WO2008031352A1 - Procédé et appareil de récupération d'un effacement anormal survenu dans le lsp d'un réseau optique - Google Patents

Procédé et appareil de récupération d'un effacement anormal survenu dans le lsp d'un réseau optique Download PDF

Info

Publication number
WO2008031352A1
WO2008031352A1 PCT/CN2007/070547 CN2007070547W WO2008031352A1 WO 2008031352 A1 WO2008031352 A1 WO 2008031352A1 CN 2007070547 W CN2007070547 W CN 2007070547W WO 2008031352 A1 WO2008031352 A1 WO 2008031352A1
Authority
WO
WIPO (PCT)
Prior art keywords
lsp
node
cross
connection
error code
Prior art date
Application number
PCT/CN2007/070547
Other languages
English (en)
French (fr)
Inventor
Guoyi Rao
Junzhou Cai
Dong Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN200780000167.6A priority Critical patent/CN101310475B/zh
Priority to AT07785444T priority patent/ATE516639T1/de
Priority to EP07785444A priority patent/EP1921797B1/en
Publication of WO2008031352A1 publication Critical patent/WO2008031352A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to the field of network management, and in particular to an optical network LSP (Label Switched Path)
  • LSP Label Switched Path
  • Network-automatic switched optical network also known as intelligent optical network.
  • ASON adds a control plane to the traditional optical network.
  • the optical network element first obtains the local network element and other resources through link local discovery technology.
  • the connection relationship between the optical network elements is released by the control plane, and the status of other network elements in the network is released.
  • each optical network element has a network topology information describing the network topology.
  • Information includes information such as nodes, links, resources, and so on.
  • the optical network element uses the network topology information to obtain a feasible path by combining certain routing algorithms, and then establishes a cross-connection through the nodes of the signaling protocol driving path until the destination node completes the optical connection LSP.
  • Dynamically established After the network connection is dynamically established, removed, or the link resource changes caused by the fault, the corresponding optical network element needs to release the updated node and link state information to implement re-synchronization of the network topology information.
  • the established LSP may be deleted.
  • the LSP is established according to the original established LSP.
  • the path is controlled by the control plane.
  • the network plane is changed or the resources are changed.
  • the control plane fails to be restored.
  • the original LSP is deleted.
  • the optical network element that fails on the LSP sends a fault message to its upstream and downstream optical network elements.
  • the upstream and downstream optical network elements request the cross controller to perform the intelligent cross-connection of the LSP on the local network element.
  • the LSP is deleted.
  • the LSP is deleted after the first LSP of the LSP deletes the control information of the LSP.
  • the present invention proposes that the optical network LSP is abnormally deleted. Recovery method and device.
  • a recovery method for abnormal deletion of an optical network LSP according to an embodiment of the present invention includes:
  • the faulty node on the LSP checks the cross information of the LSP on the node, determines the error code type corresponding to the abnormal deletion according to the check result, and requests the cross controller of the fault node to the L on the node.
  • the intelligent cross-connection of the SP processes, and sends a fault message carrying the error code type along the LSP.
  • the node that receives the fault message requests the cross controller of the node that receives the fault message to perform the intelligent cross-connection of the LSP on the node according to the error code type carried in the fault message. Processing and deleting control information of the LSP on the node;
  • the first node of the LSP initiates the reconstruction of the LSP according to the type of the error code carried in the fault message.
  • the embodiment of the present invention further provides a recovery method for abnormal deletion of an optical network LSP, including:
  • the faulty node on the LSP checks the cross information of the LSP on the node, determines the error code type corresponding to the abnormal deletion according to the check result, and requests the cross controller of the fault node to the L on the node.
  • the intelligent cross-connection of the SP processes, and sends a fault message carrying the error code type along the LSP.
  • the faulty node performs LSP reestablishment processing according to the operation of initiating LSP reestablishment by the first node of the LSP; [16] the operation of the first node to initiate LSP reestablishment is performed by the first node according to the fault message The reconstruction operation of the LSP initiated by the error code type.
  • the embodiment of the present invention further provides a recovery device for abnormal deletion of an optical network LSP, including:
  • Cross-inspection module used to check the node where it is located on the node where it is located
  • the cross information of the LSP, and the check result of the cross information of the LSP is sent;
  • a fault message sending module configured to receive the check result, determine an error code type corresponding to the abnormal deletion according to the check result, and send a fault message carrying the error code type along the LSP
  • a cross-controller enabling module configured to check, according to the cross-information check module, the check result sent by the module or the fault message received by the node where the node is located, and the LSP on the node where the node is located Intelligent cross-connect for processing
  • the control information deleting module is configured to delete the control information of the LSP on the node where the node is located after the node where the node is located is faulty or the node where the node is located receives the fault message;
  • the LSP re-establishment module is configured to initiate re-establishment of the LSP according to the type of the error code carried in the fault message, where the node is the first node of the LSP.
  • Figure 1 is a schematic diagram of an optical network with a control plane and a network connection
  • FIG. 2 is a flowchart of a method for recovering an abnormal deletion of an optical network LSP according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a recovery apparatus for abnormal deletion of an optical network LSP according to an embodiment of the present invention.
  • FIG. 1 Schematic diagram of optical network and network connection with control plane is shown in Figure 1.
  • the optical network in Figure 1 includes six network elements.
  • each network element includes a control plane and a transmission plane.
  • the NEs are connected by optical links (dotted lines).
  • the control planes of the NEs communicate with each other through control channels (dashed lines). These control channels are logical. There are various ways to implement them, such as SDH/Sonet. (Synchronous Digital
  • the credit byte can be used as a logical control channel.
  • the transport plane entities of the network elements communicate with each other through a transmission link (solid line).
  • An intelligent LSP connected to the A-BEF network element has been established in the network.
