pressure PMs.
  • the discharge temperature of 41) becomes the target discharge temperature TM. In this way, since the intake refrigerant of the high-stage compression mechanism (11) can be set to a relatively low temperature, the high-stage compression mechanism (11) can be prevented from becoming too high. Then go from step 3 to return and start again.
  • step ST2 when it is determined that the actual discharge pressure PMr is a value approximate to the target discharge pressure PMs, the process proceeds to return, and then returns to start. That is, if the value approximates the target discharge pressure PMs, the discharge temperature is substantially the target discharge temperature TM, so the operating capacity of the high-stage compression mechanism (11) is maintained as it is.
  • step ST2 when the actual discharge pressure PMr is not a value approximate to the target discharge pressure PMs but smaller than the target discharge pressure PMs, the process proceeds to step ST4, where the second capacity control unit (102) force S, high Control is performed to reduce the operating capacity of the stage side compression mechanism (11). Thereby, the power of the high stage side compression mechanism (11) can be reduced.
  • the discharge pressure PMr of the booster compression mechanism (41) increases, so the force S, which increases the discharge temperature of the booster compression mechanism (41),
  • the high-stage compression mechanism (11) does not become too hot until it reaches a value that approximates the target discharge pressure PMs, so that the high-stage compression mechanism (11) is secured while ensuring its reliability.
  • the power of the side compression mechanism (11) can be made as small as possible. Then move from step ST4 to return and start again. Return.
  • the discharge pressure PMr of the booster compression mechanism (41) is controlled to be the target discharge pressure PMs, as a measure for preventing the high-stage compression mechanism (11) from becoming high temperature.
  • the amount of this liquid refrigerant can be reduced, and the operating capacity of the high-stage side compression mechanism (11) can be reduced as much as possible.
  • S can. That is, the amount of refrigerant sent to the refrigeration heat exchanger (31) can be increased, and the power of the compression mechanism (11, 41) as a whole can be reduced.
  • COP is improved.
  • the target cooling temperature Ts is set as follows. That is, the branching refrigerant that cools the liquid refrigerant by flowing through the second flow path (50b) of the supercooling heat exchanger (50) is supplied to the suction side of the high-stage compression mechanism (11). It evaporates at a saturation temperature Tm corresponding to the suction pressure of the stage side compression mechanism (11).
  • the discharge pressure of the booster compression mechanism (41) corresponding to the suction pressure of the high-stage compression mechanism (11) is controlled to be the target discharge pressure PMs! /, So the evaporation temperature of the branching refrigerant is The saturation temperature Tm corresponds to the target discharge pressure PMs.
  • the liquid refrigerant flowing through the first flow path (50a) is cooled by the branched refrigerant that evaporates at this saturation temperature Tm, and is not cooled to this saturation temperature Tm! /, So the target cooling temperature Ts is targeted.
  • Tm saturation temperature
  • step ST12 the temperature Tr of the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50) measured by the liquid refrigerant temperature sensor (141) is the target cooling temperature Ts.
  • a force that is a value that approximates to (the difference from the target cooling temperature Ts is within the range of soil / 3 and can be regarded as the target cooling temperature Ts, / 3 is a predetermined allowable value), the actual It is determined whether the temperature Tr of the liquid refrigerant is greater or less than the target cooling temperature Ts that is less than the target cooling temperature Ts.
  • step ST12 the actual temperature Tr of the liquid refrigerant approximates the target cooling temperature Ts. If it is higher than the target cooling temperature Ts, move to step ST13.
  • step ST13 a determination is made as to whether or not the actual temperature of the liquid refrigerant Tr is 10 ° C or higher, and a determination is made as to whether or not the superheat degree SH of the suction refrigerant of the high-stage compression mechanism (11) is 5 ° C or higher.
  • the supercooling heat exchanger (50) may freeze, so it is overcooled at the appropriate lower limit of 10 ° C! /, N!
  • the high-stage compression mechanism (11) may suck the wet refrigerant and compress the liquid. Then, it is determined whether the suction refrigerant of the high-stage compression mechanism (11) is in a wet state! / ,!
  • the superheat degree SH of the suction refrigerant of the high-stage compression mechanism (11) is determined by the measured values of the suction pressure sensor (135) and the suction temperature sensor (136) of the suction main pipe (55).
  • the lower limit value of the temperature for preventing freezing of the supercooling heat exchanger (50) may be set to 5 ° C or 15 ° C, for example.
  • step ST12 If it is determined in step ST12 that the actual liquid refrigerant temperature Tr is close to the target cooling temperature Ts, the process proceeds to step ST15.
  • step ST15 it is determined whether or not the actual liquid refrigerant temperature Tr is less than 10 ° C, and whether or not the superheat degree SH of the suction refrigerant in the high-stage compression mechanism (11) is less than 5 ° C. If at least one of these conditions is met, the process moves to step ST16. If neither of these conditions is met, the process moves to return and returns to start.
  • step ST16 the opening of the second expansion valve (58) is controlled to be small by the valve control unit (103). As a result, the temperature Tr of the liquid refrigerant increases.
  • the temperature Tr of the liquid refrigerant is a value that approximates the target cooling temperature Ts, the temperature Tr of the liquid refrigerant is less than 10 ° C and it is overcooled, or the high-stage compression
  • the opening of the second expansion valve (58) is controlled to be small, and the supercooling heat exchanger (50) is frozen or It prevents the stage-side compression mechanism (11) from sucking wet refrigerant and compressing it.
  • the temperature is maintained at a temperature that approximates the target cooling temperature Ts.
  • step ST12 When it is determined in step ST12 that the actual liquid refrigerant temperature Tr is not close to the target cooling temperature Ts and is lower than the target liquid refrigerant temperature Tr, the process proceeds to step ST16 and valve control is performed.
  • the opening of the second expansion valve (58) is controlled by the portion (103) to be small.
  • the amount of refrigerant in the second flow path (50b) decreases, so that the temperature of the liquid refrigerant flowing through the first flow path (50a) rises to the target cooling temperature Ts. Then move on to return and start again.
  • the refrigeration heat exchanger (31) Since the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50) can be set to the target cooling temperature Ts, the refrigeration heat exchanger (31) The liquid refrigerant to be sent can be reliably cooled, and the refrigeration capacity of the refrigeration heat exchanger (31) can be increased. In addition, in this way, while cooling the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50), this cooling causes the supercooling heat exchanger (50) to freeze or It is possible to prevent the step-side compression mechanism (11) from compressing liquid.
  • the operating capacity of the booster compression mechanism (41) is controlled by the first capacity control unit (101) so that the evaporation temperature in the refrigeration heat exchanger (31) becomes the target evaporation temperature. Therefore, an operation corresponding to the cooling load of the refrigeration apparatus (1) can be performed.
  • the second capacity control unit (102) controls the operating capacity of the high-stage compression mechanism (11) so that the discharge temperature of the booster compression mechanism (41) becomes the target discharge temperature.
  • the intake refrigerant of the high stage side compression mechanism (11) can be set to a relatively low temperature.
  • the high-stage compression mechanism (11 ) when the discharge temperature of the booster compression mechanism (41) is lower than the target discharge temperature, the high-stage compression mechanism (11 ) Therefore, it is possible to reduce the power of the high-stage compression mechanism (11) as much as possible. In other words, it is possible to increase the flow rate of the refrigerant that evaporates in the refrigeration heat exchanger (31), and to reduce the power of the high-stage compression mechanism (11) as much as possible. , 11) The refrigeration capacity in the refrigeration heat exchanger (31) can be increased, and the COP can be improved.
  • the second capacity control unit (102) controls the operating capacity of the high-stage compression mechanism (11) so that the discharge pressure of the booster compression mechanism (41) becomes the target discharge pressure. Even if the booster compressors (41a, 41b, 41c) of the booster compression mechanism (41) are high-pressure dome type scroll compressors and it is difficult to measure the discharge temperature quickly and accurately. In addition, it is possible to reliably control the discharge temperature as the discharge target temperature.
  • the valve control unit (103) controls the opening of the second expansion valve (58), and the first flow path of the supercooling heat exchanger (50) ( Since the liquid refrigerant flowing through 50a) is cooled to the target cooling temperature T s, the refrigerant sent to the refrigeration heat exchanger (31) is reliably cooled, and the refrigeration capacity in the refrigeration heat exchanger (31) is Therefore, the COP of the refrigeration apparatus (1) can be improved more reliably.
  • each compression mechanism (11, 41) is configured by connecting three compressors in parallel.
  • each compression mechanism (11, 41) You may make it comprise with one compressor.
  • the refrigeration apparatus (1) of the above embodiment has one refrigeration heat exchanger (31), it may have a configuration in which a plurality of refrigeration heat exchangers (31) are connected in parallel.
  • a scroll type compressor is used as each compressor (41a, 41b, 41c) of the booster compression mechanism (41), and the discharge temperature is measured. Force that controls the discharge pressure to the target discharge pressure due to the long response time If the compressor has a short response time of the discharge temperature (for example, a rotary compressor), the target discharge temperature is directly discharged. Control of temperature may be performed. Further, even when a scroll compressor is used, the discharge temperature may be estimated and controlled from the temperature of the refrigerant flowing through the discharge pipe. [0109] It should be noted that the above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
  • the present invention is useful for a refrigeration apparatus that includes a low-stage compression mechanism and a high-stage compression mechanism and compresses the refrigerant in two stages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A refrigeration device (1) having a refrigeration circuit (10) formed by sequentially connecting a booster compression mechanism (41) with variable operating capacity, a high-stage side compression mechanism (11) with variable operating capacity, an outdoor heat exchanger (13), a refrigeration expansion valve (32), and a refrigeration heat exchanger (31). The refrigeration device (1) performs cooling operation in which refrigerant is condensed by being compressed in two stages and then evaporated by the refrigeration heat exchanger (31). A controller (100) for the refrigeration device (1) has a first capacity controlling section (101) and a second capacity controlling section (102). The first capacity controlling section (101) controls the operating capacity of the booster compression mechanism (41) so that the temperature of evaporation in the refrigeration heat exchanger (31) is a target evaporation temperature. The second capacity controlling section (102) controls the operating capacity of the high-stage side compression mechanism (11) so that the temperature of discharge of the booster compression mechanism (41) is a target discharge temperature.

Description

明 細 書  Specification
冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、低段側圧縮機構と高段側圧縮機構とを備えて冷媒を 2段圧縮する冷 凍装置に関し、特に、 COPの向上対策に係るものである。  TECHNICAL FIELD [0001] The present invention relates to a refrigeration apparatus that includes a low-stage compression mechanism and a high-stage compression mechanism and compresses refrigerant in two stages, and particularly relates to measures for improving COP.
背景技術  Background art
[0002] 従来から、蒸気圧縮式冷凍サイクルの冷凍装置には、低段側圧縮機構と高段側 圧縮機構とを備えて冷媒を 2段圧縮するものが知られて!/、る (例えば、特許文献 1)。  [0002] Conventionally, a refrigeration apparatus for a vapor compression refrigeration cycle is known to include a low-stage compression mechanism and a high-stage compression mechanism to compress refrigerant in two stages! Patent Document 1).
[0003] 特許文献 1の冷凍装置は、低段側圧縮機構であるブースタ圧縮機と、高段側圧 縮機構である室外圧縮機と、室外熱交換器と、冷凍膨張弁と、冷凍庫内の冷却を行 う冷凍熱交換器とが順に接続された冷媒回路を備えている。この冷凍装置は、冷媒 をブースタ圧縮機と室外圧縮機とで 2段圧縮するので、圧縮比が大きくなり、庫内を 低温の冷凍温度域まで冷却することができる。  [0003] The refrigeration apparatus of Patent Document 1 includes a booster compressor that is a low-stage side compression mechanism, an outdoor compressor that is a high-stage side compression mechanism, an outdoor heat exchanger, a refrigeration expansion valve, and cooling in the freezer. The refrigerant circuit is connected to a refrigeration heat exchanger that performs the above. In this refrigeration system, the refrigerant is compressed in two stages by the booster compressor and the outdoor compressor, so that the compression ratio becomes large and the inside of the refrigerator can be cooled to a low freezing temperature range.
[0004] また、このような冷凍装置は、室外熱交換器と冷凍膨張弁との間の液管を流れる 液冷媒の一部を高段側圧縮機構の吸入側に供給する液インジェクション管を備えた ものがある。これにより、高段側圧縮機構の吸入側に液冷媒を供給して該高段側圧 縮機構の吸入冷媒の温度を低下させるので、高段側圧縮機構の吐出冷媒の温度を 低下させることができる。この結果、該高段側圧縮機構が高温になりすぎることを防止 すること力 Sでき、該高段側圧縮機構の信頼性を向上させることができる(特願 2005— 322240)。  [0004] In addition, such a refrigeration apparatus includes a liquid injection pipe that supplies part of the liquid refrigerant flowing through the liquid pipe between the outdoor heat exchanger and the refrigeration expansion valve to the suction side of the high-stage compression mechanism. There is something. As a result, the liquid refrigerant is supplied to the suction side of the high-stage compression mechanism and the temperature of the suction refrigerant of the high-stage compression mechanism is lowered, so that the temperature of the discharge refrigerant of the high-stage compression mechanism can be lowered. . As a result, it is possible to prevent the high-stage compression mechanism from becoming too hot, and the reliability of the high-stage compression mechanism can be improved (Japanese Patent Application 2005-322240).
特許文献 1 :特開 2004— 325023号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-325023
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上述した従来の冷凍装置では、高段側圧縮機構の信頼性の確保のために、該高 段側圧縮機構の吐出冷媒の一部を、庫内の冷却 (冷凍熱交換器での蒸発)に利用 することなぐ高段側圧縮機構の吸入側にインジェクションしている。そのため、この 液冷媒のインジェクション量が多くなると、庫内の冷却に利用される冷媒量が少なくな るために、圧縮機構全体の動力に対する蒸発器における冷凍能力が小さくなり、所 望とする高 COPが得られな!/、と!/、う問題点があった。 [0005] In the conventional refrigeration apparatus described above, in order to ensure the reliability of the high-stage compression mechanism, a part of the refrigerant discharged from the high-stage compression mechanism is cooled in the refrigerator (in the refrigeration heat exchanger). It is injected into the suction side of the high-stage compression mechanism that is not used for evaporation. For this reason, when the amount of liquid refrigerant injected is increased, the amount of refrigerant used for cooling the inside of the warehouse is reduced. Therefore, the refrigerating capacity of the evaporator with respect to the power of the entire compression mechanism is reduced, and the desired high COP cannot be obtained! /, And! /.
[0006] 本発明は、力、かる点に鑑みてなされたものであり、低段側圧縮機構と高段側圧縮 機構とを備えて冷媒を 2段圧縮する冷凍装置にお!/、て、高段側圧縮機構の信頼性を 確保しながら、 COPの向上を図ることを目的とする。 [0006] The present invention has been made in view of the force and the point, and in a refrigeration apparatus comprising a low-stage compression mechanism and a high-stage compression mechanism to compress refrigerant in two stages! The purpose is to improve the COP while ensuring the reliability of the high-stage compression mechanism.
課題を解決するための手段  Means for solving the problem
[0007] 第 1の発明は、運転容量可変の低段側圧縮機構 (41)と運転容量可変の高段側 圧縮機構(11)と凝縮器(13)と膨張機構 (32)と蒸発器 (31)とが順に接続された冷媒 回路(10)を備え、上記低段側圧縮機構 (41)と上記高段側圧縮機構(11)とによって 冷媒を 2段圧縮する冷凍装置を対象としている。そして、上記蒸発器 (31)における蒸 発温度が目標蒸発温度となるように上記低段側圧縮機構 (41)の運転容量を制御す る第 1容量制御手段(101)と、上記低段側圧縮機構 (41)の吐出温度が目標吐出温 度となるように上記高段側圧縮機構(11)の運転容量を制御する第 2容量制御手段( 102)とを備えている。 [0007] The first invention includes a low-stage compression mechanism (41) with variable operating capacity, a high-stage compression mechanism (11) with variable operating capacity, a condenser (13), an expansion mechanism (32), and an evaporator ( 31) is connected to the refrigerant circuit (10) in order, and the refrigeration apparatus compresses the refrigerant in two stages by the low-stage compression mechanism (41) and the high-stage compression mechanism (11). A first capacity control means (101) for controlling the operating capacity of the low-stage compression mechanism (41) so that the evaporation temperature in the evaporator (31) becomes a target evaporation temperature; and the low-stage side Second capacity control means (102) is provided for controlling the operating capacity of the high-stage compression mechanism (11) so that the discharge temperature of the compression mechanism (41) becomes the target discharge temperature.
[0008] この第 1の発明では、上記第 1容量制御手段(101)が、上記蒸発器 (31)における 蒸発温度が目標蒸発温度となるように、上記低段側圧縮機構 (41)の運転容量を制 御して冷凍負荷に対応した運転を行う。尚、第 1容量制御手段(101)は、蒸発温度の 制御に代わって、蒸発圧力が上記目標蒸発温度に相当する飽和圧力となるように制 徒 Pを fiつてもよい。  [0008] In the first invention, the first capacity control means (101) operates the low-stage compression mechanism (41) so that the evaporation temperature in the evaporator (31) becomes the target evaporation temperature. Operate according to the refrigeration load by controlling the capacity. Note that the first capacity control means (101) may be provided with a controller P so that the evaporation pressure becomes a saturation pressure corresponding to the target evaporation temperature, instead of controlling the evaporation temperature.
