WO2008025841A1 - Unité de codage holographique destinée à produire des hologrammes vidéo - Google Patents

Unité de codage holographique destinée à produire des hologrammes vidéo Download PDF

Info

Publication number
WO2008025841A1
WO2008025841A1 PCT/EP2007/059118 EP2007059118W WO2008025841A1 WO 2008025841 A1 WO2008025841 A1 WO 2008025841A1 EP 2007059118 W EP2007059118 W EP 2007059118W WO 2008025841 A1 WO2008025841 A1 WO 2008025841A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
scene
holographic
coding unit
light modulator
Prior art date
Application number
PCT/EP2007/059118
Other languages
German (de)
English (en)
Inventor
Alexander Schwerdtner
Armin Schwerdtner
Original Assignee
Seereal Technologies S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200610042326 external-priority patent/DE102006042326A1/de
Priority claimed from DE200610042323 external-priority patent/DE102006042323B4/de
Priority claimed from DE200610042324 external-priority patent/DE102006042324B4/de
Application filed by Seereal Technologies S.A. filed Critical Seereal Technologies S.A.
Priority to PCT/EP2007/059118 priority Critical patent/WO2008025841A1/fr
Publication of WO2008025841A1 publication Critical patent/WO2008025841A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • G03H2001/0833Look up table
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/40Synthetic representation, i.e. digital or optical object decomposition
    • G03H2210/45Representation of the decomposed object
    • G03H2210/452Representation of the decomposed object into points
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/02Computing or processing means, e.g. digital signal processor [DSP]

Definitions

  • Holographic coding unit for generating video holograms
  • the invention relates to a holographic coding unit for generating video holograms, which generates complex hologram values from image data with depth information and / or codes the pixel values for a holographic reproduction device.
  • the rendered image data is transmitted via an interface to the monitor and the image displayed in the corresponding pixel values.
  • holographic display devices are characterized in that modulated interfering light propagates in space in front of the eyes of a viewer as an optical wavefront controllable by the amplitude and / or phase values to reconstruct a three-dimensional scene.
  • the activation of a light modulator with the hologram values of video holograms causes the pixel-modulated wave field emanating from the display screen to reconstruct the desired three-dimensional scene by interfering with the space.
  • a holographic reproduction device which is preferred for this invention is essentially based on the following principle:
  • a scene which is decomposed into object points is encoded as an overall hologram.
  • the scene is to be seen as a reconstruction from a visibility area that lies within a periodicity interval of the reconstructed video hologram.
  • a sub-hologram is defined for each object point of the scene to be reconstructed.
  • the overall hologram is formed from a superposition of sub-holograms. Essentially, the principle is pursued to primarily reconstruct the wavefront that would emit an object into one or more visibility regions.
  • the holographic display device contains at least one screen means.
  • the display means means either the light modulator itself, in which the hologram of a scene is encoded, or an optical element - for example, lens or mirror - onto which a hologram coded in the light modulator or a wavefront of a scene coded in the light modulator is imaged.
  • the screen means is the light modulator itself.
  • the screen means is an optical element onto which a hologram coded in the light modulator is imaged becomes.
  • the screen means is an optical element to which a wave front of the scene coded in the light modulator is imaged. Applicant's WO / 2006/066906 describes a method of calculating video holograms.
  • a "visibility area 1" is a limited area through which the viewer can view the entire reconstructed scene Within the visibility area, wave fields superimpose to a wavefront so that the reconstructed scene becomes visible to the viewer
  • the visibility area is at or near
  • the visibility area can be moved in the directions X, Y and Z and is tracked with known position locators of the current observer position It is possible to use two visibility areas for each observer, one for each eye It is also possible to encode video holograms in such a way that for the observer individual objects or the entire scene appear to lie behind the light modulator.
  • Applicant's WO / 2006/066906 describes a method of calculating video holograms. It is essentially based on performing a decomposition of the scene in plane slices parallel to the plane of a light modulator, all To transform level sections into a visibility area and to sum them up. Subsequently, the summed results are transformed back into the hologram plane, in which the light modulator is located, and thus the complex hologram values of the video hologram are determined.
  • DE 10 2006 025 096 describes a method and a device for rendering and generating video holograms from image data with depth information in real time. It describes a device wherein in a first mode pixel values are generated for the controllable pixels of a 2D monitor. Moreover, switchable to a second mode is the generation of complex hologram values for holographic playback devices.
  • the object of the invention is to provide a coding unit which allows real-time video holograms to be generated from three-dimensional image data with depth information.
  • the coding unit should optionally be usable for various holographic reproduction devices. Furthermore, the best possible compatibility with existing data formats, graphics subsystems, graphics cards and game consoles to be secured.
  • a holographic coding unit serves to generate complex hologram values from image data with depth information and / or to code the pixel values for a holographic reproduction device, such that the driving of the light modulator means with the pixel values modulates an incident wave field in such a way that the desired three-dimensional scene through interference in space is reconstructed.
  • the invention is based on the idea that the coding unit is separated from a data source as means for conveying the image data and a holographic reproduction device.
  • the coding unit is therefore an independent module and thus spatially separated from the data source and the playback device.
  • the coding unit obtains the image data with depth and Color information about one or more interfaces from a data source.
  • the data source of the interface comprises, for example, a network or a graphics system of a computer.
  • a first preferred encoding unit is based on the method described in DE 10 2006 042 324 for generating video holograms for a holographic reproduction device, wherein the reproduction device comprises at least one light modulator means into which a scene decomposed into object points is coded as an overall hologram and as a reconstruction from a visibility range which is within a periodicity interval of the reconstructed video hologram, wherein the visibility area together with each object point of the scene to be reconstructed defines a sub-hologram and the overall hologram is formed from a superposition of sub-holograms, and from the coding unit for each object point of the depth map the contributions the sub-holograms are determinable on the entire reconstruction of the scene from look-up tables.
  • Another particularly preferred encoding unit implements the method for generating video holograms according to WO 2006/066919, which will be explained further in the exemplary embodiment.
  • said encoding units receive the image data as a depth map and separately the color map via one or more interfaces, ie transmission means and communication protocols.
  • the so-called depth map comprises the depth information and the so-called color map of rasterized images of a video sequence.
  • the coding unit also generates pixel values for conventional 2D monitors, autostereoscopic displays or the like.
  • Such a coding unit implements methods for rendering and generating video holograms in real time according to DE 10 2006 025 096, wherein In a first mode, a 3D rendering graphics pipeline describing the conversion of a scene to rasterized image data as a 2-D projection of the scene and generating pixel values for the controllable pixels of a monitor.
  • This coding unit is characteristically characterized in that the pipeline is extendable in such a way that, in a second mode, the generation of complex hologram values and the coding as pixel values for a light modulator means of a holographic reproduction device take place in at least one holographic graphics pipeline.
  • This coding unit thus implements both the process of rendering and generating the video holograms. Therefore, the encoding unit can process any input data provided they have the appropriate depth and color information.
  • the generated complex hologram values are optionally converted into pixel values and transmitted via an outgoing interface to the holographic display device, which now reconstructs the three-dimensional scene by superposition of interference patterns by phase and / or amplitude modulation of interference-capable light.
  • the invention ensures the independence of the holographic display device of computers as well as special graphics cards or graphics systems.
  • the invention allows a variety of data sources and interfaces to relate the image data to be used.
  • the high flexibility supports the acceptance of holographic playback devices.
  • Fig. 1 shows an embodiment of the holographic coding unit (HEU). It is separated from a data source (DS) as well as from a holographic reproduction device (HD), thus forming an independent module.
  • DS data source
  • HD holographic reproduction device
  • the data source (DS) is a data server which transmits the image data with depth and color information to the coding unit via an interface (S1).
  • the interface is an Ethernet network with the appropriate transmission means, ie data source and receiver, and a suitable communication protocol.
  • the image data includes the depth map and the color map, which are transmitted in parallel in separate channels of the interface (S1).
  • the holographic coding unit generates complex hologram values according to WO 2006/066919. This procedure is summarized below.
  • the position of a viewer and its viewing direction define a view of a scene.
  • the viewer is assigned at least one visibility area lying near the eyes in a reference plane.
  • the image data are available as a three-dimensional description with depth information.
  • the rotation, scaling, translation is carried out according to the viewing direction of the observer and the visibility of the scene is calculated.
  • the scene data is divided into layers by two parallel cutting planes.
  • the scene data between the levels yield the so-called scene cut data.
  • the planes are perpendicular to the viewing direction of the viewer and the distance between the cutting planes is chosen so sufficiently small that on the one hand the accuracy of calculation but also the performance of the process is guaranteed.
  • the distance should be very small, so that only depth information, which is located at a constant distance from the viewer, must be taken into account in the calculations. If the distance between the planes is greater, then the depth information is suitably selected, for example determined as the mean distance of the two planes and assigned to a layer.
  • the scene cut data is transformed, ie the partial scene between the cutting planes. In the most general form, a transformation describes the propagation of the light waves into the visibility region.
  • transformation is to be construed as including any mathematical or computational technique that approximates or approximates a transformation. Transformations in the mathematical sense are merely approximations of physical processes, which are described in more detail by Maxwell's wave propagation equations. Transformations such as Fresnel transformations or the special group of transforms known as Fourier transforms describe second order approximations. Transformations usually lead to algebraic and non-differential descriptions and can therefore be handled computationally efficiently and performant. moreover they can be used precisely in optical systems.
  • the simplest transformations are present as Fourier or Fresnel transformations.
  • the Fourier transform is preferably used in the far field, where due to the greater distance to the viewer, the light waves can be interpreted as a planar wavefront. Compared to other transformations, the Fourier transformation has the advantage that the transformation can be modeled by optical elements - and vice versa.
  • a Fresnei transformation is preferably used.
  • the transformations are based on constant z-coordinates implied by the cutting planes. For example, the z-coordinate of one of the two levels or the mean value formed therefrom is used.
  • this reference data set represents the sum of the transformations of the individual scene cut data.
  • the inverse transforming takes place, the reference data being transformed into a finely spaced, parallel hologram plane at the location of a light modulator means into hologram data for the video hologram.
  • the complex hologram values are converted into pixel values after normalization and transmitted from the coding unit to the holographic reproduction device via a further interface (S2). It is conceivable to compress the data.
  • the complex hologram value is represented by three values which are each normalized in the value range 0 to 1, the value represented by 1 limiting the maximum achievable component value. These values are then converted into discrete values and form by discretized gray levels the tax intensities for the Pixel of the light modulator means of the display device.
  • Another preferred representation of hologram values is two-phase coding.
  • a holographic reproduction device which is preferred for this invention is essentially based on the principle that at least one light modulator means in which a scene decomposed into object points is encoded as an overall hologram and is to be viewed as a reconstruction from a visibility range within a periodicity interval of the reconstructed video hologram is located, together with each object point of the scene to be reconstructed a sub-hologram defined and the total hologram of a superposition of
  • Reconstruction of a single object point only requires a sub-hologram as a subset of the total modulated on the light modulator hologram.
  • the holographic display device contains at least one screen means.
  • the display means means either the light modulator itself, in which the hologram of a scene is encoded, or an optical element - for example, lens or mirror - onto which a hologram coded in the light modulator or a wavefront of a scene coded in the light modulator is imaged.
  • the determination of the screen means and the associated principles for the reconstruction of the scene in the visibility area are described by documents of the applicant. In documents WO 2004/044659 and WO 2006/027228, the screen means is the light modulator itself. In document WO 2006119760, "Projection device and method for holographic reconstruction of scenes", the screen means is an optical element onto which a hologram coded in the light modulator is imaged becomes.
  • Fig. 2 shows an embodiment of the holographic coding unit (HEU) in the scenario of a computer pool for many users.
  • a central coding entity (HEU) is separated from data sources (DS1, DS2,%) As well as from the holographic reproduction devices (HD1, HD2,...), Thus forming an independent assembly analogously to FIG.
  • a holographic display device (HDI 1 HD2, ...) is provided for each user in the computer pool.
  • Each user has their own local computer.
  • the computers in this example are also the data sources (DS1, DS2, ).
  • the image data is transmitted via an Ethernet network to the central coding unit. For example, the current scene view of a computer game or the view of a CAD model is transmitted.
  • these data paths from the data sources to the coding unit are indicated by dashed arrows.
  • the coding unit generates the hologram values, converts them into pixel values for the holographic reproduction device and in turn sends the generated data over the Ethernet network to the corresponding holographic reproduction device of the user.
  • these data paths are indicated by solid arrows.
  • Such an interactive networking scenario would also be conceivable globally, for example via the Internet and other global networks.
  • the coding unit, or a whole pool thereof, could receive image data as raw data and in turn provide the generated hologram data via Internet or Ethernet, so that the user of a holographic reproduction device does not have to provide any special computing capacity itself. With great advantage, this does not require expensive, expensive hardware and software for a user.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

L'invention concerne une unité de codage holographique destinée à produire des hologrammes vidéo, laquelle produit des valeurs d'hologrammes complexes à partir de données d'images au moyen d'informations concernant la profondeur et/ou code les valeurs de pixels pour un ensemble de reproduction holographique, de sorte que l'excitation de l'élément modulateur optique module un champ d'onde incident au moyen des valeurs de pixels, ceci permettant la reconstitution de la scène trimensionnelle souhaitée par interférence dans la pièce. Ladite unité est caractérisée en ce que l'unité de codage (HEU) est séparée d'une source de données (DS), utilisée en tant qu'ensemble destiné à transmettre les données d'image, et d'un ensemble de reproduction holographique (HD).
PCT/EP2007/059118 2006-09-01 2007-08-31 Unité de codage holographique destinée à produire des hologrammes vidéo WO2008025841A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/059118 WO2008025841A1 (fr) 2006-09-01 2007-08-31 Unité de codage holographique destinée à produire des hologrammes vidéo

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
DE102006042613.4 2006-09-01
DE102006042324.0 2006-09-01
DE200610042326 DE102006042326A1 (de) 2006-09-01 2006-09-01 Holographische Kodiereinheit zum Generieren computergenerierter Videohologramme
DE102006042323.2 2006-09-01
DE200610042323 DE102006042323B4 (de) 2006-09-01 2006-09-01 Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Propagation
DE102006042326.7 2006-09-01
DE102006042613 2006-09-01
DE200610042324 DE102006042324B4 (de) 2006-09-01 2006-09-01 Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Teilhologrammen
PCT/EP2007/059118 WO2008025841A1 (fr) 2006-09-01 2007-08-31 Unité de codage holographique destinée à produire des hologrammes vidéo

Publications (1)

Publication Number Publication Date
WO2008025841A1 true WO2008025841A1 (fr) 2008-03-06

Family

ID=39926731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/059118 WO2008025841A1 (fr) 2006-09-01 2007-08-31 Unité de codage holographique destinée à produire des hologrammes vidéo

Country Status (1)

Country Link
WO (1) WO2008025841A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918466A (zh) * 2010-04-01 2013-02-06 视瑞尔技术公司 用于在全息系统中编码包含透明物体的三维场景的方法和装置
CN110495900A (zh) * 2019-08-19 2019-11-26 武汉联影医疗科技有限公司 影像显示方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024064A1 (fr) * 1996-11-27 1998-06-04 Voxel Procede et dispositif d'evaluation rapide de parametres de traitement informatique
WO2001057601A1 (fr) * 2000-02-04 2001-08-09 Zebra Imaging, Inc. Systeme distribue permettant de produire des stereogrammes holographiques sur demande a partir de divers types de materiels sources
WO2002039194A1 (fr) * 2000-11-07 2002-05-16 Holographic Imaging Llc Affichage 3d
US20050057787A1 (en) * 2003-08-08 2005-03-17 International Business Machines Corporation Generation of a hologram pattern
WO2006066919A1 (fr) * 2004-12-23 2006-06-29 Seereal Technologies Gmbh Methode de calcul d'un hologramme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024064A1 (fr) * 1996-11-27 1998-06-04 Voxel Procede et dispositif d'evaluation rapide de parametres de traitement informatique
WO2001057601A1 (fr) * 2000-02-04 2001-08-09 Zebra Imaging, Inc. Systeme distribue permettant de produire des stereogrammes holographiques sur demande a partir de divers types de materiels sources
WO2002039194A1 (fr) * 2000-11-07 2002-05-16 Holographic Imaging Llc Affichage 3d
US20050057787A1 (en) * 2003-08-08 2005-03-17 International Business Machines Corporation Generation of a hologram pattern
WO2006066919A1 (fr) * 2004-12-23 2006-06-29 Seereal Technologies Gmbh Methode de calcul d'un hologramme

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918466A (zh) * 2010-04-01 2013-02-06 视瑞尔技术公司 用于在全息系统中编码包含透明物体的三维场景的方法和装置
CN110495900A (zh) * 2019-08-19 2019-11-26 武汉联影医疗科技有限公司 影像显示方法、装置、设备和存储介质

Similar Documents

Publication Publication Date Title
EP2160655B1 (fr) Procédé pour produire des hologrammes vidéo en temps réel et permettant d'améliorer un pipeline graphique à rendu en 3d
EP2158522B1 (fr) Procédé analytique permettant le calcul de hologrammes vidéo en temps réel
EP2005259B1 (fr) Procédé de restitution et de génération d'hologrammes vidéo générés par informatique en temps reel
DE102007013431B4 (de) Verfahren und Einrichtung zum Rekonstruieren einer dreidimensionalen Szene mit korrigierter Sichtbarkeit
DE102006025096B4 (de) Verfahren und Einrichtung zum Rendern und Generieren computer-generierter Videohologramme
DE102007023739B4 (de) Verfahren zum Rendern und Generieren von Farbvideohologrammen in Echtzeit und holographische Wiedergabeeinrichtung
WO2008025839A1 (fr) Procédé pour générer des hologrammes vidéo en temps réel au moyen de sous-hologrammes
DE102008000589B4 (de) Verfahren zur Kodierung von computergenerierten Hologrammen in pixelierten Lichtmodulatoren
DE102004063838A1 (de) Verfahren und Einrichtung zum Berechnen computer generierter Videohologramme
WO2008025844A1 (fr) Procédé de génération d'hologrammes vidéo générés par ordinateur en temps réel par propagation
WO2004044659A2 (fr) Hologramme video et dispositif de reconstruction d'hologrammes video
DE102015205873A1 (de) Verfahren zur Berechnung von Hologrammen zur holographischen Rekonstruktion von zweidimensionalen und/oder dreidimensionalen Szenen
EP2062100B1 (fr) Procédé et dispositif de codage d'hologrammes générés par ordinateur dans des modulateurs de lumière à pixels
DE102007023740A1 (de) Verfahren zur Generierung von Videohologrammen für eine holographische Wiedergabeeinrichtung mit wahlfreier Adressierung
DE102006062376A1 (de) Verfahren und Einrichtung zum Reduzieren von Speckle
DE3419098A1 (de) Bildschirm zur raeumlich-dreidimensionalen darstellung von bildern, graphiken und sonstigen daten
WO2008025842A1 (fr) Interface et circuit utilisés en particulier pour des unités de codage holographiques ou des ensembles de reproduction holographiques
WO2008025841A1 (fr) Unité de codage holographique destinée à produire des hologrammes vidéo
DE102006042324B4 (de) Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Teilhologrammen
DE102006042326A1 (de) Holographische Kodiereinheit zum Generieren computergenerierter Videohologramme
DE102006042323B4 (de) Verfahren zum Generieren computer-generierter Videohologramme in Echtzeit mittels Propagation
WO2007085482A1 (fr) Procédé pour générer et représenter des images perceptibles dans l’espace
WO2007085233A2 (fr) Procédés de compression de données d'hologrammes vidéo produits par ordinateur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07803114

Country of ref document: EP

Kind code of ref document: A1