  • the control plane has established a normal session with the neighboring node through the control channel, and completes automatic topology discovery and optical link state diffusion, and establishes on each node. Consistent network topology information.
  • the technical solution in the embodiment of the present invention is An error code is added to the fault message, and different error information is distinguished according to the error code.
  • Step 101 The upstream node B of the node E sends a Path message carrying the recovery flag to the node E;
  • Step 102 After receiving the Path message, the node E checks the corresponding LSP cross information on the node according to the recovery flag and the label information carried in the Path message. If the node E does not check the corresponding LSP cross information, If the service of the ABEF network element is lost, you need to delete the intelligent cross-connection and LSP control information of all the nodes in the LSP. Then, go to step 103. If the node E checks the corresponding LSP cross-connection information, it indicates the service of the ABEF network element. No loss, the connection transfer plane established by the service is good, but the control plane fails, step 109 is performed;
  • Step 103 Since the error code is added to the fault message in the embodiment of the present invention, the node E sends a PathErr message indicating that the cross information type error code is deleted to the upstream node B, and the peer also sends a message indicating that the cross information is deleted.
  • the PathTear message of the error code is sent to the downstream node F, and the cross controller is requested to delete the intelligent cross-connection of the LSP on the node, and the node E deletes the control information of the LSP on the node;
  • Step 104 After receiving the PathTear message indicating that the cross information type error code is deleted, the downstream node F checks whether the node is the last node of the LSP, and if it is the last node of the LSP, does not forward the PathTear message, if not The last node of the LSP forwards the PathTear message to its downstream node. The PathTear message is forwarded to the last node of the LSP. Since the node F checks that the node is the last node of the LSP, the PathTear message will not be forwarded.
  • the error code in the PathTear message is found to indicate that the cross-type error code is deleted, the cross-controller is requested to delete the intelligent cross-connection of the LSP on the node, and the node F deletes the control information of the LSP on the node;
  • Step 105 After receiving the PathErr message indicating that the cross-type error code is deleted, the upstream node B checks whether the node is the first node of the LSP. If it is the first node of the LSP, the PathErr message is not forwarded. The first node of the LSP forwards the PathErr message to its upstream node until the PathErr message is forwarded to the first node of the LSP. Since the Node B checks that the node is not the first node of the LSP, the PathEr r message is forwarded to its upstream node A, and the Node B checks that the error code in the PathErr message indicates that the cross is deleted. The information type error code, requesting the cross controller to delete the intelligent cross-connection of the LSP on the node, and the node B deleting the control information of the LSP on the node;
  • Step 106 After receiving the PathErr message indicating that the cross-information type error code is deleted, the node A checks that the node is the first node of the LSP, and does not forward the PathErr message, and the node A checks the PathErr message.
  • the error code is to delete the cross information type error code, request the cross controller to delete the L on the node.
  • the intelligent cross-connection of the SP, the node A deletes the control information of the LSP on the node;
  • Step 107 The first node of the LSP recalculates an LSP path according to the network topology information.
  • Step 108 Establish an intelligent cross-connection by the node on the path of the signaling protocol, until the destination node completes the re-establishment of the LSP and ends;
  • Step 109 Node E checks whether the link status or signaling protocol is faulty. If a fault occurs, the error code in the fault message is an error code indicating degradation, and step 110 is performed, if there is no fault.
  • step 118 is performed
  • Step 110 Since the error code is added to the fault message in the embodiment of the present invention, the node E sends a PathErr message containing the error code indicating the type of the downgrade to the upstream node B, and sends an error code indicating the type of the downgrade to the downstream node F. a PathTear message, and requesting the cross controller to downgrade the intelligent cross-connection of the LSP on the node to a static cross-connection, store the degraded LSP cross-over information in the cross-controller, and the node E deletes the control information of the LSP on the node;
  • Step 111 After receiving the PathTear message indicating the degraded type error code, the downstream node F checks whether the node is the last node of the LSP, and if it is the last node of the LSP, does not forward the PathTear message, if not the LSP The last node forwards the PathTear message to its downstream node. Until the PathTear message is forwarded to the last node of the LSP, the node F does not forward the PathTear message because the node F checks that the node is the last node of the LSP.
  • the error code in the PathTear message is found to be an error code indicating a degraded type, and the cross controller is requested to downgrade the intelligent cross-connection of the LSP on the node to a static cross-connection, and the degraded LSP cross information is saved in the cross controller, the node F Delete the control information of the LSP on the local node.
  • Step 112 After receiving the PathErr message indicating the degraded type error code, the upstream node B checks whether the node is the first node of the LSP. If it is the first node of the LSP, the PathErr message is not forwarded. The first node forwards the PathErr message to its upstream node until the PathErr message is forwarded to the first node of the LSP. Since Node B checks that the node is not the first node of the LSP, the PathErr message is changed.
  • the node B checks that the error code in the PathErr message is an error code indicating the degraded type, and requests the cross controller to downgrade the intelligent cross-connection of the LSP on the node to a static cross-connection, in the cross controller.
  • the degraded LSP cross information is saved, and the node B deletes the control information of the LSP on the node.
  • Step 113 After receiving the PathErr message indicating the degraded type error code, the node A checks that the node is the first node of the LSP, and does not forward the PathErr message, and the node A checks that the error code in the message is Indicates the error code of the degraded type, requests the cross controller to downgrade the intelligent cross-connection of the LSP on the node to a static cross-connection, saves the degraded LSP cross information in the cross controller, and node A deletes the control information of the LSP on the node. ;
  • Step 114 The first node A of the LSP checks whether the LSP has an alarm. If the LSP does not have an alarm, the connection transmission plane established by the service is good, but the control plane fails. Step 115 is performed. If the LS P has an alarm. If the connection transmission plane and the control plane established by the service are both invalid, and the service needs to be re-established, go to step 116;
