WO2008028373A1 - Transducteur ultrasonore à résonance - Google Patents

Transducteur ultrasonore à résonance Download PDF

Info

Publication number
WO2008028373A1
WO2008028373A1 PCT/CN2007/000513 CN2007000513W WO2008028373A1 WO 2008028373 A1 WO2008028373 A1 WO 2008028373A1 CN 2007000513 W CN2007000513 W CN 2007000513W WO 2008028373 A1 WO2008028373 A1 WO 2008028373A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
resonant
ultrasonic transducer
source
cavity
Prior art date
Application number
PCT/CN2007/000513
Other languages
English (en)
French (fr)
Inventor
Hua Wang
Feng Wu
Hai Wang
Siyuan Yan
Original Assignee
Chongqing Ronghai Medical Ultrasound Industry Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Ronghai Medical Ultrasound Industry Ltd. filed Critical Chongqing Ronghai Medical Ultrasound Industry Ltd.
Priority to US12/439,590 priority Critical patent/US8040756B2/en
Priority to JP2009525895A priority patent/JP4991860B2/ja
Priority to EP07710938.7A priority patent/EP2064994B1/en
Priority to ES07710938T priority patent/ES2785224T3/es
Priority to CA2661998A priority patent/CA2661998C/en
Publication of WO2008028373A1 publication Critical patent/WO2008028373A1/zh

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22024Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement with a part reflecting mechanical vibrations, e.g. for focusing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present invention relates to an ultrasonic transducer, and more particularly to a resonant ultrasonic transducer having a resonant cavity ultrasonic distribution mode.
  • Ultrasonic transducers can be used to increase the ultrasonic emission efficiency of ultrasound transducers.
  • the Japanese patent JP6102260 uses this method to increase the observation sample at the reflective ultrasonic confocal microscope design. Sound field to improve the quality of ultrasound microscopic images.
  • German patent DE 3131796 uses two confocal spherical shell ultrasonic transducers ⁇ 3 ⁇ 4 which have a common focus, using one transducer as the ultrasonic source for transmitting ultrasonic waves and the other as ultrasonic reception. The device obtains an image of the substance from the received signal.
  • the technical problem to be solved by the present invention is to provide a resonant ultrasonic transducer capable of realizing a specific sound field distribution by constructing an ultrasonic ultrasonic cavity with specific parameters, so that the ultrasonic transducer emits a sound field and The reflected sound field of another ultrasonic transducer is matched to form a specific ultrasonic sound field within the cavity, such as a highly concentrated ultrasound focused sound field.
  • the resonant ultrasonic transducer includes an ultrasonic source capable of transmitting ultrasonic waves, and further includes a reflecting unit disposed opposite to the ultrasonic source, the ultrasonic source and the reflecting unit forming a resonant cavity.
  • the ultrasonic wave emitted by the ultrasonic source is continuously reflected between the ultrasonic source and the reflecting unit to form a resonance, so the ultrasonic source in the present invention It is also a reflection unit.
  • the reflecting unit can use an ultrasonic source having a reflecting function.
  • an ultrasonic source having a reflecting function.
  • Such a relatively arranged two ultrasonic transducers are combined, and the sound field generated therein is not only a simple superposition of the oppositely disposed sound fields of the two transducers, but an ultrasonic sound field and multiple reflections of the opposite end faces of the transducers. The result of the coherent superposition of the ultrasonic sound field emitted by the sound source.
  • the sound field distribution formed by their superposition is the distance between the two ultrasonic transducers disposed oppositely, the aperture of the ultrasonic transducer, the focal length of the ultrasonic transducer, the reflectivity of the ultrasonic transducer surface, and the ultrasonic transducer
  • the acoustic parameters of the medium are determined together.
  • the sound field distribution formed by the superposition can be analyzed by a similar analysis method of the optical cavity, that is, the ultrasonic sound field emitted by the transducer forms a specific distribution by setting the parameters of the ultrasonic cavity.
  • the transposition can be made by setting the relationship parameter between the shape parameter and the transducer constituting the resonant ultrasonic transducer.
  • the focus of the ultrasound transducer, especially the focused ultrasound transducer, is more concentrated. This transducer can be used for ultrasound diagnostics, ultrasound therapy and ultrasound detection with high energy efficiency and signal-to-noise ratio.
  • the formation mechanism of the resonant transducer in the present invention is similar to the light wave distribution formed in the optical resonant cavity, because in ultrasonic therapy and measurement, the medium in contact with the ultrasonic transducer is a liquid medium or human tissue, and the ultrasonic wave is a mechanical wave. In the liquid medium and human soft tissue, the ultrasonic wave mainly appears as a longitudinal wave. When the ultrasonic wave propagates to the interface between the two substances, reflection and refraction will occur, and the law of reflection and refraction satisfies Snell's law. The wave equation satisfied in the cavity is consistent with the scalar wave equation of the light wave.
  • the first wave source 1 and the second wave source 2 are coaxially placed (one of the ultrasonic sources may be an ultrasonic reflecting unit), and the medium capable of transmitting ultrasonic waves is filled between the two wave sources. Since the ultrasonic source can both transmit ultrasonic waves and reflect ultrasonic waves, they form an ultrasonic resonant cavity.
  • the sound field distribution in the ultrasonic cavity is the superposition of the sound field directly emitted by the transducer and the reflected sound field on the surface of the transducer.
  • the sound field of the ultrasonic wave in the cavity of the first wave source and the second wave source The cloth has a great influence.
  • this cavity only the sound field with a special distribution can exist stably. Since the time for establishing the stable sound field is very short, the sound field can only be made in the cavity with the existence of a specially distributed sound field. keep it steady.
  • These sound fields that can be specifically distributed in the cavity are related to the parameters of the cavity and can be described by the sound field mode. Since the distribution of the sound field is divided into a spatial distribution and a time distribution, the sound field stably present in the resonant cavity can be represented by a time mode and a spatial mode (corresponding to the longitudinal mode and the transverse mode of the optical cavity).
  • the time mode corresponds to the frequency limit of these sound fields, and a stable sound field distribution is to be formed in the cavity.
  • the operating frequencies of the first wave source and the second wave source must be equal to a specific frequency value, and the values of these specific frequencies are related to the length of the cavity.
  • the ultrasonic frequency that can be stably present in the cavity is:
  • the spatial distribution condition (spatial mode) must be satisfied, because the stable distribution of the ultrasonic waves in the cavity is the multiple reflection of the two reflecting faces constituting the cavity. And the result of the superposition of the sound field emitted by the sound source. Therefore, the ultrasonic wave starts from one mirror surface and propagates to the other mirror surface, and then transmits to the original mirror surface after being emitted.
  • the ultrasonic sound field distribution on the mirror surface should be the ultrasonic wave at the time of departure.
  • the sound field distribution is the same. That is:
  • equation (3) is an integral equation system, solving this equation group requires a numerical method. OK, but under special conditions, the equations can be solved analytically. For example, when the outer frame of the piezoelectric wafer is a rectangular frame and L is long enough, when the distance r is calculated, the surface of the cavity can be made flat.
  • the ultrasonic field distribution on the surface is:
  • ⁇ . 2 ⁇ respectively corresponding to the ultrasonic field amplitudes of the centers of the first wave source 1 and the second wave source 2
  • Ri, R 2 respectively corresponding to the radii of the first wave source 1 and the second wave source 2
  • ⁇ : ⁇ ⁇ , corpse 2mn respectively corresponding to the first wave source
  • H m ( . ) is an m-order Hankel function.
  • the sound field formed by the stable sound field on the cavity surface must satisfy the equation (3).
  • the shape of the cavity is rectangular and can be approximated by the paraxial, the sound field of the stable sound field on the surface of the resonator cavity satisfies the equation (4).
  • Fig. 3 is a low-order stable sound pressure distribution (indicated by a mode) of a piezoelectric wafer having a square shape on a mirror surface, and the mode in the figure is the order of the Hankel function (i.e., in equation (4) m, n).
  • L View( n) is a Laguerre polynomial
  • ! ⁇ , ⁇ , ⁇ ⁇ ⁇ 2 denotes the polar coordinates of the ultrasonic transducer surface S, S 2 , respectively
  • the stable sound field distribution must satisfy the formula (5)
  • Fig. 4 is a stable sound pressure distribution pattern (lower order) on the mirror surface of a circular piezoelectric wafer, and the number of modes in the figure is m, n in the equation (5).
  • the determined cavity surface distribution corresponds to a stable intracavity distribution.
  • the ultrasonic field has a Gaussian distribution in the cavity, and the distribution is as shown in Fig. 5.
  • the fundamental mode W. Is the waist spot radius of the acoustic beam in the cavity. In the case of the fundamental mode, the distribution of the sound field in the cavity is:
  • the characteristic of the symmetrical cavity is that along the axis of the cavity, the ultrasonic field is symmetric with the center of the cavity through the vertical cavity axis.
  • the cavity field of the confocal cavity is shorter, and the superposition position of the reflected sound field is at the focus of the reflected sound field. This cavity is easy to adjust.
  • the characteristic of the common heart cavity is that the superposition center of each reflection of the reflected sound wave is theoretically the same, but it is not easy to adjust.
  • the characteristic of the concentric symmetry cavity is that the center of the superposition is at the center of the sphere except that the center of the superposition is the same. In principle, the focus of the focused ultrasound is small.
  • the ultrasonic resonant cavity composed of the ultrasonic source is different from the ordinary laser resonant cavity.
  • the light energy in the laser resonant cavity is excited by other different energies.
  • the coherent optical field in the resonant cavity has only the laser light field, but the ultrasonic resonant cavity
  • the sound field is input by the ultrasonic transducer.
  • the sound wave of the ultrasonic source is completely coherent with the sound wave oscillating in the cavity.
  • the total sound field in the cavity is equal to the sound field of the ultrasonic source plus the oscillating sound field in the cavity.
  • the input sound field should be as similar as possible to the fundamental mode distribution of the surface.
  • a higher order mode it is similar to the higher order mode distribution.
  • the interior of the resonant cavity may also be provided with an acoustic unit, for example a focusing unit may be provided to focus the ultrasound.
  • Any one of the ultrasonic sources is provided with an output window through which sound waves in the resonant cavity can be output through the end face of the ultrasonic transducer, so that the acoustic waves in the resonant cavity can be applied to a desired position.
  • the resonant ultrasonic transducer of the present invention can be widely applied to ultrasonic diagnostics, ultrasonic therapy, and ultrasonic testing equipment to achieve effective aggregation and control of the ultrasonic field.
  • the ultrasonic source may employ a focused ultrasonic source or a non-focused ultrasonic source as needed.
  • a focused ultrasound source can be used to treat diseases such as liver cancer.
  • non-focused ultrasound sources can be used, which can achieve good results.
  • An ultrasonic diagnostic apparatus includes an ultrasonic transducer, and the ultrasonic transducer is the above-described resonant ultrasonic transducer.
  • An ultrasonic treatment apparatus comprising an ultrasonic transducer, said ultrasonic transducer being said resonant ultrasonic transducer.
  • An ultrasonic monitoring apparatus includes an ultrasonic transducer, and the ultrasonic transducer is the above-described resonant ultrasonic transducer.
  • FIG. 1 is a schematic structural view of a resonant ultrasonic transducer according to an embodiment of the present invention
  • FIG. 2 is a sound field relationship diagram of a resonant cavity surface
  • Figure 3 is a low-order stable sound pressure distribution pattern of a square piezoelectric wafer.
  • Figure 4 is a diagram of the low-order stable sound pressure distribution pattern of a circular piezoelectric wafer.
  • FIG. 5 is a schematic diagram of a stable sound field distribution pattern having a Gaussian distribution in a resonant cavity.
  • FIG. 6 is a schematic structural view of Embodiment 2 of the present invention.
  • Figure ⁇ is a schematic structural view of Embodiment 3 of the present invention
  • Embodiment 8 is a schematic structural view of Embodiment 4 of the present invention.
  • Embodiment 9 is a schematic structural view of Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 6 of the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 7 of the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 8 of the present invention.
  • Embodiment 9 is a schematic structural diagram of Embodiment 9 of the present invention.
  • first wave source 2 second wave source 3
  • output window 4 acoustic unit
  • the resonant ultrasonic transducer of the present invention comprises an ultrasonic source, and a reflecting unit disposed opposite thereto, and the ultrasonic source and the reflecting unit constitute a resonant cavity.
  • the ultrasonic source is also a reflection unit at the same time.
  • This embodiment is a coaxial operating mode of two ultrasonic transducers.
  • both the ultrasonic source and the reflection unit use a spherical shell transducer, that is, a first wave source 1 and a second wave source 2.
  • a spherical shell transducer that is, a first wave source 1 and a second wave source 2.
  • Two spherical shell transducers are placed coaxially with a radius of R 2 and a cavity length of L.
  • LRR is required.
  • 2 ai and 2a 2 in Figure 1 represent two transducers respectively. Caliber..
  • the two-ball shell transducers can work together or individually. When either transducer is working alone, the other transducer is only used as a mirror. Or two transducers work alternately.
  • This embodiment is a symmetric working mode of the ultrasonic transducer.
  • both the ultrasonic source and the reflecting unit use a spherical shell transducer.
  • the two spherical shell transducers are placed coaxially symmetrically, and the radius is equal to R. If the length of the resonator is L, in order to reduce geometric attenuation and diffraction loss, 1 ⁇ 2R is generally required.
  • the lumbar spot of the cavity is positively centered on the two ultrasonic transducers, and one way of using it is the same as in the first embodiment. If treating a leg tumor, R can take
  • This embodiment is a concentric mode of operation of the ultrasonic transducer.
  • both the ultrasonic source and the reflection unit are replaced by a spherical shell.
  • Energy device The two spherical shell transducers are placed coaxially and concentrically with a radius of R 2 , respectively, and the length of the resonant cavity is L, then the device L- Ri + R ⁇ is characterized by a small waist spot.
  • R can take 120mm
  • R 2 can take 110mm
  • L takes 230mm.
  • This embodiment is a concentric symmetric working mode of the ultrasonic transducer.
  • both the ultrasonic source and the reflecting unit employ a spherical shell transducer.
  • the two spherical shell transducers are placed coaxially, and are concentric, and their radii are equal to R.
  • This device is characterized by a small waist spot. And the waist spot is at the center.
  • the radius R of both transducers is 120 ⁇ , then L is 240 ⁇ .
  • This embodiment is an ultrasonic transducer confocal mode of operation.
  • the ultrasonic source and the reflecting unit are placed in a confocal manner, and the radius thereof is R 2 , and the length of the resonant cavity is L. Then, the resonant cavity parameters have the following relationship: 21 ⁇ 1 ⁇ + 1 ⁇ , the radius of the lumbar spot of this cavity is:
  • the resonant ultrasonic transducer constructed in this manner has a small diffraction loss and has an advantage of being easily adjusted.
  • One mode of use of this embodiment is the same as that of the first embodiment.
  • can take 120mm
  • R 2 can take l lOmm
  • L can take 115mm.
  • the two ultrasonic transducers form a resonant cavity, wherein the two ultrasonic transducers, that is, the first wave source 1 and the second wave source 2, use a voltage level slice transducer, in the cavity There is an acoustic unit 4, and the acoustic unit 4 employs an ultrasonic lens, and the ultrasonic lens is disposed in the resonant cavity to respectively abut the first wave source 1 and the second wave source 2.
  • the resonant cavity transducer of this embodiment has a small focus and has diffraction loss Small, easy to adjust, but this type of ultrasonic transducer must be optimized for the ultrasonic lens to ensure the focusing performance and low reflectivity of the lens.
  • One mode of use of this embodiment is the same as that of the first embodiment.
  • Example 7 Example 7:
  • the operation mode of the ultrasonic source and the reflection unit can be any one of the above embodiments 1 to 6, except that the reflection unit does not use the ultrasonic transducer but a spherical mirror.
  • One mode of use of this embodiment is the same as that of Embodiments 1-6.
  • the reflecting unit uses an ultrasonic lens that is reflected by the rear end surface.
  • the other structure is the same as that of the embodiment 6.
  • One mode of use of this embodiment is the same as that of the embodiment 6.
  • the ultrasonic source uses two ultrasonic transducers, one of which has an output window 3, and the output window 3 is made of a lower acoustic impedance material (such as a plastic film), and the resonant ultrasonic transducer
  • the ultrasonic waves generated by the device can be emitted through the output window 3.
  • This type of transducer can be applied to ultrasonic guided coupling in bridge testing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

谐振式超声换能器 技术领域
本发明涉及一种超声换能器, 特别涉及一种具有谐振腔超声分 布模式的谐振式超声换能器。 背景技术
采用超声换能器发射超声波与反射超声波的叠加, 可以提高超 声换能器的超声发射效率,日本专利 JP6102260在其反射式超声共焦 显微镜设计中, 就采用了这种方式来增加观察样品处的声场, 以提高 超声显微图像的质量。
德国专利 DE3131796 (发明名称为: Scamping ultrasonic microscope )中采用两个共焦的球壳超声换能器 Γ¾它们具有共同的 焦点, 用一个换能器作为发射超声波的超声波源, 另一个作为超声波 的接收器件, 从接收到的信号中获得物质的图像。
然而, 以上的两个发明都只涉及通过两个换能器或其中一个换 能器用反射镜代替来增加显微物镜焦点处的声场,换能器的超声发射 效率并不能得到大幅度的提高。 发明内容
本发明所要解决的技术问题是针对现有技术中的不足, 提供一 种能实现特定声场分布的谐振式超声换能器,通过构造具有特定参数 的超声谐振腔,使超声换能器发射声场与另一超声换能器的反射声场 进行匹配,可使谐振腔内形成特定的超声声场, 比如高度聚集的超声 聚焦声场。
解决本发明技术问题所釆用的技术方案是该谐振式超声换能器 包括可发射超声波的超声波源,还包括有与超声波源相对设置的反射 单元, 所述超声波源与反射单元构成谐振腔。
构成谐振腔后, 超声波源所发射的超声波就会在超声波源与反 射单元之间不断的进行反射, 形成谐振, 因此本发明中所述超声波源 同时也是一反射单元。
优选的是, 所述反射单元可以釆用具有反射功能的超声波源。 这样的相对设置的两超声换能器进行组合, 其内部产生的声场, 不止是相对设置的两换能器声场的简单叠加,而是相对设置的换能器 的端面多次反射的超声声场和声源发射的超声声场相干叠加的结果。 它们叠加形成的声场分布是由相对设置的两超声换能器之间的距离、 超声换能器的口径、超声换能器的焦距、超声换能器表面的反射能力、 超声换能器间的介质声学参数共同决定。叠加形成的声场分布可用光 学谐振腔类似分析方法进行分析, 即通过超声谐振腔参数的设置, 使 换能器发出的超声声场形成特定的分布。由于超声谐振腔内形成聚焦 声场的有效孔径比单个超声换能器的有效孔径大,通过对构成谐振式 超声换能器的形状参数与换能器之间关系参数的设定,可以使换能器 尤其是聚焦超声换能器的声场更加集中,这种换能器可以应用于超声 诊断、 超声治疗和超声检测, 能量利用率和信噪比都很高。
本发明的基础原理如下:
本发明中谐振式换能器的形成机理与光学谐振腔中形成的光波 分布类似, 因为超声治疗和测量中, 超声换能器接触的介质为液体介 质或人体组织,而超声波是一种机械波,在液体介质和人体软组织内, 超声波主要表现为纵波, 当超声波传播到两种物质的交界面时, 会发 生反射和折射现象, 其反射和折射规律满足斯涅尔定律。在谐振腔内 满足的波动方程与光波的标量波动方程一致。
ο^ = ρ ( 1 )
dt2 其中, p为声压, c为腔内介质的声速。
如图 1所示, 当相对设置的两超声波源, 即第一波源 1和第二 波源 2同轴放置(其中一个超声波源可以为超声反射单元) , 在两波 源中间充以能传播超声的介质, 由于超声波源既可发射超声波, 也可 反射超声波, 所以它们构成一个超声谐振腔。在超声谐振腔内的声场 分布就是换能器直接发射声场与换能器表面反射声场的叠加。
第一波源和第二波源的谐振腔工作方式对腔内超声波的声场分 布具有极大的影响, 在这种谐振腔内, 只有特殊分布的声场才能稳定 存在, 由于稳定声场建立的时间很短, 所以, 在谐振腔内只有在存在 特殊分布的声场情况下才能使声场保持稳定。这些可以在谐振腔内特 殊分布的声场与谐振腔的参数有关, 可以用声场模式来描述。 由于声 场的分布分为空间分布与时间分布, 所以, 在谐振腔内稳定存在的声 场可以用时间模式与空间模式表示(对应光学谐振腔的纵模和横模)。 时间模式对应于这些声场的频率限制,要在谐振腔内形成稳定的声场 分布, 第一波源和第二波源的工作频率必须等于特定的频率值, 这些 特定频率的数值与谐振腔的长度有关。可以在谐振腔内稳定存在的超 声波频率为:
/ =— fc =整数 (2) 其中, /为频率, c 为介质声速, L 为两换能器之间的距离 (即谐振 腔长度) 。
要在谐振腔内形成稳定的空间分布, 除了满足超声波的频率条 件外, 还必须满足空间分布条件(空间模式) , 因为谐振腔内超声波 的稳定分布是组成谐振腔的两个反射面多次反射以及声源发射声场 共同叠加的结果, 因此, 超声波从一个反射镜面出发, 传播到另一反 射镜面, 发射后再传播到原来的反射镜面, 其在镜面上的超声声场分 布应该与出发时的超声声场分布相同。 即有:
( 3 )
Figure imgf000005_0001
r^^jL2 +(x, -x2)2 +(yi-y2)2 k =—
A 其中, Pi O^y 是第一波源反射面的声压分布, p2(x2,y2) 是第 二压波源反射面的声压分布(如图 2所示) , 其中, (Xl,y , ( ,y2) 分别是谐振腔换能器腔面的坐标, Y t, γ2分别为两腔面的超声波反 射系数, λ 为谐振腔内超声波长。
由于式 (3) 是一个积分方程组, 解这个方程组需要数值方法进 行, 但在特殊条件下, 该方程组可以得到解析解, 比如, 当压电晶片 的外框是一个矩形框, 而且 L足够长, 以致计算距离 r时, 可以设谐 振腔表面为平面, 则其表面的超声场分布为:
1.2
Figure imgf000006_0001
其中, Λ。、 2ο分别对应第一波源 1和第二波源 2中心的超声波 声场振幅, Ri、 R2分别对应第一波源 1和第二波源 2的半径, Λ:ηη 、 尸 2mn分别对应第一波源 1和第二波源 2在水平方向模式标号为 m、竖 直方向的模式标号为 n时的声场分布 (m, n=0 , 1, 2, 3, …) 。
Hm ( . ) 为 m阶汉克尔函数。
在谐振腔内, 形成的稳定声场在谐振腔面的声场必须满足式 ( 3 ) 。 在谐振腔的外型是矩形, 且可以近轴近似时, 稳定声场在谐 振腔面的声场满足式 (4 ) 。
图 3是谐振腔的外型是正方形的压电晶片在反射镜面上的低阶 稳定声压分布(用模式表示),图中的模式就是汉克尔函数的阶数(即 式 (4 ) 中的 m, n ) 。
当压电晶片的外框为圆形, 它在镜面上的分布仍然可以表示为 解析形式, 在超声换能器表面的声压分布为:
Figure imgf000006_0002
其中, L„(n)是拉盖尔多项式, !^,^, Φ ΐ Φ 2分别表示超声换能器 面 S,、 S2上的极坐标, 稳定的声场分布, 必须满足式 (5 ) 。 图 4是 外型为圆型压电晶片在镜面上的稳定声压分布模式(低阶), 图中的 模式数就是式 (5 ) 中的 m, n ) 。 确定的腔面分布对应于一种稳定的腔内分布, 根据波动方程, 超声波在腔内声场分布具有高斯分布, 该分布如图 5所示。 因为最低 阶模式具有很好的方向性好, 能量集中, 超声损耗小, 所以, 在超声 治疗和检测中, 最经常使用的是低阶模, 即基模。 W。是谐振腔内声束 的腰斑半径, 在基模情况下, 谐振腔内声场的分布为:
Figure imgf000007_0001
其中, z。是常数, 它的值 Ζ。= 。2Γ/Λ 在超声治疗中, 由于需要超声波在焦点处 (腰斑位置) 具有最 大增益, 要求腰斑半径尽量小, 所以, 需要知道腰斑半径与谐振腔参 数的关系, 当压电晶片反射面构成不同类型的谐振腔, 其腰斑半径与 谐振腔参数的关系不同, 它们的关系可表示为-
J/4
X to - L)(R2 - L){RX +R2 - L)]
(Rl +R2 -2L) 1/2 (7) 腰斑距离超声换能器表面的距离为
L(R2 -L)
R、 +R-, -2L
L(R2-L)
/, =■ (8)
R, +R, -2L 其中, 、 /2分别为腰斑到第一波源 (压电晶片) 1 和第二波源 (压电晶片) 2表面的距离, 也就是焦点的位置到两压电晶片表面的 距离。 根据超声换能器各腔面半径, 两换能器之间的距离 (腔长) , 可以把谐振式超声换能器分为: 对称、 共焦、 共心、 共心对称等谐振 腔, 这些谐振腔的半径、 腔长之间关系为:
对称: =1?2
共焦: L= (R,+R2) /2
共心: L= (Rx+R2) ' 对称共心: L= (R,+R2) , Rt=R2
对称腔的特点是:沿谐振腔轴线方向,超声波场以垂直腔轴,通 过谐振腔的中心点对称。 而共焦腔的腔场较短,其反射声场的叠加位置在反射声场的焦 点处.这种谐振腔很容易调整。
共心腔的特点是理论上,反射声波各次反射的叠加中心相同,但 不容易调整。
共心对称腔的特点是除了叠加中心相同外,叠加中心处在球心. 原则上形成的聚焦超声的焦点很小.
根据式(7 ) , 可看出使焦点(腰斑)最小的方式是形成共心腔. 即 (Ri+R2- L) =0, 赭石压电晶片反射表面形成谐振腔有最小的焦点。
然而实际使用中, 由于共心腔的调整、 装配比较困难, 它也可 以釆用非共心腔 (如共焦腔) , 只是腰斑稍大。
但是, 超声波源组成的超声谐振腔与普通激光谐振腔不同, 激 光谐振腔中的光能量是其它不同的能量激励的,在谐振腔内的相干光 场只有激光光场, 但超声谐振腔内的声场是由超声换能器输入的, 超 声波源的声波与谐振腔内振荡的声波是完全相干的,在谐振腔内的总 声场等于超声波源声场加上谐振腔内振荡声场。为了使谐振腔内的模 式尽量单一,需要使波源在输出面的声场相似于谐振腔选定模式在波 源输出面的声场分布。 所以, 当需要在谐振腔内运行基模时, 输入声 场在波源输出面就要尽量与该面的基模分布相似。 当需要高阶模, 则 与高阶模分布相似。
所述谐振腔的内部还可以设置有声学单元, 比如可以设置聚焦 单元以将超声波聚焦。
所述超声波源中的任一个开有输出窗, 通过该输出窗, 谐振腔 内的声波可通过该超声换能器的端面输出,这样谐振腔内的声波就可 以应用到期望位置上。
其中, R与 L的数值可以根据使用时的需要,取相应适当的数值, 只要满足两者之间的对应关系即可。
. 本发明的谐振式超声换能器可以广泛的应用于超声诊断、 超声 治疗以及超声检测设备中, 实现对超声场的有效聚集和控制。
所述超声波源可根据需要采用聚焦超声波源或非聚焦超声波 源。 比如在外科手术中, 可采用聚焦超声波源, 进行肝癌等疾病的治 疗; 又比如在治疗一些膝关节疼痛等疾病时, 可以选用非聚焦的超声 波源, 多可以达到很好的疗效。
一种超声诊断设备, 包括超声换能器, 所述的超声换能器为上 述的谐振式超声换能器。
—种超声治疗设备, 包括超声换能器, 所述的超声换能器为上 述的谐振式超声换能器。
一种超声监测设备, 包括超声换能器, 所述的超声换能器为上 述的谐振式超声换能器。 附图说明
图 1 为本发明实施例 1谐振式超声换能器的结构示意图 图 2 为谐振腔腔面的声场关系图
图 3 为方形压电晶片的低阶稳定声压分布模式图
图 4 为圆形压电晶片的低阶稳定声压分布模式图
图 5 为具有谐振腔内具有高斯分布的稳定声场分布模式图 图 6 为本发明实施例 2的结构示意图
图 Ί 为本发明实施例 3的结构示意图
图 8 为本发明实施例 4的结构示意图
图 9 为本发明实施例 5的结构示意图
图 10 为本发明实施例 6的结构示意图
图 11 为本发明实施例 7的结构示意图
图 12 为本发明实施例 8的结构示意图
图 13 为本发明实施例 9的结构示意图
图中: 1—第一波源 2—第二波源 3—输出窗 4一声学单元 具体实施方式
以下结合实施例及附图, 对本发明作进一步详细叙述。
本发明中所述谐振式超声换能器包含有超声波源, 以及与其相 对设置的反射单元, 超声波源和反射单元构成谐振腔。所述超声波源 同时也是一反射单元。 下面实施例为本发明的非限定实施例。
实施例 1 :
本实施例为两超声换能器共轴工作模式。
如图 1 所示, 本实施例中, 超声波源和反射单元都采用球壳换 能器, 即第一波源 1和第二波源 2。 两个球壳换能器共轴放置, 其半 径分别为 R2 , 设谐振腔长度为 L, 为了减少几何衰减和衍射损耗, 要求 L R R 图 1中的 2ai、 2a2分别代表两换能器的口径.。
两球壳换能器可以一同工作, 也可各自单独工作。 当其中任一 个换能器单独工作时, 另一个换能器只作为反射镜使用。或者两个换 能器交替工作。
使用本谐振式换能器时, 若进行切除治疗, 则当患者的病灶处 于两个换能器之间的时候,由于换能器表面的反射作用使得超声波高 度聚集于谐振腔内的腰斑处。 当患者的病灶处于与腰斑重合时, 将使 病灶温度损失增高到 60度以上, 使得组织产生凝固性坏死, 从而达 到治疗的目的。如治疗腿部肿瘤,则 可以取 120mm, R2可以取 110mm, L可以取 200腿。 实施例 2 :
本实施例为超声换能器对称工作模式。
如图 6 所示, 本实施例中, 超声波源和反射单元都釆用球壳换 能器。 两个球壳换能器共轴对称放置, 其并且半径相等都为 R, 设所 述谐振腔长度为 L, 则为了减少几何衰减和衍射损耗, 一般要求 1 < 2R。
本实施例中, 谐振腔的腰斑正好处在两超声换能器的中心位置, 其使用的一种方式与实施例 1 相同。 如治疗腿部肿瘤, 则 R可以取
120mra, L可以取 200mm。 实施例 3 :
本实施例为超声换能器共心工作模式。
如图 7 所示, 本实施例中, 超声波源和反射单元都采用球壳换 能器。 两个球壳换能器共轴放置, 并且同心, 其半径分别为 、 R2, 设所述谐振腔长度为 L, 则 L- Ri + R^ 这种装置的特点是腰斑很小。 本实施例的一种使用方式与实施例 1 相同。 如治疗腿部肿瘤, 则 R, 可以取 120mm, R2可以取 110mm, L就取 230mm。 实施例 4:
本实施例为超声换能器共心对称工作模式。
如图 8 所示, 本实施例中, 超声波源和反射单元都采用球壳换 能器。这时两个球壳换能器共轴放置, 并且同心, 其半径相等都为 R, 设所述谐振腔长度为 L, 则 L= 2R。 这种装置的特点是腰斑很小。 而 且腰斑处于中心。本实施例的一种使用方式与实施例 1相同。如治疗 腿部肿瘤, 两个换能器的半径 R都为 120瞧, 则 L取 240匪。 实施例 5 :
本实施例为超声换能器共焦工作模式。
如图 9 所示, 所述超声波源与所述反射单元共焦放置, 其半径 分别为 R2, 设所述谐振腔长度为 L, 则此时谐振腔参数具有如下 关系: 21^1^+1^, 这种谐振腔的腰斑半径为:
这种方式构成的谐振式超声换能器具有衍射损失小, 具有容易 调整的优点。本实施例的一种使用方式与实施例 1相同。如治疗腿部 肿瘤, 则!^可以取 120mm, R2可以取 l lOmm, L可以取 115mm。 实施例 6:
本实施例中, 如图 10所示, 两超声换能器组成谐振腔, 其中, 两超声换能器, 即第一波源 1和第二波源 2采用压电平片换能器, 谐 振腔内有声学单元 4, 声学单元 4采用超声透镜, 超声透镜设置在谐 振腔内分别紧贴第一波源 1和第二波源 2。
本实施例谐振腔式换能器具有较小的焦点, 同时具有衍射损失 小, 容易调整的优点,但这种类型的超声换能器必须对超声透镜进行 优化设计, 以保证透镜的聚焦性能和低反射率, 本实施例的一种使用 方式与实施例 1相同。 如治疗腿部肿瘤, 若超声透镜材料为硬铝, 则 透镜的半径 可以取 120賺,反射换能器的透镜半径1?2可以取 110卿, L可以为 205mm (超声透镜若采用不同的铝合金材料, 则 L的范围可 以有些变化) 。 实施例 7 :
如图 11所示, 本实施例中超声波源与反射单元的工作模式可采 用上述实施例 1一 6中任意一种, 只是反射单元不釆用超声换能器, 而采用一个球面反射镜。 本实施例的一种使用方式与实施例 1-6 相 同。 实施例 8:
如图 12所示, 本实施例中, 反射单元釆用后端面反射的超声透 镜。 其他结构与实施例 6相同。 本实施例的一种使用方式与实施例 6 相同。 实施例 9:
如图 13所示, 超声波源采用两超声换能器, 其中一个超声换能 器上开有输出窗 3, 输出窗 3由较低声阻抗材料构成(如塑料薄膜), 该谐振式超声换能器产生的超声波可通过输出窗 3发射出来。这种类 型的换能器可应用于桥梁检测中的超声波导耦合。

Claims

权利要求书
1. 一种谐振式超声换能器, 包括可发射超声波的超声波源, 其 特征在于还包括有与超声波源相对设置的反射单元,所述超声波源与 反射单元构成谐振腔。
2. 根据权利要求 1所述的谐振式超声换能器, 其特征在于所述 超声波源和与其相对设置的反射单元共轴放置,其半径分别为 设所述谐振腔长度为 L, 则 LU R^
3. 根据权利要求 1所述的谐振式超声换能器, 其特征在于所述 超声波源与其相对设置的反射单元共轴对称放置, 其半径相等为 R, 设所述谐振腔长度为 L, 则1^< 21?。
4. 根据权利要求 1所述的谐振式超声换能器, 其特征在于所述 超声波源与其相对设置的反射单元共轴放置, 并且同心,其半径分别 为 R!、 R2, 设所述谐振腔长度为 L, 则 L Ri + R^
5. 根据权利要求 1所述的谐振式超声换能器, 其特征在于所述 超声波源与其相对设置的反射单元共轴放置, 并且同心,其半径相等 都为 R, 设所述谐振腔长度为 L, 则 L = 2R。
6. 根据权利要求 1所述的谐振式超声换能器, 其特征在于所述 超声波源与其相对设置的反射单元共焦放置, 其半径分别为 ^、 R2, 设所述谐振腔长度为 L, 则 SL- I^ + R
7. 根据权利要求 1所述的谐振式超声换能器, 其特征在于所述 超声波源釆用球壳换能器, 所述反射单元采用球面反射镜。
8. 根据权利要求 1一 6之一所述的谐振式超声换能器, 其特征 在于所述反射单元为具有反射功能的超声波源。
9. 根据权利要求 8所述的谐振式超声换能器, 其特征在于所述 超声波源和所述反射单元均采用球壳换能器。
10. 根据权利要求 8所述的谐振式超声换能器, 其特征在于所 述谐振腔内还有声学单元。
11. 根据权利要求 10所述的谐振式超声换能器, 其特征在于所 述相对设置的超声波源均采用压电平片换能器,所述声学单元采用超 声透镜, 超声透镜设置在谐振腔内紧贴超声波源。
12. 根据权利要求 8 所述的谐振式超声换能器, 其特征在于所 述相对设置的超声波源中的至少一个开有输出窗。
13. 根据权利要求 1-6之一所述的谐振式超声换能器, 其特征 在于所述谐振腔内还有声学单元。
14. 根据权利要求 13所述的谐振式超声换能器, 其特征在于所 述超声波源釆用压电平片换能器, 所述声学单元采用超声透镜, 超声 透镜设置在谐振腔内紧贴超声波源。
15. 根据权利要求 1 所述的谐振式超声换能器, 其特征在于所 述超声波源为聚焦超声波源或非聚焦超声波源。
16. 一种超声诊断设备, 包括超声换能器, 其特征在于所述的 超声换能器为权利要求 1一 15之一所述的谐振式超声换能器。
17.—种超声治疗设备, 包括超声换能器, 其特征在于所述的超 声换能器为权利要求 1一 15之一所述的谐振式超声换能器。
18. 一种超声监测设备, 包括超声换能器, 其特征在午所述的 超声换能器为权利要求 1一 15之一所述的谐振式超声换能器。
PCT/CN2007/000513 2006-09-04 2007-02-13 Transducteur ultrasonore à résonance WO2008028373A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/439,590 US8040756B2 (en) 2006-09-04 2007-02-13 Resonance ultrasonic transducer
JP2009525895A JP4991860B2 (ja) 2006-09-04 2007-02-13 共振式超音波トランスジューサ
EP07710938.7A EP2064994B1 (en) 2006-09-04 2007-02-13 Resonance ultrasonic transducer
ES07710938T ES2785224T3 (es) 2006-09-04 2007-02-13 Transductor ultrasónico de resonancia
CA2661998A CA2661998C (en) 2006-09-04 2007-02-13 Resonance ultrasonic transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006101286444A CN101140354B (zh) 2006-09-04 2006-09-04 谐振式超声换能器
CN200610128644.4 2006-09-04

Publications (1)

Publication Number Publication Date
WO2008028373A1 true WO2008028373A1 (fr) 2008-03-13

Family

ID=39156820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000513 WO2008028373A1 (fr) 2006-09-04 2007-02-13 Transducteur ultrasonore à résonance

Country Status (8)

Country Link
US (1) US8040756B2 (zh)
EP (1) EP2064994B1 (zh)
JP (1) JP4991860B2 (zh)
CN (1) CN101140354B (zh)
CA (1) CA2661998C (zh)
ES (1) ES2785224T3 (zh)
RU (1) RU2428120C2 (zh)
WO (1) WO2008028373A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140354B (zh) * 2006-09-04 2012-01-25 重庆融海超声医学工程研究中心有限公司 谐振式超声换能器
ES2717268T3 (es) * 2009-07-08 2019-06-20 Sanuwave Inc Uso de ondas de choque de presión intracorpóreas en medicina
CN102210910B (zh) * 2010-04-02 2013-02-13 重庆融海超声医学工程研究中心有限公司 一种超声换能器
AU2012326218B2 (en) 2011-10-17 2017-03-09 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
RU2503140C2 (ru) * 2012-06-19 2013-12-27 Закрытое акционерное общество "НТК" Способ озвучивания помещений
US9667889B2 (en) 2013-04-03 2017-05-30 Butterfly Network, Inc. Portable electronic devices with integrated imaging capabilities
CN103344706B (zh) * 2013-06-26 2015-04-15 哈尔滨工业大学 线性阵列相控阵探头的设计方法
CN104252146B (zh) * 2013-06-28 2017-11-07 东莞华中科技大学制造工程研究院 一种超声换能器的驱动方法及装置
US10395888B2 (en) * 2017-03-30 2019-08-27 The Regents Of The University Of California Optical-cavity based ponderomotive phase plate for transmission electron microscopy
CN110064136B (zh) * 2018-01-22 2024-04-19 重庆海扶医疗科技股份有限公司 超声换能器、聚焦超声治疗设备
CN108184180A (zh) * 2018-03-26 2018-06-19 东莞市哲巫本计文化传播有限公司 一种全频声音采集器
CN110404493B (zh) * 2018-04-28 2024-03-15 重庆海扶医疗科技股份有限公司 用于高声压的反应装置和系统
CN115151999A (zh) 2019-09-16 2022-10-04 加利福尼亚大学校董会 使用光学偏振态来控制有质动力相位板
CN111944670B (zh) * 2020-03-19 2021-11-30 珠海艾博罗生物技术股份有限公司 超声处理器
CN111678544B (zh) * 2020-06-05 2023-09-15 南京俏声波动科技有限公司 一种平衡双向输出高压波源装置及其工作方法
CN111744753A (zh) * 2020-07-03 2020-10-09 山东省耳鼻喉医院(山东省立医院西院) 一种便于安装的谐振式超声换能器
EP4101535A1 (en) * 2021-06-11 2022-12-14 AcouSort AB Acoustofluidic device configured for allowing resonance frequency tracking and methods therefor
CN114300925B (zh) * 2021-12-23 2023-06-30 重庆医科大学 一种激光声源系统和声波频率调节方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131796A1 (de) 1981-08-12 1983-02-24 Heinrich Prof. Dr. 5100 Aachen Kuttruff Abtastendes ultraschallmikroskop
US4795935A (en) * 1985-02-23 1989-01-03 Terumo Corporation Ultrasonic transducer
JPH06102260A (ja) 1992-09-21 1994-04-15 Olympus Optical Co Ltd 共焦点型超音波顕微鏡

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948350A (en) * 1974-12-20 1976-04-06 Honeywell Inc. Acoustic resonant cavity
CN2324786Y (zh) * 1996-03-28 1999-06-23 陈坚胜 带双共振腔的压电陶瓷超声波换能器
JP4319427B2 (ja) * 2003-02-28 2009-08-26 株式会社東芝 医用超音波照射装置
CN2682531Y (zh) * 2004-02-12 2005-03-02 北京航空航天大学 声学聚焦换能器
US20060241524A1 (en) * 2005-03-11 2006-10-26 Qi Yu Intravascular ultrasound catheter device and method for ablating atheroma
CN101140354B (zh) * 2006-09-04 2012-01-25 重庆融海超声医学工程研究中心有限公司 谐振式超声换能器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131796A1 (de) 1981-08-12 1983-02-24 Heinrich Prof. Dr. 5100 Aachen Kuttruff Abtastendes ultraschallmikroskop
US4795935A (en) * 1985-02-23 1989-01-03 Terumo Corporation Ultrasonic transducer
JPH06102260A (ja) 1992-09-21 1994-04-15 Olympus Optical Co Ltd 共焦点型超音波顕微鏡

Also Published As

Publication number Publication date
CN101140354A (zh) 2008-03-12
US20090259129A1 (en) 2009-10-15
EP2064994A4 (en) 2012-09-19
CA2661998A1 (en) 2008-03-13
US8040756B2 (en) 2011-10-18
ES2785224T3 (es) 2020-10-06
JP2010502240A (ja) 2010-01-28
RU2009106258A (ru) 2010-10-20
EP2064994B1 (en) 2020-04-01
CA2661998C (en) 2012-07-03
JP4991860B2 (ja) 2012-08-01
CN101140354B (zh) 2012-01-25
EP2064994A1 (en) 2009-06-03
RU2428120C2 (ru) 2011-09-10

Similar Documents

Publication Publication Date Title
WO2008028373A1 (fr) Transducteur ultrasonore à résonance
US10039938B2 (en) System and method for variable depth ultrasound treatment
JP3478874B2 (ja) 超音波フェーズドアレイ変換器及びその製造方法
US4865042A (en) Ultrasonic irradiation system
Azuma et al. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer
US20120022375A1 (en) Acoustic device for ultrasonic imaging
KR101955786B1 (ko) 동심원 전극을 적용한 집속 초음파 트랜스듀서 및 그 트랜스듀서의 제어방법
JP2017131657A (ja) 光音響超音波イメージング装置
US5971925A (en) Broadband phased array transducer with frequency controlled two dimensional aperture capability for harmonic imaging
JPS5940846A (ja) トランスデユ−サ装置および超音波撮像装置
Wells Physics of ultrasound
US20050182326A1 (en) Combined therapy and imaging ultrasound apparatus
WO2013183247A1 (ja) 音響光学撮像装置
US5976091A (en) Limited diffraction broadband phased array transducer with frequency controlled two dimensional aperture capability
KR101927635B1 (ko) 섀도 마스크를 이용한 초음파 트랜스 듀서, 그 작동방법 및 시스템
US20180280735A1 (en) Efficient acoustic energy transfer through skull via excitation of Lamb waves
Yamada et al. Tube-type double-parabolic-reflector ultrasonic transducer (T-DPLUS)
KR20180096849A (ko) 바늘형 초음파 수신기가 적용된 집속 초음파 트랜스듀서 및 그 작동방법
JP3909307B2 (ja) 超音波送波器
KR20150065227A (ko) 광음향 영상장치 및 그 제어방법
KR102571779B1 (ko) 안질환 정밀 진단을 위한 초음파 변환자 및 이를 이용한 초음파 시스템
JP2024512698A (ja) 高調波特性を備えた圧電トランシーバを有するイメージングデバイス
CN115190409A (zh) 一种多功能便携式声学器件
Cha et al. Design of 15 MHz concave array transducers for ophthalmic imaging
Greenleaf Medical Transducers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07710938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2661998

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12439590

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009525895

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007710938

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009106258

Country of ref document: RU

Kind code of ref document: A