WO2008026257A1 - Electronic device and method for manufacturing shielding material for same - Google Patents

Electronic device and method for manufacturing shielding material for same Download PDF

Info

Publication number
WO2008026257A1
WO2008026257A1 PCT/JP2006/316994 JP2006316994W WO2008026257A1 WO 2008026257 A1 WO2008026257 A1 WO 2008026257A1 JP 2006316994 W JP2006316994 W JP 2006316994W WO 2008026257 A1 WO2008026257 A1 WO 2008026257A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding material
electronic device
electronic
electronic component
shielding
Prior art date
Application number
PCT/JP2006/316994
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Tamura
Hirofumi Matsumura
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to PCT/JP2006/316994 priority Critical patent/WO2008026257A1/en
Publication of WO2008026257A1 publication Critical patent/WO2008026257A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0045Casings being rigid plastic containers having a coating of shielding material

Definitions

  • This application relates to an electronic device in which a printed wiring board is provided with a shield material against electromagnetic waves in various consumer electronic devices such as notebook computers, mobile phones, digital cameras, car navigation systems, and the like that are required to be miniaturized.
  • the present invention relates to the technical field of equipment and its shield material manufacturing method.
  • Patent Document 1 As a printed wiring board provided with such an electromagnetic wave shielding layer, there is an invention disclosed in Patent Document 1, for example.
  • the present invention prevents electromagnetic interference and the like by vacuum packaging a printed wiring board with a bag-like body made of a laminated film having an electromagnetic wave shielding layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-170272
  • the invention disclosed in Patent Document 1 described above is a packaging form that covers the entire printed circuit board, that is, for packaging both sides of the printed circuit board at the same time V. There is a problem that it is not possible to shield only a desired part on one side of a printed wiring board. In other words, the invention disclosed in Patent Document 1 has a problem in that unnecessary portions other than the portion to be shielded against electromagnetic waves are also shielded against electromagnetic waves.
  • Patent Document 1 a laminated film having an electromagnetic wave shielding layer is provided.
  • a bag-like body having a size corresponding to the size of the printed wiring board must be used.
  • the present application has been made in consideration of the above circumstances, and one example of the problem is to shield a desired portion of the mounted electronic component on one side of the printed wiring board by electromagnetic waves. It is an object of the present invention to provide an electronic device and a method for manufacturing a shielding material thereof.
  • the electronic device is an electronic device in which an electronic component is mounted on a printed wiring board, and an object to perform electromagnetic shielding on one side of the printed wiring board.
  • the electronic component arranged in the region is covered with a shield material so as to be in close contact with the electronic component.
  • a method for manufacturing a shielding material for an electronic device includes: mounting an electronic component on a printed wiring board; and shielding the electronic component with an electromagnetic wave.
  • a manufacturing method comprising: a shielding material coating step for covering the electronic component disposed in a target region where electromagnetic shielding is performed on one side of the printed wiring board; and a shielding material coating step for covering the electronic component by the shielding material coating step. And an air exhausting process for exhausting air from the coated shield material.
  • FIG. 1 is a perspective view showing a printed wiring board for electromagnetic wave shielding in a first embodiment of the present application.
  • FIG. 2 is a plan view showing a through hole, an adhesive line region, and a conductive line region provided in the printed wiring board of FIG. 1.
  • FIG. 3 is a cross-sectional view showing a state in which the printed wiring board of FIG. 2 is covered with an insulating material.
  • FIG. 4 is a cross-sectional view showing a state where the printed wiring board of FIG. 3 is covered with a shielding material.
  • FIG. 5 is a cross-sectional view showing a state where an insulating material and a shield material are in close contact with the printed wiring board of FIG. 4 by air discharge.
  • FIG. 6 is a cross-sectional view showing a state in which the outer peripheral portion of the shield material fixed to the printed wiring board shown in FIG. 5 is cut.
  • FIG. 7 is a schematic view showing a state in which two general printed wiring boards face each other.
  • FIG. 8 is a schematic perspective view showing the height relationship of components in a state where two general printed wiring boards face each other.
  • FIG. 9 is a view of the force in the direction of arrow A in FIG.
  • FIG. 9B is a view as seen from the direction of arrow B in FIG.
  • FIG. 9 shows the two printed wiring boards in Fig. 9A covered with a general box-type shield.
  • FIG. 10B is a diagram showing a state in which the two printed wiring boards in FIG. 9B are covered with a general box-type shield.
  • FIG. 11A is a diagram showing a state where the shield of this embodiment is covered on the two printed wiring boards of FIG. 9A.
  • FIG. 11B is a diagram showing a state where the shield of this embodiment is covered on the two printed wiring boards of FIG. 9B.
  • FIG. 12 is a cross-sectional view showing a state where an insulating material and a shielding material are covered on a printed wiring board in a second embodiment of the present application.
  • FIG. 13 is a cross-sectional view showing a state where heat dissipation measures are taken in the third embodiment of the present application.
  • FIG. 14 is a cross-sectional view showing the operation in a state where the heat dissipation measure of FIG. 13 is taken.
  • FIG. 15 is a plan view showing an adhesive line region and a conductive line region provided on a printed wiring board according to a fourth embodiment of the present application.
  • FIG. 1 is a perspective view showing a printed wiring board that shields electromagnetic waves according to the first embodiment of the present application
  • FIG. 2 is a plan view showing through holes, an adhesive line area, and a conductive line area provided in the printed wiring board of FIG. FIG.
  • the steps shown in FIGS. 1 and 2 are pretreatment steps for the printed wiring board in the shield material manufacturing method.
  • a surface la which is a surface to be shielded against electromagnetic waves in a printed wiring board (hereinafter simply referred to as a board)
  • IC2 as an electronic component
  • chip component 3 and Connector 4 is mounted on a surface la.
  • This board 1 has four through holes 5 with a diameter of about 1.25 mm that penetrate from the front surface la to the rear surface lb at positions avoiding the IC 2, the chip component 3, and the connector 4. Use as a hole for air discharge .
  • the substrate 1 to be subjected to electromagnetic wave shielding is manufactured in such a manner that the solder does not enter the through hole 5 when performing soldering by a reflow furnace.
  • the region to be shielded against electromagnetic waves on the substrate 1 includes an adhesive line region 6 of an lmm-width insulating material previously formed in a rectangular shape on the outer periphery of the region.
  • a conductive line region 7 of a lmm-width shield material similarly formed in a rectangular shape is provided on the outside, and these bonding line region 6 and conductive line region 7 include IC2, chip component 3 and connector 4 Design the electronic parts so that they do not overlap.
  • a pattern is not formed on the surface of the substrate 1 in the bonding line region 6.
  • a copper foil pattern is formed on the surface of the substrate 1, and finally electrically connected to a shield material described later. Therefore, it is desirable that the conductive line region 7 be a ground pattern having the same potential as the GND pattern.
  • FIG. 3 is a cross-sectional view showing a state in which the printed wiring board of FIG. 2 is covered with an insulating material
  • FIG. 4 is a cross-sectional view showing a state in which the printed wiring board of FIG. 3 is covered with a shielding material
  • FIG. FIG. 6 is a cross-sectional view showing a state in which the outer peripheral portion of the shield material fixed to the printed wiring board shown in FIG. 5 is cut. It is.
  • a general-purpose adhesive 9 such as a UV (ultraviolet ray) curable adhesive is uniformly applied to the adhesive line region 6 of the insulating material 8.
  • a general-purpose adhesive 9 such as a UV (ultraviolet ray) curable adhesive is uniformly applied to the adhesive line region 6 of the insulating material 8.
  • a polyethylene sheet having a thickness of 10 to 30 / zm or the like is used as the insulating material 8.
  • the insulating material 8 is provided so as to cover the electronic parts such as the IC 2 and the chip part 3 mounted on the surface 1 a of the shielded area 1 of the substrate 1, and the bonding line area of the insulating material 8 as shown in FIG.
  • the insulating material 8 is bonded to the substrate 1 by pressing the insulating material 8 to the bonding line region 6 with a pressure welding jig 10 capable of pressure welding the entire circumference of 6.
  • the electronic components such as the IC 2 and the chip component 3 mounted on the surface 1 a of the shield target region are covered with the insulating material 8.
  • the insulating material 8 is formed with about four small-diameter air discharge holes 8a in predetermined portions such as the upper surface of the electronic component in the target region where electromagnetic wave shielding is performed.
  • problems such as damage to the insulating material 8 occur if the insulating material 8 is not wide enough. Therefore, before bonding the insulating material 8 with the pressure welding jig 10, it is desirable that the insulating material 8 that allows the insulating material 8 to enter between the electronic component and the electronic component has a sufficient margin. .
  • the insulating material 8 is cut between the bonding wire region 6 and the conductive wire region 7 in a manner of cutting the outer periphery with a cutting jig 11 such as a cutter.
  • an aluminum foil of about 20 to 50 ⁇ m or a sheet-like metal foil having the same degree of flexibility is prepared as the shielding material 12.
  • This shielding material 12 covers the electronic parts such as IC2 and chip part 3 mounted on the surface la in the same manner as the insulating material 8 from the upper side (surface la side) of the target area where the insulating material 8 has been bonded. 4 and a portion near the bonding line region 6 of the insulating material 8 is pressed by the pressure welding jig 13 having a roller 13a attached to the tip as shown in FIG.
  • the rear surface lb side force of the substrate 1 is pressed against the substrate 1 with the air discharge nozzle 14 formed in an opening area including all the through holes 5 formed in the target region.
  • This air discharge nozzle 14 is provided with a rubber cushion material 14a at the contact portion with the substrate 1, and the cushion material 14a prevents air leakage. Further, the air discharge nozzle 14 is connected to the vacuum pump 15 via V, a pipe line (not shown).
  • the air discharge nozzle 14 when the air discharge nozzle 14 is brought into contact with the back surface lb side of the substrate 1, the pressure welding jig 13 of the shield material 12 is formed on the back surface lb side of the substrate 1 from the back surface side. From the lb side, the air discharge nozzle 14 also presses the substrate 1 with symmetrical positional force, and the substrate 1 can be effectively fixed.
  • the vacuum pump 15 Since the vacuum pump 15 is connected to the air discharge nozzle 14 through a pipe line (not shown) as described above, the vacuum pump 15 is driven to suck air, and the substrate 1 Air is discharged from the shielding material 12 in the target area on the surface la side of the substrate 1 through the air discharge hole 8a of the through hole 5 and the insulating material 8.
  • the function of the roller 13a attached to the tip of the pressure welding jig 13 is to enable the shield material 12 to move in the horizontal direction when air is discharged.
  • the insulating material 8 When air is discharged from the inside of the shielding material 12, the insulating material 8 is formed with four air discharge holes 8a, so that the insulating material 8 and the substrate 1 are interposed between the insulating material 8 and the shielding material 12.
  • the air pressure between and The shape is such that it adheres along the outer shape of C2 and chip part 3.
  • the process proceeds to the anisotropic conductive adhesive application step shown in FIG.
  • anisotropic conductive adhesive application step as shown in FIG. 5, in the conductive line region 7 of the shield material 12, the outer periphery of the shield material 12 is lifted to the upper outside of the roller 13 a while the substrate 1 Apply anisotropically conductive adhesive 16 (for example, 3373 manufactured by Three Bond) 16 to the conductive line region 7 on the ground pattern of the surface la.
  • anisotropically conductive adhesive 16 for example, 3373 manufactured by Three Bond
  • the anisotropic conductive adhesive (ACP) 16 is a material having functions of both mechanical connection and electrical connection, and has a conductive filler.
  • the anisotropic conductive adhesive 16 is effective in this embodiment because the temperature at which the pressure bonding is short and the temperature at which the pressure bonding is performed is as low as about 120 ° C. More specifically, the anisotropic conductive adhesive (ACP) 16 has a conductive filler mixed in an adhesive (binder), and both members to be bonded by thermocompression bonding are mechanical, Electrically connected.
  • the binder is an insulator, insulation is maintained between conductive binders existing in adjacent circuits.
  • Thermosetting resin, thermoplastic resin, thermosetting Z thermoplastic mixed resin, etc. are generally used for adhesives, and conductive balls generally used are gold-plated resin balls. .
  • the crimping jig 17 is configured to descend from the upper part of the conductive line region 7, and the different coating applied to the conductive line region 7 by the crimping jig 17.
  • the shielding material 12 is bonded to the anisotropic conductive adhesive 16 by covering heat and pressure.
  • the shield material 12 is covered and fixed on the surface la side of the substrate 1 through the above steps, the outer periphery of the shield material 12 is further cut by the cutting jig 11 in the shield material cutting step. Then, the manufacturing process of the shielding material 12 is completed.
  • the shielding material 12 is a metal foil having a single layer structure, it retains the uneven shape formed by exhausting the air inside.
  • the insulating material 8 it is convenient to fix the insulating material 8 by applying a small amount of adhesive between the substrate 1 and the insulating material 8 in advance in the recess between the electronic components.
  • the electronic device completed through the above steps covers the insulating material 8 in the target region of the electromagnetic wave shield on the surface la side of the substrate 1 on which the IC2 and the chip component 3 which are electronic components are mounted.
  • the shield material 12 is covered on the upper surface of 8, and the air inside the shield material 12 is discharged to form the shield material 12 in close contact with the IC 2 and the chip component 3 that are electronic components.
  • FIG. 7 is a schematic diagram showing a state in which two general printed wiring boards are opposed to each other
  • FIG. 8 is a schematic perspective view showing a height relationship of components in a state in which two general printed wiring boards are opposed to each other
  • FIG. 9A Fig. 9 is a view from the direction of arrow A in Fig. 8
  • Fig. 9B is a view from the direction of arrow B in Fig. 8
  • Fig. 10 A is a state in which two printed wiring boards in Fig. 9A are covered with a general box-type shield
  • Fig. 10B is a diagram showing a state where two printed wiring boards in Fig. 9B are covered with a general box type shield.
  • Fig. 11A is a state where two printed wiring boards in Fig.
  • FIG. 11B is a diagram showing a state in which the shield of this embodiment is covered on the two printed wiring boards of FIG. 9B.
  • IC2 and chip component 3 are collectively referred to as electronic component 20.
  • two substrates 1A and 1B are arranged so that the electronic component 20 faces each other.
  • the two substrates 1A and 1B are arranged using 3D-CAD or the like.
  • the electronic components 20 do not interfere with each other.
  • the height relationship between the electronic components 20 of the two substrates 1A and 1B is as shown in FIGS. 9A and 9B.
  • the general box-shaped shield 21 is manufactured in accordance with the highest part among the electronic parts 20 as shown in FIGS. 10A and 10B. Is extremely difficult to manufacture.
  • the electronic components 20 are manufactured with a slight gap at the height as shown in FIGS. 11A and 11B. Therefore, it is possible to easily manufacture a shield suitable for the product specification that is desired to be thin. Note that the insulating material 8 is not shown in FIGS. 10A and 10B, and FIGS. 11A and 11B.
  • the shield material 12 is brought into close contact with the electronic component 20 arranged in the target region where the electromagnetic wave shielding of the surface la that is one side of the substrate 1 is performed.
  • a desired portion of the mounted electronic component 20 can be shielded against electromagnetic waves on the surface la of the substrate 1. That is, according to the present embodiment, it is possible to effectively shield only the important blocks on which noise countermeasures on the surface la of the substrate 1 should be taken. As a result, unnecessary portions other than the portion to be shielded against electromagnetic waves are not shielded, and the shield material 12 having the minimum necessary size is sufficient.
  • the insulating material 8 is provided on the side of the shielding material 12 that is covered with the electronic component 20, thereby providing the shielding material 12 with respect to the electronic component 20, solder, or the like. It can be reliably insulated electrically.
  • the air inside the shield material 12 is exhausted and the shield material 12 is formed so as to be in close contact with the electronic component 20, whereby the electronic component 20 and the shield are formed.
  • the distance from the material 12 can be made extremely small, and it is close to the shape along the height of the electronic component 20 while having irregularities, so that it is possible to increase the structural volume due to the shielding material 12 in the product specifications. Less.
  • the dead space caused by the mismatch of the height of the electronic component 20 as in the product specifications shown in Fig. 11A and Fig. 11B can be eliminated, and while the shielding performance is secured,
  • the box-shaped shield material can eliminate structural limitations that cannot be achieved.
  • the target region can be completely shielded, so that no slits or holes are generated, and the shielding effect against radioactive noise from the electronic component 20 or pattern is achieved. Will be close to perfection. In addition, it is effective in suppressing electromagnetic interference between the electronic components 20.
  • the shielding material coating that covers the shielding material 12 on the electronic component 20 disposed in the target region for electromagnetic wave shielding of the surface la of the substrate 1
  • the shielding material 12 is covered with the electronic component 20 by the shielding material coating step, and the shielding material 12 is closely attached to the electronic component 20 by providing an air exhausting process in which the internal force is also discharged.
  • the desired portion of the mounted electronic component can be shielded against electromagnetic waves on the surface la of the substrate 1.
  • the bonding step of bonding the shielding material 12 covered with the electronic component 20 to the substrate 1 with the anisotropic conductive adhesive 16 is performed.
  • both mechanical connection and electrical connection of the shielding material 12 to the substrate 1 can be performed.
  • the shield material manufacturing method for an electronic device of the present embodiment by performing the insulating material coating step of covering the insulating material 8 in advance before the shielding material coating step of covering the shield material 12, The shield material 12 can be reliably electrically insulated from the electronic component 20 and solder.
  • the cost for carrying out the equipment can be reduced and the manufacturing cost can be easily reduced.
  • the vacuum pump 15 is driven to suck air from the shielding material 12, so that the electronic material 20 has the shielding material 12 It can coat
  • the anisotropic conductive adhesive (ACP) 16 is applied to the conductive line region 7 to adhere the shield material 12, but the present invention is not limited to this and is formed on the substrate 1. Solder can be used as it is.
  • the reflow solder for mounting the electronic component 20 on the surface la side of the substrate 1 is placed in advance in the conductive line region 7 by removing the mask, and the temperature of the crimping jig 17 is increased to the melting point of the solder.
  • the shield material 12 which is also solder and metal foil, is conducted by thermocompression bonding.
  • the metal foil of the shield material 12 used at this time it is desirable to use a copper foil or the like to be joined to solder. This eliminates the need to apply the anisotropic conductive adhesive (ACP) 16 and bond the shield material 12.
  • ACP anisotropic conductive adhesive
  • the shield material 12 is anisotropically conductive bonded so that the conductive wire region 7 covers the upper surface of the insulating material 8.
  • Adhesive (AC P) 16 is used for bonding, but it is not limited to this. Adhering laminated materials in which metal layers such as copper foil are laminated using polyethylene as a base material in the target area for electromagnetic wave shielding. You may make it do. In this case, if the laminated material is heated up to the melting temperature of the solder in the same manner as described above and then subjected to pressure bonding, the heat resistance temperature of the base material such as polyethylene will be exceeded.
  • the solder on one side of the substrate and the metal layer of the shielding material 12 are brought into conduction by pressure bonding through the base material portion.
  • the step of bonding the insulating material 8 to the bonding line region 6 with an adhesive can be omitted.
  • FIG. 12 is a cross-sectional view showing a state where the printed wiring board is covered with an insulating material and a shielding material in the second embodiment of the present application. Note that the same reference numerals are used for the same or corresponding parts as those in the first embodiment. The same applies to other embodiments.
  • the insulating material 8 and the shield material 12 are pressed by the pressing jig 23 without using the vacuum pump 15 of the first embodiment.
  • the insulating material 8 and the shielding material 12 are pressed against the surface la side force of the base plate 1 using the pressing jig 23, and the air in the insulating material 8 and the shielding material 12 is passed through the through-hole 5 or the like.
  • the shielding material 12 is approximated to a shape formed by discharging air by the vacuum pump 15 of the first embodiment.
  • the pressing jig 23 is not necessarily a hard material such as a press die, and a slightly soft material is used for the contact surface with the shield material 12.
  • a plurality of recesses 24 are formed on the front end surface of the pressing jig 23 corresponding to the arrangement form of the electronic component 20.
  • the air inside the shield material 12 can be discharged by the pressing jig 23 so that the shield material 12 is brought into close contact with the electronic component 20. And miniaturization can be achieved. Since other configurations and operations are the same as those of the first embodiment, description thereof will be omitted.
  • FIG. 13 is a cross-sectional view showing a state in which a heat dissipation measure is taken in the third embodiment of the present application
  • FIG. 14 is a cross-sectional view showing an operation in a state in which the heat dissipation measure is taken in FIG.
  • an opening 26 for heat dissipation is formed in the insulating material 8 located above the electronic component 20 serving as a representative heat source.
  • the insulating material 8 located above the electronic component 20 serving as a representative heat source.
  • the above-described conventional invention has a configuration in which the printed wiring board is vacuum-packed with a bag-like body having a laminated film force having an electromagnetic wave shielding layer, and therefore, a heat sink is provided on the electronic component mounted on the printed wiring board. There is a problem that internal heat dissipation measures cannot be taken.
  • the upper force of the electronic component 20 serving as a representative heat source also transfers heat to the shield material 12 via the heat conductive sheet material 27. If a heat radiating member such as a heat sink (not shown) is disposed outside the shield material 12, for example, the heat of the electronic component 20 serving as a typical heat source can be absorbed by the heat radiating member and radiated.
  • a heat radiating member such as a heat sink (not shown) is disposed outside the shield material 12, for example, the heat of the electronic component 20 serving as a typical heat source can be absorbed by the heat radiating member and radiated.
  • the opening 26 for heat dissipation is formed in the insulating material 8 located on the upper part of the electronic component 20 that is a representative heat source, and the opening 26 is closed. Even if the internal space of the shield material 12 is narrowed by forming the shield material 12 in close contact with the electronic component 20 by sticking the heat conductive sheet material 27, the electronic component 20 is not impaired. It is possible to provide a route for transferring the heat of the outside to the outside, and the heat of the electronic component 20 can be reliably radiated. Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted.
  • FIG. 15 is a plan view showing an adhesive line region and a conductive line region provided on the printed wiring board according to the fourth embodiment of the present application.
  • rounded portions 6a and 7a are formed at the corners of the bonding line region 6 and the conductive line region 7, respectively.
  • the corners of the insulating material 8 and the shielding material 12 are also rounded.
  • the rounded portions 6a and 7a are formed at the respective corners of the bonding wire region 6 and the conductive wire region 7, and the corners of the insulating material 8 and the shielding material 12 are also rounded in accordance with this.
  • the corners of the insulating material 8 bonded to the adhesive 9 in the bonding line region 6 and the shielding material bonded to the anisotropic conductive adhesive (ACP) 16 applied to the conductive line region 7 are obtained. It is possible to prevent cracks and breaks from occurring in the 12 corners during the production process.
  • Other structures Since the composition and operation are the same as those of the first embodiment, the description thereof is omitted.
  • the navigation apparatus is applied to each of the above embodiments as an example of an electronic device, the present invention is not limited to this.
  • a notebook computer a mobile phone, a digital camera, etc. It can also be applied to various consumer electronic devices that are required to be downsized.
  • the present invention is not limited to the above embodiments.
  • Each of the above-described embodiments is an exemplification, and has any configuration that is substantially the same as the technical idea described in the claims of the present invention, and that has the same functions and effects. It is included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Provided is an electronic device wherein a desired portion of an electronic component mounted on one surface of a printed wiring board is electromagnetically shielded. A method for manufacturing a shielding material for such electronic device is also provided. In the electronic device, the electronic component is mounted on the printed wiring board. The electronic component arranged in a target region to be electromagnetically shielded on the one surface of the printed wiring board is coated with the shielding material so that the material adheres to the electronic component.

Description

明 細 書  Specification
電子機器及びそのシールド材製造方法  Electronic device and method for manufacturing shield material thereof
技術分野  Technical field
[0001] 本願は、例えばノートパソコン、携帯電話、デジタルカメラ、カーナビゲシヨン等、小 型化が要求される各種民生用の電子機器において、プリント配線基板に電磁波に対 するシールド材を設けた電子機器及びそのシールド材製造方法の技術分野に関す る。  [0001] This application relates to an electronic device in which a printed wiring board is provided with a shield material against electromagnetic waves in various consumer electronic devices such as notebook computers, mobile phones, digital cameras, car navigation systems, and the like that are required to be miniaturized. The present invention relates to the technical field of equipment and its shield material manufacturing method.
背景技術  Background art
[0002] 近年、ノートパソコン、携帯電話、デジタルカメラ、カーナビゲシヨン等のような各種 の民生用電子機器は、小型化、軽量ィ匕及び薄型化が要求されている。これと同時に 、他の電子機器から発生する電磁波ノイズによって回路が誤動作するおそれや、基 板に搭載した電子部品の動作による放射性ノイズによって機器内の他の電子部品ば 力りでなぐ他の電子機器に悪影響を与えるおそれがあるので、プリント配線基板を 覆うための電磁波シールド層を設ける必要がある。  In recent years, various consumer electronic devices such as notebook computers, mobile phones, digital cameras, car navigation systems, and the like have been required to be smaller, lighter and thinner. At the same time, there is a risk of malfunction of the circuit due to electromagnetic noise generated from other electronic devices, and other electronic devices that are connected with the power of other electronic components in the device due to radioactive noise caused by the operation of electronic components mounted on the board. Therefore, it is necessary to provide an electromagnetic wave shielding layer to cover the printed wiring board.
[0003] このような電磁波シールド層を設けたプリント配線基板としては、例えば特許文献 1 に開示された発明がある。この発明は、電磁波シールド層を有する積層フィルムから なる袋状体でプリント配線基板を真空包装することにより、電磁波障害等を防止する ものである。  [0003] As a printed wiring board provided with such an electromagnetic wave shielding layer, there is an invention disclosed in Patent Document 1, for example. The present invention prevents electromagnetic interference and the like by vacuum packaging a printed wiring board with a bag-like body made of a laminated film having an electromagnetic wave shielding layer.
特許文献 1:特開平 5 - 170272号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-170272
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、上述した特許文献 1に開示された発明は、プリント配線基板に対して その全体を覆う包装形態であり、すなわちプリント配線基板の両面を同時に包装して V、るため、プリント配線基板の片面で所望の部分のみを電磁波シールドすることがで きないという問題がある。換言すれば、特許文献 1に開示された発明は、電磁波シー ルドすべき部分以外の不要な部分も電磁波シールドしてしまうと 、う問題がある。 [0004] However, the invention disclosed in Patent Document 1 described above is a packaging form that covers the entire printed circuit board, that is, for packaging both sides of the printed circuit board at the same time V. There is a problem that it is not possible to shield only a desired part on one side of a printed wiring board. In other words, the invention disclosed in Patent Document 1 has a problem in that unnecessary portions other than the portion to be shielded against electromagnetic waves are also shielded against electromagnetic waves.
[0005] また、特許文献 1に開示された発明では、電磁波シールド層を有する積層フィルム 力もなる袋状体によりプリント配線基板の全体を覆うため、プリント配線基板の大きさ に対応する大きさの袋状体を用いなければならな 、と 、う問題もある。 [0005] Further, in the invention disclosed in Patent Document 1, a laminated film having an electromagnetic wave shielding layer is provided. In order to cover the entire printed wiring board with a strong bag-like body, there is a problem that a bag-like body having a size corresponding to the size of the printed wiring board must be used.
[0006] 本願は、上記の事情を考慮してなされたもので、その課題の一例としては、プリント 配線基板の片面にぉ 、て、実装された電子部品の所望の部分を電磁波シールドす ることのできる電子機器及びそのシールド材製造方法を提供することにある。  [0006] The present application has been made in consideration of the above circumstances, and one example of the problem is to shield a desired portion of the mounted electronic component on one side of the printed wiring board by electromagnetic waves. It is an object of the present invention to provide an electronic device and a method for manufacturing a shielding material thereof.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、請求項 1に記載の電子機器は、プリント配線基板に電 子部品を実装した電子機器であって、前記プリント配線基板の片面の電磁波シール ドを行う対象領域に配置された前記電子部品に、シールド材を密着するように被覆し たことを特徴とする。 [0007] In order to solve the above-described problem, the electronic device according to claim 1 is an electronic device in which an electronic component is mounted on a printed wiring board, and an object to perform electromagnetic shielding on one side of the printed wiring board. The electronic component arranged in the region is covered with a shield material so as to be in close contact with the electronic component.
[0008] 上記課題を解決するために、請求項 5に記載の電子機器のシールド材製造方法は 、プリント配線基板に電子部品を実装し、当該電子部品に対して電磁波シールドする 電子機器のシールド材製造方法であって、前記プリント配線基板の片面の電磁波シ 一ルドを行う対象領域に配置された前記電子部品にシールド材を被覆するシールド 材被覆工程と、前記シールド材被覆工程により前記電子部品に被覆された前記シー ルド材内から空気を排出する空気排出工程と、を備えることを特徴とする。  [0008] In order to solve the above-described problem, a method for manufacturing a shielding material for an electronic device according to claim 5 includes: mounting an electronic component on a printed wiring board; and shielding the electronic component with an electromagnetic wave. A manufacturing method comprising: a shielding material coating step for covering the electronic component disposed in a target region where electromagnetic shielding is performed on one side of the printed wiring board; and a shielding material coating step for covering the electronic component by the shielding material coating step. And an air exhausting process for exhausting air from the coated shield material.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本願の第 1実施形態において電磁波シールドするプリント配線基板を示す斜視 図である。  FIG. 1 is a perspective view showing a printed wiring board for electromagnetic wave shielding in a first embodiment of the present application.
[図 2]図 1のプリント配線基板に設けたスルーホール、接着線領域及び導通線領域を 示す平面図である。  2 is a plan view showing a through hole, an adhesive line region, and a conductive line region provided in the printed wiring board of FIG. 1. FIG.
[図 3]図 2のプリント配線基板に絶縁材を被覆した状態を示す断面図である。  3 is a cross-sectional view showing a state in which the printed wiring board of FIG. 2 is covered with an insulating material.
[図 4]図 3のプリント配線基板にシールド材を被覆した状態を示す断面図である。  4 is a cross-sectional view showing a state where the printed wiring board of FIG. 3 is covered with a shielding material.
[図 5]図 4のプリント配線基板に絶縁材及びシールド材が空気排出により密着した状 態を示す断面図である。  FIG. 5 is a cross-sectional view showing a state where an insulating material and a shield material are in close contact with the printed wiring board of FIG. 4 by air discharge.
[図 6]図 5に示すプリント配線基板に固定されたシールド材の外周部分を切断する状 態を示す断面図である。  6 is a cross-sectional view showing a state in which the outer peripheral portion of the shield material fixed to the printed wiring board shown in FIG. 5 is cut.
[図 7]—般の 2つのプリント配線基板が対向する状態を示す概略図である。 [図 8]—般の 2つのプリント配線基板が対向する状態において部品の高さ関係を示す 概略斜視図である。 FIG. 7 is a schematic view showing a state in which two general printed wiring boards face each other. FIG. 8 is a schematic perspective view showing the height relationship of components in a state where two general printed wiring boards face each other.
[図 9A]図 8の矢印 A方向力も見た図である。  [FIG. 9A] FIG. 9 is a view of the force in the direction of arrow A in FIG.
[図 9B]図 8の矢印 B方向から見た図である。 FIG. 9B is a view as seen from the direction of arrow B in FIG.
[図 1 OA]図 9 Aの 2つのプリント配線基板に一般の箱型シールドを被覆した状態を示 す図である。  [Fig. 1 OA] Fig. 9 shows the two printed wiring boards in Fig. 9A covered with a general box-type shield.
[図 10B]図 9Bの 2つのプリント配線基板に一般の箱型シールドを被覆した状態を示 す図である。  FIG. 10B is a diagram showing a state in which the two printed wiring boards in FIG. 9B are covered with a general box-type shield.
[図 11A]図 9 Aの 2つのプリント配線基板に本実施形態のシールドを被覆した状態を 示す図である。  FIG. 11A is a diagram showing a state where the shield of this embodiment is covered on the two printed wiring boards of FIG. 9A.
[図 11B]図 9Bの 2つのプリント配線基板に本実施形態のシールドを被覆した状態を 示す図である。  FIG. 11B is a diagram showing a state where the shield of this embodiment is covered on the two printed wiring boards of FIG. 9B.
[図 12]本願の第 2実施形態においてプリント配線基板に絶縁材及びシールド材を被 覆した状態を示す断面図である。  FIG. 12 is a cross-sectional view showing a state where an insulating material and a shielding material are covered on a printed wiring board in a second embodiment of the present application.
[図 13]本願の第 3実施形態において放熱対策を施した状態を示す断面図である。  FIG. 13 is a cross-sectional view showing a state where heat dissipation measures are taken in the third embodiment of the present application.
[図 14]図 13の放熱対策を施した状態の作用を示す断面図である。 FIG. 14 is a cross-sectional view showing the operation in a state where the heat dissipation measure of FIG. 13 is taken.
[図 15]本願の第 4実施形態のプリント配線基板に設けた接着線領域及び導通線領域 を示す平面図である。 FIG. 15 is a plan view showing an adhesive line region and a conductive line region provided on a printed wiring board according to a fourth embodiment of the present application.
符号の説明 Explanation of symbols
1 プリント配線基板  1 Printed wiring board
2 IC  2 IC
3 チップ部品  3 Chip parts
4 コネクタ  4 Connector
5 スノレーホ一ノレ  5 Snoley Honore
6 接着線領域  6 Bond line area
7 導通線領域  7 Conduction line area
8 絶縁材  8 Insulation material
9 接着剤 10 圧接治具 9 Adhesive 10 Pressure welding jig
11 カッティング治具  11 Cutting jig
12 シールド材  12 Shielding material
13 圧接治具  13 Pressure welding jig
14 空気排出用ノズル  14 Air discharge nozzle
15 真空ポンプ  15 Vacuum pump
16 異方導電性接着剤  16 Anisotropic conductive adhesive
17 圧着治具  17 Crimping jig
20 電子部品  20 electronic components
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本願の最良の実施形態を添付図面に基づいて説明する。なお、以下に説明 する各実施形態は、 QFP (Quad Flat Package)や BGA (Ball Grid Allay)等の ICゃチ ップ部品等の電子部品が多数両面に実装されたプリント配線基板にぉ 、て、シール ド対象面を表面、その反対側の面を裏面とすると、表面側にシールド材を設けたプリ ント配線基板に対して本願の電子機器を適用した場合の実施形態である。また、以 下に説明する各実施形態は、電子機器としてナビゲーシヨン装置に対して本願を適 用した場合の実施形態である。 Hereinafter, the best embodiment of the present application will be described with reference to the accompanying drawings. Each embodiment described below is applied to a printed wiring board on which a large number of electronic parts such as IC chip parts such as QFP (Quad Flat Package) and BGA (Ball Grid Allay) are mounted on both sides. In this embodiment, when the shield target surface is the front surface and the opposite surface is the back surface, the electronic device of the present application is applied to a printed wiring board provided with a shield material on the front surface side. Each embodiment described below is an embodiment when the present application is applied to a navigation apparatus as an electronic device.
[0012] (第 1実施形態)  [0012] (First embodiment)
図 1〜図 6を参照して、本願の第 1実施形態における電子機器のシールド材製造方 法にっ 、て説明する。図 1は本願の第 1実施形態にぉ 、て電磁波シールドするプリ ント配線基板を示す斜視図、図 2は図 1のプリント配線基板に設けたスルーホール、 接着線領域及び導通線領域を示す平面図である。なお、図 1及び図 2に示す工程は 、シールド材製造方法におけるプリント配線基板の前処理工程である。  With reference to FIGS. 1 to 6, a method for manufacturing a shielding material for an electronic device according to the first embodiment of the present application will be described. FIG. 1 is a perspective view showing a printed wiring board that shields electromagnetic waves according to the first embodiment of the present application, and FIG. 2 is a plan view showing through holes, an adhesive line area, and a conductive line area provided in the printed wiring board of FIG. FIG. The steps shown in FIGS. 1 and 2 are pretreatment steps for the printed wiring board in the shield material manufacturing method.
[0013] まず、図 1に示すように、プリント配線基板 (以下、単に基板という。) 1における電磁 波に対するシールド対象面である表面 la上には、電子部品としての IC2、チップ部 品 3及びコネクタ 4が実装されている。この基板 1には、 IC2、チップ部品 3及びコネク タ 4を回避した位置に表面 laから裏面 lbに貫通する 4箇所の径 1. 25mm程度のス ルーホール 5が形成され、これらのスルーホール 5を空気排出用の孔として利用する 。ここで、電磁波シールドを行う対象となる基板 1は、リフロー炉による半田付けを行う 場合、スルーホール 5に半田が入らな 、ようにして製造する。 First, as shown in FIG. 1, on a surface la, which is a surface to be shielded against electromagnetic waves in a printed wiring board (hereinafter simply referred to as a board) 1, IC2 as an electronic component, chip component 3 and Connector 4 is mounted. This board 1 has four through holes 5 with a diameter of about 1.25 mm that penetrate from the front surface la to the rear surface lb at positions avoiding the IC 2, the chip component 3, and the connector 4. Use as a hole for air discharge . Here, the substrate 1 to be subjected to electromagnetic wave shielding is manufactured in such a manner that the solder does not enter the through hole 5 when performing soldering by a reflow furnace.
[0014] また、図 2に示すように、基板 1上における電磁波シールドを行う対象となる領域に は、予め当該領域の外周に矩形状に形成された lmm幅の絶縁材の接着線領域 6と 、その外側に同様に矩形状に形成された lmm幅のシールド材の導通線領域 7とを 設けておき、これらの接着線領域 6及び導通線領域 7には、 IC2、チップ部品 3及び コネクタ 4等の電子部品の外形部分が重ならないように当該電子部品を配置するよう に設計する。なお、接着線領域 6の基板 1表面には、パターンの形成の有無は問わ ない。導通線領域 7には、基板 1表面に銅箔パターンを形成し、最終的に後述するシ 一ルド材と電気的に導通させる。よって、この導通線領域 7は、 GNDパターンと同電 位のアースパターンとすることが望まし 、。  Further, as shown in FIG. 2, the region to be shielded against electromagnetic waves on the substrate 1 includes an adhesive line region 6 of an lmm-width insulating material previously formed in a rectangular shape on the outer periphery of the region. In addition, a conductive line region 7 of a lmm-width shield material similarly formed in a rectangular shape is provided on the outside, and these bonding line region 6 and conductive line region 7 include IC2, chip component 3 and connector 4 Design the electronic parts so that they do not overlap. It is to be noted that a pattern is not formed on the surface of the substrate 1 in the bonding line region 6. In the conductive line region 7, a copper foil pattern is formed on the surface of the substrate 1, and finally electrically connected to a shield material described later. Therefore, it is desirable that the conductive line region 7 be a ground pattern having the same potential as the GND pattern.
[0015] 次に、図 3〜図 6に従ってシールド材製造方法の手順を説明する。  Next, the procedure of the shield material manufacturing method will be described with reference to FIGS.
[0016] 図 3は図 2のプリント配線基板に絶縁材を被覆した状態を示す断面図、図 4は図 3 のプリント配線基板にシールド材を被覆した状態を示す断面図、図 5は図 4のプリント 配線基板に絶縁材及びシールド材が空気排出により密着した状態を示す断面図、 図 6は図 5に示すプリント配線基板に固定されたシールド材の外周部分を切断する状 態を示す断面図である。  3 is a cross-sectional view showing a state in which the printed wiring board of FIG. 2 is covered with an insulating material, FIG. 4 is a cross-sectional view showing a state in which the printed wiring board of FIG. 3 is covered with a shielding material, and FIG. FIG. 6 is a cross-sectional view showing a state in which the outer peripheral portion of the shield material fixed to the printed wiring board shown in FIG. 5 is cut. It is.
[0017] 図 3に示す絶縁材被覆接着工程では、最初に、絶縁材 8の接着線領域 6に UV (紫 外線)硬化型接着剤等の汎用の接着剤 9を一様に塗布する。絶縁材 8は、厚さ 10〜 30 /z m等のポリエチレンシート等が用いられる。絶縁材 8は、基板 1のシールド対象 領域の表面 1 aに実装された IC2及びチップ部品 3等の電子部品を被覆するように設 けられ、図 3に示すような絶縁材 8の接着線領域 6の全周を圧接可能な圧接治具 10 により絶縁材 8を接着線領域 6に圧接することで、当該絶縁材 8を基板 1に接着する。 これにより、シールド対象領域の表面 1 aに実装された IC2及びチップ部品 3等の電 子部品は、絶縁材 8により被覆される。このとき、絶縁材 8には、電磁波シールドを行う 対象領域における電子部品の上面等の所定部位に小径の空気排出孔 8aを 4箇所 程度形成しておく。また、後述する空気排出工程にて絶縁材 8から空気を排出するこ とから、絶縁材 8に広さに余裕がないと絶縁材 8が破損する等、不具合が発生するこ とになるので、圧接治具 10により絶縁材 8を接着する前は、絶縁材 8が電子部品と電 子部品との間に入り込むだけの絶縁材 8に広さに余裕を持たせることが望ましい。 In the insulating material coating adhesion step shown in FIG. 3, first, a general-purpose adhesive 9 such as a UV (ultraviolet ray) curable adhesive is uniformly applied to the adhesive line region 6 of the insulating material 8. As the insulating material 8, a polyethylene sheet having a thickness of 10 to 30 / zm or the like is used. The insulating material 8 is provided so as to cover the electronic parts such as the IC 2 and the chip part 3 mounted on the surface 1 a of the shielded area 1 of the substrate 1, and the bonding line area of the insulating material 8 as shown in FIG. The insulating material 8 is bonded to the substrate 1 by pressing the insulating material 8 to the bonding line region 6 with a pressure welding jig 10 capable of pressure welding the entire circumference of 6. As a result, the electronic components such as the IC 2 and the chip component 3 mounted on the surface 1 a of the shield target region are covered with the insulating material 8. At this time, the insulating material 8 is formed with about four small-diameter air discharge holes 8a in predetermined portions such as the upper surface of the electronic component in the target region where electromagnetic wave shielding is performed. In addition, since air is exhausted from the insulating material 8 in the air exhausting process described later, problems such as damage to the insulating material 8 occur if the insulating material 8 is not wide enough. Therefore, before bonding the insulating material 8 with the pressure welding jig 10, it is desirable that the insulating material 8 that allows the insulating material 8 to enter between the electronic component and the electronic component has a sufficient margin. .
[0018] そして、絶縁材切断工程では、絶縁材 8は、接着後、接着線領域 6と導通線領域 7 との間をカッター等のカッティング治具 11により外周を切り取る要領で切断する。  [0018] Then, in the insulating material cutting step, after bonding, the insulating material 8 is cut between the bonding wire region 6 and the conductive wire region 7 in a manner of cutting the outer periphery with a cutting jig 11 such as a cutter.
[0019] 次!、で、図 4に示すシールド材被覆接着工程では、シールド材 12として 20〜50 μ m程度のアルミニウム箔又は同程度の柔軟性を有するシート状の金属箔を用意する 。このシールド材 12は、絶縁材 8を接着し終えた対象領域の上側(表面 la側)から絶 縁材 8と同様に表面 laに実装された IC2及びチップ部品 3等の電子部品を被覆する ように設けられ、図 4に示すような先端にローラ 13aが取り付けられた圧接治具 13によ り絶縁材 8の接着線領域 6の近傍部分が押圧される。  Next, in the shielding material covering and bonding step shown in FIG. 4, an aluminum foil of about 20 to 50 μm or a sheet-like metal foil having the same degree of flexibility is prepared as the shielding material 12. This shielding material 12 covers the electronic parts such as IC2 and chip part 3 mounted on the surface la in the same manner as the insulating material 8 from the upper side (surface la side) of the target area where the insulating material 8 has been bonded. 4 and a portion near the bonding line region 6 of the insulating material 8 is pressed by the pressure welding jig 13 having a roller 13a attached to the tip as shown in FIG.
[0020] 同時に、基板 1の裏面 lb側力 対象領域内に形成されたスルーホール 5を全て含 む開口面積に形成した空気排出用ノズル 14を基板 1に押し付ける。この空気排出用 ノズル 14は、基板 1との接触部分にゴム性のクッション材 14aが設けられ、このクッショ ン材 14aにより空気の漏洩を防止している。また、空気排出用ノズル 14は、図示しな V、管路を経て真空ポンプ 15に接続されて!、る。  [0020] At the same time, the rear surface lb side force of the substrate 1 is pressed against the substrate 1 with the air discharge nozzle 14 formed in an opening area including all the through holes 5 formed in the target region. This air discharge nozzle 14 is provided with a rubber cushion material 14a at the contact portion with the substrate 1, and the cushion material 14a prevents air leakage. Further, the air discharge nozzle 14 is connected to the vacuum pump 15 via V, a pipe line (not shown).
[0021] さらに、図 5に示す空気排出工程では、空気排出用ノズル 14を基板 1の裏面 lb側 に接触させると、基板 1の表面 la側からはシールド材 12の圧接治具 13が、裏面 lb 側からは空気排出用ノズル 14が互いに対称位置力も基板 1を押圧することになり、基 板 1を効果的に固定することができる。  Further, in the air discharge process shown in FIG. 5, when the air discharge nozzle 14 is brought into contact with the back surface lb side of the substrate 1, the pressure welding jig 13 of the shield material 12 is formed on the back surface lb side of the substrate 1 from the back surface side. From the lb side, the air discharge nozzle 14 also presses the substrate 1 with symmetrical positional force, and the substrate 1 can be effectively fixed.
[0022] そして、空気排出用ノズル 14には、上記のように図示しない管路を経て真空ポンプ 15が接続されていることから、この真空ポンプ 15を駆動して空気を吸引し、基板 1の スルーホール 5、絶縁材 8の空気排出孔 8aを通して基板 1の表面 la側の対象領域に おけるシールド材 12内から空気を排出する。ここで、圧接治具 13の先端に取り付け たローラ 13aの機能は、空気排出時にシールド材 12が水平方向に対して移動可能と するものである。  [0022] Since the vacuum pump 15 is connected to the air discharge nozzle 14 through a pipe line (not shown) as described above, the vacuum pump 15 is driven to suck air, and the substrate 1 Air is discharged from the shielding material 12 in the target area on the surface la side of the substrate 1 through the air discharge hole 8a of the through hole 5 and the insulating material 8. Here, the function of the roller 13a attached to the tip of the pressure welding jig 13 is to enable the shield material 12 to move in the horizontal direction when air is discharged.
[0023] シールド材 12内から空気を排出すると、絶縁材 8には 4箇所の空気排出孔 8aが形 成されているため、絶縁材 8と基板 1との間、絶縁材 8とシールド材 12との間の空気圧 が同時に低くなり、シールド材 12の形状は、実装された電子部品の外形、すなわち I C2及びチップ部品 3の外形に沿って密着するような形状になる。 [0023] When air is discharged from the inside of the shielding material 12, the insulating material 8 is formed with four air discharge holes 8a, so that the insulating material 8 and the substrate 1 are interposed between the insulating material 8 and the shielding material 12. The air pressure between and The shape is such that it adheres along the outer shape of C2 and chip part 3.
[0024] さらに、シールド材 12内から空気が排出され、シールド材 12がおよそ電子部品の 外形に密着するような形状が完成すると、図 6に示す異方導電性接着剤塗布工程に 移行する。 Furthermore, when air is exhausted from the inside of the shield material 12 and the shape in which the shield material 12 is in close contact with the outer shape of the electronic component is completed, the process proceeds to the anisotropic conductive adhesive application step shown in FIG.
[0025] この異方導電性接着剤塗布工程では、図 5に示すようにシールド材 12の導通線領 域 7において、シールド材 12の外周部をローラ 13aの外側上方に持ち上げつつ、基 板 1の表面 laのアースパターン上における導通線領域 7に異方導電性接着剤(例え ば Three Bond社製 3373等) 16を塗布する。  In this anisotropic conductive adhesive application step, as shown in FIG. 5, in the conductive line region 7 of the shield material 12, the outer periphery of the shield material 12 is lifted to the upper outside of the roller 13 a while the substrate 1 Apply anisotropically conductive adhesive 16 (for example, 3373 manufactured by Three Bond) 16 to the conductive line region 7 on the ground pattern of the surface la.
[0026] ここで、異方導電性接着剤 (ACP) 16とは、機械的接続と電気的接続の双方の機 能を備えた材料であり、導電フイラを有している。また、異方導電性接着剤 16は、圧 着時間が短ぐ圧着させる温度も 120°C程度と非常に低いため、本実施形態に有効 である。より詳細には、異方導電性接着剤 (ACP) 16は、接着剤 (バインダ)の中に導 電フイラが混合されており、熱圧着により圧着された双方の接着対象部材は、機械的 、電気的に接続される。一方、バインダは、絶縁体であるため、隣接する回路に存在 する導電フイラとの間では絶縁性が保持されている。接着剤には一般的に熱硬化性 榭脂、熱可塑性榭脂、熱硬化 Z熱可塑性混合榭脂等が用いられ、導電フイラには、 一般的に榭脂ボールに金メッキしたものが使用される。  Here, the anisotropic conductive adhesive (ACP) 16 is a material having functions of both mechanical connection and electrical connection, and has a conductive filler. In addition, the anisotropic conductive adhesive 16 is effective in this embodiment because the temperature at which the pressure bonding is short and the temperature at which the pressure bonding is performed is as low as about 120 ° C. More specifically, the anisotropic conductive adhesive (ACP) 16 has a conductive filler mixed in an adhesive (binder), and both members to be bonded by thermocompression bonding are mechanical, Electrically connected. On the other hand, since the binder is an insulator, insulation is maintained between conductive binders existing in adjacent circuits. Thermosetting resin, thermoplastic resin, thermosetting Z thermoplastic mixed resin, etc. are generally used for adhesives, and conductive balls generally used are gold-plated resin balls. .
[0027] そして、図 6に示すようにシールド材接着工程では、圧着治具 17は、導通線領域 7 の上部から降下する構成とし、この圧着治具 17により導通線領域 7に塗布された異 方導電性接着剤 16にシールド材 12を圧着するため、異方導電性接着剤 16に熱及 び圧力をカ卩えることによりシールド材 12を接着させる。  Then, as shown in FIG. 6, in the shielding material adhering step, the crimping jig 17 is configured to descend from the upper part of the conductive line region 7, and the different coating applied to the conductive line region 7 by the crimping jig 17. In order to pressure-bond the shielding material 12 to the anisotropic conductive adhesive 16, the shielding material 12 is bonded to the anisotropic conductive adhesive 16 by covering heat and pressure.
[0028] 以上の工程を経てシールド材 12が基板 1の表面 la側に被覆固定されるので、シー ルド材切断工程にぉ 、て、シールド材 12のさらに外周部をカッティング治具 11にて 切断すれば、シールド材 12の製造工程が終了する。  [0028] Since the shield material 12 is covered and fixed on the surface la side of the substrate 1 through the above steps, the outer periphery of the shield material 12 is further cut by the cutting jig 11 in the shield material cutting step. Then, the manufacturing process of the shielding material 12 is completed.
[0029] ここで、シールド材 12は、単層構造の金属箔であるので、内部の空気を排出したこ とにより形成した凹凸形状を保持する。絶縁材 8については、電子部品と電子部品と の間の凹部に予め基板 1と絶縁材 8の間に接着剤を少量塗布しておくことで、絶縁材 8を固定するには都合がよい。 [0030] 以上の工程を経て完成した電子機器は、電子部品である IC2及びチップ部品 3が 実装された基板 1の表面 la側において電磁波シールドの対象領域に絶縁材 8を被 覆し、この絶縁材 8の上面にシールド材 12を被覆し、このシールド材 12内部の空気 を排出してシールド材 12を電子部品である IC2及びチップ部品 3に密着するように形 成している。 [0029] Here, since the shielding material 12 is a metal foil having a single layer structure, it retains the uneven shape formed by exhausting the air inside. As for the insulating material 8, it is convenient to fix the insulating material 8 by applying a small amount of adhesive between the substrate 1 and the insulating material 8 in advance in the recess between the electronic components. [0030] The electronic device completed through the above steps covers the insulating material 8 in the target region of the electromagnetic wave shield on the surface la side of the substrate 1 on which the IC2 and the chip component 3 which are electronic components are mounted. The shield material 12 is covered on the upper surface of 8, and the air inside the shield material 12 is discharged to form the shield material 12 in close contact with the IC 2 and the chip component 3 that are electronic components.
[0031] 次に、本実施形態の作用及び効果を図 7〜図 11に基づいて説明する。  Next, the operation and effect of this embodiment will be described with reference to FIGS.
[0032] 図 7は一般の 2つのプリント配線基板が対向する状態を示す概略図、図 8は一般の 2つのプリント配線基板が対向する状態において部品の高さ関係を示す概略斜視図 、図 9Aは図 8の矢印 A方向から見た図、図 9Bは図 8の矢印 B方向力 見た図、図 10 Aは図 9Aの 2つのプリント配線基板に一般の箱型シールドを被覆した状態を示す図 、図 10Bは図 9Bの 2つのプリント配線基板に一般の箱型シールドを被覆した状態を 示す図、図 11Aは図 9Aの 2つのプリント配線基板に本実施形態のシールドを被覆し た状態を示す図、図 11Bは図 9Bの 2つのプリント配線基板に本実施形態のシールド を被覆した状態を示す図である。なお、以下の説明では、 IC2及びチップ部品 3等を 一括して電子部品 20とする。  FIG. 7 is a schematic diagram showing a state in which two general printed wiring boards are opposed to each other, FIG. 8 is a schematic perspective view showing a height relationship of components in a state in which two general printed wiring boards are opposed to each other, and FIG. 9A Fig. 9 is a view from the direction of arrow A in Fig. 8, Fig. 9B is a view from the direction of arrow B in Fig. 8, and Fig. 10 A is a state in which two printed wiring boards in Fig. 9A are covered with a general box-type shield. Fig. 10B is a diagram showing a state where two printed wiring boards in Fig. 9B are covered with a general box type shield. Fig. 11A is a state where two printed wiring boards in Fig. 9A are covered with the shield of this embodiment. FIG. 11B is a diagram showing a state in which the shield of this embodiment is covered on the two printed wiring boards of FIG. 9B. In the following description, IC2 and chip component 3 are collectively referred to as electronic component 20.
[0033] 図 7及び図 8に示すように、電子部品 20が対向するように 2枚の基板 1A, 1Bが配 置され、この場合 3D— CAD等を用いて 2枚の基板 1A, 1Bの電子部品 20が互いに 干渉しないようにしている。そして、 2枚の基板 1A, 1Bの電子部品 20の高さ関係は、 図 9A及び図 9Bに示すようになって!/ヽる。  [0033] As shown in FIGS. 7 and 8, two substrates 1A and 1B are arranged so that the electronic component 20 faces each other. In this case, the two substrates 1A and 1B are arranged using 3D-CAD or the like. The electronic components 20 do not interfere with each other. The height relationship between the electronic components 20 of the two substrates 1A and 1B is as shown in FIGS. 9A and 9B.
[0034] この場合、一般の箱型シールド 21は、図 10A及び図 10Bに示すように電子部品 2 0中において最も高い部品に合せて製作するため、薄型化の望まれる製品仕様に合 つたシールドを製作することは極めて困難である。  [0034] In this case, the general box-shaped shield 21 is manufactured in accordance with the highest part among the electronic parts 20 as shown in FIGS. 10A and 10B. Is extremely difficult to manufacture.
[0035] これに対し、本実施形態のシールド材 12の製造方法を用いれば、図 11A及び図 1 1Bに示すようにそれぞれの電子部品 20の高さに僅かな隙間を有して製作されるた め、薄型化の望まれる製品仕様に適したシールドを容易に製作することができる。な お、図 10A及び図 10B、図 11A及び図 11Bでは、絶縁材 8の図示を省略している。  On the other hand, when the manufacturing method of the shielding material 12 of the present embodiment is used, the electronic components 20 are manufactured with a slight gap at the height as shown in FIGS. 11A and 11B. Therefore, it is possible to easily manufacture a shield suitable for the product specification that is desired to be thin. Note that the insulating material 8 is not shown in FIGS. 10A and 10B, and FIGS. 11A and 11B.
[0036] このように本実施形態の電子機器によれば、基板 1の片面である表面 laの電磁波 シールドを行う対象領域に配置された電子部品 20に、シールド材 12を密着するよう に被覆したことにより、基板 1の表面 laにおいて、実装された電子部品 20の所望の 部分を電磁波シールドすることができる。すなわち、本実施形態によれば、基板 1の 表面 la上のノイズ対策を施すべき肝要なブロックのみを効果的にシールドすることが できる。その結果、電磁波シールドすべき部分以外の不要な部分を電磁波シールド することがなくなり、必要最小限の大きさのシールド材 12で済むことになる。 As described above, according to the electronic apparatus of the present embodiment, the shield material 12 is brought into close contact with the electronic component 20 arranged in the target region where the electromagnetic wave shielding of the surface la that is one side of the substrate 1 is performed. As a result of the coating, a desired portion of the mounted electronic component 20 can be shielded against electromagnetic waves on the surface la of the substrate 1. That is, according to the present embodiment, it is possible to effectively shield only the important blocks on which noise countermeasures on the surface la of the substrate 1 should be taken. As a result, unnecessary portions other than the portion to be shielded against electromagnetic waves are not shielded, and the shield material 12 having the minimum necessary size is sufficient.
[0037] また、本実施形態の電子機器によれば、シールド材 12の電子部品 20に被覆される 側に絶縁材 8を設けたことにより、電子部品 20や半田等に対してシールド材 12を確 実に電気的に絶縁することができる。  [0037] Further, according to the electronic apparatus of the present embodiment, the insulating material 8 is provided on the side of the shielding material 12 that is covered with the electronic component 20, thereby providing the shielding material 12 with respect to the electronic component 20, solder, or the like. It can be reliably insulated electrically.
[0038] さらに、本実施形態の電子機器によれば、シールド材 12の内部の空気を排出して シールド材 12を電子部品 20に密着するように形成したことにより、電子部品 20とシ 一ルド材 12との距離を極めて小さくすることができ、かつ凹凸を有しつつ電子部品 2 0の高さに沿った形状に近いため、製品仕様上でシールド材 12による構造的体積の 増大が可及的に少なくなる。端的な例としては、図 11A及び図 11Bに示すような製 品仕様のように電子部品 20の高さの不一致により発生するデッドスペースをなくすこ とができ、シールド性能を確保しつつ、一般の箱型のシールド材では成し得な力つた 構造上の限界をなくすことができる。  [0038] Furthermore, according to the electronic device of the present embodiment, the air inside the shield material 12 is exhausted and the shield material 12 is formed so as to be in close contact with the electronic component 20, whereby the electronic component 20 and the shield are formed. The distance from the material 12 can be made extremely small, and it is close to the shape along the height of the electronic component 20 while having irregularities, so that it is possible to increase the structural volume due to the shielding material 12 in the product specifications. Less. As a simple example, the dead space caused by the mismatch of the height of the electronic component 20 as in the product specifications shown in Fig. 11A and Fig. 11B can be eliminated, and while the shielding performance is secured, The box-shaped shield material can eliminate structural limitations that cannot be achieved.
[0039] また、本実施形態の電子機器によれば、対象領域を完全にシールドすることができ るため、スリット部分ゃ孔等が発生せず、電子部品 20やパターンからの放射性ノイズ に対するシールド効果は完璧に近くなる。力 tlえて、電子部品 20間の電磁波障害の抑 止にも効果を奏する。  [0039] Further, according to the electronic device of the present embodiment, the target region can be completely shielded, so that no slits or holes are generated, and the shielding effect against radioactive noise from the electronic component 20 or pattern is achieved. Will be close to perfection. In addition, it is effective in suppressing electromagnetic interference between the electronic components 20.
[0040] 一方、本実施形態の電子機器のシールド材製造方法によれば、基板 1の表面 laの 電磁波シールドを行う対象領域に配置された電子部品 20にシールド材 12を被覆す るシールド材被覆工程と、このシールド材被覆工程により電子部品 20に被覆された シールド材 12内力も空気を排出する空気排出工程と、を備えることにより、電子部品 20にシールド材 12を密着するように被覆することができ、基板 1の表面 laにおいて、 実装された電子部品の所望の部分を電磁波シールドすることができる。  [0040] On the other hand, according to the method for manufacturing a shielding material for an electronic device of the present embodiment, the shielding material coating that covers the shielding material 12 on the electronic component 20 disposed in the target region for electromagnetic wave shielding of the surface la of the substrate 1 The shielding material 12 is covered with the electronic component 20 by the shielding material coating step, and the shielding material 12 is closely attached to the electronic component 20 by providing an air exhausting process in which the internal force is also discharged. The desired portion of the mounted electronic component can be shielded against electromagnetic waves on the surface la of the substrate 1.
[0041] また、本実施形態の電子機器のシールド材製造方法によれば、電子部品 20に被 覆されたシールド材 12を基板 1に異方導電性接着剤 16により接着する接着工程を 備えることにより、シールド材 12の基板 1に対する機械的接続と電気的接続の双方を 行うことができる。 [0041] Further, according to the method for manufacturing a shielding material for an electronic device of the present embodiment, the bonding step of bonding the shielding material 12 covered with the electronic component 20 to the substrate 1 with the anisotropic conductive adhesive 16 is performed. By providing, both mechanical connection and electrical connection of the shielding material 12 to the substrate 1 can be performed.
[0042] さらに、本実施形態の電子機器のシールド材製造方法によれば、シールド材 12を 被覆するシールド材被覆工程の前に予め絶縁材 8を被覆する絶縁材被覆工程を行 うことにより、電子部品 20や半田等に対してシールド材 12を確実に電気的に絶縁す ることがでさる。  [0042] Furthermore, according to the shield material manufacturing method for an electronic device of the present embodiment, by performing the insulating material coating step of covering the insulating material 8 in advance before the shielding material coating step of covering the shield material 12, The shield material 12 can be reliably electrically insulated from the electronic component 20 and solder.
[0043] また、本実施形態の電子機器のシールド材製造方法によれば、実施するための設 備投資が非常に少なぐコストもほぼ材料費のみで済み、容易に製造することができ る。また、金型が不要であり、特殊溶剤等を使用することがなぐ環境への影響が少 ない。  [0043] Further, according to the method for manufacturing a shielding material for an electronic device of the present embodiment, the cost for carrying out the equipment can be reduced and the manufacturing cost can be easily reduced. In addition, there is no need for a mold and there is little impact on the environment due to the use of special solvents.
[0044] また、本実施形態の電子機器及びその電子機器シールド材製造方法によれば、真 空ポンプ 15を駆動してシールド材 12内から空気を吸引することにより、電子部品 20 にシールド材 12を確実に密着するように被覆することができる。  [0044] Further, according to the electronic device of the present embodiment and the method for manufacturing the electronic device shielding material, the vacuum pump 15 is driven to suck air from the shielding material 12, so that the electronic material 20 has the shielding material 12 It can coat | cover so that it may adhere | attach firmly.
[0045] なお、本実施形態では、導通線領域 7に異方導電性接着剤 (ACP) 16を塗布して シールド材 12を接着させるようにしたが、これに限らず基板 1上に形成された半田を そのまま利用することもできる。  In the present embodiment, the anisotropic conductive adhesive (ACP) 16 is applied to the conductive line region 7 to adhere the shield material 12, but the present invention is not limited to this and is formed on the substrate 1. Solder can be used as it is.
[0046] 具体的には、基板 1の表面 la側に電子部品 20を実装する時のリフロー半田を予め 導通線領域 7にマスク抜きにより配置し、圧着治具 17の温度を半田の融点まで高め て使用すれば、導通線領域 7では半田と金属箔カもなるシールド材 12が熱圧着によ り導通する。このとき使用するシールド材 12の金属箔としては、半田と接合する銅箔 等を用いることが望ましい。これにより、異方導電性接着剤 (ACP) 16を塗布してシー ルド材 12を接着する必要がなくなる。  Specifically, the reflow solder for mounting the electronic component 20 on the surface la side of the substrate 1 is placed in advance in the conductive line region 7 by removing the mask, and the temperature of the crimping jig 17 is increased to the melting point of the solder. In the conductive line region 7, the shield material 12, which is also solder and metal foil, is conducted by thermocompression bonding. As the metal foil of the shield material 12 used at this time, it is desirable to use a copper foil or the like to be joined to solder. This eliminates the need to apply the anisotropic conductive adhesive (ACP) 16 and bond the shield material 12.
[0047] また、本実施形態では、接着線領域 6に絶縁材 8を接着剤により接着した後、導電 線領域 7に絶縁材 8の上面を被覆するようにシールド材 12を異方導電性接着剤 (AC P) 16により接着するようにしたが、これに限定することなぐ電磁波シールドを行う対 象領域に基材としてポリエチレン等を使用して銅箔等の金属層を積層した積層材料 を接着するようにしてもよい。この場合、その積層材料を上記と同様に半田の溶融温 度まで加熱して圧着させれば、ポリエチレン等の基材の耐熱温度を超えるため、当該 基材部分を貫通して基板 1面の半田とシールド材 12の金属層とが圧着により導通す ること〖こなる。これにより、接着線領域 6に絶縁材 8を接着剤により接着する工程を省 略することができる。 Further, in this embodiment, after the insulating material 8 is bonded to the bonding line region 6 with an adhesive, the shield material 12 is anisotropically conductive bonded so that the conductive wire region 7 covers the upper surface of the insulating material 8. Adhesive (AC P) 16 is used for bonding, but it is not limited to this. Adhering laminated materials in which metal layers such as copper foil are laminated using polyethylene as a base material in the target area for electromagnetic wave shielding. You may make it do. In this case, if the laminated material is heated up to the melting temperature of the solder in the same manner as described above and then subjected to pressure bonding, the heat resistance temperature of the base material such as polyethylene will be exceeded. The solder on one side of the substrate and the metal layer of the shielding material 12 are brought into conduction by pressure bonding through the base material portion. As a result, the step of bonding the insulating material 8 to the bonding line region 6 with an adhesive can be omitted.
[0048] (第 2実施形態)  [0048] (Second Embodiment)
図 12は本願の第 2実施形態においてプリント配線基板に絶縁材及びシールド材を 被覆した状態を示す断面図である。なお、前記第 1実施形態と同一又は対応する部 分には同一の符号を用いて説明する。その他の実施形態も同様である。  FIG. 12 is a cross-sectional view showing a state where the printed wiring board is covered with an insulating material and a shielding material in the second embodiment of the present application. Note that the same reference numerals are used for the same or corresponding parts as those in the first embodiment. The same applies to other embodiments.
[0049] 本実施形態は、図 12に示すように前記第 1実施形態の真空ポンプ 15を用いずに 押圧治具 23により絶縁材 8及びシールド材 12を押し付けるようにしている。  In this embodiment, as shown in FIG. 12, the insulating material 8 and the shield material 12 are pressed by the pressing jig 23 without using the vacuum pump 15 of the first embodiment.
[0050] すなわち、本実施形態では、押圧治具 23を用いて絶縁材 8及びシールド材 12を基 板 1の表面 la側力 押し付け、絶縁材 8及びシールド材 12内の空気をスルーホール 5等力も排出することにより、シールド材 12を前記第 1実施形態の真空ポンプ 15によ り空気を排出して形成される形状に近似させる。  That is, in the present embodiment, the insulating material 8 and the shielding material 12 are pressed against the surface la side force of the base plate 1 using the pressing jig 23, and the air in the insulating material 8 and the shielding material 12 is passed through the through-hole 5 or the like. By discharging the force as well, the shielding material 12 is approximated to a shape formed by discharging air by the vacuum pump 15 of the first embodiment.
[0051] この場合、押圧治具 23は、必ずしもプレス型のような硬 、材質ではなく、シールド材 12との接触面はやや軟質な材料が用いられている。また、押圧治具 23の先端面に は、電子部品 20の配置形態に対応して複数の凹部 24が形成されている。  [0051] In this case, the pressing jig 23 is not necessarily a hard material such as a press die, and a slightly soft material is used for the contact surface with the shield material 12. In addition, a plurality of recesses 24 are formed on the front end surface of the pressing jig 23 corresponding to the arrangement form of the electronic component 20.
[0052] このように本実施形態によれば、シールド材 12内部の空気を押圧治具 23により排 出してシールド材 12を電子部品 20に密着するように形成することができるため、設備 の簡素化及び小型化を図ることができる。その他の構成及び作用は、前記第 1実施 形態と同様であるので、その説明を省略する。  As described above, according to the present embodiment, the air inside the shield material 12 can be discharged by the pressing jig 23 so that the shield material 12 is brought into close contact with the electronic component 20. And miniaturization can be achieved. Since other configurations and operations are the same as those of the first embodiment, description thereof will be omitted.
[0053] (第 3実施形態)  [0053] (Third embodiment)
図 13は本願の第 3実施形態において放熱対策を施した状態を示す断面図、図 14 は図 13の放熱対策を施した状態の作用を示す断面図である。  FIG. 13 is a cross-sectional view showing a state in which a heat dissipation measure is taken in the third embodiment of the present application, and FIG. 14 is a cross-sectional view showing an operation in a state in which the heat dissipation measure is taken in FIG.
[0054] 本実施形態は、図 13に示すように代表的発熱源となる電子部品 20の上部に位置 する絶縁材 8に放熱用の開口部 26が形成されている。電子部品 20として ICパッケ一 ジの場合には、その上部は絶縁材 8で絶縁する必要性がないので、開口部 26は、低 硬度熱伝導性シリコンゴムシート等の熱伝導シート材 27を貼着可能な大きさ、または その熱伝導シート材 27の大きさから一回り小さい大きさに形成し、予め熱伝導シート 材 27を貼着しておく。 In the present embodiment, as shown in FIG. 13, an opening 26 for heat dissipation is formed in the insulating material 8 located above the electronic component 20 serving as a representative heat source. In the case of an IC package as the electronic component 20, it is not necessary to insulate the upper part with the insulating material 8. A size that can be worn, or a size that is slightly smaller than the size of the heat conductive sheet material 27, and is formed in advance. Stick material 27.
[0055] ところで、上述した従来の発明は、電磁波シールド層を有する積層フィルム力もなる 袋状体でプリント配線基板を真空包装する構成であるので、プリント配線基板に実装 された電子部品にヒートシンクを設けるような内部の放熱対策を講じることができない という問題がある。  [0055] By the way, the above-described conventional invention has a configuration in which the printed wiring board is vacuum-packed with a bag-like body having a laminated film force having an electromagnetic wave shielding layer, and therefore, a heat sink is provided on the electronic component mounted on the printed wiring board. There is a problem that internal heat dissipation measures cannot be taken.
[0056] これに対し、本実施形態では、図 14に矢印で示すように、代表的発熱源となる電子 部品 20上部力も熱伝導シート材 27を介してシールド材 12へ熱を伝達する。そして、 シールド材 12の外部に例えば図示しないヒートシンク等の放熱部材を配置すれば、 この放熱部材により代表的発熱源となる電子部品 20の熱を吸収して放熱することが できる。  On the other hand, in the present embodiment, as indicated by an arrow in FIG. 14, the upper force of the electronic component 20 serving as a representative heat source also transfers heat to the shield material 12 via the heat conductive sheet material 27. If a heat radiating member such as a heat sink (not shown) is disposed outside the shield material 12, for example, the heat of the electronic component 20 serving as a typical heat source can be absorbed by the heat radiating member and radiated.
[0057] このように本実施形態によれば、代表的発熱源となる電子部品 20の上部に位置す る絶縁材 8に放熱用の開口部 26を形成し、この開口部 26を塞ぐように熱伝導シート 材 27を貼着したことにより、シールド材 12を電子部品 20に密着するように形成したこ とでシールド材 12の内部空間が狭くなつても、シールド性能を損なわずに電子部品 20の熱を外部に伝達するルートを設けることが可能となり、電子部品 20の熱を確実 に放熱することができる。その他の構成及び作用は、前記第 1実施形態と同様である ので、その説明を省略する。  As described above, according to the present embodiment, the opening 26 for heat dissipation is formed in the insulating material 8 located on the upper part of the electronic component 20 that is a representative heat source, and the opening 26 is closed. Even if the internal space of the shield material 12 is narrowed by forming the shield material 12 in close contact with the electronic component 20 by sticking the heat conductive sheet material 27, the electronic component 20 is not impaired. It is possible to provide a route for transferring the heat of the outside to the outside, and the heat of the electronic component 20 can be reliably radiated. Other configurations and operations are the same as those in the first embodiment, and thus description thereof is omitted.
[0058] (第 4実施形態)  [0058] (Fourth embodiment)
図 15は本願の第 4実施形態のプリント配線基板に設けた接着線領域及び導通線 領域を示す平面図である。  FIG. 15 is a plan view showing an adhesive line region and a conductive line region provided on the printed wiring board according to the fourth embodiment of the present application.
[0059] 本実施形態では、図 14に示すように接着線領域 6及び導通線領域 7のそれぞれの 角部にアール部 6a, 7aが形成されている。これに合せて絶縁材 8及びシールド材 12 の隅角部もアール形状となる。  In the present embodiment, as shown in FIG. 14, rounded portions 6a and 7a are formed at the corners of the bonding line region 6 and the conductive line region 7, respectively. In accordance with this, the corners of the insulating material 8 and the shielding material 12 are also rounded.
[0060] このように接着線領域 6及び導通線領域 7のそれぞれの角部にアール部 6a, 7aを 形成し、これに合せて絶縁材 8及びシールド材 12の隅角部もアール形状としたことに より、接着線領域 6の接着材 9に接着された絶縁材 8の隅角部と、導通線領域 7に塗 布された異方導電性接着剤 (ACP) 16に接着されたシールド材 12の隅角部に、生 産工程にぉ 、て亀裂や破損が生じるのを未然に防止することができる。その他の構 成及び作用は、前記第 1実施形態と同様であるので、その説明を省略する。 [0060] In this way, the rounded portions 6a and 7a are formed at the respective corners of the bonding wire region 6 and the conductive wire region 7, and the corners of the insulating material 8 and the shielding material 12 are also rounded in accordance with this. As a result, the corners of the insulating material 8 bonded to the adhesive 9 in the bonding line region 6 and the shielding material bonded to the anisotropic conductive adhesive (ACP) 16 applied to the conductive line region 7 are obtained. It is possible to prevent cracks and breaks from occurring in the 12 corners during the production process. Other structures Since the composition and operation are the same as those of the first embodiment, the description thereof is omitted.
[0061] なお、上記各実施形態にお!、ては、電子機器の一例としてナビゲーシヨン装置を 適用したが、これに限定されるものではなぐ例えば、ノートパソコン、携帯電話、デジ タルカメラ等のような小型化要求される各種の民生用電子機器にも適用可能である。 [0061] Although the navigation apparatus is applied to each of the above embodiments as an example of an electronic device, the present invention is not limited to this. For example, a notebook computer, a mobile phone, a digital camera, etc. It can also be applied to various consumer electronic devices that are required to be downsized.
[0062] また、本発明は、上記各実施形態に限定されるものではない。上記各実施形態は、 例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な 構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術 的範囲に包含される。  [0062] The present invention is not limited to the above embodiments. Each of the above-described embodiments is an exemplification, and has any configuration that is substantially the same as the technical idea described in the claims of the present invention, and that has the same functions and effects. It is included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] プリント配線基板に電子部品を実装した電子機器であって、  [1] An electronic device having electronic components mounted on a printed circuit board,
前記プリント配線基板の片面の電磁波シールドを行う対象領域に配置された前記 電子部品に、シールド材を密着するように被覆したことを特徴とする電子機器。  An electronic apparatus, wherein a shield material is coated so as to be in close contact with the electronic component disposed in a target region for electromagnetic wave shielding on one side of the printed wiring board.
[2] 請求項 1に記載の電子機器において、  [2] In the electronic device according to claim 1,
前記シールド材の前記電子部品を被覆する側に絶縁材を設けたことを特徴とする 電子機器。  An electronic device comprising an insulating material provided on a side of the shield material that covers the electronic component.
[3] 請求項 2に記載の電子機器において、  [3] In the electronic device according to claim 2,
前記絶縁材は、前記シールド材に積層されて ヽることを特徴とする電子機器。  The electronic device is characterized in that the insulating material is laminated on the shield material.
[4] 請求項 1に記載の電子機器において、 [4] In the electronic device according to claim 1,
前記電子部品に熱伝導シートを設け、当該熱伝導シートを介して前記電子部品に 発生した熱を前記シールド材カゝら放熱することを特徴とする電子機器。  An electronic device comprising: a heat conductive sheet provided on the electronic component; and the heat generated in the electronic component via the heat conductive sheet is dissipated from the shield material.
[5] プリント配線基板に電子部品を実装し、当該電子部品に対して電磁波シールドする 電子機器のシールド材製造方法であって、 [5] A method for manufacturing a shielding material for an electronic device, in which an electronic component is mounted on a printed wiring board and electromagnetic shielding is performed on the electronic component.
前記プリント配線基板の片面の電磁波シールドを行う対象領域に配置された前記 電子部品にシールド材を被覆するシールド材被覆工程と、  A shielding material coating step of coating a shielding material on the electronic component arranged in a target area for performing electromagnetic wave shielding on one side of the printed wiring board;
前記シールド材被覆工程により前記電子部品に被覆された前記シールド材内から 空気を排出する空気排出工程と、  An air discharging step of discharging air from within the shielding material coated on the electronic component by the shielding material coating step;
を備えることを特徴とする電子機器のシールド材製造方法。  A method for manufacturing a shielding material for electronic equipment, comprising:
[6] 請求項 5に記載の電子機器のシールド材製造方法にぉ 、て、 [6] The method for manufacturing a shielding material for electronic equipment according to claim 5,
前記空気排出工程は、真空ポンプを駆動して前記シールド材内から空気を吸引す ることを特徴とする電子機器のシールド材製造方法。  The method for producing a shielding material for an electronic device, wherein the air discharging step sucks air from within the shielding material by driving a vacuum pump.
[7] 請求項 5に記載の電子機器のシールド材製造方法にぉ 、て、 [7] In the method for manufacturing a shielding material for electronic equipment according to claim 5,
前記空気排出工程は、前記シールド材に押圧部材を押し付けて前記シールド材内 力も空気を排出することを特徴とする電子機器のシールド材製造方法。  The method of manufacturing a shielding material for an electronic device, wherein the air discharging step includes pressing a pressing member against the shielding material to discharge air from the shielding material.
[8] 請求項 5に記載の電子機器のシールド材製造方法にぉ 、て、 [8] The method for manufacturing a shielding material for electronic equipment according to claim 5,
前記電子部品に被覆された前記シールド材を前記プリント配線基板に異方導電性 接着剤により接着する接着工程を備えることを特徴とする電子機器のシールド材製 造方法。 A shielding material for electronic equipment, comprising: an adhesion step of adhering the shielding material coated on the electronic component to the printed wiring board with an anisotropic conductive adhesive. Manufacturing method.
[9] 請求項 5に記載の電子機器のシールド材製造方法にぉ 、て、  [9] In the method for manufacturing a shielding material for an electronic device according to claim 5,
前記電子部品に被覆された前記シールド材を前記プリント配線基板に予め形成し た半田に熱圧着により接着する接着工程を備えることを特徴とする電子機器のシー ルド材製造方法。  A method for manufacturing a shield material for an electronic device, comprising: an adhesion step of bonding the shield material covered with the electronic component to a solder formed in advance on the printed wiring board by thermocompression bonding.
[10] 請求項 5に記載の電子機器のシールド材製造方法にぉ 、て、  [10] The method for manufacturing a shielding material for electronic equipment according to claim 5,
前記プリント配線基板の片面の電磁波シールドを行う対象領域に配置された前記 電子部品に前記シールド材を被覆する前に予め絶縁材を被覆する絶縁材被覆工程 を備えることを特徴とする電子機器のシールド材製造方法。  An electronic device shield comprising: an insulating material coating step of previously covering the electronic component disposed in a target region for electromagnetic wave shielding on one side of the printed wiring board before the shielding material is coated. Material manufacturing method.
PCT/JP2006/316994 2006-08-29 2006-08-29 Electronic device and method for manufacturing shielding material for same WO2008026257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316994 WO2008026257A1 (en) 2006-08-29 2006-08-29 Electronic device and method for manufacturing shielding material for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/316994 WO2008026257A1 (en) 2006-08-29 2006-08-29 Electronic device and method for manufacturing shielding material for same

Publications (1)

Publication Number Publication Date
WO2008026257A1 true WO2008026257A1 (en) 2008-03-06

Family

ID=39135549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316994 WO2008026257A1 (en) 2006-08-29 2006-08-29 Electronic device and method for manufacturing shielding material for same

Country Status (1)

Country Link
WO (1) WO2008026257A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011200A (en) * 2008-06-27 2010-01-14 Canon Inc Image pickup device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856497U (en) * 1981-10-13 1983-04-16 三洋電機株式会社 Electromagnetic shielding cover
JPS60241237A (en) * 1984-05-15 1985-11-30 Mitsubishi Electric Corp Hybrid ic device
JPH0472698A (en) * 1990-07-12 1992-03-06 Matsushita Electric Ind Co Ltd Shielding device
JPH08125382A (en) * 1994-10-26 1996-05-17 Matsushita Electric Ind Co Ltd Printed-substrate device
JPH1187984A (en) * 1997-09-05 1999-03-30 Yamaichi Electron Co Ltd Mounted circuit device
JP2003163464A (en) * 2001-11-27 2003-06-06 Matsushita Electric Works Ltd Method for manufacturing wiring board
JP2003298273A (en) * 2002-04-03 2003-10-17 Kitagawa Ind Co Ltd Cover structure and forming method therefor
WO2003092347A1 (en) * 2002-04-23 2003-11-06 Nec Corporation Electromagnetically shielded circuit device and shielding method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856497U (en) * 1981-10-13 1983-04-16 三洋電機株式会社 Electromagnetic shielding cover
JPS60241237A (en) * 1984-05-15 1985-11-30 Mitsubishi Electric Corp Hybrid ic device
JPH0472698A (en) * 1990-07-12 1992-03-06 Matsushita Electric Ind Co Ltd Shielding device
JPH08125382A (en) * 1994-10-26 1996-05-17 Matsushita Electric Ind Co Ltd Printed-substrate device
JPH1187984A (en) * 1997-09-05 1999-03-30 Yamaichi Electron Co Ltd Mounted circuit device
JP2003163464A (en) * 2001-11-27 2003-06-06 Matsushita Electric Works Ltd Method for manufacturing wiring board
JP2003298273A (en) * 2002-04-03 2003-10-17 Kitagawa Ind Co Ltd Cover structure and forming method therefor
WO2003092347A1 (en) * 2002-04-23 2003-11-06 Nec Corporation Electromagnetically shielded circuit device and shielding method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011200A (en) * 2008-06-27 2010-01-14 Canon Inc Image pickup device

Similar Documents

Publication Publication Date Title
US10170431B2 (en) Electronic circuit package
JP6372122B2 (en) Manufacturing method of electronic equipment
CN108604582A (en) Carry ultra-thin substrate
JP2001516978A (en) Shielded surface acoustic wave package
US20180160525A1 (en) Circuit board device
TWI819808B (en) Semiconductor package and method for producing same
JP2017045932A (en) Method for manufacturing electronic component module
JP4567281B2 (en) Flexible circuit board with electromagnetic shield
JP3847693B2 (en) Manufacturing method of semiconductor device
TWI770405B (en) Package device and method of manufacturing the same
TWI398198B (en) Printed circuit board having grounded and shielded structure
US20150187676A1 (en) Electronic component module
JP6433604B2 (en) Non-reciprocal circuit device, non-reciprocal circuit device and manufacturing method thereof
TW200841795A (en) Flexible printed circuit, manufacture method of same and electronic device with same
TWI417970B (en) Package substrate structure and method of forming same
WO2008026257A1 (en) Electronic device and method for manufacturing shielding material for same
CN104981102A (en) Multi-chip-embedded flexible printed circuit board and manufacturing method thereof
JP2005072392A (en) Method for manufacturing electronic device
WO2016199634A1 (en) Semiconductor device, and method for manufacturing same
JP2010258137A (en) High-frequency module and manufacturing method thereof
WO2008026247A1 (en) Electromagnetic wave shield structure and formation method thereof
US20170263571A1 (en) Electronic component built-in substrate and method for manufacturing the same
JPH10335384A (en) Method and component for mounting semiconductor device or electronic component
JP4310631B2 (en) Semiconductor device, circuit board and electronic equipment
JP4519102B2 (en) Waveguide connection structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06796971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06796971

Country of ref document: EP

Kind code of ref document: A1