  • Step 115 The first node A of the LSP carries all the HOP information and the label information of the original LSP path, and performs the LSP reconstruction according to the strict routing manner, and ends;
  • Step 116 The first node of the LSP recalculates an LSP path according to the network topology information.
  • Step 117 The intelligent cross-connection is established by the node on the path driven by the signaling protocol until the destination node completes the re-establishment of the LSP and ends.
  • Step 118 If no steps are performed, the LSP recovery is successful.
  • the LSP is abnormally deleted.
  • the LSP is not deleted. - 117 is handled exactly the same and will not be described here.
  • the process of reconstructing the LSP in this embodiment includes the following specific contents:
  • connection transmission plane established by the service is good and there is no interruption. If the reconstruction is unsuccessful, the control plane failure does not affect the service of the transmission plane, but will be reconstructed.
  • the intelligent cross-connection established during the process is downgraded to a static cross-connect; If an LSP path is newly calculated, the LSP is re-established. If the reconstruction is unsuccessful, the intelligent cross-connection established during the re-establishment is deleted instead of being downgraded to a static cross-connection.
  • LSP re-establishment whether LSP re-establishment is performed according to strict routing mode, or an LSP path is re-calculated for LSP re-establishment. If a static cross-connection is found during the re-establishment process, the request cross-controller will be static. The cross-connect is upgraded to an intelligent cross-connect; if it is found that there is no static cross-connect, the cross-controller is requested to establish an intelligent cross-connect. If the LSP is successfully re-established, delete the old LSP that was saved in the database and save the newly created LSP to the database.
  • an LSP reconstruction timer is set up, and the LSP reconstruction timer is set up, and then the LSP reconstruction is initiated. If the LSP reconstruction fails, the LSP reconstruction controller is started. After the LSP is re-established, the LSP is re-established, and the LSP is re-established until the LSP is successfully re-established.
  • the super-turn time of the LSP reconstruction controller can be a fixed length or a non-fixed length. For example, the first LSP reconstruction timer is 10 ms, and the second LSP reconstruction controller The super-turn time is 20ms, and the LSP re-arrangement is different for each LSP, so that the reconstruction of the LSP can be successful.
  • the LSP re-establishment timer may be used instead, and the LSP re-establishment times may be configured, and then the LSP re-establishment is initiated. If the LSP re-establishment fails, the LSP re-establishment is initiated again. If the number of LSP reestablishments exceeds the number of reestablished LSPs, it is considered that the LSP reestablishment fails, and the LSP re-establishment is not initiated.
  • the first node reports the information about the LSP re-establishment failure to the management plane, which is determined by the management plane. Rebuild or permanently downgrade or completely remove the LSP.
  • the first node After performing LSP re-establishment, the first node recalculates an LSP path for re-establishment. To ensure that the reconstructed path is consistent with the original path, you can recalculate an LSP path in the following manner: Troubleshoot the faulty node or the faulty link. Calculate an LSP path; or, re-calculate an LSP path by excluding the node or link that failed the previous rebuild; or recalculate an LSP path according to the optimal path in the current network regardless of the faulty node or link.
  • the error code in the fault message of the embodiment of the present invention may be configured, for example, the error code 1 indicating the downgrade type represents the PSB/RSB, and the error code 2 indicating the downgrade type indicates that the processing refresh message fails, indicating that the cross information type is deleted.
  • Error code 3 indicates deletion of cross information and the like.
  • an embodiment of the present invention further provides a recovery device for abnormal deletion of an optical network LSP.
  • the device includes a cross information checking module, a fault message sending module, a cross controller enabling module, a control information deleting module, and an LSP reconstruction module;
  • the cross-inspection module is configured to check the LSP cross-over information on the LSP on the faulty node on the LSP, and send the check result to the fault message sending module.
  • the fault message sending module is used by the faulty node on the LSP to determine the error code type corresponding to the abnormal deletion according to the check result of the LSP cross information sent by the cross information check module, and send the error code type along the LSP.
  • the fault message for example, if the faulty node is an intermediate node on the LSP, the fault message sending module sends a fault message with a downgrade or delete cross-type type error code to its upstream and downstream nodes until the first node and the last node of the LSP; If the faulty node is the first node of the LSP, the fault message sending module sends a fault message carrying the error code of the downgrade or delete cross information type to the downstream node; if the faulty node is the end node of the LSP, the fault message sending module sends the fault message to the upstream node. Downgrade or delete the fault message for the cross-information type error code.
  • the cross controller enable module is used by the LSP node to downgrade or delete the intelligent cross connection of the LSP on the node according to the LSP cross information sent by the cross information check module or the fault message sent by the fault message sending module.
  • the control information deletion module is configured to delete the control information of the LSP on the local node after the LSP node fails or receives the fault message sent by the fault message sending module.
  • the LSP re-establishment module is used to initiate the LSP reconstruction according to the error code type. For example, after the first node receives the fault message sent by the fault message sending module, the LSP re-establishment module initiates the LSP according to the error code type carried in the fault message. For example, the LSP reconstruction module initiates the reconstruction of the LSP according to the error code type corresponding to the abnormal deletion determined by the fault message sending module.
  • the LSP reconstruction module includes a cross information saving unit and an alarm checking unit;
  • the cross information storage unit is used by the cross controller enable module to downgrade the intelligent cross connection of the LSP.
  • the alarm check unit is used to check whether the LSP has an alarm on the LSP. If the LSP has an alarm,
  • the first node of the LSP recalculates an LSP and initiates the reestablishment of the LSP. If the LSP does not have an alarm,
  • the first node of the LSP initiates the reconstruction of the LSP according to strict routing.
  • the LSP reconstruction module is a path calculation module, and the path calculation module is used to recalculate an L of the first node of the LSP.
  • the SP path initiates the reconstruction of the LSP.

Description

说明书 光网络 LSP发生异常删除的恢复方法和装置 技术领域
[2] 本发明涉及网络管理领域, 特别涉及光网络 LSP (Label Switched Path
Figure imgf000003_0001
发明背景
Figure imgf000003_0002
Network-自动交换光网络) 也称为智能光网络, 与传统光网络不同, ASON在传 统的光网络上增加了一个控制平面: 光网元首先通过链路局部的发现技术获得 本网元与其它光网元的连接关系, 再通过控制平面发布其节点和链路状态, 并 接收网络中其它网元的状态发布, 最终每个光网元都有一份描述网络精确拓扑 的网络拓扑信息, 网络拓扑信息包括节点、 链路、 资源等信息。 在进行业务的 配置和调度吋, 光网元利用网络拓扑信息, 结合一定的路由算法得到一条可行 的路径, 再通过信令协议驱动路径上的节点建立交叉连接, 直到目的节点完成 光连接 LSP的动态建立。 在网络连接动态建立、 拆除, 或者故障引起链路资源变 化吋, 相应光网元需要及吋发布更新的节点、 链路状态信息, 实现网络拓扑信 息的再同步。
[5] 在 LSP已经建立成功后, LSP经过的任何一个光网元中如果出现异常都有可能 导致已经建立的 LSP被删除; 或者是光网元出现复位重启后, 严格按照原来已经 建立的 LSP路径进行控制平面的恢复, 由于网络拓扑的变化或者资源的变化, 使 得控制平面恢复失败, 从而导致原来建立的 LSP被异常删除。 LSP上出现故障的 光网元会向其上游和下游光网元发送故障消息, 上游和下游光网元收到故障消 息后会请求交叉控制器对本网元上的 LSP的智能交叉连接进行相应的处理, 同吋 删除本网元上的 LSP的控制信息, 当 LSP的首个光网元删除本节点上的 LSP的控 制信息后, LSP被异常删除。
[6] 在实现本发明的过程中, 发明人发现上述现有技术中存在的问题包括: 目前现 有技术中, ASON不能有效地对 LSP的删除区分是正常删除还是异常删除, 也不 能对异常删除的 LSP进行重新恢复。
[7] 发明内容
[8] 为了解决 ASON不能有效地对光连接的删除区分是正常删除还是异常删除, 当 光连接被异常删除吋不能恢复连接和 LSP的控制信息的缺点, 本发明提出了光网 络 LSP发生异常删除的恢复方法和装置。
[9] 本发明实施例提出的一种光网络 LSP发生异常删除的恢复方法包括:
[10] LSP上的故障节点检査本节点上的所述 LSP的交叉信息, 根据检査结果确定异 常删除对应的错误码类型, 请求所述故障节点的交叉控制器对本节点上的所述 L
SP的智能交叉连接进行处理、 沿所述 LSP发送携带有所述错误码类型的故障消息
, 并且删除本节点上的所述 LSP的控制信息;
[11] 接收到所述故障消息的节点根据所述故障消息中携带的所述错误码类型, 请求 所述接收到故障消息的节点的交叉控制器对本节点上的所述 LSP的智能交叉连接 进行处理并且删除本节点上的所述 LSP的控制信息;
[12] 所述 LSP的首节点根据所述故障消息中携带的所述错误码类型, 发起所述 LSP 的重建。
[13] 本发明实施例还提出一种光网络 LSP发生异常删除的恢复方法, 包括:
[14] LSP上的故障节点检査本节点上的所述 LSP的交叉信息, 根据检査结果确定异 常删除对应的错误码类型, 请求所述故障节点的交叉控制器对本节点上的所述 L
SP的智能交叉连接进行处理、 沿所述 LSP发送携带有所述错误码类型的故障消息
, 并且删除本节点上的所述 LSP的控制信息;
[15] 所述故障节点根据所述 LSP的首节点发起 LSP重建的操作进行 LSP重建处理; [16] 所述首节点发起 LSP重建的操作为所述首节点根据所述故障消息中携带的所述 错误码类型发起的所述 LSP的重建操作。
[17] 本发明实施例还提出一种光网络 LSP发生异常删除的恢复装置, 包括:
[18] 交叉信息检査模块, 用于在其所在的节点为故障节点吋, 检査其所在节点上的
LSP的交叉信息, 并发送所述 LSP的交叉信息的检査结果;
[19] 故障消息发送模块, 用于接收所述检査结果, 根据所述检査结果确定异常删除 对应的错误码类型, 沿所述 LSP发送携带有所述错误码类型的故障消息; [20] 交叉控制器使能模块, 用于根据所述交叉信息检査模块发送的所述检査结果或 根据其所在节点接收到的所述故障消息, 对其所在节点上的所述 LSP的智能交叉 连接进行处理;
[21] 控制信息删除模块, 用于在其所在的节点出现故障或其所在节点收到所述故障 消息后, 删除其所在节点上的所述 LSP的控制信息;
[22] LSP重建模块, 用于在其所在节点为所述 LSP的首节点吋, 根据所述故障消息 中携带的所述错误码类型, 发起 LSP的重建。
[23] 釆用本发明实施例所述的技术方案最大可能地保护了业务不中断或者业务中断 后尽可能地使业务恢复, 而且解决了网元复位重启后传送平面交叉连接出现丢 失, 业务不再重新自动恢复的问题。
[24] 附图简要说明
[25] 图 1是带控制平面的光网络及网络连接示意图;
[26] 图 2是本发明实施例的光网络 LSP发生异常删除的恢复方法流程图;
[27] 图 3是本发明实施例的光网络 LSP发生异常删除的恢复装置的结构图。
[28] 实施本发明的方式
[29] 下面结合附图和具体实施例对本发明作进一步说明, 但不作为对本发明的限定
[30] 带控制平面的光网络及网络连接示意图如图 1所示。 图 1中的光网络包括六个网 元
A-F, 每个网元均包括控制平面和传输平面。 网元之间通过光链路 (点划线) 连 接, 网元的控制平面实体间通过控制通道 (虚线) 相互通信, 这些控制通道是 逻辑的, 具体实现上有多种方式, 如 SDH/Sonet (Synchronous Digital
Hierarchy/Synchronous Optical Network
同步数字体系 /同步光网络) 可以利用幵销字节作为逻辑的控制通道。 网元的传 输平面实体间通过传输链路 (实线) 相互通信。 该网络中已经建立了一条连接 A -B-E-F网元的智能 LSP, 控制平面已经通过控制通道与相邻节点建立正常的会话 , 并完成自动拓扑发现和光链路状态扩散, 并在每个节点上建立一致的网络拓 扑信息。 为了区分 LSP是正常删除还是异常删除, 本发明实施例所述技术方案在 故障消息中增加错误码, 根据错误码的不同, 区分不同的错误信息。
