WO2008026331A1 - Capacitive acceleration sensor - Google Patents

Capacitive acceleration sensor Download PDF

Info

Publication number
WO2008026331A1
WO2008026331A1 PCT/JP2007/052231 JP2007052231W WO2008026331A1 WO 2008026331 A1 WO2008026331 A1 WO 2008026331A1 JP 2007052231 W JP2007052231 W JP 2007052231W WO 2008026331 A1 WO2008026331 A1 WO 2008026331A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed electrode
weight portion
capacitance
acceleration sensor
small weight
Prior art date
Application number
PCT/JP2007/052231
Other languages
French (fr)
Japanese (ja)
Inventor
Kosuke Uga
Manabu Tamura
Chisato Iwasaki
Makoto Sasaki
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2008026331A1 publication Critical patent/WO2008026331A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • G01P2015/0842Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape

Definitions

  • the present invention relates to a capacitance type acceleration sensor that detects acceleration using capacitance.
  • Patent Document 1 discloses a piezo-type acceleration sensor that can measure acceleration in two ranges. .
  • Patent Document 1 JP-A-3-112168
  • the piezo-type acceleration sensor disclosed in the above-mentioned patent document has a problem that the accuracy of acceleration measurement is poor because the temperature characteristics are poor. In this case, in order to accurately measure acceleration regardless of temperature changes, it is necessary to perform temperature compensation using a temperature sensor or the like.
  • An object of the present invention is to provide a capacitive acceleration sensor that can accurately measure acceleration regardless of temperature changes and can measure in a plurality of ranges. Means for solving the problem
  • the capacitive acceleration sensor of the present invention is disposed so as to face a first substrate having a fixed electrode and the fixed electrode, and is capable of forming a capacitance to be measured between the fixed electrode.
  • a capacitance-type acceleration sensor that measures acceleration by changing the capacitance, and the movable electrode starts to swing when a relatively low G is applied.
  • a small weight portion that starts swinging when a relatively high G is applied, and the small weight portion constitutes a part of the weight of the large weight portion, and the large weight portion When swinging Are characterized by rocking together.
  • the large weight portion and the small weight portion are provided, and when the relatively low G is added, the large weight portion swings, and when the relatively high G is added, the small weight Since the part swings, it is possible to measure acceleration in multiple ranges.
  • the fixed electrode includes a first fixed electrode for a large weight portion and a second fixed electrode for a small weight portion, and the first fixed electrode
  • the electrode preferably has a strobe layer that prevents electrical contact with the mass portion when a relatively high G is applied.
  • the fixed electrode is divided into a large weight portion (for low G) and a small weight portion (for high G), more accurate acceleration can be measured over a wide range.
  • the stopper layer it is possible to prevent an excessive force from acting on the mass portion and damage it, and to prevent electrical contact.
  • the first fixed electrode is divided so as to be symmetric with respect to each of two orthogonal axes on the electrode surface. According to this configuration, when the mass portion is displaced, accelerations in the two orthogonal (X, Y) and Z-axis directions on the electrode surface can be measured.
  • the second fixed electrode is divided so as to be symmetric with respect to each of the two orthogonal axes. According to this configuration, relatively high acceleration is applied, and acceleration in the X, ⁇ , and Z directions can be measured even when the spindle is displaced.
  • the movable electrode includes a frame, a first beam portion connecting the frame and the large weight portion or the small weight portion, and the large weight. It is preferable that a second beam portion connecting the portion and the small weight portion is included. According to this configuration, the structure having the first beam portion and the second beam portion can be made workable, reliable, and downsized, and is excellent in design ease and cost reduction.
  • FIG. 1 is a plan view showing a movable electrode of a capacitive acceleration sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing fixed electrodes of the capacitive acceleration sensor according to the first embodiment of the present invention.
  • FIG. 3 is a side view showing the capacitive acceleration sensor according to the first embodiment of the present invention.
  • FIG. 4 (a) and (b) are diagrams for explaining the operation of the capacitive acceleration sensor according to the first embodiment of the present invention.
  • FIG. 5 is a side view showing a capacitive acceleration sensor according to a second embodiment of the present invention.
  • FIG. 6 is a plan view showing fixed electrodes of the capacitive acceleration sensor according to the second embodiment of the present invention.
  • FIG. 7 is a plan view showing another example of the movable electrode of the capacitive acceleration sensor according to the embodiment of the present invention.
  • FIG. 8 is a plan view showing another example of the movable electrode of the capacitive acceleration sensor according to the embodiment of the present invention.
  • FIG. 9 is a side view showing another example of the stagger layer of the capacitive acceleration sensor according to the embodiment of the present invention.
  • FIG. 1 is a plan view showing movable electrodes of the capacitive acceleration sensor according to the first embodiment of the present invention.
  • the movable electrode 11 includes a frame 11a that is a second substrate, a mass part provided on the frame 11a, and a small mass part 11c provided on the mass part.
  • the movable electrode 11 includes a first beam portion l id that connects the frame body 11a and the large weight portion, and a second beam portion l ie that connects the large weight portion and the small weight portion 11c. including.
  • the mass part is located in the frame 11a, and is connected to a plurality of (here, four) ⁇ ⁇ llb 1, lib 2, lib 3, lib, and ⁇ ⁇
  • the small weight portion 11c is composed of a small weight portion l ie connected by two beam portions l ie. That is, the small weight portion 11c also serves as the large weight portion.
  • the mass portion swings when a relatively low G is applied.
  • the small spindle 11c swings when a relatively high G is applied.
  • FIG. 2 shows a fixed electrode of the capacitive acceleration sensor according to the first embodiment of the present invention. It is a top view.
  • the fixed electrode 12 is disposed at a position facing the movable electrode 11.
  • the fixed electrode 12 is formed on the first substrate, the fixed electrode 12e is disposed at the center, and the fixed electrodes 12a, 12b, 12c, and 12 (one self-positioned around the fixed electrode 12e).
  • 12a, 12b, 12c, 12d are mainly used when measuring acceleration with relatively low G, and the inner fixed electrode 12e is mainly with relatively high G.
  • the acceleration with the relatively low G added is mainly ⁇ ⁇ llb, lib, lib, lib of the movable electrode 11 and the fixed electrodes 12a, 12b, 12c, 12d and
  • the acceleration in the state where G, which is relatively high, is mainly applied is the capacitance between the small weight part 11c of the movable electrode 11 and the fixed electrode 12e. Measured based on changes in.
  • the acceleration in the X-axis direction mainly with a relatively low G added is caused by the weights l ib and l ib and the fixed electrodes 12a Capacitance between
  • the acceleration in the Y-axis direction with the relatively low G added is the weights l ib, l ib
  • FIG. 3 is a side view showing the capacitive acceleration sensor according to the first embodiment of the present invention.
  • the capacitive acceleration sensor 1 is mainly composed of a first substrate 13 having a fixed electrode 12, a second substrate having a movable electrode 11, and the like.
  • the second substrate has a space 1 If for accommodating at least the fixed electrode 12 and a space 1 lg for accommodating at least the large weight portion 1 lb and the small weight portion 1 lc.
  • the second substrate is bonded onto the first substrate 13 so that the fixed electrode 12 on the first substrate 13 and the movable electrode 11 on the second substrate face each other.
  • a third substrate 15 is bonded onto the second substrate.
  • the second substrate having the movable electrode 11 is sandwiched between the first substrate 13 and the third substrate 15. Then, the movable electrode 11 and the fixed electrode 12 are arranged in the cavity 16 constituted by these substrates. In addition, a capacitance to be measured is formed between the movable electrode 11 and the fixed electrode 12.
  • the shape, length, and thickness of the first beam portion l id and the second beam portion l ie are set based on the maximum deflection of the beam portion.
  • the maximum deflection Y of the beam is as follows: You can ask for it.
  • the volume of the weight portion is preferably about 5: 1.
  • the movable electrode 11 includes a large rod including ⁇ ⁇ l ib, l ib, l ib, and l ib, and / J ⁇
  • a stagger layer that prevents electrical contact with the mass portion when relatively high G is applied. 14 is formed.
  • the weight part l ib of the large weight part is greatly swung to contact the stopper layer 14.
  • the stopper layer 14 prevents the weight l ib that is a movable electrode and the fixed electrodes 12a, 12b, 12c, and 12d from being in electrical contact.
  • a material for the stopper layer 14 an insulating material is used. Further, the thickness of the stagger layer 14 is not particularly limited as long as the function is exhibited.
  • the capacitive acceleration sensor having such a configuration is manufactured, for example, as follows. First, the fixed electrodes 12a, 12b, 12c, 12d, and 12e are formed on the first substrate 13, and the stopper layer 14 is formed on the fixed electrodes 12a, 12b, 12c, and 12d. Formation of fixed electrode 12 and stopper layer 14 For example, it is performed by photolithography and etching. Next, both main surfaces of the second substrate are processed by etching or the like to move the movable electrode 11 (large weight portion, small weight portion l lc, first beam portion l id and second beam portion l ie) and space l lf, l Form lg.
  • one main surface of the second substrate is bonded onto the first substrate 13 so that the fixed electrode 12 is accommodated in the space l lf, and the third substrate 15 is formed on the other main surface of the second substrate. Join. It should be noted that the same effect can be obtained even if the strobe is provided on the movable electrode side.
  • the first substrate 13 and the third substrate 15 are made of a glass substrate, and the second substrate is a silicon substrate. It is preferable to comprise.
  • anodic bonding can be performed between the glass substrate and the silicon substrate, and the adhesion of the interface between the glass substrate and the silicon substrate can be increased, and the air tightness of the cavity 16 can be increased.
  • a conductive member is embedded in a glass substrate and the fixed electrode and the movable electrode are drawn out through the conductive member.
  • the lead electrode is one of the main substrates of the glass substrate. It is possible to make a surface-mount structure that is arranged side by side on the surface.
  • the distance between 2a is shortened.
  • the weight parts l ib and l ib of the large weight part of the movable electrode 11 are the first beam.
  • the X-axis direction component of the measured acceleration when G, which is relatively low, is strong can be calculated. In this case, since the measured capacity is obtained from the difference in capacitance, the temperature characteristics are canceled. It is possible to
  • the weight parts lib and lib of the large weight part of the movable electrode 11 are located above the first beam part lid as a fulcrum.
  • the measurement capacity corresponds to the acceleration in the X-axis direction. From this measured capacity, the X-axis direction component of the measured acceleration when a relatively low G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristics.
  • the weight parts lib and lib of the large weight part of the movable electrode 11 are located above the first beam part lid as a fulcrum.
  • the measurement capacity corresponds to the acceleration in the Y-axis direction. From this measured capacity, the Y-axis direction component of the measured acceleration when a relatively low G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristics.
  • the weight parts lib and lib of the large weight part of the movable electrode 11 are located above the first beam part lid as a fulcrum.
  • the measurement capacity corresponds to the acceleration in the Y-axis direction. From this measured capacity, the Y-axis direction component of the measured acceleration when a relatively low G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristics.
  • This measured capacitive force can also calculate the z-axis direction component of the measured acceleration. In this case, it is possible to cancel the temperature characteristics by providing a reference capacitance for detection in the Z-axis direction and subtracting the above-mentioned sum of the capacitance reference capacitance.
  • the small weight portion 11c swings around the second beam portion ie.
  • the small weight part 11c is displaced, and the distance between the small weight part 11c and the fixed electrode 12e is shortened.
  • the capacitance C between the small weight portion 11c and the fixed electrode 12e becomes a measurement capacitance corresponding to the acceleration in the Z-axis direction. From this measured capacity, the Z-axis direction component of the measured acceleration when a relatively high G is applied can be calculated.
  • the capacitance type acceleration sensor since the capacitance type acceleration sensor according to the present embodiment obtains the measurement capacitance from the difference in capacitance, it can accurately measure the acceleration regardless of the temperature change. .
  • a large weight part and a small weight part are provided so that the large weight part swings when a relatively low G is added and the small weight part swings when a relatively high G is added. Therefore, it is possible to measure in multiple ranges.
  • FIG. 5 is a side view showing the capacitive acceleration sensor according to the second embodiment of the present invention.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals as those in FIG.
  • the fixed electrode 12e with respect to the small weight portion 11c of the fixed electrode 12 is divided.
  • FIG. 6 is a plan view showing a fixed electrode of the capacitive acceleration sensor according to the second embodiment of the present invention.
  • the fixed electrode 12e for the small weight portion 11c has a plurality (four in this case) of fixed electrodes 12e, 12e, 12e, 12e. These fixed electrodes 12e, 12e,
  • the small weight portion 11c swings around the second beam portion l ie as a fulcrum.
  • the + X side (right side of the drawing) of the small weight portion 11c of the movable electrode 11 swings downward with the second beam portion lie as a fulcrum.
  • the + X side of the small weight part 11c is displaced, and the distance between the + X side of the small weight part 11c and the fixed electrode 12e is shortened.
  • the X side (left side of the page) swings upward with the second beam part id as a fulcrum.
  • the ⁇ X side of the small weight portion 11c is displaced, and the distance between the ⁇ X side of the small weight portion 11c and the fixed electrode 12e is increased.
  • the measured capacity corresponds to the speed. From this measured capacity, the X-axis direction component of the measured acceleration when a relatively high G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristic.
  • the difference between 3 2 1 1 (C – C) is the measurement capacity corresponding to the acceleration in the X-axis direction. From this measured capacity,
  • the X-axis direction component of the measured acceleration when a relatively high G is added can be calculated.
  • the measured capacitance is obtained from the difference in capacitance, it is possible to cancel the temperature characteristic.
  • the difference between 4 3 2 4 (C – C) is the measurement capacity corresponding to the acceleration in the Y-axis direction. From this measured capacity,
  • the Y-axis direction component of the measured acceleration when a relatively high G is added can be calculated.
  • the measured capacitance is obtained from the difference in capacitance, it is possible to cancel the temperature characteristic.
  • the sum of the capacitance C between 4 and 2 is the measured capacitance corresponding to the acceleration in the Z-axis direction.
  • Constant-capacity force The z-axis direction component of the measured acceleration can be calculated. In this case, it is possible to cancel the temperature characteristic by providing a reference capacitance for detection in the Z-axis direction and subtracting the reference capacitance from the above-described sum of capacitances.
  • the capacitance type acceleration sensor according to the present embodiment obtains the measurement capacitance from the difference in capacitance, it can accurately measure the acceleration regardless of the temperature change. .
  • a large weight part and a small weight part are provided so that the large weight part swings when a relatively low G is added and the small weight part swings when a relatively high G is added. Therefore, it is possible to measure in multiple ranges.
  • the capacitive acceleration sensor according to the present embodiment divides the fixed electrode for the small spindle part into a plurality of parts, even when a relatively high G is applied, the acceleration component in the three-axis direction is obtained. Can be measured.
  • the present invention is not limited to Embodiments 1 and 2 described above, and can be implemented with various modifications.
  • the shapes of the movable electrode 11 and the fixed electrode 12 are not limited to the first and second embodiments, and can be implemented with various changes.
  • the length, width, and thickness of the beam portion and the weight portion in the movable electrode 11 may be appropriately changed.
  • the movable electrode 11 includes a first beam portion id that connects the frame body 11a and the small weight portion 11c, and a second shape that connects the weight portion l ib and the small weight portion 11c. It may be configured to have a beam portion 1 le or may be configured as shown in FIG. 8 so that a large amount of displacement can be obtained in the movable electrode 11.
  • the mass of the movable electrode 11 A configuration that stops the oscillation and starts the oscillation of the small spindle is sufficient as shown in Fig. 9. Even if the stopper layer 14 is provided on the mass portions l ib, l ib, l ib, l ib, l ib
  • the first substrate having a fixed electrode and the fixed electrode are arranged so as to face each other, and a capacitance to be measured is formed between the fixed electrode.
  • a capacitance-type acceleration sensor that measures acceleration by changing the capacitance, and the movable electrode swings when a relatively low G is applied thereto.
  • a small weight portion that starts swinging when a relatively high G is applied, and the small weight portion constitutes a part of the weight of the large weight portion, and
  • the thicknesses and materials of the electrodes and the respective layers described in the first and second embodiments can be set as appropriate without departing from the effects of the present invention.
  • the processes described in the first and second embodiments are not limited to this, and may be performed by changing the order of the steps as appropriate. Other modifications can be made as appropriate without departing from the scope of the object of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

When a relatively low G is applied, weight portions (11b1, 11b2) at the large weight portion of a movable electrode (11) oscillate downward with a first beam portion (11d) as a fulcrum, and weight portions (11b3, 11b4) at the large weight portion oscillate upward with the first beam portion (11d) as a fulcrum. From a variation in capacitance at that time, measurement acceleration when a relatively low G is applied can be calculated. When a relatively high G is applied, the weight portions (11b1, 11b2) at the large weight portion of the movable electrode (11) oscillate downward with the first beam portion (11d) as a fulcrum to abut against a stopper layer (14) on a fixed electrode (12a), and then a small weight portion (11c) oscillates with a second beam portion (11e) as a fulcrum. From a variation in capacitance at that time, measurement acceleration when a relatively high G is applied can be calculated.

Description

明 細 書  Specification
静電容量型加速度センサ  Capacitance type acceleration sensor
技術分野  Technical field
[0001] 本発明は、静電容量を用いて加速度を検知する静電容量型加速度センサに関す る。  The present invention relates to a capacitance type acceleration sensor that detects acceleration using capacitance.
背景技術  Background art
[0002] 加速度センサを用いる機器の小型化、高機能化のニーズから、 1個のセンサで複 数のレンジで加速度の測定が可能な加速度センサが望まれて 、る。加速度センサの 一形式としてピエゾ式加速度センサがある力 例えば、特開平 3— 112168号公報( 特許文献 1)には、 2つのレンジで加速度の測定が可能であるピエゾ式加速度センサ が開示されている。  [0002] In view of the need for downsizing and higher functionality of devices using an acceleration sensor, an acceleration sensor capable of measuring acceleration in a plurality of ranges with a single sensor is desired. For example, Japanese Patent Laid-Open No. 3-112168 (Patent Document 1) discloses a piezo-type acceleration sensor that can measure acceleration in two ranges. .
特許文献 1 :特開平 3— 112168号公報  Patent Document 1: JP-A-3-112168
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、前述の特許文献に開示されたピエゾ式加速度センサにおいては、温 度特性が悪いので、加速度測定の精度が悪いという問題がある。この場合、温度変 化に拘らず正確に加速度を測定するためには、温度センサなどを用いて温度補償を 行う必要がある。 However, the piezo-type acceleration sensor disclosed in the above-mentioned patent document has a problem that the accuracy of acceleration measurement is poor because the temperature characteristics are poor. In this case, in order to accurately measure acceleration regardless of temperature changes, it is necessary to perform temperature compensation using a temperature sensor or the like.
[0004] 本発明の目的は、温度変化に拘らず正確に加速度を測定することができ、しかも複 数のレンジで測定が可能である静電容量型加速度センサを提供することである。 課題を解決するための手段  [0004] An object of the present invention is to provide a capacitive acceleration sensor that can accurately measure acceleration regardless of temperature changes and can measure in a plurality of ranges. Means for solving the problem
[0005] 本発明の静電容量型加速度センサは、固定電極を有する第 1基板と、前記固定電 極と対向するように配置され、前記固定電極との間に測定対象の容量を形成する可 動電極を有する第 2基板と、を具備し、前記容量の変化により加速度を測定する静電 容量型加速度センサであって、前記可動電極は、相対的に低い Gが加わることにより 揺動を開始する大錘部と、相対的に高い Gが加わることにより揺動を開始する小錘部 を有し、前記小錘部が、前記大錘部の重量の一部を構成し、前記大錘部の揺動時 は共に揺動することを特徴とする。 [0005] The capacitive acceleration sensor of the present invention is disposed so as to face a first substrate having a fixed electrode and the fixed electrode, and is capable of forming a capacitance to be measured between the fixed electrode. A capacitance-type acceleration sensor that measures acceleration by changing the capacitance, and the movable electrode starts to swing when a relatively low G is applied. And a small weight portion that starts swinging when a relatively high G is applied, and the small weight portion constitutes a part of the weight of the large weight portion, and the large weight portion When swinging Are characterized by rocking together.
[0006] この構成によれば、大錘部及び小錘部を設けて、相対的に低い Gが加わったときに 大錘部が揺動し、相対的に高い Gが加わったときに小錘部が揺動するので、複数の レンジで加速度の測定が可能である。  [0006] According to this configuration, the large weight portion and the small weight portion are provided, and when the relatively low G is added, the large weight portion swings, and when the relatively high G is added, the small weight Since the part swings, it is possible to measure acceleration in multiple ranges.
[0007] 本発明の静電容量型加速度センサにおいては、前記固定電極は、大錘部用の第 1固定電極と、小錘部用の第 2固定電極と、を有し、前記第 1固定電極は、相対的に 高い Gが加わった際に前記大錘部との間の電気的接触を防止するストツバ層を有す ることが好ましい。  [0007] In the capacitive acceleration sensor of the present invention, the fixed electrode includes a first fixed electrode for a large weight portion and a second fixed electrode for a small weight portion, and the first fixed electrode The electrode preferably has a strobe layer that prevents electrical contact with the mass portion when a relatively high G is applied.
[0008] この構成〖こよれば、固定電極が大錘部用(低 G用)と小錘部用(高 G用)に分かれて いるので、広い範囲でより正確な加速度の測定ができる。また、ストッパ層を用いるこ とで大錘部に過度の力が作用して破損することを防ぐと共に、電気的接触を防ぐこと ができる。  [0008] According to this configuration, since the fixed electrode is divided into a large weight portion (for low G) and a small weight portion (for high G), more accurate acceleration can be measured over a wide range. In addition, by using the stopper layer, it is possible to prevent an excessive force from acting on the mass portion and damage it, and to prevent electrical contact.
[0009] 本発明の静電容量型加速度センサにおいては、前記第 1固定電極が、電極面上 の直交する 2軸のそれぞれに対して対称となるように分割されて 、ることが好ま 、。 この構成によれば、大錘部が変位した場合、電極面上の直交する 2軸 (X, Y)及び Z 軸方向の加速度を測定できる。  In the capacitive acceleration sensor of the present invention, it is preferable that the first fixed electrode is divided so as to be symmetric with respect to each of two orthogonal axes on the electrode surface. According to this configuration, when the mass portion is displaced, accelerations in the two orthogonal (X, Y) and Z-axis directions on the electrode surface can be measured.
[0010] 本発明の静電容量型加速度センサにおいては、前記第 2固定電極が前記直交す る 2軸のそれぞれに対して対称となるように分割されて 、ることが好ま 、。この構成 によれば、相対的に高い加速度が加わり、小錘部が変位した際にも X, Υ, Zの 3軸方 向の加速度を測定することが可能になる。  In the capacitive acceleration sensor of the present invention, it is preferable that the second fixed electrode is divided so as to be symmetric with respect to each of the two orthogonal axes. According to this configuration, relatively high acceleration is applied, and acceleration in the X, Υ, and Z directions can be measured even when the spindle is displaced.
[0011] 本発明の静電容量型加速度センサにおいては、前記可動電極は、枠体と、前記枠 体と前記大錘部又は前記小錘部とを連接する第 1梁部と、前記大錘部と前記小錘部 とを連接する第 2梁部と、を含むことが好ましい。この構成によれば、第 1梁部と第 2梁 部とを持つ構造について、加工性、信頼性、小型化を図ることができ、しかも設計の 容易さ、低コスト化についても優れる。  [0011] In the capacitive acceleration sensor of the present invention, the movable electrode includes a frame, a first beam portion connecting the frame and the large weight portion or the small weight portion, and the large weight. It is preferable that a second beam portion connecting the portion and the small weight portion is included. According to this configuration, the structure having the first beam portion and the second beam portion can be made workable, reliable, and downsized, and is excellent in design ease and cost reduction.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の実施の形態 1に係る静電容量型加速度センサの可動電極を示す平 面図である。 [図 2]本発明の実施の形態 1に係る静電容量型加速度センサの固定電極を示す平 面図である。 FIG. 1 is a plan view showing a movable electrode of a capacitive acceleration sensor according to Embodiment 1 of the present invention. FIG. 2 is a plan view showing fixed electrodes of the capacitive acceleration sensor according to the first embodiment of the present invention.
[図 3]本発明の実施の形態 1に係る静電容量型加速度センサを示す側面図である。  FIG. 3 is a side view showing the capacitive acceleration sensor according to the first embodiment of the present invention.
[図 4] (a) , (b)は、本発明の実施の形態 1に係る静電容量型加速度センサの動作を 説明するための図である。  [FIG. 4] (a) and (b) are diagrams for explaining the operation of the capacitive acceleration sensor according to the first embodiment of the present invention.
[図 5]本発明の実施の形態 2に係る静電容量型加速度センサを示す側面図である。  FIG. 5 is a side view showing a capacitive acceleration sensor according to a second embodiment of the present invention.
[図 6]本発明の実施の形態 2に係る静電容量型加速度センサの固定電極を示す平 面図である。  FIG. 6 is a plan view showing fixed electrodes of the capacitive acceleration sensor according to the second embodiment of the present invention.
[図 7]本発明の実施の形態に係る静電容量型加速度センサの可動電極の他の例を 示す平面図である。  FIG. 7 is a plan view showing another example of the movable electrode of the capacitive acceleration sensor according to the embodiment of the present invention.
[図 8]本発明の実施の形態に係る静電容量型加速度センサの可動電極の他の例を 示す平面図である。  FIG. 8 is a plan view showing another example of the movable electrode of the capacitive acceleration sensor according to the embodiment of the present invention.
[図 9]本発明の実施の形態に係る静電容量型加速度センサのストツバ層の他の例を 示す側面図である。  FIG. 9 is a side view showing another example of the stagger layer of the capacitive acceleration sensor according to the embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(実施の形態 1)  (Embodiment 1)
図 1は、本発明の実施の形態 1に係る静電容量型加速度センサの可動電極を示す 平面図である。可動電極 11は、第 2基板である枠体 11aと、枠体 11aに設けられた大 錘部と、この大錘部に設けられた小錘部 11cとを含む。また、図 1においては、可動 電極 11は、枠体 11aと大錘部とを連接する第 1梁部 l idと、大錘部と小錘部 11cとを 連接する第 2梁部 l ieとを含む。  FIG. 1 is a plan view showing movable electrodes of the capacitive acceleration sensor according to the first embodiment of the present invention. The movable electrode 11 includes a frame 11a that is a second substrate, a mass part provided on the frame 11a, and a small mass part 11c provided on the mass part. In FIG. 1, the movable electrode 11 includes a first beam portion l id that connects the frame body 11a and the large weight portion, and a second beam portion l ie that connects the large weight portion and the small weight portion 11c. including.
[0014] 大錘部は、枠体 11a内に位置し、第 1梁部 l idで連接された複数 (ここでは 4つ)の 鍾咅 llb 1 , lib 2 , lib 3 , libと、鍾咅 [0014] The mass part is located in the frame 11a, and is connected to a plurality of (here, four) 鍾 咅 llb 1, lib 2, lib 3, lib, and 鍾 咅
4 llb 1 , lib 2 , lib 3 , libの内佃 Jに位置し、第  4 llb 1, lib 2, lib 3, lib
4  Four
2梁部 l ieで連接された小錘部 l ieとで構成される。すなわち、小錘部 11cは、大錘 部を兼ねている。この大錘部は、相対的に低い Gが加わることにより揺動する。小錘 部 11cは、相対的に高い Gが加わることにより揺動する。  It is composed of a small weight portion l ie connected by two beam portions l ie. That is, the small weight portion 11c also serves as the large weight portion. The mass portion swings when a relatively low G is applied. The small spindle 11c swings when a relatively high G is applied.
[0015] 図 2は、本発明の実施の形態 1に係る静電容量型加速度センサの固定電極を示す 平面図である。この固定電極 12は、可動電極 11と対向する位置に配置される。固定 電極 12は、第 1基板上に形成されており、中心に固定電極 12eが配置され、その周 りに固定電極 12a, 12b, 12c, 12(1カ 己置されている。外側の固定電極 12a, 12b, 12c, 12dは、主に相対的に低い Gが力かった状態で加速度を測定する際に使用さ れ、内側の固定電極 12eは、主に相対的に高い Gが加わった状態で加速度を測定 する際に使用される。すなわち、主に相対的に低い Gが加わった状態での加速度は 、可動電極 11の鍾咅 llb , lib , lib , libと、固定電極 12a, 12b, 12c, 12dと FIG. 2 shows a fixed electrode of the capacitive acceleration sensor according to the first embodiment of the present invention. It is a top view. The fixed electrode 12 is disposed at a position facing the movable electrode 11. The fixed electrode 12 is formed on the first substrate, the fixed electrode 12e is disposed at the center, and the fixed electrodes 12a, 12b, 12c, and 12 (one self-positioned around the fixed electrode 12e). 12a, 12b, 12c, 12d are mainly used when measuring acceleration with relatively low G, and the inner fixed electrode 12e is mainly with relatively high G. In other words, the acceleration with the relatively low G added is mainly 鍾 咅 llb, lib, lib, lib of the movable electrode 11 and the fixed electrodes 12a, 12b, 12c, 12d and
1 2 3 4  1 2 3 4
の間の静電容量の変化に基づいて測定され、主に相対的に高い Gが加わった状態 での加速度は、可動電極 11の小錘部 11cと、固定電極 12eとの間の静電容量の変 化に基づいて測定される。  The acceleration in the state where G, which is relatively high, is mainly applied is the capacitance between the small weight part 11c of the movable electrode 11 and the fixed electrode 12e. Measured based on changes in.
[0016] 具体的には、図 2に示す固定電極の配置においては、主に相対的に低い Gが加わ つた状態での X軸方向の加速度は、錘部 l ib , l ibと固定電極 12aとの間の静電容 Specifically, in the arrangement of the fixed electrodes shown in FIG. 2, the acceleration in the X-axis direction mainly with a relatively low G added is caused by the weights l ib and l ib and the fixed electrodes 12a Capacitance between
1 2  1 2
量変化と、錘部 l ib , l ibと固定電極 12bとの間の静電容量変化とを用いて測定し  Measurement using the change in capacitance and the change in capacitance between the weight l ib and l ib and the fixed electrode 12b.
3 4  3 4
、主に相対的に低い Gが加わった状態での Y軸方向の加速度は、錘部 l ib , l ibと  The acceleration in the Y-axis direction with the relatively low G added is the weights l ib, l ib
1 4 固定電極 12cとの間の静電容量変化と、錘部 l ib , l ibと固定電極 12dとの間の静  1 4 Capacitance change between the fixed electrode 12c and static electricity between the weights l ib, l ib and the fixed electrode 12d
2 3  twenty three
電容量変化とを用いて測定する。  Measured using capacitance change.
[0017] 図 3は、本発明の実施の形態 1に係る静電容量型加速度センサを示す側面図であ る。静電容量型加速度センサ 1は、固定電極 12を有する第 1基板 13と、可動電極 11 を有する第 2基板と、カゝら主に構成されている。第 2基板は、少なくとも固定電極 12を 収容する空間 1 Ifと、少なくとも大錘部 1 lb及び小錘部 1 lcを収容する空間 1 lgを有 する。第 1基板 13上の固定電極 12と第 2基板の可動電極 11とが対向するように、第 1基板 13上に第 2基板が接合されている。そして、第 2基板上には、第 3基板 15が接 合されている。これにより、図 3に示すように、第 1基板 13と第 3基板 15との間に可動 電極 11を有する第 2基板が挟持された構成となる。そして、これらの基板により構成 されるキヤビティ 16内に、可動電極 11及び固定電極 12が配置される。また、可動電 極 11と固定電極 12との間に測定対象の容量が形成される。  FIG. 3 is a side view showing the capacitive acceleration sensor according to the first embodiment of the present invention. The capacitive acceleration sensor 1 is mainly composed of a first substrate 13 having a fixed electrode 12, a second substrate having a movable electrode 11, and the like. The second substrate has a space 1 If for accommodating at least the fixed electrode 12 and a space 1 lg for accommodating at least the large weight portion 1 lb and the small weight portion 1 lc. The second substrate is bonded onto the first substrate 13 so that the fixed electrode 12 on the first substrate 13 and the movable electrode 11 on the second substrate face each other. A third substrate 15 is bonded onto the second substrate. As a result, as shown in FIG. 3, the second substrate having the movable electrode 11 is sandwiched between the first substrate 13 and the third substrate 15. Then, the movable electrode 11 and the fixed electrode 12 are arranged in the cavity 16 constituted by these substrates. In addition, a capacitance to be measured is formed between the movable electrode 11 and the fixed electrode 12.
[0018] 第 1梁部 l id及び第 2梁部 l ieについては、錘部を剛体と仮定すると、梁部の最大 たわみより、その形状、長さ、厚さを設定する。梁部の最大たわみ Yは、以下のように して求めることがでさる。 [0018] Assuming that the weight portion is a rigid body, the shape, length, and thickness of the first beam portion l id and the second beam portion l ie are set based on the maximum deflection of the beam portion. The maximum deflection Y of the beam is as follows: You can ask for it.
Y=W-L3/ (192-E-I) 式(1) Y = WL 3 / (192-EI) Formula (1)
W=F = m-a 式(2)  W = F = m-a Formula (2)
I = D-H3/12 式(3) I = DH 3/12 Equation (3)
式 1〜式 3より、  From Equation 1 to Equation 3,
Y= (E/16) · {L3/ (D-H3) } -m-a Y = (E / 16) · {L 3 / (DH 3 )} -ma
ここで、 W:載荷した荷重、 F:印加される力、 a:加速度、 L :梁部の長さ、 E :梁部の ヤング率、 I:断面二次モーメント、 D :梁部の幅、 H :梁部の厚さである。  Where W: Load applied, F: Applied force, a: Acceleration, L: Beam length, E: Beam Young's modulus, I: Cross section secondary moment, D: Beam width, H: The thickness of the beam.
[0019] このような梁部の最大たわみを考慮して、錘部の体積を設定することが望ま 、。例 えば、錘部 l ibと小錘部 11cとの間の体積比は、 5 : 1程度であることが望ましい。 [0019] It is desirable to set the volume of the weight portion in consideration of such maximum deflection of the beam portion. For example, the volume ratio between the weight l ib and the small weight portion 11c is preferably about 5: 1.
[0020] 可動電極 11は、上述したように、鍾咅 l ib , l ib , l ib , l ibを含む大鍾咅と、 /Jヽ [0020] As described above, the movable electrode 11 includes a large rod including 鍾 咅 l ib, l ib, l ib, and l ib, and / J ヽ
1 2 3 4  1 2 3 4
錘部 l ieと、第 1梁部 l idと、第 2梁部 l ieとを有する。このような可動電極 11におい て、相対的に低い Gが力かった状態では、第 1梁部 l idを支点として小錘部 11cを含 む大錘部が揺動し、相対的に高い Gが加わった状態では、第 2梁部 l ieを支点とし て小錘部 11cが揺動する。このように大錘部又は小錘部が揺動して変位することによ り、固定電極 12との間の距離が変わり、その距離の変化による静電容量の変化を検 出することができ、その静電容量変化で加速度を測定することができる。  It has a weight portion l ie, a first beam portion l id, and a second beam portion l ie. In such a movable electrode 11, when the relatively low G is strong, the mass portion including the small mass portion 11c swings with the first beam portion id as a fulcrum, and the relatively high G In the state where is added, the small weight portion 11c swings around the second beam portion l ie as a fulcrum. As the large spindle or small spindle swings and displaces in this way, the distance to the fixed electrode 12 changes, and the change in capacitance due to the change in the distance can be detected. The acceleration can be measured by the capacitance change.
[0021] 固定電極 12の大錘部用の固定電極 12a, 12b, 12c, 12d上には、相対的に高い Gが加わった際に大錘部との間の電気的接触を防止するストツバ層 14が形成されて いる。ある程度の高い Gが加わった状態では、大錘部の錘部 l ibが大きく揺動してス トツパ層 14に当接する。これにより、それ以上の Gが加わっても大錘部は揺動しない 。このとき、ストッパ層 14は、可動電極である錘部 l ibと固定電極 12a, 12b, 12c, 1 2dとが電気的に接触することを防止する。ストッパ層 14の材料としては、絶縁性材料 を用いる。また、ストツバ層 14の厚さは、前記機能を発揮する範囲において特に制限 はない。 [0021] On the fixed electrodes 12a, 12b, 12c, and 12d for the mass portion of the fixed electrode 12, a stagger layer that prevents electrical contact with the mass portion when relatively high G is applied. 14 is formed. In a state where a certain amount of G is added, the weight part l ib of the large weight part is greatly swung to contact the stopper layer 14. As a result, even if more G is added, the mass portion does not swing. At this time, the stopper layer 14 prevents the weight l ib that is a movable electrode and the fixed electrodes 12a, 12b, 12c, and 12d from being in electrical contact. As a material for the stopper layer 14, an insulating material is used. Further, the thickness of the stagger layer 14 is not particularly limited as long as the function is exhibited.
[0022] このような構成の静電容量型加速度センサは、例えば次のようにして製造する。ま ず、第 1基板 13上に固定電極 12a, 12b, 12c, 12d, 12eを形成し、固定電極 12a, 12b, 12c, 12d上にストッパ層 14を形成する。固定電極 12やストッパ層 14の形成は 、例えばフォトリソグラフィー及びエッチングにより行う。次いで、第 2基板の両主面を エッチングなどにより加工して可動電極 11 (大錘部、小錘部 l lc、第 1梁部 l id及び 第 2梁部 l ie)及び空間 l lf, l lgを形成する。そして、空間 l lfに固定電極 12が収 容されるように、第 2基板の一方の主面を第 1基板 13上に接合し、さらに第 2基板の 他方の主面上に第 3基板 15を接合する。なお、ストツバは可動電極側に設けても同 様の効果を奏することができる。 [0022] The capacitive acceleration sensor having such a configuration is manufactured, for example, as follows. First, the fixed electrodes 12a, 12b, 12c, 12d, and 12e are formed on the first substrate 13, and the stopper layer 14 is formed on the fixed electrodes 12a, 12b, 12c, and 12d. Formation of fixed electrode 12 and stopper layer 14 For example, it is performed by photolithography and etching. Next, both main surfaces of the second substrate are processed by etching or the like to move the movable electrode 11 (large weight portion, small weight portion l lc, first beam portion l id and second beam portion l ie) and space l lf, l Form lg. Then, one main surface of the second substrate is bonded onto the first substrate 13 so that the fixed electrode 12 is accommodated in the space l lf, and the third substrate 15 is formed on the other main surface of the second substrate. Join. It should be noted that the same effect can be obtained even if the strobe is provided on the movable electrode side.
[0023] なお、このような静電容量型加速度センサにおいて、キヤビティ 16の気密性を高め るためには、第 1基板 13及び第 3基板 15をガラス基板で構成し、第 2基板をシリコン 基板で構成することが好ましい。これにより、ガラス基板とシリコン基板との間で陽極 接合を行うことができ、ガラス基板とシリコン基板との間の界面の密着性を高めてキヤ ビティ 16の気密性を高めることができる。このようにキヤビティ 16内の気密性を高くす ることにより、キヤビティ 16内において錘部が空気の粘性抵抗を受けなくなり、加速度 に対して高い感度を示すようになる。また、このような構成においては、ガラス基板に 導電性部材を埋め込んで、固定電極や可動電極を導電性部材を介して引き出す構 造を実現することができ、引き出し電極がガラス基板の一方の主面上に並設された 表面実装構造にすることが可能となる。  In such a capacitance type acceleration sensor, in order to improve the airtightness of the cavity 16, the first substrate 13 and the third substrate 15 are made of a glass substrate, and the second substrate is a silicon substrate. It is preferable to comprise. As a result, anodic bonding can be performed between the glass substrate and the silicon substrate, and the adhesion of the interface between the glass substrate and the silicon substrate can be increased, and the air tightness of the cavity 16 can be increased. By increasing the airtightness in the cavity 16 in this way, the weight portion in the cavity 16 is not subjected to the viscous resistance of air and exhibits high sensitivity to acceleration. In such a configuration, it is possible to realize a structure in which a conductive member is embedded in a glass substrate and the fixed electrode and the movable electrode are drawn out through the conductive member. The lead electrode is one of the main substrates of the glass substrate. It is possible to make a surface-mount structure that is arranged side by side on the surface.
[0024] 次に、上記構成を有する静電容量加速度センサにより加速度を測定する場合につ いて説明する。  Next, a case where acceleration is measured by the capacitance acceleration sensor having the above configuration will be described.
まず、図 2に示す +X側に相対的に低い G (例えば 2G)が加わった場合、図 4 (a)に 示すように、可動電極 11の大錘部の錘部 l ib , l ibが第 1梁部 l idを支点に下方  First, when a relatively low G (for example, 2G) is added to the + X side shown in FIG. 2, as shown in FIG. 4 (a), the weight parts l ib and l ib of the large weight part of the movable electrode 11 are 1st beam part l id downward
1 2  1 2
に揺動する。これにより、錘部 l ib , l ibが変位して、錘部 l ib , l ibと固定電極 1  Rocks. As a result, the weight parts l ib, l ib are displaced, and the weight parts l ib, l ib and the fixed electrode 1
1 2 1 2  1 2 1 2
2aとの間の距離が短くなる。一方、可動電極 11の大錘部の錘部 l ib , l ibが第 1梁  The distance between 2a is shortened. On the other hand, the weight parts l ib and l ib of the large weight part of the movable electrode 11 are the first beam.
3 4 部 l idを支点に上方に揺動する。これにより、錘部 l ib , l ibが変位して、錘部 l ib  3 4 Part l Swing upward with the id as a fulcrum. As a result, the weight parts l ib and l ib are displaced, and the weight part l ib
3 4  3 4
, l ibと固定電極 12bとの間の距離が長くなる。このとき、錘部 l ib, l ibと固定電 , L ib and the distance between fixed electrode 12b become longer. At this time, the weight parts l ib and l ib and the fixed
3 4 1 2 極 12aとの間の静電容量 Cと、錘部 l ib, l ibと固定電極 12bとの間の静電容量 C 3 4 1 2 Capacitance C between the poles 12a and capacitance C between the weights l ib and l ib and the fixed electrode 12b
1 3 4 2 の差 (C— C )が X軸方向の加速度に対応する測定容量となる。この測定容量から、 The difference between 1 3 4 2 (C – C) is the measurement capacity corresponding to the acceleration in the X-axis direction. From this measured capacity,
1 2 1 2
相対的に低い Gが力かったときの測定加速度の X軸方向成分を算出することができ る。この場合、静電容量の差により測定容量を求めているので、温度特性をキャンセ ルすることが可能である。 The X-axis direction component of the measured acceleration when G, which is relatively low, is strong can be calculated. In this case, since the measured capacity is obtained from the difference in capacitance, the temperature characteristics are canceled. It is possible to
[0025] 同様に、図 2に示す—X側に相対的に低い G (例えば 2G)が加わった場合、可動電 極 11の大錘部の錘部 lib , libが第 1梁部 lidを支点に下方に揺動する。これに  Similarly, when a relatively low G (for example, 2G) is added to the X side as shown in FIG. 2, the weight parts lib and lib of the large weight part of the movable electrode 11 support the first beam part lid. Swings downward. to this
3 4  3 4
より、錘部 lib, libが変位して、錘部 lib, libと固定電極 12bとの間の距離が  Therefore, the weight parts lib and lib are displaced, and the distance between the weight parts lib and lib and the fixed electrode 12b is
3 4 3 4  3 4 3 4
短くなる。一方、可動電極 11の大錘部の錘部 lib , libが第 1梁部 lidを支点に上  Shorter. On the other hand, the weight parts lib and lib of the large weight part of the movable electrode 11 are located above the first beam part lid as a fulcrum.
1 2  1 2
方に揺動する。これにより、錘部 lib , libが変位して、錘部 lib , libと固定電極  Swings in the direction. As a result, the weight parts lib and lib are displaced, and the weight parts lib and lib and the fixed electrode
1 2 1 2  1 2 1 2
12aとの間の距離が長くなる。このとき、錘部 lib, libと固定電極 12bとの間の静  The distance to 12a becomes longer. At this time, the static between the weight parts lib, lib and the fixed electrode 12b
3 4  3 4
電容量 Cと、錘部 lib, libと固定電極 12aとの間の静電容量 Cの差(C C )が  The difference between the capacitance C and the capacitance C between the weight parts lib and lib and the fixed electrode 12a (C C) is
2 1 2 1 2 2 2 1 2 1 2 2
X軸方向の加速度に対応する測定容量となる。この測定容量から、相対的に低い G が加わったときの測定加速度の X軸方向成分を算出することができる。この場合、静 電容量の差により測定容量を求めているので、温度特性をキャンセルすることが可能 である。 The measurement capacity corresponds to the acceleration in the X-axis direction. From this measured capacity, the X-axis direction component of the measured acceleration when a relatively low G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristics.
[0026] 同様に、図 2に示す +Y側に相対的に低い G (例えば 2G)が加わった場合、可動電 極 11の大錘部の錘部 lib , libが第 1梁部 lidを支点に下方に揺動する。これに  Similarly, when a relatively low G (for example, 2G) is added to the + Y side shown in FIG. 2, the weight parts lib and lib of the large weight part of the movable electrode 11 support the first beam part lid. Swings downward. to this
1 4  14
より、錘部 lib, libが変位して、錘部 lib, libと固定電極 12cとの間の距離が  Therefore, the weight parts lib and lib are displaced, and the distance between the weight parts lib and lib and the fixed electrode 12c is
1 4 1 4  1 4 1 4
短くなる。一方、可動電極 11の大錘部の錘部 lib , libが第 1梁部 lidを支点に上  Shorter. On the other hand, the weight parts lib and lib of the large weight part of the movable electrode 11 are located above the first beam part lid as a fulcrum.
2 3  twenty three
方に揺動する。これにより、錘部 lib , libが変位して、錘部 lib , libと固定電極  Swings in the direction. As a result, the weight parts lib and lib are displaced, and the weight parts lib and lib and the fixed electrode
2 3 2 3  2 3 2 3
12dとの間の距離が長くなる。このとき、錘部 lib, libと固定電極 12cとの間の静  The distance between 12d becomes longer. At this time, the static between the weight parts lib, lib and the fixed electrode 12c
1 4  14
電容量 Cと、錘部 lib, libと固定電極 12dとの間の静電容量 Cの差(C C )が  The difference between the capacitance C and the capacitance C between the weight parts lib, lib and the fixed electrode 12d (C C) is
3 2 3 4 3 4 3 2 3 4 3 4
Y軸方向の加速度に対応する測定容量となる。この測定容量から、相対的に低い G が加わったときの測定加速度の Y軸方向成分を算出することができる。この場合、静 電容量の差により測定容量を求めているので、温度特性をキャンセルすることが可能 である。 The measurement capacity corresponds to the acceleration in the Y-axis direction. From this measured capacity, the Y-axis direction component of the measured acceleration when a relatively low G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristics.
[0027] 同様に、図 2に示す Y側に相対的に低い G (例えば 2G)が加わった場合、可動電 極 11の大錘部の錘部 lib , libが第 1梁部 lidを支点に下方に揺動する。これに  Similarly, when a relatively low G (for example, 2G) is added to the Y side shown in FIG. 2, the weight parts lib and lib of the large weight part of the movable electrode 11 use the first beam part lid as a fulcrum. Swings downward. to this
2 3  twenty three
より、錘部 lib, libが変位して、錘部 lib, libと固定電極 12dとの間の距離が  Therefore, the weight parts lib and lib are displaced, and the distance between the weight parts lib and lib and the fixed electrode 12d is
2 3 2 3  2 3 2 3
短くなる。一方、可動電極 11の大錘部の錘部 lib , libが第 1梁部 lidを支点に上  Shorter. On the other hand, the weight parts lib and lib of the large weight part of the movable electrode 11 are located above the first beam part lid as a fulcrum.
1 4  14
方に揺動する。これにより、錘部 lib , libが変位して、錘部 lib , libと固定電極 12cとの間の距離が長くなる。このとき、錘部 l ib , l ibと固定電極 12dとの間の静 Swings in the direction. As a result, the weight parts lib and lib are displaced, and the weight parts lib and lib and the fixed electrode The distance to 12c is longer. At this time, the static force between the weights l ib and l ib and the fixed electrode 12d
2 3  twenty three
電容量 Cと、錘部 l ib , l ibと固定電極 12cとの間の静電容量 Cの差(C C )が  The difference between the capacitance C and the capacitance C between the weight parts l ib and l ib and the fixed electrode 12c (C C) is
4 1 4 3 4 3 4 1 4 3 4 3
Y軸方向の加速度に対応する測定容量となる。この測定容量から、相対的に低い G が加わったときの測定加速度の Y軸方向成分を算出することができる。この場合、静 電容量の差により測定容量を求めているので、温度特性をキャンセルすることが可能 である。 The measurement capacity corresponds to the acceleration in the Y-axis direction. From this measured capacity, the Y-axis direction component of the measured acceleration when a relatively low G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristics.
[0028] Z軸方向に相対的に低い G (例えば 2G)が加わった場合には、錘部 l ib , l ibと  [0028] When a relatively low G (for example, 2G) is added in the Z-axis direction, the weights l ib, l ib and
1 2 固定電極 12aとの間の静電容量 Cと、錘部 l ib, l ibと固定電極 12bとの間の静電  1 2 Capacitance C between the fixed electrode 12a and electrostatic capacity between the weights l ib and l ib and the fixed electrode 12b
1 3 4  1 3 4
容量 Cと、錘部 l ib, l ibと固定電極 12cとの間の静電容量 Cと、錘部 l ib, l ib Capacitance C and the capacitance C between the weight parts l ib and l ib and the fixed electrode 12c and the weight parts l ib and l ib
2 1 4 3 2 3 と固定電極 12dとの間の静電容量 Cとの和が Z軸方向の加速度に対応する測定容 2 1 4 3 2 3 and the capacitance C between the fixed electrode 12d and the measurement capacitance corresponding to the acceleration in the Z-axis direction.
4  Four
量となる。この測定容量力も測定加速度の z軸方向成分を算出することができる。な お、この場合において、 Z軸方向の検出用の基準容量を設けておき、前述した静電 容量の和力 基準容量を減算することにより、温度特性をキャンセルすることが可能 である。  It becomes quantity. This measured capacitive force can also calculate the z-axis direction component of the measured acceleration. In this case, it is possible to cancel the temperature characteristics by providing a reference capacitance for detection in the Z-axis direction and subtracting the above-mentioned sum of the capacitance reference capacitance.
[0029] また、相対的に高い G (例えば 60G)が加わった場合、図 4 (b)に示すように、まず 可動電極 11の大錘部の錘部 l ib , l ibが第 1梁部 l idを支点に下方に揺動し、固  [0029] When a relatively high G (for example, 60G) is added, as shown in FIG. 4 (b), first, the weight parts l ib and l ib of the large weight part of the movable electrode 11 are the first beam parts. l Swing downward with id as a fulcrum
1 2  1 2
定電極 12a上のストッパ層 14に当接する。これにより、大錘部の錘部 l ib, l ib力 S  It contacts the stopper layer 14 on the constant electrode 12a. As a result, the weight part l ib and l ib force S of the large weight part
1 2 それ以上揺動できない状態となる。その後、小錘部 11cが第 2梁部 l ieを支点に揺 動する。これにより、小錘部 11cが変位して、小錘部 11cと固定電極 12eとの間の距 離が短くなる。このとき、小錘部 11cと固定電極 12eとの間の静電容量 Cが Z軸方向 の加速度に対応する測定容量となる。この測定容量から、相対的に高い Gがかかつ たときの測定加速度の Z軸方向成分を算出することができる。  1 2 Can no longer swing. Thereafter, the small weight portion 11c swings around the second beam portion ie. As a result, the small weight part 11c is displaced, and the distance between the small weight part 11c and the fixed electrode 12e is shortened. At this time, the capacitance C between the small weight portion 11c and the fixed electrode 12e becomes a measurement capacitance corresponding to the acceleration in the Z-axis direction. From this measured capacity, the Z-axis direction component of the measured acceleration when a relatively high G is applied can be calculated.
[0030] このように、本実施の形態に係る静電容量型加速度センサは、静電容量の差により 測定容量を求めているので、温度変化に拘らず正確に加速度を測定することができ る。また、大錘部及び小錘部を設けて、相対的に低い Gが加わったときに大錘部が摇 動し、相対的に高い Gが加わったときに小錘部が揺動するようにしているので、複数 のレンジで測定が可能である。  [0030] As described above, since the capacitance type acceleration sensor according to the present embodiment obtains the measurement capacitance from the difference in capacitance, it can accurately measure the acceleration regardless of the temperature change. . In addition, a large weight part and a small weight part are provided so that the large weight part swings when a relatively low G is added and the small weight part swings when a relatively high G is added. Therefore, it is possible to measure in multiple ranges.
[0031] (実施の形態 2) 本実施の形態においては、相対的に高い Gが加わった場合においても、 3軸方向 における加速度成分を測定できる静電容量型加速度センサについて説明する。 [0031] (Embodiment 2) In the present embodiment, a capacitive acceleration sensor capable of measuring acceleration components in three axis directions even when a relatively high G is applied will be described.
[0032] 図 5は、本発明の実施の形態 2に係る静電容量型加速度センサを示す側面図であ る。図 5において、図 3と同じ部分については、図 3と同じ符号を付して、その詳細な 説明は省略する。図 5に示すように、本実施の形態に係る静電容量型加速度センサ においては、固定電極 12の小錘部 11cに対する固定電極 12eが分割されている。ま た、図 6は、本発明の実施の形態 2に係る静電容量型加速度センサの固定電極を示 す平面図である。図 6に示すように、小錘部 11c用の固定電極 12eは、複数 (ここでは 4つ)の固定電極 12e , 12e , 12e , 12eを有する。これらの固定電極 12e , 12e , FIG. 5 is a side view showing the capacitive acceleration sensor according to the second embodiment of the present invention. In FIG. 5, the same parts as those in FIG. 3 are denoted by the same reference numerals as those in FIG. As shown in FIG. 5, in the capacitive acceleration sensor according to the present embodiment, the fixed electrode 12e with respect to the small weight portion 11c of the fixed electrode 12 is divided. FIG. 6 is a plan view showing a fixed electrode of the capacitive acceleration sensor according to the second embodiment of the present invention. As shown in FIG. 6, the fixed electrode 12e for the small weight portion 11c has a plurality (four in this case) of fixed electrodes 12e, 12e, 12e, 12e. These fixed electrodes 12e, 12e,
1 2 3 4 1 2 1 2 3 4 1 2
12e , 12eは、図 5に示すように、可動電極 11の小錘部 11cと対向するように配置さ12e and 12e are arranged so as to face the small weight portion 11c of the movable electrode 11, as shown in FIG.
3 4 3 4
れている。  It is.
[0033] 次に、上記構成を有する静電容量加速度センサにより加速度を測定する場合につ いて説明する。  Next, a case where acceleration is measured by the capacitance acceleration sensor having the above configuration will be described.
相対的に低い G (例えば 2G)が加わった場合については、実施の形態 1と同じであ る。図 6に示す +X側に相対的に高い G (例えば 60G)が加わった場合、可動電極 11 の大錘部の錘部 l ib , l ibが第 1梁部 l idを支点に下方に揺動し、固定電極 12a  The case where a relatively low G (for example, 2G) is added is the same as in the first embodiment. When a relatively high G (for example, 60G) is added to the + X side shown in Fig. 6, the weights l ib and l ib of the mass part of the movable electrode 11 swing downward with the first beam part l id as a fulcrum. Moving and fixed electrode 12a
1 2  1 2
上のストツバ層 14に当接し、その後、小錘部 11cが第 2梁部 l ieを支点に揺動する。  Then, the small weight portion 11c swings around the second beam portion l ie as a fulcrum.
[0034] このとき、可動電極 11の小錘部 11cの +X側(紙面向って右側)が第 2梁部 l ieを 支点に下方に揺動する。これにより、小錘部 11cの +X側が変位して、小錘部 11cの +X側と固定電極 12eとの間の距離が短くなる。一方、可動電極 11の小錘部 11cの At this time, the + X side (right side of the drawing) of the small weight portion 11c of the movable electrode 11 swings downward with the second beam portion lie as a fulcrum. As a result, the + X side of the small weight part 11c is displaced, and the distance between the + X side of the small weight part 11c and the fixed electrode 12e is shortened. On the other hand, the small weight portion 11c of the movable electrode 11
1  1
X側 (紙面向って左側)が第 2梁部 l idを支点に上方に揺動する。これにより、小錘 部 11cの— X側が変位して、小錘部 11cの— X側と固定電極 12eとの間の距離が長  The X side (left side of the page) swings upward with the second beam part id as a fulcrum. As a result, the −X side of the small weight portion 11c is displaced, and the distance between the −X side of the small weight portion 11c and the fixed electrode 12e is increased.
3  Three
くなる。このとき、小錘部 11cの +X側と固定電極 12eとの間の静電容量 Cと、小錘  Become. At this time, the electrostatic capacitance C between the + X side of the small weight part 11c and the fixed electrode 12e and the small weight
1 1 部 11cの— X側と固定電極 12eとの間の静電容量 Cの差 (C— C )が X軸方向の加  1 1 Part 11c — The difference in capacitance C between the X side and the fixed electrode 12e (C — C)
3 2 1 2  3 2 1 2
速度に対応する測定容量となる。この測定容量から、相対的に高い Gが加わったとき の測定加速度の X軸方向成分を算出することができる。この場合、静電容量の差によ り測定容量を求めて 、るので、温度特性をキャンセルすることが可能である。  The measured capacity corresponds to the speed. From this measured capacity, the X-axis direction component of the measured acceleration when a relatively high G is added can be calculated. In this case, since the measured capacity is obtained from the difference in electrostatic capacity, it is possible to cancel the temperature characteristic.
[0035] 同様に、図 6に示す—X側に相対的に高い G (例えば 60G)が加わった場合、可動 電極 11の小錘部 l ieの— X側が第 2梁部 l ieを支点に下方に揺動する。これにより 、小錘部 11cの— X側が変位して、小錘部 11cの— X側と固定電極 12eとの間の距 [0035] Similarly, when a relatively high G (for example, 60G) is added to the X side as shown in Fig. 6, it is movable. The X side of the small weight portion l ie of the electrode 11 swings downward with the second beam portion l ie as a fulcrum. As a result, the —X side of the small weight portion 11c is displaced, and the distance between the —X side of the small weight portion 11c and the fixed electrode 12e.
3  Three
離が短くなる。一方、可動電極 11の小錘部 l ieの +X側が第 2梁部 l idを支点に上 方に揺動する。これにより、小錘部 11cの +X側が変位して、小錘部 11cの +X側と 固定電極 12eとの間の距離が長くなる。このとき、小錘部 11cの一 X側と固定電極 12  Release is shortened. On the other hand, the + X side of the small weight l ie of the movable electrode 11 swings upward with the second beam l id as a fulcrum. As a result, the + X side of the small weight part 11c is displaced, and the distance between the + X side of the small weight part 11c and the fixed electrode 12e is increased. At this time, one X side of the small weight portion 11c and the fixed electrode 12
1  1
eとの間の静電容量 Cと、小錘部 11cの +X側と固定電極 12eとの間の静電容量 C Capacitance C between e and the capacitance C between the + X side of the small spindle 11c and the fixed electrode 12e
3 2 1 1 の差 (C— C )が X軸方向の加速度に対応する測定容量となる。この測定容量から、The difference between 3 2 1 1 (C – C) is the measurement capacity corresponding to the acceleration in the X-axis direction. From this measured capacity,
2 1 twenty one
相対的に高い Gが加わったときの測定加速度の X軸方向成分を算出することができ る。この場合、静電容量の差により測定容量を求めているので、温度特性をキャンセ ルすることが可能である。  The X-axis direction component of the measured acceleration when a relatively high G is added can be calculated. In this case, since the measured capacitance is obtained from the difference in capacitance, it is possible to cancel the temperature characteristic.
[0036] 同様に、図 6に示す +Y側に相対的に高い G (例えば 60G)が加わった場合、可動 電極 11の小錘部 11cの +Y側が第 2梁部 l ieを支点に下方に揺動する。これにより 、小錘部 11cの +Y側が変位して、小錘部 11cの +Y側と固定電極 12eとの間の距  Similarly, when a relatively high G (for example, 60G) is added to the + Y side shown in FIG. 6, the + Y side of the small weight portion 11c of the movable electrode 11 is lowered with the second beam portion lie as a fulcrum. Rocks. As a result, the + Y side of the small weight part 11c is displaced, and the distance between the + Y side of the small weight part 11c and the fixed electrode 12e.
4  Four
離が短くなる。一方、可動電極 11の小錘部 l ieの— Y側が第 2梁部 l idを支点に上 方に揺動する。これにより、小錘部 11cの Y側が変位して、小錘部 11cの—Y側と 固定電極 12eとの間の距離が長くなる。このとき、小錘部 11cの +Y側と固定電極 12  Release is shortened. On the other hand, the −Y side of the small weight portion l ie of the movable electrode 11 swings upward with the second beam portion l id as a fulcrum. As a result, the Y side of the small weight part 11c is displaced, and the distance between the −Y side of the small weight part 11c and the fixed electrode 12e is increased. At this time, the + Y side of the small weight portion 11c and the fixed electrode 12
2  2
eとの間の静電容量 Cと、小錘部 11cの一 Y側と固定電極 12eとの間の静電容量 C Capacitance C between e and the capacitance C between the Y side of the small spindle 11c and the fixed electrode 12e
4 3 2 4 の差 (C— C )が Y軸方向の加速度に対応する測定容量となる。この測定容量から、The difference between 4 3 2 4 (C – C) is the measurement capacity corresponding to the acceleration in the Y-axis direction. From this measured capacity,
3 4 3 4
相対的に高い Gが加わったときの測定加速度の Y軸方向成分を算出することができ る。この場合、静電容量の差により測定容量を求めているので、温度特性をキャンセ ルすることが可能である。  The Y-axis direction component of the measured acceleration when a relatively high G is added can be calculated. In this case, since the measured capacitance is obtained from the difference in capacitance, it is possible to cancel the temperature characteristic.
[0037] 同様に、図 6に示す Y側に相対的に高い G (例えば 60G)が加わった場合、可動 電極 11の小錘部 11cの— Y側が第 2梁部 l ieを支点に下方に揺動する。これにより 、小錘部 11cの Y側が変位して、小錘部 11cの—Y側と固定電極 12eとの間の距 [0037] Similarly, when a relatively high G (for example, 60G) is added to the Y side shown in FIG. 6, the Y side of the small weight portion 11c of the movable electrode 11 faces downward with the second beam portion lie as a fulcrum. Swing. As a result, the Y side of the small weight part 11c is displaced, and the distance between the −Y side of the small weight part 11c and the fixed electrode 12e.
2  2
離が短くなる。一方、可動電極 11の小錘部 l ieの +Y側が第 2梁部 l idを支点に上 方に揺動する。これにより、小錘部 11cの +Y側が変位して、小錘部 11cの +Y側と 固定電極 12eとの間の距離が長くなる。このとき、小錘部 11cの一 Y側と固定電極 12  Release is shortened. On the other hand, the + Y side of the small weight portion l ie of the movable electrode 11 swings upward with the second beam portion l id as a fulcrum. As a result, the + Y side of the small weight part 11c is displaced, and the distance between the + Y side of the small weight part 11c and the fixed electrode 12e is increased. At this time, one Y side of the small weight portion 11c and the fixed electrode 12
4  Four
eとの間の静電容量 Cと、小錘部 11cの +Y側と固定電極 12eとの間の静電容量 C の差 (c — C )が Y軸方向の加速度に対応する測定容量となる。この測定容量から、capacitance C between e and the capacitance C between + Y side of the small spindle 11c and the fixed electrode 12e The difference (c — C) is the measured capacity corresponding to the acceleration in the Y-axis direction. From this measured capacity,
4 3 4 3
相対的に高い Gが加わったときの測定加速度の Υ軸方向成分を算出することができ る。この場合、静電容量の差により測定容量を求めているので、温度特性をキャンセ ルすることが可能である。  It is possible to calculate the axial component of the measured acceleration when a relatively high G is added. In this case, since the measured capacitance is obtained from the difference in capacitance, it is possible to cancel the temperature characteristic.
[0038] Ζ軸方向に相対的に高い G (例えば 60G)が加わつた場合には、小錘部 11 cと固定 電極 12eとの間の静電容量 Cと、小錘部 11cと固定電極 12eとの間の静電容量 C [0038] When a relatively high G (for example, 60G) is added in the axial direction, the capacitance C between the small weight part 11c and the fixed electrode 12e, and the small weight part 11c and the fixed electrode 12e Capacitance between
1 1 3 2 と、小錘部 l ieと固定電極 12eとの間の静電容量 Cと、小錘部 11cと固定電極 12e  1 1 3 2, capacitance C between the small weight portion l ie and the fixed electrode 12e, small weight portion 11c and the fixed electrode 12e
4 3 2 との間の静電容量 Cとの和が Z軸方向の加速度に対応する測定容量となる。この測  The sum of the capacitance C between 4 and 2 is the measured capacitance corresponding to the acceleration in the Z-axis direction. This measurement
4  Four
定容量力 測定加速度の z軸方向成分を算出することができる。なお、この場合にお いて、 Z軸方向の検出用の基準容量を設けておき、前述した静電容量の和から基準 容量を減算することにより、温度特性をキャンセルすることが可能である。  Constant-capacity force The z-axis direction component of the measured acceleration can be calculated. In this case, it is possible to cancel the temperature characteristic by providing a reference capacitance for detection in the Z-axis direction and subtracting the reference capacitance from the above-described sum of capacitances.
[0039] このように、本実施の形態に係る静電容量型加速度センサは、静電容量の差により 測定容量を求めているので、温度変化に拘らず正確に加速度を測定することができ る。また、大錘部及び小錘部を設けて、相対的に低い Gが加わったときに大錘部が摇 動し、相対的に高い Gが加わったときに小錘部が揺動するようにしているので、複数 のレンジで測定が可能である。また、本実施の形態に係る静電容量型加速度センサ は、小錘部用の固定電極を複数に分割しているので、相対的に高い Gが加わったと きでも、 3軸方向における加速度成分を測定することができる。  As described above, since the capacitance type acceleration sensor according to the present embodiment obtains the measurement capacitance from the difference in capacitance, it can accurately measure the acceleration regardless of the temperature change. . In addition, a large weight part and a small weight part are provided so that the large weight part swings when a relatively low G is added and the small weight part swings when a relatively high G is added. Therefore, it is possible to measure in multiple ranges. In addition, since the capacitive acceleration sensor according to the present embodiment divides the fixed electrode for the small spindle part into a plurality of parts, even when a relatively high G is applied, the acceleration component in the three-axis direction is obtained. Can be measured.
[0040] 本発明は上記実施の形態 1, 2に限定されず、種々変更して実施することが可能で ある。例えば、可動電極 11や固定電極 12の形状については上記実施の形態 1, 2に 限定されず、種々変更して実施することができる。本発明においては、可動電極 11 における梁部や錘部の長さ、幅、厚さを適宜変更しても良い。例えば、図 7に示すよう に、可動電極 11が、枠体 11aと小錘部 11cとを連接する第 1梁部 l idと、錘部 l ibと 小錘部 11 cとを連接する第 2梁部 1 leとを有するように構成したり、図 8に示すように 構成して、可動電極 11にお 、て多くの変位が得られるようにしても良!、。  [0040] The present invention is not limited to Embodiments 1 and 2 described above, and can be implemented with various modifications. For example, the shapes of the movable electrode 11 and the fixed electrode 12 are not limited to the first and second embodiments, and can be implemented with various changes. In the present invention, the length, width, and thickness of the beam portion and the weight portion in the movable electrode 11 may be appropriately changed. For example, as shown in FIG. 7, the movable electrode 11 includes a first beam portion id that connects the frame body 11a and the small weight portion 11c, and a second shape that connects the weight portion l ib and the small weight portion 11c. It may be configured to have a beam portion 1 le or may be configured as shown in FIG. 8 so that a large amount of displacement can be obtained in the movable electrode 11.
[0041] 上記実施の形態においては、図 3に示すように、固定電極 12a, 12b上にストッパ層 14を設けた構成について説明している力 本発明においては、可動電極 11の大錘 部の揺動を停止させて小錘部の揺動を開始させるような構成であれば良ぐ図 9に示 すように、ストッパ層 14を大錘部 l ib , l ib , l ib , l ib上に設けた構成であっても In the above embodiment, as shown in FIG. 3, the force explaining the configuration in which the stopper layer 14 is provided on the fixed electrodes 12a and 12b. In the present invention, the mass of the movable electrode 11 A configuration that stops the oscillation and starts the oscillation of the small spindle is sufficient as shown in Fig. 9. Even if the stopper layer 14 is provided on the mass portions l ib, l ib, l ib, l ib
1 2 3 4  1 2 3 4
良い。  good.
[0042] 本発明の静電容量型加速度センサによれば、固定電極を有する第 1基板と、前記 固定電極と対向するように配置され、前記固定電極との間に測定対象の容量を形成 する可動電極を有する第 2基板と、を具備し、前記容量の変化により加速度を測定す る静電容量型加速度センサであって、前記可動電極は、相対的に低い Gが加わるこ とにより揺動を開始する大錘部と、相対的に高い Gが加わることにより揺動を開始す る小錘部を有し、前記小錘部が、前記大錘部の重量の一部を構成し、前記大錘部の 揺動時は共に揺動するので、温度変化に拘らず正確に加速度を測定することができ 、し力も複数のレンジで測定が可能である静電容量型加速度センサを提供すること ができる。  [0042] According to the capacitive acceleration sensor of the present invention, the first substrate having a fixed electrode and the fixed electrode are arranged so as to face each other, and a capacitance to be measured is formed between the fixed electrode. A capacitance-type acceleration sensor that measures acceleration by changing the capacitance, and the movable electrode swings when a relatively low G is applied thereto. And a small weight portion that starts swinging when a relatively high G is applied, and the small weight portion constitutes a part of the weight of the large weight portion, and To provide a capacitive acceleration sensor that can accurately measure acceleration regardless of temperature changes, and can measure force in multiple ranges, since both rock when the mass part swings. Can do.
[0043] 本発明は上記実施の形態 1, 2に限定されず、種々変更して実施することができる。  [0043] The present invention is not limited to Embodiments 1 and 2 described above, and can be implemented with various modifications.
例えば、上記実施の形態 1, 2で説明した電極や各層の厚さや材質については本発 明の効果を逸脱しない範囲で適宜設定することができる。また、上記実施の形態 1, 2で説明したプロセスにつ 、てはこれに限定されず、工程間の適宜順序を変えて実 施しても良い。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更す ることが可能である。  For example, the thicknesses and materials of the electrodes and the respective layers described in the first and second embodiments can be set as appropriate without departing from the effects of the present invention. Further, the processes described in the first and second embodiments are not limited to this, and may be performed by changing the order of the steps as appropriate. Other modifications can be made as appropriate without departing from the scope of the object of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 固定電極を有する第 1基板と、前記固定電極と対向するように配置され、前記固定電 極との間に測定対象の容量を形成する可動電極を有する第 2基板と、を具備し、前 記容量の変化により加速度を測定する静電容量型加速度センサであって、前記可動 電極は、相対的に低い Gが加わることにより揺動を開始する大錘部と、相対的に高い Gが加わることにより揺動を開始する小錘部を有し、前記小錘部が、前記大錘部の重 量の一部を構成し、前記大錘部の揺動時は共に揺動することを特徴とする静電容量 型加速度センサ。  [1] A first substrate having a fixed electrode, and a second substrate having a movable electrode that is arranged to face the fixed electrode and that forms a capacitance to be measured between the fixed electrode and the first substrate. A capacitive acceleration sensor that measures acceleration by a change in capacitance, wherein the movable electrode has a mass portion that starts swinging when a relatively low G is applied, and a relatively high G And a small weight part that starts swinging when added, and the small weight part constitutes a part of the weight of the large weight part, and swings together when the large weight part swings. Capacitance-type acceleration sensor.
[2] 前記固定電極は、大錘部用の第 1固定電極と、小錘部用の第 2固定電極と、を有し、 前記第 1固定電極は、相対的に高い Gが加わった際に前記大錘部との間の電気的 接触を防止するストツバ層を有することを特徴とする請求項 1記載の静電容量型加速 度センサ。  [2] The fixed electrode has a first fixed electrode for a large weight part and a second fixed electrode for a small weight part, and the first fixed electrode is when a relatively high G is applied. 2. The capacitance type acceleration sensor according to claim 1, further comprising a stagger layer for preventing electrical contact with the mass portion.
[3] 前記第 1固定電極が、電極面上の直交する 2軸のそれぞれに対して対称となるように 分割されていることを特徴とする請求項 1記載の静電容量型加速度センサ。  3. The capacitive acceleration sensor according to claim 1, wherein the first fixed electrode is divided so as to be symmetrical with respect to two orthogonal axes on the electrode surface.
[4] 前記第 2固定電極が前記直交する 2軸のそれぞれに対して対称となるように分割され ていることを特徴とする請求項 3記載の静電容量型加速度センサ。 4. The capacitive acceleration sensor according to claim 3, wherein the second fixed electrode is divided so as to be symmetric with respect to each of the two orthogonal axes.
[5] 前記可動電極は、枠体と、前記枠体と前記大錘部又は前記小錘部とを連接する第 1 梁部と、前記大錘部と前記小錘部とを連接する第 2梁部と、を含むことを特徴とする 請求項 1記載の静電容量型加速度センサ。 [5] The movable electrode includes a frame, a first beam portion that connects the frame and the large weight portion or the small weight portion, and a second that connects the large weight portion and the small weight portion. The capacitive acceleration sensor according to claim 1, further comprising a beam portion.
[6] 前記可動電極は、枠体と、前記枠体と前記大錘部又は前記小錘部とを連接する第 1 梁部と、前記大錘部と前記小錘部とを連接する第 2梁部と、を含むことを特徴とする 請求項 2記載の静電容量型加速度センサ。 [6] The movable electrode includes a frame, a first beam portion that connects the frame and the large weight portion or the small weight portion, and a second that connects the large weight portion and the small weight portion. The capacitive acceleration sensor according to claim 2, further comprising a beam portion.
[7] 前記可動電極は、枠体と、前記枠体と前記大錘部又は前記小錘部とを連接する第 1 梁部と、前記大錘部と前記小錘部とを連接する第 2梁部と、を含むことを特徴とする 請求項 3記載の静電容量型加速度センサ。 [7] The movable electrode includes a frame, a first beam portion that connects the frame and the large weight portion or the small weight portion, and a second that connects the large weight portion and the small weight portion. The capacitive acceleration sensor according to claim 3, further comprising a beam portion.
[8] 前記可動電極は、枠体と、前記枠体と前記大錘部又は前記小錘部とを連接する第 1 梁部と、前記大錘部と前記小錘部とを連接する第 2梁部と、を含むことを特徴とする 請求項 4記載の静電容量型加速度センサ。 [8] The movable electrode includes a frame, a first beam portion that connects the frame and the large weight portion or the small weight portion, and a second that connects the large weight portion and the small weight portion. The capacitive acceleration sensor according to claim 4, further comprising a beam portion.
PCT/JP2007/052231 2006-09-01 2007-02-08 Capacitive acceleration sensor WO2008026331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006237914 2006-09-01
JP2006-237914 2006-09-01

Publications (1)

Publication Number Publication Date
WO2008026331A1 true WO2008026331A1 (en) 2008-03-06

Family

ID=39135620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052231 WO2008026331A1 (en) 2006-09-01 2007-02-08 Capacitive acceleration sensor

Country Status (1)

Country Link
WO (1) WO2008026331A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204540A (en) * 2008-02-28 2009-09-10 Asahi Kasei Electronics Co Ltd Capacitance type sensor
WO2011071140A1 (en) * 2009-12-11 2011-06-16 アルプス電気株式会社 Physical quantity sensor
DE102011085727A1 (en) 2011-11-03 2013-05-08 Continental Teves Ag & Co. Ohg Micromechanical element, component with a micromechanical element and method for producing a component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112168A (en) * 1989-09-26 1991-05-13 Nippondenso Co Ltd Semiconductor piezosensor
JPH0432773A (en) * 1990-05-30 1992-02-04 Hitachi Ltd Semiconductor acceleration sensor and vehicle control system using same
JPH10308519A (en) * 1997-05-08 1998-11-17 Wako:Kk Manufacture of sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112168A (en) * 1989-09-26 1991-05-13 Nippondenso Co Ltd Semiconductor piezosensor
JPH0432773A (en) * 1990-05-30 1992-02-04 Hitachi Ltd Semiconductor acceleration sensor and vehicle control system using same
JPH10308519A (en) * 1997-05-08 1998-11-17 Wako:Kk Manufacture of sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204540A (en) * 2008-02-28 2009-09-10 Asahi Kasei Electronics Co Ltd Capacitance type sensor
WO2011071140A1 (en) * 2009-12-11 2011-06-16 アルプス電気株式会社 Physical quantity sensor
CN102483426A (en) * 2009-12-11 2012-05-30 阿尔卑斯电气株式会社 Physical quantity sensor
DE102011085727A1 (en) 2011-11-03 2013-05-08 Continental Teves Ag & Co. Ohg Micromechanical element, component with a micromechanical element and method for producing a component
WO2013064634A2 (en) 2011-11-03 2013-05-10 Continental Teves Ag & Co. Ohg Micromechanical element, component having a micromechanical element, and method for producing a component

Similar Documents

Publication Publication Date Title
US11808574B2 (en) Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
US9157927B2 (en) Physical quantity sensor and electronic apparatus
US6955086B2 (en) Acceleration sensor
US20040025591A1 (en) Accleration sensor
JP5898283B2 (en) Micro electromechanical system
US10894713B2 (en) Temperature-compensated micro-electromechanical device, and method of temperature compensation in a micro-electromechanical device
US20080314147A1 (en) Vertically integrated 3-axis mems accelerometer with electronics
US8943890B2 (en) Inertial sensor
JP5553846B2 (en) Acceleration sensor and method of operating acceleration sensor
TWI816711B (en) Micromechanical z-inertial sensor and production method thereof
WO1993002342A1 (en) Sensor for force, acceleration and magnetism using piezoelectric devices
JP2010506182A (en) Acceleration detection sensor
JP2008527319A (en) Vibration micro-mechanical sensor for angular velocity
US20110100125A1 (en) Acceleration sensor
TW201625953A (en) A MEMS sensor and a semiconductor package
CN110596423B (en) Comb tooth capacitance type uniaxial accelerometer with high overload resistance
CN117607489B (en) Sensitive structure of piezoresistive acceleration sensor and acceleration sensor
JP2016217804A (en) Multi-axis tactile sensor and method for manufacturing multi-axis tactile sensor
JP2004340716A (en) Acceleration sensor
JP5845447B2 (en) Acceleration sensor
WO2008026331A1 (en) Capacitive acceleration sensor
JP5292600B2 (en) Acceleration sensor
US9146254B2 (en) Dynamic sensor
JP2004170145A (en) Capacitance-type dynamic quantity sensor
US20140283606A1 (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07713947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP