WO2008032389A1 - Epoxy group-terminated (meth)acrylate and process for producing the same - Google Patents

Epoxy group-terminated (meth)acrylate and process for producing the same Download PDF

Info

Publication number
WO2008032389A1
WO2008032389A1 PCT/JP2006/318294 JP2006318294W WO2008032389A1 WO 2008032389 A1 WO2008032389 A1 WO 2008032389A1 JP 2006318294 W JP2006318294 W JP 2006318294W WO 2008032389 A1 WO2008032389 A1 WO 2008032389A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
compound
epoxy group
general formula
extraction
Prior art date
Application number
PCT/JP2006/318294
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Kamikura
Satoshi Yamauchi
Katsufumi Kujira
Original Assignee
Nippon Kasei Chemical Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Company Limited filed Critical Nippon Kasei Chemical Company Limited
Priority to PCT/JP2006/318294 priority Critical patent/WO2008032389A1/en
Publication of WO2008032389A1 publication Critical patent/WO2008032389A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • C07D301/28Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings

Definitions

  • Epoxy group-terminated (meth) acrylate and process for producing the same
  • the present invention relates to an epoxy group-terminated (meth) acrylate and a method for producing the same, and more particularly to a high-purity epoxy group-terminated (meth) acrylate and a method for producing the same useful as a raw material for paints and the like.
  • Epoxy group-terminated (meth) acrylates can be produced, for example, as follows.
  • monoallysidyl ether of a dioli compound which is a compound having an epoxy group
  • a direct dehalogenation reaction between the dioli compound and epino and rhohydrin using an alkali compound is synthesized by a direct dehalogenation reaction between the dioli compound and epino and rhohydrin using an alkali compound.
  • the compound is transesterified by reacting with a compound having an allyloyl group, for example, (meth) acrylic acid ester (Patent Document 1).
  • Patent Document 1 JP-A-8-99968
  • BDA 1,4-Butanediol ditalylate converted to di (meth) atalylate
  • 14BDDGE 1,4-butanediol diglycidyl ether
  • the present invention has been made in view of the above circumstances, and its purpose is that when used as a raw material, the cross-linking efficiency and molecular weight, which are the target physical properties of the final target product, cannot be obtained, and the weather resistance is lowered.
  • the present invention provides a novel epoxy group-terminated (meth) acrylate and a method for producing the same.
  • Another object of the present invention is to provide a method for producing alkanediol monoglycidyl ether useful as a raw material for the above-mentioned epoxy group-terminated (meth) acrylate.
  • the inventors of the present invention among the compounds mixed in a large amount in the epoxy group-terminated (meth) acrylate, are subjected to an extraction step with a water-organic solvent.
  • the content of the compound can be limited to a certain amount or less, thereby obtaining the knowledge that the physical properties such as the weather resistance of the final target product can be improved as well as having a high purity, thereby completing the present invention. It came. That is, the present invention comprises a group of related inventions, and the gist of each invention is as follows.
  • the first gist of the present invention is characterized in that the content of the compound represented by the following general formula (2) or the compound represented by the following general formula (3) is 0.5% by weight or less.
  • CH ? C— C— 0— ⁇ — 0— CH 7 — CH— CH 7
  • Y represents an alkylene group having 2 to 6 carbon atoms
  • R represents a hydrogen atom or a methyl group.
  • the second gist of the present invention is a process for producing an alkanediol monoglycidyl ether represented by the general formula (4) obtained by reacting a diolu compound with epino and rhohydrin, comprising a diol compound
  • the alkanediol monoglycidyl ether represented by the following formula (4) is characterized in that the crude alkanediol monoglycidyl ether is obtained by reacting with ephalohalohydrin to obtain a crude alkanediol monoglycidyl ether. It exists in the manufacturing method of glycidyl ether.
  • represents an alkylene group having 2 to 6 carbon atoms.
  • the third gist of the present invention is a method for producing an epoxy group-terminated (meth) acrylate represented by the general formula (1), wherein (meth) acrylic acid ester and the general formula (4)
  • the alkane diol monoglycidyl ether shown above is used, and as the above alkanediol monoglycidyl ether, a crude alkanediol monoglycidyl ether obtained by reacting a diol compound with epihalohydrin is purified by extraction. It is represented by the general formula (1), characterized by using glycidyl ether.
  • the present invention relates to a method for producing an epoxy-terminated (meth) acrylate.
  • the fourth gist of the present invention is a method for producing an epoxy group-terminated (meth) acrylate having the general formula (1), wherein (meth) acrylic acid ester and the general formula (4) Wherein the above-mentioned reaction is carried out in the presence of at least the following two types of solvents (A) and (B):
  • the present invention resides in a method for producing an epoxy group-terminated (meth) acrylate having the formula (1).
  • the desired physical properties of the final target product when used as a raw material, the desired physical properties of the final target product can be obtained, and a novel epoxy group-terminated (meth) acrylate is provided without problems such as deterioration in weather resistance.
  • the present invention relates to an epoxy group-terminated (meth) acrylate which is represented by the following general formula (1).
  • Y represents an alkylene group having 2 to 6 carbon atoms
  • R represents a hydrogen atom or a methyl group.
  • Y is preferably an alkylene group having 3 to 6 carbon atoms, and an alkylene group having 4 carbon atoms is particularly preferable as a raw material for surface coating.
  • the epoxy group-terminated (meth) acrylate in the present invention is an alkane diol di (meth) acrylate represented by the following general formula (2) or an alkane diol diglycidyl ether represented by the following general formula (3).
  • the content of is not more than 0.5% by weight.
  • Y represents an alkylene group having 2 to 6 carbon atoms
  • R represents a hydrogen atom or a methyl group.
  • Content is limited to a certain range or less.
  • the content of BD soot is 0.5% by weight or less, preferably 0.3% by weight or less
  • the content of 14BDDGE is 0.5% by weight or less, preferably 0.3% by weight or less. . If the content exceeds the above, the object of the present invention cannot be achieved.
  • the reason why the final target product cannot achieve the target physical properties is estimated as follows. That is, if there is a large amount of BDA, it is considered that the attalylate at both ends reacts with the polymer main chain to prevent cross-linking at that portion, resulting in a decrease in the cross-linking density, resulting in adverse effects on the physical properties of the resin.
  • the reason why the final object cannot achieve the target physical properties when the content of 14BDDGE is larger than the range specified in the present invention is estimated as follows. That is, since there is no acrylate group, it does not react with the polymer main chain, hinders polymerization, lowers the degree of polymerization, and decreases the molecular weight. As a result, it is considered that the physical properties of the fats are similarly adversely affected.
  • the method for producing 4HBAGE employed in the present invention is mainly a synthesis reaction of 14BDMGE, which is an ionic compound having an epoxy group, a separation step of the same compound, and a compound having 14BDMGE and an attalyl group ( 4HBAGE synthesis by reaction with (meth) acrylic acid ester Power of reaction and separation process of the same compound.
  • 14BDMGE is an ionic compound having an epoxy group
  • separation step of the same compound a separation step of the same compound
  • a compound having 14BDMGE and an attalyl group 4HBAGE synthesis by reaction with (meth) acrylic acid ester Power of reaction and separation process of the same compound.
  • 14BDMGE can be synthesized by a known method, for example, the method described in JP-A-8-99968.
  • an alkaline compound is used as a dehalogenating hydrogenation agent, and a dioli compound is directly subjected to a dehalogenation addition reaction with epino and lohydrin.
  • the diol compound may be any ⁇ , ⁇ -diol having two primary hydroxyl groups and having 2 to 6 carbon atoms.
  • 1,4 butanediol is used.
  • 14BD will be described as an example of the diol compound.
  • examples of the epihalohydrin include an epib oral mohydrin, an epichlorohydrin, an epichlorohydrin, a ⁇ -methyl ebibu oral mohydrin, a ⁇ -methyl epichlorohydrin, and the like. Usually, epichlorohydrin is used.
  • the ratio (molar ratio) between 14BD and epihalohydrin to be subjected to the reaction is usually in the range of 1: 0.5 to 1:10, preferably 1: 2 to 1: 6.
  • the mole ratio of epihalohydrin to 14BD is larger than the above range, 14BDDGE is generated more.
  • it is smaller than the above range a large amount of unreacted 14BD is present. This is not preferable because the yield of 14BDMGE may decrease.
  • an alkaline compound is usually used.
  • a weak alkali sodium carbonate may be used, but a strong alkali is preferred.
  • sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, lithium hydroxide, etc. are preferred, especially sodium hydroxide and water.
  • Acid potassium is preferred.
  • the alkaline compound is usually added to the mixture of the diol diol compound, epino and rhohydrin as an aqueous solution, preferably as an aqueous solution of 10 to 60% by weight.
  • the amount of the dehydrohalogenating agent used is usually 0.9 to 1.5, preferably 1.0 to 1.2, based on the amount of the charged diol, as an equivalent ratio.
  • reaction method a mixture of a dioli compound, epino, and rhohydrin is mixed with denominated rogeny water.
  • a method of adding a raw material is preferred. This is because the epoxy group easily undergoes cleavage decomposition when an excessive dehalogenated hydrogenation agent is present in the reaction system.
  • the reaction temperature is generally 0-100 ° C, preferably 20-70 ° C. If the reaction temperature is too low, the reaction progresses slowly. On the other hand, if the reaction temperature is too high, side reactions such as hydrolysis may occur.
  • the reaction time is usually about 2 to 20 hours.
  • the reaction is usually carried out under azeotropic conditions between water produced by the reaction and epino and rhohydrin.
  • the azeotropic water and the epihalohydrin are cooled and separated into two phases, but the epino and lohydrin may be returned to the reaction system to distill off only the water.
  • the halogen salt precipitates, so the reaction is carried out with stirring. Further, after the reaction is completed, the precipitated halogen salt is usually removed by adding water or the like.
  • Y represents an alkylene group having 2 to 6 carbon atoms.
  • the crude 14BDMGE obtained above is purified by extraction. That is, in the separation of 14BDMGE, extraction with a water-insoluble organic solvent in the presence of water is preferable from the solution after the synthesis reaction in order to stably and efficiently remove impurities. Extraction in the present invention can be performed either batchwise or continuously. Considering industrial advantages, for example, continuous extraction by the Karl column method (Sumitomo Heavy Industries, Ltd.) is preferable.
  • water-insoluble organic solvent examples include water-insoluble organic solvents such as aromatic hydrocarbons such as benzene, toluene and xylene, and chain saturated hydrocarbons such as N-hexane and N-heptane. A solvent is mentioned. Of these, toluene is preferred for both the first and second stages.
  • the extraction method (1) will be described in detail.
  • water and toluene are added to the 14BD MGE synthesis reaction solution described above for extraction. That is, in the curl column type continuous extraction, water and the 14BDMGE-containing reaction crude liquid are continuously added from the upper part of the column tower, and toluene is continuously added from the lower part of the column tower. 14B DDGE is extracted and removed from the upper phase (toluene phase), and 14BDMGE and 14BD are extracted to the lower phase (aqueous phase).
  • the ability to extract a small amount of 14BDMGE in the toluene phase In order to increase the solubility of 14BDMGE in the aqueous phase, it is also effective to add a solubility regulator such as methanol to the water to be added.
  • a solubility regulator such as methanol
  • the appropriate temperature in the column is a force that is limited by the extraction efficiency, the boiling point of the solvent used, and the freezing point of water.
  • the amounts of water and methanol and toluene used are as follows. That is, the amount of water / methanol mixture used is 0.5 to 20 times the mass ratio of 14BDMGE. The methanol concentration is 0-60% by weight with respect to water. If there is more than this, separability may be impaired. The amount of toluene used is 1 to 20 times the mass ratio of 14BDMGE. If the amount of toluene is less than this, 14BDDGE is mixed with the water (and methanol) phase in the form of being dragged by 14B DMGE, and the extraction efficiency decreases. Moreover, when there is more toluene than the said range, it will cause a bad manufacturing cost.
  • extraction is performed by adding toluene to the aqueous phase of the first stage. That is, the first-stage aqueous phase is continuously added from the top of the column tower, and toluene is continuously added from the bottom of the column tower.
  • 14BDMGE is extracted from the upper phase (toluene phase) and 14BD is extracted and removed from the lower phase (water phase).
  • the amount of toluene used is 1 to 30 times the mass ratio of 14BDMGE in the first stage water phase. If the amount of toluene used is less than this, 14B DMGE may be mixed into the water (and methanol) phase in a form that is dragged by 14BD, which may reduce the extraction efficiency. Also, If the amount of use of Lwen is larger than the above range, it will cause a bad manufacturing cost.
  • Purified 14BDMGE obtained by extraction as described above and (meth) acrylic acid ester are transesterified in the presence of a transesterification catalyst to produce the desired 4HBAGE.
  • a transesterification catalyst to produce the desired 4HBAGE.
  • (meth) acrylic acid ester (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester and the like are preferable. is there.
  • the amount of (meth) acrylic acid ester used is usually about 1.1 to 3 times as a mole ratio to diol monoglycidyl ether. Since the reaction is a force equilibrium reaction in which a lower alcohol is produced, the reaction can be further advanced by distilling the produced lower alcohol out of the reaction system.
  • the reaction may be either a continuous type or a batch type. Although the reaction can be carried out in the absence of a solvent, it is preferably carried out in the presence of an organic solvent. In the present invention, the reaction is preferably carried out in the presence of at least the following two types of solvents (A) and (B).
  • a solvent that can azeotrope with by-produced alcohol, and the azeotropic temperature of the solvent is a by-product.
  • organic solvent B Its boiling point is higher than the above azeotropic temperature !, solvent (hereinafter referred to as organic solvent B).
  • the organic solvent A acts as a solvent for distilling off alcohol (usually lower alcohol) generated in the reaction process to the outside of the reaction system.
  • alcohol usually lower alcohol
  • the generated alcohol can be distilled out of the system without taking out the raw material (meth) acrylic acid ester.
  • the organic solvent B stays in the system as it is, and the reaction temperature of the reaction system can be increased without affecting the above-described action of the organic solvent A. Acts as a possible solvent. As a result, it functions as a solvent for dilution to accelerate the reaction and to suppress the polymerization of (meth) acrylic acid ester. Furthermore, the organic solvent B can be used as the extraction solvent in the following step.
  • the transesterification reaction is performed in the presence of the organic solvent A and the organic solvent B, so that the organic alcohol generated without taking the raw material (meth) acrylate ester out of the system is organic.
  • the reaction can proceed while distilling out of the system azeotropically with solvent A, and organic solvent B remains in the system as it is and can be used as an extraction solvent in the next step.
  • Examples of the organic solvent A include hydrocarbon-based organic solvents such as n-pentane, n-xane, and n-heptane. Xane is preferred.
  • examples of the organic solvent B include aromatic solvents such as benzene, toluene and xylene, but toluene is particularly preferable in consideration of extraction operation and subsequent solvent removal.
  • the solvent may be used in a mixed system of three or more.
  • the organic solvent is introduced into the reaction system by a method such as batch charging from the beginning of the reaction or sequential addition.
  • the amount of organic solvent A to be used is a force determined by the composition ratio with the alcohol to be produced. It is necessary to use more than the amount by which this alcohol is distilled out of the system.
  • the amount of organic solvent B used is too large, it will be difficult to recover, so usually the same amount as organic solvent A is appropriate.
  • Transesterification catalysts include titanium alcoholates, organotins, alkali metal or alkaline earth metal weak acid salts (carbonates, acetates, phosphates, etc.), alkali metal alcoholics.
  • a common transesterification catalyst such as a catalyst is used.
  • titanium alcoholate or organic tin compound is preferable.
  • the amount of the catalyst used is usually 0.1 to 10 mol% with respect to the diol monoglycidyl ether.
  • the reaction temperature is usually 50 to 130 ° C, preferably 60 to 120 ° C. If the reaction temperature is too low, the progress of the reaction will be slow, while if it is too high, the polymerization of the acryloyl group may become remarkable.
  • distillation temperature of alcohol varies depending on the type of (meth) acrylic acid ester and azeotropic solvent used, but it cannot be generally stated. However, in consideration of suppressing polymerization of the allyloyl group, usually 30 to: L00 It is in the range of ° C.
  • polymerization inhibitor examples include aromatic amines such as phenothiazine and p-phenylenediamine, phenol derivatives such as hydroquinone and p-methoxyphenol, nitroso compounds, and aromatic-toxic compounds. Two or more of these may be used in combination.
  • Oxygen is preferably introduced into the reaction system after being diluted with an inert gas so that the reaction system does not fall within the explosion range.
  • the oxygen concentration is usually 0.1 to 10% by volume, preferably 1 to 5% by volume.
  • water is usually added to the reaction mixture to deactivate the catalyst.
  • the amount of water added is preferably about 0.5 to 10 (volume) times the reaction mixture.
  • metals such as titanium and tin in the catalyst form an insoluble compound and precipitate, so it is preferable to filter and remove it prior to extraction.
  • the reaction mixture is extracted with an organic solvent to obtain an organic solvent phase containing 4HBA GE, which is an epoxy group-terminated (meth) acrylate. When this is distilled to distill the organic solvent, 4HBA GE ((meth) acrylate having a glycidyl group) is obtained as a product.
  • unreacted (meth) acrylic acid ester is recovered by removing under reduced pressure from the reaction solution containing 4HBAGE produced above.
  • the organic solvent phase containing 4 HBAGE is obtained by simple extraction of the remaining liquid after recovery with an organic solvent, and then distilled to distill the organic solvent, thereby reducing the contents of BDA and 14BDDGE. 4HBAGE can be obtained as a product. Further, the extraction described in the “14BDMGE separation step” can be performed in the “4HBAGE separation step”.
  • the 4HBAGE of the present invention obtained by the above method was used as a normal product when used for automotive coatings, home appliances, information technology-related substrates, and particularly for these top coats. Compared to cases, the physical properties of the final product obtained are significantly improved.
  • the epichlorohydrin in the lower phase was distilled off only water while returning to the system. After 5 hours, the dropwise addition of the aqueous NaOH solution was completed, and further, heating and decompression were continued for 30 minutes, and then the reaction was completed. In order to remove NaCl produced as a by-product, 810 g of water was added, stirred for 30 minutes, allowed to stand for 30 minutes, and the aqueous phase was taken out. Next, epichlorohydrin remaining in the reaction solution was recovered by a vacuum removal method.
  • the crude 14BDMGE weight is 540g, and the composition is 1,4BDMGE content of the main component: 64.3% by weight, 14BD of the raw material: 2.2% by weight, 14BDGE of the by-product: 14. 1% by weight.
  • the yield of 14BDMGE relative to 14BD charged was 58%, and the weight in terms of 100% purity was 347 g.
  • Unreacted acrylic acid methyl ester was recovered from the reaction solution by a vacuum removal method. Then, water: 500 g and toluene: lOOOOg were added to the remaining liquid, stirred for 30 minutes and allowed to stand for 60 minutes, followed by liquid separation. 4HBAGE was recovered in the toluene layer, and unreacted 1,4BDMGE was recovered in the aqueous phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

It is intended to provide a novel epoxy group-terminated (meth)acrylate which does not cause troubles that target physical properties of a final product cannot be obtained, weather resistance thereof is lowered when it is used as a raw material, and so on. The epoxy group-terminated (meth)acrylate is represented by the general formula (1) and contains a compound represented by the general formula (2) or the general formula (3) at a content of 0.5% by weight or less. In a preferred embodiment of the invention, the (meth)acrylate is obtained by reacting a compound having an acryloyl group with a compound having an epoxy group, wherein the compounds are reacted after the compound having an acryloyl group and/or the compound having an epoxy group are/is purified through an extraction step. (In the respective formulae, Y represents an alkylene group having 2 to 6 carbon atoms and R represents a hydrogen atom or a methyl group.)

Description

明 細 書  Specification
エポキシ基末端 (メタ)アタリレート及びその製造方法  Epoxy group-terminated (meth) acrylate and process for producing the same
技術分野  Technical field
[0001] 本発明は、エポキシ基末端 (メタ)アタリレート及びその製造方法に関し、詳しくは、 塗料などの原料として有用な高純度エポキシ基末端 (メタ)アタリレート及びその製造 方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an epoxy group-terminated (meth) acrylate and a method for producing the same, and more particularly to a high-purity epoxy group-terminated (meth) acrylate and a method for producing the same useful as a raw material for paints and the like.
背景技術  Background art
[0002] エポキシ基末端 (メタ)アタリレートは、例えば、次の様にして製造することが出来る。  [0002] Epoxy group-terminated (meth) acrylates can be produced, for example, as follows.
先ず、アルカリ化合物を使用した、ジオールィ匕合物とェピノ、ロヒドリンとの直接脱ハロ ゲン付加反応により、エポキシ基を有する化合物である、ジオールィ匕合物のモノダリ シジルエーテルを合成する。次いで、アタリロイル基を有する化合物、例えば、(メタ) アクリル酸エステルと反応させてエステル交換する(特許文献 1)。  First, monoallysidyl ether of a dioli compound, which is a compound having an epoxy group, is synthesized by a direct dehalogenation reaction between the dioli compound and epino and rhohydrin using an alkali compound. Next, the compound is transesterified by reacting with a compound having an allyloyl group, for example, (meth) acrylic acid ester (Patent Document 1).
特許文献 1:特開平 8— 99968号公報  Patent Document 1: JP-A-8-99968
[0003] 上記の付加反応においては、反応条件により未反応のジオール化合物が残存する 。また、ジオール化合物の両末端にェピハロヒドリンが付カ卩したアルカンジオールジ グリシジルエーテルが副生する。  [0003] In the above addition reaction, an unreacted diol compound remains depending on the reaction conditions. In addition, alkanediol diglycidyl ether with epihalohydrin attached to both ends of the diol compound is by-produced.
[0004] ところで、上記の様な化合物を含有するヒドロキシアルカングリシジルエーテルを使 用し、(メタ)アクリル酸エステルとのエステル交換反応を行うと、ジオール化合物は、 両末端がエステル交換してジ (メタ)アタリレートに変換し、 目的物であるエポキシ基含 有 (メタ)アタリレート中に混入する。同様に、アルカンジオールジグリシジルエーテル は、エポキシ基末端 (メタ)アタリレート中にそのまま残存して混入する。  [0004] By the way, when a transesterification reaction with (meth) acrylic acid ester is carried out using a hydroxyalkaneglycidyl ether containing the above compound, the diol compound is diesterified at both ends. Converted to (meth) acrylate and mixed in the target (epoxy group-containing (meth) acrylate). Similarly, alkanediol diglycidyl ether remains as it is in the epoxy group-terminated (meth) acrylate.
[0005] 例えば、 1, 4—ブタンジオール(以下 14BDと略記する)とェピハロヒドリンの付加反 応により合成したヒドロキシブチルモノグリシジルエーテル (以下 14BDMGEと略記 する)とアクリル酸エステルとのエステル交換反応により、グリシジルォキシプチルァク リレート(以下、原料名に因み 4HBAGEと略記する)を製造することが出来る力 4H BAGE製品中に、前述の様な未反応のジオール化合物、ジオール化合物の両末端 がエステル交換してジ (メタ)アタリレートとなった 1, 4—ブタンジオールジアタリレート (以下 BDAと略記する)及びジオールィ匕合物の両末端にェピノ、ロヒドリンが付加した 1, 4—ブタンジオールジグリシジルエーテル(以下 14BDDGEと略記する)が混入す ると考えられる他、 14BDDGEの二量体ゃェピノ、ロヒドリンに由来する化合物も混入 していると考えられる。 [0005] For example, by transesterification of a hydroxybutyl monoglycidyl ether (hereinafter abbreviated as 14BDMGE) synthesized by the addition reaction of 1,4-butanediol (hereinafter abbreviated as 14BD) and epihalohydrin with an acrylate ester, Ability to produce glycidyloxypropyl acrylate (hereinafter abbreviated as 4HBAGE due to the name of raw material) In both 4H BAGE products, both unreacted diol compounds and diol compounds have both ends as esters. 1,4-Butanediol ditalylate converted to di (meth) atalylate (Hereinafter abbreviated as BDA) and 1,4-butanediol diglycidyl ether (hereinafter abbreviated as 14BDDGE) added with epino and rhohydrin at both ends of the dioli compound are considered to be mixed. It is thought that the compound derived from the monomer Nepino and rhohydrin is also mixed.
[0006] ところで、前述の先行技術にお!/、ては、エポキシ基末端 (メタ)アタリレートの精製や 上記混入物の影響に関して言及されていない。しかしながら、先行技術の方法で製 造されたエポキシ基末端 (メタ)アタリレートを使用して塗料などを製造すると、耐候性 が低ぐ榭脂物性が著しく低下した塗料になるという問題点があった。具体的には、 目的とする主成分のエポキシ基末端 (メタ)アタリレートに、架橋剤としての、カルボン 酸や酸無水物を添加して反応させる際、前記の不純物により、架橋効率の低下や分 子量の低下 (重合性の変化)が起こり、所望の物性が得られな力つた。  [0006] By the way, in the above-mentioned prior art, no mention is made regarding the purification of epoxy-terminated (meth) acrylate and the influence of the above-mentioned contaminants. However, when a coating or the like is produced using an epoxy group-terminated (meth) acrylate prepared by a prior art method, there is a problem that the weather resistance is low and the coating properties are remarkably deteriorated. . Specifically, when the carboxylic acid or acid anhydride as a cross-linking agent is added to the target main component epoxy group-terminated (meth) acrylate and reacted, the above-mentioned impurities reduce the cross-linking efficiency. A decrease in molecular weight (change in polymerizability) occurred, and the desired physical properties were not obtained.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は上記実情に鑑みなされたものであり、その目的は、原料として使用した場 合、最終目的物の目標物性である架橋効率や分子量が得られなかったり、耐候性低 下などの不具合を惹起することのな 、、新規なエポキシ基末端 (メタ)アタリレート及び その製造方法を提供することにある。また、本発明の他の目的は、上記のエポキシ基 末端 (メタ)アタリレートの原料として有用なアルカンジオールモノグリシジルエーテル の製造方法を提供することにある。  [0007] The present invention has been made in view of the above circumstances, and its purpose is that when used as a raw material, the cross-linking efficiency and molecular weight, which are the target physical properties of the final target product, cannot be obtained, and the weather resistance is lowered. Thus, the present invention provides a novel epoxy group-terminated (meth) acrylate and a method for producing the same. Another object of the present invention is to provide a method for producing alkanediol monoglycidyl ether useful as a raw material for the above-mentioned epoxy group-terminated (meth) acrylate.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、鋭意検討を重ねた結果、水一有機溶媒による抽出工程を経るなら ば、エポキシ基末端 (メタ)アタリレート中に数多く混入している化合物の中でも、ある 特定ィ匕合物の含有量を一定量以下に制限することができ、それにより、純度が高い だけでなぐ最終目的物の耐候性などの物性が改善されるとの知見を得、本発明の 完成に至った。すなわち、本発明は連関する一群の発明からなり各発明の要旨は次 の通りである。  [0008] As a result of intensive studies, the inventors of the present invention, among the compounds mixed in a large amount in the epoxy group-terminated (meth) acrylate, are subjected to an extraction step with a water-organic solvent. The content of the compound can be limited to a certain amount or less, thereby obtaining the knowledge that the physical properties such as the weather resistance of the final target product can be improved as well as having a high purity, thereby completing the present invention. It came. That is, the present invention comprises a group of related inventions, and the gist of each invention is as follows.
[0009] 本発明の第 1の要旨は、下記一般式 (2)で示される化合物または下記一般式 (3) で示される化合物の含有量が 0. 5重量%以下であることを特徴とする下記一般式(1 )で示されるエポキシ基末端 (メタ)アタリレートに存する。 The first gist of the present invention is characterized in that the content of the compound represented by the following general formula (2) or the compound represented by the following general formula (3) is 0.5% by weight or less. The following general formula (1 ) In the terminal (meth) acrylate of the epoxy group.
[化 1]  [Chemical 1]
CH?=C— C— 0— Υ— 0— CH7— CH— CH7 CH ? = C— C— 0— Υ— 0— CH 7 — CH— CH 7
R u
Figure imgf000005_0001
R u
Figure imgf000005_0001
CHフー CH— CH厂 O— Y— O— CH2— CH— CH2 3 ) CH Fu CH— CH 厂 O— Y— O— CH 2 — CH— CH 2 3)
\ / \  \ / \
(上記の各式中、 Yは炭素数 2〜6のアルキレン基を表し、 Rは水素原子またはメチル 基を表す。 ) (In the above formulas, Y represents an alkylene group having 2 to 6 carbon atoms, and R represents a hydrogen atom or a methyl group.)
[0011] 本発明の第 2の要旨は、ジォールイ匕合物とェピノ、ロヒドリンとを反応させて得られる 一般式 (4)で表されるアルカンジオールモノグリシジルエーテルの製造方法であって 、ジオール化合物とェピハロヒドリンとを反応させて粗アルカンジオールモノグリシジ ルエーテルを得た後、該粗アルカンジオールモノグリシジルエーテルを抽出により精 製することを特徴とする、下記式 (4)で表されるアルカンジオールモノグリシジルエー テルの製造方法に存する。  [0011] The second gist of the present invention is a process for producing an alkanediol monoglycidyl ether represented by the general formula (4) obtained by reacting a diolu compound with epino and rhohydrin, comprising a diol compound The alkanediol monoglycidyl ether represented by the following formula (4) is characterized in that the crude alkanediol monoglycidyl ether is obtained by reacting with ephalohalohydrin to obtain a crude alkanediol monoglycidyl ether. It exists in the manufacturing method of glycidyl ether.
[0012] [化 2]  [0012] [Chemical 2]
HO— Υ— 0— CHフ一 CH— CHつ ( 4 ) HO— Υ— 0— CH 1 CH— CH (4)
0  0
(上記の式中、 Υは炭素数 2〜6のアルキレン基を表す。) (In the above formula, Υ represents an alkylene group having 2 to 6 carbon atoms.)
[0013] 本発明の第 3の要旨は、前記一般式(1)で示されるエポキシ基末端 (メタ)アタリレ ートの製造方法であって、(メタ)アクリル酸エステルと一般式 (4)で示されるアルカン ジオールモノグリシジルエーテルとを反応させる方法からなり、上記のアルカンジォ ールモノグリシジルエーテルとして、ジオール化合物とェピハロヒドリンとを反応させて 得られた粗アルカンジオールモノグリシジルエーテルを抽出により精製したアルカン ジオールモノグリシジルエーテルを使用することを特徴とする、前記一般式(1)で示 されるエポキシ基末端 (メタ)アタリレートの製造方法に存する。 [0013] The third gist of the present invention is a method for producing an epoxy group-terminated (meth) acrylate represented by the general formula (1), wherein (meth) acrylic acid ester and the general formula (4) The alkane diol monoglycidyl ether shown above is used, and as the above alkanediol monoglycidyl ether, a crude alkanediol monoglycidyl ether obtained by reacting a diol compound with epihalohydrin is purified by extraction. It is represented by the general formula (1), characterized by using glycidyl ether. The present invention relates to a method for producing an epoxy-terminated (meth) acrylate.
[0014] そして、本発明の第 4の要旨は、前記一般式(1)で示されるエポキシ基末端 (メタ) アタリレートの製造方法であって、(メタ)アクリル酸エステルと一般式 (4)で示されるァ ルカンジオールモノグリシジルエーテルとを反応させる方法からなり、少なくとも、次の 2種類 (A)及び (B)の溶媒の存在下に上記の反応を行うことを特徴とする前記一般 ocl  [0014] Then, the fourth gist of the present invention is a method for producing an epoxy group-terminated (meth) acrylate having the general formula (1), wherein (meth) acrylic acid ester and the general formula (4) Wherein the above-mentioned reaction is carried out in the presence of at least the following two types of solvents (A) and (B):
式( 1)で示されるエポキシ基末端 (メタ)アタリレートの製造方法に存する。  The present invention resides in a method for producing an epoxy group-terminated (meth) acrylate having the formula (1).
(A)副生するアルコールと共沸し得る溶媒であって、その共沸温度が副生するアル コールと (メタ)アクリル酸エステルとの共沸温度より低 、溶媒。  (A) A solvent that can be azeotroped with by-produced alcohol, the azeotropic temperature of which is lower than the azeotropic temperature of alcohol and (meth) acrylic acid ester by-produced.
(B)その沸点が上記の共沸温度より高い溶媒。  (B) A solvent whose boiling point is higher than the above azeotropic temperature.
発明の効果  The invention's effect
[0015] 本発明によれば、原料として使用した場合、所望する最終目的物の目標物性が得 られ、耐候性低下などの不具合がな 、新規なエポキシ基末端 (メタ)アタリレートが提 供される。  [0015] According to the present invention, when used as a raw material, the desired physical properties of the final target product can be obtained, and a novel epoxy group-terminated (meth) acrylate is provided without problems such as deterioration in weather resistance. The
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明は、以下の一般式(1)で表されるエポキシ基末端 (メタ)アタリレートに関する [0016] The present invention relates to an epoxy group-terminated (meth) acrylate which is represented by the following general formula (1).
[0017] [化 3]
Figure imgf000006_0001
[0017] [Chemical 3]
Figure imgf000006_0001
(上記の式中、 Yは炭素数 2〜6のアルキレン基を表し、 Rは水素原子またはメチル基 を表す。)  (In the above formula, Y represents an alkylene group having 2 to 6 carbon atoms, and R represents a hydrogen atom or a methyl group.)
[0018] 一般式(1)中、 Yは、好ましくは炭素数 3〜6のアルキレン基であり、表面コート用原 料としては特に炭素数 4のアルキレン基が好ましい。  [0018] In the general formula (1), Y is preferably an alkylene group having 3 to 6 carbon atoms, and an alkylene group having 4 carbon atoms is particularly preferable as a raw material for surface coating.
[0019] 本発明のエポキシ基末端 (メタ)アタリレートは、下記一般式(2)で表されるアルカン ジオールジ (メタ)アタリレートまたは下記一般式(3)で表されるアルカンジオールジグ リシジルエーテルの含有量が 0. 5重量%以下であることを特徴とする。  [0019] The epoxy group-terminated (meth) acrylate in the present invention is an alkane diol di (meth) acrylate represented by the following general formula (2) or an alkane diol diglycidyl ether represented by the following general formula (3). The content of is not more than 0.5% by weight.
[0020] [化 4]
Figure imgf000007_0001
[0020] [Chemical 4]
Figure imgf000007_0001
CH -ノCH-CH l-O— Y— O— CH λ— C ^H— / CH2 Δ ( 3 ) CH -NOCH-CH lO— Y— O— CH λ— C ^ H— / CH 2 Δ (3)
ヽ0 O  ヽ 0 O
(上記の式中、 Yは炭素数 2〜6のアルキレン基を表し、 Rは水素原子またはメチル基 を表す。) (In the above formula, Y represents an alkylene group having 2 to 6 carbon atoms, and R represents a hydrogen atom or a methyl group.)
[0021] 以下、本発明について、 Y力 である 4ーヒドロキシブチルアタリレートモノグリシジル エーテル (4HBAGE)の製造を例として詳細に説明する。  Hereinafter, the present invention will be described in detail by taking as an example the production of 4-hydroxybutyl acrylate monoglycidyl ether (4HBAGE) which is Y force.
[0022] 本発明の 4HBAGEの特徴は、 BDA (前記一般式(2)において Y=4で表される化 合物)又は 14BDDGE (前記一般式(3)にお 、て Υ=4で表される化合物)の含有量 が一定の範囲以下に制限されている点にある。 BD Αの含有量は、 0. 5重量%以下 、好ましくは 0. 3重量%以下であり、 14BDDGEの含有量は、 0. 5重量%以下、好 ましくは 0. 3重量%以下である。上記の含有量を超える場合は本発明の目的を達成 することが出来ない。  The feature of 4HBAGE of the present invention is represented by BDA (a compound represented by Y = 4 in the general formula (2)) or 14BDDGE (a compound represented by Y = 4 in the general formula (3)). Content) is limited to a certain range or less. The content of BD soot is 0.5% by weight or less, preferably 0.3% by weight or less, and the content of 14BDDGE is 0.5% by weight or less, preferably 0.3% by weight or less. . If the content exceeds the above, the object of the present invention cannot be achieved.
[0023] BDAの含有量が本発明で規定する範囲より大き 、場合に最終目的物が目標の物 性を達成することが出来ない理由は次の様に推定される。すなわち、 BDAが多いと 、両末端のアタリレートがポリマー主鎖と反応し、その部分での架橋を妨げ架橋密度 が低下し、その結果、榭脂物性に悪影響を及ぼすと考えられる。  [0023] When the content of BDA is larger than the range specified in the present invention, the reason why the final target product cannot achieve the target physical properties is estimated as follows. That is, if there is a large amount of BDA, it is considered that the attalylate at both ends reacts with the polymer main chain to prevent cross-linking at that portion, resulting in a decrease in the cross-linking density, resulting in adverse effects on the physical properties of the resin.
[0024] また、 14BDDGEの含有量が本発明で規定する範囲より大きい場合に最終目的物 が目標物性を達成することが出来ない理由は次の様に推定される。すなわち、アタリ レート基が存在しないため、ポリマー主鎖と反応せず、重合を妨げ重合度が下がり、 分子量が小さくなる。その結果、同様に榭脂物性に悪影響を及ぼすと考えられる。  [0024] The reason why the final object cannot achieve the target physical properties when the content of 14BDDGE is larger than the range specified in the present invention is estimated as follows. That is, since there is no acrylate group, it does not react with the polymer main chain, hinders polymerization, lowers the degree of polymerization, and decreases the molecular weight. As a result, it is considered that the physical properties of the fats are similarly adversely affected.
[0025] 特に、近年、 4HBAGEは、表面コート用原料として使用が多ぐこの際にはより厳し い物性を求められる。  [0025] In particular, in recent years, 4HBAGE is frequently used as a raw material for surface coating, and in this case, stricter physical properties are required.
[0026] 本発明で採用される、 4HBAGEの製造方法は、主として、エポキシ基を有するィ匕 合物である 14BDMGEの合成反応、同化合物の分離工程、 14BDMGEとアタリロイ ル基を有する化合物である (メタ)アクリル酸エステルとの反応による 4HBAGE合成 反応、同化合物の分離工程力 なる。以下に、 4HBAGEの製造方法について上記 の各工程毎に説明する [0026] The method for producing 4HBAGE employed in the present invention is mainly a synthesis reaction of 14BDMGE, which is an ionic compound having an epoxy group, a separation step of the same compound, and a compound having 14BDMGE and an attalyl group ( 4HBAGE synthesis by reaction with (meth) acrylic acid ester Power of reaction and separation process of the same compound. The following describes the 4HBAGE manufacturing method for each of the above steps.
[0027] (14BDMGEの合成反応)  [0027] (Synthesis of 14BDMGE)
14BDMGEは、公知の方法、例えば特開平 8— 99968号公報に記載されている 方法で合成することが出来る。一般的には、脱ハロゲンィ匕水素剤としてアルカリィ匕合 物を使用し、ジオールィ匕合物とェピノ、ロヒドリンとを直接脱ハロゲン付加反応させる。  14BDMGE can be synthesized by a known method, for example, the method described in JP-A-8-99968. In general, an alkaline compound is used as a dehalogenating hydrogenation agent, and a dioli compound is directly subjected to a dehalogenation addition reaction with epino and lohydrin.
[0028] ここで、ジオール化合物としては、 1級水酸基を 2個有する炭素数 2〜6の α , ω— ジオールであればよぐ具体的には、エチレングリコール、ジエチレングリコール、トリ エチレングリコール、 1, 3 プロパンジオール、 1, 4 ブタンジオール、 1, 5 ペン タンジオール、 1, 6 へキサンジオール、ネオペンチルグリコール等が挙げられる。 通常は 1, 4 ブタンジオールが使用される。以下、ジオール化合物として 14BDを例 に挙げて説明する。また、ェピハロヒドリンとしては、ェピブ口モヒドリン、ェピクロロヒド リン、ェピョ一ドヒドリン、 β—メチルェビブ口モヒドリン、 β—メチルェピクロロヒドリン等 が挙げられる。通常はェピクロロヒドリンが使用される。  [0028] Here, the diol compound may be any α, ω-diol having two primary hydroxyl groups and having 2 to 6 carbon atoms. Specifically, ethylene glycol, diethylene glycol, triethylene glycol, 1, 3 Propanediol, 1,4 butanediol, 1,5 pentanediol, 1,6 hexanediol, neopentyl glycol and the like. Usually 1,4 butanediol is used. Hereinafter, 14BD will be described as an example of the diol compound. In addition, examples of the epihalohydrin include an epib oral mohydrin, an epichlorohydrin, an epichlorohydrin, a β-methyl ebibu oral mohydrin, a β-methyl epichlorohydrin, and the like. Usually, epichlorohydrin is used.
[0029] ここで、反応に供する 14BDとェピハロヒドリンの比率(モル比)は通常 1 : 0. 5〜1: 10、好ましくは1 : 2〜1 : 6の範囲でぁる。通常、 14BDに対するェピハロヒドリンのモ ル比が上記の範囲より大きいと、 14BDDGEの生成が多くなり、逆に、上記の範囲よ り小さいと、未反応 14BDが多量に存在し、何れの場合も目的物である 14BDMGE の収量が低下する恐れがあり、好ましくない。  [0029] Here, the ratio (molar ratio) between 14BD and epihalohydrin to be subjected to the reaction is usually in the range of 1: 0.5 to 1:10, preferably 1: 2 to 1: 6. In general, when the mole ratio of epihalohydrin to 14BD is larger than the above range, 14BDDGE is generated more. On the other hand, when it is smaller than the above range, a large amount of unreacted 14BD is present. This is not preferable because the yield of 14BDMGE may decrease.
[0030] 脱ハロゲン化水素剤としては、通常、アルカリィ匕合物が使用される。弱アルカリの炭 酸ナトリウム等でもよいが、強アルカリが好ましい。具体的には、水酸化ナトリウム、水 酸ィ匕カリウム、水酸化バリウム、水酸ィ匕カルシウム、水酸化リチウム等の水酸ィ匕アル力 リが好ましぐ特に、水酸ィ匕ナトリウムと水酸ィ匕カリウムが好ましい。アルカリィ匕合物は、 通常、水溶液として、好ましくは 10〜60重量%の水溶液として、ジオールジオール 化合物とェピノ、ロヒドリンとの混合物に添加する。脱ハロゲン化水素剤の使用量は、 当量比として、仕込みのジオールの量に対し、通常 0. 9〜1. 5、好ましくは 1. 0〜1 . 2である。  [0030] As the dehydrohalogenating agent, an alkaline compound is usually used. A weak alkali sodium carbonate may be used, but a strong alkali is preferred. Specifically, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide, lithium hydroxide, etc. are preferred, especially sodium hydroxide and water. Acid potassium is preferred. The alkaline compound is usually added to the mixture of the diol diol compound, epino and rhohydrin as an aqueous solution, preferably as an aqueous solution of 10 to 60% by weight. The amount of the dehydrohalogenating agent used is usually 0.9 to 1.5, preferably 1.0 to 1.2, based on the amount of the charged diol, as an equivalent ratio.
[0031] 反応方法としては、ジオールィ匕合物とェピノ、ロヒドリンの混合物に、脱ノヽロゲンィ匕水 素剤を添加する方法が好ましい。これは、反応系内に過剰の脱ハロゲンィ匕水素剤が 存在すると、エポキシ基が開裂分解を起こし易いためである。反応温度は、通常 0〜 100°C、好ましくは 20〜70°Cである。反応温度が低すぎると反応の進行が遅ぐ逆 に高すぎると加水分解などの副反応が起こる恐れがある。反応時間は、通常 2〜20 時間程度である。反応は、通常、反応で生成する水とェピノ、ロヒドリンとの共沸条件 下で行われる。その後、共沸した水とェピハロヒドリンは、冷却し二相に分離されるが 、ェピノ、ロヒドリンは反応系内に戻して水のみを留去してもよい。反応の進行に伴って 、ハロゲン塩が析出するため、撹拌しながら反応を行う。また、反応終了後、通常、水 を添加する等して析出したハロゲン塩を除去する。 [0031] As a reaction method, a mixture of a dioli compound, epino, and rhohydrin is mixed with denominated rogeny water. A method of adding a raw material is preferred. This is because the epoxy group easily undergoes cleavage decomposition when an excessive dehalogenated hydrogenation agent is present in the reaction system. The reaction temperature is generally 0-100 ° C, preferably 20-70 ° C. If the reaction temperature is too low, the reaction progresses slowly. On the other hand, if the reaction temperature is too high, side reactions such as hydrolysis may occur. The reaction time is usually about 2 to 20 hours. The reaction is usually carried out under azeotropic conditions between water produced by the reaction and epino and rhohydrin. Thereafter, the azeotropic water and the epihalohydrin are cooled and separated into two phases, but the epino and lohydrin may be returned to the reaction system to distill off only the water. As the reaction proceeds, the halogen salt precipitates, so the reaction is carried out with stirring. Further, after the reaction is completed, the precipitated halogen salt is usually removed by adding water or the like.
[0032] 反応の完了はガスクロマトグラフィー等で原料の消失を確認することにより確認でき る。残存する原料は、減圧除去法などにより回収される。上記の反応により、下記一 般式(4)で表されるアルカンジオールモノグリシジルエーテル(粗 14BDMGE : 1, 4 ブタンジオールモノグリシジルエーテル)が生成する。  [0032] Completion of the reaction can be confirmed by confirming disappearance of the raw material by gas chromatography or the like. The remaining raw material is recovered by a reduced pressure removal method or the like. The above reaction produces alkanediol monoglycidyl ether (crude 14BDMGE: 1,4 butanediol monoglycidyl ether) represented by the following general formula (4).
[0033] [化 5]
Figure imgf000009_0001
[0033] [Chemical 5]
Figure imgf000009_0001
(上記の式中、 Yは炭素数 2〜6のアルキレン基を表す。) (In the above formula, Y represents an alkylene group having 2 to 6 carbon atoms.)
[0034] (14BDMGEの分離工程)  [0034] (14BDMGE separation process)
上記得られた粗 14BDMGEは、抽出により精製される。すなわち、 14BDMGEの 分離は、不純物の除去を安定的に且つ効率的に行うため、合成反応後液から水存 在下の非水溶性有機溶媒による抽出が好適である。本発明での抽出は、回分式また は連続式の何れでも可能である力 工業的な優位性を考えれば、例えばカールカラ ム式 (住友重機工業 (株)製)による連続抽出が好ましい。  The crude 14BDMGE obtained above is purified by extraction. That is, in the separation of 14BDMGE, extraction with a water-insoluble organic solvent in the presence of water is preferable from the solution after the synthesis reaction in order to stably and efficiently remove impurities. Extraction in the present invention can be performed either batchwise or continuously. Considering industrial advantages, for example, continuous extraction by the Karl column method (Sumitomo Heavy Industries, Ltd.) is preferable.
[0035] 以下にカールカラムによる連続抽出方法を説明する力 目的成分である 14BDMG Eの抽出率を高く保ち、かつ、二種の不純物、 14BD (次工程の合成時に BDAに変 化する)及び 14BDDGEを効率的に除去するため、抽出は二段階に分けて行う。  [0035] The ability to explain the continuous extraction method using a curl column below. Keeping the extraction rate of the target component 14BDMG E high, and two impurities, 14BD (which changes to BDA during the synthesis of the next step) and 14BDDGE The extraction is performed in two stages in order to efficiently remove the.
[0036] (1):第一段目抽出では、水相へ 14BDMGEと 14BDを抽出し、有機溶媒相へ 14 BDDGEを抽出除去する。そして、第二段目抽出では第一段目水相から有機溶媒 相へ 14BDMGEのみを抽出し、 14BDと分離する。ここで、第一段目と第二段目の 目的を逆にすることも可能である。すなわち、(2):第一段目有機相に 14BDMGEも 14BDDGEと共に抽出し、 14BDと分離し、第二段目水相に、 14BDMGEを抽出し 、 14BDDGEと分離する。この際の非水溶性有機溶媒の具体例としては、ベンゼン、 トルエン、キシレン等の芳香族炭化水素類、 N—へキサン、 N—ヘプタン等の鎖状飽 和炭化水素類などの非水溶性有機溶媒が挙げられる。これらの中では、第一段目、 第二段目ともにトルエンが好ましい。 [0036] (1): In the first stage extraction, 14BDMGE and 14BD are extracted into the aqueous phase, and 14 BDDGE is extracted and removed into the organic solvent phase. In the second stage extraction, the organic solvent is extracted from the first stage aqueous phase. Extract only 14BDMGE into the phase and separate from 14BD. Here, it is possible to reverse the purpose of the first stage and the second stage. That is, (2): 14BDMGE is extracted together with 14BDDGE in the first stage organic phase and separated from 14BD, and 14BDMGE is extracted in the second stage aqueous phase and separated from 14BDDGE. Specific examples of the water-insoluble organic solvent at this time include water-insoluble organic solvents such as aromatic hydrocarbons such as benzene, toluene and xylene, and chain saturated hydrocarbons such as N-hexane and N-heptane. A solvent is mentioned. Of these, toluene is preferred for both the first and second stages.
[0037] 以下、上記の(1)の抽出法について詳細に説明する。第一段目は、前出の 14BD MGE合成反応液に、水およびトルエンを添カ卩し抽出を行う。すなわち、カールカラム 式連続抽出においては、水および 14BDMGE含有反応粗液をカラム塔上部から、ト ルェンをカラム塔下部カゝらそれぞれ連続添加する。そして、上相(トルエン相)へ 14B DDGEを抽出除去し、下相(水相)に 14BDMGEと 14BDを抽出する。ここで、トル ェン相へ 14BDMGEも少量抽出される力 水相への 14BDMGEの溶解度を上げる ため、添加する水にメタノール等の溶解度調整剤を加える方法も有効である。  [0037] Hereinafter, the extraction method (1) will be described in detail. In the first stage, water and toluene are added to the 14BD MGE synthesis reaction solution described above for extraction. That is, in the curl column type continuous extraction, water and the 14BDMGE-containing reaction crude liquid are continuously added from the upper part of the column tower, and toluene is continuously added from the lower part of the column tower. 14B DDGE is extracted and removed from the upper phase (toluene phase), and 14BDMGE and 14BD are extracted to the lower phase (aqueous phase). Here, the ability to extract a small amount of 14BDMGE in the toluene phase In order to increase the solubility of 14BDMGE in the aqueous phase, it is also effective to add a solubility regulator such as methanol to the water to be added.
[0038] カラム内の適正温度は、抽出効率および使用する溶剤の沸点と水の凝固点による 制約もある力 通常 10〜60°C程度である。水'メタノール及びトルエンの使用量は次 の通りである。すなわち、水'メタノール混合液の使用量は、 14BDMGEに対して質 量比で 0. 5〜20倍量である。メタノール濃度は、水に対して 0〜60重量%である。メ タノ一ルカこれよりも多いと分離性が悪ィ匕する恐れがある。また、トルエンの使用量は 、 14BDMGEに対して質量比で 1〜20倍量である。トルエンがこれより少ないと 14B DMGEに引きずられる形で 14BDDGEが水(及びメタノール)相に混入し、抽出効 率が低下する。また、トルエンが上記範囲より多いと製造コストの悪ィ匕原因となる。  [0038] The appropriate temperature in the column is a force that is limited by the extraction efficiency, the boiling point of the solvent used, and the freezing point of water. The amounts of water and methanol and toluene used are as follows. That is, the amount of water / methanol mixture used is 0.5 to 20 times the mass ratio of 14BDMGE. The methanol concentration is 0-60% by weight with respect to water. If there is more than this, separability may be impaired. The amount of toluene used is 1 to 20 times the mass ratio of 14BDMGE. If the amount of toluene is less than this, 14BDDGE is mixed with the water (and methanol) phase in the form of being dragged by 14B DMGE, and the extraction efficiency decreases. Moreover, when there is more toluene than the said range, it will cause a bad manufacturing cost.
[0039] 第二段目は、第一段目の水相に、トルエンを添加して抽出を行う。すなわち、第一 段目水相をカラム塔上部から、トルエンをカラム塔下部からそれぞれ連続添加する。 そして、上相(トルエン相)に 14BDMGEを抽出し、下相(水相)へ 14BDを抽出除去 する。トルエンの使用量は、第一段目水相にある 14BDMGEに対して質量比で 1〜 30倍量である。トルエンの使用量がこれより少ないと 14BDに引きずられる形で 14B DMGEが水 (及びメタノール)相に混入し、抽出効率が低下する恐れがある。また、ト ルェンの使用量が上記範囲より多いと製造コストの悪ィ匕原因となる。 [0039] In the second stage, extraction is performed by adding toluene to the aqueous phase of the first stage. That is, the first-stage aqueous phase is continuously added from the top of the column tower, and toluene is continuously added from the bottom of the column tower. 14BDMGE is extracted from the upper phase (toluene phase) and 14BD is extracted and removed from the lower phase (water phase). The amount of toluene used is 1 to 30 times the mass ratio of 14BDMGE in the first stage water phase. If the amount of toluene used is less than this, 14B DMGE may be mixed into the water (and methanol) phase in a form that is dragged by 14BD, which may reduce the extraction efficiency. Also, If the amount of use of Lwen is larger than the above range, it will cause a bad manufacturing cost.
[0040] トルエン相力 の 14BDMGEの取得は、トルエンを減圧留去などの方法により除去 することによって行う。これにより、 14BDDGE及び 14BD含有量が低減された 14B DMGEを得ることが出来る。回収されたトルエンは、再び、抽出除去に使用できる。  [0040] Acquisition of toluene phase 14BDMGE is carried out by removing toluene by a method such as distillation under reduced pressure. Thereby, 14BD DMGE with 14BDDGE and 14BD content reduced can be obtained. The recovered toluene can again be used for extraction removal.
[0041] 14BDDGE、 14BD、 BDA及びそれ以外の不純物含有量を削減する方法として、 一般的には蒸留法が考えられる力 これらの化合物の沸点は、 目的物である 14BD MGE又は 4HBAGEと近接しており、蒸留だけでの分離、いわゆる精留は困難であ る。また、前記の目的物は、熱的に不安定であり精留が困難である。  [0041] As a method of reducing the content of 14BDDGE, 14BD, BDA and other impurities, a force that can be considered as a distillation method is generally used. The boiling point of these compounds is close to the target 14BD MGE or 4HBAGE. Therefore, separation by distillation alone, so-called rectification, is difficult. Moreover, the target product is thermally unstable and difficult to rectify.
[0042] 上記の通り、 4HBAGEの原料となる 14BDMGEを予め抽出で精製することにより 、 BDA及び 14BDDGEの含有量が低減された 4HBAGEを製品として得ることが出 来る。  [0042] As described above, it is possible to obtain 4HBAGE with a reduced content of BDA and 14BDDGE as a product by preliminarily purifying 14BDMGE as a raw material of 4HBAGE by extraction.
[0043] (4HBAGE合成反応)  [0043] (4HBAGE synthesis reaction)
上述の様な抽出により得られた精製 14BDMGEと、(メタ)アクリル酸エステルとを、 エステル交換触媒の存在下でエステル交換反応させ、 目的とする 4HBAGEを生成 させる。(メタ)アクリル酸エステルを予め抽出などの方法で精製することによつても、 B DA及び 14BDDGEの含有量が低減された 4HBAGEを製品として得ることが出来 る。  Purified 14BDMGE obtained by extraction as described above and (meth) acrylic acid ester are transesterified in the presence of a transesterification catalyst to produce the desired 4HBAGE. By purifying (meth) acrylic acid ester in advance by a method such as extraction, 4HBAGE with a reduced content of BDA and 14BDDGE can be obtained as a product.
[0044] ここで、(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチルエステル、(メタ) アクリル酸ェチルエステル、(メタ)アクリル酸ブチルエステル等が挙げられる力 好ま しくはアクリル酸メチルエステルである。  [0044] Here, as the (meth) acrylic acid ester, (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid butyl ester and the like are preferable. is there.
[0045] (メタ)アクリル酸エステルの使用量は、ジオールモノグリシジルエーテルに対するモ ル比として、通常 1. 1〜3倍程度である。反応においては、低級アルコールが生成す る力 平衡反応であるため、生成した低級アルコールを反応系外に留去することによ つて反応を更に進行させることが出来る。反応は、連続式、回分式の何れでもよい。 反応は、溶媒の不存在下に行うことも出来るが、有機溶媒の存在下で行うのが好まし い。本発明においては、少なくとも、次の 2種類 (A)及び (B)の溶媒の存在下に反応 を行うことが好ましい。 [0045] The amount of (meth) acrylic acid ester used is usually about 1.1 to 3 times as a mole ratio to diol monoglycidyl ether. Since the reaction is a force equilibrium reaction in which a lower alcohol is produced, the reaction can be further advanced by distilling the produced lower alcohol out of the reaction system. The reaction may be either a continuous type or a batch type. Although the reaction can be carried out in the absence of a solvent, it is preferably carried out in the presence of an organic solvent. In the present invention, the reaction is preferably carried out in the presence of at least the following two types of solvents (A) and (B).
[0046] (A)副生するアルコールと共沸し得る溶媒であって、その共沸温度が副生するアル コールと (メタ)アクリル酸エステルとの共沸温度より低 、溶媒 (以下、有機溶媒 Aと ヽ う)。 [0046] (A) A solvent that can azeotrope with by-produced alcohol, and the azeotropic temperature of the solvent is a by-product. Solvent lower than the azeotropic temperature of coal and (meth) acrylic acid ester (hereinafter referred to as organic solvent A).
(B)その沸点が上記の共沸温度より高!、溶媒 (以下、有機溶媒 Bと 、う)。  (B) Its boiling point is higher than the above azeotropic temperature !, solvent (hereinafter referred to as organic solvent B).
[0047] 有機溶媒 Aは、反応過程で生成するアルコール (通常低級アルコール)を反応系 外へ留去する溶媒として作用する。そして、上記の共沸温度の条件を満たすことによ り、原料の (メタ)アクリル酸エステルを系外へ出すことなぐ生成するアルコールを系 外に留去することが出来る。  [0047] The organic solvent A acts as a solvent for distilling off alcohol (usually lower alcohol) generated in the reaction process to the outside of the reaction system. By satisfying the above azeotropic temperature condition, the generated alcohol can be distilled out of the system without taking out the raw material (meth) acrylic acid ester.
[0048] 有機溶媒 Bは、上記の共沸温度の条件を満たすことにより、そのまま系内に留まり、 有機溶媒 Aの上記の作用には何ら影響を与えずに反応系の反応温度を上げること ができる溶媒として作用する。その結果、反応を促進し、また、(メタ)アクリル酸エステ ルの重合を抑制するための希釈用の溶媒として機能する。更に、有機溶媒 Bは次ェ 程の抽出溶媒として使用できる。  [0048] By satisfying the above azeotropic temperature condition, the organic solvent B stays in the system as it is, and the reaction temperature of the reaction system can be increased without affecting the above-described action of the organic solvent A. Acts as a possible solvent. As a result, it functions as a solvent for dilution to accelerate the reaction and to suppress the polymerization of (meth) acrylic acid ester. Furthermore, the organic solvent B can be used as the extraction solvent in the following step.
[0049] 上記の様に、有機溶媒 Aと有機溶媒 Bの共存下でエステル交換反応を行うことによ り、原料の (メタ)アクリル酸エステルを系外に出すことなぐ生成するアルコールを有 機溶媒 Aとの共沸で系外に留去しながら反応を進めることが出来、しかも、有機溶媒 Bはそのまま系内に留まり、次工程の抽出溶媒として使える。  [0049] As described above, the transesterification reaction is performed in the presence of the organic solvent A and the organic solvent B, so that the organic alcohol generated without taking the raw material (meth) acrylate ester out of the system is organic. The reaction can proceed while distilling out of the system azeotropically with solvent A, and organic solvent B remains in the system as it is and can be used as an extraction solvent in the next step.
[0050] 有機溶媒 Aとしては、例えば、 n—ペンタン、 n キサン、 n—ヘプタン等の炭化 水素系有機溶媒が挙げられるが、溶媒の扱い易さ及び適切な共沸温度から、特に n —へキサンが好ましい。一方、有機溶媒 Bとしては、例えば、ベンゼン、トルエン、キ シレン等の芳香族系溶媒が挙げられるが、抽出操作およびその後の溶媒除去を考 慮すると、特にトルエンが好ましい。  [0050] Examples of the organic solvent A include hydrocarbon-based organic solvents such as n-pentane, n-xane, and n-heptane. Xane is preferred. On the other hand, examples of the organic solvent B include aromatic solvents such as benzene, toluene and xylene, but toluene is particularly preferable in consideration of extraction operation and subsequent solvent removal.
[0051] 本発明において、溶媒は 3種以上の混合系で使用してもよい。有機溶媒は、反応 の初期からの一括仕込み、逐次添加などの方法により反応系内に導入される。有機 溶媒 Aの使用量は、生成するアルコールとの組成比で決定される力 このアルコール を系外に留去する量よりは多く使用する必要がある。また、有機溶媒 Bの使用量は、 余り多すぎると回収が大変であるため、通常は有機溶媒 Aと同量程度が適切である。  [0051] In the present invention, the solvent may be used in a mixed system of three or more. The organic solvent is introduced into the reaction system by a method such as batch charging from the beginning of the reaction or sequential addition. The amount of organic solvent A to be used is a force determined by the composition ratio with the alcohol to be produced. It is necessary to use more than the amount by which this alcohol is distilled out of the system. In addition, if the amount of organic solvent B used is too large, it will be difficult to recover, so usually the same amount as organic solvent A is appropriate.
[0052] エステル交換触媒としては、チタンアルコラート、有機スズ、アルカリ金属またはアル カリ土類金属の弱酸塩 (炭酸塩、酢酸塩、リン酸塩など)、アルカリ金属アルコキサイ ド等の一般的なエステル交換触媒が使用される。これらの中では、チタンアルコラ一 ト又は有機スズィ匕合物が好ましい。触媒の使用量は、ジオールモノグリシジルエーテ ルに対し、通常 0. 1〜10モル%である。反応温度は、通常 50〜130°C、好ましくは 6 0〜120°Cである。反応温度が低すぎると反応の進行が遅くなり、逆に高すぎるとァク リロイル基の重合が顕著となる恐れがある。また、アルコールの留出温度は、使用す る (メタ)アクリル酸エステルや共沸溶媒の種類により異なるため一概に言えな 、が、 アタリロイル基の重合を抑えることを考慮すると、通常 30〜: L00°Cの範囲である。 [0052] Transesterification catalysts include titanium alcoholates, organotins, alkali metal or alkaline earth metal weak acid salts (carbonates, acetates, phosphates, etc.), alkali metal alcoholics. A common transesterification catalyst such as a catalyst is used. Among these, titanium alcoholate or organic tin compound is preferable. The amount of the catalyst used is usually 0.1 to 10 mol% with respect to the diol monoglycidyl ether. The reaction temperature is usually 50 to 130 ° C, preferably 60 to 120 ° C. If the reaction temperature is too low, the progress of the reaction will be slow, while if it is too high, the polymerization of the acryloyl group may become remarkable. Also, the distillation temperature of alcohol varies depending on the type of (meth) acrylic acid ester and azeotropic solvent used, but it cannot be generally stated. However, in consideration of suppressing polymerization of the allyloyl group, usually 30 to: L00 It is in the range of ° C.
[0053] 上述の反応温度であっても、アタリロイル基の重合を防止するため、重合防止剤を 使用し、更に反応系内に酸素を導入するのが好ましい。  [0053] Even at the reaction temperature described above, it is preferable to use a polymerization inhibitor and further introduce oxygen into the reaction system in order to prevent the polymerization of the allyloyl group.
[0054] 重合防止剤としては、フエノチアジン、 p—フエ-レンジァミン等の芳香族ァミン、ヒド ロキノン、 p—メトキシフエノールなどのフエノール誘導体、ニトロソ化合物、芳香族-ト 口化合物などが挙げられる。これらは 2種以上を併用してもよい。  [0054] Examples of the polymerization inhibitor include aromatic amines such as phenothiazine and p-phenylenediamine, phenol derivatives such as hydroquinone and p-methoxyphenol, nitroso compounds, and aromatic-toxic compounds. Two or more of these may be used in combination.
[0055] 酸素は、反応系が爆発範囲内にならない様に、不活性ガスで希釈して反応系内に 導入するのが好ましい。酸素濃度は、通常 0. 1〜10容量%、好ましくは 1〜5容量% である。  [0055] Oxygen is preferably introduced into the reaction system after being diluted with an inert gas so that the reaction system does not fall within the explosion range. The oxygen concentration is usually 0.1 to 10% by volume, preferably 1 to 5% by volume.
[0056] エステル交換反応が終了したならば、通常、反応混合物に水を加えて触媒を失活 させる。水の添加量は反応混合物に対し 0. 5〜 10 (容量)倍程度が好ましい。また、 水を加えて触媒を失活させると、触媒中のチタンゃスズ等の金属が不溶性化合物を 形成して析出するので、抽出に先立って濾過して除去しておくのが好ましい。次いで 、反応混合物は有機溶媒で抽出し、エポキシ基末端 (メタ)アタリレートである 4HBA GEを含む有機溶媒相を取得する。これを蒸留して有機溶媒を留出させると、 4HBA GE (グリシジル基を有する (メタ)アタリレート)が製品として得られる。この蒸留に際し ても重合防止剤と分子状酸素を併用するのが好ましい。なお、エステル交換反応の 反応混合物中には未反応の (メタ)アクリル酸低級アルキルエステルが残存して ヽる ので、抽出に先立ち予じめ簡単な蒸留により除去しておくのが好ましい。何故ならば 、未反応の (メタ)アクリル酸低級アルキルエステルは、抽出により得た有機溶媒相か ら有機溶媒を留去する際に一緒に留出させることも可能であるが、留出液力 溶媒と (メタ)アクリル酸エステルとを更に分離しなければならず面倒であるからである。 [0057] (4HBAGEの分離工程) [0056] When the transesterification reaction is completed, water is usually added to the reaction mixture to deactivate the catalyst. The amount of water added is preferably about 0.5 to 10 (volume) times the reaction mixture. Further, when water is added to deactivate the catalyst, metals such as titanium and tin in the catalyst form an insoluble compound and precipitate, so it is preferable to filter and remove it prior to extraction. Next, the reaction mixture is extracted with an organic solvent to obtain an organic solvent phase containing 4HBA GE, which is an epoxy group-terminated (meth) acrylate. When this is distilled to distill the organic solvent, 4HBA GE ((meth) acrylate having a glycidyl group) is obtained as a product. In this distillation, it is preferable to use a polymerization inhibitor and molecular oxygen in combination. It should be noted that since unreacted (meth) acrylic acid lower alkyl ester remains in the reaction mixture of the transesterification reaction, it is preferably removed by simple distillation prior to extraction. This is because the unreacted (meth) acrylic acid lower alkyl ester can be distilled together when distilling off the organic solvent from the organic solvent phase obtained by extraction. This is because the solvent and the (meth) acrylic acid ester must be further separated, which is troublesome. [0057] (4HBAGE separation process)
上記生成した 4HBAGEを含む反応液から、通常、未反応の (メタ)アクリル酸エス テルを減圧除去により回収する。回収後の残液を有機溶媒での簡単な抽出により、 4 HBAGEを含む有機溶媒相を得た後、これを蒸留し、有機溶媒を留出させると、 BD A及び 14BDDGEの含有量が低減された 4HBAGEを製品として得ることが出来る。 また、前記の「14BDMGE分離工程」で記載した抽出を「4HBAGE分離工程」で実 施することも可能である。  Usually, unreacted (meth) acrylic acid ester is recovered by removing under reduced pressure from the reaction solution containing 4HBAGE produced above. The organic solvent phase containing 4 HBAGE is obtained by simple extraction of the remaining liquid after recovery with an organic solvent, and then distilled to distill the organic solvent, thereby reducing the contents of BDA and 14BDDGE. 4HBAGE can be obtained as a product. Further, the extraction described in the “14BDMGE separation step” can be performed in the “4HBAGE separation step”.
[0058] 以上の方法で得られた、本発明の 4HBAGEは、自動車用塗料、家電製品、情報 技術関連基材などの用途、特に、これらのトップコートに使用した場合、通常品を使 用した場合に比し、得られる最終製品の物性は格段に向上する。  [0058] The 4HBAGE of the present invention obtained by the above method was used as a normal product when used for automotive coatings, home appliances, information technology-related substrates, and particularly for these top coats. Compared to cases, the physical properties of the final product obtained are significantly improved.
実施例  Example
[0059] 以下、本発明を実施例より更に詳細に説明するが、本発明はその要旨を超えない 限り、以下の実施例に限定されるものではない。  [0059] Hereinafter, the present invention will be described in more detail than examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
[0060] 実施例 1: [0060] Example 1:
4HBAGEの製造について前記の各工程毎に記載する。なお、主成分および各不 純物の含有量の測定は、下記記載条件によりガスクロマトグラフィーで行った。  About manufacture of 4HBAGE, it describes for every said process. The content of the main component and each impurity was measured by gas chromatography under the following conditions.
[0061] [表 1] [0061] [Table 1]
GC 島津 GC— 1 7 0 0 GC Shimadzu GC— 1 7 0 0
キヤビラリ一カラム J &W DB- 1 7 0 1 カラム  Kabililary column J & W DB- 1 7 0 1 column
30 m X 0. 2 5 mm I D  30 m X 0.25 mm I D
温度 5 0°C4分保持、 以降 2 7 0でまで8で7分で昇温 検出器 F I D 2 50 °C  Temperature 5 0 ° C, hold for 4 minutes, then rise to 2 7 0 until 8 in 7 minutes Detector F ID 2 50 ° C
内部標準物質 (ノエルアルコール) · · ' 1 6. 0分 Internal standard (Noel alcohol) · · '1 6.0 minutes
1 4 BD 1 4. 1分 1 4 BD 1 4.1 min
ノ / 1 4 BDMGE · · · · 1 9. 4分  / 1 4 BDMGE · · · 1 9. 4 minutes
Uアノン 3 Λム  U Anon 3 Λ
BDA 2 0. 5分  BDA 2 0.5 minutes
4HBAGE - · · · - 2 3. 0分  4HBAGE-----2 3.0 minutes
14 BDDGE · · · - 24. 7分  14 BDDGE · · ·-24.7 minutes
[0062] (14BDMGE合成反応) 蒸留装置、温度計、撹拌装置を取り付けた 3L四つ口フラスコに 14BD : 370g (4. 1 1モル)、ェピクロルヒドリン: 1500g (16. 21モル)を仕込んだ。撹拌下、加温と減圧 を行いながら、 48重量%NaOH水溶液: 360g (4. 32モル)の滴下を開始した。反応 液温度 65°C、反応圧力 150mmHgにおいて、反応で生成した水とェピクロルヒドリン との共沸が始まった。共沸した水とェピクロルヒドリンは、冷却し二相に分離した。下 相にあるェピクロルヒドリンは、系内に戻しながら、水のみを留去した。その 5時間後、 NaOH水溶液の滴下が終了し、更に、 30分に亘り、加温と減圧を継続した後、反応 を終了した。副生した、 NaClを除去するため、水: 810gを添加し、 30分撹拌し 30分 静置後、水相を取り出した。次に、反応液内に残存するェピクロルヒドリンを減圧除去 法で回収した。この時点において、粗 14BDMGE重量は 540gであり、組成は、主成 分の 1, 4BDMGE含有率: 64. 3重量%、原料の 14BD : 2. 2重量%、副生成物の 1 4BDDGE: 14. 1重量%であった。また、仕込み 14BDに対する 14BDMGEの収率 は 58%、純度 100%換算の重量は 347gであった。 [0062] (14BDMGE synthesis reaction) A 3 L four-necked flask equipped with a distillation apparatus, thermometer, and stirrer was charged with 14BD: 370 g (4.1 1 mol) and epichlorohydrin: 1500 g (16.21 mol). While stirring and heating and depressurization, dropwise addition of a 48 wt% NaOH aqueous solution: 360 g (4.32 mol) was started. At the reaction liquid temperature of 65 ° C and the reaction pressure of 150 mmHg, azeotropy of water produced by the reaction and epichlorohydrin began. Azeotropic water and epichlorohydrin were cooled and separated into two phases. The epichlorohydrin in the lower phase was distilled off only water while returning to the system. After 5 hours, the dropwise addition of the aqueous NaOH solution was completed, and further, heating and decompression were continued for 30 minutes, and then the reaction was completed. In order to remove NaCl produced as a by-product, 810 g of water was added, stirred for 30 minutes, allowed to stand for 30 minutes, and the aqueous phase was taken out. Next, epichlorohydrin remaining in the reaction solution was recovered by a vacuum removal method. At this point, the crude 14BDMGE weight is 540g, and the composition is 1,4BDMGE content of the main component: 64.3% by weight, 14BD of the raw material: 2.2% by weight, 14BDGE of the by-product: 14. 1% by weight. The yield of 14BDMGE relative to 14BD charged was 58%, and the weight in terms of 100% purity was 347 g.
[0063] (14BDMGE分離工程)  [0063] (14BDMGE separation step)
前記の合成反応を 2バッチ繰り返し、得られた粗 14BDMGEの一部分: 1000g (l 4BDMGE643g含有)に対し、水: 1000g、トルエン: 3000gを使用し、連続抽出塔 にて、液液抽出(抽出 1段目)を行い、トルエン相に 14BDDGEと共にェピクロルヒドリ ン由来の副生物を回収し、水相に 14BDMGEと 14BDを回収した。  The above synthesis reaction was repeated 2 batches. A portion of the crude 14BDMGE obtained: 1000g (containing 4BDMGE643g), water: 1000g, toluene: 3000g was used, and liquid-liquid extraction (1 stage of extraction) was performed in a continuous extraction column. ), And by-product derived from epichlorohydrin was recovered together with 14BDDGE in the toluene phase, and 14BDMGE and 14BD were recovered in the aqueous phase.
[0064] 次に、トルエン: 9300gと前記水相を使用し、連続抽出塔にて、液液抽出(抽出 2段 目)を行い、水相に 14BDを回収し、トルエン相に 14BDMGEを回収した。そして、ト ルェン相から、減圧除去法によりトルエンを回収し、 14BDMGE液: 612gを得た。組 成は、主成分の 1, 4BDMGE含有率: 98. 5重量%、不純物の 14BD : 0. 1重量% 以下、 14BDDGE : 0. 1重量%以下であった。なお、抽出精製での 14BDMGE回 収率は 95. 2% (純度換算で 93. 8%)であった。  [0064] Next, using 9300 g of toluene and the aqueous phase, liquid-liquid extraction (extraction second stage) was performed in a continuous extraction tower, 14BD was recovered in the aqueous phase, and 14BDMGE was recovered in the toluene phase. . And toluene was collect | recovered by the reduced pressure removal method from the toluene phase, and 14BDMGE liquid: 612g was obtained. The composition was 1,4BDMGE content of the main component: 98.5% by weight, impurities 14BD: not more than 0.1% by weight, and 14BDDGE: not more than 0.1% by weight. The 14BDMGE recovery rate after extraction and purification was 95.2% (93.8% in terms of purity).
[0065] (4HBAGE合成反応)  [0065] (4HBAGE synthesis reaction)
蒸留装置、温度計、撹拌装置を取り付けた 3L四つ口フラスコに、前記 1, 4BDMG E液: 600g (4. 0モル)、アクリル酸メチルエステル: 516g (6. 0モル)、チタンテトラ— n—ブトキシド:28g、 p—メトキシフエノール: 0. 24g、トルエン: 400g、 n—へキサン: 400gを仕込んだ。撹拌下に昇温を開始し、反応液温度 73〜90°C、留出温度 50〜 64°Cでメタノール Zn—へキサンの共沸留出を行った。また、その間、 n—へキサン 4 00gを連続的に添加した。その後、 8時間反応を行い、反応を終了した。 In a 3 L four-necked flask equipped with a distillation apparatus, thermometer, and stirring apparatus, the above 1,4BDMG E solution: 600 g (4.0 mol), acrylic acid methyl ester: 516 g (6.0 mol), titanium tetra-n —Butoxide: 28 g, p-methoxyphenol: 0.24 g, toluene: 400 g, n-hexane: Charged 400g. The temperature was raised under stirring, and methanol Zn-hexane was azeotropically distilled at a reaction solution temperature of 73 to 90 ° C and a distillation temperature of 50 to 64 ° C. In the meantime, 400 g of n-hexane was continuously added. Thereafter, the reaction was carried out for 8 hours to complete the reaction.
[0066] (4HBAGEの分離工程) [0066] (4HBAGE separation process)
前記の反応液から未反応アクリル酸メチルエステルを減圧除去法で回収した。そし て、残液に、水: 500g、トルエン: lOOOgを加え、 30分間撹拌し 60分静置後、分液を 行った。トルエン層に 4HBAGEを回収し、水相に未反応の 1, 4BDMGEを回収した  Unreacted acrylic acid methyl ester was recovered from the reaction solution by a vacuum removal method. Then, water: 500 g and toluene: lOOOOg were added to the remaining liquid, stirred for 30 minutes and allowed to stand for 60 minutes, followed by liquid separation. 4HBAGE was recovered in the toluene layer, and unreacted 1,4BDMGE was recovered in the aqueous phase.
[0067] 次に、ろ紙を使用した吸引濾過によりトルエン相内の微量固形物を除去した後、減 圧除去法によりトルエンを回収し、目的物である 4HBAGEを得た。その結果、純度 9 9.5重量%の 4HBAGE695gを回収できた。不純物である BDAは 0. 1重量%以下 、 14BDDGEは 0. 1重量%以下であった。 [0067] Next, after removing a trace amount of solids in the toluene phase by suction filtration using filter paper, toluene was recovered by a depressurizing removal method to obtain 4HBAGE as the target product. As a result, 695 g of 4HBAGE having a purity of 99.5% by weight was recovered. Impurity BDA was 0.1 wt% or less, and 14BDDGE was 0.1 wt% or less.
[0068] 比較例 1 :  [0068] Comparative Example 1:
実施例 1と同様の方法で 14BDMGE合成反応後、 NaCl ·ェピクロルヒドリンを除去 し、粗 14BDMGE液を得た。次いで、ウィットマー精留管を装着した蒸留装置で粗 1 4BDMGE¾200g ( 14BDMGE 128. 6g含有)を蒸留した。圧力 2mmHg、塔頂温 度 105°C、ボトム温度 155°Cの条件で、 14BDMGE液 101gを得た。組成は、主成 分 1, 4BDMGE含有率: 94. 8重量%、不純物の 14BD : 2. 0重量%、 14BDDGE : 2. 2重量%であった。なお、蒸留での 14BDMGE回収率は 78. 5% (純度換算で 7 4. 5%)であった。  After 14BDMGE synthesis reaction in the same manner as in Example 1, NaCl · epichlorohydrin was removed to obtain a crude 14BDMGE solution. Next, crude 14BDMGE¾200 g (containing 14BDMGE 128.6 g) was distilled using a distillation apparatus equipped with a Witmer rectification tube. Under the conditions of a pressure of 2 mmHg, a tower top temperature of 105 ° C, and a bottom temperature of 155 ° C, 101 g of 14BDMGE solution was obtained. Composition: main component 1, 4BDMGE content: 94.8% by weight, impurities 14BD: 2.0% by weight, 14BDDGE: 2.2% by weight. The 14BDMGE recovery rate after distillation was 78.5% (74.5% in terms of purity).
[0069] 次に、蒸留により得た 14BDMGE100gを使用し、実施例 1と同様の方法により、 4 HBAGE合成反応とアクリル酸メチル除去を行った後、水: 83g、トルエン: 166gを加 え、 30分間撹拌し 60分静置後、分液を行い、トルエン層に 4HBAGEを回収した。ろ 紙を使用した吸引濾過法により、トルエン相内の微量固形物を除去した後、減圧除 去法によりトルエンを回収し、目的物である 4HBAGEを得た。その結果、純度 94. 9 %の 4HBAGEが 116g回収できた。不純物である BDAは 2. 4重量0 /0、 14BDDGE は 1. 9重量%であった。 Next, using 100 g of 14BDMGE obtained by distillation and performing 4 HBAGE synthesis reaction and methyl acrylate removal by the same method as in Example 1, water: 83 g, toluene: 166 g were added, and 30 After stirring for 60 minutes and allowing to stand for 60 minutes, liquid separation was performed, and 4HBAGE was recovered in the toluene layer. After removing trace solids in the toluene phase by suction filtration using filter paper, toluene was collected by vacuum removal to obtain the target product, 4HBAGE. As a result, 116 g of 4HBAGE having a purity of 94.9% was recovered. BDA (impurity) 2.4 weight 0/0, 14BDDGE was 1.9 wt%.

Claims

請求の範囲 下記一般式(2)で示される化合物または下記一般式(3)で示される化合物の含有 量が 0. 5重量%以下であることを特徴とする下記一般式(1)で示されるエポキシ基 末端 (メタ)アタリレート。 The content of the compound represented by the following general formula (2) or the compound represented by the following general formula (3) is 0.5% by weight or less, and is represented by the following general formula (1) Epoxy group terminal (meth) acrylate.
[化 1]  [Chemical 1]
0  0
II II
CHn=C— C— 0— Y— 0— CH?— CH— CH ( 1 ) CHn = C— C— 0— Y— 0— CH ? — CH— CH (1)
R υ R υ
0 0 0 0
II II 、  II II,
CH2=C— C— 0— Y— 0— C— C=CH2 ( 2 ) CH 2 = C— C— 0— Y— 0— C— C = CH 2 (2)
CH -CH-CH7-0— Y— O— CH — CH— CH2 3 CH -CH-CH 7 -0— Y— O— CH — CH— CH 2 3
ヽ O  ヽ O
(上記の各式中、 Yは炭素数 2〜6のアルキレン基を表し、 Rは水素原子またはメチル 基を表す。 ) (In the above formulas, Y represents an alkylene group having 2 to 6 carbon atoms, and R represents a hydrogen atom or a methyl group.)
[2] 上記一般式(2)で示される化合物および上記一般式(3)で示される化合物の含有 量がそれぞれ 0. 5重量%以下である請求項 1に記載のエポキシ基末端 (メタ)アタリ レート。  [2] The epoxy group-terminated (meth) attaly according to claim 1, wherein the content of the compound represented by the general formula (2) and the compound represented by the general formula (3) is 0.5% by weight or less, respectively. rate.
[3] 抽出工程により精製して得られる請求項 1に記載のエポキシ基末端 (メタ)アタリレ ート。  [3] The epoxy group-terminated (meth) acrylate according to claim 1, obtained by purification by an extraction step.
[4] アタリロイル基を有する化合物とエポキシ基を有する化合物とを反応させて得られる 一般式(1)で示されるエポキシ基末端 (メタ)アタリレートであって、抽出工程により当 該ァクリロイル基を有する化合物および Zまたは当該エポキシ基を有する化合物を 精製した後に反応させて得られる、請求項 1に記載のエポキシ基末端 (メタ)アタリレ ート。  [4] An epoxy group-terminated (meth) arylate represented by the general formula (1) obtained by reacting a compound having an taliloyl group with a compound having an epoxy group, and having the acryloyl group by an extraction step 2. The epoxy group-terminated (meth) acrylate according to claim 1, which is obtained by purifying a compound and Z or a compound having the epoxy group and then reacting them.
[5] アタリロイル基を有する化合物および Zまたはエポキシ基を有する化合物の精製後 における一般式(2)で示される化合物の含有量が 0. 5重量%以下である請求項 4に 記載のエポキシ基末端 (メタ)アタリレート。 [5] The terminal end of the epoxy group according to claim 4, wherein the content of the compound represented by the general formula (2) after purification of the compound having an allyloyl group and the compound having Z or an epoxy group is 0.5% by weight or less. (Meta) Atarirate.
[6] アタリロイル基を有する化合物および Zまたはエポキシ基を有する化合物の精製後 における一般式(3)で示される化合物の含有量が 0. 5重量%以下である請求項 4に 記載のエポキシ基末端 (メタ)アタリレート。 [6] The end of the epoxy group according to claim 4, wherein the content of the compound represented by the general formula (3) after purification of the compound having an allyloyl group and the compound having Z or an epoxy group is 0.5% by weight or less. (Meta) Atarirate.
[7] 上記一般式(1)中、 Yが炭素数 4のアルキレン基である請求項 1に記載のエポキシ 基末端 (メタ)アタリレート。 [7] The epoxy group-terminated (meth) acrylate according to claim 1, wherein Y in the general formula (1) is an alkylene group having 4 carbon atoms.
[8] 表面コート用原料として使用される請求項 1〜7の何れかに記載のエポキシ基末端 [8] The epoxy group terminal according to any one of claims 1 to 7, which is used as a raw material for surface coating.
(メタ)アタリレート。  (Meta) Atarirate.
[9] ジオールィ匕合物とェピノ、ロヒドリンとを反応させて得られる一般式 (4)で示されるァ ルカンジオールモノグリシジルエーテルの製造方法であって、ジオール化合物とェピ ハロヒドリンとを反応させて粗アルカンジオールモノグリシジルエーテルを得た後、当 該粗アルカンジオールモノグリシジルエーテルを抽出により精製することを特徴とす る、下記式 (4)で示されるアルカンジオールモノグリシジルエーテルの製造方法。  [9] A method for producing an alkanediol monoglycidyl ether represented by the general formula (4) obtained by reacting a dioli compound with epino and rhohydrin, comprising reacting a diol compound with an epihalohydrin. A method for producing an alkanediol monoglycidyl ether represented by the following formula (4), wherein after obtaining a crude alkanediol monoglycidyl ether, the crude alkanediol monoglycidyl ether is purified by extraction.
[化 2]
Figure imgf000018_0001
[Chemical 2]
Figure imgf000018_0001
(上記の式中、 Yは炭素数 2〜6のアルキレン基を表す。)  (In the above formula, Y represents an alkylene group having 2 to 6 carbon atoms.)
[10] 抽出が連続抽出である請求項 9に記載の製造方法。 10. The production method according to claim 9, wherein the extraction is continuous extraction.
[11] 抽出が二段階で行われる請求項 9に記載の製造方法。 11. The production method according to claim 9, wherein the extraction is performed in two stages.
[12] 抽出が、アルカンジオールモノグリシジルエーテルとアルカンジオールジグリシジル エーテルとを分離した後、アルカンジオールモノグリシジルエーテルとジオール化合 物とを分離する二段階で行われる請求項 11に記載の製造方法。  12. The production method according to claim 11, wherein the extraction is performed in two steps of separating the alkanediol monoglycidyl ether and the alkanediol diglycidyl ether and then separating the alkanediol monoglycidyl ether and the diol compound.
[13] 前記一般式(1)で示されるエポキシ基末端 (メタ)アタリレートの製造方法であって、  [13] A method for producing an epoxy group-terminated (meth) acrylate having the general formula (1),
(メタ)アクリル酸エステルと一般式(4)で示されるアルカンジオールモノグリシジルェ 一テルとを反応させる方法力 なり、上記のアルカンジオールモノグリシジルエーテ ルとして、ジオールィ匕合物とェピノ、ロヒドリンとを反応させて得られた粗アルカンジォ ールモノグリシジルエーテルを抽出により精製したアル力ンジオールモノグリシジルェ 一テルを使用することを特徴とする、前記一般式(1)で示されるエポキシ基末端 (メタ )アタリレートの製造方法。 A method for reacting (meth) acrylic acid ester with alkanediol monoglycidyl ether represented by the general formula (4). As the above-mentioned alkanediol monoglycidyl ether, diol compound, epino, and rhohydrin are combined. An epoxy group terminal (meth) represented by the above general formula (1) is characterized by using an alkanediol monoglycidyl ether obtained by extracting the crude alkanediol monoglycidyl ether obtained by the reaction. A method for producing attalylate.
[14] 抽出が連続抽出である請求項 13に記載の製造方法。 14. The production method according to claim 13, wherein the extraction is continuous extraction.
[15] 抽出が二段階で行われる請求項 13に記載の製造方法。 15. The production method according to claim 13, wherein the extraction is performed in two stages.
[16] 抽出が、アルカンジオールモノグリシジルエーテルとアルカンジオールジグリシジル エーテルとを分離した後、アルカンジオールモノグリシジルエーテルとジオール化合 物とを分離する二段階で行われる請求項 15に記載の製造方法。  16. The production method according to claim 15, wherein the extraction is performed in two steps of separating the alkanediol monoglycidyl ether and the alkanediol diglycidyl ether and then separating the alkanediol monoglycidyl ether and the diol compound.
[17] 前記一般式(1)で示されるエポキシ基末端 (メタ)アタリレートの製造方法であって、  [17] A method for producing an epoxy group-terminated (meth) acrylate having the general formula (1),
(メタ)アクリル酸エステルと一般式(4)で示されるアルカンジオールモノグリシジルェ 一テルとを反応させる方法力もなり、少なくとも、次の 2種類 (A)及び (B)の溶媒の存 在下に上記の反応を行うことを特徴とする前記一般式(1)で示されるエポキシ基末端 (メタ)アタリレートの製造方法。  It also has the ability to react the (meth) acrylic acid ester with the alkanediol monoglycidyl ester represented by the general formula (4), and at least in the presence of the following two types of solvents (A) and (B) The process for producing an epoxy group-terminated (meth) acrylate represented by the general formula (1), wherein
(A)副生するアルコールと共沸し得る溶媒であって、その共沸温度が副生するアル コールと (メタ)アクリル酸エステルとの共沸温度より低 、溶媒。  (A) A solvent that can be azeotroped with by-produced alcohol, the azeotropic temperature of which is lower than the azeotropic temperature of alcohol and (meth) acrylic acid ester by-produced.
(B)その沸点が上記の共沸温度より高い溶媒。  (B) A solvent whose boiling point is higher than the above azeotropic temperature.
PCT/JP2006/318294 2006-09-14 2006-09-14 Epoxy group-terminated (meth)acrylate and process for producing the same WO2008032389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318294 WO2008032389A1 (en) 2006-09-14 2006-09-14 Epoxy group-terminated (meth)acrylate and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/318294 WO2008032389A1 (en) 2006-09-14 2006-09-14 Epoxy group-terminated (meth)acrylate and process for producing the same

Publications (1)

Publication Number Publication Date
WO2008032389A1 true WO2008032389A1 (en) 2008-03-20

Family

ID=39183462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318294 WO2008032389A1 (en) 2006-09-14 2006-09-14 Epoxy group-terminated (meth)acrylate and process for producing the same

Country Status (1)

Country Link
WO (1) WO2008032389A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168586A1 (en) * 2012-05-11 2013-11-14 日立化成株式会社 Method for producing alkanediol monoglycidyl ether (meth)acrylate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU361169A1 (en) * 1969-02-21 1972-12-07 ALL-UNION,; F> & HTHO-a? IJ (; 'jr> & ^^ & - ШВ' -! BLIOGGNA Authors ~ ^ —M. CL. 07s 69/54 From 07s 67/00
JPH0899968A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Production of (meth)acrylate having epoxy group
JP2003342268A (en) * 2002-05-28 2003-12-03 Nippon Kasei Chem Co Ltd Method for producing epoxy-terminated (meth)acrylate
JP2004043389A (en) * 2002-07-12 2004-02-12 Yokkaichi Chem Co Ltd Method for producing high-purity alpha-hydroxy-omega-glycidyl ether

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU361169A1 (en) * 1969-02-21 1972-12-07 ALL-UNION,; F> & HTHO-a? IJ (; 'jr> & ^^ & - ШВ' -! BLIOGGNA Authors ~ ^ —M. CL. 07s 69/54 From 07s 67/00
JPH0899968A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Production of (meth)acrylate having epoxy group
JP2003342268A (en) * 2002-05-28 2003-12-03 Nippon Kasei Chem Co Ltd Method for producing epoxy-terminated (meth)acrylate
JP2004043389A (en) * 2002-07-12 2004-02-12 Yokkaichi Chem Co Ltd Method for producing high-purity alpha-hydroxy-omega-glycidyl ether

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLADKIKH A.F. ET AL.: "Synthesis of 2-(glycidyloxy)ethyl esters of acrylic and methacrylic acids", ZHURNAL ORGANICHESKOI KHIMII, vol. 11, no. 8, 1975, pages 1616 - 1619, XP003002955 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168586A1 (en) * 2012-05-11 2013-11-14 日立化成株式会社 Method for producing alkanediol monoglycidyl ether (meth)acrylate
JP2013237616A (en) * 2012-05-11 2013-11-28 Hitachi Chemical Co Ltd Method for producing alkanediol monoglycidyl ether (meth)acrylate
US9242949B2 (en) 2012-05-11 2016-01-26 Hitachi Chemical Company, Ltd. Method for producing alkanediol monoglycidyl ether (meth)acrylate

Similar Documents

Publication Publication Date Title
JP3794029B2 (en) Method for producing (meth) acrylate having epoxy group
EP2432758A2 (en) The production of n,n-dialkylaminoethyl (meth)acrylates
JP6043800B2 (en) Process for producing 2-octyl acrylate by direct esterification
EP0163522A2 (en) Stripping of unreacted glycol ethers and acids from an esterification reaction mixture
US6444842B1 (en) Continuous process for the production of carboxylic acid esters of alkylene glycol monoalkyl ethers
JP2003342268A (en) Method for producing epoxy-terminated (meth)acrylate
JP2967252B2 (en) Production method of glycidyl methacrylate
US7411086B2 (en) Process for the production of n-alkylaminoalkyl (meth)acrylates
EP0465853B1 (en) Method for producing 4-hydroxybutyl (meth)acrylate
JP5206736B2 (en) Method for producing glycidyloxybutyl acrylate
WO2008032389A1 (en) Epoxy group-terminated (meth)acrylate and process for producing the same
JPH0570408A (en) Production of 2-(1-hydroxymethyl)acrylic acid alkyl ester
JP2005247810A (en) Epoxy group-terminated (meth)acrylate
JP2004051556A (en) Method for producing oxetane derivative
TWI461402B (en) (Meth) acrylic acid hydroxyalkyl ester
CA2307593C (en) Continuous process for the production of carboxylic acid esters of alkylene glycol monoalkyl ethers
CN104053643B (en) The method of vinylformic acid 2-octyl group ester is prepared by transesterify
JP2005194201A (en) Apparatus and method for producing 4-hydroxybutyl (meth)acrylate and production apparatus therefor
JP4651178B2 (en) Method for producing 2-glycidyloxyethyl (meth) acrylate
JP2010222372A (en) Method for producing glycidyloxybutyl acrylate
JP2004149486A (en) Method for producing oxetane derivative
EP1757577A1 (en) Process for producing fluorinated acrylic ester
JPH07126214A (en) Production of 4-hydroxybutyl acrylate
EP1215192A2 (en) Preparation process of dicarboxylic acid compounds
JP5709083B2 (en) Method for producing epoxy-terminated (meth) acrylate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06798006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06798006

Country of ref document: EP

Kind code of ref document: A1