[0009] また、上記第 2容量制御手段(102)は、上記低段側圧縮機構 (41)の吐出温度が 上記目標吐出温度より高い場合、上記高段側圧縮機構(11)の運転容量を増大させ ることにより、上記低段側圧縮機構 (41)の吐出温度を低下させて目標吐出温度とす る。そして、この低段側圧縮機構 (41)の目標吐出温度を適宜設定することにより、高 段側圧縮機構(11)の吸入冷媒を比較的低い温度とする。これにより、高段側圧縮機 構(11)が高温になりすぎることを防止する対策として高段側圧縮機構(11)の吸入側 に液冷媒を供給するにあたり、この液冷媒の量が低減する。  [0009] Further, the second capacity control means (102) reduces the operating capacity of the high-stage compression mechanism (11) when the discharge temperature of the low-stage compression mechanism (41) is higher than the target discharge temperature. By increasing the discharge temperature, the discharge temperature of the low-stage compression mechanism (41) is lowered to the target discharge temperature. Then, by appropriately setting the target discharge temperature of the low-stage compression mechanism (41), the intake refrigerant of the high-stage compression mechanism (11) is set to a relatively low temperature. This reduces the amount of liquid refrigerant when supplying liquid refrigerant to the suction side of the high stage compression mechanism (11) as a measure to prevent the high stage compressor mechanism (11) from becoming too hot. .
[0010] また、上記第 2容量制御手段(102)は、上記低段側圧縮機構 (41)の吐出温度が 上記目標温度より低!/、場合、上記高段側圧縮機構(11)の運転容量を低減させること により、上記低段側圧縮機構 (41)の吐出温度を高くして目標吐出温度とする。つまり 、上記低段側圧縮機構 (41)の吐出温度が目標吐出温度よりも低い場合、高段側圧 縮機構(11)が高温になりすぎな!/、程度まで該高段側圧縮機構(11)の運転容量を低 減し、圧縮機構(11, 41)全体としての動力をできるだけ小さくする。 [0010] Further, the second capacity control means (102) operates the high-stage compression mechanism (11) when the discharge temperature of the low-stage compression mechanism (41) is lower than the target temperature! Reducing capacity Thus, the discharge temperature of the low-stage compression mechanism (41) is increased to the target discharge temperature. That is, when the discharge temperature of the low-stage compression mechanism (41) is lower than the target discharge temperature, the high-stage compression mechanism (11) is not too hot! ) To reduce the operating capacity of the compression mechanism (11, 41) as much as possible.
[0011] 第 2の発明は、第 1の発明において、上記低段側圧縮機構 (41)の吐出圧力が、 上記低段側圧縮機構 (41)の吸入圧力及び吸入温度と上記目標吐出温度とに基づ いて導出した目標吐出圧力となるように上記高段側圧縮機構(11)の運転容量を制 御する。 [0011] In a second aspect based on the first aspect, the discharge pressure of the low-stage compression mechanism (41) includes the suction pressure and suction temperature of the low-stage compression mechanism (41), and the target discharge temperature. The operating capacity of the high-stage compression mechanism (11) is controlled so that the target discharge pressure derived based on
[0012] ここで、低段側圧縮機構 (41) 1 例えば、スクロール型の圧縮機などである場合、 圧縮機のドーム内において冷媒を圧縮する圧縮室から吐出した冷媒がー端ドーム内 に充満して該ドームを加熱してから圧縮機から吐出される。そのため、低段側圧縮機 構 (41)の吐出温度を測定するにあたり、該低段側圧縮機構 (41)の吐出配管などに 温度センサを設けると、圧縮室から吐出した冷媒の温度である実際の吐出温度が、 迅速に測定されず、応答時間が長くなる。また、吐出温度を測定するための温度セン サを、圧縮機のドーム内に設けることは困難である。  Here, the low-stage compression mechanism (41) 1 For example, in the case of a scroll type compressor, the refrigerant discharged from the compression chamber that compresses the refrigerant in the dome of the compressor fills the end dome. The dome is heated and discharged from the compressor. Therefore, when measuring the discharge temperature of the low-stage compressor mechanism (41), if a temperature sensor is provided in the discharge pipe of the low-stage compressor mechanism (41), the actual temperature of the refrigerant discharged from the compression chamber The discharge temperature is not measured quickly and the response time becomes longer. In addition, it is difficult to provide a temperature sensor for measuring the discharge temperature in the dome of the compressor.
[0013] つまり、低段側圧縮機構 (41)の構成によっては、吐出温度を迅速且つ厳密に測 定することが困難な場合があるので、この第 2の発明では、吐出温度を目標吐出温 度に近づける制御を行うのではなぐ測定の応答時間が短!/、低段側圧縮機構 (41) の吐出圧力を制御することにより、吐出温度の制御を行う。具体的に、低段側圧縮機 構 (41)の吐出圧力を、低段側圧縮機構 (41)の目標吐出温度と、該低段側圧縮機構 (41)吸入冷媒の圧力及び温度に基づいて予め導出した目標吐出圧力となるように 制御する。  That is, depending on the configuration of the low-stage compression mechanism (41), it may be difficult to quickly and accurately measure the discharge temperature. Therefore, in the second invention, the discharge temperature is set to the target discharge temperature. The response time of the measurement is shorter than the control close to the degree of control, and the discharge temperature is controlled by controlling the discharge pressure of the low-stage compression mechanism (41). Specifically, the discharge pressure of the low-stage compressor mechanism (41) is determined based on the target discharge temperature of the low-stage compression mechanism (41) and the pressure and temperature of the low-stage compression mechanism (41) suction refrigerant. Control to achieve the target discharge pressure derived in advance.
[0014] 第 3の発明は、第 1の発明において、上記冷媒回路(10)は、凝縮器(13)から膨張 機構 (32)へ流れる液冷媒と該液冷媒の一部が分岐され且つ減圧された分岐冷媒と を熱交換させて上記液冷媒を冷却する過冷却熱交換器 (50)を備える一方、該過冷 却熱交換器 (50)を流れた分岐冷媒が上記高段側圧縮機構(11)の吸入側に供給さ れるように構成されている。  In a third aspect based on the first aspect, the refrigerant circuit (10) is configured such that the liquid refrigerant flowing from the condenser (13) to the expansion mechanism (32) and a part of the liquid refrigerant are branched and decompressed. A subcooling heat exchanger (50) that cools the liquid refrigerant by exchanging heat with the branched refrigerant, and the branch refrigerant that has flowed through the supercooling heat exchanger (50) It is configured to be supplied to the suction side of (11).
[0015] また、第 5の発明は、第 2の発明において、上記冷媒回路(10)は、凝縮器(13)か ら膨張機構 (32)へ流れる液冷媒と該液冷媒の一部が分岐され且つ減圧された分岐 冷媒とを熱交換させて上記液冷媒を冷却する過冷却熱交換器 (50)を備える一方、 該過冷却熱交換器 (50)を流れた分岐冷媒が上記高段側圧縮機構(11)の吸入側に 供給されるように構成されてレ、る。 [0015] Further, according to a fifth aspect based on the second aspect, the refrigerant circuit (10) is a condenser (13). A subcooling heat exchanger (50) that cools the liquid refrigerant by exchanging heat between the liquid refrigerant flowing to the expansion mechanism (32) and the branched refrigerant that is partly branched and decompressed. The branched refrigerant that has flowed through the supercooling heat exchanger (50) is supplied to the suction side of the high-stage compression mechanism (11).
[0016] この第 3及び第 5の発明では、液冷媒が上記過冷却熱交換器 (50)で冷却されて 上記膨張機構 (32)で膨張した後に蒸発器 (31)に送られるので、上記蒸発器 (31)に おける冷凍能力が大きくなる。  In the third and fifth inventions, the liquid refrigerant is cooled by the supercooling heat exchanger (50), expanded by the expansion mechanism (32), and then sent to the evaporator (31). The refrigerating capacity in the evaporator (31) is increased.
[0017] 第 4の発明は、第 3の発明において、上記分岐冷媒を上記過冷却熱交換器 (50) に供給する分岐通路 (84)には、開度調整自在な減圧弁(58)が設けられる一方、上 記過冷却熱交換器 (50)を流れた液冷媒の温度が目標冷却温度となるように上記減 圧弁(58)の開度を制御する弁制御手段(103)を備えて!/、る。  [0017] In a fourth aspect based on the third aspect, the branch passage (84) for supplying the branch refrigerant to the supercooling heat exchanger (50) is provided with a pressure reducing valve (58) whose opening degree is adjustable. On the other hand, it is provided with valve control means (103) for controlling the opening of the pressure reducing valve (58) so that the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) becomes the target cooling temperature! /
[0018] また、第 6の発明は、第 5の発明において、上記分岐冷媒を上記過冷却熱交換器  [0018] Further, in a sixth aspect based on the fifth aspect, the branch refrigerant is replaced with the supercooling heat exchanger.
(50)に供給する分岐通路 (84)には、開度調整自在な減圧弁(58)が設けられる一方 、上記過冷却熱交換器 (50)を流れた液冷媒の温度が目標冷却温度となるように上 記減圧弁(58)の開度を制御する弁制御手段(103)を備えて!/、る。  The branch passage (84) supplied to (50) is provided with a pressure reducing valve (58) whose opening degree can be adjusted, while the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) is equal to the target cooling temperature. As shown, it is equipped with valve control means (103) for controlling the opening of the pressure reducing valve (58).
[0019] この第 4及び第 6の発明では、上記弁制御手段(103)が、上記過冷却熱交換器 (5 0)を流れた液冷媒の温度が上記目標冷却温度より高!/、場合は、減圧弁(58)の開度 を大きくし、上記目標冷却温度より低い場合は、減圧弁(58)の開度を小さくして、過 冷却熱交換器 (50)を流れた液冷媒の温度を目標冷却温度とする。  [0019] In the fourth and sixth inventions, when the valve control means (103) is configured such that the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) is higher than the target cooling temperature! Increases the opening of the pressure reducing valve (58) and lowers the opening of the pressure reducing valve (58) when the opening is lower than the target cooling temperature, so that the liquid refrigerant flowing through the supercooling heat exchanger (50) Let temperature be the target cooling temperature.
[0020] 尚、この目標冷却温度は、例えば、以下のように設定する。つまり、この液冷媒を 冷却する分岐冷媒は、高段側圧縮機構(11)の吸入側に供給されることから、過冷却 熱交換器 (50)を流れる際に高段側圧縮機構(11)の吸入圧力に相当する飽和温度 で蒸発する。そして、第 2の発明では、高段側圧縮機構(11)の吸入圧力に対応する 低段側圧縮機構 (41)の吐出圧力を目標吐出圧力となるように制御するので、この目 標吐出圧力に相当する飽和温度が分岐冷媒の蒸発温度となり、液冷媒の目標冷却 温度を、例えば、この目標吐出圧力における飽和温度よりやや高い値に設定する。 発明の効果  [0020] The target cooling temperature is set as follows, for example. That is, the branched refrigerant that cools the liquid refrigerant is supplied to the suction side of the high-stage compression mechanism (11), and therefore, when flowing through the supercooling heat exchanger (50), the high-stage compression mechanism (11) It evaporates at a saturation temperature corresponding to the suction pressure. In the second invention, since the discharge pressure of the low-stage compression mechanism (41) corresponding to the suction pressure of the high-stage compression mechanism (11) is controlled to be the target discharge pressure, this target discharge pressure is controlled. The saturation temperature corresponding to is the evaporation temperature of the branch refrigerant, and the target cooling temperature of the liquid refrigerant is set to a value slightly higher than the saturation temperature at the target discharge pressure, for example. The invention's effect
[0021] 上記第 1の発明によれば、蒸発器 (31)における蒸発温度が目標蒸発温度となる ように、上記低段側圧縮機構 (41)の運転容量を制御するようにしたために、冷凍負 荷に対応した運転を行うことができる。 [0021] According to the first invention, the evaporation temperature in the evaporator (31) becomes the target evaporation temperature. As described above, since the operation capacity of the low-stage compression mechanism (41) is controlled, the operation corresponding to the refrigeration load can be performed.
[0022] そして、上記低段側圧縮機構 (41)の吐出温度が目標吐出温度となるように、上記 高段側圧縮機構(11)の運転容量を制御するようにしたために、この目標吐出温度を 適宜設定することにより、高段側圧縮機構(11)の吸入冷媒を比較的低い温度とする ことができる。この結果、高段側圧縮機構(11)が高温になりすぎることを防止する対 策として高段側圧縮機構(11)の吸入側に液冷媒を供給するにあたり、この液冷媒の 量を低減することができる。  [0022] Since the operating capacity of the high-stage compression mechanism (11) is controlled so that the discharge temperature of the low-stage compression mechanism (41) becomes the target discharge temperature, the target discharge temperature By appropriately setting the above, the intake refrigerant of the high stage compression mechanism (11) can be set to a relatively low temperature. As a result, when supplying the liquid refrigerant to the suction side of the high-stage compression mechanism (11) as a measure to prevent the high-stage compression mechanism (11) from becoming too hot, the amount of the liquid refrigerant is reduced. be able to.
[0023] さらに、上記低段側圧縮機構 (41)の吐出温度が目標吐出温度よりも低!/、場合は 、高段側圧縮機構(11)が高温になりすぎない程度まで、該高段側圧縮機構(11)の 運転容量を低減することができるので、高段側圧縮機構(11)の動力をできるだけ小 さくすること力できる。つまり、蒸発器 (31)で蒸発する冷媒の流量を大きくすることが できると共に、高段側圧縮機構(11)の動力をできるだけ小さくすることができるので、 両圧縮機構 (41 , 11)の動力に対する蒸発器 (31)での冷凍能力を大きくすることがで き、 COPを向上させること力 Sできる。  [0023] Further, in the case where the discharge temperature of the low-stage compression mechanism (41) is lower than the target discharge temperature, the high-stage compression mechanism (11) is high enough to prevent the temperature from becoming too high. Since the operating capacity of the side compression mechanism (11) can be reduced, the power of the high stage compression mechanism (11) can be reduced as much as possible. In other words, the flow rate of the refrigerant evaporated in the evaporator (31) can be increased, and the power of the high-stage compression mechanism (11) can be reduced as much as possible, so that the power of both compression mechanisms (41, 11) can be reduced. This can increase the refrigeration capacity of the evaporator (31) against COP and improve the COP.
[0024] また、上記第 2の発明によれば、上記第 2容量制御手段(102)は、上記低段側圧 縮機構 (41)の吐出圧力が上記目標吐出圧力となるように、上記高段側圧縮機構(11 )の運転容量を制御するようにしたために、低段側圧縮機構 (41)が、吐出温度を迅 速且つ厳密に測定することが困難な構成であっても、吐出温度を吐出目標温度とす る制卸を fiうこと力できる。  [0024] According to the second aspect of the invention, the second capacity control means (102) includes the high stage so that the discharge pressure of the low stage side compression mechanism (41) becomes the target discharge pressure. Since the operating capacity of the side compression mechanism (11) is controlled, even if the low-stage compression mechanism (41) has a configuration in which it is difficult to measure the discharge temperature quickly and precisely, the discharge temperature can be reduced. It can be used to control the discharge target temperature.
[0025] また、上記第 3及び第 5の発明によれば、上記過冷却熱交換器 (50)で上記液冷 媒を冷却するようにしたために、この冷却された液冷媒が上記蒸発器 (31)に送られる ことから、蒸発器 (31)における冷凍能力を大きくすることができ、冷凍装置(1)の CO Pを確実に向上させることができる。  [0025] Further, according to the third and fifth inventions, since the liquid cooling medium is cooled by the supercooling heat exchanger (50), the cooled liquid refrigerant is supplied to the evaporator ( Therefore, the refrigerating capacity of the evaporator (31) can be increased, and the COP of the refrigerating apparatus (1) can be improved reliably.
[0026] また、上記第 4及び第 6の発明によれば、上記過冷却熱交換器 (50)を流れた液 冷媒の温度が目標冷却温度となるように、上記減圧弁(58)の開度を制御するように したために、上記液冷媒をより確実に冷却することができるので、冷凍装置(1)の CO Pをより確実に向上させることカできる。 図面の簡単な説明 [0026] According to the fourth and sixth inventions, the pressure reducing valve (58) is opened so that the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) becomes a target cooling temperature. Since the temperature is controlled, the liquid refrigerant can be cooled more reliably, so that the COP of the refrigeration apparatus (1) can be improved more reliably. Brief Description of Drawings
[0027] [図 1]図 1は、実施形態に係る冷凍装置の冷媒回路の配管系統図である。  FIG. 1 is a piping system diagram of a refrigerant circuit of a refrigeration apparatus according to an embodiment.
[図 2]図 2は、実施形態に係る冷凍装置の冷却運転中の冷媒の流れを示す配管系統 図である。  FIG. 2 is a piping diagram showing the refrigerant flow during the cooling operation of the refrigeration apparatus according to the embodiment.
[図 3]図 3は、実施形態に係る第 2容量制御部の高段側圧縮機構の運転容量制御を 示すフローチャートである。  FIG. 3 is a flowchart showing the operation capacity control of the high-stage compression mechanism of the second capacity control unit according to the embodiment.
[図 4]図 4は、実施形態に係る弁制御部の第 2膨張弁の開度制御を示すフローチヤ一 トでめる。  [FIG. 4] FIG. 4 is a flow chart showing opening control of the second expansion valve of the valve control unit according to the embodiment.
符号の説明  Explanation of symbols
1 冷凍装置  1 Refrigeration equipment
10 冷媒回路  10 Refrigerant circuit
11 高段側圧縮機構  11 High-stage compression mechanism
13 室外熱交換器 (凝縮器)  13 Outdoor heat exchanger (condenser)
31 冷凍熱交換器 (蒸発器)  31 Refrigeration heat exchanger (evaporator)
32 冷凍膨張弁 (膨張機構)  32 Refrigeration expansion valve (Expansion mechanism)
41 ブースタ圧縮機構 (低段側圧縮機構)  41 Booster compression mechanism (Low stage compression mechanism)
50 過冷却熱交換器  50 Supercooling heat exchanger
58 第 2膨張弁 (減圧弁)  58 Second expansion valve (pressure reducing valve)
84 分岐通路  84 Branch passage
101 第 1容量制御部(第 1容 t制御手段)  101 1st capacity control unit (1st capacity t control means)
102 第 2容量制御部(第 2容 t制御手段)  102 2nd capacity control unit (2nd capacity t control means)
103 弁制御部 (弁制御手段)  103 Valve control unit (valve control means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0030] 本発明の実施形態は、図 1に示すように、庫内の冷却を行う冷凍装置(1)であつ て、室外ユニット (2)と冷凍ユニット(3)とブースタユニット(4)とコントローラ(100)とを 備えている。  [0030] As shown in FIG. 1, the embodiment of the present invention is a refrigeration apparatus (1) that cools the inside of a cabinet, and includes an outdoor unit (2), a refrigeration unit (3), and a booster unit (4). And a controller (100).
[0031] 上記室外ユニット(2)には室外回路(20)力 S、上記冷凍ユニット(3)には冷凍回路( 30)力 S、上記ブースタユニット(4)にはブースタ回路(40)がそれぞれ設けられている。 上記室外回路 (20)と上記冷凍回路 (30)とは液連絡配管(21)を介して接続され、上 記冷凍回路 (30)と上記ブースタ回路 (40)とは第 1ガス連絡配管(22)を介して接続さ れ、上記ブースタ回路 (40)と上記室外回路(20)とは第 2ガス連絡配管(23)を介して 接続されている。そして、上記室外回路(20)と冷凍回路(30)とブースタ回路 (40)とが 順に接続されて蒸気圧縮式冷凍サイクルの冷媒回路(10)を構成して!/、る。 [0031] The outdoor unit (2) has an outdoor circuit (20) force S, and the refrigeration unit (3) has a refrigeration circuit ( 30) Force S, The booster unit (4) is provided with a booster circuit (40). The outdoor circuit (20) and the refrigeration circuit (30) are connected via a liquid communication pipe (21), and the refrigeration circuit (30) and the booster circuit (40) are connected to a first gas communication pipe (22 ) And the booster circuit (40) and the outdoor circuit (20) are connected via a second gas communication pipe (23). The outdoor circuit (20), the refrigeration circuit (30), and the booster circuit (40) are connected in order to constitute a refrigerant circuit (10) of the vapor compression refrigeration cycle.
[0032] 〈室外ユニット〉  [0032] <Outdoor unit>
上記室外回路 (20)には、高段側圧縮機構(11)と室外熱交換器(13)とレシーバ 一 (14)と過冷却熱交換器 (50)と第 1膨張弁 (57)と第 2膨張弁 (58)と第 3膨張弁 (59) とが設けられている。また、室外回路(20)には、四路切換弁(12)と液側閉鎖弁(53) とガス側閉鎖弁(54)とが設けられている。上記室外回路(20)において、液側閉鎖弁 (53)には液連絡配管(21)の一端が、ガス側閉鎖弁(54)には第 2ガス連絡配管(23) の一端がそれぞれ接続されて!/、る。  The outdoor circuit (20) includes a high-stage compression mechanism (11), an outdoor heat exchanger (13), a receiver (14), a supercooling heat exchanger (50), a first expansion valve (57), and a first expansion valve (57). A two expansion valve (58) and a third expansion valve (59) are provided. The outdoor circuit (20) is provided with a four-way switching valve (12), a liquid side closing valve (53), and a gas side closing valve (54). In the outdoor circuit (20), one end of the liquid communication pipe (21) is connected to the liquid side shut-off valve (53), and one end of the second gas communication pipe (23) is connected to the gas-side shut-off valve (54). /!
[0033] 上記高段側圧縮機構(11)は、互いに並列に接続される 3台の圧縮機(11a, l ib, 11c)から構成されている。上記 3台の圧縮機(11a, l ib, 11c)は高圧ドーム型のスクロ ール圧縮機である。つまり、各圧縮機(11a, l ib, 11c)は、図示を省略するが、固定ス クロールと可動スクロールとが互いに渦巻き状のラップを嚙合させて圧縮室を形成し [0033] The high stage compression mechanism (11) includes three compressors (11a, ib, 11c) connected in parallel to each other. The above three compressors (11a, l ib, 11c) are high-pressure dome type scroll compressors. In other words, each compressor (11a, ib, 11c) is not shown in the figure, but the fixed scroll and the movable scroll combine the spiral wraps to form a compression chamber.
、この圧縮室で圧縮された冷媒が該圧縮室から吐出してドーム内を充満した後に各 圧縮機(11a, l ib, 11c)力 吐出されるように構成されている。 The refrigerant compressed in the compression chamber is discharged from the compression chamber and fills the inside of the dome, and then is discharged by the compressors (11a, ib, 11c).
[0034] 上記第 1圧縮機(11a)は、図示しない圧縮機モータにインバータを介して電力が 供給され、該インバータの出力周波数を変化させることにより、運転容量が可変に構 成されている。また、第 2圧縮機(l ib)及び第 3圧縮機(11c)は、運転容量が固定に 構成されている。また、上記高段側圧縮機構(11)は、冷凍装置(1)の運転時に、 3台 の圧縮機(11a, l ib, 11c)のうち第 1圧縮機(11a)が優先的に駆動され、庫内の冷却 負荷などに応じて、第 2圧縮機(l ib)、第 3圧縮機(11c)の順に順次駆動されるように 構成されている。 [0034] The first compressor (11a) is configured to have a variable operating capacity by supplying electric power to a compressor motor (not shown) via an inverter and changing the output frequency of the inverter. The second compressor (l ib) and the third compressor (11c) are configured with a fixed operating capacity. In the high-stage compression mechanism (11), the first compressor (11a) of the three compressors (11a, lib, 11c) is preferentially driven during operation of the refrigeration system (1). The second compressor (l ib) and the third compressor (11c) are sequentially driven in accordance with the cooling load in the cabinet.
[0035] 上記高段側圧縮機構(11)の吸入側には、吸入主管(55)が接続されている。上記 吸入主管(55)は、一端が四路切換弁(12)に接続され、他端が第 3吸入管 (61c)と吸 入接続管(56)とに分岐され、該第 3吸入管 (61c)の他端が第 3圧縮機(1 lc)の吸入 側に接続されている。また、吸入接続管(56)は、第 1吸入管 (61a)と第 2吸入管 (61b) とに分岐され、該第 1吸入管(61a)が上記第 1圧縮機(11a)の吸入側に接続される一 方、該第 2吸入管(61b)が上記第 2圧縮機(l ib)の吸入側に接続されている。 A suction main pipe (55) is connected to the suction side of the high-stage compression mechanism (11). The suction main pipe (55) has one end connected to the four-way selector valve (12) and the other end connected to the third suction pipe (61c). The third inlet pipe (61c) is branched to the inlet / outlet pipe (56), and the other end of the third inlet pipe (61c) is connected to the inlet side of the third compressor (1 lc). The suction connection pipe (56) is branched into a first suction pipe (61a) and a second suction pipe (61b), and the first suction pipe (61a) is connected to the suction side of the first compressor (11a). On the other hand, the second suction pipe (61b) is connected to the suction side of the second compressor (lib).
[0036] 上記高段側圧縮機構(11)の吐出側には、吐出主管(64)が接続されている。上記 吐出主管 (64)の一端は、四路切換弁(12)に接続される一方、他端は、第 1吐出管( 64a)と第 2吐出管(64b)と第 3吐出管(64c)とに分岐されて!/、る。上記第 1吐出管(64a )が第 1圧縮機(11a)の吐出側に、上記第 2吐出管(64b)が第 2圧縮機(l ib)の吐出 側に、上記第 3吐出管(64c)が第 3圧縮機(11c)の吐出側にそれぞれ接続されている 。各吐出管(64a, 64b, 64c)には、上記各圧縮機(11a, l ib, 11c)から四路切換弁(12 )へ向力、う冷媒の流通だけを許容する逆止弁(CV-1 , CV-2, CV-3)が、それぞれ設 けられている。 [0036] A discharge main pipe (64) is connected to the discharge side of the high-stage compression mechanism (11). One end of the discharge main pipe (64) is connected to the four-way switching valve (12), while the other end is connected to the first discharge pipe (64a), the second discharge pipe (64b), and the third discharge pipe (64c). Branched to! / The first discharge pipe (64a) is on the discharge side of the first compressor (11a), the second discharge pipe (64b) is on the discharge side of the second compressor (lib), and the third discharge pipe (64c ) Are connected to the discharge side of the third compressor (11c). Each discharge pipe (64a, 64b, 64c) has a check valve (CV) that allows only the flow of the refrigerant from the compressors (11a, ib, 11c) to the four-way selector valve (12). -1, CV-2, CV-3) are provided.
[0037] 上記室外熱交換器(13)は、クロスフィン式のフィン 'アンド ' ·チューブ型熱交換器 であって、冷媒と室外空気との間で熱交換を行うものであり、凝縮器に構成されてい る。室外熱交換器(13)は、一端が四路切換弁(12)に接続され、他端が第 1液管 (81) を介してレシーバー(14)の頂部に接続されている。この第 1液管(81)には、室外熱 交換器(13)からレシーバー(14)へ向力、う冷媒の流通だけを許容する逆止弁(CV-4) が設けられている。レシーバー(14)の底部には第 2液管(82)の一端が接続されてい  [0037] The outdoor heat exchanger (13) is a cross-fin fin-and-tube heat exchanger that exchanges heat between refrigerant and outdoor air. It is configured. One end of the outdoor heat exchanger (13) is connected to the four-way switching valve (12), and the other end is connected to the top of the receiver (14) via the first liquid pipe (81). The first liquid pipe (81) is provided with a check valve (CV-4) that permits only the flow of refrigerant and the directional force from the outdoor heat exchanger (13) to the receiver (14). One end of the second liquid pipe (82) is connected to the bottom of the receiver (14).
[0038] 上記過冷却熱交換器 (50)は、プレート式熱交換器であって、冷媒と冷媒との間で 熱交換を行うものであり、第 1流路(50a)と第 2流路(50b)とを備えている。上記過冷 却熱交換器 (50)の第 1流路 (50a)は、一端が上記第 2液管 (82)の他端に接続され、 他端が第 3液管 (83)の一端に接続されている。第 3液管 (83)の他端は、液側閉鎖弁 (53)を介して液連絡配管(21)の一端に接続されている。上記第 3液管 (83)には、第 1流路(50a)の他端から液側閉鎖弁(53)へ向かう冷媒の流通だけを許容する逆止弁 (CV-5)が設けられている。 [0038] The supercooling heat exchanger (50) is a plate-type heat exchanger, and performs heat exchange between the refrigerant and the first flow path (50a) and the second flow path. (50b). The first flow path (50a) of the supercooling heat exchanger (50) has one end connected to the other end of the second liquid pipe (82) and the other end connected to one end of the third liquid pipe (83). It is connected. The other end of the third liquid pipe (83) is connected to one end of the liquid communication pipe (21) via the liquid side closing valve (53). The third liquid pipe (83) is provided with a check valve (CV-5) that allows only the refrigerant to flow from the other end of the first flow path (50a) to the liquid side stop valve (53). Yes.
[0039] 上記第 3液管(83)には、上記逆止弁(CV-5)の上流側に分岐通路 (84)の一端が 接続され、該分岐通路 (84)の他端は、上記過冷却熱交換器 (50)の第 2流路(50b) の一端に接続されている。また、上記分岐通路 (84)には、減圧弁である第 2膨張弁( 58)が設けられている。該第 2膨張弁(58)は、開度調整自在な電子膨張弁で構成さ れている。 [0039] One end of a branch passage (84) is connected to the third liquid pipe (83) on the upstream side of the check valve (CV-5), and the other end of the branch passage (84) Second flow path (50b) of the supercooling heat exchanger (50) It is connected to one end. The branch passage (84) is provided with a second expansion valve (58) which is a pressure reducing valve. The second expansion valve (58) is an electronic expansion valve whose opening degree is adjustable.
[0040] 上記過冷却熱交換器 (50)の第 2流路(50b)の他端は、ガスインジェクション管(85 )を介して上記吸入主管(55)の途中に接続されて!/、る。該ガスインジェクション管(85 )は、上記第 1から第 3の各圧縮機(11a, l ib, 11c)の吸入側に、ガス冷媒をインジェ
Figure imgf000011_0001
[0040] The other end of the second flow path (50b) of the supercooling heat exchanger (50) is connected in the middle of the suction main pipe (55) via a gas injection pipe (85)! . The gas injection pipe (85) injects a gas refrigerant into the suction side of each of the first to third compressors (11a, ib, 11c).
Figure imgf000011_0001
[0041] 上記第 3液管 (83)において、逆止弁(CV-5)と液側閉鎖弁(53)との間には、第 4 液管 (88)の一端が接続されている。第 4液管 (88)の他端は、第 1液管 (81)において 、逆止弁(CV-4)とレシーバー(14)との間に接続されている。また、第 4液管(88)に は、その一端から他端へ向かう冷媒の流通だけを許容する逆止弁(CV-6)が設けら れている。  [0041] In the third liquid pipe (83), one end of a fourth liquid pipe (88) is connected between the check valve (CV-5) and the liquid side shut-off valve (53). The other end of the fourth liquid pipe (88) is connected between the check valve (CV-4) and the receiver (14) in the first liquid pipe (81). The fourth liquid pipe (88) is provided with a check valve (CV-6) that allows only the refrigerant to flow from one end to the other end.
[0042] 上記分岐通路 (84)における一端と第 2膨張弁(58)との間には、第 5液管 (89)の 一端が接続され、該第 5液管 (89)の他端は、第 1液管 (81)における室外熱交換器(1 3)と逆止弁(CV-4)との間に接続されている。また、第 5液管 (89)には、第 1膨張弁(5 7)が設けられて!/、る。該第 1膨張弁(57)は開度調整自在な電子膨張弁で構成され ている。  [0042] Between one end of the branch passage (84) and the second expansion valve (58), one end of the fifth liquid pipe (89) is connected, and the other end of the fifth liquid pipe (89) is The first liquid pipe (81) is connected between the outdoor heat exchanger (13) and the check valve (CV-4). The fifth liquid pipe (89) is provided with a first expansion valve (57). The first expansion valve (57) is an electronic expansion valve whose opening degree is adjustable.
[0043] また、上記第 1液管 (81)における逆止弁(CV-4)と第 4液管 (88)の接続部との間 には、連通管(78)の一端が接続され、該連通管(78)の他端は、吐出主管(64)に接 続されている。上記連通管(78)には、第 1液管 (81)から吐出主管 (64)へ向かう冷媒 の流通だけを許容する逆止弁(CV-7)が設けられて!/、る。  [0043] Further, one end of the communication pipe (78) is connected between the check valve (CV-4) and the connection part of the fourth liquid pipe (88) in the first liquid pipe (81), The other end of the communication pipe (78) is connected to the discharge main pipe (64). The communication pipe (78) is provided with a check valve (CV-7) that allows only the refrigerant to flow from the first liquid pipe (81) to the discharge main pipe (64).
[0044] 上記四路切換弁(12)は、第 1ポートが吐出主管(64)に、第 2ポートが吸入主管(5 5)に、第 3ポートが室外熱交換器(13)の一端に、第 4ポートがガス側閉鎖弁(54)にそ れぞれ接続されている。上記四路切換弁(12)は、第 1のポートと第 3のポートとが互 いに連通して第 2のポートと第 4のポートとが互いに連通する第 1状態(図 1に実線で 示す状態)と、第 1のポートと第 4のポートとが互いに連通して第 2のポートと第 3ポート とが互いに連通する第 2状態(図 1に破線で示す状態)とに切り換わる。  [0044] The four-way selector valve (12) has a first port at the discharge main pipe (64), a second port at the suction main pipe (55), and a third port at one end of the outdoor heat exchanger (13). The 4th port is connected to the gas side shutoff valve (54). The four-way selector valve (12) is in the first state (the solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. And a second state (state indicated by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other.
[0045] また、上記室外回路(20)には、油分離器 (70)、第 1液インジェクション通路(15)、 第 1から第 3の 3つの均油管(72a, 72b, 72c)及び、第 1から第 3の 3つの油回収管(73 a, 73b, 73c)が設けられている。 [0045] The outdoor circuit (20) includes an oil separator (70), a first liquid injection passage (15), First to third three oil equalizing pipes (72a, 72b, 72c) and first to third oil recovery pipes (73a, 73b, 73c) are provided.
[0046] 上記油分離器 (70)は、吐出主管(64)に設けられ、各圧縮機(11a, l ib, 11c)の吐 出冷媒力、ら冷凍機油を分離するためのものである。該油分離器 (70)には、油戻し管 (71)の一端が接続され、該油戻し管(71)の他端は、吸入主管(55)におけるガスイン ジェクシヨン管(85)の接続部の下流側に接続されている。上記油戻し管(71)には、 開閉自在な第 4電磁弁 (SV-4)が設けられ、該第 4電磁弁 (SV-4)を開くと、油分離器 (70)で分離された冷凍機油が、吸入主管(55)を介して各圧縮機(11a, l ib, 11c)に 戻される。 [0046] The oil separator (70) is provided in the discharge main pipe (64) and separates the refrigerant oil from the discharged refrigerant force of the compressors (11a, ib, 11c). One end of an oil return pipe (71) is connected to the oil separator (70), and the other end of the oil return pipe (71) is connected to a connection portion of the gas injection pipe (85) in the suction main pipe (55). Connected downstream. The oil return pipe (71) is provided with a fourth solenoid valve (SV-4) that can be freely opened and closed. When the fourth solenoid valve (SV-4) is opened, the oil separator (70) separates the oil return pipe (71). Refrigerator oil is returned to the compressors (11a, ib, 11c) via the suction main pipe (55).
[0047] 上記第 1液インジェクション通路(15)は、第 1液インジェクション主管(16)と第 1か ら第 4の各液インジェクション分岐管(16a, 16b, 16c, 16d)とを備えている。上記第 1 液インジェクション主管(16)は、一端が上記分岐通路 (84)における一端と第 5液管( 89)の接続部との間に接続され、他端に分流器 (26)が設けられている。また、上記第 1液インジェクション主管(16)の途中には、第 3膨張弁(59)が設けられている。該第 3 膨張弁 (59)は、開度調整自在な電子膨張弁で構成されて!/、る。  [0047] The first liquid injection passage (15) includes a first liquid injection main pipe (16) and first to fourth liquid injection branch pipes (16a, 16b, 16c, 16d). One end of the first liquid injection main pipe (16) is connected between one end of the branch passage (84) and a connection portion of the fifth liquid pipe (89), and a shunt (26) is provided at the other end. ing. A third expansion valve (59) is provided in the middle of the first liquid injection main pipe (16). The third expansion valve (59) is an electronic expansion valve whose opening degree is adjustable.
[0048] そして、上記第 1から第 4の各液インジェクション分岐管(16a, 16b, 16c, 16d)が、 上記第 1液インジェクション主管(16)の分流器 (26)から分岐され、第 1から第 3の各 液インジェクション分岐管(16a, 16b, 16c)が第 1から第 3の各吸入管(61a, 61b, 61c) の途中に、第 4液インジェクション分岐管(16d)が、油戻し管(71)の第 4電磁弁(SV-4 )と他端との間にそれぞれ接続されている。また、第 1から第 4の各液インジェクション 分岐管(16a, 16b, 16c, 16d)には、それぞれ途中にキヤビラリ一チューブ(17a, 17b, 17c, 17d)が設けられている。  [0048] Each of the first to fourth liquid injection branch pipes (16a, 16b, 16c, 16d) is branched from the flow divider (26) of the first liquid injection main pipe (16), Each third liquid injection branch pipe (16a, 16b, 16c) is in the middle of each of the first to third suction pipes (61a, 61b, 61c), and the fourth liquid injection branch pipe (16d) is an oil return pipe. (71) The fourth solenoid valve (SV-4) is connected between the other end. In addition, each of the first to fourth liquid injection branch pipes (16a, 16b, 16c, 16d) is provided with a capillary tube (17a, 17b, 17c, 17d) in the middle.
[0049] 上記 3つの均油管(72a, 72b, 72c)では、上記第 1均油管(72a)が、第 1圧縮機(1 la)のドームと第 4液インジェクション分岐管(16d)の途中とに接続され、途中に第 1電 磁弁(SV-1)を備えている。また、第 2均油管(72b)は、第 2圧縮機(l ib)のドームと第 1吸入管(61a)の途中とに接続され、第 2電磁弁(SV-2)を備えている。また、第 3均油 管(72c)は、第 3圧縮機(11c)のドームと吸入接続管(56)の途中とに接続され、第 3 電磁弁(SV-3)を備えている。上記冷凍装置(1)では、上記油戻し管(71)により吸入 主管 (55)に戻された冷凍機油が、第 3圧縮機(11c)、第 2圧縮機(l ib)、第 1圧縮機( 11a)の順に多く戻るように構成されている。そして、上記各均油管(72a, 72b, 72c)に より、第 3圧縮機(11c)の冷凍機油が、第 2圧縮機(l ib)、第 1圧縮機(11a)へと順に 送られ、さらに第 1圧縮機(11a)の冷凍機油の余剰分は油戻し管(71)に送られて、各 圧縮機(11a, l ib, 11c)間で互いに均油し合うように構成されている。 [0049] In the three oil leveling pipes (72a, 72b, 72c), the first oil leveling pipe (72a) is connected between the dome of the first compressor (1 la) and the fourth liquid injection branch pipe (16d). The first solenoid valve (SV-1) is provided on the way. The second oil leveling pipe (72b) is connected to the dome of the second compressor (lib) and the middle of the first suction pipe (61a), and includes a second electromagnetic valve (SV-2). The third oil equalizing pipe (72c) is connected to the dome of the third compressor (11c) and the suction connecting pipe (56) and includes a third solenoid valve (SV-3). In the refrigeration system (1), the oil return pipe (71) is used for suction. The refrigeration oil returned to the main pipe (55) is configured to return in the order of the third compressor (11c), the second compressor (lib), and the first compressor (11a). Then, by the oil equalizing pipes (72a, 72b, 72c), the refrigerating machine oil of the third compressor (11c) is sequentially sent to the second compressor (lib) and the first compressor (11a), Furthermore, the excess of the refrigeration oil in the first compressor (11a) is sent to the oil return pipe (71) and is configured to equalize the oil between the compressors (11a, ib, 11c). .
[0050] また、 3つの油回収管(73a, 73b, 73c)では、第 1油回収管(73a)の一端が第 1吸 入管 (61a)の途中に、上記第 2油回収管(73b)の一端が第 2吸入管 (61b)の途中に、 上記第 3油回収管(73c)の一端が第 3吸入管 (61c)の途中にそれぞれ接続される一 方、各油回収管(73a, 73b, 73c)の他端は、互いに合流されている。該油回収管(73a , 73b, 73c)は、冷凍装置(1)の運転中に負荷に応じて特定の圧縮機(l ib, 11c)が 停止した際に、該圧縮機(l ib, 11c)の吸入管(61b、 61c)に滞留した冷凍機油を、駆 動している他の圧縮機(11a, l ib)の吸入管(61a, 61b)に送るためのものである。  [0050] In the three oil recovery pipes (73a, 73b, 73c), one end of the first oil recovery pipe (73a) is in the middle of the first suction pipe (61a), and the second oil recovery pipe (73b) One end of each oil recovery pipe (73b) is connected to one end of the second suction pipe (61b) and one end of the third oil recovery pipe (73c) to the middle of the third suction pipe (61c). The other ends of 73b and 73c) are joined together. The oil recovery pipes (73a, 73b, 73c) are connected to the compressors (lib, 11c) when a specific compressor (lib, 11c) is stopped according to the load during operation of the refrigeration system (1). ) Refrigeration oil accumulated in the suction pipes (61b, 61c) is sent to the suction pipes (61a, 61b) of the other compressors (11a, ib) that are driven.
[0051] 上記室外回路(20)には、各種のセンサや圧力スィッチが設けられている。具体的 に、吸入圧力センサ(135)及び吸入温度センサ(136)が吸入主管(55)に設けられ、 吐出圧力センサ(137)が吐出主管(64)に設けられ、各吐出温度センサ(138, 139, 1 40)が各吐出管(64a, 64b, 64c)に設けられている。また、第 3液管(83)における過冷 却熱交換器 (50)の第 1流路(50a)の出口付近には、第 1流路(50a)を流れ液冷媒の 温度を測定する液冷媒温度センサ(141)が設けられている。また、圧力スィッチ(151 , 152, 153, 154)が、各吐出管(64a, 64b, 64c)とガス側閉鎖弁(54)と四路切換弁(12 )との間の配管とに設けられている。  [0051] The outdoor circuit (20) is provided with various sensors and pressure switches. Specifically, a suction pressure sensor (135) and a suction temperature sensor (136) are provided in the suction main pipe (55), a discharge pressure sensor (137) is provided in the discharge main pipe (64), and each discharge temperature sensor (138, 139, 140) are provided in each discharge pipe (64a, 64b, 64c). Further, in the vicinity of the outlet of the first flow path (50a) of the supercooling heat exchanger (50) in the third liquid pipe (83), the liquid that flows through the first flow path (50a) and measures the temperature of the liquid refrigerant. A refrigerant temperature sensor (141) is provided. In addition, pressure switches (151, 152, 153, 154) are provided in the discharge pipes (64a, 64b, 64c) and pipes between the gas side shut-off valve (54) and the four-way selector valve (12). ing.
[0052] また、上記室外ユニット(2)には、外気温センサ(13a)と室外ファン(13f)とが設けら れている。室外熱交換器(13)へは、この室外ファン(13f)によって室外空気が送られ  [0052] The outdoor unit (2) is provided with an outdoor air temperature sensor (13a) and an outdoor fan (13f). Outdoor air is sent to the outdoor heat exchanger (13) by the outdoor fan (13f).
[0053] 〈冷凍ユニット〉 [0053] <Refrigeration unit>
上記冷凍回路 (30)は、冷凍熱交換器 (31)とドレンパンヒータ(36)と冷凍膨張弁( 32)とを備えている。  The refrigeration circuit (30) includes a refrigeration heat exchanger (31), a drain pan heater (36), and a refrigeration expansion valve (32).
[0054] 上記冷凍熱交換器 (31)は、クロスフィン式のフィン 'アンド ' ·チューブ型熱交換器 であって、冷媒と庫内の空気との間で熱交換を行うものであり、蒸発器に構成されて いる。上記冷凍熱交換器 (31)は、一端が冷凍膨張弁 (32)を介してドレンパンヒータ( 36)の一端に接続され、他端が上記第 1ガス連絡配管(22)の一端に接続されて!/、る [0054] The refrigeration heat exchanger (31) is a cross-fin type fin 'and' tube type heat exchanger that exchanges heat between the refrigerant and the air in the cabinet, and evaporates. Configured in a vessel Yes. The refrigeration heat exchanger (31) has one end connected to one end of the drain pan heater (36) via the refrigeration expansion valve (32) and the other end connected to one end of the first gas communication pipe (22). ! /
[0055] 上記冷凍膨張弁 (32)は、開度調整可能な電子膨張弁であり、膨張機構に構成さ れている。上記冷凍熱交換器 (31)には、伝熱管に冷媒の蒸発温度を測定するため の第 1冷媒温度センサ (33)が設けられる一方、該冷凍熱交換器 (31)の他端には、第 2冷媒温度センサ(34)がそれぞれ設けられている。上記冷凍膨張弁(32)は、第 2冷 媒温度センサ(34)の測定温度が、第 1冷媒温度センサ(33)で測定される冷媒の蒸 発温度よりも所定温度 (例えば 5°C)高くなるように開度調整される、所謂スーパーヒ ート制御が行われる。 [0055] The refrigeration expansion valve (32) is an electronic expansion valve whose opening degree can be adjusted, and is configured as an expansion mechanism. The refrigeration heat exchanger (31) is provided with a first refrigerant temperature sensor (33) for measuring the evaporation temperature of the refrigerant in the heat transfer tube, while the other end of the refrigeration heat exchanger (31) is provided with A second refrigerant temperature sensor (34) is provided. In the refrigeration expansion valve (32), the temperature measured by the second refrigerant temperature sensor (34) is a predetermined temperature (for example, 5 ° C) higher than the vaporization temperature of the refrigerant measured by the first refrigerant temperature sensor (33). So-called superheat control is performed in which the opening degree is adjusted to be higher.
[0056] 上記ドレンパンヒータ(36)は、図示しない冷凍熱交換器(31)のドレンパンに配置 されて該ドレンパンを加温し、着霜や氷の生成を防止するものである。上記ドレンパ ンヒータ(36)の他端は、上記液連絡配管(21)の他端に接続されて!/、る。  The drain pan heater (36) is disposed on the drain pan of the refrigeration heat exchanger (31) (not shown) to heat the drain pan and prevent frost formation and ice formation. The other end of the drain pan heater (36) is connected to the other end of the liquid communication pipe (21).
[0057] また、上記冷凍ユニット(3)には、庫内温度センサ(35f)と、庫内ファン (35a)とが設 けられている。上記冷凍熱交換器 (31)へは、この庫内ファン(35a)によって、庫内の 空気が送られる。  [0057] The refrigeration unit (3) is provided with an internal temperature sensor (35f) and an internal fan (35a). To the refrigeration heat exchanger (31), the internal air is sent by the internal fan (35a).
[0058] 〈ブースタユニット〉  [0058] <Booster unit>
上記ブースタ回路 (40)は、低段側圧縮機構であるブースタ圧縮機構 (41)と第 4 膨張弁 (38)と第 5膨張弁 (39)とを備えてレ、る。  The booster circuit (40) includes a booster compression mechanism (41), which is a low-stage side compression mechanism, a fourth expansion valve (38), and a fifth expansion valve (39).
[0059] 上記ブースタ圧縮機構 (41)は、互いに並列接続される第 1から第 3の各ブースタ 圧縮機(41a, 41b, 41c)を備えている。該各ブースタ圧縮機(41a, 41b, 41c)は、高段 側の各圧縮機(11a, l ib, 11c)と同様に、高圧ドーム式のスクロール型圧縮機で構成 されている。つまり、各ブースタ圧縮機(41a, 41b, 41c)は、図示を省略するが、固定 スクロールと可動スクロールとが互いに渦巻き状のラップを嚙合させて圧縮室を形成 し、この圧縮室で圧縮された冷媒が該圧縮室から吐出してドーム内を充満した後に 各圧縮機(11a, l ib, 11c)力も吐出されるように構成されている。  [0059] The booster compression mechanism (41) includes first to third booster compressors (41a, 41b, 41c) connected in parallel to each other. Each of the booster compressors (41a, 41b, 41c) is composed of a high-pressure dome type scroll compressor, similarly to the high-stage compressors (11a, lib, 11c). In other words, each booster compressor (41a, 41b, 41c) is not shown in the figure, but the fixed scroll and the movable scroll are combined with each other in a spiral wrap to form a compression chamber, which is compressed in this compression chamber. Each compressor (11a, lib, 11c) force is also discharged after the refrigerant is discharged from the compression chamber and fills the inside of the dome.
[0060] 上記第 1ブースタ圧縮機(41a)は、図示しない圧縮機モータにインバータを介して 電力が供給され、該インバータの出力周波数を変化させることにより、運転容量が可 変に構成されている。一方、第 2ブースタ圧縮機 (41b)及び第 3ブースタ圧縮機 (41c )は、運転容量が固定に構成されている。上記ブースタ圧縮機構 (41)は、冷凍装置( 1)の冷却運転時に、 3台の各ブースタ圧縮機(41a, 41b, 41c)のうち第 1ブースタ圧 縮機 (41a)が優先的に駆動され、庫内の負荷などに応じて、第 2ブースタ圧縮機 (41b )、第 3ブースタ圧縮機 (41c)の順に順次駆動されるように構成されている。 [0060] The first booster compressor (41a) is supplied with electric power via an inverter to a compressor motor (not shown), and the operating capacity can be increased by changing the output frequency of the inverter. It is structured strangely. On the other hand, the second booster compressor (41b) and the third booster compressor (41c) have a fixed operating capacity. In the booster compression mechanism (41), during the cooling operation of the refrigeration system (1), the first booster compressor (41a) among the three booster compressors (41a, 41b, 41c) is preferentially driven. The second booster compressor (41b) and the third booster compressor (41c) are sequentially driven in accordance with the load in the storage.
[0061] 上記ブースタ圧縮機構 (41)の吸入側には、ブースタ吸入主管(42)が接続されて いる。上記吸入主管 (42)は、一端が第 1ガス連絡配管(22)の他端に接続され、他端 が第 3ブースタ吸入管(44c)とブースタ吸入接続管(43)とに分岐され、該第 3ブース タ吸入管(44c)の他端が第 3ブースタ圧縮機 (41c)の吸入側に接続されて!/、る。また 、ブースタ吸入接続管(43)は、第 1ブースタ吸入管(44a)と第 2ブースタ吸入管(44b) とに分岐され、該第 1ブースタ吸入管(44a)が上記第 1ブースタ圧縮機 (41a)の吸入 側に接続される一方、該第 2ブースタ吸入管(44b)が上記第 2ブースタ圧縮機 (41b) の吸入側に接続されて!/、る。  [0061] A booster suction main pipe (42) is connected to the suction side of the booster compression mechanism (41). The suction main pipe (42) has one end connected to the other end of the first gas communication pipe (22) and the other end branched to a third booster suction pipe (44c) and a booster suction connection pipe (43). The other end of the third booster suction pipe (44c) is connected to the suction side of the third booster compressor (41c). The booster suction connection pipe (43) is branched into a first booster suction pipe (44a) and a second booster suction pipe (44b), and the first booster suction pipe (44a) is connected to the first booster compressor (44a). The second booster suction pipe (44b) is connected to the suction side of the second booster compressor (41b) while being connected to the suction side of 41a).
[0062] 上記ブースタ圧縮機構 (41)の吐出側には、ブースタ吐出主管(45)が接続されて いる。上記ブースタ吐出主管 (45)の一端は、閉鎖弁(51)を介して第 2ガス連絡配管( 23)の一端に接続される一方、他端は、第 1ブースタ吐出管(45a)と第 2ブースタ吐出 管(45b)と第 3ブースタ吐出管(45c)とに分岐されて!/、る。上記第 1ブースタ吐出管(4 5a)は、第 1ブースタ圧縮機 (41a)の吐出側に接続され、上記第 2ブースタ吐出管(45 b)は、第 2ブースタ圧縮機 (41b)の吐出側に接続され、上記第 3ブースタ吐出管(45c )は、第 3ブースタ圧縮機 (41c)の吐出側に接続されている。各ブースタ吐出管(45a, 45b, 45c)には、上記各ブースタ圧縮機(41a, 41b, 41c)からブースタ吐出主管(45) へ向力、う冷媒の流通だけを許容する逆止弁(CV-8, CV-9, CV-10)が、それぞれ設 けられている。  [0062] A booster discharge main pipe (45) is connected to the discharge side of the booster compression mechanism (41). One end of the booster discharge main pipe (45) is connected to one end of the second gas communication pipe (23) via the closing valve (51), while the other end is connected to the first booster discharge pipe (45a) and the second Branch to the booster discharge pipe (45b) and the third booster discharge pipe (45c)! The first booster discharge pipe (45a) is connected to the discharge side of the first booster compressor (41a), and the second booster discharge pipe (45b) is connected to the discharge side of the second booster compressor (41b). The third booster discharge pipe (45c) is connected to the discharge side of the third booster compressor (41c). Each booster discharge pipe (45a, 45b, 45c) has a check valve (CV) that allows only the flow of refrigerant from the booster compressor (41a, 41b, 41c) to the booster discharge main pipe (45). -8, CV-9, and CV-10).
[0063] また、上記ブースタ回路 (40)には、油分離器 (46)、第 2及び第 3の 2つの液インジ ェクシヨン通路(27, 29)、油送り管(76)、第 4及び第 5の 2つの均油管(74a, 74b)及び 、第 4から第 6の 3つの油回収管(75a, 75b, 75c)が設けられている。  [0063] The booster circuit (40) includes an oil separator (46), two second and third liquid injection passages (27, 29), an oil feed pipe (76), a fourth and a fourth Two oil leveling pipes (74a, 74b) of No. 5 and three oil recovery pipes (75a, 75b, 75c) of No. 4 to No. 6 are provided.
[0064] 上記油分離器 (46)は、ブースタ吐出主管(45)に設けられており、第 1から第 3の 各ブースタ圧縮機 (41a, 41b, 41c)を吐出した冷媒から冷凍機油を分離するためのも のである。該油分離器 (46)には、第 1バイパス管(47)の一端が接続され、該第 1バイ ノ ス管 (47)の他端は、上記ブースタ吸入主管 (42)に接続されている。該第 1バイパ ス管 (47)は、第 5電磁弁(SV-5)を有し、上記冷凍装置(1)の除霜運転時に、高段側 圧縮機構(11)から吐出した冷媒がブースタ圧縮機構 (41)をバイパスするためのもの である。また、第 1バイパス管(47)における第 5電磁弁(SV-5)と一端との間には、油 戻し管 (48)の一端が接続され、該油戻し管 (48)の他端は上記ブースタ吸入主管 (42 )の途中に接続されている。該油戻し管(48)には、開閉自在な第 6電磁弁(SV-6)が 設けられており、該第 6電磁弁(SV-6)を開くと、油分離器 (46)の冷凍機油が、上記 ブースタ吸入主管(42)を介して各ブースタ圧縮機(41a, 41b, 41c)に戻される。 [0064] The oil separator (46) is provided in the booster discharge main pipe (45), and separates the refrigerating machine oil from the refrigerant discharged from the first to third booster compressors (41a, 41b, 41c). To do It is. One end of a first bypass pipe (47) is connected to the oil separator (46), and the other end of the first binose pipe (47) is connected to the booster suction main pipe (42). . The first bypass pipe (47) has a fifth solenoid valve (SV-5), and the refrigerant discharged from the high-stage compression mechanism (11) is boosted during the defrosting operation of the refrigeration apparatus (1). This is to bypass the compression mechanism (41). Also, one end of an oil return pipe (48) is connected between the fifth solenoid valve (SV-5) and one end of the first bypass pipe (47), and the other end of the oil return pipe (48) It is connected in the middle of the booster suction main pipe (42). The oil return pipe (48) is provided with a sixth solenoid valve (SV-6) that can be freely opened and closed. When the sixth solenoid valve (SV-6) is opened, the oil separator (46) is refrigerated. Machine oil is returned to each booster compressor (41a, 41b, 41c) via the booster suction main pipe (42).
[0065] 上記第 2液インジェクション通路(27)は、第 2液インジェクション主管(28)と第 5か ら第 7の各液インジェクション分岐管(28a, 28b, 28c)とを備えている。上記第 2液イン ジェクシヨン通路(27)では、該第 2液インジェクション主管(28)の一端力 液連絡配 管(21)の途中に接続し、該第 2液インジェクション主管(28)の他端が第 5から第 7の 各液インジェクション分岐管(28a, 28b, 28c)に分岐され、該第 5から第 7の各液イン ジェクシヨン分岐管(28a, 28b, 28c)が、第 1から第 3の各ブースタ吸入管(41a, 41b, 4 lc)にそれぞれ接続されている。  [0065] The second liquid injection passage (27) includes a second liquid injection main pipe (28) and fifth to seventh liquid injection branch pipes (28a, 28b, 28c). In the second liquid injection passage (27), one end of the second liquid injection main pipe (28) is connected to the middle of the liquid communication pipe (21), and the other end of the second liquid injection main pipe (28) is connected to the second liquid injection main pipe (28). The fifth to seventh liquid injection branch pipes (28a, 28b, 28c) are branched, and the fifth to seventh liquid injection branch pipes (28a, 28b, 28c) are connected to the first to third liquid injection branch pipes (28a, 28b, 28c). Each booster suction pipe (41a, 41b, 4 lc) is connected to each.
[0066] また、第 2液インジェクション主管(28)には、第 4膨張弁(38)が設けられ、該第 5か ら第 7の各液インジェクション分岐管(28a, 28b, 28c)の途中には、それぞれキヤビラリ 一チューブ(37a, 37b, 37c)が設けられている。上記第 3液インジェクション通路(29) は、一端が第 2液インジェクション主管(28)の一端と第 4膨張弁(38)との間に接続さ れ、他端が上記ブースタ吐出主管 (45)の油分離器 (46)と閉鎖弁 (51)との間に接続 されている。該第 3液インジェクション通路(29)には、第 5膨張弁(39)が設けられてい る。第 4及び第 5の各膨張弁(38, 39)は開度調整自在な電子膨張弁で構成されてい  [0066] The second liquid injection main pipe (28) is provided with a fourth expansion valve (38), which is provided in the middle of the fifth to seventh liquid injection branch pipes (28a, 28b, 28c). Each is provided with a capillary tube (37a, 37b, 37c). One end of the third liquid injection passage (29) is connected between one end of the second liquid injection main pipe (28) and the fourth expansion valve (38), and the other end of the booster discharge main pipe (45). It is connected between the oil separator (46) and the closing valve (51). A fifth expansion valve (39) is provided in the third liquid injection passage (29). The fourth and fifth expansion valves (38, 39) are electronic expansion valves whose degree of opening is adjustable.
[0067] 上記油送り管(76)は、第 1ブースタ圧縮機(41a)のドームとブースタ吐出主管(45 )の途中とに接続され、途中に開閉自在な第 7電磁弁(SV-7)と逆止弁(CV-11)とを 備えている。また、 2つの均油管(74a, 74b)では、上記第 4均油管(74a)が、第 2ブー スタ圧縮機 (41b)のドームと第 1ブースタ吸入管(44a)の途中とに接続され、途中に第 8電磁弁(SV-8)を備えている。また、第 5均油管(74b)は、第 3ブースタ圧縮機 (41c) のドームとブースタ吸入接続管(43)の途中とに接続され、第 9電磁弁(SV-9)を備え ている。 [0067] The oil feed pipe (76) is connected to the dome of the first booster compressor (41a) and the middle of the booster discharge main pipe (45), and can be opened and closed in the middle of the seventh solenoid valve (SV-7) And a check valve (CV-11). In the two oil leveling pipes (74a, 74b), the fourth oil leveling pipe (74a) is connected to the dome of the second booster compressor (41b) and the middle of the first booster suction pipe (44a). On the way Equipped with 8 solenoid valves (SV-8). The fifth oil equalizing pipe (74b) is connected to the dome of the third booster compressor (41c) and the middle of the booster suction connecting pipe (43), and includes a ninth solenoid valve (SV-9).
[0068] 上記冷凍装置(1)では、上記油戻し管(48)によりブースタ吸入主管(42)に戻され た冷凍機油が、第 3ブースタ圧縮機 (41c)、第 2ブースタ圧縮機 (41b)、第 1ブースタ 圧縮機 (41a)の順に多く戻るように構成されている。また、第 3ブースタ圧縮機 (41c) の冷凍機油は、第 4及び第 5の各均油管(74a, 74b)により、第 2ブースタ圧縮機 (41b )、第 1ブースタ圧縮機 (41a)へと順に送られ、第 1ブースタ圧縮機 (41a)の冷凍機油 の余剰分は油送り管(76)により室外回路(20)の各圧縮機(11a, l ib, 11c)に送られ るように構成されている。  [0068] In the refrigeration system (1), the refrigeration oil returned to the booster suction main pipe (42) by the oil return pipe (48) is supplied to the third booster compressor (41c) and the second booster compressor (41b). The first booster compressor (41a) is configured to return in order. The refrigerating machine oil of the third booster compressor (41c) is transferred to the second booster compressor (41b) and the first booster compressor (41a) through the fourth and fifth oil equalizing pipes (74a, 74b). The refrigeration oil surplus of the first booster compressor (41a) is sent to the compressors (11a, l ib, 11c) of the outdoor circuit (20) through the oil feed pipe (76). Has been.
[0069] 3つの油回収管(75a, 75b, 75c)は、第 4油回収管(75a)の一端が第 1ブースタ吸 入管(44a)の途中に、第 5油回収管(75b)の一端が第 2ブースタ吸入管(44b)の途中 に、第 6油回収管(75c)の一端が第 3ブースタ吸入管(44c)の途中にそれぞれ接続さ れる一方、各油回収管(75a, 75b, 75c)の他端は、互いに合流されている。該油回収 管(75a, 75b, 75c)は、冷凍装置(1)の運転中に負荷に応じて特定のブースタ圧縮機 (41b, 41c)が停止した際に、該ブースタ圧縮機(41b, 41c)の吸入管(44b、 44c)に貯 留した冷凍機油を、駆動している他のブースタ圧縮機 (41a, 41b)のブースタ吸入管( 44a, 44b)に吸入させるためのものである。  [0069] The three oil recovery pipes (75a, 75b, 75c) have one end of the fourth oil recovery pipe (75a) in the middle of the first booster suction pipe (44a) and one end of the fifth oil recovery pipe (75b). Are connected in the middle of the second booster suction pipe (44b) and one end of the sixth oil recovery pipe (75c) is connected in the middle of the third booster suction pipe (44c), respectively, while the oil recovery pipes (75a, 75b, The other ends of 75c) are joined together. The oil recovery pipe (75a, 75b, 75c) is connected to the booster compressor (41b, 41c) when a specific booster compressor (41b, 41c) is stopped according to the load during the operation of the refrigeration system (1). ) Of the refrigerating machine oil stored in the suction pipes (44b, 44c) of the other booster compressors (41a, 41b).
[0070] さらに、ブースタ回路(40)には、ブースタ吸入主管(42)とブースタ吐出主管(45) とを接続する第 2バイパス管(49)が設けられている。該第 2バイパス管(49)は、ブー スタ圧縮機構 (41)の停止時に、ブースタ吸入主管(42)を流れる冷媒をブースタ圧縮 機構(41)をバイパスさせてブースタ吐出主管(45)へ送るためのものであり、該ブース タ吸入主管(42)からブースタ吐出主管(45)へ向かう冷媒の流通だけを許容する逆 止弁(CV-12)が設けられて!/、る。  Furthermore, the booster circuit (40) is provided with a second bypass pipe (49) that connects the booster suction main pipe (42) and the booster discharge main pipe (45). When the booster compression mechanism (41) is stopped, the second bypass pipe (49) bypasses the booster compression mechanism (41) and sends the refrigerant flowing through the booster suction main pipe (42) to the booster discharge main pipe (45). There is a check valve (CV-12) that allows only the refrigerant to flow from the booster suction main pipe (42) to the booster discharge main pipe (45).
[0071] 上記ブースタ回路(40)には、各種のセンサや圧力スィッチが設けられている。具 体的に、ブースタ吸入圧力センサ(142)及びブースタ吸入温度センサ(143)がブース タ吸入主管(42)に設けられ、ブースタ吐出圧力センサ(144)及びブースタ吐出主温 度センサ(145)がブースタ吐出主管(45)に設けられ、各ブースタ吐出副温度センサ( 148, 149, 150)及び各圧力スィッチ(155, 156, 157)が各ブースタ吐出管(45a, 45b, 45c)に設けられている。 The booster circuit (40) is provided with various sensors and pressure switches. Specifically, a booster suction pressure sensor (142) and a booster suction temperature sensor (143) are provided in the booster suction main pipe (42), and the booster discharge pressure sensor (144) and the booster discharge main temperature sensor (145) are provided. Each booster discharge sub-temperature sensor (45) 148, 149, 150) and each pressure switch (155, 156, 157) are provided in each booster discharge pipe (45a, 45b, 45c).
[0072] 〈コントローラ〉 <Controller>
上記コントローラ(100)は、上記冷媒回路(10)に設けられた各種の弁の切換や開 度調整を行うと共に、各圧縮機(11a, l ib, 11c, 41a, 41b, 41c)及びファン(13f, 35f) を駆動させ、該冷凍装置(1)の運転を制御するものである。上記コントローラ(100)は 、本発明の特徴として、第 1容量制御部(101)と第 2容量制御部(102)と弁制御部(10 3)とを備えている。  The controller (100) performs switching and opening adjustment of various valves provided in the refrigerant circuit (10), as well as compressors (11a, ib, 11c, 41a, 41b, 41c) and fans ( 13f, 35f) are driven to control the operation of the refrigeration apparatus (1). The controller (100) includes a first capacity controller (101), a second capacity controller (102), and a valve controller (103) as a feature of the present invention.
[0073] 上記第 1容量制御部(101)は、上記冷凍熱交換器 (31)における蒸発温度が庫内 を設定温度に維持するのに適した目標蒸発温度となるように上記ブースタ圧縮機構 (41)の運転容量を制御するものであり、第 1容量制御手段に構成されている。  [0073] The first capacity control unit (101) is configured to increase the evaporating temperature in the refrigeration heat exchanger (31) to a target evaporating temperature suitable for maintaining the interior at a set temperature. 41) is used to control the operating capacity, and is configured as a first capacity control means.
[0074] 上記第 2容量制御部(102)は、上記高段側圧縮機構(11)の運転容量を上記ブー スタ圧縮機構 (41)の吐出温度が目標吐出温度となるように制御するものであり、第 2 容量制御手段に構成されている。ここで、上記ブースタ圧縮機構 (41)の各圧縮機 (4 la, 41b, 41c)は、高圧ドーム式のスクロール型圧縮機であるために、ドーム内の圧縮 室から吐出した冷媒の温度である吐出温度の測定にあたり、ブースタ吐出主温度セ ンサ(145)や吐出副温度センサ(148, 149, 150)を用いると、応答時間が長くかかり、 迅速に測定できない。そこで、ブースタ吐出圧力センサ(144)で測定されるブースタ 圧縮機構 (41)の吐出温度が、ブースタ圧縮機構 (41)の吸入圧力と吸入温度と上記 目標吐出温度とに基づレ、て予め導出した目標吐出圧力となるように制御する。  The second capacity control unit (102) controls the operating capacity of the high stage compression mechanism (11) so that the discharge temperature of the booster compression mechanism (41) becomes the target discharge temperature. Yes, it is configured as the second capacity control means. Here, since each of the compressors (4 la, 41b, 41c) of the booster compression mechanism (41) is a high-pressure dome type scroll compressor, it is the temperature of the refrigerant discharged from the compression chamber in the dome. When measuring the discharge temperature, if the booster discharge main temperature sensor (145) or the discharge sub temperature sensor (148, 149, 150) is used, it takes a long response time and cannot be measured quickly. Therefore, the discharge temperature of the booster compression mechanism (41) measured by the booster discharge pressure sensor (144) is derived in advance based on the suction pressure and suction temperature of the booster compression mechanism (41) and the target discharge temperature. The target discharge pressure is controlled.
[0075] 上記弁制御部(103)は、過冷却熱交換器 (50)の第 1流路(50a)を流れた液冷媒 の温度が目標冷却温度となるように、上記第 2膨張弁(58)の開度を制御するもので あり、弁制御手段に構成されている。  [0075] The valve control unit (103) includes the second expansion valve (103) so that the temperature of the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50) becomes a target cooling temperature. 58), and is configured as a valve control means.
[0076] 運転動作  [0076] Driving action
次に、本実施形態の冷凍装置(1)の運転動作を図 2〜図 4に基づいて説明する。 上記冷凍装置(1)は、庫内を冷却する冷却運転と冷凍熱交換器 (31)の着霜を除去 する除霜運転とを行う。  Next, the operation of the refrigeration apparatus (1) of the present embodiment will be described with reference to FIGS. The refrigeration apparatus (1) performs a cooling operation for cooling the inside of the refrigerator and a defrosting operation for removing frost formation on the refrigeration heat exchanger (31).
[0077] 冷却運転では、図 2に示すように、室外回路(20)の四路切換弁(12)が第 1状態に 設定され、第 1膨張弁(57)が全閉状態に設定され、高段側圧縮機構(11)の第 1から 第 3の各圧縮機(11a, l ib, 11c)が駆動し、ブースタ圧縮機構 (41)の第 1から第 3の 各ブースタ圧縮機 (41a, 41b, 41c)が駆動し、冷媒が図 2の矢印に示す方向に循環 する。また、各ファン(13f, 35f)が駆動する。そして、冷凍膨張弁(32)及び第 2から第 5の各膨張弁(58, 59, 38, 39)が適宜開度調整される。また、室外回路(20)では、第 1から第 4の各電磁弁(SV-1 , 2, 3, 4)が間欠的に適宜開閉制御される一方、ブース タ回路 (40)では、第 5電磁弁(SV-5)が常時閉状態に設定され、第 6から第 9の各電 磁弁(SV-6, 7, 8, 9)が間欠的に適宜開閉制御される。 [0077] In the cooling operation, as shown in Fig. 2, the four-way selector valve (12) of the outdoor circuit (20) is in the first state. The first expansion valve (57) is set to the fully closed state, and the first to third compressors (11a, l ib, 11c) of the high-stage compression mechanism (11) are driven to booster compression The first to third booster compressors (41a, 41b, 41c) of the mechanism (41) are driven, and the refrigerant circulates in the direction indicated by the arrow in FIG. Each fan (13f, 35f) is driven. The opening degrees of the refrigeration expansion valve (32) and the second to fifth expansion valves (58, 59, 38, 39) are adjusted as appropriate. In the outdoor circuit (20), the first to fourth solenoid valves (SV-1, 2, 3, 4) are intermittently controlled to be opened and closed appropriately, while in the booster circuit (40), the fifth The solenoid valve (SV-5) is set to the normally closed state, and the sixth to ninth solenoid valves (SV-6, 7, 8, 9) are intermittently controlled to open and close appropriately.
[0078] 室外回路(20)において、第 1から第 3の各圧縮機(11a, l ib, 11c)から吐出した冷 媒は、各吐出管(64a, 64b, 64c)を流れて吐出主管(64)で合流し、四路切換弁(12) を通って室外熱交換器(13)を流れる。室外熱交換器(13)では、冷媒が室外空気へ 放熱して凝縮する。凝縮した液冷媒は、第 1液管 (81)を流れ、レシーバー(14)を通 過して第 2液管(82)を流れ、過冷却熱交換器 (50)の第 1流路(50a)を流れる。第 1流 路(50a)を流れた液冷媒は、第 3液管(83)を流れる。第 3液管(83)を流れる液冷媒 は、その一部が分岐通路 (84)に分岐して分岐冷媒となり、第 2膨張弁(58)で減圧さ れて上記過冷却熱交換器 (50)の第 2流路(50b)に流入する。そして、過冷却熱交換 器 (50)では、第 2流路(50b)を流れる分岐冷媒が、第 1流路(50a)を流れる液冷媒か ら吸熱して蒸発し、これにより、第 1流路(50a)を流れる液冷媒が、後述するように、 目 標冷却温度に冷却される。そして、第 2流路(50b)で蒸発した冷媒は、ガスインジエタ シヨン管 (85)を介して吸入主管(55)に供給される。そして、冷却された液冷媒は、第 3液管(83)から液連絡配管(21)へ流れ、冷凍回路(30)に導入される。  [0078] In the outdoor circuit (20), the refrigerant discharged from the first to third compressors (11a, ib, 11c) flows through the discharge pipes (64a, 64b, 64c) and discharge main pipes ( 64) and flows through the four-way selector valve (12) and the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the refrigerant dissipates heat to the outdoor air and condenses. The condensed liquid refrigerant flows through the first liquid pipe (81), passes through the receiver (14), flows through the second liquid pipe (82), and passes through the first flow path (50a) of the supercooling heat exchanger (50). ). The liquid refrigerant that has flowed through the first flow path (50a) flows through the third liquid pipe (83). A part of the liquid refrigerant flowing through the third liquid pipe (83) branches into the branch passage (84) to become a branch refrigerant, and is depressurized by the second expansion valve (58), so that the supercooling heat exchanger (50 ) Into the second flow path (50b). In the supercooling heat exchanger (50), the branching refrigerant flowing through the second flow path (50b) absorbs heat from the liquid refrigerant flowing through the first flow path (50a) and evaporates. The liquid refrigerant flowing through the passage (50a) is cooled to the target cooling temperature, as will be described later. The refrigerant evaporated in the second flow path (50b) is supplied to the suction main pipe (55) via the gas induction pipe (85). Then, the cooled liquid refrigerant flows from the third liquid pipe (83) to the liquid communication pipe (21) and is introduced into the refrigeration circuit (30).
[0079] 冷凍回路(30)に導入された液冷媒は、ドレンパンヒータ(36)を流れて、冷凍膨張 弁 (32)で膨張し、冷凍熱交換器 (31)を流れる。冷媒は、冷凍熱交換器 (31)におい て、庫内の空気から吸熱して蒸発し、これにより、庫内は冷却される。上記冷凍熱交 換器 (31)で蒸発したガス冷媒は、第 1ガス連絡配管(22)を流れ、ブースタ回路 (40) に導入される。  [0079] The liquid refrigerant introduced into the refrigeration circuit (30) flows through the drain pan heater (36), expands at the refrigeration expansion valve (32), and flows through the refrigeration heat exchanger (31). In the refrigeration heat exchanger (31), the refrigerant absorbs heat from the air in the warehouse and evaporates, whereby the interior is cooled. The gas refrigerant evaporated in the refrigeration heat exchanger (31) flows through the first gas communication pipe (22) and is introduced into the booster circuit (40).
[0080] ブースタ回路 (40)に導入されたガス冷媒は、ブースタ吸入主管(42)を流れ、第 3 ブースタ吸入管(44c)とブースタ吸入接続管(43)とに分岐し、該第 3ブースタ吸入管 (44c)を流れた冷媒が、第 3ブースタ圧縮機 (41c)に吸入されて圧縮される。一方、ブ ースタ吸入接続管(43)を流れた冷媒は、第 1ブースタ吸入管(44a)と第 2ブースタ吸 入管(44b)とに分岐し、第 1及び第 2の各ブースタ圧縮機 (41a, 41b)に吸入されて圧 縮される。ブースタ圧縮機構 (41)の各圧縮機 (41a, 41b, 41c)から吐出した冷媒は、 各ブースタ吐出管(45a, 45b, 45c)を流れ、ブースタ吐出主管(45)で合流し、第 2ガ ス連絡配管(23)を流れ、室外回路(20)に導入される。 [0080] The gas refrigerant introduced into the booster circuit (40) flows through the booster suction main pipe (42) and branches into the third booster suction pipe (44c) and the booster suction connection pipe (43). Suction pipe The refrigerant flowing through (44c) is sucked into the third booster compressor (41c) and compressed. On the other hand, the refrigerant flowing through the booster suction connection pipe (43) branches into the first booster suction pipe (44a) and the second booster suction pipe (44b), and the first and second booster compressors (41a , 41b) and compressed. The refrigerant discharged from the compressors (41a, 41b, 41c) of the booster compression mechanism (41) flows through the booster discharge pipes (45a, 45b, 45c), joins in the booster discharge main pipe (45), and then enters the second gas. It flows through the connecting pipe (23) and is introduced into the outdoor circuit (20).
[0081] 室外回路(20)に導入された冷媒は、四路切換弁(12)を介して吸入主管(55)を流 れる。吸入主管(55)を流れた冷媒は、第 3吸入管 (61c)と吸入接続管(56)とに分岐 し、該第 3吸入管(61c)を流れた冷媒が、第 3圧縮機(11c)に吸入されて圧縮される。 一方、吸入接続管(56)を流れた冷媒は、第 1吸入管 (61a)と第 2吸入管 (61b)とに分 岐し、第 1及び第 2の各圧縮機(11a, l ib)に吸入されて圧縮される。  [0081] The refrigerant introduced into the outdoor circuit (20) flows through the suction main pipe (55) via the four-way switching valve (12). The refrigerant flowing through the suction main pipe (55) branches into the third suction pipe (61c) and the suction connection pipe (56), and the refrigerant flowing through the third suction pipe (61c) passes through the third compressor (11c). ) Is inhaled and compressed. On the other hand, the refrigerant flowing through the suction connection pipe (56) is branched into the first suction pipe (61a) and the second suction pipe (61b), and the first and second compressors (11a, ib) Inhaled and compressed.
[0082] 尚、上記冷凍装置(1)では、後述するように、上記第 2容量制御部(102)が高段側 圧縮機構(11)の容量制御を行うことにより、高段側圧縮機構(11)が高温になることを 防止されるが、第 3から第 5の各膨張弁 (59, 38, 39)の開度を全閉状態から開状態に して適宜開度調整を行うことにより、高段側圧縮機構(11)が高温になることを防止す ること力 Sできる。つまり、分岐通路 (84)を流れる冷媒の一部が、第 1液インジェクション 通路(15)を介して高段側圧縮機構(11)の吸入側に適宜供給され、第 2及び第 3液ィ ンジェクシヨン通路(27, 29)を介してブースタ圧縮機構 (41)の吸入側や吐出側に液 冷媒を適宜供給される。  In the refrigeration apparatus (1), as described later, the second capacity control unit (102) controls the capacity of the high-stage compression mechanism (11), so that the high-stage compression mechanism ( 11) is prevented from reaching a high temperature, but the degree of opening of each of the third to fifth expansion valves (59, 38, 39) is adjusted from the fully closed state to the open state as appropriate. In addition, the high-stage compression mechanism (11) can prevent the temperature from becoming high. That is, a part of the refrigerant flowing through the branch passage (84) is appropriately supplied to the suction side of the high-stage compression mechanism (11) via the first liquid injection passage (15), and the second and third liquid injections. Liquid refrigerant is appropriately supplied to the suction side and the discharge side of the booster compression mechanism (41) via the passages (27, 29).
[0083] また、除霜運転中の動作については、詳細な説明及び図示を省略するが、冷媒 が冷媒回路(10)を上記冷却運転中とは逆方向に循環する逆サイクルデフロストが行 われる。具体的に、高段側圧縮機構(11)の第 1及び第 2の圧縮機(11a, l ib)が駆動 し、他の圧縮機(11c, 41a, 41b, 41c)は停止状態となる。そして、第 1及び第 2の圧縮 機(11a, l ib)から吐出した冷媒カ ブースタ回路 (40)の第 1バイパス管(47)を流れ てブースタ圧縮機構 (41)をバイパスし、冷凍熱交換器 (31)で凝縮して該冷凍熱交換 器 (31)の除霜を行い、第 1膨張弁 (57)で膨張して室外熱交換器(13)で蒸発し、再 び第 1及び第 2圧縮機(11a, l ib)に吸入される。  [0083] Although detailed description and illustration are omitted for the operation during the defrosting operation, a reverse cycle defrost is performed in which the refrigerant circulates in the refrigerant circuit (10) in the direction opposite to that during the cooling operation. Specifically, the first and second compressors (11a, ib) of the high stage compression mechanism (11) are driven, and the other compressors (11c, 41a, 41b, 41c) are stopped. Then, it flows through the first bypass pipe (47) of the refrigerant booster circuit (40) discharged from the first and second compressors (11a, ib), bypasses the booster compression mechanism (41), and performs refrigeration heat exchange. The refrigeration heat exchanger (31) is defrosted by the condenser (31), expanded by the first expansion valve (57), evaporated by the outdoor heat exchanger (13), and again the first and second 2 Sucked into the compressor (11a, l ib).
[0084] 〈各圧縮機構の運転容量制御〉 次に、上記ブースタ圧縮機構 (41)と上記高段側圧縮機構(11)との運転容量の制 御について説明する。 <Operation capacity control of each compression mechanism> Next, control of the operating capacity of the booster compression mechanism (41) and the high stage compression mechanism (11) will be described.
[0085] ブースタ圧縮機構 (41)の運転容量は、上記第 1容量制御部(101)により、上記冷 凍熱交換器 (31)における蒸発温度が庫内を設定温度 (例えば、 30°C)に維持す るのに適した目標蒸発温度(例えば、 40°C)となるように制御される。つまり、第 1容 量制御部(101)は、冷凍熱交換器 (31)における蒸発温度が目標蒸発温度より高い 場合、ブースタ圧縮機構 (41)の運転容量を増大させるように制御する。これにより、 冷凍熱交換器 (31)を流れる冷媒の流量が大きくなり、蒸発温度が徐々に低下して、 目標蒸発温度となる。一方、冷凍熱交換器 (31)における蒸発温度が目標蒸発温度 より低い場合、ブースタ圧縮機構 (41)の運転容量を低減させるように制御する。これ により、冷凍熱交換器 (31)を流れる冷媒の流量が小さくなり、蒸発温度が徐々に上 昇して、 目標蒸発温度となる。このようにして、庫内の冷却負荷に適した運転を行う。  [0085] The operating capacity of the booster compression mechanism (41) is determined by the first capacity control unit (101) by setting the evaporation temperature in the refrigeration heat exchanger (31) to a set temperature (for example, 30 ° C). The target evaporation temperature (for example, 40 ° C) suitable for maintaining the temperature is controlled. That is, the first capacity control unit (101) performs control to increase the operating capacity of the booster compression mechanism (41) when the evaporation temperature in the refrigeration heat exchanger (31) is higher than the target evaporation temperature. As a result, the flow rate of the refrigerant flowing through the refrigeration heat exchanger (31) increases, and the evaporation temperature gradually decreases to the target evaporation temperature. On the other hand, when the evaporation temperature in the refrigeration heat exchanger (31) is lower than the target evaporation temperature, control is performed so as to reduce the operating capacity of the booster compression mechanism (41). As a result, the flow rate of the refrigerant flowing through the refrigeration heat exchanger (31) decreases, and the evaporation temperature gradually rises to the target evaporation temperature. In this way, an operation suitable for the cooling load in the warehouse is performed.
[0086] また、高段側圧縮機構(11)の運転容量は、図 3のフローチャートに基づいて、上 記ブースタ圧縮機構 (41)の吐出温度が目標吐出温度 TMとなるように制御される。 該目標吐出温度 TMは、例えば、 80°C以上 90°C以下に設定される。つまり、吐出温 度が 90°Cより高い場合、高段側圧縮機構(11)の各圧縮機(11a, l ib, 11c)が高温に なりすぎる虞があるので目標吐出温度 TMを 90°C以下とする。そして、吐出温度が 8 0°C未満の場合、高段側圧縮機構(11)の運転容量を低下させることにより吐出温度 が若干上昇しても、該高段側圧縮機構(11)の各圧縮機(11a, l ib, 11c)が高温にな りすぎる虞がないので、このような場合には、高段側圧縮機構(11)の運転容量を低 減させて圧縮機構(11, 41)全体としての動力を小さくした方がよいので、吐出温度を 80°C以上とする。  [0086] The operating capacity of the high-stage compression mechanism (11) is controlled so that the discharge temperature of the booster compression mechanism (41) becomes the target discharge temperature TM based on the flowchart of FIG. The target discharge temperature TM is set to, for example, 80 ° C or more and 90 ° C or less. In other words, if the discharge temperature is higher than 90 ° C, the compressor (11a, ib, 11c) of the high-stage compression mechanism (11) may become too hot, so the target discharge temperature TM should be 90 ° C. The following. If the discharge temperature is less than 80 ° C, even if the discharge temperature rises slightly by reducing the operating capacity of the high-stage compression mechanism (11), each compression of the high-stage compression mechanism (11) In such a case, the operating capacity of the high-stage compression mechanism (11) can be reduced to reduce the compression mechanism (11, 41). Since it is better to reduce the overall power, the discharge temperature should be 80 ° C or higher.
[0087] 先ず、高段側圧縮機構(11)の運転容量制御がスタートすると、ステップ ST1にお いて、ブースタ圧縮機構 (41)の目標吐出圧力 PMsが設定される。具体的に、ステツ プ 1に示すポリトロープ変化の状態方程式に、ブースタ圧縮機構 (41)の目標吐出温 度 TMと、ブースタ吸入温度センサ(143)で測定される吸入温度 TL、ブースタ吸入圧 力センサ(142)で測定される吸入圧力 PLが代入され、 目標吐出圧力 PMsが算出さ れる。尚、ステップ ST1の式に用いられる κは、ポリトロープ指数である。 [0088] ステップ ST2では、ブースタ吐出圧力センサ(144)により測定されるブースタ圧縮 機構(41)の吐出圧力 PMrが、ステップ ST1で設定した目標吐出圧力 PMsと近似す る値(目標吐出圧力 PMsとの差が土 αの範囲内であり、ほぼ目標吐出圧力 PMsとみ なすことのできる値、 αは所定の許容値)である力、、実際の吐出圧力 PMrが、 目標吐 出圧力 PMsと近似する値でなぐ 目標吐出圧力 PMsより大きレ、又は小さ!/、かが判定 される。 First, when the operation capacity control of the high stage compression mechanism (11) is started, the target discharge pressure PMs of the booster compression mechanism (41) is set in step ST1. Specifically, the polytrope change equation of state shown in Step 1 includes the target discharge temperature TM of the booster compression mechanism (41), the suction temperature TL measured by the booster suction temperature sensor (143), and the booster suction pressure sensor. The suction pressure PL measured in (142) is substituted, and the target discharge pressure PMs is calculated. Note that κ used in the equation of step ST1 is a polytropic index. [0088] In step ST2, the discharge pressure PMr of the booster compression mechanism (41) measured by the booster discharge pressure sensor (144) approximates the target discharge pressure PMs set in step ST1 (the target discharge pressure PMs and Is within the range of soil α, a value that can be regarded as the target discharge pressure PMs, α is a force that is a predetermined allowable value), and the actual discharge pressure PMr approximates the target discharge pressure PMs It is judged whether it is larger or smaller than the target discharge pressure PMs.
[0089] ステップ ST2において、実際の吐出圧力 PMrが、 目標吐出圧力 PMsと近似する 値になく目標吐出圧力 PMsより大きい場合は、ステップ ST3に移り、第 2容量制御部 (102)力 S、高段側圧縮機構(11)の運転容量を増大させるように制御する。これにより 、高段側圧縮機構(11)の吸入圧力が低下するので、ブースタ圧縮機構 (41)の吐出 圧力 PMrが低下して目標吐出圧力 PMsに近似する値となることから、ブースタ圧縮 機構 (41)の吐出温度が目標吐出温度 TMとなる。このようにして、高段側圧縮機構( 11)の吸入冷媒を比較的低い温度とすることができるので、高段側圧縮機構(11)が 高温になりすぎることを防止することができる。そして、ステップ 3からリターンに移り、 再びスタートに戻る。  [0089] In step ST2, if the actual discharge pressure PMr is not a value approximate to the target discharge pressure PMs but is larger than the target discharge pressure PMs, the process proceeds to step ST3, where the second capacity control unit (102) force S, high Control is performed to increase the operating capacity of the stage side compression mechanism (11). As a result, the suction pressure of the high-stage compression mechanism (11) decreases, so that the discharge pressure PMr of the booster compression mechanism (41) decreases and approximates the target discharge pressure PMs. The discharge temperature of 41) becomes the target discharge temperature TM. In this way, since the intake refrigerant of the high-stage compression mechanism (11) can be set to a relatively low temperature, the high-stage compression mechanism (11) can be prevented from becoming too high. Then go from step 3 to return and start again.
[0090] ステップ ST2において、実際の吐出圧力 PMrが、 目標吐出圧力 PMsと近似する 値であると判定されると、リターンに移り、再びスタートに戻る。つまり、 目標吐出圧力 PMsと近似する値であれば、吐出温度は、ほぼ目標吐出温度 TMであるので、高段 側圧縮機構(11)の運転容量は現状のまま維持される。  [0090] In step ST2, when it is determined that the actual discharge pressure PMr is a value approximate to the target discharge pressure PMs, the process proceeds to return, and then returns to start. That is, if the value approximates the target discharge pressure PMs, the discharge temperature is substantially the target discharge temperature TM, so the operating capacity of the high-stage compression mechanism (11) is maintained as it is.
[0091] ステップ ST2において、実際の吐出圧力 PMrが、 目標吐出圧力 PMsと近似する 値になく目標吐出圧力 PMsより小さい場合は、ステップ ST4に移り、第 2容量制御部 (102)力 S、高段側圧縮機構(11)の運転容量を低減させるように制御する。これにより 、該高段側圧縮機構(11)の動力を小さくすることができる。また、高段側圧縮機構(1 1)の運転容量を低減すると、ブースタ圧縮機構(41)の吐出圧力 PMrが上昇するた めに、ブースタ圧縮機構 (41)の吐出温度も上昇する力 S、 目標吐出圧力 PMsに近似 する値になるまでは、高段側圧縮機構(11)が高温になりすぎることがないので、高段 側圧縮機構(11)の信頼性を確保しながら、該高段側圧縮機構(11)の動力をできる だけ小さくすることができる。そして、ステップ ST4からリターンに移り、再びスタートに 戻る。 [0091] In step ST2, when the actual discharge pressure PMr is not a value approximate to the target discharge pressure PMs but smaller than the target discharge pressure PMs, the process proceeds to step ST4, where the second capacity control unit (102) force S, high Control is performed to reduce the operating capacity of the stage side compression mechanism (11). Thereby, the power of the high stage side compression mechanism (11) can be reduced. In addition, if the operating capacity of the high-stage compression mechanism (11) is reduced, the discharge pressure PMr of the booster compression mechanism (41) increases, so the force S, which increases the discharge temperature of the booster compression mechanism (41), The high-stage compression mechanism (11) does not become too hot until it reaches a value that approximates the target discharge pressure PMs, so that the high-stage compression mechanism (11) is secured while ensuring its reliability. The power of the side compression mechanism (11) can be made as small as possible. Then move from step ST4 to return and start again. Return.
[0092] このようにして、ブースタ圧縮機構(41)の吐出圧力 PMrを目標吐出圧力 PMsと する制御を行うので、高段側圧縮機構(11)が高温になることを防止する対策として、 高段側圧縮機構(11)の吸入側に液冷媒を供給するにあたり、この液冷媒の量を低 減させることができると共に、高段側圧縮機構(11)の運転容量をできるだけ小さくす ること力 Sできる。つまり、冷凍熱交換器 (31)に送られる冷媒の量を多くすることができ ると共に、圧縮機構(11, 41)全体としての動力を小さくすることができるので、冷凍装 置(1)の COPが向上する。  [0092] In this way, since the discharge pressure PMr of the booster compression mechanism (41) is controlled to be the target discharge pressure PMs, as a measure for preventing the high-stage compression mechanism (11) from becoming high temperature, When supplying liquid refrigerant to the suction side of the stage-side compression mechanism (11), the amount of this liquid refrigerant can be reduced, and the operating capacity of the high-stage side compression mechanism (11) can be reduced as much as possible. S can. That is, the amount of refrigerant sent to the refrigeration heat exchanger (31) can be increased, and the power of the compression mechanism (11, 41) as a whole can be reduced. COP is improved.
[0093] 〈第 2膨張弁の開度制御〉  [0093] <Opening control of second expansion valve>
次に、第 2膨張弁(58)の開度制御について、図 4のフローチャートに基づいて説 明する。  Next, opening control of the second expansion valve (58) will be described based on the flowchart of FIG.
[0094] 先ず、第 2膨張弁(58)の開度制御がスタートすると、ステップ ST11において、過 冷却熱交換器 (50)の第 1流路(50a)を流れた液冷媒の目標冷却温度 Tsが設定され る。該目標冷却温度 Tsは、以下のようにして設定される。つまり、過冷却熱交換器 (5 0)の第 2流路 (50b)を流れて液冷媒を冷却する分岐冷媒は、高段側圧縮機構(11) の吸入側に供給されることから、高段側圧縮機構(11)の吸入圧力に相当する飽和温 度 Tmで蒸発する。そして、高段側圧縮機構(11)の吸入圧力に対応するブースタ圧 縮機構 (41)の吐出圧力は目標吐出圧力 PMsとなるように制御されて!/、るので、分岐 冷媒の蒸発温度は、 目標吐出圧力 PMsに相当する飽和温度 Tmとなる。そして、第 1流路(50a)を流れる液冷媒は、この飽和温度 Tmで蒸発する分岐冷媒によって冷却 される力 この飽和温度 Tmにまでは冷却されな!/、ので、 目標冷却温度 Tsを目標吐 出圧力 PMsにおける飽和温度 Tmより少し高い温度 (Tm+ ΔΤ)に設定する。  [0094] First, when the opening control of the second expansion valve (58) starts, in step ST11, the target cooling temperature Ts of the liquid refrigerant that has flowed through the first flow path (50a) of the supercooling heat exchanger (50). Is set. The target cooling temperature Ts is set as follows. That is, the branching refrigerant that cools the liquid refrigerant by flowing through the second flow path (50b) of the supercooling heat exchanger (50) is supplied to the suction side of the high-stage compression mechanism (11). It evaporates at a saturation temperature Tm corresponding to the suction pressure of the stage side compression mechanism (11). Then, the discharge pressure of the booster compression mechanism (41) corresponding to the suction pressure of the high-stage compression mechanism (11) is controlled to be the target discharge pressure PMs! /, So the evaporation temperature of the branching refrigerant is The saturation temperature Tm corresponds to the target discharge pressure PMs. Then, the liquid refrigerant flowing through the first flow path (50a) is cooled by the branched refrigerant that evaporates at this saturation temperature Tm, and is not cooled to this saturation temperature Tm! /, So the target cooling temperature Ts is targeted. Set the temperature slightly higher than the saturation temperature Tm (Tm + ΔΤ) at the discharge pressure PMs.
[0095] そして、ステップ ST12において、液冷媒温度センサ(141)で測定される過冷却熱 交換器 (50)の第 1流路(50a)を流れた液冷媒の温度 Trが、 目標冷却温度 Tsに近似 する値(目標冷却温度 Tsとの差が土 /3の範囲内であり、ほぼ目標冷却温度 Tsとみな すことのできる値、 /3は所定の許容値)である力、、実際の液冷媒の温度 Trが、 目標冷 却温度 Tsと近似する値でなぐ 目標冷却温度 Tsより大き!/、か小さ!/、か判定する。  [0095] Then, in step ST12, the temperature Tr of the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50) measured by the liquid refrigerant temperature sensor (141) is the target cooling temperature Ts. A force that is a value that approximates to (the difference from the target cooling temperature Ts is within the range of soil / 3 and can be regarded as the target cooling temperature Ts, / 3 is a predetermined allowable value), the actual It is determined whether the temperature Tr of the liquid refrigerant is greater or less than the target cooling temperature Ts that is less than the target cooling temperature Ts.
[0096] ステップ ST12において、実際の液冷媒の温度 Trが、 目標冷却温度 Tsと近似す る値でなく、 目標冷却温度 Tsより高い場合は、ステップ ST13に移る。ステップ ST13 では、実際の液冷媒の温度 Trが 10°C以上か否かという判定と、高段側圧縮機構(11 )の吸入冷媒の過熱度 SHが 5°C以上か否かという判定がなされる。つまり、液冷媒が 冷却されすぎると、過冷却熱交換器 (50)が凍結する虞があるために、適宜設定した 下限値 10°C以上であって冷却されすぎて!/、な!/、かが判定され、第 2流路(50b)を流 れる分岐冷媒が完全に蒸発せず湿り状態となると、高段側圧縮機構(11)が湿り冷媒 を吸入して液圧縮する虞があるので、高段側圧縮機構(11)の吸入冷媒が湿り状態と なって!/、な!/、かが判定される。 [0096] In step ST12, the actual temperature Tr of the liquid refrigerant approximates the target cooling temperature Ts. If it is higher than the target cooling temperature Ts, move to step ST13. In step ST13, a determination is made as to whether or not the actual temperature of the liquid refrigerant Tr is 10 ° C or higher, and a determination is made as to whether or not the superheat degree SH of the suction refrigerant of the high-stage compression mechanism (11) is 5 ° C or higher. The In other words, if the liquid refrigerant is cooled too much, the supercooling heat exchanger (50) may freeze, so it is overcooled at the appropriate lower limit of 10 ° C! /, N! /, If the branch refrigerant flowing through the second flow path (50b) does not completely evaporate and becomes wet, the high-stage compression mechanism (11) may suck the wet refrigerant and compress the liquid. Then, it is determined whether the suction refrigerant of the high-stage compression mechanism (11) is in a wet state! / ,!
[0097] 尚、高段側圧縮機構(11)の吸入冷媒の過熱度 SHは、吸入主管(55)の吸入圧 力センサ(135)及び吸入温度センサ(136)の測定値により判定される。また、過冷却 熱交換器 (50)の凍結を防止するための温度の下限値を、例えば、 5°Cや 15°Cに設 定してもよい。そして、これらの条件の少なくとも何れか一つを満たすと、ステップ ST 14に移り、何れも満たしていないとリターンに移って再びスタートに戻る。ステップ ST 14では、弁制御部(103)により、第 2膨張弁(58)の開度が大きくなるように制御される 。これにより、第 2流路(50b)の冷媒量が多くなるので、第 1流路(50a)を流れる液冷 媒は、温度が低下して目標冷却温度 Tsとなる。  Note that the superheat degree SH of the suction refrigerant of the high-stage compression mechanism (11) is determined by the measured values of the suction pressure sensor (135) and the suction temperature sensor (136) of the suction main pipe (55). In addition, the lower limit value of the temperature for preventing freezing of the supercooling heat exchanger (50) may be set to 5 ° C or 15 ° C, for example. When at least one of these conditions is satisfied, the process proceeds to step ST14, and when neither is satisfied, the process proceeds to return and returns to the start. In Step ST14, the valve control unit (103) controls the second expansion valve (58) so that the opening degree is increased. As a result, the amount of refrigerant in the second flow path (50b) increases, so that the temperature of the liquid coolant flowing through the first flow path (50a) decreases to the target cooling temperature Ts.
[0098] ステップ ST12において、実際の液冷媒の温度 Trが、 目標冷却温度 Tsと近似す る値と判定された場合は、ステップ ST15に移る。ステップ ST15では、実際の液冷媒 の温度 Trが 10°C未満か否かという判定と、高段側圧縮機構(11)の吸入冷媒の過熱 度 SHが 5°C未満か否かという判定がなされ、これらの条件の少なくとも何れか一つを 満たすと、ステップ ST16に移り、何れも満たしていないとリターンに移って再びスタ ートに戻る。ステップ ST16では、弁制御部(103)により、第 2膨張弁(58)の開度が小 さくなるように制御される。これにより、液冷媒の温度 Trが上昇する。  If it is determined in step ST12 that the actual liquid refrigerant temperature Tr is close to the target cooling temperature Ts, the process proceeds to step ST15. In step ST15, it is determined whether or not the actual liquid refrigerant temperature Tr is less than 10 ° C, and whether or not the superheat degree SH of the suction refrigerant in the high-stage compression mechanism (11) is less than 5 ° C. If at least one of these conditions is met, the process moves to step ST16. If neither of these conditions is met, the process moves to return and returns to start. In step ST16, the opening of the second expansion valve (58) is controlled to be small by the valve control unit (103). As a result, the temperature Tr of the liquid refrigerant increases.
[0099] つまり、液冷媒の温度 Trが、 目標冷却温度 Tsと近似する値であっても、液冷媒の 温度 Trが 10°C未満であって冷却されすぎている場合や、高段側圧縮機構(11)の吸 入冷媒の過熱度 SHが低い場合は、第 2膨張弁(58)の開度が小さくなるように制御さ れ、過冷却熱交換器 (50)が凍結したり、高段側圧縮機構(11)が湿り冷媒を吸入して 液圧縮したりすることを防止する。そして、ステップ ST15で判定される条件を何れも 満たしていない場合は、過冷却熱交換器 (50)が凍結したり、高段側圧縮機構(11)が 液圧縮したりする虞がないので、第 2膨張弁(58)の開度は現状のまま維持されて、 目 標冷却温度 Tsと近似する温度に維持される。 [0099] That is, even if the temperature Tr of the liquid refrigerant is a value that approximates the target cooling temperature Ts, the temperature Tr of the liquid refrigerant is less than 10 ° C and it is overcooled, or the high-stage compression When the superheat degree SH of the suction refrigerant of the mechanism (11) is low, the opening of the second expansion valve (58) is controlled to be small, and the supercooling heat exchanger (50) is frozen or It prevents the stage-side compression mechanism (11) from sucking wet refrigerant and compressing it. And all the conditions judged in step ST15 If not, there is no risk of the supercooling heat exchanger (50) freezing or the high-stage compression mechanism (11) liquid compressing. The temperature is maintained at a temperature that approximates the target cooling temperature Ts.
[0100] そして、ステップ ST12において、実際の液冷媒の温度 Trが、 目標冷却温度 Tsと 近似する値になく目標液冷媒の温度 Trより低いと判定されると、ステップ ST16に移 り、弁制御部(103)により、第 2膨張弁(58)の開度が小さくなるように制御される。これ により、第 2流路(50b)の冷媒量が少なくなるので、第 1流路(50a)を流れる液冷媒は 、温度が上昇して目標冷却温度 Tsとなる。そして、リターンに移り、再びスタートに戻 [0100] When it is determined in step ST12 that the actual liquid refrigerant temperature Tr is not close to the target cooling temperature Ts and is lower than the target liquid refrigerant temperature Tr, the process proceeds to step ST16 and valve control is performed. The opening of the second expansion valve (58) is controlled by the portion (103) to be small. As a result, the amount of refrigerant in the second flow path (50b) decreases, so that the temperature of the liquid refrigerant flowing through the first flow path (50a) rises to the target cooling temperature Ts. Then move on to return and start again.
[0101] このようにして、過冷却熱交換器 (50)の第 1流路(50a)を流れる液冷媒を、 目標冷 却温度 Tsとすることができるので、冷凍熱交換器 (31)に送られる液冷媒を確実に冷 却し、該冷凍熱交換器 (31)における冷凍能力を大きくすることができる。また、このよ うに、過冷却熱交換器 (50)の第 1流路(50a)を流れる液冷媒を冷却しながら、この冷 却により、過冷却熱交換器 (50)が凍結したり、高段側圧縮機構(11)が液圧縮したり することを防止すること力 Sできる。 [0101] In this way, since the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50) can be set to the target cooling temperature Ts, the refrigeration heat exchanger (31) The liquid refrigerant to be sent can be reliably cooled, and the refrigeration capacity of the refrigeration heat exchanger (31) can be increased. In addition, in this way, while cooling the liquid refrigerant flowing through the first flow path (50a) of the supercooling heat exchanger (50), this cooling causes the supercooling heat exchanger (50) to freeze or It is possible to prevent the step-side compression mechanism (11) from compressing liquid.
[0102] 一実施形態の効果  [0102] Effects of one embodiment
上記冷凍装置(1)では、第 1容量制御部(101)により、冷凍熱交換器 (31)におけ る蒸発温度が目標蒸発温度となるように、ブースタ圧縮機構 (41)の運転容量を制御 するようにしたために、冷凍装置(1)の冷却負荷に対応した運転を行うことができる。 また、第 2容量制御部(102)が、上記ブースタ圧縮機構 (41)の吐出温度が目標吐出 温度となるように、上記高段側圧縮機構(11)の運転容量を制御するようにしたために 、この目標吐出温度を適宜設定することにより、高段側圧縮機構(11)の吸入冷媒を 比較的低い温度とすることができる。これにより、高段側圧縮機構(11)が高温になる ことを防止する対策として高段側圧縮機構(11)の吸入側に液冷媒を供給するにあた り、この液冷媒の量を低減することができるので、冷凍熱交換器 (31)で蒸発する冷媒 の量が多くすることができる。  In the refrigeration system (1), the operating capacity of the booster compression mechanism (41) is controlled by the first capacity control unit (101) so that the evaporation temperature in the refrigeration heat exchanger (31) becomes the target evaporation temperature. Therefore, an operation corresponding to the cooling load of the refrigeration apparatus (1) can be performed. In addition, the second capacity control unit (102) controls the operating capacity of the high-stage compression mechanism (11) so that the discharge temperature of the booster compression mechanism (41) becomes the target discharge temperature. Thus, by appropriately setting the target discharge temperature, the intake refrigerant of the high stage side compression mechanism (11) can be set to a relatively low temperature. This reduces the amount of liquid refrigerant when supplying liquid refrigerant to the suction side of the high stage compression mechanism (11) as a measure to prevent the high stage compression mechanism (11) from becoming hot. Therefore, the amount of refrigerant evaporated in the refrigeration heat exchanger (31) can be increased.
[0103] さらに、上記ブースタ圧縮機構 (41)の吐出温度が目標吐出温度よりも低い場合 は、高段側圧縮機構(11)が高温になりすぎない程度まで、該高段側圧縮機構(11) の運転容量を低減することができるので、高段側圧縮機構(11)の動力をできるだけ 小さくすること力 Sできる。つまり、冷凍熱交換器 (31)で蒸発する冷媒の流量を大きくす ること力 Sできると共に、高段側圧縮機構(11)の動力をできるだけ小さくすることができ るので、両圧縮機構 (41 , 11)の動力に対する冷凍熱交換器 (31)での冷凍能力を大 きくすること力でき、 COPを向上させること力 Sできる。 [0103] Further, when the discharge temperature of the booster compression mechanism (41) is lower than the target discharge temperature, the high-stage compression mechanism (11 ) Therefore, it is possible to reduce the power of the high-stage compression mechanism (11) as much as possible. In other words, it is possible to increase the flow rate of the refrigerant that evaporates in the refrigeration heat exchanger (31), and to reduce the power of the high-stage compression mechanism (11) as much as possible. , 11) The refrigeration capacity in the refrigeration heat exchanger (31) can be increased, and the COP can be improved.
[0104] また、第 2容量制御部(102)は、ブースタ圧縮機構 (41)の吐出圧力が目標吐出圧 力となるように、上記高段側圧縮機構(11)の運転容量を制御するので、ブースタ圧 縮機構(41)の各ブースタ圧縮機(41a, 41b, 41c)が高圧ドーム型のスクロール圧縮 機であって、吐出温度を迅速且つ厳密に測定することが困難な場合であっても、吐 出温度を吐出目標温度とする制御を確実に行うことができる。  [0104] Further, the second capacity control unit (102) controls the operating capacity of the high-stage compression mechanism (11) so that the discharge pressure of the booster compression mechanism (41) becomes the target discharge pressure. Even if the booster compressors (41a, 41b, 41c) of the booster compression mechanism (41) are high-pressure dome type scroll compressors and it is difficult to measure the discharge temperature quickly and accurately. In addition, it is possible to reliably control the discharge temperature as the discharge target temperature.
[0105] また、上記冷凍装置(1)では、上記弁制御部(103)が第 2膨張弁(58)の開度制御 を行って、過冷却熱交換器 (50)の第 1流路(50a)を流れる液冷媒を目標冷却温度 T sにまで冷却するようにしたために、冷凍熱交換器 (31)に送られる冷媒を確実に冷却 して、該冷凍熱交換器 (31)における冷凍能力を大きくすることができるので、冷凍装 置(1)の COPをより確実に向上させることができる。  [0105] In the refrigeration system (1), the valve control unit (103) controls the opening of the second expansion valve (58), and the first flow path of the supercooling heat exchanger (50) ( Since the liquid refrigerant flowing through 50a) is cooled to the target cooling temperature T s, the refrigerant sent to the refrigeration heat exchanger (31) is reliably cooled, and the refrigeration capacity in the refrigeration heat exchanger (31) is Therefore, the COP of the refrigeration apparatus (1) can be improved more reliably.
[0106] 《その他の実施形態》  << Other Embodiments >>
上記実施形態にっレ、ては、以下のような構成としてもょレ、。  According to the above embodiment, the following configuration is possible.
[0107] 上記実施形態の冷凍装置(1)は、各圧縮機構(11 , 41)を 3台の圧縮機を並列に 接続することにより構成したが、各圧縮機構(11 , 41)を、例えば 1台の圧縮機で構成 するようにしてもよい。また、上記実施形態の冷凍装置(1)は、冷凍熱交換器 (31)が 1台であつたが、複数の冷凍熱交換器 (31)が並列接続される構成であってもよい。  In the refrigeration apparatus (1) of the above embodiment, each compression mechanism (11, 41) is configured by connecting three compressors in parallel. For example, each compression mechanism (11, 41) You may make it comprise with one compressor. Further, although the refrigeration apparatus (1) of the above embodiment has one refrigeration heat exchanger (31), it may have a configuration in which a plurality of refrigeration heat exchangers (31) are connected in parallel.
[0108] また、上記実施形態の冷凍装置(1)では、ブースタ圧縮機構 (41)の各圧縮機 (41 a, 41b, 41c)としてスクロール型の圧縮機を用いており、吐出温度の測定の応答時間 が長いために、吐出圧力を目標吐出圧力となるように制御した力 吐出温度の応答 時間が短い圧縮機 (例えば、ロータリー型の圧縮機)であれば、直接に吐出温度を目 標吐出温度とする制御を行ってもよい。さらに、スクロール型の圧縮機を用いる場合 であっても、吐出管を流れる冷媒の温度から吐出温度を推測して制御するようにして あよい。 [0109] 尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではなレ、。 [0108] Further, in the refrigeration apparatus (1) of the above embodiment, a scroll type compressor is used as each compressor (41a, 41b, 41c) of the booster compression mechanism (41), and the discharge temperature is measured. Force that controls the discharge pressure to the target discharge pressure due to the long response time If the compressor has a short response time of the discharge temperature (for example, a rotary compressor), the target discharge temperature is directly discharged. Control of temperature may be performed. Further, even when a scroll compressor is used, the discharge temperature may be estimated and controlled from the temperature of the refrigerant flowing through the discharge pipe. [0109] It should be noted that the above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0110] 以上説明したように、本発明は、低段側圧縮機構と高段側圧縮機構とを備えて冷 媒を 2段圧縮する冷凍装置について有用である。 [0110] As described above, the present invention is useful for a refrigeration apparatus that includes a low-stage compression mechanism and a high-stage compression mechanism and compresses the refrigerant in two stages.

Claims

請求の範囲 The scope of the claims
[1] 運転容量可変の低段側圧縮機構 (41)と運転容量可変の高段側圧縮機構(11)と 凝縮器(13)と膨張機構 (32)と蒸発器 (31)とが順に接続された冷媒回路(10)を備え 、上記低段側圧縮機構 (41)と上記高段側圧縮機構(11)とによって冷媒を 2段圧縮 する冷凍装置であって、  [1] Low-stage compression mechanism (41) with variable operating capacity, high-stage compression mechanism (11) with variable operating capacity, condenser (13), expansion mechanism (32), and evaporator (31) in sequence A refrigeration apparatus comprising a refrigerant circuit (10) configured to compress the refrigerant in two stages by the low-stage compression mechanism (41) and the high-stage compression mechanism (11),
上記蒸発器 (31)における蒸発温度が目標蒸発温度となるように上記低段側圧縮 機構 (41)の運転容量を制御する第 1容量制御手段(101)と、  First capacity control means (101) for controlling the operating capacity of the low-stage compression mechanism (41) so that the evaporation temperature in the evaporator (31) becomes the target evaporation temperature;
上記低段側圧縮機構 (41)の吐出温度が目標吐出温度となるように上記高段側 圧縮機構(11)の運転容量を制御する第 2容量制御手段(102)とを備えて!/、る ことを特徴とする冷凍装置。  Second capacity control means (102) for controlling the operating capacity of the high-stage compression mechanism (11) so that the discharge temperature of the low-stage compression mechanism (41) becomes the target discharge temperature! A refrigeration apparatus characterized by the above.
[2] 請求項 1において、 [2] In claim 1,
上記第 2容量制御手段(102)は、上記低段側圧縮機構 (41)の吐出圧力が、上記 低段側圧縮機構 (41)の吸入圧力及び吸入温度と上記目標吐出温度とに基づ!/、て 導出した目標吐出圧力となるように上記高段側圧縮機構(11)の運転容量を制御す る  In the second capacity control means (102), the discharge pressure of the low-stage compression mechanism (41) is based on the suction pressure and suction temperature of the low-stage compression mechanism (41) and the target discharge temperature! Control the operating capacity of the high-stage compression mechanism (11) so that the target discharge pressure derived from
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
[3] 請求項 1において、 [3] In claim 1,
上記冷媒回路(10)は、凝縮器(13)から膨張機構 (32)へ流れる液冷媒と該液冷 媒の一部が分岐され且つ減圧された分岐冷媒とを熱交換させて上記液冷媒を冷却 する過冷却熱交換器 (50)を備える一方、該過冷却熱交換器 (50)を流れた分岐冷媒 が上記高段側圧縮機構(11)の吸入側に供給されるように構成されてレ、る ことを特徴とする冷凍装置。  The refrigerant circuit (10) exchanges heat between the liquid refrigerant flowing from the condenser (13) to the expansion mechanism (32) and the branched refrigerant in which a part of the liquid cooling medium is branched and depressurized. A subcooling heat exchanger (50) for cooling is provided, and the branched refrigerant that has flowed through the supercooling heat exchanger (50) is supplied to the suction side of the high-stage compression mechanism (11). A refrigeration system characterized by that.
[4] 請求項 3において、 [4] In claim 3,
上記分岐冷媒を上記過冷却熱交換器 (50)に供給する分岐通路 (84)には、開度 調整自在な減圧弁(58)が設けられる一方、  The branch passage (84) for supplying the branch refrigerant to the supercooling heat exchanger (50) is provided with a pressure-reducing valve (58) whose opening degree is adjustable,
上記過冷却熱交換器 (50)を流れた液冷媒の温度が目標冷却温度となるように上 記減圧弁(58)の開度を制御する弁制御手段(103)を備えてレ、る  Provided with valve control means (103) for controlling the opening of the pressure reducing valve (58) so that the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) becomes the target cooling temperature.
ことを特徴とする冷凍装置。 A refrigeration apparatus characterized by that.
[5] 請求項 2において、 [5] In claim 2,
上記冷媒回路(10)は、凝縮器(13)から膨張機構 (32)へ流れる液冷媒と該液冷 媒の一部が分岐され且つ減圧された分岐冷媒とを熱交換させて上記液冷媒を冷却 する過冷却熱交換器 (50)を備える一方、該過冷却熱交換器 (50)を流れた分岐冷媒 が上記高段側圧縮機構(11)の吸入側に供給されるように構成されてレ、る ことを特徴とする冷凍装置。  The refrigerant circuit (10) exchanges heat between the liquid refrigerant flowing from the condenser (13) to the expansion mechanism (32) and the branched refrigerant in which a part of the liquid cooling medium is branched and depressurized. A subcooling heat exchanger (50) for cooling is provided, and the branched refrigerant that has flowed through the supercooling heat exchanger (50) is supplied to the suction side of the high-stage compression mechanism (11). A refrigeration system characterized by that.
[6] 請求項 5において、 [6] In claim 5,
上記分岐冷媒を上記過冷却熱交換器 (50)に供給する分岐通路 (84)には、開度 調整自在な減圧弁(58)が設けられる一方、  The branch passage (84) for supplying the branch refrigerant to the supercooling heat exchanger (50) is provided with a pressure-reducing valve (58) whose opening degree is adjustable,
上記過冷却熱交換器 (50)を流れた液冷媒の温度が目標冷却温度となるように上 記減圧弁(58)の開度を制御する弁制御手段(103)を備えてレ、る  Provided with valve control means (103) for controlling the opening of the pressure reducing valve (58) so that the temperature of the liquid refrigerant flowing through the supercooling heat exchanger (50) becomes the target cooling temperature.
ことを特徴とする冷凍装置。  A refrigeration apparatus characterized by that.
PCT/JP2007/067386 2006-09-11 2007-09-06 Refrigeration device WO2008032633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-245319 2006-09-11
JP2006245319A JP4245023B2 (en) 2006-09-11 2006-09-11 Refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2008032633A1 true WO2008032633A1 (en) 2008-03-20

Family

ID=39183694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067386 WO2008032633A1 (en) 2006-09-11 2007-09-06 Refrigeration device

Country Status (2)

Country Link
JP (1) JP4245023B2 (en)
WO (1) WO2008032633A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159561A (en) * 1984-01-11 1985-08-21 コープランド・コーポレーシヨン Two-step compression refrigerator
JPH0526524A (en) * 1991-07-19 1993-02-02 Sanyo Electric Co Ltd Two-stage compression type freezing device
JP2000234811A (en) * 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd Refrigerating cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159561A (en) * 1984-01-11 1985-08-21 コープランド・コーポレーシヨン Two-step compression refrigerator
JPH0526524A (en) * 1991-07-19 1993-02-02 Sanyo Electric Co Ltd Two-stage compression type freezing device
JP2000234811A (en) * 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd Refrigerating cycle device

Also Published As

Publication number Publication date
JP4245023B2 (en) 2009-03-25
JP2008064420A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
WO2010013392A1 (en) Refrigerating device
JP3861912B2 (en) Refrigeration equipment
EP2924370A1 (en) Air conditioner and method for controlling an air conditioner
EP2211127A1 (en) Heat pump type air conditioner
JP4905018B2 (en) Refrigeration equipment
KR20070007771A (en) Freezing apparatus
JP4479828B2 (en) Refrigeration equipment
WO2005024313A1 (en) Freezer device
JP2008064421A (en) Refrigerating device
JP5062039B2 (en) Refrigeration equipment
JP2015068564A (en) Heat pump system and heat pump type water heater
JP2009293899A (en) Refrigerating device
JP4123257B2 (en) Refrigeration equipment
JP5051198B2 (en) Refrigeration equipment
JP4720641B2 (en) Refrigeration equipment
JP2009293887A (en) Refrigerating device
JP4023386B2 (en) Refrigeration equipment
JP2008045796A (en) Refrigerating apparatus
JP2008032337A (en) Refrigerating apparatus
JP2018173195A (en) Refrigerator
JP6136404B2 (en) Air conditioner
JP4245023B2 (en) Refrigeration equipment
JP5062079B2 (en) Refrigeration equipment
KR102242778B1 (en) Air Conditioner and Controlling method for the same
JP7400857B2 (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806827

Country of ref document: EP

Kind code of ref document: A1