WO2008032591A1 - Work transfer apparatus - Google Patents

Work transfer apparatus Download PDF

Info

Publication number
WO2008032591A1
WO2008032591A1 PCT/JP2007/067028 JP2007067028W WO2008032591A1 WO 2008032591 A1 WO2008032591 A1 WO 2008032591A1 JP 2007067028 W JP2007067028 W JP 2007067028W WO 2008032591 A1 WO2008032591 A1 WO 2008032591A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
workpiece
gripping device
robot
axis
Prior art date
Application number
PCT/JP2007/067028
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Maeda
Michiharu Tanaka
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to JP2008534291A priority Critical patent/JP5120258B2/en
Priority to KR1020087027431A priority patent/KR101310003B1/en
Publication of WO2008032591A1 publication Critical patent/WO2008032591A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1638Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/067Sheet handling, means, e.g. manipulators, devices for turning or tilting sheet glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/068Stacking or destacking devices; Means for preventing damage to stacked sheets, e.g. spaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/02Controlled or contamination-free environments or clean space conditions

Definitions

  • the present invention relates to a work transfer device that transfers a work gripped by a work gripping device by horizontally moving an arm that is cantilevered with respect to a support portion, and in particular, a control point that is shifted due to the stagnation of the arm.
  • the present invention relates to a work transfer device capable of correcting a position.
  • a processing unit is arranged for each processing step, and the substrate is sequentially transported to these processing units. A series of treatments are performed on the substrate.
  • Figure 7 shows the configuration of the workpiece transfer device.
  • a state is shown in which a robot 102 composed of a plurality of axes inserts a glass substrate 107 into a substrate capacity setting set 100 for temporarily storing a plurality of substrates after a series of processing steps.
  • the robot 102 operates by being supplied with motor driving power from the control device 104 via the cable 103.
  • the control device 104 is connected to the teaching means 106 via a cable 105.
  • the teaching means 106 has a plurality of buttons, and outputs an instruction to the control device 104 via the cable 105 by pressing each button.
  • the control device 104 outputs motor driving power to the robot 102 via the cable 103 in accordance with the above instructions.
  • the teaching means 106 may be a general-purpose computer or a personal computer, for example.
  • the substrate capacity setting set 100 includes support pins 101 for holding or supporting the glass substrate 107.
  • FIG. 8 shows the configuration of the robot 102.
  • the first arm link 108 is supported by the turning unit 129 via the first arm shaft 114.
  • the first arm link 108 includes an arm shaft motor 115 and is connected to the arm shaft speed reducer 116.
  • the arm shaft motor 115 rotates, the first arm link 108 is supported by the turning force 129 and the force S to rotate the first arm shaft 114 connected to the arm shaft speed reducer 116.
  • the first arm link 108 is provided with a first link belt 117 inside the first arm link 108 to reduce the arm axis speed. Power is transmitted from the machine 116 to the second arm shaft speed reducer 119 connected to the second arm shaft 118.
  • the second arm shaft reducer 119 has a characteristic of rotating in the opposite direction to the arm shaft reducer 116. That is, when the arm shaft motor 115 rotates, the first link belt 117 is driven, the second arm shaft speed reducer 119 rotates, the connected second arm shaft 118 rotates, and the second arm link 109 rotates. It turns in the opposite direction to the first arm axis 114 around the two arm axis 118.
  • a second link belt 120 is provided inside the second arm link 109, and power is transmitted from the second arm shaft speed reducer 119 to the flange speed reducer 121.
  • the flange reducer 121 has a characteristic of rotating in the opposite direction to the second arm shaft reducer 119.
  • each reducer (arm shaft reducer 116, second arm shaft reducer 119, flange reducer 121) is set so that the rotation angle of the first arm shaft 114 and the rotation angle of the flange 122 are equal. It has been. Also, the distance from the turning center of the first arm shaft 114 to the turning center of the second arm shaft 118 and the distance from the turning center of the second arm shaft 118 to the turning center of the flange 122 are set to be equal. It is.
  • the connected flange 122 rotates in the opposite direction to the second arm shaft 118, that is, in the same direction as the first arm shaft 114. Further, the rotation angle of the first arm shaft 114 and the rotation angle of the flange 122 are equal to each other. The distance from the rotation center of the first arm shaft 114 to the rotation center of the second arm shaft 118 and the rotation center of the second arm shaft 118 are the same. Since the distance from the center of rotation to the rotation center of the flange 122 is equal, the workpiece gripping device 110, the glass substrate 10 7 gripped or placed by the workpiece gripping device 110, and the control device 104 are subject to motion control. The control point 123 that is a virtual point to be moved is linearly moved in the X-axis direction.
  • FIGS. 9 and 10 show a state where the arms (first arm link and second arm link) of the robot 102 are extended and contracted.
  • 9 and 10 are views of the robot shown in FIG. 8 as viewed from the positive direction of the Z-axis.
  • a indicates the distance from the turning center of the first arm shaft 114 to the turning center of the second arm shaft 118. Since a is equal to the distance from the turning center of the second arm shaft 118 to the turning center of the flange 122, the turning center of the first arm shaft 114, the turning center of the second arm shaft 118, and the turning center of the flange 122 are
  • a triangle formed by connecting line segments is an isosceles triangle shown in the figure.
  • the bases rl and r2 of the isosceles triangle are distances from the pivot center of the first arm shaft 114 to the pivot center of the flange 122 (arm expansion / contraction length). For example, when the first arm shaft 114 rotates ⁇ 1 times, the angle formed by the line connecting the first arm shaft 114 to the second arm shaft 118 and the line connecting the first arm shaft 114 to the flange 122 is / 3 1 Since the flange 122 pivots from the mechanism described above in the opposite direction to the second arm shaft 118 by the same angle as the first arm shaft, the direction of the cake gripping device 110 is from the second arm shaft 118 to the flange 122. The direction is an angle / 3 1 counterclockwise from the extended line (see Fig. 9).
  • the lifting shaft motor 124 is connected to a reduction gear (not shown), and is driven to a reduction gear (not shown) connected to the lifting installation unit 125 by a belt (not shown) provided inside the lower lifting link 1 12.
  • a speed reducer (not shown) connected to the lift shaft motor 124 and a speed reducer (not shown) connected to the lifting support 126 are not shown in the upper lifting link 111, and are driven by a belt. Being! /
  • a speed reducer (not shown) connected to the lift installation part 125 and a speed reducer (not shown) connected to the lift support part 126 have a characteristic of rotating in the opposite direction to the speed reducer connected to the lift shaft motor 124.
  • the distance to the turning center is equal.
  • a belt (not shown) provided in each of them is driven, and a speed reducer (not shown) connected to the lifting / lowering mounting part 125 and a speed reducer connected to the lifting / lowering support part 126 are connected to the lifting / lowering shaft motor 124.
  • the workpiece gripping device 110, the gripped glass substrate 107, and the control point 123 move in the Z-axis linear direction in accordance with the operation of the lifting support unit 126.
  • b indicates the distance from the rotation center of the lifting shaft motor 124 to the rotation center of a reduction gear (not shown) connected to the lifting support 126.
  • b is equal to the distance from the center of rotation of the lifting / lowering mounting part 125 to the center of rotation of the speed reducer (not shown) connected to the lifting / lowering shaft motor 124.
  • the triangle formed by the line connecting the rotation centers of the lift installation part 125 is an isosceles triangle.
  • the base z of the isosceles triangle is the distance from the center of rotation of the lift installation part 125 to the center of rotation of the lift support part 126.
  • the lifting shaft motor 1 24 forces ⁇ rotation
  • the angle formed by the lower lifting link 112 and the shaft zero reference 127 and the angle formed on the extension line of the upper lifting link 111 from the shaft is ⁇ .
  • the elevation amount ⁇ is obtained by the equation (2).
  • FIG. 12 shows a state where the robot 102 shown in FIG. 8 is viewed from the positive direction of the Z axis.
  • the pivot 130 is connected to a reduction gear (not shown).
  • the reduction gear is connected to a turning shaft motor 128 shown in FIG.
  • the turning shaft 130 is connected to the turning portion 129, and the turning portion 129 is connected to the main body arm support portion 113.
  • the connected reduction gear (not shown) rotates, and the turning shaft 130 rotates.
  • the connected turning unit 129 turns in the turning positive direction 131 or the turning negative direction 132.
  • FIGS. Figure 13 shows the robot that inserts the workpiece gripping device into the board capacity set as seen from the Z-axis direction.
  • the first arm shaft 114 is rotated to move the arm to the board holding power set 100 in the positive X-axis direction.
  • the cake gripping device 110 can be inserted between the support pins 101.
  • Substrate housing with multiple support pins 134 similar to support pins 101 When inserting the workpiece gripping device 110 into the cassette 133, the workpiece gripping device 110 must be in a state where it can be inserted into the board capacity setting set 133. If the swivel unit 130 is turned with the workpiece gripping device 110 inserted into the substrate holding force set 100, the substrate holding force set 100 and the workpiece gripping device 110 interfere with each other. Rotate and move the arm in the negative direction of the X-axis until the board capacity setting set 100 and workpiece gripping device 110 do not interfere. Next, the turning shaft motor 128 is rotated to rotate the turning shaft 130 and the turning portion 129 is turned.
  • FIG. 14 is a view in which the arm is contracted by the above-described operation, the turning portion 129 is turned, and the workpiece gripping device 110 is directed toward the board accommodation force set 133.
  • the workpiece gripping device 110 is rotated in the negative swing direction 132, and the arm is moved in the negative Y-axis direction to the board holding force set 133, the workpiece is held in the board holding force set 133.
  • Device 110 can be inserted.
  • FIGS. 15 to 16 show a state in which the glass substrate 107 is transported and inserted into an arbitrary substrate capacity set 100 of the substrate capacity sets 100 in which a plurality of robots 102 are stacked.
  • a plurality of substrate capacity sets 100 are stacked in order to accommodate more glass substrates 107 in a limited area. If the stacked board capacity set 100 is counted as one stage from the bottom, two stages and one n stage, the board capacity set is placed above the nth board capacity set 135, for example, the second stage.
  • the board capacity set is n + second stage board capacity set 136.
  • the robot 102 is in a state where the arm gripping device 110 can be inserted into the nth-stage substrate capacity setting set 135 by performing an operation of extending the arm.
  • the elevator shaft motor 124 is rotated, the elevator installation part 125 and the elevator support part 126 are rotated, and the n + second stage substrate is inserted. It moves to the Z-axis direction position where the workpiece gripping device 110 can be inserted into the holding force set 136 (see Fig. 16).
  • FIG. 16 shows a state after the glass substrate is transferred and inserted into the N + second stage substrate capacity set with respect to the substrate capacity set in which a plurality of robots are stacked in the state of FIG. [0011]
  • the arm first arm link 108, second arm link 109
  • the arm is cantilevered with respect to the main body arm support 113, so that the weight of the arm and the workpiece grip Under the influence of the weight of the device 110 and the glass substrate 107, the arm stagnates in the direction of gravity.
  • the conventional workpiece transfer device corrects the stagnation due to gravity of the glass substrate, the arm, and the workpiece gripping device.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-183128
  • Patent Document 1 corrects static stagnation due to the gravity of the substrate and the arm.
  • many robots produce a stagnation that is larger than a static sag due to the moment of inertia that is applied when the arm extends or contracts.
  • FIG. 17 shows the shape of the center of gravity when the robot grips the glass substrate on the workpiece gripping device.
  • M represents the center of gravity including the workpiece gripping device 110 and the glass substrate 107, and the weight is m [kg].
  • Xg represents the distance in the X-axis direction from the arm shaft motor 115 to the center of gravity M
  • Zg represents the distance in the Z-axis direction from the arm shaft motor 115 to the center of gravity M.
  • FIG. 18 shows the relationship between the arm shaft motor 115 and the center of gravity M in FIG. 17 as a simple model.
  • the translation force F1 [N] is generated when the arm moves in the positive direction of the X axis at an acceleration a [m / s 2 ].
  • F1 is determined by equation (3),
  • F2 shows the translational force due to the reaction that the center of gravity receives by Fl.
  • F1 and F2 are in the relationship of equation (4).
  • F1 F2 (4)
  • the arm shaft motor shaft center position 137 indicates the center position of the arm shaft motor 115, N indicates the moment of inertia N [Nm] generated around the arm shaft motor shaft center position 137 by F2, and is obtained by equation (5). .
  • N F2-Zg (5)
  • Figure 19 shows the stagnation of each part of the arm and the workpiece gripping device when the arm is extended in the positive direction of the X axis.
  • the moment of inertia is applied counterclockwise in the figure around the first arm axis 114.
  • the first arm link 108 swung counterclockwise in the figure due to the moment of inertia.
  • the second arm shaft 118 is deviated counterclockwise in the figure around the first arm shaft 114 from the position when it is a complete rigid body.
  • the second arm link 109 is swung counterclockwise around the second arm shaft 118 by the moment of inertia.
  • the flange 122 deviates counterclockwise in the figure around the second arm shaft 118 from the position when it is a complete rigid body.
  • the workpiece gripping device 110 is swung counterclockwise around the flange 122 by the moment of inertia.
  • the ideal control point 139 shows the control point position when the arm is a perfect rigid body, but the position of the center of gravity is stagnated due to the influence of the above moment of inertia, and as a result the control point is also shifted The position indicated by control point 138 Thus, the amount of deviation in the Z-axis direction is ⁇ 1.
  • FIG. 20 shows a simple model of the relationship between the arm shaft motor 115 and the center of gravity M shown in FIG. 17, and the translational force F3 [N] when the X axis negative direction is contracted with acceleration a [m / s 2 ]. This shows how this occurred.
  • the translational force F3 is obtained by equation (6) as in equation (3).
  • F4 shows the translational force due to the reaction that the center of gravity receives by F3.
  • F3 and F4 are in the relationship of equation (7).
  • the arm shaft motor shaft center position 137 indicates the center position of the arm shaft motor 115, N indicates the moment of inertia N [Nm] generated around the arm shaft motor shaft center position 137 by F4, and is obtained by equation (8). .
  • N F4 -Zg (8)
  • FIG. 21 shows the stagnation of each part of the arm and the workpiece gripping device when the arm is contracted in the negative X-axis direction.
  • the moment of inertia is applied clockwise with the first arm shaft 114 as the center.
  • the first arm link 108 crawls clockwise in the figure due to the moment of inertia.
  • the second arm shaft 118 is deviated clockwise from the position of the complete rigid body around the first arm shaft 114 in the drawing.
  • the second arm link 109 is swung clockwise around the second arm shaft 118 by the moment of inertia.
  • the flange 122 is deviated clockwise from the position of the complete rigid body around the second arm shaft 118 in the drawing.
  • the workpiece gripping device 110 is pinched clockwise around the flange 122 by the moment of inertia.
  • the ideal control point 139 is the force indicating the control point position when the arm is a perfect rigid body, and the center of gravity position is stagnated due to the influence of the above inertial moment, and as a result, the control point 140 is also shifted.
  • the Z axis displacement is ⁇ ⁇ 2.
  • FIG. 22 shows the relationship between the speed of the arm axis motor and the amount of stagnation of the control point position and time when the robot moves the arm in the positive direction of the X axis.
  • the horizontal axis t indicates time
  • the vertical axis V indicates speed
  • the vertical axis Z indicates the amount of stagnation in the Z-axis direction at the control point position.
  • the arm axis motor has the speed waveform indicated by the arm axis motor speed 143.
  • the arm-axis motor 115 accelerates as indicated by the arm-axis motor speed 143, the moment of inertia is generated as described above, and the control point is shifted in the Z-axis positive direction.
  • the amount of shift over time at this time is shown as the amount of stagnation 144 in the control point position during acceleration.
  • the arm shaft motor 115 decelerates from the steady speed as indicated by the arm shaft motor speed 143, the inertia moment is generated as described above, and the control point is Shifts in the negative Z-axis direction.
  • the amount of shift over time at this time is shown in Stagnation amount 145 of control point position during deceleration.
  • the workpiece gripping device of the robot is put in and out of the substrate stored in the substrate capacity setting and is gripped by the workpiece gripping device.
  • the substrate is taken in and out, and when the substrate is taken in and out of the processing unit, interference occurs in each part, and the substrate and the like may be damaged.
  • it is possible to increase the space between the substrates in the board capacity set and to reduce the acceleration / deceleration speed of the arm to reduce the moment of inertia. There are adverse effects such as a decrease in the number of sheets and the time required for substrate transfer.
  • the present invention has been made in view of such problems, and includes a substrate capacity setting without lowering the acceleration / deceleration speed of the arm's expansion / contraction operation, and the insertion / extraction of the glass substrate into / from the processing portion of the substrate.
  • An object of the present invention is to provide a robot apparatus that can be used without interference. Means for solving the problem
  • the present invention is configured as follows.
  • the invention described in claim 1 includes an arm having a workpiece gripping device for gripping or placing a workpiece at a tip thereof, an arm shaft motor that extends and contracts the arm in a horizontal direction, and a lifting shaft motor that lifts and lowers the arm.
  • a workpiece transfer device comprising a control device that drives and controls the arm axis motor and the lifting axis motor of the robot, and the arm when the arm is extended and contracted by driving the arm axis motor.
  • the workpiece gripping device or the arm, the workpiece gripping device, and the inertia moment based on the horizontal movement acceleration / deceleration of the workpiece, the amount of vertical stagnation of the control point position of the robot is obtained. It is characterized by having correction means for driving and correcting in the vertical direction.
  • control device includes storage means, and the robot mouth bot information, the workpiece gripping device information of the workpiece gripping device, and the workpiece information of the workpiece in advance. Information and other parameters are registered, and the amount of stagnation is obtained based on the parameters.
  • the workpiece gripping device information is registered in association with the gripping device identifier, and when the amount of stagnation is obtained, The amount of stagnation is obtained based on the workpiece gripping device information searched by the gripping device identifier.
  • a work identifier is assigned to each of the plurality of works, the work information is registered in association with the work identifier, and when the amount of stagnation is obtained, the work identifier is searched. The amount of stagnation is obtained based on work information.
  • the invention according to claim 5 is characterized in that the robot is a horizontal articulated robot for transporting a liquid crystal glass substrate.
  • the control device of the present invention calculates the sag of the arm due to the moment of inertia when the robot having the arm and the lifting shaft expands and contracts, and the control point position shifts due to the sag.
  • the vertical trajectory of the control point can be kept constant.
  • FIG. 1 is a flowchart of the present invention.
  • Fig. 15 Before inserting the workpiece gripping device into the ⁇ stage of multiple substrate capacity sets. 16) Inserting the workpiece gripping device into the ⁇ + 2 stage of multiple substrate capacity sets. 17] Schematic diagram of the center of gravity when a glass substrate is gripped by a workpiece gripping device
  • a workpiece transfer device that applies the present invention to a horizontal articulated mouth bot having a vertical lifting shaft having the configuration shown in FIGS. 7 and 8 will be described.
  • the parameters of the robot 102 are input in advance to storage means (not shown) provided in the control device 104.
  • the storage means includes a distance [m] from the first arm shaft 114 to the second arm shaft 118, a distance [m] from the second arm shaft 118 to the flange 122, and an arm shaft motor 115 to the flange 122 shown in FIG.
  • identifiers such as unique numbers are assigned to each, and the aforementioned parameters are registered for each identifier. These parameters are searched by the force identifier used for calculation during operation.
  • the various parameters are stored in the storage means of the control device 104 via a force input by pressing a button provided on the teaching means 106, communication means from an external storage device (not shown). It should be noted that force S, which requires other parameters for the desired operation and control of the workpiece transfer device, is omitted because it is not related to the present invention.
  • the robot 102 inputs an operation command to the control device 104 via the cable 105 in accordance with an operation program stored in the storage means in advance or by pressing a plurality of buttons provided in the teaching means 106, and the cable 103 It operates by giving to each motor via.
  • the operation program describes the number (identifier) of the workpiece gripping device provided during operation and the number (identifier) of the workpiece being gripped.
  • the work program is selected in preparation for the operation of reproducing the designated operation program, and a parameter referred to by an identifier included in the work program is retrieved and read.
  • the robot 102 in the teaching mode in which the robot 102 is operated by operating the teaching means, when the operation command is input to the control device 104 via the cable 105 by pressing the button provided on the teaching means 106, the workpiece gripping device provided.
  • the identifier (number) of the robot and the identifier (number) of the workpiece gripped during operation are transmitted.
  • the distance in the X-axis direction [m] from the flange 122 to the workpiece center of gravity M and the distance in the Z-axis direction [m] are the distance in the X-axis direction from the workpiece gripper flange 122 to the workpiece center of gravity M
  • the distance [m], the Z-axis direction distance [m] from the workpiece gripping device flange 122 to the workpiece center of gravity M in operation, and the X axis from the workpiece flange 122 to the workpiece center of gravity M in operation It can be obtained using the direction distance [m] and the Z-axis direction distance [m] from the flange 122 of the workpiece gripped during operation to the center of gravity M of the workpiece.
  • the X-axis direction distance from the first arm shaft 114 to the flange 122 after giving an operation command for one predetermined control cycle from the controller to each motor is the first arm stored in the storage means in advance. It can be obtained geometrically using the distance [m] from the axis 114 to the second arm axis 118 and the distance [m] from the second arm axis 118 to the flange 122. For example, in the case of an arm having the mechanism shown in FIGS. 8, 9, and 10, the distance in the X-axis direction from the first arm shaft 114 to the flange 122 is obtained by the equation (1) as described above.
  • the first arm shaft 114 and the arm shaft motor 115 are arranged at the same position in the X-axis direction, the first arm shaft 1 14 force and the X-axis direction distance [m] to the flange 122 are It is equal to the distance [m] in the X-axis direction from the shaft motor 115 to the flange 12 2.
  • Step 1 Add the X-axis direction distance [m] from the flange 122 to the workpiece center of gravity M and the X-axis direction distance [m] from the arm axis motor 115 to the flange 122.
  • the X-axis direction distance [m] from the arm shaft motor 115 to the workpiece center of gravity M after giving an operation command for one cycle, and the Z-axis direction distance [m] from the flange 122 to the workpiece center of gravity M and the storage means Calculate the distance [m] in the Z-axis direction from the stored arm axis motor 115 to the flange 122, and give an operation command for one cycle from the controller to each motor. From arm axis motor 11 5 to workpiece center of gravity M Find the distance [m] in the Z-axis direction.
  • Step 2 The distance in the X-axis direction from the first arm shaft 114 to the flange 122 before giving an operation command for one cycle from the controller to each motor is the first arm shaft 114 stored in the storage means in advance. Can be obtained geometrically using the distance [m] from the second arm shaft 118 to the second arm shaft 118 and the distance [m] from the second arm shaft 118 to the flange 122. For example, in the case of an arm having the mechanism shown in FIGS. 8, 9, and 10, the distance in the X-axis direction from the first arm shaft 114 to the flange 122 is obtained by the equation (1) as described above.
  • the X-axis direction distance [m] from the flange 122 to the workpiece center of gravity M and the X-axis direction distance [m] from the arm shaft motor 115 to the flange 122 are added, and one cycle of operation from the controller to each motor. Obtain the distance [m] in the X-axis direction from the arm shaft motor 115 before giving the command to the workpiece center of gravity M
  • Step 3 The difference in the X-axis direction distance from the arm shaft motor 115 obtained in Step 1 and Step 2 to the workpiece center of gravity M is calculated. In other words, the X axis movement distance of the workpiece center of gravity Ask.
  • Step 4 By dividing the movement distance in the X-axis direction of the center of gravity obtained in Step 3 by the square of the periodic time [s] for which the control device previously stored in the storage means outputs the operation command to each motor. Acceleration / deceleration a [m / s 2 ] is calculated.
  • Step 5 Add the weight [kg] of the workpiece gripping device registered in the control device! /, And the weight [kg] of the workpiece gripping device in operation. Then, the total weight of the tip portion is obtained from the flange 122, and the translational force F [N] is obtained from the acceleration / deceleration a [m / s 2 ] obtained in step 4 by the equation (9).
  • Step 6 The Z-axis direction distance [m] from the arm shaft motor 115 to the center of gravity M after giving an operation command for one cycle from the control device obtained in Step 1 to each motor.
  • the reaction force of the translational force F [N] obtained (the value is equal to the translational force F)
  • Step 7 Using the stiffness value K [Nm / rad] applied to the workpiece gripping device gripped during operation and the moment of inertia N [Nm] obtained in Step 6, it is possible to Find the angle ⁇ [rad].
  • FIGS. Figure 2 shows the stagnation angle ⁇ 1 when the arm is moved in the positive direction of the X axis.
  • Figure 3 shows the stagnation angle ⁇ 2 when the arm is moved in the negative direction of the X axis.
  • P the point of intersection between the turning center line of the first arm axis 114 and a straight line that passes through the control points when each part of the arm and the workpiece gripping device 110 are completely rigid and is parallel to the workpiece gripping device 110 is P
  • Each angle is an angle formed by a straight line that passes through the point P and the control point, and a straight line that connects the control point 138 and the point P that are displaced by the gripping of each part of the arm and the workpiece gripping device 110.
  • the stagnation angle ⁇ is also defined as point P when the intersection point of each arm part and a straight line passing through the center of gravity and parallel to the work gripping device 110 when the work gripping device 110 is a complete rigid body is point P.
  • point P When the straight line passing through the center of gravity position 141, the arm parts, and the workpiece gripping device 110 It is equal to the angle formed by the straight line connecting the displaced center of gravity 142 and point P.
  • Step 8 The distance [m] from the first arm axis 114 to the second arm axis 118, the distance [m] from the second arm axis 118 to the flange 122 stored in the storage means in advance, and the arm axis Using the angle of the motor 115, geometrically determine the distance in the X-axis direction (arm expansion / contraction length) from the first arm shaft 114 to the flange 122 after giving an operation command for one cycle from the controller to each motor. .
  • the distance in the X-axis direction from the first arm shaft 114 to the flange 122 is obtained by the equation (1) as described above.
  • Step 9 The distance from the first arm axis 114 to the control point by adding the arm expansion / contraction length obtained in Step 8 and the X-axis direction distance [m] from the flange 122 of the workpiece gripping device to the control point Find R [m] and use the stagnation angle ⁇ [rad] found in step 7 to find the stagnation amount AZ [m].
  • the amount of stagnation A Z [m] is obtained by equation (12).
  • Step 10 Assuming that each part of the arm is a complete rigid body, geometrically obtain the lift amount [m] of the lift shaft after giving an operation command for one cycle from the controller to each motor, The Z-axis direction distance [m] from the workpiece gripping device flange 122 to the control point is added to the lift [m], and the control point after the operation command for one cycle is given from the control device to each motor. Calculate the Z-axis direction position [m], subtract the stagnation amount AZ [m] obtained in Step 9, and use this as the corrected target control point Z-axis direction position Zc [m].
  • Step 11 After giving an operation command for one cycle from the control device to each motor, the distance [m] from the lifting / lowering installation part 125 to the lifting / lowering axis motor 124 stored in the storage means in advance, Each motor of the lift shaft to operate with only the lift shaft to the target control point Z-axis direction position [m] corrected in step 10 using the distance [m] from the motor 124 to the lift support portion 126 Find the angle geometrically.
  • the distance [m] from the lifting mounting portion 125 to the lifting shaft motor 124 stored in the storage means in advance and the distance from the lifting shaft motor 124 to the lifting support portion 126.
  • Step 12 An operation command corresponding to the lifting axis motor angle ⁇ obtained in Step 11 is newly output to each axis motor of the robot 102 via the cable 103 as an operation command to the lifting axis motor.
  • Fig. 4 shows the speed 143 of the arm axis motor when the robot shown in Fig. 22 moves the arm in the positive direction of the X axis, the relationship between the control point position and time, and the correction amount.
  • the horizontal axis t indicates time
  • the vertical axis V indicates speed
  • the vertical axis Z indicates the amount of stagnation 144, 145 in the Z-axis direction of the control point position.
  • the correction amount is equal to that obtained by inverting the sign of the stagnation amount ⁇ obtained in step 9.
  • the correction amount when the arm accelerates in the X-axis positive direction is correction 13 during acceleration, and the arm moves in the X-axis positive direction.
  • the correction amount when decelerating is correction 14 when decelerating.
  • FIG. 5 shows a state in which the amount of sag ⁇ ⁇ is corrected when the robot accelerates the arm in the positive direction of the X axis.
  • the sum of the amount of stagnation ⁇ ⁇ and the correction amount is zero, so the corrected control point 15 and the ideal control point 138 have the same Z-axis position, and the Z-axis position of the control point is kept constant.
  • Fig. 6 shows how the robot corrects the sag amount ⁇ ⁇ when the robot accelerates the arm in the negative direction of the X axis. Since the added value of the stagnation amount ⁇ and the correction amount is zero, the corrected control point 16 and the ideal control point 139 have the same Z-axis position, and the control point Z-axis position is kept constant. Be drunk.
  • the arm is a linear motion shaft composed of, for example, a motor, a rack & pinion, or a ball screw, or a linear motion shaft powered by air pressure or hydraulic pressure by electromagnetic valve control.
  • first arm shaft 114, the second arm shaft 118, and the flange 122 are each equipped with a motor, and can be individually rotated to perform interpolation operation in the X-axis direction and operate in the Y-axis direction and the Z-axis direction. It may be possible.
  • the arm has a mechanism that can linearly interpolate the glass substrate in the X-axis direction!
  • the lifting shaft is a linear motion shaft composed of, for example, a rack and pinion or a ball screw, a linear motion shaft powered by air pressure or hydraulic pressure controlled by a solenoid valve, and the lifting shaft motor 124 and the lifting support portion in addition to the lifting shaft motor 124.
  • 126 may be equipped with a motor, rotate individually, perform interpolation in the Z-axis direction, and operate in the X-axis and Y-axis directions.
  • the lift axis only needs to have a mechanism that can perform linear interpolation in the Z-axis direction. 7, 8, 12, 13, and 14 exemplify a general device.
  • the force pivot 130 is not necessarily provided.
  • the teaching means 106 shown in FIG. 7 may be a general-purpose computer or personal computer equipped with an external storage device, for example, the force teaching means 106 provided with an external storage device (not shown). If the operation program is stored in the storage means in advance, the teaching means 106 may not be provided.
  • the cable 105 shown in FIG. 7 is shown as an electrically connected wired transmission means! /, A force that can be a wireless means using radio waves! /, For example.
  • the present invention can be applied to a robot having degrees of freedom in the horizontal direction and the vertical direction, it can be applied to, for example, a vertical 6-axis articulated robot used in many industrial robots. I can do it.
  • a workpiece must be conveyed at high speed and accurately to a pressing machine that continues to operate. Since the work entrance of the press machine is the minimum size to carry the work, it is possible that the work and the press machine may interfere with each other due to the stagnation caused by the moment of inertia when transporting at high speed.
  • the amount of stagnation that occurs during the conveyance of the workpiece is calculated, and the calculated ⁇ is the direction deviated by stagnation from the position where each part is a complete rigid body.
  • the amount of stagnation can be eliminated linearly by linear interpolation using 6 degrees of freedom.
  • the present invention is considered to generate dynamic stagnation due to a high-speed and long-stroke operation, and can be applied particularly to an operation in which one end is operated and a workpiece is conveyed at the other end.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)

Abstract

A position of a control point is kept by correcting warping caused by inertia moment operated while an arm of a robot is extending and retracting. In a control device (104) for controlling operation of the robot composed of a plurality of shafts, warping caused by inertia moment generated at the time of extending and retracting the arm by following an operation instruction given by an operation program previously stored in the storage means and an operation instruction given from an instructing means (106) arranged in the control device (104), is corrected by degree of freedom of the robot operated in the direction opposite to the warping direction.

Description

明 細 書  Specification
ワーク搬送装置  Work transfer device
技術分野  Technical field
[0001] 本発明は、支持部に対して片持ち支持されたアームを水平移動させることによって ワーク把持装置に把持したワークを搬送するワーク搬送装置に関し、特に該アーム の橈みによってずれた制御点位置を補正することができるワーク搬送装置に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a work transfer device that transfers a work gripped by a work gripping device by horizontally moving an arm that is cantilevered with respect to a support portion, and in particular, a control point that is shifted due to the stagnation of the arm. The present invention relates to a work transfer device capable of correcting a position. Background art
[0002] 液晶用ガラス基板や半導体ウェハ等の基板等を加工処理する半導体製造システ ムにおいては、処理工程毎に処理部を配置し、これら処理部に対して順次基板を搬 送することにより、基板に一連の処置を施すようにしている。  In a semiconductor manufacturing system that processes a substrate such as a glass substrate for liquid crystal or a semiconductor wafer, a processing unit is arranged for each processing step, and the substrate is sequentially transported to these processing units. A series of treatments are performed on the substrate.
図 7にワーク搬送装置の構成を示す。ここでは、一連の処理工程を終えた複数の基 板を一時的に保管する基板収容力セット 100に、複数軸で構成されたロボット 102が ガラス基板 107を揷入する様子を示す。ロボット 102は制御装置 104よりケーブル 10 3を介してモータの駆動電力が供給され動作を行う。制御装置 104はケーブル 105 を介して教示手段 106に接続されている。教示手段 106は複数のボタンを有し、各ボ タンを押下することでケーブル 105を介して制御装置 104へ指示を出力する。制御 装置 104は前記指示に従い、ケーブル 103を介してロボット 102へモータの駆動電 力を出力する。教示手段 106は例えば汎用コンピュータやパーソナルコンピュータの 場合もある。基板収容力セット 100はガラス基板 107を保持又は支持するための支持 ピン 101を備えている。  Figure 7 shows the configuration of the workpiece transfer device. Here, a state is shown in which a robot 102 composed of a plurality of axes inserts a glass substrate 107 into a substrate capacity setting set 100 for temporarily storing a plurality of substrates after a series of processing steps. The robot 102 operates by being supplied with motor driving power from the control device 104 via the cable 103. The control device 104 is connected to the teaching means 106 via a cable 105. The teaching means 106 has a plurality of buttons, and outputs an instruction to the control device 104 via the cable 105 by pressing each button. The control device 104 outputs motor driving power to the robot 102 via the cable 103 in accordance with the above instructions. The teaching means 106 may be a general-purpose computer or a personal computer, for example. The substrate capacity setting set 100 includes support pins 101 for holding or supporting the glass substrate 107.
[0003] 図 8はロボット 102の構成を示す。第 1アームリンク 108は第 1アーム軸 114を介して 旋回部 129に支持される。第 1アームリンク 108の内部にはアーム軸モータ 115を備 え、アーム軸減速機 116と連結されている。アーム軸モータ 115が回転することでァ ーム軸減速機 116に連結された第 1アーム軸 114を回転させようとする力 S、旋回部 12 9に支持されているため、第 1アームリンク 108が第 1アーム軸 114を中心に旋回する 第 1アームリンク 108の内部には第 1リンクベルト 117を備えており、アーム軸減速 機 116から第 2アーム軸 118に連結された第 2アーム軸減速機 119へ動力が伝達さ れる。第 2アーム軸減速機 119はアーム軸減速機 116と逆方向に回転する特性を持 つ。すなわち、アーム軸モータ 115が回転することで第 1リンクベルト 117が駆動され 、第 2アーム軸減速機 119が回転し、連結された第 2アーム軸 118が回転し、第 2ァ ームリンク 109は第 2アーム軸 118を中心に第 1アーム軸 114と逆方向へ旋回する。 第 2アームリンク 109の内部には第 2リンクベルト 120を備えており、第 2アーム軸減速 機 119からフランジ減速機 121へ動力が伝達される。フランジ減速機 121は第 2ァー ム軸減速機 119と逆方向に回転する特性を持つ。また、各減速機(アーム軸減速機 1 16、第 2アーム軸減速機 119、フランジ減速機 121)の減速比は第 1アーム軸 114の 回転角度とフランジ 122の回転角度が等しくなるように設けられている。また、第 1ァ ーム軸 114の旋回中心から第 2アーム軸 118の旋回中心までの距離と、第 2アーム 軸 118の旋回中心からフランジ 122の旋回中心までの距離は等しくなるように設けら れている。 FIG. 8 shows the configuration of the robot 102. The first arm link 108 is supported by the turning unit 129 via the first arm shaft 114. The first arm link 108 includes an arm shaft motor 115 and is connected to the arm shaft speed reducer 116. As the arm shaft motor 115 rotates, the first arm link 108 is supported by the turning force 129 and the force S to rotate the first arm shaft 114 connected to the arm shaft speed reducer 116. The first arm link 108 is provided with a first link belt 117 inside the first arm link 108 to reduce the arm axis speed. Power is transmitted from the machine 116 to the second arm shaft speed reducer 119 connected to the second arm shaft 118. The second arm shaft reducer 119 has a characteristic of rotating in the opposite direction to the arm shaft reducer 116. That is, when the arm shaft motor 115 rotates, the first link belt 117 is driven, the second arm shaft speed reducer 119 rotates, the connected second arm shaft 118 rotates, and the second arm link 109 rotates. It turns in the opposite direction to the first arm axis 114 around the two arm axis 118. A second link belt 120 is provided inside the second arm link 109, and power is transmitted from the second arm shaft speed reducer 119 to the flange speed reducer 121. The flange reducer 121 has a characteristic of rotating in the opposite direction to the second arm shaft reducer 119. Also, the reduction ratio of each reducer (arm shaft reducer 116, second arm shaft reducer 119, flange reducer 121) is set so that the rotation angle of the first arm shaft 114 and the rotation angle of the flange 122 are equal. It has been. Also, the distance from the turning center of the first arm shaft 114 to the turning center of the second arm shaft 118 and the distance from the turning center of the second arm shaft 118 to the turning center of the flange 122 are set to be equal. It is.
[0004] 以上の機構から、アーム軸モータ 115が回転することで、アーム軸減速機 116と連 結された第 1アーム軸 114が回転すると同時に、アーム軸減速機 116から第 1リンク ベルト 117を介して動力が伝達され第 2アーム軸減速機 119が回転する。第 2アーム 軸減速機 119が回転することで、連結された第 2アーム軸 118が第 1アーム軸 114と 逆方向に回転すると同時に、第 2アーム軸減速機 119から第 2リンクベルト 120を介し て動力が伝達されフランジ減速機 121が回転する。フランジ減速機 121が回転するこ とで、連結されたフランジ 122は第 2アーム軸 118と逆方向、即ち第 1アーム軸 114と 同方向に旋回する。また、第 1アーム軸 114の回転角度とフランジ 122の回転角度は 等しぐ第 1アーム軸 114の回転中心から第 2アーム軸 118の回転中心までの距離と 、第 2アーム軸 118の回転中心からフランジ 122の回転中心までの距離は等しいた め、ワーク把持装置 110、ワーク把持装置 110で把持又は載置されたガラス基板 10 7及び制御装置 104がロボット 102を動作する上で動作制御対象とする仮想点であ る制御点 123は X軸方向に直線動作するようになっている。  [0004] From the above mechanism, when the arm shaft motor 115 rotates, the first arm shaft 114 connected to the arm shaft speed reducer 116 rotates, and at the same time, the first link belt 117 is moved from the arm shaft speed reducer 116. The power is transmitted through the second arm shaft speed reducer 119. As the second arm shaft reducer 119 rotates, the connected second arm shaft 118 rotates in the opposite direction to the first arm shaft 114, and at the same time, the second arm shaft reducer 119 passes through the second link belt 120. The power is transmitted and the flange reducer 121 rotates. As the flange reducer 121 rotates, the connected flange 122 rotates in the opposite direction to the second arm shaft 118, that is, in the same direction as the first arm shaft 114. Further, the rotation angle of the first arm shaft 114 and the rotation angle of the flange 122 are equal to each other. The distance from the rotation center of the first arm shaft 114 to the rotation center of the second arm shaft 118 and the rotation center of the second arm shaft 118 are the same. Since the distance from the center of rotation to the rotation center of the flange 122 is equal, the workpiece gripping device 110, the glass substrate 10 7 gripped or placed by the workpiece gripping device 110, and the control device 104 are subject to motion control. The control point 123 that is a virtual point to be moved is linearly moved in the X-axis direction.
[0005] ロボット 102のアーム(第 1アームリンクと第 2アームリンク)が伸縮した状態を図 9及 び図 10に示す。図 9及び図 10は図 8記載のロボットを Z軸正方向から見た図である。 図中、 aは第 1アーム軸 114の旋回中心から第 2アーム軸 118の旋回中心までの距離 を示す。 aは、第 2アーム軸 118の旋回中心からフランジ 122の旋回中心までの距離 に等しいことから、第 1アーム軸 114の旋回中心と第 2アーム軸 118の旋回中心とフラ ンジ 122の旋回中心を結ぶ線分が成す三角形は、図中に示す二等辺三角形となる 。前記二等辺三角形の底辺 rl、 r2は第 1アーム軸 114の旋回中心からフランジ 122 の旋回中心までの距離(アームの伸縮長)である。例えば第 1アーム軸 114が α 1回 転したとき、第 1アーム軸 114から第 2アーム軸 118を結ぶ線分と第 1アーム軸 114か らフランジ 122を結ぶ線分が成す角度は /3 1となる力 フランジ 122はすでに述べた 機構から第 2アーム軸 118と逆方向に第 1アーム軸と同じ角度だけ旋回するので、ヮ ーク把持装置 110の向きは第 2アーム軸 118からフランジ 122への延長線上から反 時計方向に角度 /3 1成す方向になる(図 9参照)。また、例えば第 1アーム軸 114が α 2旋回したときには、この角度は /3 2となる(図 10参照)。従って、アームの伸縮動 作を行うとき、ワーク把持装置 1 10の向きを一定に保つことが出来る。アームの伸縮 長 rは式(1)によって求められる。 [0005] FIGS. 9 and 10 show a state where the arms (first arm link and second arm link) of the robot 102 are extended and contracted. 9 and 10 are views of the robot shown in FIG. 8 as viewed from the positive direction of the Z-axis. In the figure, a indicates the distance from the turning center of the first arm shaft 114 to the turning center of the second arm shaft 118. Since a is equal to the distance from the turning center of the second arm shaft 118 to the turning center of the flange 122, the turning center of the first arm shaft 114, the turning center of the second arm shaft 118, and the turning center of the flange 122 are A triangle formed by connecting line segments is an isosceles triangle shown in the figure. The bases rl and r2 of the isosceles triangle are distances from the pivot center of the first arm shaft 114 to the pivot center of the flange 122 (arm expansion / contraction length). For example, when the first arm shaft 114 rotates α 1 times, the angle formed by the line connecting the first arm shaft 114 to the second arm shaft 118 and the line connecting the first arm shaft 114 to the flange 122 is / 3 1 Since the flange 122 pivots from the mechanism described above in the opposite direction to the second arm shaft 118 by the same angle as the first arm shaft, the direction of the cake gripping device 110 is from the second arm shaft 118 to the flange 122. The direction is an angle / 3 1 counterclockwise from the extended line (see Fig. 9). For example, when the first arm shaft 114 is turned α 2, this angle is / 32 (see FIG. 10). Therefore, the direction of the workpiece gripping device 110 can be kept constant when the arm is extended and contracted. The expansion / contraction length r of the arm can be obtained by equation (1).
r = 2asin ( a ) … (1) r = 2asin (a)… (1)
図 8で、昇降軸モータ 124は図示しない減速機と連結されており、下部昇降リンク 1 12の内部に備えられた図示しないベルトによって、昇降据付部 125と連結された図 示しない減速機に駆動伝達されている。さらに、昇降軸モータ 124に連結された図示 しない減速機と昇降支持部 126に連結された図示しない減速機は、上部昇降リンク 1 11の内部に備えられた図示しな!/、ベルトによって駆動伝達されて!/、る。昇降据付部 125に連結された図示しない減速機と昇降支持部 126に連結された図示しない減速 機は、昇降軸モータ 124に連結された減速機と逆方向に回転する特性を持つ。また 、昇降据付部 125の旋回中心から昇降軸モータ 124に連結された図示しない減速 機の旋回中心までの距離と、昇降軸モータ 124の旋回中心から昇降支持部 126に 連結された図示しない減速機の旋回中心までの距離は等しくなるように設けられてい 以上の構成から、昇降軸モータ 124が回転することで、昇降軸モータ 124と連結さ れた図示しなレ、減速機が回転し、下部昇降リンク 112の内部と上部昇降リンク 111の 内部のそれぞれに備えられた図示しないベルトが駆動し、昇降据付部 125に連結さ れた図示しない減速機と、昇降支持部 126に連結された減速機が昇降軸モータ 124 に連結された減速機と逆方向に回転し、昇降支持部 126の動作に伴い、ワーク把持 装置 110、把持されたガラス基板 107及び制御点 123は Z軸直線方向に動作する。 In FIG. 8, the lifting shaft motor 124 is connected to a reduction gear (not shown), and is driven to a reduction gear (not shown) connected to the lifting installation unit 125 by a belt (not shown) provided inside the lower lifting link 1 12. Has been communicated. Further, a speed reducer (not shown) connected to the lift shaft motor 124 and a speed reducer (not shown) connected to the lifting support 126 are not shown in the upper lifting link 111, and are driven by a belt. Being! / A speed reducer (not shown) connected to the lift installation part 125 and a speed reducer (not shown) connected to the lift support part 126 have a characteristic of rotating in the opposite direction to the speed reducer connected to the lift shaft motor 124. Further, the distance from the turning center of the lifting / lowering installation part 125 to the turning center of a reduction gear (not shown) connected to the lifting / lowering shaft motor 124 and the reduction gear (not shown) connected to the lifting / lowering support part 126 from the turning center of the lifting / lowering shaft motor 124. The distance to the turning center is equal. From the above configuration, when the lifting shaft motor 124 rotates, the not shown and the speed reducer connected to the lifting shaft motor 124 rotate. Inside of lift link 112 and top of lift link 111 A belt (not shown) provided in each of them is driven, and a speed reducer (not shown) connected to the lifting / lowering mounting part 125 and a speed reducer connected to the lifting / lowering support part 126 are connected to the lifting / lowering shaft motor 124. The workpiece gripping device 110, the gripped glass substrate 107, and the control point 123 move in the Z-axis linear direction in accordance with the operation of the lifting support unit 126.
[0007] ロボット 102の昇降について図 11にさらに詳しく示す。図中 bは昇降軸モータ 124 の回転中心から昇降支持部 126に連結された図示しない減速機の回転中心までの 距離を示す。 bは、昇降据付部 125の回転中心から昇降軸モータ 124に連結された 図示しない減速機の回転中心までの距離に等しいことから、昇降支持部 126の回転 中心と昇降軸モータ 124の回転中心と昇降据付部 125の回転中心を結ぶ線分が成 す三角形は二等辺三角形となる。前記二等辺三角形の底辺 zは昇降据付部 125の 回転中心から昇降支持部 126の回転中心までの距離である。例えば昇降軸モータ 1 24力 γ回転したとき、下部昇降リンク 112と Ζ軸ゼロ基準 127が成す角度と、 Ζ軸か ら上部昇降リンク 111の延長線上に成す角度は γとなり、本体アーム支持部 113の Ζ 軸に対する向きを保つ。昇降量 ζは式(2)によって求められる。  [0007] The elevation of the robot 102 is shown in more detail in FIG. In the figure, b indicates the distance from the rotation center of the lifting shaft motor 124 to the rotation center of a reduction gear (not shown) connected to the lifting support 126. b is equal to the distance from the center of rotation of the lifting / lowering mounting part 125 to the center of rotation of the speed reducer (not shown) connected to the lifting / lowering shaft motor 124. The triangle formed by the line connecting the rotation centers of the lift installation part 125 is an isosceles triangle. The base z of the isosceles triangle is the distance from the center of rotation of the lift installation part 125 to the center of rotation of the lift support part 126. For example, when the lifting shaft motor 1 24 forces γ rotation, the angle formed by the lower lifting link 112 and the shaft zero reference 127 and the angle formed on the extension line of the upper lifting link 111 from the shaft is γ. Keep the orientation of the に 対 す る axis. The elevation amount ζ is obtained by the equation (2).
z = 2bsin ( y ) · · · (2)  z = 2bsin (y) (2)
[0008] 図 8記載のロボット 102を Z軸正方向から見た様子を図 12に示す。旋回軸 130は図 示しない減速機と連結されている。該減速機は図 8記載の旋回軸モータ 128と連結 されている。旋回軸 130は旋回部 129と連結されており、旋回部 129は本体アーム 支持部 113と連結されている。旋回軸モータ 128が回転することで連結された図示し ない減速機が回転し、旋回軸 130が回転する。旋回軸 130が回転することで、連結さ れた旋回部 129は旋回正方向 131、または旋回負方向 132へ旋回する。  FIG. 12 shows a state where the robot 102 shown in FIG. 8 is viewed from the positive direction of the Z axis. The pivot 130 is connected to a reduction gear (not shown). The reduction gear is connected to a turning shaft motor 128 shown in FIG. The turning shaft 130 is connected to the turning portion 129, and the turning portion 129 is connected to the main body arm support portion 113. When the turning shaft motor 128 rotates, the connected reduction gear (not shown) rotates, and the turning shaft 130 rotates. As the turning shaft 130 rotates, the connected turning unit 129 turns in the turning positive direction 131 or the turning negative direction 132.
[0009] 以上のロボット 102を利用した基板搬送の一連の流れを図 13及び図 14を用いて 説明する。図 13は基板収容力セットへワーク把持装置を揷入するロボットを Z軸正方 向から見た様子を示す。基板収容力セット 100へワーク把持装置 110を揷入する際、 第 1アーム軸 114を回転させ、基板収容力セット 100へアームを X軸正方向へ動作さ せる。一般に支持ピン 101は予め、ワーク把持装置 110の櫛状の先端部が通過する のに充分な間隔で備えられているので、ヮーク把持装置 110を支持ピン 101の合間 へ揷入することが出来る。支持ピン 101と同様の支持ピン 134を複数備えた基板収 容カセット 133にワーク把持装置 110を揷入する場合、基板収容力セット 133へヮー ク把持装置 110を揷入可能な状態に動作しなければならない。基板収容力セット 10 0へワーク把持装置 110を揷入した状態で旋回部 130を旋回させると、基板収容力セ ット 100とワーク把持装置 110が干渉する為、まず、第 1アーム軸 114を回転させ、基 板収容力セット 100とワーク把持装置 110が干渉しない状態までアームを X軸負方向 へ動作させる。次に、旋回軸モータ 128を回転させることで旋回軸 130を回転させ、 旋回部 129を旋回させる。第 1アーム軸 1 14は旋回部 129に支持されているので、第 1アーム軸 114からワーク把持装置 110にかけて連結された各部も共に旋回する。 図 14は前述の操作でアームを縮め、旋回部 129を旋回させ、ワーク把持装置 110 を基板収容力セット 133の方向にした図である。ここで第 1アーム軸 114を回転させ、 ワーク把持装置 110を旋回負方向 132に旋回させ、基板収容力セット 133へアーム を Y軸負方向へ動作させれば、基板収容力セット 133へワーク把持装置 110を揷入 することが出来る。 A series of flow of substrate transfer using the robot 102 will be described with reference to FIGS. Figure 13 shows the robot that inserts the workpiece gripping device into the board capacity set as seen from the Z-axis direction. When inserting the workpiece gripping device 110 into the board holding power set 100, the first arm shaft 114 is rotated to move the arm to the board holding power set 100 in the positive X-axis direction. In general, since the support pins 101 are provided in advance at a sufficient interval to allow the comb-shaped tip of the workpiece gripping device 110 to pass, the cake gripping device 110 can be inserted between the support pins 101. Substrate housing with multiple support pins 134 similar to support pins 101 When inserting the workpiece gripping device 110 into the cassette 133, the workpiece gripping device 110 must be in a state where it can be inserted into the board capacity setting set 133. If the swivel unit 130 is turned with the workpiece gripping device 110 inserted into the substrate holding force set 100, the substrate holding force set 100 and the workpiece gripping device 110 interfere with each other. Rotate and move the arm in the negative direction of the X-axis until the board capacity setting set 100 and workpiece gripping device 110 do not interfere. Next, the turning shaft motor 128 is rotated to rotate the turning shaft 130 and the turning portion 129 is turned. Since the first arm shaft 114 is supported by the turning portion 129, each portion connected from the first arm shaft 114 to the work gripping device 110 also turns together. FIG. 14 is a view in which the arm is contracted by the above-described operation, the turning portion 129 is turned, and the workpiece gripping device 110 is directed toward the board accommodation force set 133. Here, if the first arm shaft 114 is rotated, the workpiece gripping device 110 is rotated in the negative swing direction 132, and the arm is moved in the negative Y-axis direction to the board holding force set 133, the workpiece is held in the board holding force set 133. Device 110 can be inserted.
図 15乃至 16はロボット 102が複数重ねられた基板収容力セット 100の任意の基板 収容力セット 100にガラス基板 107を搬送し揷入するときの様子を示す。多くの場合、 限られた面積の中により多くのガラス基板 107を収容する為、基板収容力セット 100 は複数重ねられている。重ねられた基板収容力セット 100を、下方から 1段、 2段一n 段 · · ·と数えるとすれば、 n段目基板収容力セット 135より上方に基板収容力セットを 例えば 2段目の基板収容力セットは n+ 2段目基板収容力セット 136となる。図 15で は、ロボット 102はアームを伸ばす動作を行うことで n段目基板収容力セット 135へヮ ーク把持装置 110を揷入することが出来る状態にある。これより、 n+ 2段目基板収容 カセット 136にワーク把持装置 110を揷入する場合、昇降軸モータ 124を回転し、昇 降据付部 125と昇降支持部 126を回転させ、 n + 2段目基板収容力セット 136にヮー ク把持装置 110を揷入可能な Z軸方向位置まで動作する(図 16参照)。 Z軸正方向 動作後、第 1アーム軸 114を回転させアームを伸ばしワーク把持装置 110を n + 2段 目基板収容力セット 136に揷入する。図 16は図 15の状態からロボットが複数重ねら れた基板収容力セットに対して N + 2段目の基板収容力セットにガラス基板を搬送し 揷入した後の様子を示す。 [0011] 前述のような構成のロボット 102では、本体アーム支持部 113に対してアーム(第 1 アームリンク 108、第 2アームリンク 109)が片持ち支持されているため、アームの自重 並びにワーク把持装置 110及びガラス基板 107の重量の影響で、アームが重力方向 に橈んでしまう。近年のガラス基板の大型化に伴い、ガラス基板の重量並びにこれに 対応するワーク把持装置及びアームの大型化のため、この橈みは増大しており、基 板収容力セットに納められたガラス基板の間にロボットのワーク把持装置を正確にか つ早く揷入すること及びワーク把持装置に把持されたガラス基板を他に干渉無くァー ムを伸縮するために、アームの伸縮量 (水平移動量)に対応づけて、橈みと反対の鉛 直方向に補正を行う技術が開示されてレ、る(特許文献 1参照)。 FIGS. 15 to 16 show a state in which the glass substrate 107 is transported and inserted into an arbitrary substrate capacity set 100 of the substrate capacity sets 100 in which a plurality of robots 102 are stacked. In many cases, a plurality of substrate capacity sets 100 are stacked in order to accommodate more glass substrates 107 in a limited area. If the stacked board capacity set 100 is counted as one stage from the bottom, two stages and one n stage, the board capacity set is placed above the nth board capacity set 135, for example, the second stage. The board capacity set is n + second stage board capacity set 136. In FIG. 15, the robot 102 is in a state where the arm gripping device 110 can be inserted into the nth-stage substrate capacity setting set 135 by performing an operation of extending the arm. Thus, when inserting the workpiece gripping device 110 into the n + second stage substrate storage cassette 136, the elevator shaft motor 124 is rotated, the elevator installation part 125 and the elevator support part 126 are rotated, and the n + second stage substrate is inserted. It moves to the Z-axis direction position where the workpiece gripping device 110 can be inserted into the holding force set 136 (see Fig. 16). After moving in the positive direction of the Z-axis, the first arm shaft 114 is rotated to extend the arm, and the workpiece gripping device 110 is inserted into the n + second-stage board capacity setting set 136. FIG. 16 shows a state after the glass substrate is transferred and inserted into the N + second stage substrate capacity set with respect to the substrate capacity set in which a plurality of robots are stacked in the state of FIG. [0011] In the robot 102 configured as described above, the arm (first arm link 108, second arm link 109) is cantilevered with respect to the main body arm support 113, so that the weight of the arm and the workpiece grip Under the influence of the weight of the device 110 and the glass substrate 107, the arm stagnates in the direction of gravity. With the recent increase in the size of glass substrates, this stagnation has increased due to the weight of the glass substrate and the size of the workpiece gripping device and arm corresponding to this, and the glass substrate contained in the substrate capacity setting set. In order to insert the robot's workpiece gripping device accurately and quickly during this period, and to extend and contract the arm without any interference with the glass substrate gripped by the workpiece gripping device, ), A technology that corrects the lead in the straight direction opposite to itch is disclosed (see Patent Document 1).
このように、従来のワーク搬送装置は、ガラス基板並びにアーム及びワーク把持装 置の重力による橈みを補正するものである。  Thus, the conventional workpiece transfer device corrects the stagnation due to gravity of the glass substrate, the arm, and the workpiece gripping device.
特許文献 1:特開 2000— 183128号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-183128
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 特許文献 1に記載の従来のワーク搬送装置は、基板及びアームの重力による静的 な橈みを補正するものであった。しかし、多くのロボットは、アームの伸縮動作のとき に受ける慣性モーメントによって、静的な橈みよりも大きな橈みが生じる。 [0012] The conventional workpiece transfer device described in Patent Document 1 corrects static stagnation due to the gravity of the substrate and the arm. However, many robots produce a stagnation that is larger than a static sag due to the moment of inertia that is applied when the arm extends or contracts.
アーム伸縮動作のときに慣性モーメントが発生する様子を図 17及び図 18を用いて 説明する。図 17はロボットがワーク把持装置にガラス基板を把持したときの重心の様 子を示す。 Mはワーク把持装置 110とガラス基板 107を含めた重心を示し、重量は m [kg]とする。 Xgはアーム軸モータ 115から重心 Mまでの X軸方向距離を示し、 Zgは アーム軸モータ 115から重心 Mまでの Z軸方向距離を示す。図 18は図 17のアーム 軸モータ 115から重心 Mの関係を単純なモデルとして示す。アーム軸モータ 115が 回転することで、アームが X軸正方向へ加速度 a [m/s2]で伸びる動作するとき、並 進力 F1 [N]が発生する。 F1は式(3)によって求められ、 The manner in which the moment of inertia is generated during arm expansion and contraction will be described with reference to Figs. Figure 17 shows the shape of the center of gravity when the robot grips the glass substrate on the workpiece gripping device. M represents the center of gravity including the workpiece gripping device 110 and the glass substrate 107, and the weight is m [kg]. Xg represents the distance in the X-axis direction from the arm shaft motor 115 to the center of gravity M, and Zg represents the distance in the Z-axis direction from the arm shaft motor 115 to the center of gravity M. FIG. 18 shows the relationship between the arm shaft motor 115 and the center of gravity M in FIG. 17 as a simple model. As the arm shaft motor 115 rotates, the translation force F1 [N] is generated when the arm moves in the positive direction of the X axis at an acceleration a [m / s 2 ]. F1 is determined by equation (3),
F1 =ηι· a … ό)  F1 = ηι · a… ό)
となる。 F2は Flによって重心が受ける反作用による並進力を示す。 F1と F2は式 (4) の関係にある。 F1=F2 ··· (4) It becomes. F2 shows the translational force due to the reaction that the center of gravity receives by Fl. F1 and F2 are in the relationship of equation (4). F1 = F2 (4)
アーム軸モータ軸中心位置 137はアーム軸モータ 115の中心位置を示し、 Nは F2に よってアーム軸モータ軸中心位置 137回りに発生する慣性モーメント N[Nm]を示し 、式(5)によって求められる。  The arm shaft motor shaft center position 137 indicates the center position of the arm shaft motor 115, N indicates the moment of inertia N [Nm] generated around the arm shaft motor shaft center position 137 by F2, and is obtained by equation (5). .
N = F2-Zg ··· (5)  N = F2-Zg (5)
[0013] ロボットのアーム各部及びワーク把持装置は完全な剛体に近!/、ことが理想的である 力 多くの場合、負荷の軽減及び、コストの低減をする為、部材の強度が低減されて おり、ある程度の剛性は備えて!/、るが完全な剛体に近!/、場合は少な!/、。完全な剛体 に近い場合を除き、前記慣性モーメント Nによってアーム各部及びワーク把持装置に 橈みが生じる。  [0013] It is ideal that each part of the robot arm and the workpiece gripping device are close to a perfect rigid body! In many cases, the strength of the member is reduced in order to reduce the load and the cost. It has a certain degree of rigidity! /, But it is close to a perfect rigid body! / Unless it is almost a perfect rigid body, the moment of inertia N causes stagnation in each arm part and workpiece gripping device.
図 19はアームを X軸正方向へ伸展動作させるときのアーム各部とワーク把持装置 の橈みを示す。図 18を用いて説明したように、慣性モーメントは第 1アーム軸 114を 中心に図中反時計回りに掛かる。第 1アームリンク 108は慣性モーメントによって図中 反時計回りに橈む。第 2アーム軸 118は完全な剛体である場合の位置から第 1ァー ム軸 114を中心に図中反時計回りにずれる。第 2アームリンク 109は慣性モーメント によって第 2アーム軸 118を中心に図中反時計回りに橈む。フランジ 122は完全な剛 体である場合の位置から第 2アーム軸 118を中心に図中反時計回りにずれる。ワーク 把持装置 110は慣性モーメントによってフランジ 122を中心に図中反時計回りに橈 む。理想的な制御点 139はアームが完全な剛体である場合の制御点位置を示すが 、以上の慣性モーメントの影響によって、重心位置が橈み、その結果制御点もずれた 制御点 138が示す位置になり、 Z軸方向ずれ量は ΔΖ1となる。  Figure 19 shows the stagnation of each part of the arm and the workpiece gripping device when the arm is extended in the positive direction of the X axis. As explained with reference to FIG. 18, the moment of inertia is applied counterclockwise in the figure around the first arm axis 114. The first arm link 108 swung counterclockwise in the figure due to the moment of inertia. The second arm shaft 118 is deviated counterclockwise in the figure around the first arm shaft 114 from the position when it is a complete rigid body. The second arm link 109 is swung counterclockwise around the second arm shaft 118 by the moment of inertia. The flange 122 deviates counterclockwise in the figure around the second arm shaft 118 from the position when it is a complete rigid body. The workpiece gripping device 110 is swung counterclockwise around the flange 122 by the moment of inertia. The ideal control point 139 shows the control point position when the arm is a perfect rigid body, but the position of the center of gravity is stagnated due to the influence of the above moment of inertia, and as a result the control point is also shifted The position indicated by control point 138 Thus, the amount of deviation in the Z-axis direction is ΔΖ1.
[0014] 図 20は図 17に示すアーム軸モータ 115から重心 Mの関係を単純なモデルとし、 X 軸負方向へ加速度 a [m/s2]で縮む動作するとき、並進力 F3[N]が発生した様子 を示す。並進力 F3は式(3)と同様に式(6)によって求められ、 FIG. 20 shows a simple model of the relationship between the arm shaft motor 115 and the center of gravity M shown in FIG. 17, and the translational force F3 [N] when the X axis negative direction is contracted with acceleration a [m / s 2 ]. This shows how this occurred. The translational force F3 is obtained by equation (6) as in equation (3).
F3 = m' a … (6)  F3 = m 'a… (6)
となる。 F4は F3によって重心が受ける反作用による並進力を示す。 F3と F4は式(7) の関係にある。  It becomes. F4 shows the translational force due to the reaction that the center of gravity receives by F3. F3 and F4 are in the relationship of equation (7).
F3 = F4 ··· (7) アーム軸モータ軸中心位置 137はアーム軸モータ 115の中心位置を示し、 Nは F4に よってアーム軸モータ軸中心位置 137回りに発生する慣性モーメント N[Nm]を示し 、式(8)によって求められる。 F3 = F4 (7) The arm shaft motor shaft center position 137 indicates the center position of the arm shaft motor 115, N indicates the moment of inertia N [Nm] generated around the arm shaft motor shaft center position 137 by F4, and is obtained by equation (8). .
N = F4 -Zg · · · (8)  N = F4 -Zg (8)
[0015] 図 21はアームを X軸負方向へ縮む動作させるときのアーム各部とワーク把持装置 の橈みを示す。図 20を用いて説明したように慣性モーメントは第 1アーム軸 114を中 心に図中時計回りに掛かる。第 1アームリンク 108は慣性モーメントによって図中時計 回りに橈む。第 2アーム軸 118は完全な剛体である場合の位置から第 1アーム軸 114 を中心に図中時計回りにずれる。第 2アームリンク 109は慣性モーメントによって第 2 アーム軸 118を中心に図中時計回りに橈む。フランジ 122は完全な剛体である場合 の位置から第 2アーム軸 118を中心に図中時計回りにずれる。ワーク把持装置 110 は慣性モーメントによってフランジ 122を中心に図中時計回りに橈む。理想的な制御 点 139はアームが完全な剛体である場合の制御点位置を示す力、以上の慣性モー メントの影響によって、重心位置が橈み、その結果制御点もずれた制御点 140が示 す位置になり、 Z軸方向ずれ量は Δ Ζ2となる。  FIG. 21 shows the stagnation of each part of the arm and the workpiece gripping device when the arm is contracted in the negative X-axis direction. As described with reference to FIG. 20, the moment of inertia is applied clockwise with the first arm shaft 114 as the center. The first arm link 108 crawls clockwise in the figure due to the moment of inertia. The second arm shaft 118 is deviated clockwise from the position of the complete rigid body around the first arm shaft 114 in the drawing. The second arm link 109 is swung clockwise around the second arm shaft 118 by the moment of inertia. The flange 122 is deviated clockwise from the position of the complete rigid body around the second arm shaft 118 in the drawing. The workpiece gripping device 110 is pinched clockwise around the flange 122 by the moment of inertia. The ideal control point 139 is the force indicating the control point position when the arm is a perfect rigid body, and the center of gravity position is stagnated due to the influence of the above inertial moment, and as a result, the control point 140 is also shifted. The Z axis displacement is Δ Δ2.
[0016] 図 22はロボットがアームを X軸正方向へ動作させるときのアーム軸モータの速度及 び制御点位置の橈み量と時間の関係を示す。横軸 tは時間を示し、縦軸 Vは速度を 示し、縦軸 Zは制御点位置の Z軸方向橈み量を示す。ロボットがアームを X軸正方向 へ動作させるとき、アーム軸モータはアーム軸モータ速度 143が示す速度波形にな る。アームが X軸正方向へ加速するとき、アーム軸モータ 115はアーム軸モータ速度 143が示すように加速し、前述したように慣性モーメントが発生し、制御点は Z軸正方 向へずれる。この時のずれ量の時間的推移を加速時の制御点位置の橈み量 144に 示す。アームが X軸正方向へ定常速度から減速動作するとき、アーム軸モータ 115 はアーム軸モータ速度 143が示すように定常速度から減速し、前述したように慣性モ 一メントが発生し、制御点は Z軸負方向へずれる。この時のずれ量の時間的推移を 減速時の制御点位置の橈み量 145に示す。  FIG. 22 shows the relationship between the speed of the arm axis motor and the amount of stagnation of the control point position and time when the robot moves the arm in the positive direction of the X axis. The horizontal axis t indicates time, the vertical axis V indicates speed, and the vertical axis Z indicates the amount of stagnation in the Z-axis direction at the control point position. When the robot moves the arm in the positive direction of the X axis, the arm axis motor has the speed waveform indicated by the arm axis motor speed 143. When the arm accelerates in the X-axis positive direction, the arm-axis motor 115 accelerates as indicated by the arm-axis motor speed 143, the moment of inertia is generated as described above, and the control point is shifted in the Z-axis positive direction. The amount of shift over time at this time is shown as the amount of stagnation 144 in the control point position during acceleration. When the arm decelerates from the steady speed in the positive direction of the X axis, the arm shaft motor 115 decelerates from the steady speed as indicated by the arm shaft motor speed 143, the inertia moment is generated as described above, and the control point is Shifts in the negative Z-axis direction. The amount of shift over time at this time is shown in Stagnation amount 145 of control point position during deceleration.
[0017] 以上の理由から発生するアーム伸縮時の橈みによって、基板収容力セットに納めら れた基板の間にロボットのワーク把持装置の出し入れ及びワーク把持装置に把持さ れた基板の出し入れ、並びに基板の処理部への出し入れの時に各部に干渉が生じ 、基板等が破損してしまうおそれがある。この対策として、基板収容力セットの収容基 板の間隔を広くすることや'慣性モーメントを小さくするためにアームの伸縮動作の加 減速度を下げることが考えられる力 それぞれ、基板収容力セットの収容枚数の減少 や基板搬送の時間がのびる等の弊害がある。また、予めアーム伸縮時の橈みによつ て基板収容力セットや基板の処理部に干渉しないようにロボットの動作を細力べ制御 する動作プログラムを作成し、ロボットを動作させることも考えられる力 アーム伸縮時 の橈みはワーク把持装置や把持したガラス基板の重量、重心位置によって異なるた め、ワーク把持装置や把持するガラス基板が変更された場合に作成した動作プログ ラムを全て作成し直さなければならない。近年、ガラス基板はより大型化し、液晶ゃプ ラズマディスプレイの需要が高まりつつあることを背景に、生産はより早く求められ、こ の橈みは増大する傾向にある。 [0017] Due to the sag of the arm that occurs due to the above reasons, the workpiece gripping device of the robot is put in and out of the substrate stored in the substrate capacity setting and is gripped by the workpiece gripping device. When the substrate is taken in and out, and when the substrate is taken in and out of the processing unit, interference occurs in each part, and the substrate and the like may be damaged. As measures against this, it is possible to increase the space between the substrates in the board capacity set and to reduce the acceleration / deceleration speed of the arm to reduce the moment of inertia. There are adverse effects such as a decrease in the number of sheets and the time required for substrate transfer. It is also possible to create an operation program that controls the robot's operation in advance so that it does not interfere with the substrate capacity setting and the substrate processing unit due to the sag of the arm when it is extended and contracted. Since the sag when the force arm extends and contracts depends on the weight of the workpiece gripping device and the gripped glass substrate and the position of the center of gravity, all the motion programs created when the workpiece gripping device and the gripping glass substrate are changed must be recreated. There must be. In recent years, glass substrates have become larger in size, and demand for liquid crystal displays is increasing, so production is required more quickly, and this stagnation tends to increase.
[0018] 本発明はこのような問題点に鑑みてなされたものであり、アームの伸縮動作の加減 速度を低下させることなぐ基板収容力セット、並びに基板の処理部へのガラス基板 の出し入れを他に干渉なく可能としたロボット装置を提供することを目的とする。 課題を解決するための手段 [0018] The present invention has been made in view of such problems, and includes a substrate capacity setting without lowering the acceleration / deceleration speed of the arm's expansion / contraction operation, and the insertion / extraction of the glass substrate into / from the processing portion of the substrate. An object of the present invention is to provide a robot apparatus that can be used without interference. Means for solving the problem
[0019] 上記問題を解決するため、本発明は、次のように構成した。 In order to solve the above problems, the present invention is configured as follows.
請求項 1に記載の発明は、ワークを把持又は載置するワーク把持装置を先端に備 えたアームと、前記アームを水平方向に伸縮するアーム軸モータと、前記アームを昇 降する昇降軸モータと、を備えたロボットと、前記ロボットの前記アーム軸モータ及び 前記昇降軸モータを駆動制御する制御装置を具備するワーク搬送装置において、 前記アーム軸モータの駆動で前記アームの伸縮をする時の前記アームと前記ワーク 把持装置又は前記アームとワーク把持装置と前記ワークの水平方向移動加減速度 に基づく慣性モーメントによる前記ロボットの制御点位置の鉛直方向の橈み量を求め 、前記橈み量を昇降軸を駆動して鉛直方向に補正する補正手段を備えたことを特徴 とするあのである。  The invention described in claim 1 includes an arm having a workpiece gripping device for gripping or placing a workpiece at a tip thereof, an arm shaft motor that extends and contracts the arm in a horizontal direction, and a lifting shaft motor that lifts and lowers the arm. And a workpiece transfer device comprising a control device that drives and controls the arm axis motor and the lifting axis motor of the robot, and the arm when the arm is extended and contracted by driving the arm axis motor. And the workpiece gripping device or the arm, the workpiece gripping device, and the inertia moment based on the horizontal movement acceleration / deceleration of the workpiece, the amount of vertical stagnation of the control point position of the robot is obtained. It is characterized by having correction means for driving and correcting in the vertical direction.
請求項 2に記載の発明は、前記制御装置は格納手段を備え、予め前記ロボットの口 ボット情報と、前記ワーク把持装置のワーク把持装置情報と、前記ワークのワーク情 報と、その他の諸パラメータを登録し、前記諸パラメータに基づいて前記橈み量を求 めることを特徴とするものである。 According to a second aspect of the present invention, the control device includes storage means, and the robot mouth bot information, the workpiece gripping device information of the workpiece gripping device, and the workpiece information of the workpiece in advance. Information and other parameters are registered, and the amount of stagnation is obtained based on the parameters.
請求項 3に記載の発明は、数の前記ワーク把持装置に対し、各々把持装置識別子 を割り当てられ該把持装置識別子に関連付けて前記ワーク把持装置情報が登録さ れ、前記橈み量を求めるときには前記把持装置識別子により検索される前記ワーク 把持装置情報に基づいて前記橈み量を求めることを特徴とするものである。  According to the invention of claim 3, when a gripping device identifier is assigned to each of the plurality of workpiece gripping devices, the workpiece gripping device information is registered in association with the gripping device identifier, and when the amount of stagnation is obtained, The amount of stagnation is obtained based on the workpiece gripping device information searched by the gripping device identifier.
請求項 4に記載の発明は、複数の前記ワークに対し、各々ワーク識別子を割り当て られ該ワーク識別子に関連付けて前記ワーク情報が登録され、前記橈み量を求める ときには前記ワーク識別子により検索される前記ワーク情報に基づいて前記橈み量 を求めることを特徴とするものである。  In the invention according to claim 4, a work identifier is assigned to each of the plurality of works, the work information is registered in association with the work identifier, and when the amount of stagnation is obtained, the work identifier is searched. The amount of stagnation is obtained based on work information.
請求項 5に記載の発明は、前記ロボットは液晶ガラス基板搬送用水平多関節ロボッ トであることを特徴とするものである。  The invention according to claim 5 is characterized in that the robot is a horizontal articulated robot for transporting a liquid crystal glass substrate.
発明の効果  The invention's effect
[0020] 以上の構成により本発明の制御装置は、アームと昇降軸を有するロボットがアーム の伸縮動作をするとき、慣性モーメントによるアームの橈みを計算し、その橈みによる 制御点位置のずれ量を昇降軸が Z軸方向に動作し補正することで、制御点の鉛直方 向軌跡を一定に保つことが出来る。  [0020] With the above configuration, the control device of the present invention calculates the sag of the arm due to the moment of inertia when the robot having the arm and the lifting shaft expands and contracts, and the control point position shifts due to the sag. By correcting the amount by moving the lifting axis in the Z-axis direction, the vertical trajectory of the control point can be kept constant.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明フローチャート  [0021] FIG. 1 is a flowchart of the present invention.
[図 2]アームを X軸正方向へ動作した場合の橈み角度 φ 1  [Figure 2] Stagnation angle when the arm is moved in the positive direction of the X axis φ 1
[図 3]アームを X軸負方向へ動作した場合の橈み角度 φ 2  [Figure 3] Stagnation angle φ 2 when the arm is moved in the negative direction of the X-axis
[図 4]アームを X軸正方向へ動作させるときのアーム軸モータの速度と制御点の位置 と補正量と時間の関係  [Figure 4] Relationship between arm axis motor speed, control point position, correction amount, and time when the arm is moved in the positive direction of the X axis
[図 5]アームを X軸正方向へ加速動作させたときの橈み量 Δ Zを補正する様子  [Fig.5] Correction of the amount of sag ΔZ when the arm is accelerated in the positive direction of the X axis
[図 6]アームを X軸負方向へ加速動作させたときの橈み量 Δ Zを補正する様子  [Fig.6] Correction of the amount of sag ΔZ when the arm is accelerated in the negative direction of the X axis
[図 7]ワーク搬送装置の構成図  [Fig.7] Configuration of work transfer device
[図 8]ロボットの構成図  [Figure 8] Robot configuration diagram
[図 9]ロボットのアームが伸びた状態図 [図 10]ロボットのアームが縮んだ状態図 [Fig.9] Robot arm extended [Figure 10] Diagram of robot arm contracted
園 11]ロボットの昇降する状態図 11] A state diagram of the robot going up and down
[図 12]ロボットの上面から見た構成図 [Figure 12] Configuration view from the top of the robot
園 13]X方向基板収容力セットへ伸縮動作するロボットとの位置関係図 13] Positional relationship diagram with the robot that expands and contracts to the X direction board capacity set
園 14]Y方向基板収容力セットへ伸縮動作するロボットとの位置関係図 14] Positional relationship with the robot that expands and contracts to the Y direction board capacity set
園 15]複数の基板収容力セットの η段目に対してワーク把持装置を揷入する前の図 園 16]複数の基板収容力セットの η + 2壇目に対してワーク把持装置を揷入した図 園 17]ワーク把持装置にガラス基板を把持したときの重心の模式図 Fig. 15] Before inserting the workpiece gripping device into the η stage of multiple substrate capacity sets. 16) Inserting the workpiece gripping device into the η + 2 stage of multiple substrate capacity sets. 17] Schematic diagram of the center of gravity when a glass substrate is gripped by a workpiece gripping device
[図 18]アームを X軸正方向へ動作させたときの慣性モーメントのモデル  [Figure 18] Model of moment of inertia when the arm is moved in the positive direction of the X axis
[図 19]アームを X軸正方向へ動作させたときの橈みの図  [Figure 19] Diagram of stagnation when the arm is moved in the positive direction of the X axis
[図 20]アームを X軸負方向へ動作させたときの慣性モーメントのモデル  [Fig.20] Model of moment of inertia when arm is moved in the negative X-axis direction
[図 21]アームを X軸負方向へ動作させたときの橈みの図  [Fig.21] Stagnation when arm is moved in the negative X-axis direction
[図 22]アームを X軸正方向へ動作させるときのアーム軸モータの速度及び制御点位 置橈み量と時間の関係図  [Fig.22] Relationship between speed and control point position stagnation amount and time of arm axis motor when arm is moved in X axis positive direction
符号の説明 Explanation of symbols
13 アームを X軸正方向へ加速した場合の補正量の時間的推移  13 Temporal change in correction amount when the arm is accelerated in the X-axis positive direction
14 アームを X軸正方向へ減速した場合の補正量の時間的推移  14 Temporal change in correction amount when arm is decelerated in the X-axis positive direction
15 アームを X軸正方向へ加速した場合の補正した制御点  15 Corrected control points when the arm is accelerated in the positive direction of the X axis
16 アームを X軸正方向へ減速した場合の補正した制御点  16 Corrected control points when the arm is decelerated in the positive direction of the X axis
100 基板収容力セット  100 board capacity set
101 支持ピン  101 Support pin
102 ロボット  102 robot
103 ケーブル  103 cable
104 制御装置  104 Control device
105 ケープノレ  105 Cape Nore
106 教示手段  106 Teaching means
107 ガラス基板  107 Glass substrate
108 第 1アームリンク 109 第 2アームリンク 108 1st arm link 109 Second arm link
110 ワーク把持装置  110 Work gripping device
111 上部昇降リンク  111 Upper lifting link
112 下部昇降リンク  112 Lower lift link
113 本体アーム支持部  113 Main arm support
114 第 1アーム軸  114 First arm shaft
115 アーム軸モータ  115 Arm shaft motor
116 アーム軸減速機  116 Arm shaft reducer
117 第 1リンクベルト  117 1st link belt
118 第 2アーム軸  118 Second arm shaft
119 第 2アーム軸減速機 119 Second arm shaft reducer
120 第 2リンクベルト 120 2nd link belt
121 フランジ減速機  121 flange reducer
122 フランジ  122 Flange
123 制御点  123 Control point
124 昇降軸モータ  124 Lifting shaft motor
125 昇降据付部  125 Lifting installation
126 昇降支持部  126 Lifting support
127 Z軸ゼロ基準  127 Z-axis zero reference
128 旋回軸モータ  128 slewing axis motor
129 旋回部  129 Turning part
130 旋回軸  130 Rotating axis
131 旋回正方向  131 Turning positive direction
132 旋回負方向  132 Turning negative direction
133 基板収容力セット  133 Substrate capacity set
134 支持ピン  134 Support pin
135 n段目基板収容力セット 135 nth stage board capacity set
136 n+ 2段目基板収容力セット 137 アーム軸モータ軸中心位置 136 n + second stage board capacity set 137 Arm shaft Motor shaft center position
138 ずれた制御点(アームが X軸正方向へ加速した場合)  138 Misaligned control point (when the arm accelerates in the positive direction of the X axis)
139 理想的な制御点  139 Ideal control point
140 ずれた制御点(アームが X軸負方向へ加速した場合)  140 Deviated control point (when the arm accelerates in the negative direction of the X axis)
141 理想的な重心位置  141 Ideal center of gravity
142 ずれた重心位置  142 Center of gravity shifted
143 アーム軸モータ速度  143 Arm shaft motor speed
144 加速時の制御点位置の橈み量  144 Sag amount of control point position during acceleration
145 減速時の制御点位置の橈み量  145 Sag amount at control point position during deceleration
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0024] (第 1の実施形態) [0024] (First embodiment)
本発明を図 7及び図 8に示される構成を備えた、垂直昇降軸を備える水平多関節口 ボットに適用するワーク搬送装置について説明する。  A workpiece transfer device that applies the present invention to a horizontal articulated mouth bot having a vertical lifting shaft having the configuration shown in FIGS. 7 and 8 will be described.
制御装置 104に備わる図示しない格納手段に、予めロボット 102のパラメータを入 力しておく。前記格納手段に、図 8に示す第 1アーム軸 114から第 2アーム軸 118ま での距離 [m]、第 2アーム軸 118からフランジ 122までの距離 [m]、アーム軸モータ 115からフランジ 122までの Z軸方向距離 [m]、昇降据付部 125から昇降軸モータ 1 24までの距離 [m]、及び昇降軸モータ 124から昇降支持部 126までの距離 [m]で あるロボット情報と、ワーク把持装置の重量 [kg]、ワーク把持装置のフランジ 122から ワーク重心 Mまでの X軸方向距離 [m]、ワーク把持装置のフランジ 122からワーク重 心 Mまでの Z軸方向距離 [m]、ワーク把持装置のフランジ 122から制御点までの X軸 方向距離 [m]、ワーク把持装置のフランジ 122から制御点までの Y軸方向距離 [m] 、及びワーク把持装置のフランジ 122から制御点までの Z軸方向距離 [m]であるヮー ク把持装置情報と、把持するワークの重量 [kg]、把持するワークの制御点のフランジ 122からワーク重心 Mまでの X軸方向距離 [m]、及び把持するワークの制御点のフラ ンジ 122からワーク重心 Mまでの Z軸方向距離 [m]であるワーク情報と、アームとヮー ク把持装置にかけての剛性値 K[Nm/rad]と、制御装置が動作指令を各モータへ 出力する制御周期の指令周期時間 [s]の諸パラメータを登録する。 The parameters of the robot 102 are input in advance to storage means (not shown) provided in the control device 104. The storage means includes a distance [m] from the first arm shaft 114 to the second arm shaft 118, a distance [m] from the second arm shaft 118 to the flange 122, and an arm shaft motor 115 to the flange 122 shown in FIG. Z-axis direction distance up to [m], the distance [m] from the lifting installation part 125 to the lifting axis motor 1 24, and the distance from the lifting axis motor 124 to the lifting support part 126 [m] Weight of gripping device [kg], X-axis direction distance [m] from workpiece gripping device flange 122 to workpiece center of gravity M, Z-axis direction distance [m] from workpiece gripping device flange 122 to workpiece weight M, workpiece X-axis direction distance [m] from gripping device flange 122 to control point, Y-axis direction distance [m] from workpiece gripping device flange 122 to control point, and Z from workpiece gripping device flange 122 to control point The workpiece gripper information, which is the axial distance [m], and the workpiece to be gripped Amount [kg], distance in the X-axis direction from the flange 122 of the workpiece control point to the workpiece center of gravity M [m], and distance in the Z-axis direction from the flange 122 of the workpiece control point to the workpiece center of gravity M [ m] workpiece information, stiffness value K [Nm / rad] between the arm and the workpiece gripping device, and the control device sends an operation command to each motor. Register the parameters of the command cycle time [s] of the output control cycle.
[0025] ワーク把持装置またはワークが複数種存在するときは、それぞれに固有の番号など の識別子(把持装置識別子、ワーク識別子)が割り当てられ、各々の識別子について 前述のパラメータが登録される。これらのパラメータは動作時に計算に用いる力 識 別子で探索される。 [0025] When there are a plurality of types of workpiece gripping devices or workpieces, identifiers (gripping device identifiers, workpiece identifiers) such as unique numbers are assigned to each, and the aforementioned parameters are registered for each identifier. These parameters are searched by the force identifier used for calculation during operation.
諸パラメータは教示手段 106に備わるボタンを押下して入力する力、、図示しない外 部記憶装置より通信手段などを介して制御装置 104の格納手段に格納される。 尚、ワーク搬送装置として所望の動作及び制御のためには他のパラメータも必要で ある力 S、本発明に関連しないので省略する。  The various parameters are stored in the storage means of the control device 104 via a force input by pressing a button provided on the teaching means 106, communication means from an external storage device (not shown). It should be noted that force S, which requires other parameters for the desired operation and control of the workpiece transfer device, is omitted because it is not related to the present invention.
[0026] ロボット 102は、予め格納手段に格納された動作プログラムに従って、または教示 手段 106が備えた複数のボタンを押下して動作指令をケーブル 105を介して制御装 置 104に入力し、ケーブル 103を介して各モータへ与えて動作する。  The robot 102 inputs an operation command to the control device 104 via the cable 105 in accordance with an operation program stored in the storage means in advance or by pressing a plurality of buttons provided in the teaching means 106, and the cable 103 It operates by giving to each motor via.
[0027] 本発明が適用された複数軸で構成されるロボットの動作を図 1のフローチャートを用 いて説明する。  The operation of a robot composed of a plurality of axes to which the present invention is applied will be described with reference to the flowchart of FIG.
動作プログラムには、動作時に備えているワーク把持装置の番号 (識別子)と、把持 しているワークの番号 (識別子)とが記述されている。まず、指定された動作プロダラ ムを再生する動作に備えて該作業プログラムが選択され、作業プログラムに含まれる 識別子で参照されるパラメータが検索され読み込まれる。  The operation program describes the number (identifier) of the workpiece gripping device provided during operation and the number (identifier) of the workpiece being gripped. First, the work program is selected in preparation for the operation of reproducing the designated operation program, and a parameter referred to by an identifier included in the work program is retrieved and read.
一方、教示手段の操作でロボット 102の動作を行なう教示モードでは、教示手段 106 の備わるボタンを押下して動作指令をケーブル 105を介して制御装置 104に入力す るとき、備わっているワーク把持装置の識別子 (番号)と、動作時に把持しているヮー クの識別子 (番号)とが伝達される。  On the other hand, in the teaching mode in which the robot 102 is operated by operating the teaching means, when the operation command is input to the control device 104 via the cable 105 by pressing the button provided on the teaching means 106, the workpiece gripping device provided. The identifier (number) of the robot and the identifier (number) of the workpiece gripped during operation are transmitted.
[0028] フランジ 122からワーク重心 Mまでの X軸方向距離 [m]と Z軸方向距離 [m]は、動 作時に備えているワーク把持装置のフランジ 122からワーク重心 Mまでの X軸方向距 離 [m]と、動作時に備えているワーク把持装置のフランジ 122からワーク重心 Mまで の Z軸方向距離 [m]と、動作時に把持しているワークのフランジ 122からワーク重心 Mまでの X軸方向距離 [m]と、動作時に把持しているワークのフランジ 122からヮー ク重心 Mまでの Z軸方向距離 [m]を用いて求めることが出来る。 制御装置から各モータへ所定の制御周期 1周期分の動作指令を与えた後の第 1ァ ーム軸 114からフランジ 122までの X軸方向距離は、予め格納手段に格納した第 1ァ ーム軸 114から第 2アーム軸 118までの距離 [m]と、第 2アーム軸 118からフランジ 1 22までの距離 [m]を用いて幾何学的に求めることが出来る。例えば図 8、図 9及び図 10に示す機構を備えたアームの場合、第 1アーム軸 114からフランジ 122までの X軸 方向距離はすでに述べたように式(1)によって求められる。また、第 1アーム軸 114と アーム軸モータ 115は X軸方向に同一の位置に配置されているので、第 1アーム軸 1 14力、らフランジ 122までの X軸方向距離 [m]は、アーム軸モータ 115からフランジ 12 2までの X軸方向距離 [m]に等しい。 [0028] The distance in the X-axis direction [m] from the flange 122 to the workpiece center of gravity M and the distance in the Z-axis direction [m] are the distance in the X-axis direction from the workpiece gripper flange 122 to the workpiece center of gravity M The distance [m], the Z-axis direction distance [m] from the workpiece gripping device flange 122 to the workpiece center of gravity M in operation, and the X axis from the workpiece flange 122 to the workpiece center of gravity M in operation It can be obtained using the direction distance [m] and the Z-axis direction distance [m] from the flange 122 of the workpiece gripped during operation to the center of gravity M of the workpiece. The X-axis direction distance from the first arm shaft 114 to the flange 122 after giving an operation command for one predetermined control cycle from the controller to each motor is the first arm stored in the storage means in advance. It can be obtained geometrically using the distance [m] from the axis 114 to the second arm axis 118 and the distance [m] from the second arm axis 118 to the flange 122. For example, in the case of an arm having the mechanism shown in FIGS. 8, 9, and 10, the distance in the X-axis direction from the first arm shaft 114 to the flange 122 is obtained by the equation (1) as described above. In addition, since the first arm shaft 114 and the arm shaft motor 115 are arranged at the same position in the X-axis direction, the first arm shaft 1 14 force and the X-axis direction distance [m] to the flange 122 are It is equal to the distance [m] in the X-axis direction from the shaft motor 115 to the flange 12 2.
[0029] (ステップ 1)フランジ 122からワーク重心 Mまでの X軸方向距離 [m]とアーム軸モー タ 115からフランジ 122までの X軸方向距離 [m]を加算し、制御装置から各モータへ 1周期分の動作指令を与えた後のアーム軸モータ 115からワーク重心 Mまでの X軸 方向距離 [m]と、フランジ 122からワーク重心 Mまでの Z軸方向距離 [m]と予め格納 手段に格納したアーム軸モータ 115からフランジ 122までの Z軸方向距離 [m]をカロ 算し、制御装置から各モータへ 1周期分の動作指令を与えた後のアーム軸モータ 11 5からワーク重心 Mまでの Z軸方向距離 [m]を求める。  [0029] (Step 1) Add the X-axis direction distance [m] from the flange 122 to the workpiece center of gravity M and the X-axis direction distance [m] from the arm axis motor 115 to the flange 122. The X-axis direction distance [m] from the arm shaft motor 115 to the workpiece center of gravity M after giving an operation command for one cycle, and the Z-axis direction distance [m] from the flange 122 to the workpiece center of gravity M and the storage means Calculate the distance [m] in the Z-axis direction from the stored arm axis motor 115 to the flange 122, and give an operation command for one cycle from the controller to each motor. From arm axis motor 11 5 to workpiece center of gravity M Find the distance [m] in the Z-axis direction.
[0030] (ステップ 2)制御装置から各モータへ 1周期分の動作指令を与える前の第 1アーム 軸 114からフランジ 122までの X軸方向距離は、予め格納手段に格納した第 1アーム 軸 114から第 2アーム軸 118までの距離 [m]と、第 2アーム軸 118からフランジ 122ま での距離 [m]を用いて幾何学的に求めることが出来る。例えば図 8、図 9及び図 10 に示す機構を備えたアームの場合、第 1アーム軸 114からフランジ 122までの X軸方 向距離はすでに述べたように式(1)によって求められる。  (Step 2) The distance in the X-axis direction from the first arm shaft 114 to the flange 122 before giving an operation command for one cycle from the controller to each motor is the first arm shaft 114 stored in the storage means in advance. Can be obtained geometrically using the distance [m] from the second arm shaft 118 to the second arm shaft 118 and the distance [m] from the second arm shaft 118 to the flange 122. For example, in the case of an arm having the mechanism shown in FIGS. 8, 9, and 10, the distance in the X-axis direction from the first arm shaft 114 to the flange 122 is obtained by the equation (1) as described above.
以上より、フランジ 122からワーク重心 Mまでの X軸方向距離 [m]とアーム軸モータ 115からフランジ 122までの X軸方向距離 [m]を加算し、制御装置から各モータへ 1 周期分の動作指令を与える前のアーム軸モータ 115からワーク重心 Mまでの X軸方 向距離 [m]を求める。  From the above, the X-axis direction distance [m] from the flange 122 to the workpiece center of gravity M and the X-axis direction distance [m] from the arm shaft motor 115 to the flange 122 are added, and one cycle of operation from the controller to each motor. Obtain the distance [m] in the X-axis direction from the arm shaft motor 115 before giving the command to the workpiece center of gravity M
[0031] (ステップ 3)ステップ 1とステップ 2で求めたアーム軸モータ 115からワーク重心 Mま での X軸方向距離の差分を計算する。すなわち、ワーク重心の X軸方向移動距離を 求める。 (Step 3) The difference in the X-axis direction distance from the arm shaft motor 115 obtained in Step 1 and Step 2 to the workpiece center of gravity M is calculated. In other words, the X axis movement distance of the workpiece center of gravity Ask.
[0032] (ステップ 4)ステップ 3で求めた重心の X軸方向移動距離を、予め格納手段に格納 した制御装置が動作指令を各モータへ出力する周期時間 [s]の二乗で除算すること で加減速度 a [m/s2]を計算する。 [0032] (Step 4) By dividing the movement distance in the X-axis direction of the center of gravity obtained in Step 3 by the square of the periodic time [s] for which the control device previously stored in the storage means outputs the operation command to each motor. Acceleration / deceleration a [m / s 2 ] is calculated.
[0033] (ステップ 5)前記制御装置に登録されて!/、る動作時に備えて!/、るワーク把持装置 の重量 [kg]と、動作時に把持しているワークの重量 [kg]を加算し、フランジ 122より 先端部の総重量を求め、ステップ 4で求めた加減速度 a [m/s2]によって、並進力 F [N]を式(9)によって求める。 [0033] (Step 5) Add the weight [kg] of the workpiece gripping device registered in the control device! /, And the weight [kg] of the workpiece gripping device in operation. Then, the total weight of the tip portion is obtained from the flange 122, and the translational force F [N] is obtained from the acceleration / deceleration a [m / s 2 ] obtained in step 4 by the equation (9).
F = m' a … (9)  F = m 'a… (9)
[0034] (ステップ 6)ステップ 1で求めた制御装置から各モータへ 1周期分の動作指令を与 えた後のアーム軸モータ 115から重心 Mまでの Z軸方向距離 [m]と、ステップ 5で求 めた並進力 F [N]の反作用力(値は並進力 Fに等しい)を用いて、慣性モーメント N[ Nm]を式(10)によって求める。  [0034] (Step 6) The Z-axis direction distance [m] from the arm shaft motor 115 to the center of gravity M after giving an operation command for one cycle from the control device obtained in Step 1 to each motor. Using the reaction force of the translational force F [N] obtained (the value is equal to the translational force F), obtain the moment of inertia N [Nm] using Equation (10).
N = F - Zg · · · (10)  N = F-Zg (10)
[0035] (ステップ 7)動作時に把持しているワーク把持装置にかけての剛性値 K[Nm/rad ]と、ステップ 6で求めた慣性モーメント N [Nm]を用いて、式(11)によって橈み角度 φ [rad]を求める。  [0035] (Step 7) Using the stiffness value K [Nm / rad] applied to the workpiece gripping device gripped during operation and the moment of inertia N [Nm] obtained in Step 6, it is possible to Find the angle φ [rad].
φ =N/K · · · (11)  φ = N / K (11)
ここで求められる橈み角度 φは図 2及び図 3によって図示される。図 2はアームを X 軸正方向へ動作した場合の橈み角度 φ 1を示す。図 3はアームを X軸負方向へ動作 した場合の橈み角度 Φ 2を示す。第 1アーム軸 114の旋回中心線と、アームの各部と ワーク把持装置 110が完全な剛体であった場合の制御点を通りワーク把持装置 110 に平行な直線との交点を点 Pとすると、橈み角度はそれぞれ、点 Pと制御点とを通る 直線と、アームの各部とワーク把持装置 110が橈むことによりずれた制御点 138と点 Pを結ぶ直線が成す角度である。  The required stagnation angle φ is illustrated by FIGS. Figure 2 shows the stagnation angle φ 1 when the arm is moved in the positive direction of the X axis. Figure 3 shows the stagnation angle Φ 2 when the arm is moved in the negative direction of the X axis. When the point of intersection between the turning center line of the first arm axis 114 and a straight line that passes through the control points when each part of the arm and the workpiece gripping device 110 are completely rigid and is parallel to the workpiece gripping device 110 is P Each angle is an angle formed by a straight line that passes through the point P and the control point, and a straight line that connects the control point 138 and the point P that are displaced by the gripping of each part of the arm and the workpiece gripping device 110.
橈み角度 φはまた、アームの各部とワーク把持装置 1 10が完全な剛体であった場 合の重心位置を通りワーク把持装置 110に平行な直線との交点を点 Pとすると、点 P と重心位置 141とを通る直線と、アームの各部とワーク把持装置 110が橈むことにより ずれた重心位置 142と点 Pを結ぶ直線が成す角度に等しい。 The stagnation angle φ is also defined as point P when the intersection point of each arm part and a straight line passing through the center of gravity and parallel to the work gripping device 110 when the work gripping device 110 is a complete rigid body is point P. When the straight line passing through the center of gravity position 141, the arm parts, and the workpiece gripping device 110 It is equal to the angle formed by the straight line connecting the displaced center of gravity 142 and point P.
[0036] (ステップ 8)予め格納手段に格納した第 1アーム軸 114から第 2アーム軸 118まで の距離 [m]と、第 2アーム軸 118からフランジ 122までの距離 [m]と、アーム軸モータ 115の角度を用いて、制御装置から各モータへ 1周期分の動作指令を与えた後の第 1アーム軸 114からフランジ 122までの X軸方向距離(アーム伸縮長)を幾何学的に 求める。例えば図 8及び図 9及び図 10に示す機構を備えたアームの場合、第 1ァー ム軸 114からフランジ 122までの X軸方向距離はすでに述べたように式(1)によって 求められる。 [0036] (Step 8) The distance [m] from the first arm axis 114 to the second arm axis 118, the distance [m] from the second arm axis 118 to the flange 122 stored in the storage means in advance, and the arm axis Using the angle of the motor 115, geometrically determine the distance in the X-axis direction (arm expansion / contraction length) from the first arm shaft 114 to the flange 122 after giving an operation command for one cycle from the controller to each motor. . For example, in the case of an arm having the mechanism shown in FIGS. 8, 9, and 10, the distance in the X-axis direction from the first arm shaft 114 to the flange 122 is obtained by the equation (1) as described above.
[0037] (ステップ 9)ステップ 8で求めたアーム伸縮長と、ワーク把持装置のフランジ 122か ら制御点までの X軸方向距離 [m]を加算し第 1アーム軸 114から制御点までの距離 R[m]を求め、ステップ 7で求めた橈み角度 φ [rad]を用いて、橈み量 A Z [m]を求 める。橈み量 A Z [m]は式(12)によって求められる。  [0037] (Step 9) The distance from the first arm axis 114 to the control point by adding the arm expansion / contraction length obtained in Step 8 and the X-axis direction distance [m] from the flange 122 of the workpiece gripping device to the control point Find R [m] and use the stagnation angle φ [rad] found in step 7 to find the stagnation amount AZ [m]. The amount of stagnation A Z [m] is obtained by equation (12).
A Z = Rsin ( (i) ) · · · (12)  A Z = Rsin ((i)) (12)
[0038] (ステップ 10)アームの各部が完全な剛体であるとして、制御装置から各モータへ 1 周期分の動作指令を与えた後の昇降軸の昇降量 [m]を幾何学的に求め、ワーク把 持装置のフランジ 122から制御点までの Z軸方向距離 [m]と前記昇降量 [m]を加算 し、制御装置から各モータへ 1周期分の動作指令を与えた後の制御点の Z軸方向位 置 [m]を計算し、ステップ 9で求めた橈み量 A Z [m]を減算し、これを補正した目標 制御点 Z軸方向位置 Zc [m]とする。  [0038] (Step 10) Assuming that each part of the arm is a complete rigid body, geometrically obtain the lift amount [m] of the lift shaft after giving an operation command for one cycle from the controller to each motor, The Z-axis direction distance [m] from the workpiece gripping device flange 122 to the control point is added to the lift [m], and the control point after the operation command for one cycle is given from the control device to each motor. Calculate the Z-axis direction position [m], subtract the stagnation amount AZ [m] obtained in Step 9, and use this as the corrected target control point Z-axis direction position Zc [m].
[0039] (ステップ 11)制御装置から各モータへ 1周期分の動作指令を与えた後、予め格納 手段に格納した昇降据付部 125から昇降軸モータ 124までの距離 [m]と、昇降軸モ ータ 124から昇降支持部 126までの距離 [m]を用いて、ステップ 10で求めた補正し た目標制御点 Z軸方向位置 [m]へ昇降軸だけで動作する為の昇降軸の各モータ角 度を幾何学的に求める。例えば図 11に示す機構を備えた昇降軸の場合、予め格納 手段に格納した昇降据付部 125から昇降軸モータ 124までの距離 [m]と、昇降軸モ ータ 124から昇降支持部 126までの距離 [m]は等しぐこれを bとすれば、補正した 目標制御点 Z軸方向位置 Zc [m]へ動作する為昇降軸の昇降軸モータ角度 γは式( 2)を変形した式( 13)によって求められる。 γ =asin (Zc/2b) . · · (13) (Step 11) After giving an operation command for one cycle from the control device to each motor, the distance [m] from the lifting / lowering installation part 125 to the lifting / lowering axis motor 124 stored in the storage means in advance, Each motor of the lift shaft to operate with only the lift shaft to the target control point Z-axis direction position [m] corrected in step 10 using the distance [m] from the motor 124 to the lift support portion 126 Find the angle geometrically. For example, in the case of a lifting shaft equipped with the mechanism shown in FIG. 11, the distance [m] from the lifting mounting portion 125 to the lifting shaft motor 124 stored in the storage means in advance, and the distance from the lifting shaft motor 124 to the lifting support portion 126. If the distance [m] is equal, and b is the corrected target control point Z-axis direction position Zc [m], the lift shaft motor angle γ of the lift shaft is a modified formula (2) ( 13). γ = asin (Zc / 2b).
[0040] (ステップ 12)ステップ 11によって求められた昇降軸モータ角度 γに相当する動作 指令を新たに昇降軸モータへの動作指令として、ケーブル 103を介してロボット 102 の各軸モータへ出力する。  (Step 12) An operation command corresponding to the lifting axis motor angle γ obtained in Step 11 is newly output to each axis motor of the robot 102 via the cable 103 as an operation command to the lifting axis motor.
[0041] 以上の処理経過を迪つて各モータに出力される動作指令は補正を加味したものと なり、結果、 目標制御点位置は補正される。図 4は図 22に示したロボットがアームを X 軸正方向へ動作させるときのアーム軸モータの速度 143と、制御点の位置と時間の 関係と、補正量を示す。横軸 tは時間を示し、縦軸 Vは速度を示し、縦軸 Zは制御点 位置の Z軸方向橈み量 144、 145を示す。補正量はステップ 9で求めた橈み量 Δ の 符号を反転したものに等しぐアームが X軸正方向へ加速するときの補正量は加速時 の補正 13となり、アームが X軸正方向へ減速するときの補正量は減速時の補正 14と なる。  [0041] The operation command output to each motor over the course of the above processing takes the correction into account, and as a result, the target control point position is corrected. Fig. 4 shows the speed 143 of the arm axis motor when the robot shown in Fig. 22 moves the arm in the positive direction of the X axis, the relationship between the control point position and time, and the correction amount. The horizontal axis t indicates time, the vertical axis V indicates speed, and the vertical axis Z indicates the amount of stagnation 144, 145 in the Z-axis direction of the control point position. The correction amount is equal to that obtained by inverting the sign of the stagnation amount Δ obtained in step 9. The correction amount when the arm accelerates in the X-axis positive direction is correction 13 during acceleration, and the arm moves in the X-axis positive direction. The correction amount when decelerating is correction 14 when decelerating.
[0042] 図 5はロボットがアームを X軸正方向へ加速動作させたとき、橈み量 Δ Ζを補正する 様子を示す。橈み量 Δ Ζと補正量の加算値はゼロとなるので、補正した制御点 15と 理想的な制御点 138の Z軸方向位置は等しくなり、制御点の Z軸方向位置は一定に 保たれる。また、図 6はロボットがアームを X軸負方向へ加速動作させたとき、橈み量 Δ Ζを補正する様子を示す。橈み量 Δ Ζと補正量の加算値はゼロとなるので、補正し た制御点 16と理想的な制御点 139の Z軸方向位置は等しくなり、制御点の Z軸方向 位置は一定に保たれる。  FIG. 5 shows a state in which the amount of sag Δ 補正 is corrected when the robot accelerates the arm in the positive direction of the X axis. The sum of the amount of stagnation Δ Ζ and the correction amount is zero, so the corrected control point 15 and the ideal control point 138 have the same Z-axis position, and the Z-axis position of the control point is kept constant. It is. Fig. 6 shows how the robot corrects the sag amount Δ Δ when the robot accelerates the arm in the negative direction of the X axis. Since the added value of the stagnation amount ΔΖ and the correction amount is zero, the corrected control point 16 and the ideal control point 139 have the same Z-axis position, and the control point Z-axis position is kept constant. Be drunk.
[0043] この一連の処理の流れを制御装置の動作指令の出力周期に実行することで、常に 慣性モーメントによる橈みを鉛直方向に補正することが可能である。また、この橈み 補正では、実施形態にあるように複雑な演算を使用しないため、ロボットの制御を行う 制御装置に備わるマイクロコンピュータによる演算時間をより少なくすることができる ので、ロボットの動作制御処理に影響を与えることがなレ、。  [0043] By executing this series of processing flows in the output cycle of the operation command of the control device, it is possible to always correct the stagnation due to the moment of inertia in the vertical direction. In addition, since this stagnation correction does not use complicated calculation as in the embodiment, the calculation time by the microcomputer provided in the control device for controlling the robot can be reduced, so that the robot motion control process Les, which can affect.
また、複数の基板収容力セットに複数の重量が異なるガラス基板が混在して!/、る場 合は、把持するワーク識別子 (番号)の異なる動作プログラムを準備し、把持するガラ ス基板に合わせて動作プログラムを実行することで慣性モーメントによる橈みがなくガ ラス基板を搬送することが可能である。 [0044] 以上は、本発明を実施する 1例であり、アームは、例えばモータとラック &ピニオン やボールネジで構成された直動軸や、電磁弁制御による空気圧や油圧を動力とする 直動軸や、第 1アーム軸 114と第 2アーム軸 118とフランジ 122がそれぞれにモータ を備え個別に旋回し、 X軸方向へ補間動作が可能で、且つ Y軸方向及び Z軸方向へ 動作することが可能であっても良い。アームはガラス基板を X軸方向に直線補間動作 することが出来る機構を備えて!/ゝれば良!/ヽ。 Also, if multiple glass substrates with different weights are mixed in multiple substrate capacity sets, prepare an operation program with different workpiece identifiers (numbers) to be gripped, and match the glass substrates to be gripped. By executing the operation program, the glass substrate can be transported without any stagnation due to the moment of inertia. [0044] The above is an example for carrying out the present invention. The arm is a linear motion shaft composed of, for example, a motor, a rack & pinion, or a ball screw, or a linear motion shaft powered by air pressure or hydraulic pressure by electromagnetic valve control. In addition, the first arm shaft 114, the second arm shaft 118, and the flange 122 are each equipped with a motor, and can be individually rotated to perform interpolation operation in the X-axis direction and operate in the Y-axis direction and the Z-axis direction. It may be possible. The arm has a mechanism that can linearly interpolate the glass substrate in the X-axis direction!
また、昇降軸は例えばラック &ピニオンやボールネジで構成された直動軸や、電磁 弁制御による空気圧や油圧を動力とする直動軸や、昇降軸モータ 124以外に昇降 据付部 125と昇降支持部 126にモータを備え個別に旋回し、 Z軸方向へ補間動作が 可能で、且つ X軸方向及び Y軸方向へ動作することが可能であっても良い。昇降軸 は Z軸方向に直線補間動作することが出来る機構を備えていれば良い。図 7及び図 8及び図 12及び図 13及び図 14は一般的な装置を例に示している力 旋回軸 130は 必ず備える必要は無い。  The lifting shaft is a linear motion shaft composed of, for example, a rack and pinion or a ball screw, a linear motion shaft powered by air pressure or hydraulic pressure controlled by a solenoid valve, and the lifting shaft motor 124 and the lifting support portion in addition to the lifting shaft motor 124. 126 may be equipped with a motor, rotate individually, perform interpolation in the Z-axis direction, and operate in the X-axis and Y-axis directions. The lift axis only needs to have a mechanism that can perform linear interpolation in the Z-axis direction. 7, 8, 12, 13, and 14 exemplify a general device. The force pivot 130 is not necessarily provided.
また、図 7に記載の教示手段 106は図示しない外部記憶装置を備えている力 教 示手段 106は例えば外部記憶装置を備えた汎用コンピュータやパソコンであつても 良い。また、格納手段に予め動作プログラムが格納されている場合は、教示手段 10 6を備えなくても良い。図 7に記載のケーブル 105は電気的に接続された有線の伝達 手段として示して!/、る力 これは例えば電波を用いた無線手段であっても良!/、。  Further, the teaching means 106 shown in FIG. 7 may be a general-purpose computer or personal computer equipped with an external storage device, for example, the force teaching means 106 provided with an external storage device (not shown). If the operation program is stored in the storage means in advance, the teaching means 106 may not be provided. The cable 105 shown in FIG. 7 is shown as an electrically connected wired transmission means! /, A force that can be a wireless means using radio waves! /, For example.
[0045] 本発明は、水平方向と鉛直方向に自由度を備えるロボットに対して適用出来るため 、例えば多くの産業用ロボットで用いられている垂直 6軸多関節ロボットに対しても適 用することが出来る。例えばプレス間ハンドリング用途では、動作し続けるプレス機に 高速且つ正確にワークを搬送しなければならない。プレス機のワーク搬入口はワーク を搬入する最低限の大きさとなっている為、高速で搬送した際の慣性モーメントによ る橈みによって、ワークとプレス機が干渉する場合が考えられる。しかし、本発明を適 用すれば、ワークの搬送の際に発生する橈み量を計算し、各部が完全な剛体であつ た場合の位置から橈みによって逸脱した方向に対し、前記計算した橈み量を 6自由 度を用いて直線補間動作することで直線的に橈み量を無くすことが出来る。  [0045] Since the present invention can be applied to a robot having degrees of freedom in the horizontal direction and the vertical direction, it can be applied to, for example, a vertical 6-axis articulated robot used in many industrial robots. I can do it. For example, in handling between presses, a workpiece must be conveyed at high speed and accurately to a pressing machine that continues to operate. Since the work entrance of the press machine is the minimum size to carry the work, it is possible that the work and the press machine may interfere with each other due to the stagnation caused by the moment of inertia when transporting at high speed. However, if the present invention is applied, the amount of stagnation that occurs during the conveyance of the workpiece is calculated, and the calculated 橈 is the direction deviated by stagnation from the position where each part is a complete rigid body. The amount of stagnation can be eliminated linearly by linear interpolation using 6 degrees of freedom.
産業上の利用可能性 この発明は、高速度で長いストロークの動作のために、動的な橈みの発生が考えら れるもので、特に一端を動作し他端でワークを搬送する用途に適用することができる Industrial applicability The present invention is considered to generate dynamic stagnation due to a high-speed and long-stroke operation, and can be applied particularly to an operation in which one end is operated and a workpiece is conveyed at the other end.

Claims

請求の範囲 The scope of the claims
[1] ワークを把持又は載置するワーク把持装置を先端に備えたアームと、前記アームを 水平方向に伸縮するアーム軸モータと、前記アームを昇降する昇降軸モータと、を備 えたロボットと、前記ロボットの前記アーム軸モータ及び前記昇降軸モータを駆動制 御する制御装置を具備するワーク搬送装置において、  [1] A robot provided with an arm having a workpiece gripping device at a tip for gripping or placing a workpiece, an arm shaft motor that extends and retracts the arm in a horizontal direction, and a lifting shaft motor that lifts and lowers the arm; In a workpiece transfer device including a control device for driving and controlling the arm shaft motor and the lifting shaft motor of the robot,
前記アーム軸モータの駆動で前記アームの伸縮をする時の前記アームと前記ヮー ク把持装置又は前記アームとワーク把持装置と前記ワークの水平方向移動加減速度 に基づく慣性モーメントによる前記ロボットの制御点位置の鉛直方向の橈み量を求め 、前記橈み量を昇降軸を駆動して鉛直方向に補正する補正手段を備えたことを特徴 とするワーク搬送装置。  Control point position of the robot by the moment of inertia based on the horizontal movement acceleration / deceleration of the arm and the workpiece gripping device or the workpiece when the arm is extended and contracted by driving the arm shaft motor A workpiece conveying apparatus comprising: a correction unit that obtains the amount of stagnation in the vertical direction and corrects the amount of stagnation in the vertical direction by driving a lifting shaft.
[2] 前記制御装置は格納手段を備え、予め前記ロボットのロボット情報と、前記ワーク把 持装置のワーク把持装置情報と、前記ワークのワーク情報と、その他の諸パラメータ を登録し、前記諸パラメータに基づいて前記橈み量を求めることを特徴とする請求項 1記載のワーク搬送装置。  [2] The control device includes storage means, and registers robot information of the robot, workpiece gripping device information of the workpiece gripping device, workpiece information of the workpiece, and other parameters in advance. 2. The work conveying apparatus according to claim 1, wherein the amount of stagnation is obtained based on the value.
[3] 複数の前記ワーク把持装置に対し、各々把持装置識別子を割り当てられ該把持装 置識別子に関連付けて前記ワーク把持装置情報が登録され、前記橈み量を求める ときには前記把持装置識別子により検索される前記ワーク把持装置情報に基づいて 前記橈み量を求めることを特徴とする請求項 1または 2記載のワーク搬送装置。  [3] A gripping device identifier is assigned to each of the plurality of workpiece gripping devices, and the workpiece gripping device information is registered in association with the gripping device identifier. When the amount of stagnation is obtained, the gripping device identifier is searched. 3. The workpiece transfer device according to claim 1, wherein the amount of stagnation is obtained based on the workpiece gripping device information.
[4] 複数の前記ワークに対し、各々ワーク識別子を割り当てられ該ワーク識別子に関連 付けて前記ワーク情報が登録され、前記橈み量を求めるときには前記ワーク識別子 により検索される前記ワーク情報に基づいて前記橈み量を求めることを特徴とする請 求項 1または 2記載のワーク搬送装置。  [4] A work identifier is assigned to each of the plurality of works, the work information is registered in association with the work identifier, and the amount of stagnation is obtained based on the work information retrieved by the work identifier. 3. The workpiece transfer device according to claim 1, wherein the amount of stagnation is obtained.
[5] 前記ロボットは液晶ガラス基板搬送用水平多関節ロボットであることを特徴とする請 求項 1記載のワーク搬送装置。  [5] The workpiece transfer apparatus according to claim 1, wherein the robot is a horizontal articulated robot for transferring a liquid crystal glass substrate.
PCT/JP2007/067028 2006-09-12 2007-08-31 Work transfer apparatus WO2008032591A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008534291A JP5120258B2 (en) 2006-09-12 2007-08-31 Work transfer device
KR1020087027431A KR101310003B1 (en) 2006-09-12 2007-08-31 Work transfer apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006246747 2006-09-12
JP2006-246747 2006-09-12

Publications (1)

Publication Number Publication Date
WO2008032591A1 true WO2008032591A1 (en) 2008-03-20

Family

ID=39183652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067028 WO2008032591A1 (en) 2006-09-12 2007-08-31 Work transfer apparatus

Country Status (4)

Country Link
JP (1) JP5120258B2 (en)
KR (1) KR101310003B1 (en)
TW (1) TWI423377B (en)
WO (1) WO2008032591A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233789A (en) * 2008-03-27 2009-10-15 Daihen Corp Method of controlling carrier robot
JP2009233788A (en) * 2008-03-27 2009-10-15 Daihen Corp Method of controlling carrier robot
CN104942802A (en) * 2014-03-27 2015-09-30 日本电产三协株式会社 Industrial robot
JP2015196242A (en) * 2014-04-02 2015-11-09 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッドHyundai Heavy Industries Co., Ltd. Substrate transfer robot driving device and substrate transfer method using the same
CN105312632A (en) * 2014-08-05 2016-02-10 发那科株式会社 Control device for robot that performs work by pressing tool against workpiece
JP6029709B1 (en) * 2015-04-30 2016-11-24 カナエ工業株式会社 Work assembling apparatus, method for controlling work assembling apparatus, control program for work assembling apparatus, and recording medium
WO2018073922A1 (en) * 2016-10-19 2018-04-26 カナエ工業株式会社 Workpiece assembly device, method for controlling workpiece assembly device, program for controlling workpiece assembly device, and recording medium
CN112171674A (en) * 2020-09-25 2021-01-05 苏州微创畅行机器人有限公司 Control method of flexible mechanical arm and robot system
TWI790731B (en) * 2020-09-16 2023-01-21 日商芝浦機械電子裝置股份有限公司 Substrate transfer device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331368B1 (en) * 2011-10-20 2013-11-19 현대중공업 주식회사 Substrate transferring robot having function of correcting meandering and method for correcting meandering thereof
WO2019044237A1 (en) * 2017-09-04 2019-03-07 パナソニックIpマネジメント株式会社 Robot control apparatus
JP6983206B2 (en) * 2019-10-15 2021-12-17 株式会社アルバック Board transfer device and board transfer method
US11854849B2 (en) * 2020-06-12 2023-12-26 Taiwan Semiconductor Manufacturing Company Ltd. Method for operating conveying system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11134012A (en) * 1997-10-24 1999-05-21 Fanuc Ltd Robot with track error correcting function
JP2000183128A (en) * 1998-12-17 2000-06-30 Komatsu Ltd Controller for work carrying apparatus
JP2004193293A (en) * 2002-12-11 2004-07-08 Hitachi Cable Ltd Method and apparatus of manufacturing wiring board
JP2006198760A (en) * 2005-01-17 2006-08-03 Samsung Electronics Co Ltd Method and device for correcting static deformation of handling robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11134012A (en) * 1997-10-24 1999-05-21 Fanuc Ltd Robot with track error correcting function
JP2000183128A (en) * 1998-12-17 2000-06-30 Komatsu Ltd Controller for work carrying apparatus
JP2004193293A (en) * 2002-12-11 2004-07-08 Hitachi Cable Ltd Method and apparatus of manufacturing wiring board
JP2006198760A (en) * 2005-01-17 2006-08-03 Samsung Electronics Co Ltd Method and device for correcting static deformation of handling robot

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233788A (en) * 2008-03-27 2009-10-15 Daihen Corp Method of controlling carrier robot
JP2009233789A (en) * 2008-03-27 2009-10-15 Daihen Corp Method of controlling carrier robot
CN104942802A (en) * 2014-03-27 2015-09-30 日本电产三协株式会社 Industrial robot
KR20150112776A (en) 2014-03-27 2015-10-07 니혼 덴산 산쿄 가부시키가이샤 Industrial robot
JP2015196242A (en) * 2014-04-02 2015-11-09 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッドHyundai Heavy Industries Co., Ltd. Substrate transfer robot driving device and substrate transfer method using the same
CN105312632B (en) * 2014-08-05 2017-04-12 发那科株式会社 Control device for robot that performs work by pressing tool against workpiece
CN105312632A (en) * 2014-08-05 2016-02-10 发那科株式会社 Control device for robot that performs work by pressing tool against workpiece
JP6029709B1 (en) * 2015-04-30 2016-11-24 カナエ工業株式会社 Work assembling apparatus, method for controlling work assembling apparatus, control program for work assembling apparatus, and recording medium
WO2018073922A1 (en) * 2016-10-19 2018-04-26 カナエ工業株式会社 Workpiece assembly device, method for controlling workpiece assembly device, program for controlling workpiece assembly device, and recording medium
CN109311156A (en) * 2016-10-19 2019-02-05 鼎工业株式会社 The control program and recording medium of Workpiece assembly device, the control method of Workpiece assembly device and Workpiece assembly device
US11123875B2 (en) 2016-10-19 2021-09-21 Kanae Kogyo Co., Ltd. Work assembling device, control method for work assembling device, control program for work assembling device, and recording medium
TWI790731B (en) * 2020-09-16 2023-01-21 日商芝浦機械電子裝置股份有限公司 Substrate transfer device
CN112171674A (en) * 2020-09-25 2021-01-05 苏州微创畅行机器人有限公司 Control method of flexible mechanical arm and robot system

Also Published As

Publication number Publication date
KR20090050024A (en) 2009-05-19
KR101310003B1 (en) 2013-09-24
TW200832599A (en) 2008-08-01
TWI423377B (en) 2014-01-11
JPWO2008032591A1 (en) 2010-01-21
JP5120258B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2008032591A1 (en) Work transfer apparatus
JP6766227B2 (en) Double-armed robot
JP5311277B2 (en) Plate workpiece transfer equipment and transfer method
JP2014034107A (en) Original point return method of industrial robot and industrial robot
CN107848114A (en) Industrial robot and its method of operation
TW201603977A (en) Transfer system and operation correction method of transfer robot
JP2002522238A (en) Robot with multiple degrees of freedom
KR101291368B1 (en) Robot and its teaching method
JP2008137115A (en) Arm driving device and industrial robot
WO2010004636A1 (en) Robot and its teaching method
WO2004084297A1 (en) Method of conveyance positioning for workpiece processing systems and, workpiece processing system
JP5262810B2 (en) Parallel mechanism
JP2020055087A (en) Robot system comprising feeding device and feeding table device
JP4840599B2 (en) Work transfer device
JP2007038334A (en) Work jig device and work supporting method
JP4791168B2 (en) Positioning robot
JP2008254138A (en) Articulated robot
CN113727813B (en) Substrate transfer robot and control method for substrate transfer robot
KR102685669B1 (en) 7-axis multi-joint robot having horizontal movement ability
JP7414426B2 (en) robot system
WO2008068989A1 (en) Parallel link conveying device and method of controlling the same
WO2002058894A1 (en) Conveyor system
JP2024071867A (en) Robot control method and robot system
JP2022057436A (en) Industrial robot and control method for the same
JP2022057452A (en) Industrial robot and control method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534291

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087027431

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806501

Country of ref document: EP

Kind code of ref document: A1