WO2008028532A1 - Vorrichtung und verfahren zur analyse eines über ein mehrkanalsystem übertragenen messsignals - Google Patents

Vorrichtung und verfahren zur analyse eines über ein mehrkanalsystem übertragenen messsignals Download PDF

Info

Publication number
WO2008028532A1
WO2008028532A1 PCT/EP2007/006102 EP2007006102W WO2008028532A1 WO 2008028532 A1 WO2008028532 A1 WO 2008028532A1 EP 2007006102 W EP2007006102 W EP 2007006102W WO 2008028532 A1 WO2008028532 A1 WO 2008028532A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseband
filter
devices
measurement signal
measuring
Prior art date
Application number
PCT/EP2007/006102
Other languages
English (en)
French (fr)
Inventor
Thomas Kuhwald
Markus Freidhof
Original Assignee
Rohde & Schwarz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde & Schwarz Gmbh & Co. Kg filed Critical Rohde & Schwarz Gmbh & Co. Kg
Priority to US12/440,442 priority Critical patent/US8040125B2/en
Priority to EP07785968A priority patent/EP2060036A1/de
Publication of WO2008028532A1 publication Critical patent/WO2008028532A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0218Circuits therefor
    • G01R13/0254Circuits therefor for triggering, synchronisation

Definitions

  • the invention relates to a device, in particular a multichannel oscilloscope, and to a method for analyzing a measurement signal transmitted via a multi-channel system.
  • a multi-channel system is used to transmit signals to increase the data rate per bandwidth used and to reduce the bit error rate.
  • a multi-channel system can be used, for example, in a wireless communication system which has a transmitting antenna and a plurality of receiving antennas, a so-called single-input multiple-output (SIMO) system, or multiple transmitting antennas and multiple receiving antennas, a so-called multiple-input multiple-output (MIMO).
  • SIMO single-input multiple-output
  • MIMO multiple-input multiple-output
  • DE 101 14 052 C1 discloses a radio transmission method with multiple transmit and receive antennas operating simultaneously in the same frequency band.
  • Disconnect measurement signal at outputs of the multi-channel system simultaneously and process at the same time.
  • a multichannel system comprising a transmitting antenna and receiving antennas that a measuring signal coupled to the one receiving antenna is processed with a time offset from the measuring signal coupled to the other receiving antenna, ie, for example, fed to a scanning device in chronological succession and offset in time is scanned.
  • a time-delayed processing of the coupled out at a plurality of receiving antennas measurement signal limits the measurement speed and leads to an impairment of the analysis result.
  • the invention is based on the object to provide an apparatus and a method for analyzing a transmitted via a multi-channel system measurement signal, whereby the measurement signal for performing the analysis is processed with very little technical effort and with very high speed.
  • the device which is preferably designed as a multi-channel oscilloscope, comprises a plurality of measuring channels, each having a scanning device, in each case a baseband mixing device and in each case a filter device.
  • the apparatus further comprises an analysis device connected to the filter device for measuring signal analysis, for example modulation analysis.
  • the measuring signal is fed to the measuring channels and the scanning devices arranged in these simultaneously and scanned on these simultaneously on all measuring channels.
  • a sampled measurement signal provided by the samplers is fed to the baseband mixer and synchronously mixed into baseband.
  • the sampled measurement signal is fed to the filter devices for the purpose of decimation of the sampled values and for the analysis device connected downstream of the filter devices.
  • the Device and the method according to the invention is faster to carry out, since the sampled measurement signal is provided at all end of the measuring channels at the same time. Furthermore, a particularly high measuring accuracy can be achieved with the method according to the invention. Furthermore, an existing on the meter, in particular a multi-channel oscilloscope, available bandwidth and recording length is effectively utilized. In addition, no hardware is required in addition to the measuring device, since the outputs of the multi-channel system, in particular designed as a MIMO system, can be coupled directly to the measuring channels of the measuring device. In addition, the cost of a multi-channel measuring device compared to cost for only one measuring channel comprehensive, cascaded measuring devices are particularly low.
  • the number of measuring channels preferably corresponds to the number of outputs of the multi-channel system, in particular the number of receiving antennas formed as outputs on the multi-channel system, to which the measuring signal can be coupled out.
  • the baseband mixer devices For synchronous down-mixing of the sampled measuring signal on the measuring channels, the baseband mixer devices preferably operate in phase.
  • the measuring channels each have a further baseband mixing device and in each case a further filter device.
  • the respective filter device is followed by the respective further baseband mixing device, which is preferably followed by the respective further filter device.
  • the respective first baseband mixing device serves for coarse mixing of the sampled signal
  • the respective further baseband mixing device is designed for fine mixing of the sampled signal.
  • a memory device for recording the sampled signal intended for the analysis is connected downstream of the filter devices provided on the measuring channels.
  • the first and / or the further baseband mixer devices as well as the first and / or the further filter devices are expediently designed to be time-calibratable. This is to the first and / or the other
  • Baseband mixer devices and to the first and / or the further filter devices expediently in each case a time delay element connected, which is preferably driven by a common clock.
  • a common clock generator can preferably be connected to the time delay elements connected to the base band mixer devices and to the filter devices as well as to the other base band mixer devices and to the time delay elements connected to the further filter devices.
  • the real part of the baseband signal and the imaginary part of the baseband signal are obtained from the sampled measurement signal at the baseband mixer devices.
  • the baseband mixer devices preferably each have a digital oscillator which advantageously generates a carrier frequency predetermined for the multichannel system for down-mixing the sampled measurement signal.
  • FIG. 1 is a block diagram of an embodiment of a device for analyzing a transmitted via a MIMO system measurement signal
  • FIG. 2 is a more detailed block diagram of the baseband mixing and filtering in FIG. 1.
  • FIG. 2 Corresponding parts are provided in all figures with the same reference numerals.
  • the multi-channel system 4 is a MIMO system (multiple-input multiple-output system) and comprises four transmitting antennas 6, 8, 10, 12 arranged on a measuring object 5 and four receiving antennas 14, 16, 18, 20, via which an analogue , high frequency measurement signal 22 is transmitted wirelessly from the transmit antennas 6, 8, 10, 12 to the receive antennas 14, 16, 18, 20.
  • MIMO system multiple-input multiple-output system
  • the oscilloscope 2 comprises on the input side four measuring channels 24,26,28,30, the number of which coincides with the number of receiving antennas 14,16,18,20 of the multi-channel system 4. Furthermore, the oscilloscope 2 comprises for each measuring channel 24, 26, 28, 30 in each case a scanning device 32, 34, 36, 38, which supplies the analog, high-frequency measuring signal 22 a made available to the oscilloscope 2 via the measuring channels 24, 26, 28, 30 is supplied to the sampling, wherein the sampling takes place in all measuring channels 24,26,28,30 at the same time.
  • the respective scanner 32,34,36,38 represents the sampled
  • Measuring signal 22b as a digital high-frequency signal of one of the respective scanning device 32,34,36,38 in the measuring channel downstream baseband mixer means 40,42,44,46 available, which is arranged in a in Fig. 2 in detail described function analyzer 47 of the oscilloscope 2.
  • the baseband mixer device 40, 42, 44, 46 mixes the sampled measurement signal 22 b into the baseband and provides the sampled measurement signal 22b as a baseband digital signal in a filter device 48, 50, 52, 54 connected downstream of the baseband mixer device 40, 42, 44, 46.
  • the filter means 48,50,52,54 performs a decimation, ie reduction of the samples of the sampled measurement signal 22b and anti-aliasing filtering for bandwidth reduction, by.
  • the respective filter device 48, 50, 52, 54 decimates the number of samples and, for example, decimates 999 out of 1000 samples with simultaneous anti-aliasing filtering.
  • the measuring signal 22 is fed to a storage device 56 arranged downstream of the filter device 48, 50, 52, 54 and arranged in the function analyzer 47 for storing measurement data comprising the measuring signal 22.
  • the analysis device 58 carries out, for example, a modulation analysis which, for example, the EVM (Error Vector Magnitude) and / or the SNR (Signal Noise Ratio) and / or the modulation depth and / or the I / Q errors, such as I / Q offset or I / Q
  • a modulation analysis which, for example, the EVM (Error Vector Magnitude) and / or the SNR (Signal Noise Ratio) and / or the modulation depth and / or the I / Q errors, such as I / Q offset or I / Q
  • the measurement result is supplied via a signal line 60 to an evaluation and / or display device, not shown in FIG.
  • FIG. 2 shows a more detailed block diagram of a function analyzer 62 for processing a measurement signal 22 transmitted via the MIMO system.
  • the function analyzer 62 according to FIG. 2 differs from the function analyzer 47 according to FIG. 1 in the number of this proposed measuring channels and in the number of provided on this baseband mixer devices and filter devices.
  • the function analyzer 62 has three measuring channels 24, 26, 28 having signal lines 64, 66, 68, over which the measuring signal 22 b sampled in the scanning devices, not shown in FIG. 2, which is indicated by an arrow in FIG respective baseband mixer means 40,42,44 is supplied.
  • the measuring signal 22 is fed via two signal lines 70, 72, 74 and 76, 78, 80 connected to the signal line 64, 66, 68 to two mixers 82, 84, 86 and 88, 90, 82 , To downmix the measuring signal 22 of the
  • Interfrequency level in the baseband is the two mixers or digital multipliers 82,84,86 and 88,90,82 one of a digital oscillator 94,96,98, which in the embodiment as a numerically controlled oscillator (numerically controlled
  • Oscillator NCO generated carrier frequency supplied as a mixing frequency via signal lines 100,102,104 and 106,108,110.
  • the baseband real part and the baseband imaginary part are generated in the first baseband mixer device 40, 42, 44.
  • a sinusoidal oscillation is generated by the oscillator 94,96,98 and fed via the signal line 100,102,104 the mixer 82,8,86 for generating the Meßsignalrealteils.
  • the real part or the imaginary part of the measurement signal 22 in the baseband position are provided on the output side via a signal line 112, 114, 116 or via a signal line 118, 120, 122 to the baseband mixer device 40, 42, 44.
  • the measuring signal 22 is now further processed as a complex baseband signal and supplied via the signal lines 112,114,116 and 180,120,122 of the filter means 48,50,52 and for bandwidth reduction for decimation of the number of samples of the measuring signal 22 in order to avoid aliasing.
  • Each filter device 48, 50, 52 is followed on the output side by a further, second baseband mixer device 124, 126, 128, which in the exemplary embodiment corresponds in structure to the first baseband mixer device 40, 42, 44, but in contrast to the first baseband mixer device 40, 42, 44, which serves for the rough mixing, the fine mixture of the measuring signal 22 is used.
  • the further baseband mixer device 124, 126, 128 is again followed by a further, second filter device 130, 132, 134 for the further decimation of the sampled values and for the further bandwidth reduction of the measurement signal 22 on the output side.
  • the further filter device 130, 132, 134 is connected on the output side via signal lines 136, 138, 140 and 142, 144, 146 to the memory device 56 for recording the measuring signal 22.
  • a signal line 148 connects the memory device 56 to the analyzer 58 shown in FIG.
  • the term calibration with the time delay elements and the clocks has the purpose of compensating the differences in the sound duration in the different measurement channels.
  • the Device according to the invention is used at a sampling rate of, for example, 10 GHz, ie measuring signals of up to 5 GHz are sampled at the intermediate frequency level. At these very high frequencies already cause low geometric differences of
  • the baseband mixing device is used
  • Runtime calibration of the measuring channels 24,26,28 set The time delay elements 150,152,154,156 clock 158,160,162,164 preceded such that in the function analyzer 62 in the example each one Clock 158,160,162,164 is provided for clocking for those time delay elements 150,152,154,156 which are connected to the first baseband mixer means 40,42,44, to the first filter means 48,50,52, to the other baseband mixer means 124,126,128, or to the further filter means 130,132,134. Accordingly, corresponding mixers or digital multipliers 201, 202, 203, 205, 208, 208 and corresponding digital oscillators 204, 206, 208 are present in the second baseband mixer devices 124, 126, 128.
  • the invention is not limited to the exemplary embodiments illustrated in the drawing, in particular not to an oscilloscope comprising three or four measuring channels.
  • an oscilloscope comprising three or four measuring channels.
  • only a single clock generator may be present. This is also advantageous because the individual clock generators then do not have to be synchronized with each other. All features described above and shown in the drawing can be combined with each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

Eine Vorrichtung, insbesondere ein Mehrkanal-Oszilloskop (2), zur Analyse zumindest eines über ein Mehrkanal System (4) übertragenen Messsignals (22), mit mehreren Messkanälen (24, 26, 28, 30) umfasst jeweils eine Abtasteinrichtung (32, 34, 36, 38), jeweils eine Basisbandmischereinrichtung (40, 42, 44, 46), jeweils eine Filtereinrichtung (48, 50, 52, 54) und eine Analyseeinrichtung (58). Das Messsignal (22) wird den Messkanälen (24, 26, 28, 30) und den jeweiligen Abtasteinrichtungen (32, 34, 36, 38) zur gleichzeitigen Abtastung zugeführt. Das abgetastete Messsignal (22b) ist den den Abtasteinrichtungen (32, 34, 36, 38) nachgeschalteten Basisbandmischereinrichtungen (40, 42, 44, 46) zur Herabmischung des Messsignals (22) in das Basisband, den den Basisbandmischereinrichtungen (40, 42, 44, 46) nachgeschalteten Filtereinrichtungen (48, 50, 52, 54) zur Dezimation der Abtastwerte des Messsignals (22) im Basisband und der mit den Filtereinrichtungen (48, 50, 52, 54) verbundenen Analyseeinrichtung (58) zur Analyse des Messsignals (22) zugeführt.

Description

Vorrichtung und Verfahren zur Analyse eines über ein MehrkanalSystem übertragenen Messsignals
Die Erfindung bezieht sich auf eine Vorrichtung, insbesondere ein Mehrkanal-Oszilloskop, und auf ein Verfahren zur Analyse eines über ein Mehrkanalsystem übertragenen Messsignals.
In der Nachrichtentechnik wird ein Mehrkanalsystem zur Übertragung von Signalen eingesetzt, um die Datenrate pro genutzter Bandbreite zu erhöhen und die Bitfehlerrate zu reduzieren. Ein Mehrkanalsystem ist beispielsweise in einem drahtlosen Kommunikationssystem einsetzbar, welches über eine Sendeantenne und mehrere Empfangsantennen, ein sogenanntes Single-Input Multiple-Output (SIMO) System, oder über mehrere Sendeantennen und mehrere Empfangsantennen, ein sogenanntes Multiple-Input Multiple- Output (MIMO) System, verfügt. In der DE 101 14 052 Cl ist ein Funkübertragungsverfahren mit multiplen, gleichzeitig im selben Frequenzband arbeitenden Sende- und Empfangsantennen offenbart.
Als Voraussetzung für eine besonders hochwertige und genaue Analyse und/oder Aufzeichnung des über das Mehrkanalsystem übertragenen Messsignals ist das
Messsignal an Ausgängen des Mehrkanalsystems gleichzeitig auszukoppeln und gleichzeitig zu verarbeiten. Dabei ist es an einem Sendeantennen und Empfangsantennen umfassenden Mehrkanalsystem bisher meistens der Fall, dass ein an der einen Empfangsantenne ausgekoppeltes Messsignal zeitversetzt zu dem an der anderen Empfangsantenne ausgekoppelten Messsignal verarbeitet wird, also beispielsweise zeitlich aufeinander folgend einer Abtasteinrichtung zugeführt und zeitversetzt zueinander abgetastet wird. Eine zeitversetzte Verarbeitung des an mehreren Empfangsantennen ausgekoppelten Messsignals schränkt die Messgeschwindigkeit ein und führt zu einer Beeinträchtigung des Analyseergebnisses.
Der Erfindung liegt die Aufgabe zu Grunde, eine Vorrichtung und ein Verfahren zur Analyse eines über ein Mehrkanalsystem übertragenen Messsignals anzugeben, womit das Messsignal zur Durchführung der Analyse mit besonders geringem technischen Aufwand und mit besonders hoher Geschwindigkeit aufbereitet wird.
Bezüglich der Vorrichtung wird die genannte Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Weiterbildungen sind Gegenstand der hierauf rückbezogenen Unteransprüche.
Bezüglich des Verfahrens wird die genannte Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 11. Vorteilhafte Weiterbildungen sind Gegenstand der hierauf rückbezogenen Unteransprüche.
So umfasst die Vorrichtung, welche bevorzugt als Mehrkanal-Oszilloskop ausgeführt ist, mehrere Messkanäle, welche jeweils eine Abtasteinrichtung, jeweils eine Basisbandmischereinrichtung und jeweils eine Filtereinrichtung aufweisen. Dabei sind die jeweilige Filtereinrichtung der jeweiligen Basisbandmischereinrichtung und diese der jeweiligen Abtasteinrichtung nachgeschaltet. Die Vorrichtung umfasst weiter eine mit der Filtereinrichtung verbundene Analyseeinrichtung zur Messsignalanalyse, beispielsweise Modulationsanalyse . Beim erfindungsgemäßen Verfahren wird das Messsignal den Messkanälen und den in diesen angeordneten Abtasteinrichtungen gleichzeitig zugeführt und an diesen auf allen Messkanälen gleichzeitig abgetastet. Ein von den Abtasteinrichtungen zur Verfügung gestelltes, abgetastetes Messsignal wird den Basisbandmischereinrichtungen zugeführt und synchron in ein Basisband herabgemischt. Das abgetastete Messsignal wird zur Dezimierung der Abtastwerte den Filtereinrichtungen und zur Analyse der den Filtereinrichtungen nachgeschalteten Analyseeinrichtung zugeführt.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass die Messsignal- und/oder Modulationsanalyse mittels der erfindungsgemäßen
Vorrichtung und des erfindungsgemäßen Verfahrens schneller durchführbar ist, da das abgetastete Messsignal an allen Messkanälen endseitig zur gleichen Zeit zur Verfügung gestellt wird. Des Weiteren ist mit dem erfindungsgemäßen Verfahren eine besonders hohe Messgenauigkeit erzielbar. Ferner wird eine am Messgerät, insbesondere einem Mehrkanal-Oszilloskop, vorhandene Bandbreite und Aufzeichnungslänge wirkungsvoll ausgenutzt. Zudem ist zusätzlich zum Messgerät keine Hardware erforderlich, da die Ausgänge des insbesondere als MIMO-System ausgeführten Mehrkanalsystems direkt mit den Messkanälen des Messgeräts koppelbar sind. Darüber hinaus sind die Anschaffungskosten für ein mehrere Messkanäle umfassendes Messgerät im Vergleich zu Anschaffungskosten für lediglich jeweils einen Messkanal umfassende, kaskadierte Messgeräte besonders gering.
Die Anzahl des Messkanäle entspricht vorzugsweise der Anzahl von Ausgängen des Mehrkanalsystems, insbesondere der Anzahl der an dem Mehrkanalsystem als Ausgänge ausgebildeten Empfangsantennen, woran das Messsignal auskoppelbar ist.
Zur synchronen Herabmischung des abgetasteten Messsignals auf den Messkanälen arbeiten die Basisbandmischereinrichtungen vorzugsweise phasengleich.
Gemäß vorteilhafter Ausgestaltung weisen die Messkanäle jeweils eine weitere Basisbandmischereinrichtung und jeweils eine weitere Filtereinrichtung auf. Der jeweiligen Filtereinrichtung ist die jeweilige weitere Basisbandmischereinrichtung nachgeschaltet, welcher vorzugsweise die jeweilige weitere Filtereinrichtung nachgeschaltet ist. In zweckmäßiger Weiterbildung dient die jeweilige erste Basisbandmischereinrichtung zur Grobmischung des abgetasteten Signals, wohingegen die jeweilige weitere Basisbandmischereinrichtung zur Feinmischung des abgetasteten Signals ausgebildet ist.
Gemäß vorteilhafter Weiterbildung ist den auf den Messkanälen vorgesehenen Filtereinrichtungen eine Speichereinrichtung zur Aufzeichnung des abgetasteten, für die Analyse bestimmten Signals nachgeschaltet.
Um eine ausreichende Kohärenz der Messkanäle zu erreichen und eine gemeinsame Phasenbeziehung zwischen den Messkanälen herzustellen, sind die ersten und/oder die weiteren Basisbandmischereinrichtungen sowie die ersten und/oder die weiteren Filtereinrichtungen zweckmäßigerweise laufzeitkalibrierbar ausgebildet. Dazu ist an die ersten und/oder die weiteren
Basisbandmischereinrichtungen sowie an die ersten und/oder die weiteren Filtereinrichtungen zweckmäßigerweise jeweils ein Zeitverzögerungsglied angeschlossen, welches vorzugsweise von einem gemeinsamen Taktgeber angesteuert wird.
Dabei kann an den mit den Basisbandmischereinrichtungen und an den mit den Filtereinrichtungen sowie an den mit den weiteren Basisbandmischereinrichtungen und an den mit den weiteren Filtereinrichtungen verbundenen Zeitverzögerungsgliedern vorzugsweise jeweils ein gemeinsamer Taktgeber angeschlossen sein.
In zweckmäßiger Weiterbildung werden an den Basisbandmischereinrichtungen aus dem abgetastetem Messsignal der Realteil des Basisbandsignals und der Imaginärteil des Basisbandsignals gewonnen.
Um das abgetastete Messsignal in das Basisband herabzumischen, weisen die Basisbandmischereinrichtungen vorzugsweise jeweils einen eine zweckmäßigerweise für das Mehrkanalsystem vorgegebene Trägerfrequenz erzeugenden digitalen Oszillator zur Herabmischung des abgetasteten Messsignals auf.
Nachfolgend wird ein Ausfϋhrungsbeispiel der Erfindung anhand einer Zeichnung beispielhaft näher erläutert. Darin zeigen
Fig. 1 ein Prinzipschaltbild eines Ausführungsbeispiels einer Vorrichtung zur Analyse eines über ein MIMO-System übertragenen Messsignals und
Fig. 2 ein detaillierteres Prinzipschaltbild der Basisbandmischung und Filterung in Fig. 1. Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Fig. 1 zeigt ein Prinzipschaltbild einer als Oszilloskop 2 ausgeführten Vorrichtung, welches an ein Mehrkanalsystem 4 angeschlossen ist. Das Mehrkanalsystem 4 ist im Ausführungsbeispiel ein MIMO-System (Multiple-Input Multiple-Output System) und umfasst beispielhaft vier an einem Messobjekt 5 angeordnete Sendeantennen 6,8,10,12 und vier Empfangsantennen 14,16,18,20, worüber ein analoges, hochfrequentes Messsignal 22 drahtlos von den Sendeantennen 6,8,10,12 zu den Empfangsantennen 14,16,18,20 übertragen wird.
Das Oszilloskop 2 umfasst eingangsseitig vier Messkanäle 24,26,28,30, deren Anzahl mit der Anzahl der Empfangsantennen 14,16,18,20 des Mehrkanalsystems 4 übereinstimmt. Des Weiteren umfasst das Oszilloskops 2 für jeden Messkanal 24,26,28,30 jeweils eine Abtasteinrichtung 32,34,36,38, welcher das über die Messkanäle 24,26,28,30 dem Oszilloskops 2 zur Verfügung gestellte analoge, hochfrequente Messsignal 22a zur Abtastung zugeführt wird, wobei die Abtastung in allen Messkanälen 24,26,28,30 zur gleichen Zeit statt findet. Die jeweilige Abtasteinrichtung 32,34,36,38 stellt das abgetastete
Messsignal 22b als ein digitales Hochfrequenzsignal einer der jeweiligen Abtasteinrichtung 32,34,36,38 im Messkanal nachgeschalteten Basisbandmischereinrichtung 40,42,44,46 zur Verfügung, welche in einem in Fig. 2 im Detail beschriebenen Funktionsanalysator 47 des Oszilloskops 2 angeordnet ist.
Die Basisbandmischereinrichtung 40,42,44,46 mischt das abgetastete Messsignal 22b in das Basisband herab und stellt das abgetastete Messsignal 22b als digitales Signal in Basisbandlage einer der Basisbandmischereinrichtung 40,42,44,46 nachgeschalteten Filtereinrichtung 48,50,52,54 zur Verfügung. Die Filtereinrichtung 48,50,52,54 führt eine Dezimation, d. h. Reduzierung der Abtastwerte des abgetasteten Messsignals 22b und eine Anti-Aliasing- Filterung zur Bandbreitenreduzierung, durch. Bei einer vergleichsweise hohen Abtastrate von beispielsweise 10GHz dezimiert die jeweilige Filtereinrichtung 48,50,52,54 die Anzahl der Abtastwerte und dezimiert beispielsweise 999 von 1000 Abtastwerten bei gleichzeitiger Anti-Aliasing- Filterung. Danach wird das Messsignal 22 einer der Filtereinrichtung 48,50,52,54 nachgeschalteten, im Funktionsanalysator 47 angeordneten Speichereinrichtung 56 zur Speicherung von das Messsignal 22 umfassenden Messdaten zugeführt.
Zur Analyse wird das digitale Mehrkanal-Messsignal der Speichereinrichtung 56 wieder entnommen und einer im Oszilloskop 2 z. B. softwareimplementierten
Analyseeinrichtung 58 zugeführt. Die Analyseeinrichtung 58 führt beispielsweise eine Modulationsanalyse durch, welche beispielsweise die EVM (Error Vector Magnitude) und/oder das SNR (Signal Noise Ratio) und/oder die Modulationstiefe und/oder die I/Q-Fehler, wie I/Q-Offset oder I/Q-
Imbalance, untersucht. Das Messergebnis wird über eine Signalleitung 60 einer in Fig. 1 nicht gezeigten Auswerte- und/oder Anzeigeeinrichtung zugeführt.
Fig. 2 zeigt ein detaillierteres Prinzipschaltbild eines Funktionsanalysators 62 zur Verarbeitung eines über das MIMO-System übertragenen Messsignals 22. Der Funktionsanalysator 62 gemäß Fig. 2 unterscheidet sich vom Funktionsanalysators 47 gemäß Fig. 1 in der Anzahl der an diesem vorgesehenen Messkanäle sowie in der Anzahl der an diesem vorgesehenen Basisbandmischereinrichtungen und Filtereinrichtungen.
Der Funktionsanalysator 62 weist im dargestellten Beispiel drei Messkanäle 24,26,28 mit Signalleitungen 64,66,68 auf, worüber das in den in Fig. 2 nicht gezeigten Abtasteinrichtungen abgetastete Messsignal 22b, welches in Fig. 2 mit einem Pfeil gekennzeichnet ist, der jeweiligen Basisbandmischereinrichtung 40,42,44 zugeführt wird. In der Basisbandmischereinrichtung 40,42,44 wird das Messsignal 22 über zwei mit der Signalleitung 64,66,68 verbundene Signalleitungen 70,72,74 und 76,78,80 jeweils zwei Mischern 82,84,86 und 88,90,82 zugeführt. Zur Herabmischung des Messsignals 22 von der
Zwischenfrequenzebene in das Basisband wird den jeweils zwei Mischern bzw. digitalen Multiplikatoren 82,84,86 und 88,90,82 eine von einem digitalen Oszillator 94,96,98, welcher im Ausführungsbeispiel als numerisch kontrollierter Oszillator (numerically controlled
Oszillator NCO) ausgeführt ist, erzeugte Trägerfrequenz als Mischfrequenz über Signalleitungen 100,102,104 und 106,108,110 zugeführt.
Dabei wird in der ersten Basisbandmischereinrichtung 40,42,44 der Basisband-Realteil und der Basisband- Imaginärteil erzeugt. Dazu wird vom Oszillator 94,96,98 eine Sinusschwingung erzeugt und über die Signalleitung 100,102,104 dem Mischer 82,8,86 zur Erzeugung des Messsignalrealteils zugeführt. Zur Erzeugung des
Messsignalimaginärteils gibt der Oszillator 94,96,98 über die Signalleitung 106,108,110 eine zur Sinusschwingung für den Mischer 82,84,86 90°-phasenverschobene Cosinusschwingung an den Mischer 88,90,92 ab. Der Realteil bzw. der Imaginärteil des Messsignals 22 in Basisbandlage werden über eine Signalleitung 112,114,116 bzw. über eine Signalleitung 118,120,122 an der Basisbandmischereinrichtung 40,42,44 ausgangsseitig zur Verfügung gestellt. Das Messsignal 22 wird nunmehr als komplexes Basisband-Signal weiterverarbeitet und über die Signalleitungen 112,114,116 und 180,120,122 der Filtereinrichtung 48,50,52 und zur Bandbreitenreduzierung zur Dezimierung der Anzahl der Abtastwerte des Messsignals 22 zwecks Vermeidung von Aliasing zugeführt.
Jeder Filtereinrichtung 48,50,52 ist ausgangsseitig eine weitere, zweite Basisbandmischereinrichtung 124,126,128 nachgeschaltet, welche im Ausführungsbeispiel vom Aufbau mit der ersten Basisbandmischereinrichtung 40,42,44 übereinstimmt, aber im Gegensatz zur ersten Basisbandmischereinrichtung 40,42,44, die der Grobmischung dient, der Feinmischung des Messsignals 22 dient. Der weiteren Basisbandmischereinrichtung 124,126,128 ist ausgangsseitig wiederum eine weitere, zweite Filtereinrichtung 130,132,134 zur weiteren Dezimation der Abtastwerte und zur weiteren Bandbreitenreduzierung des Messsignals 22 nachgeschaltet. Die weitere Filtereinrichtung 130,132,134 ist ausgangsseitig über Signalleitungen 136,138,140 und 142,144,146 mit der Speichereinrichtung 56 zur Aufzeichnung des Messsignals 22 verbunden. Eine Signalleitung 148 verbindet die Speichereinrichtung 56 mit der in Fig. 1 gezeigten Analyseeinrichtung 58.
Die Laufzeitkalibrierung mit den Zeitverzögerungsgliedern und den Taktgebern hat den Sinn, die Lautzeitunterschiede in den unterschiedlichen Messkanälen auszugleichen. Die erfindungsgemäße Vorrichtung wird bei einer Abtastrate von beispielsweise 10 GHz eingesetzt, d. h. es werden auf der Zwischenfrequenzebene Messsignale mit bis zu 5 GHz abgetastet. Bei diesen sehr hohen Frequenzen bedingen bereits geringe geometrische Unterschiede der
Signalleitungen in den einzelnen Messkanälen relativ große Phasenunterschiede. Es ist daher davon auszugehen, dass die Abtastung in den einzelnen Abtasteinrichtungen (Analog/Digital-Wandlern) 32 bis 38 in den einzelnen Messkanälen nicht in der exakt gleichen Phasenlage des Messsignals erfolgt. Dies muss bei der nachfolgenden digitalen Verarbeitung ausgeglichen werden, indem die Phasenlage der digitalen Oszillatoren 94,96,98 bzw. 204,206 und 208 bezüglich der Phaselage der von diesem generierten digitalen Sinus- bzw. Cosinussignale entsprechend justiert wird. Entsprechend muss der die Filter 48,50,52 bzw. 130,132,134 steuernde Takt entsprechend vorgehalten bzw. nachgehalten werden, so dass der Zeitpunkt der dortigen Verarbeitung der in diesem Messkanal entsprechend vorlaufenden bzw. nachlaufenden Abtastung exakt entspricht.
Um das in den Abtasteinrichtungen gleichzeitig abgetastete Messsignal 22 auf den Messkanälen 24,26,28 kohärent zu verarbeiten, werden die Basisbandmischereinrichtung
40,42,44, die Filtereinrichtung 48,50,52 sowie die weitere Basisbandmischereinrichtung 124,126,128 und die weitere Filtereinrichtung 130,132,134 im schematisch dargestellten Ausführungsbeispiel von jeweils einem Zeitverzögerungsglied 150,152,154,156 zur
Laufzeitenkalibrierung der Messkanäle 24,26,28 eingestellt. Den Zeitverzögerungsgliedern 150,152,154,156 sind Taktgeber 158,160,162,164 derart vorgeschaltet, dass im Funktionsanalysator 62 im Beispiel jeweils ein Taktgeber 158,160,162,164 zur Taktvorgabe für diejenigen Zeitverzögerungsglieder 150,152,154,156 vorgesehen ist, welche an den ersten Basisbandmischereinrichtungen 40,42,44, an den ersten Filtereinrichtungen 48,50,52, an den weiteren Basisbandmischereinrichtungen 124,126,128, oder an den weiteren Filtereinrichtungen 130,132,134 angeschlossen sind. Entsprechend sind bei den zweiten Basisbandmischereinrichtungen 124,126,128 entsprechende Mischer bzw. digitale Multiplikatoren 201,202,203,205,207,208 und entsprechende digitale Oszillatoren 204,206,208 vorhanden.
Die Erfindung ist nicht auf die in der Zeichnung dargestellten Ausführungsbeispiele, insbesondere nicht auf ein drei oder vier Messkanäle umfassendes Oszilloskop, beschränkt. Natürlich kann alternativ auch nur ein einziger Taktgenerator vorhanden sein. Dies ist auch vorteilhaft, weil die einzelnen Taktgeneratoren dann nicht aufeinander synchronisiert werden müssen. Alle vorstehend beschriebenen und in der Zeichnung dargestellten Merkmale sind beliebig miteinander kombinierbar.

Claims

Ansprüche
1. Vorrichtung, insbesondere ein Mehrkanal-Oszilloskop (2), zur Analyse eines über ein Mehrkanalsystem (4) übertragenen Messsignals (22), mit mehreren Messkanälen (24,26,28,30) umfassend jeweils eine Abtasteinrichtung (32,34,36,38), jeweils eine erste Basisbandmischereinrichtung (40,42,44,46), jeweils eine erste Filtereinrichtung (48,50,52,54), der mit einer Analyseeinrichtung (58), wobei das Messsignal (22) den jeweiligen Abtasteinrichtungen (32,34,36,38) der Messkanäle (24,26,28,30) zur gleichzeitigen Abtastung zugeführt ist, und wobei das abgetastete Messsignal (22b) den den Abtasteinrichtungen (32,34,36,38) nachgeschalteten ersten Basisbandmischereinrichtungen (40,42,44,46) zur Herabmischung des Messsignals (22) in ein Basisband, den den ersten Basisbandmischereinrichtungen (40,42,44,46) nachgeschalteten ersten Filtereinrichtungen (48,50,52,54) zur Dezimation der Abtastwerte des abgetasteten Messsignals (22) im Basisband und der mit den Filtereinrichtungen (48,50,52,54) verbundenen Analyseeinrichtung (58) zur Analyse des Messsignals (22) zugeführt ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messkanäle (24,26,28,30) jeweils eine der ersten Filtereinrichtung (48,50,52) nachgeschaltete, zweite Basisbandmischereinrichtung (124,126,128) und jeweils eine zweite Filtereinrichtung (130,132,134), welche der jeweiligen zweiten Basisbandmischereinrichtung (124,126,128) nachgeschaltet ist, umfassen.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass den ersten Filtereinrichtungen (48,50,52,54) bzw. den zweiten Filtereinrichtungen (130,132,134) ein Speichereinrichtung (56) zur Speicherung des Messsignals (22) nachgeschaltet ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die ersten Basisbandmischereinrichtungen
(40,42,44,46) und/oder die ersten Filtereinrichtungen (48,50,52,54) bzw. die zweiten Basisbandmischereinrichtungen (124,126,128) und/oder die zweiten Filtereinrichtungen (130,132,134) zur Synchronisation der Messkanäle (24,26,28,30) laufzeitenkalibrierbar ausgebildet sind.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass an die ersten Basisbandmischereinrichtung (40,42,44,46), an die ersten Filtereinrichtung (48,50,52,54) und/oder an die zweiten
Basisbandmischereinrichtung (124,126,128) und an die zweiten Filtereinrichtung (130,132,134) jeweils ein Zeitverzögerungsglied (150,152,154,156) zur Laufzeitenkalibrierung angeschlossen ist.
6. Vorrichtung nach Anspruch 5, gekennzeichnet durch einen Taktgeber (158,160,162,164) zur Ansteuerung der
Zeitverzögerungsglieder (150,152,154,156), welche mit den ersten Basisbandmischereinrichtungen (40,42,44,46) der Messkanäle (24,26,28,30) und den ersten Filtereinrichtungen (48,50,52,54) der Messkanäle (24,26,28,30) und/oder den zweiten Basisbandmischereinrichtung (124,126,128) der Messkanäle (24,26,28,30) und den zweiten Filtereinrichtungen (130,132,134) der Messkanäle (24,26,28,30) verbunden sind.
7. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die ersten Basisbandmischereinrichtungen (40,42.44,46) dazu ausgebildet sind, das abgetastete Messsignal (22b) grob ins Basisband zu mischen.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die zweiten Basisbandmischereinrichtungen (40,42,44,46) dazu ausgebildet sind, das grob ins
Basisband gemischte Messsignal (22) exakt ins Basisband zu mischen und dabei einen Basiband-Realteil und einen Basisband-Imaginärteil zu erzeugen.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die ersten Basisbandmischereinrichtungen (40,42,44,46) und/oder die zweiten
Basisbandmischereinrichtungen (130,132,134) jeweils digitale Oszillator (94 , 96, 98 ; 204 , 206, 208 ), insbesondere numerisch kontrollierte Oszillatoren (NCOl, NC02), zur Erzeugung einer Träger-Mischfrequenz umfassen.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Mehrkanalsystem (4) ein Multiple-Input-Multiple- Output Kanalsystem (MIMO) oder ein Single-Input-Multiple- Output (SIMO) Kanalsystem ist.
11. Verfahren zur Analyse zumindest eines über ein Mehrkanalsystem (4) übertragenen Messsignals (22), welches mehreren Messkanälen (24,26,28,30), insbesondere eines Mehrkanal-Oszilloskops (2) zugeführt wird, welches an an den Messkanälen vorgesehenen
Abtasteinrichtungen (32,34,36,38) zur gleichen Zeit abgetastet wird, welches an den Abtasteinrichtungen (32,34,36,38) nachgeschalteten ersten Basisbandmischereinrichtungen (40,42,44,46) synchron in ein Basisband herabgemischt wird, und welches an den Basisbandmischereinrichtungen (40,42,44,46) nachgeschalteten ersten Filtereinrichtungen (48,50,52,54) zur Dezimation der Abtastwerte im Basisband synchron gefiltert und anschließend analysiert wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Messkanäle (24,26,28,30) zueinander synchronisiert werden.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die an den Messkanälen (24,26,28,30) angeordneten Basisbandmischereinrichtungen (40, 42, 44 , 46; 124 , 126, 128 ) und/oder die an den Messkanälen (24,26,28,30) angeordneten Filtereinrichtungen (48, 50, 52, 54 ; 130, 132, 134 ) zur Synchronisation der Messkanäle (24,26,28,30) taktgesteuert werden.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass an den Basisbandmischereinrichtungen (40,42,44,46) aus dem abgetasteten Messsignal (22b) ein Basiband- Realteil und ein Basisband-Imaginärteil erzeugt werden.
PCT/EP2007/006102 2006-09-07 2007-07-10 Vorrichtung und verfahren zur analyse eines über ein mehrkanalsystem übertragenen messsignals WO2008028532A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/440,442 US8040125B2 (en) 2006-09-07 2007-07-10 Device and method for the analysis of a measured signal transmitted via a multi-channel system
EP07785968A EP2060036A1 (de) 2006-09-07 2007-07-10 Vorrichtung und verfahren zur analyse eines über ein mehrkanalsystem übertragenen messsignals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006042114A DE102006042114A1 (de) 2006-09-07 2006-09-07 Vorrichtung und Verfahren zur Analyse eines über ein Mehrkanalsystem übertragenen Messsignals
DE102006042114.0 2006-09-07

Publications (1)

Publication Number Publication Date
WO2008028532A1 true WO2008028532A1 (de) 2008-03-13

Family

ID=38863048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/006102 WO2008028532A1 (de) 2006-09-07 2007-07-10 Vorrichtung und verfahren zur analyse eines über ein mehrkanalsystem übertragenen messsignals

Country Status (4)

Country Link
US (1) US8040125B2 (de)
EP (1) EP2060036A1 (de)
DE (1) DE102006042114A1 (de)
WO (1) WO2008028532A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297834B2 (en) * 2010-08-13 2016-03-29 Tektronix, Inc. Time-domain searching in a test and measurement instrument
US9459290B2 (en) 2013-04-30 2016-10-04 Keysight Technologies, Inc. Oscilloscope system and method for simultaneously displaying zoomed-in and zoomed-out waveforms
CN106324313B (zh) * 2016-08-08 2018-09-07 电子科技大学 基于近似熵的瞬态信号无缝测量系统
US10962575B2 (en) * 2017-08-25 2021-03-30 Rohde & Schwarz Gmbh & Co. Kg Multi-domain measurement system as well as use of a multi-domain measurement system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285238A1 (de) * 1987-04-03 1988-10-05 Tektronix Inc. Bandpass-Digitaloszilloskop
EP1215813A1 (de) * 2000-12-13 2002-06-19 Pacific Broadband Communications, Inc. Tuner für digitalen Empfänger mit mehreren Eingangskanälen und Ausgangskanälen
US20030208328A1 (en) * 2002-05-06 2003-11-06 Pickerd John J. Acquisition system for a multi-channel relatively long record length digital storage oscilloscope
US20040117143A1 (en) * 2002-12-17 2004-06-17 Tran Que Thuy Method and apparatus providing interleaved data from multiple signal acquisition devices
US20050141642A1 (en) * 2002-06-28 2005-06-30 Advantest Corporation Transformer, transforming apparatus, transforming method and machine readable medium storing thereon program
US7227346B1 (en) * 2005-08-23 2007-06-05 Timing Solutions Corporation Two channel digital phase detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044318A (en) * 1975-05-20 1977-08-23 Raytheon Company Ganged radio frequency filter
US4881191A (en) * 1987-01-13 1989-11-14 Hewlett-Packard Company Multichannel decimation/interpolation filter
CA2097397A1 (en) 1993-05-31 1994-12-01 Tapan K. Bose High precision rf vector analysis system based on synchronous sampling
DE10114052C1 (de) 2001-03-15 2002-07-25 Hertz Inst Heinrich Funkübertragungsverfahren im Innenraumbereich zur parallelen Funkübertragung von digitalen Datenteilströmen und mobiles Funkübertragungssystem
US6525522B1 (en) * 2001-06-07 2003-02-25 Tektronix, Inc. System for determining the phase and magnitude of an incident signal relative to a cyclical reference signal
US7167694B2 (en) 2003-04-14 2007-01-23 Silicon Laboratories Inc. Integrated multi-tuner satellite receiver architecture and associated method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285238A1 (de) * 1987-04-03 1988-10-05 Tektronix Inc. Bandpass-Digitaloszilloskop
EP1215813A1 (de) * 2000-12-13 2002-06-19 Pacific Broadband Communications, Inc. Tuner für digitalen Empfänger mit mehreren Eingangskanälen und Ausgangskanälen
US20030208328A1 (en) * 2002-05-06 2003-11-06 Pickerd John J. Acquisition system for a multi-channel relatively long record length digital storage oscilloscope
US20050141642A1 (en) * 2002-06-28 2005-06-30 Advantest Corporation Transformer, transforming apparatus, transforming method and machine readable medium storing thereon program
US20040117143A1 (en) * 2002-12-17 2004-06-17 Tran Que Thuy Method and apparatus providing interleaved data from multiple signal acquisition devices
US7227346B1 (en) * 2005-08-23 2007-06-05 Timing Solutions Corporation Two channel digital phase detector

Also Published As

Publication number Publication date
US20100007329A1 (en) 2010-01-14
DE102006042114A1 (de) 2008-03-27
EP2060036A1 (de) 2009-05-20
US8040125B2 (en) 2011-10-18

Similar Documents

Publication Publication Date Title
DE19515037B4 (de) Digitale Signalmodulationsanalysevorrichtung
DE19933754B4 (de) Verfahren und Vorrichtung zur Hochfrequenzspektralanalyse
DE102007047021B4 (de) Anordnung zur Übertragung von Magnetresonanzsignalen
EP2376931B1 (de) Verfahren und netzwerkanalysator zur messung der gruppenlaufzeit in einem messobjekt
DE102013222179A1 (de) Ein auf digitaler Lokaloszillation basierendes, mit Hochgeschwindigkeitsabtastung betriebenes Hochfrequenzsignal-Spektralmesssystem und das zugehörige Verfahren
WO2008028532A1 (de) Vorrichtung und verfahren zur analyse eines über ein mehrkanalsystem übertragenen messsignals
EP1782085B1 (de) Verfahren zum messen des phasenrauschens eines hochfrequenzsignals und messgerät zum ausführen dieses verfahrens
DE102011077390B4 (de) Messgerät und Verfahren zur Vermessung eines Signals mit mehreren Teilsignalen
DE102021209433A1 (de) Signalempfänger, der Digitalbildsignaltrennung umfasst
EP1582890B1 (de) Linear frequenzmoduliertes Impulsradar
DE2356712C3 (de) Verfahren zur Bildung eines magnetischen Resonanzspektrums und Spektrometer zu dessen Durchführung
DE102011055184A1 (de) Serielle Datenschnittstelle für ein softwaredefiniertes Funksystem
DE10248052A1 (de) Vorrichtung und Verfahren zum Nachführen eines Abtastzeitpunktes in Funkempfängern
WO2008116544A1 (de) Konzept zur reduktion eines phasenrauschens
DE10337913B4 (de) Meß- oder Testgerät mit austauschbaren Funktionseinheiten
DE102011008916A1 (de) Kommunikationseinrichtung mit Testfunktion
DE102018217701A1 (de) Verfahren und Vorrichtung zur Taktgewinnung für PCMA-Signalanteile
DE112020007047T5 (de) Schaltung zum umwandeln eines signals zwischen digital und analog
DE10045546A1 (de) Verfahren zur systemunabhängigen digitalen Auswertung von Mobilkommunikations-Empfangssignalen verschiedener Mobilfunkstandards
EP1811714A1 (de) Integrierte Schaltung für eine asynchrone, serielle Datenübertragung mit einem Billängen Zähler
DE102018206200A1 (de) Verfahren zur Erfassung einer Kanalimpulsantwort in einem, insbesondere zur Kommunikation betriebenen, System, Sendeeinrichtung und Empfangseinrichtung
DE19926101B4 (de) Anordnung zur Fehlerkompensation bei der Umsetzung von Hochfrequenzsignalen ins Basisband
EP1346506B1 (de) Verfahren und anordnung zum digitalen empfang eines signals
EP1436960B1 (de) Verfahren zum messen des modulationsfehlers von digital modulierten hochfrequenzsignalen
DE10211524A1 (de) Schaltungsanordnung zur Frequenzumsetzung und Mobilfunkgerät mit der Schaltungsanordnung

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007785968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12440442

Country of ref document: US