[31] 实施例
[32] 参见图 1和图 2, 当网络正常运行吋, 图中节点 E发生复位重启后, 控制平面恢 复失败, 导致连接 A-B-E-F网元业务的智能 LSP被异常删除。 为了恢复被异常删 除的 LSP, 发起 LSP的重建, 其具体步骤如下:
[33] 步骤 101 : 节点 E的上游节点 B发送携带 recovery标志的 Path消息到节点 E;
[34] 步骤 102: 节点 E收到 Path消息后, 根据 Path消息中携带的 recovery标志和标签信 息, 检査本节点上相应的 LSP交叉信息, 如果节点 E没有检査到相应的 LSP交叉 信息, 说明连接 A-B-E-F网元的业务丢失, 需要将 LSP中所有节点的智能交叉连 接和 LSP的控制信息删除, 则执行步骤 103, 如果节点 E检査到了相应的 LSP交叉 信息, 说明连接 A-B-E-F网元的业务没有丢失, 业务建立的连接传送平面是好的 , 但是控制平面失效, 则执行步骤 109;
[35] 步骤 103: 由于本发明实施方式在故障消息中加入了错误码, 所以节点 E发送含 有表示删除交叉信息类型错误码的 PathErr消息到上游节点 B, 同吋也发送含有表 示删除交叉信息的错误码的 PathTear消息到下游节点 F, 并请求交叉控制器删除 本节点上的 LSP的智能交叉连接, 节点 E删除本节点上的 LSP的控制信息;
[36] 步骤 104: 下游节点 F收到含有表示删除交叉信息类型错误码的 PathTear消息后 , 检査本节点是不是 LSP的末节点, 如果是 LSP的末节点, 则不转发 PathTear消 息, 如果不是 LSP的末节点, 则向其下游节点转发 PathTear消息, 一直到 PathTear 消息被转发到 LSP的末节点, 由于节点 F检査到本节点是 LSP的末节点, 将不再 转发 PathTear消息, 节点 F检査到 PathTear消息中的错误码为表示删除交叉信息类 型错误码, 请求交叉控制器删除本节点上的 LSP的智能交叉连接, 节点 F删除本 节点上的 LSP的控制信息;
[37] 步骤 105: 上游节点 B收到含有表示删除交叉信息类型错误码的 PathErr消息后, 检査本节点是不是 LSP的首节点, 如果是 LSP的首节点, 则不转发 PathErr消息, 如果不是 LSP的首节点, 则向其上游节点转发 PathErr消息, 一直到 PathErr消息被 转发到 LSP的首节点。 由于节点 B检査到本节点不是 LSP的首节点, 所以将 PathEr r消息转发给其上游节点 A, 节点 B检査到 PathErr消息中的错误码为表示删除交叉 信息类型错误码, 请求交叉控制器删除本节点上的 LSP的智能交叉连接, 节点 B 删除本节点上的 LSP的控制信息;
[38] 步骤 106: 节点 A收到含有表示删除交叉信息类型错误码的 PathErr消息后, 检 査到本节点是 LSP的首节点, 将不再转发 PathErr消息, 节点 A检査到 PathErr消息 中的错误码为表示删除交叉信息类型错误码, 请求交叉控制器删除本节点上的 L
SP的智能交叉连接, 节点 A删除本节点上的 LSP的控制信息;
[39] 步骤 107: LSP的首节点 A根据网络拓扑信息, 重新计算一条 LSP路径;
[40] 步骤 108: 通过信令协议驱动路径上的节点建立智能交叉连接, 直到目的节点 完成 LSP的重新建立, 并结束;
[41] 步骤 109: 节点 E检査链路状态或信令协议处理是否出现故障, 如果出现故障, 故障消息中的错误码为表示降级的错误码, 并执行步骤 110, 如果没有出现故障
, 则执行步骤 118;
[42] 步骤 110: 由于本发明实施例在故障消息中加入了错误码, 所以节点 E向上游节 点 B发送含有表示降级类型错误码的 PathErr消息, 向下游节点 F发送含有表示降 级类型错误码的 PathTear消息, 并请求交叉控制器将本节点上的 LSP的智能交叉 连接降级为静态交叉连接, 在交叉控制器中保存降级的 LSP交叉信息, 节点 E删 除本节点上的 LSP的控制信息;
[43] 步骤 111 : 下游节点 F收到含有表示降级类型错误码的 PathTear消息后, 检査本 节点是不是 LSP的末节点, 如果是 LSP的末节点, 则不转发 PathTear消息, 如果 不是 LSP的末节点, 则向其下游节点转发 PathTear消息, 一直到 PathTear消息被转 发到 LSP的末节点, 由于节点 F检査到本节点是 LSP的末节点, 所以节点 F不再转 发 PathTear消息, 节点 F检査到 PathTear消息中的错误码为表示降级类型的错误码 , 请求交叉控制器将本节点上的 LSP的智能交叉连接降级为静态交叉连接, 在交 叉控制器中保存降级的 LSP交叉信息, 节点 F删除本节点上的 LSP的控制信息;
[44] 步骤 112: 上游节点 B收到含有表示降级类型错误码的 PathErr消息后, 检査本节 点是不是 LSP的首节点, 如果是 LSP的首节点, 则不转发 PathErr消息, 如果不是 LSP的首节点, 则向其上游节点转发 PathErr消息, 一直到 PathErr消息被转发到 L SP的首节点。 由于节点 B检査到本节点不是 LSP的首节点, 所以将 PathErr消息转 发给其上游节点 A, 节点 B检査到 PathErr消息中的错误码为表示降级类型的错误 码, 请求交叉控制器将本节点上的 LSP的智能交叉连接降级为静态交叉连接, 在 交叉控制器中保存降级的 LSP交叉信息, 节点 B删除本节点上的 LSP的控制信息
[45] 步骤 113: 节点 A收到含有表示降级类型错误码的 PathErr消息后, 检査到本节 点是 LSP的首节点, 将不再转发 PathErr消息, 节点 A检査到消息中的错误码为表 示降级类型的错误码, 请求交叉控制器将本节点上的 LSP的智能交叉连接降级为 静态交叉连接, 在交叉控制器中保存降级的 LSP交叉信息, 节点 A删除本节点上 的 LSP的控制信息;
[46] 步骤 114: LSP的首节点 A检査 LSP是否存在告警, 如果 LSP不存在告警, 说明 业务建立的连接传送平面是好的, 但是控制平面失效, 则执行步骤 115, 如果 LS P存在告警, 说明业务建立的连接传送平面和控制平面都失效, 需要重新建立业 务, 则执行步骤 116;
[47] 步骤 115: LSP的首节点 A携带原来 LSP路径的所有 HOP信息以及标签信息, 按 照严格路由方式进行 LSP的重建, 并结束;
[48] 步骤 116: LSP的首节点 A根据网络拓扑信息, 重新计算一条 LSP路径;
[49] 步骤 117: 通过信令协议驱动路径上的节点建立智能交叉连接, 直到目的节点 完成 LSP的重新建立, 并结束。
[50] 步骤 118: 不执行任何步骤, LSP恢复成功。
[51] 如果节点 E不是因为复位重启, 而是因为 PSB/RSB (Path State Block
路径状态块 /Reservation State Block
预留状态块) 超吋或者处理刷新消息失败, 造成 LSP被异常删除, 由于一般情况 下, 节点 E上的 LSP的交叉信息不会丢失, 所以发起 LSP的重建的处理方法与实 施例中步骤 110 - 117的处理方法完全一样, 这里不再叙述。
[52] 在本实施例中进行 LSP的重建过程包括以下的具体内容:
[53] 在首节点按照严格路由方式进行 LSP的重建吋, 业务建立的连接传送平面是好 的, 并没有中断, 如果重建不成功, 为了控制平面的故障不影响传送平面的业 务, 只是将重建过程中建立的智能交叉连接降级为静态交叉连接; 在首节点重 新计算一条 LSP路径重新建立 LSP吋, 如果重建不成功, 则将重建过程中建立的 智能交叉连接删除, 而不是降级为静态交叉连接。
[54] 在进行 LSP重建吋, 不管是按照严格路由方式进行 LSP的重建, 还是重新计算 一条 LSP路径进行 LSP的重建, 在重建过程中, 如果发现存在静态交叉连接, 则 请求交叉控制器将静态交叉连接升级为智能交叉连接; 如果发现不存在静态交 叉连接, 则请求交叉控制器建立智能交叉连接。 如果 LSP重建成功, 则将原来保 存在数据库中的旧的 LSP进行删除, 将新建立的 LSP保存到数据库中。
[55] 在进行 LSP重建之前, 首先要建立一个 LSP重建定吋器, 并设置 LSP重建定吋器 的超吋吋间, 然后发起 LSP的重建, 如果 LSP重建失败, 则启动 LSP重建定吋器 , 待 LSP重建定吋器超吋后, 再次发起 LSP的重建, 这样重复下去, 一直到 LSP 的重建成功。 LSP重建定吋器的超吋吋间可以是一个固定的吋长, 也可以是非固 定吋长, 例如第一次 LSP重建定吋器的超吋吋间为 10ms, 第二次 LSP重建定吋器 的超吋吋间为 20ms, 每一次 LSP重建定吋器的超吋吋间都不一样, 这样可以保证 LSP的重建获得成功。
[56] 在进行 LSP重建之前, 还可以不釆用建立 LSP重建定吋器, 而釆用配置 LSP重建 次数, 然后发起 LSP重建, 如果 LSP的重建失败, 则再次发起 LSP的重建, 这样 重复下去, 如果 LSP的重建次数超过配置的 LSP的重建次数, 就认为 LSP的重建 失败, 则不再发起 LSP的重建, 首节点将 LSP的重建失败的信息上报给管理平面 , 由管理平面来决定是继续重建或永久降级或彻底删除 LSP。
[57] 在进行 LSP重建吋, 首节点重新计算一条 LSP路径进行重建, 为了保证重建好 的路径与原路径一致, 可以釆取以下方式重新计算一条 LSP路径: 排除故障节点 或者故障链路, 重新计算一条 LSP路径; 或者, 排除上一次重建失败的节点或者 链路, 重新计算一条 LSP路径; 或者不管故障节点、 链路, 按照当前网络中的最 优路径重新计算一条 LSP路径。
[58] 对本发明实施例故障消息中的错误码可以进行配置, 例如表示降级类型的错误 码 1代表 PSB/RSB超吋, 表示降级类型的错误码 2代表处理刷新消息失败, 表示删 除交叉信息类型的错误码 3表示删除交叉信息等。
[59] 参见图 3, 本发明实施例还提供了一种光网络 LSP发生异常删除的恢复装置, 装 置包括交叉信息检査模块、 故障消息发送模块、 交叉控制器使能模块、 控制信 息删除模块、 LSP重建模块;
[60] 交叉信息检査模块用于 LSP上的故障节点检査本节点上的 LSP交叉信息, 并将 检査结果发送给所述故障消息发送模块;
[61] 故障消息发送模块用于 LSP上的故障节点根据交叉信息检査模块发送的 LSP交 叉信息的检査结果, 确定异常删除对应的错误码类型, 并沿 LSP发送携带有该错 误码类型的故障消息, 例如, 如果故障节点为 LSP上的中间节点, 则故障消息发 送模块向其上游和下游节点发送带有降级或删除交叉信息类型错误码的故障消 息直至 LSP的首节点和末节点; 如果故障节点为 LSP的首节点, 则故障消息发送 模块向下游节点发送携带有降级或删除交叉信息类型错误码的故障消息; 如果 故障节点为 LSP末节点, 则故障消息发送模块向上游节点发送携带有降级或删除 交叉信息类型错误码的故障消息。
[62] 交叉控制器使能模块用于 LSP节点根据交叉信息检査模块发送的 LSP交叉信息 或故障消息发送模块发送的故障消息, 对本节点上的 LSP的智能交叉连接进行降 级或删除;
[63] 控制信息删除模块用于 LSP节点出现故障或收到故障消息发送模块发送的故障 消息后, 删除其本节点上的 LSP的控制信息;
[64] LSP重建模块用于 LSP的首节点根据错误码类型发起 LSP的重建; 例如, 首节点 收到故障消息发送模块发送的故障消息后, LSP重建模块根据故障消息携带的错 误码类型发起 LSP的重建; 再例如, LSP重建模块根据故障消息发送模块确定出 的异常删除对应的错误码类型发起 LSP的重建。
[65] LSP重建模块包括交叉信息保存单元和告警检査单元;
[66] 交叉信息保存单元用于交叉控制器使能模块对 LSP的智能交叉连接进行降级后
, 在交叉控制器中保存降级的 LSP交叉信息;
[67] 告警检査单元用于 LSP的首节点检査 LSP是否存在告警, 如果 LSP存在告警, 则
LSP的首节点重新计算一条 LSP路径, 发起 LSP的重建, 如果 LSP不存在告警, 则
LSP的首节点按照严格路由方式发起 LSP的重建。
[68] LSP重建模块为路径计算模块, 路径计算模块用于 LSP的首节点重新计算一条 L SP路径, 发起 LSP的重建。
以上所述的实施例只是本发明较优选的具体实施方式的一种, 本领域的技术人 员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范 围内。

Claims

权利要求书
[1] 1.一种光网络 LSP发生异常删除的恢复方法, 其特征在于, 所述方法包括:
LSP上的故障节点检査本节点上的所述 LSP的交叉信息, 根据检査结果确定 异常删除对应的错误码类型, 请求所述故障节点的交叉控制器对本节点上 的所述 LSP的智能交叉连接进行处理、 沿所述 LSP发送携带有所述错误码类 型的故障消息, 并且删除本节点上的所述 LSP的控制信息; 接收到所述故障消息的节点根据所述故障消息中携带的所述错误码类型, 请求所述接收到故障消息的节点的交叉控制器对本节点上的所述 LSP的智 能交叉连接进行处理并且删除本节点上的所述 LSP的控制信息;
所述 LSP的首节点根据所述故障消息中携带的所述错误码类型, 发起所述 L SP的重建。
[2] 2.如权利要求 1所述的方法, 其特征在于, 所述检査本节点上的所述 LSP的 交叉信息包括: 检査本节点上的所述 LSP的交叉信息是否存在。
[3] 3.如权利要求 1所述的方法, 其特征在于, 所述错误码类型为: 表示 LSP的 智能交叉连接降级为静态交叉连接的降级类型错误码、 或表示删除交叉信 息的删除类型错误码。
[4] 4.如权利要求 1所述的方法, 其特征在于, 所述请求所述故障节点 /所述接收 到故障消息的节点的交叉控制器对本节点上的所述 LSP的智能交叉连接进 行处理的步骤包括:
请求所述故障节点 /所述接收到故障消息的节点的交叉控制器将本节点上的 所述 LSP的智能交叉连接降级为静态交叉连接, 并且在所述交叉控制器中 保存所述 LSP的降级的交叉信息; 或者,
请求所述故障节点 /所述接收到故障消息的节点的交叉控制器删除本节点上 的所述 LSP的智能交叉连接。
[5] 5.如权利要求 1所述的方法, 其特征在于, 所述发起 LSP的重建的步骤包括 所述 LSP的首节点重新计算一条 LSP路径, 并且发起 LSP的重建; 或者, 所述 LSP的首节点按照严格路由方式发起 LSP的重建。
[6] 6.如权利要求 5所述的方法, 其特征在于, 所述 LSP的首节点重新计算一条 L
SP路径的方式包括:
排除所述 LSP上的故障节点或故障链路, 重新计算一条 LSP路径; 或者, 排除重建失败的节点或者链路, 重新计算一条 LSP路径; 或者, 按照当前网络中的最优路径, 重新计算一条 LSP路径。
[7] 7.如权利要求 5所述的方法, 其特征在于, 所述方法还包括:
在所述 LSP的首节点按照严格路由方式发起 LSP的重建且重建不成功的情况 下, 将重建过程中建立的智能交叉连接降级为静态交叉连接; 或者 所述 LSP的首节点重新计算一条 LSP路径, 在所述 LSP的首节点发起 LSP的 重建且重建不成功的情况下, 将重建过程中建立的智能交叉连接删除。
[8] 8.如权利要求 5所述的方法, 其特征在于, 所述发起 LSP的重建的步骤包括 所述 LSP的首节点在检测到所述 LSP存在告警吋, 根据网络拓扑信息重新计 算一条 LSP路径, 并且发起 LSP的重建; 或者,
所述 LSP的首节点在检测到所述 LSP不存在告警吋, 按照严格路由方式发起 LSP的重建。
[9] 9.如权利要求 1或 5所述的方法, 其特征在于, 所述 LSP的重建的步骤包括: 根据预定吋间间隔定吋发起 LSP重建, 直到所述 LSP重建成功; 或者 根据预配置的 LSP重建失败次数发起 LSP重建, 如果所述 LSP的重建失败次 数达到所述预配置的 LSP重建失败次数, 则所述 LSP的重建失败, 所述 LSP 的首节点将所述 LSP的重建失败信息上报管理平面, 由管理平面来决定是 继续重建或永久降级或彻底删除所述 LSP。
[10] 10.如权利要求 1或 5所述的方法, 其特征在于, 在所述 LSP的重建过程中, 如果节点的交叉控制器中存在静态交叉连接, 则节点请求所述交叉控制器 将所述静态交叉连接升级为智能交叉连接, 如果所述交叉控制器不存在静 态交叉连接, 则节点请求所述交叉控制器创建智能交叉连接。
[11] 11.一种光网络 LSP发生异常删除的恢复方法, 其特征在于, 所述方法包括 LSP上的故障节点检査本节点上的所述 LSP的交叉信息, 根据检査结果确定 异常删除对应的错误码类型, 请求所述故障节点的交叉控制器对本节点上 的所述 LSP的智能交叉连接进行处理、 沿所述 LSP发送携带有所述错误码类 型的故障消息, 并且删除本节点上的所述 LSP的控制信息; 所述故障节点根据所述 LSP的首节点发起 LSP重建的操作进行 LSP重建处理 所述首节点发起 LSP重建的操作为所述首节点根据所述故障消息中携带的 所述错误码类型发起的所述 LSP的重建操作。
[12] 12.如权利要求 11所述的方法, 其特征在于, 所述错误码类型为: 表示 LSP 的智能交叉连接降级为静态交叉连接的降级类型错误码、 或表示删除交叉 信息的删除类型错误码。
[13] 13.如权利要求 11所述的方法, 其特征在于, 所述请求所述故障节点的交叉 控制器对本节点上的所述 LSP的智能交叉连接进行处理的步骤包括: 请求所述故障节点的交叉控制器将本节点上的所述 LSP的智能交叉连接降 级为静态交叉连接, 并且在所述交叉控制器中保存所述 LSP的降级的交叉 信息; 或者,
请求所述故障节点的交叉控制器删除本节点上的所述 LSP的智能交叉连接
[14] 14.一种光网络 LSP发生异常删除的恢复装置, 其特征在于, 所述装置包括 交叉信息检査模块, 用于在其所在的节点为故障节点吋, 检査其所在节点 上的 LSP的交叉信息, 并发送所述 LSP的交叉信息的检査结果; 故障消息发送模块, 用于接收所述检査结果, 根据所述检査结果确定异常 删除对应的错误码类型, 沿所述 LSP发送携带有所述错误码类型的故障消 息;
交叉控制器使能模块, 用于根据所述交叉信息检査模块发送的所述检査结 果或根据其所在节点接收到的所述故障消息, 对其所在节点上的所述 LSP 的智能交叉连接进行处理; 控制信息删除模块, 用于在其所在的节点出现故障或其所在节点收到所述 故障消息后, 删除其所在节点上的所述 LSP的控制信息;
LSP重建模块, 用于在其所在节点为所述 LSP的首节点吋, 根据所述故障消 息中携带的所述错误码类型, 发起 LSP的重建。
[15] 15.如权利要求 14所述的装置, 其特征在于, 所述 LSP重建模块包括:
交叉信息保存单元, 用于在其所在节点的交叉控制器使能模块对 LSP的智 能交叉连接进行降级后, 在其所在节点的交叉控制器中保存所述 LSP的降 级的交叉信息;
告警检査单元, 用于在其所在节点为所述 LSP的首节点吋, 检査所述 LSP是 否存在告警, 如果所述 LSP存在告警, 则通知所述 LSP重建模块重新计算一 条 LSP路径并发起 LSP的重建, 如果所述 LSP不存在告警, 则通知所述 LSP 重建模块按照严格路由方式发起 LSP的重建。
PCT/CN2007/070547 2006-09-08 2007-08-23 Procédé et appareil de récupération d'un effacement anormal survenu dans le lsp d'un réseau optique WO2008031352A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780000167.6A CN101310475B (zh) 2006-09-08 2007-08-23 光网络lsp发生异常删除的恢复方法和装置
AT07785444T ATE516639T1 (de) 2006-09-08 2007-08-23 Verfahren und vorrichtung zur wiederherstellung nach einem aussergewöhnlichen löschvorgang in einem lsp (label-switched path) eines optischen netzes
EP07785444A EP1921797B1 (en) 2006-09-08 2007-08-23 Recovery method and apparatus for optical network lsp occuring abnormal delete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610126879.XA CN100438447C (zh) 2006-09-08 2006-09-08 一种光网络lsp发生异常删除的恢复方法和装置
CN200610126879.X 2006-09-08

Publications (1)

Publication Number Publication Date
WO2008031352A1 true WO2008031352A1 (fr) 2008-03-20

Family

ID=37879056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070547 WO2008031352A1 (fr) 2006-09-08 2007-08-23 Procédé et appareil de récupération d'un effacement anormal survenu dans le lsp d'un réseau optique

Country Status (5)

Country Link
EP (1) EP1921797B1 (zh)
CN (2) CN100438447C (zh)
AT (1) ATE516639T1 (zh)
ES (1) ES2366857T3 (zh)
WO (1) WO2008031352A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453385A (zh) 2007-11-30 2009-06-10 华为技术有限公司 一种故障通告的方法及设备
CN101730062A (zh) * 2009-06-11 2010-06-09 中兴通讯股份有限公司 一种非相邻节点间异常处理方法
CN101964927B (zh) * 2009-07-22 2013-09-11 中兴通讯股份有限公司 基于自动交换光网络的标签交换路径的关联方法及装置
CN102136936B (zh) * 2010-11-24 2014-07-09 华为技术有限公司 避免控制平面故障影响转发平面运行的方法、节点及系统
CN102136940B (zh) * 2010-12-31 2013-10-09 华为技术有限公司 一种网络恢复方法和装置
EP2804352B1 (en) * 2012-11-28 2017-07-19 Huawei Technologies Co., Ltd. Method and apparatus for processing residual information
WO2019219203A1 (en) * 2018-05-17 2019-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Tearing down a label switched path through a communications network
CN110149164B (zh) * 2019-04-24 2021-06-11 国网安徽省电力有限公司合肥供电公司 基于ason+sdh复合组网方式的光网络优化方法
CN114490565A (zh) * 2020-10-27 2022-05-13 网联清算有限公司 数据库故障处理方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210705A1 (en) 2002-05-13 2003-11-13 Nabil Seddigh System and method for distributed resource reservation protocol-traffic engineering (RSVP-TE) hitless restart in multi-protocol label switching (MPLS) network
CN1520102A (zh) * 2003-01-22 2004-08-11 华为技术有限公司 一种建立和删除分叉标记交换路径的方法
US20040193724A1 (en) * 2003-03-31 2004-09-30 Dziong Zbigniew M. Sharing restoration path bandwidth in mesh networks
CN1801802A (zh) * 2004-12-31 2006-07-12 华为技术有限公司 通用多协议标签交换路径上节点重启恢复的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145105A1 (en) * 2002-01-30 2003-07-31 Harikishan Desineni Method and apparatus for obtaining information about one or more paths terminating at a subject node for a group of packets
CN1146198C (zh) * 2002-10-15 2004-04-14 华为技术有限公司 控制标签转发路径建立和删除的方法
CN1553663B (zh) * 2003-05-26 2010-04-28 华为技术有限公司 减少软状态刷新的资源预留协议实现方法
JP3991958B2 (ja) * 2003-08-22 2007-10-17 日本電信電話株式会社 マルチキャスト迂回経路設定方法及びラベルスイッチングルータ及びマルチキャスト迂回経路設定プログラム
CN1323518C (zh) * 2003-09-28 2007-06-27 华为技术有限公司 一种路由路径故障修复方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210705A1 (en) 2002-05-13 2003-11-13 Nabil Seddigh System and method for distributed resource reservation protocol-traffic engineering (RSVP-TE) hitless restart in multi-protocol label switching (MPLS) network
CN1520102A (zh) * 2003-01-22 2004-08-11 华为技术有限公司 一种建立和删除分叉标记交换路径的方法
US20040193724A1 (en) * 2003-03-31 2004-09-30 Dziong Zbigniew M. Sharing restoration path bandwidth in mesh networks
CN1801802A (zh) * 2004-12-31 2006-07-12 华为技术有限公司 通用多协议标签交换路径上节点重启恢复的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BERGER L ET AL.: "Generalized Multi-Protocol Label Switching (GMPLS) Signaling; rfc3473.txt", IETF STANDARD, INTERNET ENGINEERING TASK FORCE, IETF, CH, 1 January 2003 (2003-01-01)
SU J. ET AL.: "A Method of Restraining TP Improper Alarms when the LSP Teardown in ASON", OPTICAL COMMUNICATION TECHNOLOGY, no. 7, 2005, pages 49 - 51 *

Also Published As

Publication number Publication date
EP1921797A1 (en) 2008-05-14
EP1921797A4 (en) 2008-12-31
CN101310475A (zh) 2008-11-19
EP1921797B1 (en) 2011-07-13
CN101310475B (zh) 2011-07-27
CN1933423A (zh) 2007-03-21
CN100438447C (zh) 2008-11-26
ATE516639T1 (de) 2011-07-15
ES2366857T3 (es) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2008031352A1 (fr) Procédé et appareil de récupération d'un effacement anormal survenu dans le lsp d'un réseau optique
EP1845656B1 (en) A method for implementing master and backup transmission path
ES2376361T3 (es) Método, sistema y dispositivo para procesamiento de fallos.
JP3972664B2 (ja) パス障害回復方式及び障害復旧後の切戻方式並びにそれらを用いるノード
JP2993444B2 (ja) Atm網におけるコネクション設定および復旧方式
US9007890B2 (en) Restoring aggregated circuits with circuit integrity checks in a hierarchical network
WO2007071189A1 (fr) Procede et dispositif de restauration d'un reseau maille partage
WO2012088967A1 (zh) 一种网络恢复方法和装置
JP5163479B2 (ja) パス切替え方法
WO2008006268A1 (en) Method system and node device for realizing service protection in the automatically switched optical network
WO2009056053A1 (fr) Procédé, dispositif et système de commutateur de capacité de flux à ingénierie de trafic et commutation multiprotocole par étiquette
WO2011057540A1 (zh) 一种环网拓扑信息的更新方法、装置和系统
WO2012065435A1 (zh) 一种传送网中的路径回切方法及装置
WO2011157130A2 (zh) 路径建立方法和装置
WO2009055995A1 (en) Maintaining method for automatic switched optical network system when operation engenders alarm
WO2010003323A1 (zh) 一种链路故障恢复的方法、系统和装置
US7869350B1 (en) Method and apparatus for determining a data communication network repair strategy
EP2704382B1 (en) Method for managing services in a generalized-multi-protocol label switching, GMPLS, controlled network
WO2014101125A1 (zh) 聚合组链路协商方法、装置和系统
US7680028B1 (en) Method and apparatus for restarting RSVP processes in multiple network devices
WO2012088978A1 (zh) 波分网络中建立路径的方法、通信节点和通信系统
WO2017152595A1 (zh) 一种响应网络拓扑变化的方法和装置
KR100349655B1 (ko) 엠피엘에스 망에서 연결 보호 및 복구를 위한 연결 설정 방법 및 그를 이용한 연결 장애 복구 방법
CN112154628B (zh) 拆除经过通信网络的标签交换路径
KR100501320B1 (ko) 다중 프로토콜 레이블 교환 시스템에서의 씨알-엘에스피복구 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000167.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007785444

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2007785444

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE